
UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Resilience in Cyber-Physical Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Yanwen Mao

2022

© Copyright by

Yanwen Mao

2022

ABSTRACT OF THE DISSERTATION

Towards Resilience in Cyber-Physical Systems

by

Yanwen Mao

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Paulo Tabuada, Chair

In this dissertation, we consider the problem of collaborating a network of nodes to accom-

plish an objective, which could be monitoring the state of a dynamical system or training

a machine learning model, where each node only has access to partial data. Some nodes in

the network are assumed to be attacked by an adversary. The attacked nodes may release

incorrect information or, in the worst case, deviate from the prescribed rule and behave in an

unexpected manner. This problem lies in the intersection of control theory, signal processing,

machine learning, and network coding theory.

This problem is of great interest due to its wide applications in real life, such as monitoring

the energy flow of a power grid, localizing a drone with multiple cameras, and machine

learning in a decentralized network. Also, with the growing size of networked systems, it

is getting harder and harder to physically shield network entities from adversarial attacks,

which calls for a solution to the aforementioned problem even in the presence of adversaries.

In the first part of the dissertation, we study the problem of how to reconstruct the state

of a linear system using partially corrupted state observations from heterogeneous sensors. In

this part, we first discuss the computational complexity of this problem. We point out that

ii

although this problem is, in general, NP-hard, it allows a polynomial-time solution if certain

conditions are met. We then extend our study on the same state-reconstruction problem, but

in a decentralized network, where we focus on how the network topology and the dynamics

of the linear systems affect the maximum number of correctable attacked nodes and attacked

communication channels. In the end, we propose a novel approach, based on source coding

and dynamic average consensus algorithms, that enables each node in the network to track

the state of a linear system using minimal communications.

In the second part of the dissertation, we switch to the decentralized machine learning

problem. We consider a collection of nodes connected through a network, each equipped with

a local data set. The objective for all the nodes is to collectively train a machine learning

model that minimizes the empirical loss, in a decentralized manner, i.e., each node can only

use its local function and messages exchanged with nodes it is connected to. Moreover,

each node is to agree on the said minimizer despite an adversary that can arbitrarily change

the local functions of a fraction of the nodes. To solve this problem, we propose a novel

decentralized learning algorithm that enables all nodes to reach consensus on the optimal

model, by identifying attacked nodes and filtering out erroneous messages.

iii

The dissertation of Yanwen Mao has been approved.

Shreyas Sundaram

Christina Panagio Fragouli

Suhas N. Diggavi

Paulo Tabuada, Committee Chair

University of California, Los Angeles

2022

iv

To my family

To my parents, Lixin and Yanping,

To those who I loved . . .

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Key Notions . 2

1.1.1 Dynamical Systems and Cyber-Physical Systems 2

1.1.2 Attacks . 2

1.1.3 Machine Learning in the Presence of Data Poisoning Attacks 3

1.2 Dissertation Outline and Contributions . 3

1.2.1 On the Computational Complexity of the Secure State-Reconstruction

Problem . 3

1.2.2 Secure State-Reconstruction Over Networks Subject to Attack 4

1.2.3 Decentralized Secure State-Tracking in Multi-Agent Systems 4

1.2.4 Decentralized Robust Optimization 5

1.3 Notations . 5

1.3.1 Basic Notions . 5

1.3.2 Matrix Related Notions . 6

1.3.3 Graph Related Notions . 7

2 On the Computational Complexity of

the Secure State-Reconstruction Problem . 8

2.1 Introduction . 8

2.2 Additional Notations . 11

2.3 Problem Formulation . 13

2.3.1 System Model . 13

vi

2.3.2 The Secure State-Reconstruction Problem 14

2.3.3 Sparse Observability and Eigenvalue Observability 14

2.4 SSR is Hard . 16

2.5 System Decomposition . 17

2.6 Classes of SSR Problems Solvable in Polynomial Time 22

2.6.1 Impossibility of Reconstructing Substates Corresponding to Eigenval-

ues in the Set J1 . 25

2.6.2 Reconstructing the Substates Corresponding to Eigenvalues in the Set

J2 . 26

2.6.3 Computational Complexity of Reconstructing Substates Correspond-

ing to Eigenvalues in the Set J3 . 26

2.6.4 Example - Continued . 29

2.7 Complexity of Checking Sparse Observability 30

2.8 Connections Between Sparse Observability and Eigenvalue Observability . . 34

2.9 Conclusion . 38

3 Secure State-Reconstruction Over Networks

Subject to Attacks . 39

3.1 Introduction . 39

3.2 Problem Setting . 41

3.2.1 System Model . 41

3.2.2 Network model . 41

3.2.3 Adversary Model . 43

3.2.4 Definitions . 43

vii

3.2.5 The Secure State-Reconstruction Problem 44

3.3 Main Result . 44

3.4 Sufficiency: Coding and Decoding Algorithms 46

3.4.1 Encoding Algorithm . 46

3.4.2 Decoding Algorithm . 49

3.4.3 Correctness of Decoding Algorithm 51

3.5 Necessity: Strategy of the Adversary . 53

3.6 Conclusion . 54

4 Decentralized Secure State-Tracking

in Multi-Agent Systems . 55

4.1 Introduction . 55

4.1.1 Related Work . 55

4.1.2 Our Approach and Contributions . 57

4.1.3 Chapter Organization . 58

4.2 Problem Formulation and Key Idea . 59

4.2.1 System Model . 59

4.2.2 Assumptions . 62

4.2.3 The Decentralized Secure State-Tracking Problem 63

4.2.4 Key Idea . 64

4.3 Design of the Compression Matrix and Solvability of DSST 65

4.4 Reduction to Dynamic Average Consensus 68

4.5 Solving the DSST Problem . 70

4.5.1 Tracking the Compressed Measurements 71

viii

4.5.2 Reconstructing the State with Compressed Measurements 72

4.6 Numerical Example . 74

4.7 Concluding Remarks . 77

5 Decentralized Robust Optimization . 79

5.1 Introduction . 79

5.1.1 Existing Works . 79

5.1.2 Our Contributions . 82

5.1.3 Chapter Organization . 84

5.2 Preliminaries . 84

5.2.1 Notation . 84

5.2.2 Problem Formulation . 85

5.2.3 Attack Model . 86

5.2.4 Assumptions . 87

5.3 The Resilient Averaging Gradient Descent Algorithm 89

5.4 The Robust Weighted Sum Estimation Algorithm 91

5.4.1 Algorithm Description . 91

5.4.2 Performance . 93

5.5 Performance of the RAGD Algorithm . 95

5.6 Numerical Results . 98

5.7 Conclusion . 100

6 Future Directions . 103

7 Appendix . 106

ix

7.1 Proofs for Chapter 4 . 106

7.1.1 Proof of Lemma 8 . 106

7.1.2 Proof of Lemma 9 . 115

7.2 Proofs for Chapter 5 . 116

7.2.1 Proof of Lemma 10 . 116

7.2.2 Proof of Lemma 11 . 121

7.2.3 Proof of Lemma 12 . 123

7.2.4 Proof of Lemma 13 . 124

7.2.5 Proof of Lemma 15 . 125

7.2.6 Proof of Proposition 6 . 125

7.2.7 Proof of Proposition 7 . 127

7.2.8 Proof of Theorem 12 . 128

References . 133

x

LIST OF FIGURES

2.1 Figure illustrating the hierarchy of relationships between different notions of ob-

servability. 34

3.1 Measurements are transmitted to the receiver via a relay network. 42

3.2 A simple illustration of the encoding algorithm. 47

4.1 The communication graph. 75

4.2 The measurement tracking error ∥W 1 −D1Y ∥ versus iterations. 76

4.3 The state tracking error ∥x̂− x∥ versus iterations. 77

5.1 Visualization of Algorithm 2. 92

5.2 Testing accuracy over iterations of the RAGD algorithm for decentralized train-

ing a logistic regression function on MNIST data set in the presence of attacks

changing gradients. 99

xi

LIST OF TABLES

4.1 A comparison between solutions to the DSST problem in [MS19], [LKS20], [HRS20],

and this chapter. 59

5.1 A comparison between solutions to the RDGO problem in [GHY19, GMK21],

[DD20,DD21], [LXC19], [RWR20], and this chapter. 83

5.2 Illustration of the classification rule. 102

xii

ACKNOWLEDGMENTS

The past five years has witnessed my growth, from a bold and ambitious student, to a sober

and steady researcher. I would like to express my gratitude to everyone who helped me and

supported me through this challenging part of my life.

I am deeply indebted to my advisor, Professor Paulo Tabuada, for his knowledge, pa-

tience, and support throughout this period, and without whom this dissertation would not

have been possible. I would also like to express my deepest gratitude to Professor Suhas

Diggavi, for his guidance and persistent help in this long journey.

My gratitude should also go to Professor Christina Fragouli and Professor Shreyas Sun-

daram for serving on my doctoral committee, for leading me through my first steps in my

doctoral research, and whose feedback was imperative to building this dissertation.

Many thanks to my lab mates and collaborators: Luigi Pannocchi, Carlos Murguia,

Marcus Lucas, Tzanis Anevlavis, Lucas Fraile, Alimzhan Sultangazin, Jonathan Bunton,

Aritra Mitra, and Deepesh Data. I would like to extend my thanks to Jing Liu and Nirupam

Gupta for their insightful discussions.

Last but not least, I would like to thank my family: my parents, Lixin and Yanping, for

their unwavering support and belief in me.

xiii

VITA

2013-2017 B.S., Electrical Engineering

Shanghai Jiao Tong Univeristy

2017-2022 Research Assistant, Electrical and Computer Engineering

University of California, Los Angeles

PUBLICATIONS

Yanwen Mao, Paulo Tabuada, Decentralized Secure State-Tracking in Multi-Agent Sys-

tems, conditionally accepted by IEEE Transactions on Automatic Control.

Yanwen Mao, Aritra Mitra, Shreyas Sundaram, Paulo Tabuada, On the Computational

Complexity of the Secure State-Reconstruction Problem, Automatica.

Yanwen Mao, Deepesh Data, Suhas Diggavi, Paulo Tabuada, Decentralized Learning

Robust to Data Poisoning Attacks, Accepted by 61th Conference on Decision and Control

(CDC’22).

Yanwen Mao, Paulo Tabuada Decentralized resilient state-tracking, 60th Conference on

Decision and Control (CDC’21).

xiv

Yanwen Mao, Suhas Diggavi, Christina Fragouli, Paulo Tabuada Secure State-Reconstruction

Over Networks Subject to Attacks, Joint publication in the IEEE Control Systems Letters

and 59th Conference on Decision and Control (CDC’20).

Yanwen Mao, Aritra Mitra, Shreyas Sundaram, Paulo Tabuada, When is the Secure State-

Reconstruction Problem NP-hard?, 58th Conference on Decision and Control (CDC’19).

xv

CHAPTER 1

Introduction

Cyber-Physical Systems (CPSs), which merge computing and networking with physical enti-

ties, bring numerous advantages to human life, such as safer and more efficient systems and

lower cost in interacting with the physical world. However, the complication in the nature of

a CPS makes it vulnerable to adversarial attacks. Notorious examples include the StuxNet

computer worm and the most recent credential stuffing attack reported by state farm keeps

reminding people the importance of the security aspect of CPSs.

However, compared with the significance of CPS security, it is usually impractical to

physically shield CPS entities from adversarial attacks, both because of the heterogeneity

of CPS entities and their nature of being geographically dispersed over large areas. This

motivates people to design a more robust algorithm, which, in the presence of adversarial

attacks, still enables all attack-free entities in a CPS to collectively perform an assigned task.

In this dissertation, we provide a systematic analysis on how to design fault-tolerance

algorithms for large-scale networked systems and a more fundamental characterization on

whether a system can operate properly in the presence of a certain number of attacks. We

first illustrate some key notions in this dissertation.

1

1.1 Key Notions

1.1.1 Dynamical Systems and Cyber-Physical Systems

In this dissertation, a dynamical system refers to a system whose state evolution over time

and whose state observation are governed by explicit functions. In particular, if such func-

tions are linear, the dynamical system is referred to as a linear dynamical system. Such

systems have found numerous applications in real life, from inverted pendulum to social

network. Studying dynamical systems is always the focus of control theory and has brought

countless benefits to the human society, for example, autonomous driving and controlling

the spread of disease.

Cyber-Physical Systems merge computing and networking with physical entities, and is

thus modeled as dynamical systems in this dissertation. However, different from ordinary

dynamical systems, CPSs are usually geographically dispersed and subject to attacks, and

hence it is of great interest to develop fault-tolerant algorithms specifically for different kinds

of CPSs.

1.1.2 Attacks

In this dissertation, attacks refer to the inferences from a third-party agent on a networked

system (or a CPS) which render attacked nodes to misbehave. There are two kinds of

attacks: benign and malicious. A benign attack is usually conducted unintentionally or

even enforced by nature power, such as corrosion and aging. On the contrary, a malicious

attack is conducted intentionally, which is much harder to handle due to the following three

reasons: the attacker will likely exploit his knowledge of the system to design the attack

signal, the attack will last much longer, and all attacked nodes will likely to cooperate. In

this dissertation, We study the malicious attack when the attacker has full knowledge of

the system and is able to attack a fixed subset of nodes in the network. An attacked node

2

may provide incorrect information, or may, in the worst case, totally deviate from prescribed

rules. We point out here that any algorithm developed in this dissertation also applies to

the benign case.

1.1.3 Machine Learning in the Presence of Data Poisoning Attacks

Machine learning has wide applications in human life. However, this modern technology is

facing more challenges nowadays, and one of them is the need of designing machine learning

algorithms that is robust to partially corrupted data samples, as machine learning is applied

to increasingly sensitive tasks.

Consider a scenario where fifty hospitals in a state are collectively training a model

to diagnose with radiograph if a certain patient has lung cancer. However, one hospital

uploaded radiographs associated with break bones by mistake. Such mistakes are not easy

to identify but will ruin the training process.

Such kind of scenarios call for robust machine learning algorithms which makes the system

resilient against attacks. In response for this, we study how to train a nearly-optimal machine

learning model in the presence of attacks is discussed in this dissertation.

1.2 Dissertation Outline and Contributions

This dissertation is composed of four research topics. The contribution of this dissertation

is summarized as follows:

1.2.1 On the Computational Complexity of the Secure State-Reconstruction

Problem

In Chapter 2, we reconstruct the state of a linear system at a central node using partially

corrupted state observations from heterogeneous sensors geographically dispersed over large

3

areas. In this part, we systematically characterize the computational complexity of the

problem mentioned above, which is usually referred to as the secure state-reconstruction

problem. The first result establishes that this problem is, in general, NP-hard. We then

identify classes of subproblems that can be solved in polynomial time. When there are at

most s malicious sensors, the problem can be solved in polynomial time when each eigenvalue

is observable by at least 2s + 1 sensors. When each eigenvalue has geometric multiplicity

one, this condition is equivalent to the system being 2s-sparse observable. We also give a

detailed discussion on the more nuanced case when each eigenvalue is not observable by at

least 2s + 1 sensors.

1.2.2 Secure State-Reconstruction Over Networks Subject to Attack

Whereas most work on secure state-reconstruction problem focuses on attacks on sensors, in

Chapter 3 we consider the more challenging case where attacks occur on sensors as well as

on nodes and links of a network that transports sensor measurements to a receiver. In this

chapter we provide necessary and sufficient conditions for the secure state-reconstruction

problem to be solvable in the presence of attacks on sensors and on the network.

1.2.3 Decentralized Secure State-Tracking in Multi-Agent Systems

Chapter 4 studies the problem of decentralized state-tracking in the presence of sensor at-

tacks. We consider a network of nodes where each node has the objective of tracking the

state of a linear dynamical system based on its measurements and messages exchanged with

neighboring nodes notwithstanding some measurements being spoofed by an adversary. We

propose a novel decentralized attack-resilient state-tracking algorithm based on the simple

observation that a compressed version of all the network measurements suffices to recon-

struct the state. This motivates a 2-step solution to the decentralized secure state-tracking

problem: (1) each node tracks the compressed version of all the network measurements, and

4

(2) each node asymptotically reconstructs the state from the output of step (1). We prove

that, under mild technical assumptions, our algorithm enables each node to track the state

of the linear system and thus solves the decentralized secure state-tracking problem.

1.2.4 Decentralized Robust Optimization

In Chapter 5, we switch our focus, from reconstructing the state of a dynamical system with

partially corrupted measurements from a network of sensors, to the decentralized machine

learning problem in a hostile environment. In this problem, we consider a collection of

nodes connected through a network, each equipped with a local function. These nodes are

asked to collaboratively find out the global optimizer, i.e., the point that minimizes the

aggregated local functions, using their local information and messages exchanged with their

neighbors. Moreover, each node is to agree on the said minimizer despite an adversary that

can arbitrarily change the local functions of a fraction of the nodes. We present RAGD, the

Resilient Averaging Gradient Descent algorithm, a decentralized, consensus+outlier filtering

algorithm that is resilient to attacks on local functions. We demonstrate that, as long as

the portion of attacked nodes does not exceed a given threshold, RAGD guarantees that all

nodes will be able to have a good estimate of the said minimizer.

1.3 Notations

In this section we introduce the notions used throughout the dissertation. Some additional

notions, if necessary, will be introduced at the beginning of each chapter.

1.3.1 Basic Notions

We denote by |S| the cardinality of a set S. For any two sets S and S ′, the set subtraction

S\S ′ is the set defined by S\S ′ = {s ∈ S|s /∈ S ′}. For matrices Qi1 , . . . , Qip over the same

5

field and with the same number of columns, we define the matrix QI =
[
QT

i1
|QT

i2
| . . . |QT

ip

]T
by stacking the individual matrices vertically.

Let R, N, Q, and C denote the set of real, natural, rational, and complex numbers,

respectively. A complex number z ∈ C is written in the form z = a+ bi where i2 = −1. The

support of v ∈ Rp, denoted by supp(v), is the set of indices of the non-zero entries of v, i.e.,

supp(v) = {i ∈ {1, 2, . . . , p}|vi ̸= 0}. For a scalar s ∈ N we say v is s−sparse if |supp(v)| ≤ s.

Also, we define the all-ones vector 1n = (1, 1, . . . , 1)T and In to be the identity matrix of

order n. When the dimension of the identity matrix is unambiguous, we will write I instead.

Moreover, for any p ∈ N, we denote by Ep = {e1, e2, . . . , ep} the standard basis of Rp with

ei ∈ Rp being the vector with all entries equal to zero except the i-th entry which is 1.

Given a vector b ∈ Rn, we denote by ∥b∥0 the number of non-zero entries in b.

1.3.2 Matrix Related Notions

We denote by A ∈ Rm×n a real matrix with m ∈ N rows and n ∈ N columns. We will also

refer to matrices where only the number of rows or columns is specified using the notation

A ∈ Rm×∗ or A ∈ R∗×n.

For a real square matrix A, We denote by λ1, . . . , λr ∈ C the (counted without repetition)

eigenvalues of A and by sp(A) = {λ1, . . . , λr} its spectrum. The eigenvalue with the largest

and smallest magnitude is denoted by λmax(A) and λmin(A), respectively. The algebraic

multiplicity of an eigenvalue λj, denoted by α(λj), is the number of times (counted with

repetition) that λj is a solution of det(A − λjIn) = 0. The geometric multiplicity of an

eigenvalue λj, denoted by γ(λj), is the dimension of the vector space ker(A − λjIn). We

denote the space of generalized eigenvectors associated with λj, ker(A − λjIn)α(λj), by Vj.

Note that Vj has dimension α(λj) and γ(λj) Jordan chains.

Also, for a real matrix B, we denote by σmax(B) and σmin(B) the largest and smallest

singular values of matrix B, respectively. The range of a real matrix A is denoted by R(A),

6

and its kernel is denoted by ker(A). Moreover, we denote by A⊗ B the Kronecker product

of two real matrices A and B. Consider a set Q of indices and a matrix K, the matrix KQ

is obtained by removing any row in K not indexed by Q.

1.3.3 Graph Related Notions

Here we review some of the basic notions of graph theory. A weighted undirected graph

G = (V , E ,A) is a triple consisting of a set of vertices V = {v1, v2, . . . , vp} with cardinality p,

a set of edges E ⊆ V × V , and a weighted adjacency matrix A ∈ Rp×p which we will define

in the coming paragraph. The set of neighbors of a vertex i ∈ V , denoted by Ni = {j ∈

V|(i, j) ∈ E}, is the set of vertices that is connected to i by an edge. To clarify, we assume

each vertex is not a neighbor of itself, i.e., (i, i) /∈ E for any i. The weighted adjacency

matrix A of the graph G is defined entry-wise. The entry in the i-th row and j-th column,

aij, satisfies aij > 0 if (i, j) ∈ E and otherwise aij = 0. Since the graph is undirected,

aij = aji for any i, j ranging from 1 to p which results in A being a symmetric matrix. The

degree matrix D ∈ Rp×p of the graph G is a diagonal matrix with its i-th diagonal element

defined by dii =
∑p

j=1 aij. The Laplacian matrix L of the graph G is defined by L = D−A,

which is known to be symmetric, if the graph is undirected, positive semi-definite, and having

span{1p} as its kernel.

7

CHAPTER 2

On the Computational Complexity of

the Secure State-Reconstruction Problem

2.1 Introduction

This chapter is concerned with the detection of attacks on Cyber-Physical Systems. The

distributed nature of these large-scale systems often leads to increased vulnerabilities. Of

particular concern are adversaries that exploit the distributed nature of CPSs to gain ac-

cess to sensors and launch attacks by modifying their measurements [CAS08,GUC18]. The

most notorious example is the Stuxnet malware [Lan11], which attacked numerous industrial

control systems.

Over the last decade, a significant amount of research has focused on reconstructing the

state in the presence of sensor attacks - we will refer to this as the Secure State-Reconstruction

problem throughout the chapter. The first experimental demonstration of a stealthy attack

on a control system was reported in [ALS10] and it was followed by the first theoretical results

developed for special classes of systems [STJ10,GLB10]. Stealthy attacks were then formal-

ized in [Smi11,Smi15]. An important step in the conceptual understanding of these attacks

was given in [PDB12, PDB13, SH10], where the existence of such attacks was characterized

by the system theoretic notion of zero-dynamics.

In addition to detecting and identifying attacks, it is important to mitigate their effect

by continuing to control the plant. Hence, researchers have invested a significant effort in

developing algorithms to reconstruct the state since the chapters [FTD11,FTD14]. However,

8

the SSR problem is intrinsically an NP-hard problem (as we show in this chapter). Based on

how the NP-hardness is tackled, we classify the existing work in two classes: 1) brute force

search [CWH15,LY17], and 2) computationally efficient relaxations. The methods reported

in the first class are better suited for small systems as the computational complexity grows

combinatorially with the number of sensors. Noteworthy examples of the second class in-

clude: convex relaxations [FTD14,YFF16], distributed detection filters [PDB13], specialized

observers under sparsity constraints [ST15], satisfiability modulo theory techniques [SNS18],

and safety envelopes [TDJ14].

The distributed version of the SSR problem has also attracted a substantial amount

of interest given the distributed nature of CPSs. Several authors have studied the prob-

lem of estimating a static vector from a set of corrupted measurements, either over a dis-

tributed sensor network [CKM18a,SS19], or over a connected-on-average network [CKM18b].

A control-theoretic approach to distributed function calculation was developed in [SH10].

Follow-up works have analyzed the resilient consensus problem, both for discrete [LZK13],

and continuous-time [LZS13] systems. The work in [TV15] also evaluates this method in var-

ious network topologies. The problem of guaranteeing resilience in the context of distributed

state estimation, when the state of the system evolves over time (based on potentially un-

stable dynamics) has been recently explored in [DUS19], [MS16], and [MS19]. In particular,

the authors in [MS19] develop a fully-distributed algorithm that reconstructs the evolving

state despite attacks on certain sensors in the network.

Despite the wealth of literature on the security of CPSs, to the best of the authors’

knowledge, a detailed characterization of the complexity of the SSR problem is still lacking.

On the one hand, the chapters [FTD14,YFF16,PDB13,ST15,SNS18,TDJ14] suggest that the

SSR problem is computationally hard since they propose efficient relaxations to the problem.

On the other hand, the chapter [MS19] implicitly proposes a polynomial-time solution to the

SSR poblem for certain cases. These observations naturally call for a better understanding

of the complexity of the SSR problem, which is precisely the goal of this chapter.

9

As we shall soon see, two alternate notions of observability, namely “sparse observability”

introduced in [FTD14, ST15] (see also [SH10] for an equivalent notion in continuous time),

and “eigenvalue observability” [Che98], [MS18], will play key roles in our characterization of

the SSR problem complexity. Our contributions are the following:

1. We show that the SSR problem is NP-hard.

2. We provide a decomposition that identifies portions of the state that can be recon-

structed in polynomial time and portions that are NP-hard to reconstruct.

3. We offer a polynomial-time solution for the SSR problem under an eigenvalue observ-

ability assumption.

4. We show that checking sparse observability is coNP-complete.

5. We show that the notions of sparse observability and eigenvalue observability are equiv-

alent when the geometric multiplicity of each eigenvalue of the system matrix A is 1.

These results can be understood as follows. Although the SSR problem is NP-hard, in

general, there may be portions of the state that can be reconstructed in polynomial time.

We perform a system decomposition to identify these different portions of the state. In par-

ticular, when all the eigenvalues of the system matrix A have unitary geometric multiplicity,

the decomposition results in scalar SSR problems. This establishes the equivalence between

sparse observability, a necessary and sufficient condition for the SSR problem to be solvable,

and eigenvalue observability, a sufficient condition for the existence of a polynomial time

algorithm. Interestingly, even if the unitary geometric multiplicity condition is not satis-

fied, we may still check eigenvalue observability and, if successful, solve the SSR problem in

polynomial time. When the system does not satisfy the eigenvalue observability condition,

we conjecture that the SSR problem is intractable since even checking sparse observability

is coNP-complete. This chapter improves upon the preliminary results in [MMS19] by in-

10

troducing a decomposition technique that is key to the aforementioned contributions 1 and

2.

The rest of the chapter is organized as follows. In Section 2.2, we define the notation

used throughout the chapter. In Section 2.3, we introduce the system model and give a

formal definition of the SSR problem, sparse observability, and eigenvalue observability. We

prove that the SSR problem is NP-hard in Section 2.4. This is then followed by a result

on breaking the overall SSR problem into several smaller independent SSR problems. As

a special case, we show in Section 2.6 that under an eigenvalue observability assumption,

the SSR problem can be solved in polynomial time. While checking eigenvalue observability

can be done in polynomial time, in Section 2.7 we show that checking sparse observability

is coNP-complete. We connect these two notions in Section 2.8 by showing that they are

equivalent when the geometric multiplicity of each eigenvalue of the system matrix A is 1.

Finally, we conclude the chapter in Section 2.9.

2.2 Additional Notations

For a matrix A ∈ Rn×n, we use ker A to denote the kernel of A, Im(A) to denote the image

of A and A|V to denote the restriction of the linear map defined by A to the subspace V .

We also denote by A(V) the set {y ∈ Rn|y = Ax, x ∈ V }.

Let V be a vector space. The collection of vector spaces {V j}j=1,...,r, with V j ⊆ V , is

said to be an internal direct sum of V , denoted by V =
⊕

j=1,...,r V
j, if any vector v ∈ V

can be uniquely written as v = v1 + . . . + vr with vj ∈ V j. The direct sum comes equipped

with canonical inclusions ıj : V j → V taking vj ∈ V j to ıj(vj) = vj ∈ V , and canonical

projections πj : V → V j taking v ∈ V to πj(v) = vj ∈ V j.

As an example, consider V = R4 and let V 1 = Im(M1), V
2 = Im(M2), and V 3 = Im(M3)

11

where M1, M2, and M3 are the following linear transformations:

M1 =

2 0

−1 1

1 1

0 0

 , M2 =

0

1

−1

0

 , M3 =

−1

1

0

1

 . (2.1)

The collection {V 1, V 2, V 3} is an internal direct sum of V since all the column vectors are

linearly independent. The canonical inclusions ıj can be represented by I4|V j , the identity

matrix I4 of order 4 restricted to the subspace V j, since ıj maps any vector v ∈ V j to

v ∈ V . Conversely, the canonical projections πj are represented by the matrices Pj =

MiUjM
−1, where U1 =

1 0 0 0

0 1 0 0

, U2 =
[
0 0 1 0

]
, U3 =

[
0 0 0 1

]
, as well as

M =
[
M1 M2 M3

]
.

Let V =
⊕

j=1,...,r V
j, W =

⊕
j=1,...,r W

j, and consider a linear map F : V → W satisfying

F (V j) ⊆ W j. Then, the linear map F (j) : V j → W j defined by F (j) = πj ◦ F ◦ ıj satisfies:

F (j) ◦ πj = πj ◦ F (2.2)

ıj ◦ F (j) = F ◦ ıj, (2.3)

where ◦ denotes function composition.

Continuing with our example, let F be represented by the matrix:

F =
1

2

2 0 0 −4

1 3 −1 4

−1 −1 3 0

0 0 0 6

 , (2.4)

and note that F(V j) ⊆ V j. The maps F(j) are then given by F(1) = P1F ◦ ı1 = P1F|V 1 =

I4|V 1 ,F(2) = P2F◦ı2 = P2F|V 2 = 2I4|V 2 , as well as F(3) = P3F◦ı3 = P3F|V 3 = 3I4|V 3 . Since

the vector subspaces V j are the generalized eigenspaces of F corresponding to each different

12

eigenvalue, the matrices F(j) are simply the identity matrix restricted to V j multiplied by

the corresponding eigenvalue.

2.3 Problem Formulation

2.3.1 System Model

Consider a discrete-time linear time-invariant system under sensor attacks of the following

form:

x[t + 1] = Ax[t] (2.5)

yi[t] = Cix[t] + ei[t], (2.6)

where x[t] ∈ Rn and yi[t] ∈ Rpi represent the state of the system and the measurement

acquired by sensor i respectively. The vector ei[t] ∈ Rpi models the attack on sensor i. If

sensor i is attacked by an adversary, then ei[t] can be arbitrary, otherwise, ei[t] remains zero

for any k. Let V denote the set of sensors, and let N = |V|. We use C =
[
CT

1 |CT
2 | · · · |CT

N

]T
to denote the collection of the sensor observation matrices, y[t] =

[
yT
1 [t] · · · yT

N [t]
]T

and

e[t] =
[
eT1 [t] · · · eTN [t]

]T
to represent the collective measurement vector and the collective

attack vector, respectively.

We define Oi =
[
CT

i |(CiA)T | . . . |(CiA
τi−1)T

]T
to be the observability matrix of sensor

i with τi being the observability index of the pair (A,Ci). We also define two more vectors

Yi =
[
yT
i [0] . . . yT

i [τi − 1]
]T

and Ei =
[
eTi [0] . . . eTi [τi − 1]

]T
to be the collection of

measurements and attacks of sensor i over the time horizon [0, τi − 1], respectively. An

equivalent expression for the measurements is:

Yi = Oix[0] + Ei. (2.7)

In the remainder of the chapter, we drop the time indices to simplify notation.

13

2.3.2 The Secure State-Reconstruction Problem

Problem 1 (Secure state-reconstruction)

Input: Matrices A ∈ Rn×n, Ci ∈ Rpi×n, i = 1, . . . , N, and a set of vectors Yi ∈ Rpiτi , i =

1, . . . , N.

Question: Find a vector x ∈ Rn and a set I of minimal cardinality such that Yj = Ojx

for all j /∈ I.

In other words, the SSR problem requires the reconstruction of a state x and the simplest

attack explanation in the form of the least number of attacked sensors. Note that when the

solution x is unique, we have found the state of the linear system. Although uniqueness of

solutions is essential when handling attacks, we can study the complexity of the SSR problem

independently of the number of solutions. To make this clear, we will explicitly state the

uniqueness requirements when needed.

2.3.3 Sparse Observability and Eigenvalue Observability

The notions of sparse observability and eigenvalue observability are instrumental to the

results in this chapter.

Definition 1 (Sparse observability index) The sparse observability index of the pair

(A,C) in system (2.5)-(2.6) is the largest integer k such that ker OV\K = {0} for any

K ⊆ V , |K| ≤ k. When the sparse observability index is r, we say that system (2.5)-(2.6) is

r−sparse observable.

It is proved in [FTD14,ST15] (see also [CWH15] for a similar notion in continuous time)

that the possibility of uniquely reconstructing the state x[t] is characterized by the sparse

observability index.

Theorem 1 ([FTD14,CWH15,ST15]) Consider the linear system (2.5)-(2.6) where at

14

most s sensors are subject to attacks. The state x[t] can be uniquely reconstructed if and

only if the sparse observability index of the pair (A,C) is at least 2s.

In view of this result, computing the sparse observability index of a system is of great

interest since it characterizes the maximum number of arbitrary sensor attacks that can be

tolerated without compromising the ability to uniquely reconstruct the state.

In addition to sparse observability, we will require the notion of eigenvalue observability

[Che98,MS18].

Definition 2 (Eigenvalue observability index) We say that an eigenvalue λ ∈ sp(A)

is observable w.r.t. sensor i if the linear map defined by

A− λIn

Ci

 is injective.

If the above condition is satisfied, we say that “sensor i can observe the states in the gen-

eralized eigenspace corresponding to λ”, or briefly, we say “sensor i can observe eigenvalue

λ”. Let the set of all sensors that can observe an eigenvalue λ be denoted Sλ. The eigenvalue

observability index of system (2.5)-(2.6) is the largest integer k such that each eigenvalue of

the matrix A is observable by at least k+1 distinct sensors. When the eigenvalue observability

index is k, we say that system (2.5)-(2.6) is k-eigenvalue observable.

We study the SSR problem under the following assumptions.

Assumption 1: For each sensor i ∈ {1, . . . , N} under attack, the adversary can only

manipulate sensor i’s measurements through the signal ei[t] in (2.6).

Assumption 2: The adversary is omniscient, i.e., we assume the adversary has full

knowledge of the system state, measurements, and plant model. Moreover, all the attacked

sensors are allowed to work cooperatively.

15

2.4 SSR is Hard

Fawzi et al. established in [FTD14] a connection between the SSR problem and compressed

sensing by drawing inspiration from the ideas of Candes and Tao in [CT05]. We take this

approach further by also using the ideas in [CT05] to establish that the SSR problem is

NP-hard. To do so, we first define the compressed sensing problem.

Problem 2 (Compressed sensing)

Input: A full row rank matrix F ∈ Qm×n, a vector b ∈ Qm.

Question: Find the sparsest solution of Fx = b.

The compressed sensing problem yields the solution to the minimization problem:

min
x

∥x∥0

s.t. Fx = b.

(2.8)

Theorem 2 ([FTD14]) The SSR problem is NP-hard.

Proof. Given an instance of the compressed sensing problem, we generate an instance of the

SSR problem as follows. Let the system matrix be of the form A = In, and the collective

observation matrix C satisfy ImC = ker F. Let the measurements of the sensors be scalar-

valued, i.e., let Ci be the i-th row of C. Note that based on the above A matrix, the

observability index for each sensor i ∈ {1, . . . , N} is given by τi = 1, and thus Oi = Ci.

Finally, let Y be any solution to the equation FY = b. Since the linear equation FY = b

is underdetermined, finding a solution Y can be done in polynomial time [Lau04]. For each

i ∈ {1, . . . , N}, set Yi to be the i-th row of Y. Thus, given an instance of the compressed

sensing problem, the instance of the SSR problem described above can be constructed in

polynomial time.

16

The SSR problem for the constructed instance degenerates to:

min
x,e

∥e∥0

s.t. Cx + e = Y.

(2.9)

We now show these two problems have the same solution. It is simple to see that any

solution (x, e) of Cx+ e = Y provides a solution to Fe = b, since by applying F we obtain:

F(Cx + e) = FY

⇔ Fe = b.
(2.10)

To prove the converse, we show that for every e such that Fe = b, there exists some x

satisfying Cx+e = Y. Recalling that FY = b, we obtain F(Y−e) = 0, i.e., Y−e ∈ ker F.

Since ker F = ImC, there exists an x such that Cx = Y − e, as desired.

Noticing that the equations Fe = b and Cx + e = Y have the same solutions for e, we

conclude that they also have the same sparsest solution. In other words, if there exists an

algorithm A that solves the SSR problem for the specific instance constructed by us, such an

algorithm will also yield a solution to the given instance of the compressed sensing problem.

It then follows that since the compressed sensing problem is NP-hard [Nat95], the secure

state reconstruction problem is also NP-hard.

2.5 System Decomposition

In the previous section, we proved that the SSR problem is in general NP-hard. This means

there does not exist a polynomial-time solution unless P = NP . Despite this fact, we show in

this section how to decompose the SSR problem into smaller instances. In the next section,

we identify which of these smaller instances are NP-hard, and which ones are solvable in

polynomial time.

Lemma 1 Assume the existence of a collection of vector spaces {Xj}j=1,...,r satisfying:

17

1. Cn =
⊕

j=1,...,r X
j;

2. A(Xj) ⊆ Xj for j = 1, . . . , r;

3. Oi(Cn) =
⊕

j=1,...,r O
j
i (X

j) for i = 1, . . . , p,

then for any Yi, a solution x of the equation:

Yi = Oix, (2.11)

whenever it exists, can be written as x = x1 + x2 + . . . + xr with xj = πj(x) ∈ Xj given by

the solution of:

Yj
i = Oj

ixj, (2.12)

for Yj
i = πj(Yi) ∈ Oj

i (X
j) and Oj

i = πj ◦ Oi ◦ ıj.

Proof. Let xj be the solution of (2.12) and note that:

Yj
i = Oj

ixj ⇒ ıj(Y
j
i) = ıj ◦ Oj

i (xj) = Oi ◦ ıj(xj) = Oixj, (2.13)

where the third equality follows from (2.3). By summing over j we obtain:

Yi =
r∑

j=1

ıj(Y
j
i) =

r∑
j=1

Oixj = Oi

r∑
j=1

xj = Oix. (2.14)

Hence, the solutions to (2.12) provide a solution to (2.11). Consider now (2.11):

Yi =Oix ⇒ πj(Yi) = πj ◦ Oi(x)

⇒Yj
i = Oj

i ◦ πj(x) = Oj
ixj.

(2.15)

where the third equality follows from (2.2). Hence, if x is a solution to (2.11), then xi is a

solution to (2.12).

Intuitively, we treat the state-space Rn as the direct sum of multiple subspaces. If the

images of these subspaces under the linear map Oi are pairwise non-overlapping, we are

able to project the state vector x onto these subspaces, project the measurement Yi onto

18

the image under the linear map Oi of these subspaces, and then establish a one-to-one

correspondence between the projected state vector and the projected measurement. This

effectively decomposes the original problem into r sub-problems, each of dimension dim(Xj).

As formalized in the next result, the spaces Xj can always be taken to be the generalized

eigenspaces of A.

Proposition 1 The generalized eigenspaces V 1, . . . , V r of A satisfy properties (1)-(3) in

Lemma 1.

Proof. Properties (1) and (2) in Lemma (1) follow directly from the definition of generalized

eigenspace. To simplify notation, we will drop the sensor index i in this proof.

It also follows from the definition of generalized eigenspace that ∪j=1,...,rV
j spans Cn.

Therefore, the set ∪j=1,...,rO(V j) spans O(Cn). Given this, to conclude property (3) we only

need to show:

O(V j) ∩ O(V k) = {0}, ∀j ̸= k.

Moreover, it suffices to show that for any xj ∈ V j and xk ∈ V k, with j ̸= k, the equality

O(xj + xk) = 0 can only be satisfied if Oxj = 0 = Oxk.

We have the following sequence of equalities that is explained thereafter:

0 = O(xj + xk) (2.16)

= O(A− λkIn)α(λk)(xj + xk) (2.17)

= O(A− λkIn)α(λk)(xj) (2.18)

= Oxj. (2.19)

The second step follows from kerO ⊆ kerO(A − λkIn)α(λk), the third step follows from

19

xk ∈ V k = ker(A− λkIn)α(λk), and the fourth from the following sequence of steps:

dim kerO
∣∣
V j ≤ dim kerO(A− λkIn)α(λk)

∣∣
V j (2.20)

= dim ker(A− λkIn)α(λk)
∣∣
V j (2.21)

+ dim kerO
∣∣
(A−λkIn)

α(λk)V j (2.22)

= dim kerO
∣∣
(A−λkIn)

α(λk)V j (2.23)

≤ dim kerO
∣∣
V j . (2.24)

The first step comes from kerO ⊆ kerO(A − λkIn). To show that the second step is true,

we observe that

dim ker MN = dim ker N + dim ker(M
∣∣
N(Cn)

) for any matrices M,N ∈ Cn×n. The third

step comes from the map (A − λjIn)α(λj)
∣∣
V j being injective if j ̸= k, as the generalized

eigenspaces V j and V k intersect only at the origin, and ker(A − λjIn)α(λj) = V j. The

fourth step follows by the A−invariant nature of eigenspace V j. This shows dim kerO
∣∣
V j =

dim kerO(A− λkIn)α(λk)
∣∣
V j which, combined with kerO

∣∣
V j ⊆ kerO(A− λkIn)α(λk)

∣∣
V j , can

only hold when kerO
∣∣
V j = kerO(A− λkIn)α(λk)

∣∣
V j . A symmetric argument can be used to

show that Oxk = 0 and the claim is thus proved.

Combining Lemma (1) and Proposition (1) results in a decomposition of the sensor mea-

surements in (2.7):

Yj
i = Oj

ixj, j = 1, 2, . . . , r, (2.25)

where Yj
i = πj(Yi) is the projection of measurement Yi onto the vector space Oi(V

j),

the linear transformation Oj
i is defined by Oj

i = πj ◦ Oi ◦ ıj, xj is given by xj = πj(x),

πj : Rn → V j is the canonical projection and ıj : V j → Rn is the canonical inclusion.

Theorem 3 A solution x of the SSR problem with inputs A,Ci,Yi is given by x = x1 +

x2 + · · · + xj where xi is the solution to the SSR problem with inputs A(j) = πj ◦ A ◦ ıj,

Cj
i = Ci ◦ ıj, Yj

i .

20

Proof. Follows directly from Lemma 1, Proposition 1, and the properties of generalized

eigenspaces.

Theorem (3) lays the theoretical foundation for decomposing the SSR problem with n

states into r sub-problems of the form:

xj[t + 1] = A(j)xj[t],

Yj
i [t] = Oj

ixj[t] + Ej
i [t],

(2.26)

each with α(λ1), α(λ2), . . . , α(λr) states. The attack vector Ej
i is identically zero when sensor

i is not under attack. The state of the original problem can be reconstructed by summing

up the state reconstructions of each sub-problem.

We now illustrate the decomposition of (2.5)-(2.6) into (2.26) through an example. The

matrix A is the same as the matrix F defined in (2.4) and the matrices Ci are given by:

C1 =
[
3 2 0 2

]
, C2 =

[
2 3 1 −1

]
,

C3 =
[
2 2 0 0

]
, C4 =

[
2 3 −1 0

]
.

As we discussed below (2.4), the generalized eigenspaces of A are V 1 = Im(M1), V
2 =

Im(M2), and V 3 = Im(M3) corresponding to eigenvalues 1, 2, and 3 respectively, where

Mj are defined in (2.1) for j = 1, 2, 3. Also, recall that the projections π1, π2, and π3 are

Pj = Mj(M
T
j Mj)

−1MT
j for j = 1, 2, 3. By definition, we have x1 = P1x, x2 = P2x,

x3 = P3x, and A(1) = P1A|V 1 , A(2) = P2A|V 2 , A(3) = P3A|V 3 . Hence the decomposition

of x[t + 1] = Ax[t] is given by:

Pjx[t + 1] = (PjA|V j)(Pjx[t]), j = 1, 2, 3.

We now illustrate how to decompose the measurement equation Y1[t] = O1x[t] + E1[t]

21

for sensor 1. The observability matrix O1 of sensor 1 is given by:

O1 =

3 2 0 2

4 3 −1 4

6 5 −3 10

10 9 −7 28

 .

We first compute the projections π̃1
1, π̃

2
1 and π̃3

1 that map O1(R4) to O1(V
1),O1(V

2), and

O1(V
3), respectively. To do this, we define the matrices:

M̃1 =

1

1

1

1

 , M̃2 =

1

2

4

8

 , and M̃3 =

1

3

9

27

 ,

which satisfy O1(V
1) = Im(M̃1), O1(V

2) = Im(M̃2), and O1(V
3) = Im(M̃3). We also remark

that the collection {O1(V
1),O1(V

2),O1(V
3)} is an internal direct sum of the vector space

O1(R4). Therefore, by defining M̃ =
[
M̃1 M̃2 M̃3

]
and Ũ1 =

[
1 0 0

]
, Ũ2 =

[
0 1 0

]
,

Ũ3 =
[
0 0 1

]
, each projection π̃i

1 can be represented by the projection matrix:

P̃i
1 = M̃iŨi(M̃

TM̃)−1M̃T , i = 1, 2, 3.

By definition, Yj
1 = P̃j

1Y1, E
j
1 = P̃j

1E1 and Oj
1 = P̃j

1O1|V j for j = 1, 2, 3. In summary, the

decomposition of measurement Y1[t] = O1x[t] + E1[t] is given by:

P̃j
1Y1[t] = (P̃j

1O1|V j)(Pj
1x[t]) + P̃j

1E1[t], j = 1, 2, 3.

2.6 Classes of SSR Problems Solvable in Polynomial Time

While in the previous section we established that the SSR problem is NP-hard, in this

section we leverage the results in Section 2.5 to answer a simple but important question:

when can we solve the SSR problem in polynomial time? Our answer relies heavily on the

22

system decomposition technique introduced in Section 2.5. The first result establishes that

the decomposition can be done in polynomial time.

Proposition 2 The computational complexity of decomposing the system (2.5)-(2.6) into

sub-systems (2.26) is within O(pn3).

Proof. To prove this result, we list all the steps involved in the decomposition from (2.5)-(2.6)

to (2.26) and list the computational complexity of each step.

Offline preparation 1: compute the observability matrix of each sensor Oi. The com-

putational complexity of this step is O(pn2).

Offline preparation 2: find the eigenvalues of the matrix A as well as its generalized

eigenspaces V j. This can be done by finding the Jordan form of A. The computational

complexity of this step is O(n3).

Offline preparation 3: determine the image of each generalized eigenspace V j under

the observability matrix Oi, i.e., Oi(V
j). In this step, we perform p times two n× n matrix

multiplications and thus the complexity of this step is O(pn3).

Offline preparation 4: find the projection matrix for each generalized eigenspace and

each sensor. The computational complexity of this step is O(pn3).

Online task: at each time instance, project the measurements Yi[t] of each sensor i

onto each generalized eigenspace. In this step, for each sensor we multiply a n × n matrix

by a n× 1 vector r times. This requires O(pn2r) time.

We thus conclude that we can decompose the system (2.5)-(2.6) into sub-systems (2.26)

within O(pn3) and finish the proof.

Before giving an answer to the question we stated at the beginning of this section, we

relate the sparse observability index defined for the system (2.5)-(2.6) and the sparse ob-

servability index for each subsystem (2.26) with j ranging from 1 to r in the following two

results. Note that, since the state space of (2.26) is V j, sparse observability is characterized

23

by the injectivity of Oj
i |V j whereas eigenvalue observability is characterized by injectivity of

the linear map

A(j) − λjI
(j)
n

Cj
i

, where we define I
(j)
n = πj ◦In ◦ ıj. We now have the following

results.

Theorem 4 The system (2.5)-(2.6) is k-sparse observable if and only if for each j ∈ {1, 2, . . . , r},

the system (2.26) is k-sparse observable.

Proof. This result can be easily established by observing that ker Oi = ⊕r
j=1ker Oj

i holds

for any sensor i. We omit the proof here in the interest of space.

Similarly, to relate the eigenvalue observability index defined for the overall system and

the eigenvalue observability index for each subsystem, we have the following result.

Theorem 5 The system (2.5)-(2.6) is k-eigenvalue observable if and only if for each j ∈

{1, 2, . . . , r}, the system (2.26) is k-eigenvalue observable.

Proof. By the definition of eigenvalue observability, it suffices to show the matrix

A− λjIn

Ci

has full column rank if and only if each matrix

A(j) − λjI
(j)
n

Cj
i

 defines an injective map with

domain V j, for j ranging from 1 to r.

Consider the map F : V → V ×Rpi defined by the matrix

A− λjIn

Ci

 and note that F

being injective is equivalent to kerF = {0}. Note also that the result immediately follows

if we establish that kerF ⊆ V j. This can be seen by noting that Fx = 0 for x ∈ Rn

degenerates to Fx = 0 for x ∈ V j and (given x = ıjx) can be written as Fıjx = 0:A ◦ ıj − λjıj

Ci ◦ ıj

x = 0. (2.27)

24

Moreover, since (A−λjIn)(V j) ⊆ V j we have the equality πj(A−λjIn)ıjx = (A−λjIn)ıjx.

Therefore, (2.27) degenerates into:πj ◦A ◦ ıj − λjπj ◦ ıj

Ci ◦ ıj

x =

A(j) − λjI
(j)
n

Cj
i

x = 0. (2.28)

Therefore, we proceed by showing that kerF ⊆ V j. The equality Fx = 0 implies (A −

λjIn)x = 0. If we write x as xj + xj with xj = πj(x) and xj =
∑r

k=1,k ̸=j πk(x) we have

(A−λjIn)(xj +xj) = 0. We now make two observations. The first is that (A−λjIn)xj = 0

implies xj = 0 since xj ̸= 0 would imply that xj ∈ V j, by definition of V j. The second

observation is that (A−λjIn)(V ℓ) ⊆ V ℓ, for ℓ ∈ {1, . . . , r}, implies that (A−λjIn)(xj+xj) =

0 iff (A − λjIn)xj = 0 and (A − λjIn)xj = 0. Together with the first observation we have

xj = 0 which implies that x ∈ V j and concludes the proof.

Based on the above decomposition and the assumption that at most s sensors are at-

tacked, we partition the set of eigenvalues {λ1, λ2, . . . , λr} as follows:

• We define J1 ⊆ {λ1, λ2, . . . , λr} to be the set of eigenvalues whose corresponding

subsystems (2.26) are not 2s-sparse observable.

• We define J2 ⊆ {λ1, λ2, . . . , λr} \ J1 to be the set of eigenvalues whose corresponding

subsystems (2.26) are 2s-eigenvalue observable.

• We define J3 = {λ1, λ2, . . . , λr} \ {J1 ∪ J2} to be the set of eigenvalues whose corre-

sponding subsystems (2.26) are 2s-sparse observable but not 2s−eigenvalue observable.

2.6.1 Impossibility of Reconstructing Substates Corresponding to Eigenvalues

in the Set J1

It is established in Section (2.3) that the SSR problem does not admit a unique solution

if it is not 2s−sparse observable. Therefore, it is impossible to reconstruct the substates

corresponding to eigenvalues in J1. Furthermore, by Theorem (4) if J1 is not empty, the

25

overall system defined in (2.5)-(2.6) is not 2s−sparse observable, which in turn means the

solution is not unique.

2.6.2 Reconstructing the Substates Corresponding to Eigenvalues in the Set J2

We learned from Theorem (5) that if λj is observable w.r.t. sensor i, then after decomposing

the system, λj is also observable w.r.t. to sensor i in the j-th sub-system corresponding to

this sensor. By the Popov-Belevitch-Hautus (PBH) test, the j-th sub-system (A(j),Cj
i) is

observable, which shows that xj can be reconstructed using only measurements from sensor

i.

We now explain how to reconstruct the substates corresponding to eigenvalues in J2

based on majority voting. Consider any eigenvalue λj ∈ J2. Let Sλj
represent the set of

sensors w.r.t. which λj is observable. The result of the PBH test implies that xj can be

recovered using the measurements of each of the sensors in the set Sλj
. We denote by x

(l)
j

the lth component of xj. Based on the definition of the set J2, we have |Sλj
| ≥ (2s + 1).

Consequently, since at most s sensors have been compromised, we are guaranteed at least

s + 1 consistent copies of the state x
(l)
j . Thus, each component of the vector x

(l)
j can be

recovered via majority voting and therefore all the substates corresponding to eigenvalues in

J2 can be reconstructed in polynomial time.

2.6.3 Computational Complexity of Reconstructing Substates Corresponding

to Eigenvalues in the Set J3

The NP-hardness of solving the SSR problem has been established in Section 2.4. In this

subsection, we argue that with the prescribed decomposition technique, the computational

complexity of solving the SSR problem for substates corresponding to eigenvalues in J3 could

be reduced whenever we only need to reconstruct substates whose dimension is smaller than

n. Assuming s is the upper bound of the number of attacked sensors, we have the following

26

theorem.

Theorem 6 By applying the decomposition (2.26), the SSR problem can be solved in time∑
λj∈J3

C(p, nj) + O(pn3) if the system (2.5)-(2.6) is 2s−sparse observable, where C(p, n) is

the time complexity of solving an instance of the SSR problem with n states and p sensors

whose corresponding system is 2s−sparse observable.

Before providing a proof we first discuss how this result may reduce the computational

complexity of solving the SSR problem. For a large-scale CPS, it’s not uncommon for the

number of sensors to greatly exceed the number of states, i.e., p ≫ n. We note that the

computational complexity of brute force search grows exponentially with p. Also, the com-

putational complexity of some brute force search algorithms (such as [CWH15]) to determine

whether a set of sensors is attacked is at least O(n2) . In other words, for such algorithms

C(p, n) ≥ O(p2n2). By assuming p ≫ n we make the following observations:

1. O(p2n2) ≥
∑r

j=1O(p2n2
j), and equality holds only when r = 1.

2. O(pn3) ≪
∑r

j=1O(p2n2
j).

The first observation shows that the computation required to solve all the sub-problems

is smaller than what is required to solve the original problem. The second observation

shows that, compared with the computational complexity of solving the SSR problem, the

computation required for decomposition of the original system is negligible. These two

facts indicate that by decomposing the SSR problem into simpler instances, we reduce the

computational complexity of solving the SSR problem.

Proof of Theorem 6: We already established that reconstructing the state of each decomposed

system is also an SSR problem and the solution x of the original problem is obtained by

summing over all the projections, i.e., x = x1 + x2 + · · · + xr. Therefore any algorithm

that solves the SSR problem can be applied to solve each subproblem, i.e., we may solve

27

each subproblem corresponding to λj ∈ J3 within time complexity C(p, nj) since there are p

sensors and nj states. By the assumption that the system (2.5)-(2.6) is 2s−sparse observable

as well as Theorem (4), all sub-systems are 2s−sparse observable and hence J1 = {ϕ}, and

for each subproblem corresponding to λj ∈ J2 the time complexity of the majority voting

algorithm is within O(pn2). In summary, the total computational complexity is:

∑
λj∈J2

O(pn2
j) +

∑
λj∈J3

C(p, nj) + O(pn3) (2.29)

=
∑
λj∈J3

C(p, nj) + O(pn3), (2.30)

which finishes the proof.

Remark 1 The actual complexity might be even smaller than
∑

λj∈J3
C(p, nj) + O(pn3).

This can be seen by noting that we solve each smaller SSR problem sequentially, and thus

we can remove measurements from sensors that have been identified as being attacked when

solving subsequent problems.

To conclude, we have the following result which answers the question at the beginning of

this section by pointing out when the SSR problem can be solved in polynomial time, which

actually is a corollary of Theorem (6).

Corollary 1 Consider the system (2.5)-(2.6), and suppose at most s sensors are attacked.

Let the eigenvalue observability index of system (2.5)-(2.6) be at least 2s. Then, the SSR

problem can be solved in polynomial time.

Remark 2 Another understanding of this classification of eigenvalues into J1, J2, and J3

is provided by the vulnerability of the corresponding substates. Substates in J1 are the most

vulnerable to attack since the defender may not even be able to identify the attacked set

of sensors. Substates in J2 are robust against attacks since attacked sensors can be easily

28

determined. For substates J3, the defender is able to identify the attacked sensors, but this

task requires a substantially higher computational effort.

In other words, in the view of the adversary, a wise attacking strategy is to attack the

substates corresponding to eigenvalues in J1, and it should avoid attacking states in J2 since

majority voting will allow the defender to easily identify the compromised sensors.

2.6.4 Example - Continued

In this subsection we continue the example in Section 2.2 and Section 2.5 and show how to

classify each subsystem under the assumption that the adversary can attack at most s = 1

sensor. We recall that V 1, V 2, V 3 are the eigenspaces corresponding to eigenvalues 1, 2, and

3, respectively. Also, after decomposition, we have A(j) = PjA|V j as well as Oj
i = P̃j

iOi|V j

for i = 1, 2, 3, 4 and j = 1, 2, 3.

We first claim that λ3 = 3 belongs to J1. To see why this is true, we remove 2s = 2

sensors, sensor 1 and sensor 4, and explicitly compute O3
2 and O3

3. We have:

O2 =

2 3 1 −1

3 4 0 −1

5 6 −2 −1

9 10 −6 −1

 ,O3 =

2 2 0 0

3 3 −1 0

5 5 −3 −0

9 9 −7 0

 ,

and O2(V
3) = O3(V

3) = {0} which yields (P̃3
2O2)x

′
3 = 0 and (P̃3

3O3)x
′′
3 = 0 for any x′

3 and

x′′
3 in V 3. Therefore, we have O3

2 = O3
3 = 0. By the definition of sparse observability, we have

ker O3
{2,3} = V 3 and hence the subsystems corresponding to eigenvalue 3 are not 2s−sparse

observable. Also, a similar analysis reveals that subsystems corresponding to eigenvalues λ1

and λ2 are both 2s−sparse observable, hence 1 /∈ J1 and 2 /∈ J1.

Next we argue that λ2 = 2 belongs to J2. To see why this is true, we first recall that

29

A(2) = P2A|V 2 , I
(2)
4 = I4|V 2 , C2

i = Ci|V 2 , and then check that for sensor 1, the matrix:

A(2) − 2I
(2)
4

C2
1

 =

−2 0 0 0

1 −1 −1 0

−1 −1 −1 0

0 0 0 −2

3 2 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
V 2

,

defines an injective map. We also run the same check on sensor 2, 3, and 4 to conclude

that eigenvalue λ2 is observable by all 4 sensors. Hence the subsystems corresponding to λ2

are 2s−eigenvalue observable. Proceeding in the same fashion we conclude that subsystems

corresponding to eigenvalue λ1 are not 2s−eigenvalue observable. Therefore, the eigenvalue

λ1 = 1 belongs to J3.

In summary, the substates in V 3 cannot be securely reconstructed, the substates in V 1

can be securely reconstructed in the presence of at most 1 attacked sensor, and the substates

in V 2 can be securely reconstructed and the reconstruction can be done efficiently.

2.7 Complexity of Checking Sparse Observability

In the previous two sections, we studied the complexity of the SSR problem, and in particular,

identified instances of the problem that can be solved in polynomial time. Recall that under

at most s sensor attacks on the system (2.5)-(2.6), 2s-sparse observability is necessary and

sufficient for the SSR problem to yield a unique solution, namely the true initial state vector

x[0]. Given this result, we now take a step back and ask: what is the complexity of deciding

whether a given system is 2s-sparse observable? This question is highly relevant since it aims

to identify the maximum number of sensor attacks that can be tolerated by a given system

of the form (2.5)-(2.6). In what follows, we show that determining the sparse-observability

index (see Definition 1) of a system is computationally hard; we will focus on the case of

scalar-valued sensors throughout, as it suffices to establish the computational complexity of

30

the problem.

Problem 3 (r-sparse observability)

Input: A matrix A ∈ Qn×n, a matrix C ∈ Qp×n and a positive integer r.

Question: Is the pair (A,C) r-sparse observable?

Note that if the answer to an instance of the r-sparse observability problem is “no”, then

there is a simple proof: one can provide a set of r rows of C that, if removed, result in a

system that is no longer observable. However, it is not clear whether there is a similarly

simple proof for “yes” instances. Thus, the r-sparse observability problem is in the class

coNP.1

The complement of a decision problem is the problem obtained by switching the “yes”

and “no” answers to all instances of that problem. If a problem is in the class coNP, then

its complement is in the class NP, and vice versa.

We will show that the r-sparse observability problem is coNP-hard by showing that its

complement is NP-hard. Specifically, we define the following complement problem to r-sparse

observability.

Problem 4 (r-sparse unobservability)

Input: A matrix A ∈ Qn×n, a matrix C ∈ Qp×n and a positive integer r.

Question: Is there a set of r rows that can be removed from C in order to yield a matrix

C̄ such that (A, C̄) is unobservable?

Note that the answer to an instance of r-sparse unobservability is “yes” if and only if

the answer to the corresponding instance of r-sparse observability is “no” and vice versa.

Further note that r-sparse unobservability is in the class NP.

1See, e.g., [CLR09] for additional details on the complexity classes NP and coNP.

31

We show that r-sparse unobservability is NP-complete by providing a reduction from

the following Linear Degeneracy problem. This problem was shown to be NP-complete

in [Kha95].

Problem 5 (Linear Degeneracy [Kha95])

Input: A full column rank matrix F ∈ Qp×n.

Question: Does F contain a degenerate (i.e., noninvertible) n× n submatrix?

In other words, the linear degeneracy problem asks whether it is possible to remove p−n

rows from matrix F so that the resulting (square) matrix is not full rank. We are now ready

to prove the following result.

Theorem 7 ([MMS19]) The r-sparse unobservability problem is NP-complete. Thus, the

r-sparse observability problem is coNP-complete.

Proof. Given an instance of the linear degeneracy problem (with matrix F ∈ Qp×n), we

construct an instance of the r-sparse unobservability problem as follows: set A = In, C = F,

and r = p− n.

We now show that the answer to the constructed instance of r-sparse unobservability is

“yes” if and only if the answer to the given instance of linear degeneracy is “yes”.

First, suppose that the answer to the constructed instance of r-sparse unobservability is

“yes.” Then there exists a set of r rows of C that can be removed such that the remaining

rows are not sufficient to yield observability. However, since A = In, the above implies that

there is a set of r rows of C that can be removed such that the remaining rows are not full

column rank. Since C = F and r = p− n, this means that there is an n× n submatrix of F

that loses rank, and thus the answer to the linear degeneracy problem is “yes.”

Next, we show that if the answer to the given instance of linear degeneracy is “yes,”

then the answer to the constructed instance of r-sparse unobservability is “yes.” We will

32

do this by showing the contrapositive: if the answer to the constructed instance of r-sparse

unobservability is “no”, then the answer to the given instance of linear degeneracy is “no.”

Suppose the answer to the constructed instance of r-sparse unobservability is “no.” Then,

by definition, the pair (A,C) is observable even after removing any arbitrary r rows from

C. However, since A = In, in order for the system to remain observable after removing

r rows from C, it must be the case that the remaining rows of C have full column rank.

Thus, if the answer to the constructed instance of r-sparse unobserability is “no”, then C

has full column rank after removing any arbitrary r = p − n rows. This means that every

n× n submatrix of C is invertible. Since C = F, the answer to the given instance of linear

degeneracy is “no” (i.e., there is no n× n submatrix of F that is degenerate).

Thus, we have shown that the answer to the constructed instance of r-sparse unobserv-

ability is “yes” if and only if the answer to the given instance of linear degeneracy is “yes”.

Since linear degeneracy is NP-complete, so is r-sparse unobservability.

Finally, since r-sparse observability is the complement of r-sparse unobservability, we

have that r-sparse observability is coNP-complete.

Remark 3 In [MS19], certain necessary conditions were presented for estimating the state of

a plant despite attacks in a distributed setting, i.e., where measurements of the plant are dis-

persed over a network of sensors. Specifically, these conditions impose certain requirements

on the observation model (in addition to requirements on the communication structure), the

complexity of checking which was left open. Interestingly, Theorem 7 resolves this question,

and establishes that checking the necessary conditions in [MS19] is computationally hard;

since the focus of our chapter is on centralized systems, we do not present details of this

result here.

33

2s-sparse ob-

servability

2s-eigenvalue

observability

gA(λ) = 1,∀λ ∈ sp(A)

Figure 2.1: Figure illustrating the hierarchy of relationships between different notions of

observability.

2.8 Connections Between Sparse Observability and Eigenvalue Ob-

servability

In Sections 2.4 and 2.7, we showed that the SSR problem and the problem of determining

the sparse observability index of a system are each computationally hard. At the same time,

Section 2.6 gave us the positive result that certain instances of the SSR problem can be

efficiently solved. In line with this finding, we are now motivated to ask: Can the sparse ob-

servability index of a system be computed in polynomial time for certain specific instances?

In this section, we show that this is indeed the case by identifying instances of the problem

where the notions of sparse observability and eigenvalue observability coincide. Given that

the eigenvalue observability index of a system can always be computed in polynomial time

based on simple rank tests, an equivalence between the two notions of observability immedi-

ately yields instances of the problem where the sparse observability index of the system can

also be computed in polynomial time. With this in mind, in this section we will prove each

of the implications indicated in Figure 2.1. We begin with the following simple result.

Proposition 3 ([MMS19]) Consider the linear system (2.5)-(2.6), and suppose its eigen-

value observability index is 2s. Then, the pair (A,C) is at least 2s-sparse observable.

Proof. Consider any subset of sensors F ⊂ V , such that |F| ≤ 2s. To establish that the pair

(A,C) is at least 2s-sparse observable, we need to show that the pair (A,CV\F) is observable.

34

Based on the PBH test, this amounts to checking that each eigenvalue λ ∈ sp(A) is observable

w.r.t. the observation matrix CV\F . Let Sλ represent the set of sensors w.r.t. which λ is

observable. A sufficient condition for this to happen is |(V \ F) ∩ Sλ| ≥ 1, which is indeed

true given that an eigenvalue observability index of 2s implies |Sλ| ≥ (2f + 1),∀λ ∈ sp(A),

and the fact that |F| ≤ 2s.

To see that the reverse implication does not hold in general, consider the following ex-

ample.

Example 1 Consider an LTI system of the form (2.5)-(2.6) monitored by 6 sensors, with

parameters as follows:

A =

λ 0

0 λ

 ,Ci =

[
1 0

]
, if i ∈ {1, 2, 3},

[
0 1

]
, if i ∈ {4, 5, 6}.

(2.31)

Here λ ∈ R, |λ| ≥ 1. Suppose s = 1. Then, the removal of at most 2 sensors will ensure that

at least one sensor from each of the sets {1, 2, 3} and {4, 5, 6} remains unattacked; given the

measurement model in (2.31), this is sufficient to preserve observability w.r.t. the remaining

sensors. In other words, the system is 2-sparse observable. However, it is easy to verify that

the eigenvalue λ is not observable w.r.t. any sensor.

In view of Proposition 3 and Example 1, we conclude that 2s-sparse observability of

a system is in general less restrictive than the condition that the eigenvalue observability

index of the system is 2s. In what follows, we establish that the two aforementioned notions

coincide when additional structure is imposed on the spectrum of A.

Proposition 4 ([MMS19]) Consider the linear system model given by (2.5)-(2.6), and

suppose λ ∈ sp(A) has geometric multiplicity 1. Consider any non-empty subset of sensors

35

S = {i1, i2, . . . , i|S|} ⊆ V. Then, the eigenvalue λ is observable w.r.t. the pair (A,CS) if

and only if there exists a sensor ip ∈ S such that λ is observable w.r.t. sensor ip, i.e., λ is

observable w.r.t. the pair (A,Cip).

Proof. Consider a similarity transformation that maps A to its Jordan canonical form J. Let

this transformation map CS to C̄S , and Cij to C̄ij , for each ij ∈ S. Since λ has geometric

multiplicity 1, there exists a single Jordan block corresponding to λ in J. Let this Jordan

block be denoted Jλ. Without loss of generality, suppose J is of the following form:

J =

Jλ 0

0 J̄

 , (2.32)

where J̄ is the collection of the Jordan blocks corresponding to eigenvalues in sp(A)\{λ}.

Based on the PBH test, λ is observable w.r.t. the pair (J, C̄S) if and only if the following

condition holds:

rank

J− λIn

C̄S

 = n. (2.33)

Given the structure of J in (2.32), and the fact that λ has geometric multiplicity 1, it is

easy to see that (2.33) holds if and only if there is at least one non-zero entry in the first

column of C̄S . However, the preceding condition holds if and only if there exists some sensor

ip ∈ S with at least one non-zero entry in the first column of C̄ip ; the latter is precisely the

condition for observability of λ w.r.t. the sensor ip, given that gA(λ) = 1. To complete the

proof, it suffices to notice that a similarity transformation preserves the observability of an

eigenvalue.

We now make use of the previous result to establish an equivalence between sparse

observability and eigenvalue observability.

Proposition 5 Consider the linear system model (2.5)-(2.6), and suppose every eigenvalue

of A has geometric multiplicity 1. Then, the pair (A,C) is 2s-sparse observable if and only

if the eigenvalue observability of the system is 2s.

36

Proof. For necessity, we proceed via contradiction. Suppose the pair (A,C) is 2s-sparse

observable, but there exists some λ ∈ sp(A) that is observable w.r.t. at most 2s distinct

sensors. Recall that the set of sensors w.r.t. which λ is observable is denoted Sλ. Based on

our hypothesis, |Sλ| ≤ 2s. Suppose |Sλ| = 2s (since an identical argument can be sketched

when |Sλ| < 2s). Since (A,C) is 2s-sparse observable, the pair (A,CV\Sλ
) is observable.

However, based on Proposition 4, this requires λ to be observable w.r.t. at least one sensor

in V \ Sλ, leading to the desired contradiction. This completes the proof of necessity. For

sufficiency, note from Proposition 3 that the pair (A,C) is at least 2s-sparse observable

whenever its eigenvalue observability index is 2s; the fact that the observability index is

no more than 2s follows from the additional assumption on the geometric multiplicity of

eigenvalues, and arguments similar to those used for establishing necessity.

It directly follows from the definition of eigenvalue observability that the eigenvalue

observability index of a system can be computed in polynomial time. Hence, we have the

following corollaries of Proposition 5.

Corollary 2 When all the eigenvalues of the matrix A have geometric multiplicity 1, the

sparse observability index of the system can be computed in polynomial time.

Corollary 3 For a 2s-sparse observable system (2.5)-(2.6), when all the eigenvalues of the

matrix A have geometric multiplicity 1, the SSR problem can be solved in polynomial time.

Proof. It is shown in Proposition 5 that under the unitary geometric multiplicity assumption,

a 2s-sparse observable system is also 2s-eigenvalue observable. Thus, such a system satisfies

the hypotheses in the statement of Theorem 1, and we immediately obtain the existence of

a polynomial-time solution for the SSR problem.

37

2.9 Conclusion

In this chapter, we showed that when the eigenvalues of the system matrix A have uni-

tary geometric multiplicity, the SSR problem is tractable since both checking the sparse

observability (see Corollary 2) as well as solving the SSR problem (see Theorem 1) can be

performed in polynomial time. When at least one of the eigenvalues has geometric multi-

plicity greater than one, we can still compute the eigenvalue observability index and, if it

is at least 2s, solve the SSR problem in polynomial time if at most s sensors are attacked.

However, in this case, eigenvalue observability is no longer necessary for the SSR problem to

be solvable. Since even checking sparse observability is coNP-complete, we conjecture that

the SSR problem may be intractable in this case. The authors are currently investigating

this conjecture. However, even in this case, the computational complexity of solving the SSR

problem can be reduced, when the system matrix A has at least 2 distinct eigenvalues.

38

CHAPTER 3

Secure State-Reconstruction Over Networks

Subject to Attacks

3.1 Introduction

This chapter is concerned with the problem of reconstructing the state of a linear time-

invariant system from measurements that have been corrupted by an adversary. Several

examples of such attacks have been reported in the literature [DDZ15,DP17]. Moreover, the

increasingly distributed and interconnected nature of Cyber-Physical Systems, including IoT

devices, creates new opportunities for such attacks [CAS08,WOM19]. Hence the security of

CPSs is a problem of vital importance [GUC18].

The problem studied in this chapter, state reconstruction despite attacks on the informa-

tion to be processed, is termed the Secure State-Reconstruction problem [MMS19], which we

will discuss in more detail in Section 3.2.5. Most literature on the SSR problem has focused

on determining necessary and sufficient conditions on the number of attacked sensors for solv-

ability [PDB13,BPG17], on efficient algorithms [FTD14,YFF16,ST15,SNS18,TDJ14,AY18,

MG16,AY17], and more recently on the algorithmic complexity of this problem [MMS19].

Although none of the above chapters considers networks, it is known that communication

channels in CPS are vulnerable to certain types of attacks [WOM19]. A related line of work,

[MS19], [MRB19], considers the problem of distributed estimation with sensor measurements

subject to attacks and, in particular, [MS19] presents necessary conditions for this problem to

be solvable. We note that the SSR problem becomes much more intricate when the adversary

39

attacks not only the sensors but also the network that transports the sensor measurements

to the location where they are processed. In this chapter we go beyond the results proposed

in [MS19] by providing necessary and sufficient conditions for the SSR problem to be solved

in the more general setting where both sensors and the communication network are under

attack. A different line of work addresses the resiliency of communication networks while

being agnostic to what the transmitted data will be used for, the most prominent line of

work is secure network coding [YC06] where the amount of secure information rate can be

expressed in term of min-cut values. For example, [CFP15] develops achievability protocols

and outer bounds for the secure network coding problem where the edges are subject to

packet erasures, and [LDJ18] explores the capacity region of a quadratically constrained

channel corrupted by a causal adversary. Another example comes from the use of error-

correction coding techniques, see [KK08,EV08], which can be used to detect attacked links

and even recover information from partially corrupted messages.

In contrast with the previously cited literature that mostly focused on attacks only on

sensors or attacks only on network links and nodes, in this chapter we consider the scenario

where sensor measurements are subject to attacks and transported to a receiver location by

a network whose nodes and links are also subject to attacks. In this context we ask: how

many sensors, network links, and network nodes can be attacked while ensuring solvability

of the SSR problem? We give a complete solution to this question by providing necessary

and sufficient conditions for solvability of the SSR problem.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the system

model, the network model and give a formal definition of the SSR problem. As our main

result, we introduce necessary and sufficient conditions for the SSR problem to be solvable

in Section 3.3. The sufficiency of these conditions is proved in Section 3.4, by designing

a coding algorithm, whereas necessity is proved in Section 3.5 by proposing an attacking

strategy for the adversary/attacker.

40

3.2 Problem Setting

3.2.1 System Model

Consider a linear time-invariant dynamical system:

x[k + 1] = Ax[k], (3.1)

where k ∈ N is the time index, x[k] ∈ Rn is the state vector and A ∈ Rn×n is the system

matrix. The system is monitored by a set P of p sensors {w1, w2, . . . , wp}, and the ith sensor

wi measures the state according to:

yi[k] = Cix[k], i = 1, 2, . . . , p, (3.2)

where yi[k] ∈ Rνi and Ci ∈ Rνi×n. In the context of this chapter, the specific values of the

observability indices do not play a role, hence we assume n to be the observability index

for all (A,Ci) without loss of generality. By collecting n measurements, we can write the

observations from the ith sensor as follows:

Yi[k] = Oix[k], (3.3)

where Yi[k] =
[
yTi [k]|yTi [k + 1]| . . . |yTi [k + n− 1]

]T
and Oi is the observability matrix of

sensor i, which is defined by Oi =
[
CT

i |(CiA)T | . . . |(CiA
n−1)T)

]T
.

3.2.2 Network model

As shown in Fig. (1), sensing nodes, i.e., network nodes equipped with sensors, transmit

their measurements via a synchronous relay network to the receiver. We model the relay

network, together with the sensing nodes, by a directed graph G = (P∪V,E), where P and V

represent the set of sensing nodes and relay nodes (nodes in the relay network) respectively,

and (i, j) ∈ E represents the direct communication link from i ∈ P ∪ V to j ∈ P ∪ V . Note

that a node can both be a sensing node and a relay node, i.e., it is possible that P ∩V ̸= ∅.

We assume the following properties about the network.

41

Sensing nodes

Receiver

Relay network

w1 w2 w3 w4 w5

Figure 3.1: Measurements are transmitted to the receiver via a relay network.

1. The pair (A,CP) is observable1.

2. Each node has a unique identifier, and knows the identity of the in-neighbor from which

it receives a message.

3. Each communication link has infinite capacity, i.e., we assume that real numbers can be

transmitted through a link. Moreover, an attack-free link reliably transmits messages,

i.e., messages are not lost, delayed, neither corrupted.

4. The set of attacked links and nodes does not change over time.

5. The network operates synchronously. In other words, all the nodes receive, compute,

and transmit messages in a synchronized manner and this process takes exactly one

time step.

Among all these assumptions, the system observability (assumption (1)) and stability of

the attack (assumption (4)) are standard in SSR problem formulations, see [CWH15,ST15,

PDB13]. The unique identifier and local knowledge of the network (assumption (2)) are

also widely used, see, e.g, [MS19,SV16]. Moreover, the synchronous communication network

model (assumption (5)) is widely accepted, see [FS07]. Although we make assumption (3)

1Recall that CP is the matrix obtained from C =
[
CT

1 |CT
2 | . . . |CT

p

]T
by removing all the rows whose

indices are not in P .

42

to avoid working over finite fields, we note that our impossibility results for networks with

infinite capacity directly carry over to networks with finite capacity. Also note that the

network can be either wired, in which case nodes can send different messages to different

out-neighbors at the same time instant; or wireless, where all out-neighbors of a node receive

the same message from this node at the same time. More detailed network models, including

asynchrony and links with capacities, make the problem more challenging and are left to

future work.

3.2.3 Adversary Model

We consider that a subset M1 ⊆ E of links and a subset M2 ⊆ (P ∪V) of nodes is subject to

active attacks. We assume the adversary is omniscient, i.e., it is aware of the system state,

the measurements of all sensing nodes, the network topology, etc. In terms of capability, an

attacked link is allowed to arbitrarily alter messages passing through it, including erasing,

dropping or delaying the messages, and an attacked node may arbitrarily deviate from any

prescribed rules and thus send any message to its out-neighbors. Attacked nodes are also

allowed to send different messages to different out-neighbors at the same time instant under

the wired network assumption. Moreover, attacked links and nodes are allowed to work

cooperatively. The only assumption we make is that the power of the adversary is limited,

i.e., the number of attacked links and nodes is upper bounded by f1 and f2. In other words,

the following inequalities hold |M1| ≤ f1 and |M2| ≤ f2. Note that f1 and f2 are known to

the receiver.

3.2.4 Definitions

Intuitively, in order for the receiver to reconstruct the state despite the existence of attacked

nodes and links, the network must possess 2 kinds of redundancies: measurement redundancy

and transmission redundancies, which can be formulated through the notions of critical set

43

(first introduced in [MS19]) and mix cut with respect to (w.r.t.) a critical set.

Definition 3 (Critical set) A set S ⊆ P is said to be a critical set if the pair (A,CP\S) is

not observable.

Definition 4 (Mix cut with respect to a critical set) Consider a critical set S. A set

HS ⊆ (P ∪V ∪E) is called a mix cut w.r.t. S if removal of HS ∩ (V ∪E) from G disconnects

the receiver and HS ∩ P . We denote by L(HS) = |HS ∩ E| the number of links in the mix

cut and N(HS) = |HS ∩ (P ∪ V)| the number of nodes in the mix cut.

3.2.5 The Secure State-Reconstruction Problem

We now formally define the secure state-reconstruction problem studied in this chapter.

Problem 6 (Secure state-reconstruction problem)

Input: a linear system, defined by (3.1) and (3.2), and satisfying assumption 1, a network

satisfying assumptions 2, 3, and 4, the numbers f1 of attacked links and f2 of attacked nodes.

Question: Is it possible for the receiver to reconstruct the initial value x[0] of the state of

the linear system, provided as input, from received messages, knowing that at most f1 links

and f2 nodes in the network are subject to the actions of an attacker respecting assumption 5?

Note that in our problem setting, the receiver has no knowledge about the network

topology. Although the formal statement of the SSR problem only requires the initial value

x[0] of the state to be reconstructed, all the results in this chapter can be suitably extended

to the reconstruction of the value x[t] of the state at any time t ∈ R+
0 .

3.3 Main Result

We present the main contribution of this chapter in the next result. Note that it can be

conveniently extended to the case of multiple receivers (i.e., MIMO) who want to reconstruct

44

the same initial value x[0] of the state.

Theorem 8 The SSR problem is solvable if and only if for every critical set S and every

mix cut HS w.r.t S, the following bounds are satisfied:

L(HS) > 2f1 or N(HS) > 2f2.

Theorem (8) allows us to recover several results in the literature. To do so, however, we

need to introduce the notion of minimum cut.

Definition 5 (Minimum cut) A cut between a critical set S and the receiver is a set of

links by removing which disconnects S from the receiver. A minimum cut LS between S and

the receiver is a cut with the smallest cardinality (if there are multiple, any of them is a

minimum cut).

If the attacked units are restricted to: (1) communication links, or (2) sensing nodes and

relay nodes, we obtain the following corollaries.

Corollary 4 If there are no attacked nodes, i.e., f2 = 0, the SSR problem is solvable if and

only if for every critical set S, f1 < |LS|/2.

This corollary states that if the adversary is only able to attack communication links,

then the SSR problem is solvable if and only if strictly less than half of the links in the

minimum cut between any critical set S and the receiver are attacked. Similar results are

known in the network coding literature [YC06], although the setting is slightly different due

to finite capacity constraints.

Corollary 5 If there are only attacked nodes, i.e., f1 = 0, the SSR problem is solvable if

and only if removal of any subset of 2f2 nodes does not disconnect any critical set S and the

receiver.

45

Note that the “only if” part of this corollary has been proved in Theorem 1 in [MS19].

Similarly to corollary (4), if there are only attacked nodes, then the SSR problem is solvable

if and only if strictly less than half of the nodes in any cut between any critical set S and

the receiver are attacked.

A preliminary version of this result when each node has one attack-free communication

link to the receiver (i.e., f1 = 0) was first proposed in [PDB13]. This simpler version of the

SSR problem is proved to be solvable if and only if the pair (A,C) remaining observable even

after the removal of any 2f2 sensing nodes. This is also known as 2f2−sparse observability,

which was first proposed implicitly in [CWH15] and then explicitly in [ST15,SNS18].

3.4 Sufficiency: Coding and Decoding Algorithms

To show that the SSR problem is solvable when the sufficient condition is met, we design a

coding algorithm and prove that the receiver is able to reconstruct the initial value x[0] of

the state.

3.4.1 Encoding Algorithm

We ask each node in the relay network to send the same message to all its out-neighbors.

Each message is composed of several bulletins. Each bulletin has 2 sections: the information

section and the routing section.

To start a transmission, each sensing node creates a bulletin with its measurement in

the information section, and leaves the routing section blank. Whenever a message arrives

from an in-neighbor, a relay node attaches the identifier of the in-neighbor at the end of

the routing section of each bulletin of the received message, while keeping the information

section untouched.

After receiving and processing messages from all its in-neighbors, the relay node creates

46

? |?→ 3 → 4 → 5
𝑦2|2 → 4 → 5
𝑦1|1 → 3 → 5

? |?→ 3 → 4
𝑦2|2 → 4
𝑦1|1 → 33

? |

𝑦2|

? |?

𝑦1|1

? |?→ 3
𝑦2|2

1

2 4

5

6

9

7 8

𝑦7|𝑦1|

Messages received by node 9 and processed by adding 9 at the end of the
routing section:
? ?→ 3 → 4 → 5 → 9, 𝑦2 2 → 4 → 5 → 9, 𝑦1 |1 → 3 → 5 → 9,
? ?→ 3 → 4 → 5 → 6 → 9, 𝑦2 2 → 4 → 5 → 6 → 9,
𝑦1|1 → 3 → 5 → 6 → 9, ? |8 → 9, 𝑦7|7 → 9

Figure 3.2: A simple illustration of the encoding algorithm.

a new message whose measurement section consists of the concatenation of the bulletins in

the measurements sections of the processed packages. The sequence by which these bulletins

are concatenated will be of no consequence for the algorithm’s correctness. The relay node

then sends this message to all its out-neighbors.

At last, the receiver attaches the identifier of the in-neighbor followed by its own identifier

at the end of the routing section of each bulletin whenever it receives a message. For a bulletin

that does not pass through any attacked link or node, the sequence of node identifiers in its

routing section shows the route it has passed from the sensing node to the receiver. Therefore

we regard two consecutive node identifiers in the routing section as a link.

Fig. 3.2 provides a simple illustration of our encoding algorithm. Since attacked links and

nodes, which are colored in red, can arbitrarily change messages passing through, we denote

by “?” the messages transmitted by them. All messages are represented on the figure. Note

that the adversary should still keep the format of the message (i.e., bulletins, an information

section and a routing section), otherwise the receiver or a relay node can easily detect it

has been corrupted by an adversary and erase it. In this example, nodes 1, 2, 7, and 8 are

sensing nodes, 3, 4, 5, and 6 are relay nodes, and node 9 is the receiver. Node 8 and the link

47

from node 3 to node 4 are attacked and denoted in red. As an illustration, node 6 sends to

node 9 a message composed of 3 bulletins. Each bulletin has an information section and a

routing section, divided by a vertical line. For example, in the third bulletin, y1|1 → 3 → 5,

y1 is the value of the information section and 1 → 3 → 5 is the value of the routing section.

The following Lemma is a direct consequence of the above described protocol.

Lemma 2 If a message sent by a sensing node does not pass through any attacked link or

attacked node, the receiver will receive a bulletin with the sensing node’s measurement in the

information section and the routing in the routing section.

We will use this lemma to show that if a bulletin is relayed by attacked links or nodes,

then at least one of them is recorded in its routing section.

Lemma 3 For each bulletin in each received message by the receiver, if the first identifier i

in the routing section does not belong to a sensing node, or the information section value ỹi[0]

does not satisfy ỹi[0] = Cix[0], then there is at least 1 attacked link or node in the routing

section.

Proof. By Lemma (2) we know that if a bulletin from node wi does not pass through attacked

links and nodes, the value in the information section of the corresponding bulletin satisfies

ỹi[0] = Cix[0]. In other words, if ỹi[0] ̸= Cix[0] then this bulletin must have been altered

and relayed by some attacked links or nodes.

Now we show that the last attacked link or node this bulletin passes must be recorded

in the routing section of the bulletin. Consider the first non-attacked node (note that it can

also be the receiver) this bulletin passes through after being altered by the last attacked

link or node in its route. By assumption, the non-attacked node knows the identifier of its

in-neighbors, this node will attach the in-neighbor’s identifier in the routing section, and

thereby automatically adds the link from the in-neighbor to itself, with at least one of them

48

being attacked. And since all upcoming nodes and links are non-attacked, the identifier of

the attacked link or node will be transmitted to the receiver in the information section of

the bulletin.

3.4.2 Decoding Algorithm

We first notice that for every bulletin with correct information, the receiver can determine the

time at which the message was sent by counting the number of links the message transversed.

The receiver is able to reconstruct the initial value x[0] of the state after it receives all

bulletins generated by non-attacked sensing nodes at time instances 0, 1, . . . , n − 1. To do

this, the receiver analyzes each bulletin in each message and stores those sent between 0 and

n−1 (both included) until it is convinced that all bulletins generated during this period and

relayed by only non-attacked links and nodes are received2.

The naive decoding algorithm is as follows:

Step 1. The receiver categorizes all stored bulletins into different classes according to

the information in their routing sections: each different path corresponds to a different class.

Step 2. For each class j, the receiver computes the time instance when each bulletin in

it was generated and then does the following:

If there is exactly one bulletin generated at each time instance 0, . . . , n − 1, then the

receiver stacks the values of the information section of each bulletin into the vector:

Ỹ j
i [0] =

[
ỹTi [0]|ỹTi [1]| . . . |ỹTi [n− 1]

]T
where i ∈ P is the first identifier in the routing section of class j. Otherwise, the receiver

removes all bulletins in class j from its storage.

Step 3. The receiver picks a set L ⊆ (P ∪ V ∪E) of f1 links and f2 nodes3 and removes

2To do this the receiver should have a reasonable estimate of the size of the network.

3Note that the receiver does not need prior knowledge of the network since it can observe the identifiers

49

from storage any bulletin in a class whose routing section contains at least 1 element in L.

Step 4. The receiver then checks whether the remaining bulletins are consistent (the

consistency of bulletins will be defined afterwards). If the remaining bulletins are consistent,

the state value that is consistent with all the remaining bulletins is the correct initial value

of the state. Otherwise, it restores those removed bulletins in step (3), then goes to step (3)

and picks another L.

The previous algorithm used the notion of consistency between bulletins. A set of bul-

letins generating Ỹ j
i , i ∈ P in step (2), is said to be consistent if there exists a state x̃[0] such

that4:

Ỹ j
i [0] = Oix̃[0] (3.4)

for each Ỹ j
i [0] in step (2). In this case we also say the state x̃[0] is consistent with these

bulletins5.

Before proving correctness of the decoding algorithm we return to the example in Sub-

section 3.4.1 (see Fig. (2)) to illustrate how the decoding algorithm works.

We consider a scalar system with trivial dynamics (i.e., A = 1 and Ci = 1) for all sensing

nodes which yields yi = x. We use the same network as in Fig. (2) in Subsection 3.4.1.

All messages are represented on the figure. Recall that a vertical line divides each bulletin

into an information section and a routing section. In this example, we assume x = 1 hence

y1 = y2 = y7 = 1, and the attacked link changes the value of the information section from

1 to 2 whenever a bulletin passes through. Also, when node 8 generates a new bulletin, it

places value 2 in the information section.

The receiver node 9 receives 9 bulletins in total, among which the first, fourth and eighth

are attacked. Since the receiver knows that at most 1 link and 1 node are attacked, it

of nodes and links, by analyzing the messages (including those attacked ones) it received.

4Again we note that k is the time index when the message is sent instead of received.

5The presence of bounded noise would not affect the results substantially since instead of checking equal-
ity (3.4) we would check instead |Ỹ j

i [0]−Oix̃[0]| < ϵ where ϵ is chosen based on the noise magnitude.

50

selects a set composed of 1 link and 1 node and removes the bulletins containing them.

For example, if the receiver picks link 3 → 5 and node 4, and then removes all bulletins

whose routing section contains them, the only remaining bulletins are 2|8 → 9 and 1|7 → 9,

which are inconsistent. Then by step 4 in the decoding algorithm, the receiver restores all

removed messages and chooses another set. Since the combinations of 1 link and 1 node

are finite, the receiver will eventually choose link 3 → 4 and node 8. Then, by removing all

the bulletins whose routing section contains 3 → 4 and 8, the receiver concludes that the

remaining bulletins are consistent and thus obtains the correct initial value x[0] of the state.

3.4.3 Correctness of Decoding Algorithm

Lemma 4 If L, the set the receiver picks in step (3) of the decoding algorithm, contains

all attacked links and attacked nodes, the remaining bulletins in step (3) of the algorithm

are consistent and the initial value x[0] of the state is the unique vector satisfying Ỹ j
i [0] =

Oix[0] with j ranging through the bulletins of the messages whose routing section contains

no elements in L.

Proof. By Lemma (3), if all the attacked links and nodes are in L, all messages that might

be incorrect are removed by the receiver. Hence by Lemma (2) the value of the information

section ỹi of each bulletin whose routing section contains no elements of L satisfies ỹi[0] =

Cix[0], or equivalently, Ỹ j
i [0] = Oix[0] since they are in the same class. In other words, the

estimated x[0] is consistent with all these bulletins.

To show that the solution x[0] is unique, we assume, for the purpose of contradiction,

the existence of a state x̃[0], different from x[0], and consistent with the bulletins whose

routing section contains no elements in L, i.e., Ỹ j
i [0] = Oix̃[0]. We focus on the subset

S of transmitting nodes defined by S = {wi|Oi(x̃[0] − x[0]) ̸= 0}. By Assumption (1) in

Section (3.2), S is non-empty. Note that S is a critical set since the vector space spanned by

x̃[0] − x[0] is in the unobservable space of the set P\S, i.e., for any sensing node wi ∈ P\S

51

we have Oix[0] = 0. But we also notice that, by assumption, for this critical set S, every mix

cut HS satisfies L(HS) > 2f1 or N(HS) > 2f2. This implies that by removing L from the

network there should be at least 1 node wi ∈ S whose measurements Y j
i [0] = Oix[0] appears

in the message sections of a certain bulletin during this time at the receiver without being

altered. This establishes the contradiction since Y j
i [0] −Oix̃[0] = Oi(x[0] − x̃[0]) ̸= 0.

Lemma 5 If there are bulletins with attacked measurements remaining in step 2 of the

decoding algorithm, the remaining bulletins are inconsistent.

Proof. We follow an argument similar to the one used in the proof of Lemma (4). For the

purpose of contradiction, we assume the remaining measurements are consistent, i.e., there

exists a state x̃[0] satisfying Y j
i [0] = Oix̃[0] for all remaining bulletins. Since there is at

least 1 bulletin with altered measurements at the receiver, x̃[0] ̸= x[0]. Still we focus on the

non-empty set of sensing nodes S = {wi|Oi(x̃[0] − x[0]) ̸= 0}, which is also a critical set

as discussed above. By the assumption that for all remaining bulletins Y j
i [0] = Oix̃[0], no

measurement from wi ∈ S arrives at the receiver without being altered. In other words, L,

together with the actual set of attacked links and nodes M , forms a cut between S and the

receiver. Since both L and M have at most f1 links and f2 nodes, we reach a contradiction

with the fact that any cut has at least 2f1 links or 2f2 nodes.

The correctness of the algorithm is a natural consequence of Lemma (4) and Lemma (5).

Moreover, since the proposed flooding protocol does not require relay nodes to transmit

different messages to different out-neighbors, our algorithm applies both to wired and wireless

networks.

52

3.5 Necessity: Strategy of the Adversary

To show that the SSR problem is unsolvable if there exists a cut containing 2f1 links and

2f2 nodes or less, we prove that there always exists an attacking strategy for the adversary

that prevents the adversary from correctly reconstructing the state.

The adversary’s strategy is as follows:

Step 1. Find a critical set S and a mix cut HS such that L(HS) ≤ 2f1 and N(HS) ≤ 2f2.

Step 2. Fabricate another state x̂[0] such that x[0] − x̂[0] is in the unobservable space

of P\S.

Step 3. Attack f1 links and f2 nodes in HS. We denote by Hho
S the set of non-attacked

links and nodes, and Hmal
S the set of attacked links and nodes. For each link and node in

Hho
S , the attack assigns a link or a node in Hmal

S without repetition to simulate its behavior

(which will be illustrated next).

Therefore, each message passing through an attacked link (resp. node) is replaced with

the message the honest link (resp. node) being simulated would have sent if the state was x̂

instead of x.

To prove that such a strategy works for the adversary, we first notice that since S is

a critical cut and the pair (A,P\S) is not observable, the state x̂ described in step 2 is

guaranteed to exist. Also the assignment in step 3 is feasible since there are more links and

nodes in Hmal
S than in Hho

S .

The receiver node is unable to distinguish the following 2 cases. Case 1: links and nodes

in Hmal
S are attacked and the state is x[0]; and Case 2: links and nodes in Hho

S are attacked

and the state is x̂[0].

To prove this claim, we first notice that the measurements Y j
i [0] (wi ∈ P\S) do not help

distinguish between these two cases, since Oi(x[0] − x̂[0]) = 0 implies that Y j
i [0] = Oix[0] =

Oix̂[0] = Ŷ j
i [0] for all wi ∈ P\S. Therefore, the removal of sensing nodes P\S and the

53

corresponding links will not interfere with distinguishing these two cases.

Now we only focus on the cut HS and the network from HS to the receiver. We call each

link and node in HS a virtual sensing link and node respectively. The rest of the network is

equivalent to the following: a set of virtual sensing nodes and links with at least half being

attacked, and an error-free network connecting these virtual sources to the receiver. The

correct information carried by virtual sources comes in pairs with an incorrect one (recall

that the adversary assigns without repetition an attacked link and node to simulate the

behavior of honest ones respectively), which is exactly the same except for the state x or x̂

they encode.

In this case, if the receiver, somehow, decodes the correct message x, then in the scenario

where everything is the same except that the adversary attacks Hho
S using the same strategy,

the receiver will conclude the state to be x̂[0]. Therefore, the receiver cannot distinguish

between these two cases.

Combining the results in Section 3.4 and 3.5 we obtain Theorem 8.

3.6 Conclusion

In this chapter we investigated the SSR problem under an attack model that allows for attacks

on sensors and also on communication. We provided necessary and sufficient conditions for

the SSR problem to be solvable that generalize the existing results for the case of sensor only

attacks and of communication only attacks on synchronous networks.

54

CHAPTER 4

Decentralized Secure State-Tracking

in Multi-Agent Systems

4.1 Introduction

Over the past decade the topic of decentralized state-tracking has received considerable

attention, due to the increasingly decentralized nature of complex systems such as traffic

networks and power grids. In this problem, a group of nodes is required to collectively

track the state of a linear dynamical system using measurements from their own sensors and

messages exchanged with neighboring nodes via a communication network.

In the absence of attacks, the decentralized state-tracking problem has been well stud-

ied [HTW18,KSC16,WM17,MS19]. However, reports on CPSs attacks [FR11,Win] remind

us of how vulnerable these systems can be. Motivated by this consideration, in this chapter

we tackle a more challenging version of the decentralized state-tracking problem where some

nodes are subject to sensor attacks spoofing its measurements. We refer to this problem as

the Decentralized Secure State-Tracking (DSST) problem.

4.1.1 Related Work

Closely related to the DSST problem is the Secure State-Reconstruction problem whose

formal definition can be found in [MMS22]. Roughly speaking, in the SSR problem a central

server, which has access to all measurements, is asked to reconstruct the state of a linear

55

system despite an attack on some sensors. A preliminary version of the SSR problem was first

considered in [STJ10], and rigorously defined in [FTD11]. Moreover, the solvability of the

SSR problem was settled in [FTD11,ST15,CWH15]. In particular, in [FTD11] and [CWH15]

it is pointed out that in order to reconstruct the state in the presence of s attacked sensors,

the linear system must remain observable after a removal of any subset of 2s sensors. This

property of a linear system is referred to as 2s−sparse observability in [ST15].

Although it has been known for long that the SSR problem is NP-hard [FTD14], much

progress was reported on reducing the computational complexity of solving the SSR prob-

lem. Many works, such as [FTD14, ST15, MS19, MMS22], carve out subsets of the SSR

problem instances which allow for a polynomial-time solution. More results on reducing

the computational complexity of the SSR problem can be found in [YFF16] and [HMX19].

In particular, the solution of the SSR problem proposed in [SCW18], which is built upon

satisfiability modulo theory, is of the utmost practical interest due to its good performance

in simulations. We show in this chapter that, with our algorithm, any DSST problem can be

reduced to an SSR problem thereby enabling the use of any of the aforementioned algorithms

to solve the DSST problem.

Compared with the SSR problem, the DSST problem is much more complicated since

there is no longer a central server thus implying that each node only has partial information

obtained via its own sensors and messages exchanged with neighboring nodes. Although of

significant importance, the current understanding of this more challenging DSST problem

is limited. To the best of the authors’ knowledge, only three chapters addressed the DSST

problem. Moreover, they only solve a subset of the DSST problem since they make assump-

tions either on system dynamics, network, or both. For example, both [LKS20] and [MS19]

make assumptions on system dynamics. In particular, they require the existence of a basis

such that the unobservable space of all the (or enough) sensors is the span of a subset of this

basis. We will refer this property as Scalar Decomposability, or SD in brief. Intrinsically,

SD enables one to decompose a DSST problem into multiple sub-problems each associated

56

with a scalar system. Interestingly, [LKS20] and [MS19] exploit SD in different ways which

leads to different types of solutions of the DSST problem. In [LKS20], with the help of SD,

the DSST problem is formulated as a distributed convex optimization problem with time-

varying loss function and a high-gain observer is proposed to reconstruct the state with the

help of “blended dynamics approach” introduced in [LS20]. In contrast, [MS19] proposes

a local filter which forces the estimate of an attack-free sensor to always lie in the convex

hull of the estimates of its attack-free neighbors. Although this strategy allows extensions

to defend against more powerful classes of attacks, it also places an additional assumption

on the attacker capabilities by requiring that it does not attack too many neighbors of each

network node. Moreover, the tracking algorithm proposed in [LKS20] has steady-state error.

Compared with [MS19] and [LKS20], the state observer proposed in [HRS20] does not re-

quire SD, but it is still based on an assumption involving both system dynamics and network

topology so it still only solves a subset of DSST problem instances. Moreover, it requires

a communication frequency much higher than the sampling rate, which is not typical in

applications.

4.1.2 Our Approach and Contributions

In this chapter, we study the DSST problem from a new perspective by relating it to the

consensus problem. According to this perspective, the objective of each node is to reach

consensus on the state of the system. Since the state evolves over time, the relevant type

of consensus is the dynamic average consensus. A thorough literature review of the dy-

namic average consensus problem is provided in the kia2019tutorial chapter [KVC19] to

which we refer all the interested readers for a discussion of the relevant literature, includ-

ing [SOM05], [KCM15], and [BFL10].

Our solution of the DSST problem is based on the simple observation that instead of

processing all measurements from all nodes in the network, a suitably compressed version of

the measurements suffices for each node to reconstruct the state. In particular, in Section 4.5

57

we will show that reconstructing the state from compressed measurements can be formulated

as a special case of the SSR problem and, hence, any algorithm that solves the most general

case of the SSR problem can be used to solve the DSST problem. Therefore, a solution

of the DSST problem is obtained provided each node can track the compressed version of

the measurements. To achieve this goal, we draw inspiration from [BFL10] and design an

observer that provides each node with error-free tracking of the compressed measurements.

We make the following contributions in this chapter:

1. We propose a necessary and sufficient condition for the DSST problem to be solvable.

2. We provide a solution to the most general case of the DSST problem.

Compared with [LKS20], our solution of the DSST problem does not require SD, and the

tracking of the state is error-free. Compared with [HRS20], we do no rely on unnecessary

assumptions regarding system dynamics or network topology, and we adopt the widely-

accepted setting where the communication rate equals the sampling rate. The major disad-

vantage of our algorithm is its computational complexity. Our algorithm is combinatorial

in the most general case. Although our algorithm runs in polynomial time when SD holds,

it still requires more computations than the algorithms proposed in [MS19] and [LKS20].

Moreover, our solution of the DSST problem requires sufficiently fast sampling rates. We

summarize the comparison1 between our solution of the DSST problem and the solutions

in [MS19], [LKS20], and [HRS20], in Table 1.

4.1.3 Chapter Organization

The organization of the chapter is as follows. The decentralized secure state-tracking problem

is formulated in Section 4.2, including all the assumptions we made. In Section 4.3 we discuss

1Note that the computational complexity is measured by the number of additions and multiplications
needed by the algorithm during one round of state update. Although the results in [LKS20] are based on
a continuous-time representation of the system, computational complexity is assessed for its discrete-time
version.

58

[MS19] [LKS20] [HRS20] Our algorithm

Constraints SD and topology constraints SD
Constraints on dynamics

and topology
No constraints

Computational complexity Polynomial but high NP-hard

Computational complexity

if SD holds
Polynomial Polynomial Not specified Polynomial but higher than [LKS20]

Convergence Asymptotic Asymptotic Exponential

Existence of steady-state error? No Yes No No

Working criterion Continuous and Discrete-time Continuous-time
High communication

frequency
Requirement on sampling rate

Against Byzantine attacks? Yes No No No

Table 4.1: A comparison between solutions to the DSST problem in [MS19], [LKS20],

[HRS20], and this chapter.

how to compress the measurements and state a result regarding the solvability of the DSST

problem. Then in Section 4.4 we relate the DSST problem to the dynamic average consensus

problem. We provide our solution to the DSST problem in Section 4.5. The chapter concludes

with Section 4.7.

4.2 Problem Formulation and Key Idea

In this section we introduce the decentralized secure state-reconstruction problem.

4.2.1 System Model

We consider a linear time-invariant system monitored by a network of p nodes whose sensors

are subject to attacks:

x[t + 1] = Ax[t],

yi[t] = Cix[t] + ei[t],
(4.1)

where x[t] ∈ Rn is the system state at time t ∈ N, yi[t] ∈ R is the measurement of node i

where i ∈ P ≜ {1, 2, . . . , p}, which is assumed to be a scalar, and the matrices A, and Ci

59

have appropriate dimensions.

The vector ei[t] ∈ R models the attack on the sensor at node i (which we will refer to

as sensor i for brevity). If sensor i is attacked by an adversary, then ei[t] can be arbitrary,

otherwise, ei[t] remains zero for any t, and yi[t] = Cix[t] holds which means node i receives

correct measurements from its sensor. We also assume that the adversary is omniscient,

i.e., the adversary has knowledge about the system model, the algorithm being executed

at each node and, for any time slot t, the adversary knows the system state x[t] and the

measurements yi[t] from all nodes. The only assumption we make on the adversary is that

it can only attack a fixed set of at most s ∈ N sensors. Note that this set of attacked sensors

is unknown to any node in the network.

Collecting n consecutive measurements (the reason for which will be discussed in sections

4.4 and 4.5) over time, the output of sensor i can be written in a more compact form:

Yi[t] = Oix[t] + Ei[t], i = 1, . . . , p, (4.2)

where Yi[t] and Ei[t] are obtained by stacking vertically over time the measurements of sensor

i and the attack vector, respectively, and the matrix Oi is the observability matrix of sensor

i. These three matrices are defined by:

Yi[t] =

yi[t]

yi[t + 1]
...

yi[t + n− 1]

 ∈ Rn, Ei[t] =

ei[t]

ei[t + 1]
...

ei[t + n− 1]

 ∈ Rn,

Oi =

Ci

CiA
...

CiA
n−1

 ∈ Rn×n.

In a similar way, we stack over nodes the measurements, the observability matrices, and

60

the attack vectors, from which a more concise representation of the linear system is obtained:

x[t + 1] = Ax[t],

Y [t] = Ox[t] + E[t],
(4.3)

where Y [t], O, and E[t] are obtained by stacking vertically each Yi[t], Oi, and Ei[t], respec-

tively, for i ∈ {1, 2, . . . , p}, i.e.:

Y [t] =

Y1[t]

Y2[t]
...

Yp[t]

 ∈ Rpn, O =

O1

O2

...

Op

 ∈ Rpn×n,

E[t] =

E1[t]

E2[t]
...

Ep[t]

 ∈ Rpn.

We also note that since the adversary can only attack at most s nodes, and since for an

attack-free sensor i we have Ei[t] = 0 for any t, the vector E[t] is sparse at any t. In the end,

we define the matrices y[t] =
[
y1[t] y2[t] . . . yp[t]

]T
∈ Rp, C =

[
CT

1 CT
2 . . . CT

p

]T
∈

Rp×n and e[t] =
[
e1[t] e2[t] . . . ep[t]

]T
∈ Rp for future use.

We assume that the communication between nodes in the network can be modeled by

an undirected graph. We recall the definitions made in the introduction related to graph.

Each node is modeled by a vertex i ∈ V , and a communication link from node i to node j is

modeled by an edge (i, j) ∈ E from vertex i to j. Since we assume the graph is undirected,

(i, j) ∈ E implies (j, i) ∈ E which shows that node j can also send messages to node i.

Remark 4 Although the linear system (4.3) is modelled without inputs, we note that, all

results in this chapter can be conveniently extended to the case when the input is known to

every node in the network.

61

4.2.2 Assumptions

Here we list all the assumptions we use in this chapter. Some of them have already been

discussed when introducing the adversary model.

Assumption 1 The network can be modeled by a communication graph which is time-

invariant, undirected and connected.

Assumption 2 The adversary is only able to attack at most s nodes. The set of attacked

nodes remains constant over time.

Assumption 3 The system dynamics are known to all nodes in the network.

Assumption 4 The adversary is only able to change the measurements of the attacked

nodes. Each attacked node still executes its algorithm correctly.

The Assumptions 1 2, 3, and 4 are in line with the assumptions in [LKS20] and [HRS20]

except that we also assume each node knows the Ci matrices of all other nodes throughout

the network2. We also require the following assumptions:

Assumption 5 All the measurements yi are scalars.

Assumption 6 For any eigenvalue m + ni of A with magnitude greater than or equal to 1

and for any non-zero eigenvalue λ of the communication graph laplacian L, the inequality(
m− λ2

λ2
max(L)

)2
+ n2 < 1 holds.

Assumption 5 is not necessary but we adopt it for simplicity. It can be easily seen that a

node whose sensor produces a measurement in Rp can be modeled as p virtual nodes, each

having a scalar sensor.

2This assumption can easily be enforced by endowing each node with the relevant information during
initialization.

62

Whenever the discrete-time linear system (4.1) is the time discretization of an underlying

continuous-time linear system:

˙̃x = Ãx̃, (4.4)

Assumption 6 can be interpreted as a requirement on the sampling time τ used to obtain

(4.1) from (4.4). If τ is small enough, then A = eÃτ can be made arbitrarily close to the

identity matrix. In other words, by increasing the sampling rate, m can be made arbitrary

close to 1 and n close to 0, and such a pair of m and n satisfies Assumption 6.

We also note that, Assumption 6 implies for any eigenvalue m + ni of A, the inequality

(m− 1)2 + n2 < 1 holds.

4.2.3 The Decentralized Secure State-Tracking Problem

In this section we provide the definition of the decentralized secure state-tracking problem.

In plain words, to solve the DSST problem, each node i must maintain a state estimate

x̂i[t] which converges asymptotically to the true state x[t]. We also refer to this property by

saying that x̂i[t] tracks x[t]. The rigorous definition of the DSST problem is as follows:

Definition 6 (Decentralized Secure State-Tracking Problem) Consider a linear sys-

tem subject to attacks (4.1) satisfying Assumptions 2-6 and a communication network sat-

isfying Assumption 1. The decentralized secure state-tracking problem asks for an algorithm

running at each node i ∈ P with measurements yi ∈ R and messages from neighboring nodes

as its input, and such that its output x̂i[t] satisfies:

lim
t→∞

∥x̂i[t] − x[t]∥ = 0.

Remark 5 Differently from centralized SSR problem (see for example [MMS22] for its def-

inition), the DSST problem does not require each node to explicitly know which subset of

nodes in the network is attacked. For the SSR problem, it has been argued in [FTD14] that

63

knowing the true state x[t] and knowing the set of attacked sensors is equivalent, while this

is not the case in the DSST problem setting.

Remark 6 In the DSST problem setting, it is possible to require all nodes, including at-

tacked nodes and attack-free nodes, to maintain a state estimate which asymptotically tracks

the system state x[t]. This follows from Assumption 1 which restricts the adversary to only

alter sensor measurements. In particular, nodes with spoofed measurements are still able to

correctly execute their algorithms. Therefore, the attacked nodes are still able reconstruct the

state x[t] and may even determine that their own measurements have been altered.

4.2.4 Key Idea

The key idea for solving the DSST problem is based on the simple observation that instead

of having access to measurements Y =
[
Y T
1 Y T

2 . . . Y T
p

]T
of all the sensors, a compressed

version (D ⊗ In)Y of the measurements may suffice to reconstruct the state, where the

measurement compression matrix D ∈ Rv×p reduces the measurements from Rp to Rv with

v ≤ p. Compression is possible, in most cases, and thus v will be strictly smaller than p. We

will elaborate on the feasible choices for a measurement compression matrix D in Section 4.3.

Equipped with the observation that the compressed version of measurements (D⊗ In)Y

suffices to reconstruct state, it is natural to ask: how can each node have access to the

compressed measurements? We show how to reformulate this problem as a dynamic average

consensus problem in Section 4.4 and an algorithm for each node to track (D⊗ In)Y is pro-

vided in Section 4.5. As we shall see, the connectivity of the network affects the convergence

speed of the tracking algorithm, which is the only role network topology plays in our solution

to the DSST problem.

Lastly, in Section 4.5 we show how to reconstruct the state x from the compressed

measurements (D ⊗ In)Y at each node. Since each node now has enough information to

reconstruct the state, communication is no longer required in this step. We will prove that

64

by suitably introducing a slack variable, this problem can be reduced to an SSR problem.

This observation implies that we may employ any algorithm for the SSR problem that does

not require additional assumptions, even though the compression slightly changes the attack

model. It then follows that, as each sensor’s estimate of the compressed measurements

converges, so does the state reconstructed from the estimated compressed measurements.

These three steps provide a solution to the DSST problem.

4.3 Design of the Compression Matrix and Solvability of DSST

There are two considerations involved in the choice of the compression matrix D. On the

one hand, in order to reduce communications and storage, we want the D matrix to have the

least possible number of rows. On the other hand, the compressed measurements (D⊗ In)Y

must provide enough information for each node to correctly reconstruct the state. We start

with the definition of sparse detectability with respect to a matrix, which is a generalization

of sparse observability [ST15, CWH15] as well as sparse detectability [NM15] but stronger,

as we will very soon see.

Definition 7 (Detectability [AM07]) A pair (A,C) is detectable if all the unobservable

eigenvalues of A are stable.

In other words, if (A,C) is detectable, then for any two trajectories x1[t] = Atx1[0] and

x2[t] = Atx2[0], equality C(x1[t] − x2[t]) = 0 holding for all t ∈ N implies limt→∞(x1[t] −

x2[t]) = 0. This property will be used in the proof of Theorem 7.

Definition 8 (Sparse detectability [NM15]) The sparse detectability index of the sys-

tem (4.1) is the largest integer k such that for any K ⊆ P satisfying |K| ≥ p − k the pair

(A,CK) is detectable. When the sparse detectability index is k, we say that system (4.1) is

k-sparse detectable.

65

In plain words, if we remove any subset of at most s sensors and the remaining system

represented by the pair (A,CK) is still detectable, then we say that the original system is

s-sparse detectable. We now present another perspective on sparse observability, paving the

way for the definition of sparse detectability with respect to a matrix, which plays a critical

role in our study. We first define the set:

Qs = {L ∈ R∗×p|ker(L) = span V, V ⊆ Ep, |V | ≤ s},

that we use in the following equivalent definition of sparse detectability:

Definition 9 (Sparse detectability) The sparse detectability index of the system (4.1) is

the largest integer k such that the pair (A,LC) is detectable for any L ∈ Qk. When the

sparse detectability index is k, we say that system (4.1) is k-sparse detectable.

Intuitively, by left multiplying C by L we remove the measurements of a subset of s

sensors without losing information from any remaining sensors. The equivalence between

these two definitions of sparse detectability is trivial and, due to space limitations, we do

not provide a proof. We proceed by introducing the new notion of sparse detectability with

respect to a matrix:

Definition 10 (Sparse detectability with respect to a matrix) Consider the system

(4.1), a matrix D ∈ Rv×p, and define the following set:

Ps = {L ∈ R∗×v|ker(L) = D(span V), V ⊆ Ep, |V | ≤ s}.

The sparse detectability index of the system (4.1) with respect to D is the largest integer k

such that the pair (A,LDC) is detectable for any L ∈ Pk. When the sparse detectability

index with respect to D is k, we say that system (4.1) is k-sparse detectable with respect to

D.

Remark 7 We note that, sparse detectability with respect to I coincides with the definition

of sparse detectability.

66

For later use, we formalize the contrapositive of Remark 7 in the next lemma.

Lemma 6 Any pair (A,C) that fails to be s-sparse detectable is not s−sparse detectable

with respect to any matrix of compatible dimensions.

Intuitively, the stacked measurement Y provides redundant information about the state

x. Some information redundancy is necessary for the system to be resilient against s attacked

sensors. The compression matrix D aims to compress down the redundant information while

keeping enough redundancy to provide resilience against the attacks. In the following lemma

we we characterize such compression matrices.

Lemma 7 If there exists an algorithm producing a state estimate x̂ satisfying limt→∞ ∥x[t]−

x̂[t]∥ = 0 for trajectory x[t] of system (4.1) satisfying Assumptions 2-4 and starting at any

initial condition in Rn only using (D ⊗ In)Y [t] as input and for any attack signal e[t] ∈ Rp,

then (A,C) is 2s−sparse detectable with respect to D.

Proof. For the sake of contradiction, we assume that (A,C) is not 2s−sparse detectable with

respect to D. By the definition of sparse detectability with respect to a matrix, there exist

two state trajectories x̃1[t] = Atx̃1[0] and x̃2[t] = Atx̃2[0] such that limt→∞(x̃1[t] − x̃2[t]) ̸= 0

and LDC(x̃1[t]− x̃2[t]) = 0 for some L ∈ P2s and any t ∈ N. This also implies the existence

of two s−sparse signals e1[t] ∈ Rp and e2[t] ∈ Rp such that the equation D(Cx̃1[t]−Cx̃2[t] +

e1[t] − e2[t]) = 0 holds for any t ∈ N, which is equivalent to:

u[t] ≜ D(Cx̃1[t] + e1[t]) = D(Cx̃2[t] + e2[t]). (4.5)

Consider the following 2 scenarios: (1) the state trajectory is x̃1[t] and the attack signal is

e1[t]; (2) the state trajectory is x̃2[t] and the attack signal is e2[t]. By (4.5) we know that

if a node only has access to u[t] then it cannot distinguish between these 2 scenarios, and

since limt→∞(x̃1[t] − x̃2[t]) ̸= 0, it is thus unable to track the state.

67

Lemma 7 shows that it is necessary to pick the compression matrix D such that the pair

(A,C) is 2s-sparse detectable with respect to D, otherwise it is impossible to track the state

from compressed measurements (D⊗In)Y . Later in Lemma 8 we will see that this condition

also suffices to solve the DSST problem. Anticipating the results in Section 4.5 we state

here the main contribution of this chapter, 2s-sparse detectability with respect to D is both

necessary and sufficient to solve the DSST problem:

Theorem 9 The DSST problem associated with the linear system subject to attacks defined

in (4.1) satisfying Assumptions 2-6 and a communication network satisfying Assumption 1

is solvable only if the pair (A,C) is 2s-sparse detectable.

Proof. This result comes easily from Lemma 7 by picking D = Ip.

4.4 Reduction to Dynamic Average Consensus

One key step of our solution to the DSST problem is to have each node tracking the com-

pressed measurements (D ⊗ In)Y . To do this, we ask each node i to maintain an estimate

vector Wi =
[
(W 1

i)T (W 2
i)T . . . (W v

i)T
]T

∈ Rvn, whose j-th block, W j
i , tracks the j-th

linear combination of measurements
∑

i djiYi, where dji is the entry at the j-th row and i-th

column of D.

In this section, and in the one that follows, we focus on the problem of tracking (D1⊗In)Y ,

where D1 is the first row of D, which can also be written as
∑

i d1iYi, and the tracked value

is stored in the block W 1
i . For technical reasons we will use 1

p

∑
i d1iYi, which serves the same

purpose since by Assumption 3 the value of p is known to all nodes. Note that any algorithm

that can track 1
p

∑
i d1iYi can be extended to track 1

p
(D ⊗ In)Y but running v concurrent

copies, each with a different set of weights {dji}. We observe that this problem can be seen

as an instance of the dynamic average consensus problem [KVC19]. In brief, suppose that

each agent in the network has a time-varying local reference signal ϕi(t) : [0,∞) → Rn. The

68

dynamic average consensus problem asks for an algorithm that allows individual agents to

track the time-varying average of the reference signals, given by:

uavg[t] =
1

p

p∑
i=1

ϕi[t]. (4.6)

In our problem setting, we pick the external input corresponding to (D1 ⊗ In)Y to be

ϕ1
i [t] = d1iYi[t] and what we want to track is 1

p

∑p
i=1 ϕ

1
i [t]. In other words, we may adopt any

algorithm that solves the dynamic average consensus algorithm thereby enabling all nodes

to track (D ⊗ In)Y .

However, in the setting of dynamic average consensus problem, no knowledge about

reference signals ϕi is assumed, whereas in our problem, for an attack-free node i, we have

the following:

Yi[t + 1] =

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

−α0 −α1 −α2 . . . −αn−1

︸ ︷︷ ︸

Â

Yi[t]. (4.7)

This equality comes from the construction Yi[t] =
[
yi[t] yi[t + 1] . . . yi[t + n− 1]

]T
con-

taining n consecutive measurements where α1, α2, . . . , αn−1 are the coefficients of the char-

acteristic polynomial of A. This can be seen by noticing that yi[t + n] = CiA
nx[t] =

Ci(αn−1A
n−1 + · · · + α1A + α0)x[t] = αn−1yi[t + n− 1] + · · · + α1yi[t + 1] + α0yi[t] whenever

node i is attack free. Moreover, we note that Â is the controller form of A and has the same

eigenvalues as A.

Remark 8 Since the state portion corresponding to the eigenvalues with magnitudes strictly

less than 1 will decay to zero with the elapse of time, in the remainder of the chapter we will

only be focusing on the state portion corresponding to eigenvalues with magnitudes greater

than or equal to 1.

69

Based on Equation (4.7), we define the following local sanity check:

Local sanity check: given measurement yi[t] of node i, we say sensor i passes the local

sanity check if ∥Yi[t + 1] − ÂYi[t]∥ ≤ ϵ for any t > 0, where ϵ is a chosen error tolerance.

In practice, we ask all nodes in the network to constantly run the local sanity check on

their sensors. It is trivially seen that all attack-free sensors would pass the check at any time.

On the other hand, if a sensor fails the local sanity check, then we immediately reach the

conclusion that this sensor is under attack. Therefore, we assume that all the attack vectors

ei corresponding to attacked sensors are constructed so that the resulting measurements Yi[t]

pass the local sanity check, i.e., ∥Yi[t + 1] − ÂYi[t]∥ ≤ ϵ.

The purpose of the local sanity check is to force the dynamics of Yi to be governed by

(4.7), including those from attacked nodes. We will exploit this additional knowledge of d1iYi

(or ϕ1
i) to achieve better tracking results.

Remark 9 We emphasize that we are not asking attacked sensors to maintain integrity (i.e.,

follow Equation (4.7)), but instead are assuming the worst case when attacked sensors can

pass the sanity check. Consider the case when an attacked sensor deviates from the rule (4.7)

and does not pass the check, then the associated node will be aware of it and inform all other

nodes in the network to exclude this sensor from the network.

4.5 Solving the DSST Problem

In this section we solve the DSST problem by showing that all nodes are able to asymptoti-

cally track the compressed measurements (in subsection A), and can reconstruct the state of

the system from compressed measurement with a suitable choice of the compression matrix

(in subsection B).

70

4.5.1 Tracking the Compressed Measurements

We argued in Section 4.4 that the tracking of the compressed measurements (D ⊗ In)Y

is intrinsically identical to a dynamic average consensus problem. We extend the results

in [BFL10] from the scalar-input case to the vector case and present such extension in the

discrete-time domain.

We ask each node to update its estimate of 1
p

∑
i d1iYi[t] according to:

W 1
i [t + 1] = (Â− I)W 1

i [t] + 2kI
∑
j∈Ni

(ηj[t] − ηi[t])

+ ϕ1
i [t],

bi[t + 1] = Âbi[t] − kI
∑
j∈Ni

(W 1
j [t] −W 1

i [t]),

ηi[t] = kP bi[t] − kI
∑
j∈Ni

(W 1
j [t] −W 1

i [t]),

(4.8)

where W 1
i [t] is the estimate at node i of the average of the input signal 1

p

∑
i ϕ

1
i [t], kI , kP ∈ R

are design parameters, bi[t] and ηi[t] are internal states of node i. The following theorem

states that under suitable choices of kI and kP the estimate of each node W 1
i [t] approaches

the true state 1
p

∑
i ϕ

1
i [t].

Lemma 8 Consider the average tracking algorithm in (4.8) where the input signal satisfies

ϕ1
i [t+1] = Âϕ1

i [t] for all i ∈ {1, 2, . . . , p}. There exist constants kI ∈ R and kP ∈ R such that

the state estimate W 1
i [t] at each node tracks the average of the input signals exponentially

fast, i.e.: ∥∥∥∥∥W 1
i [t] − 1

p

∑
i

ϕ1
i [t]

∥∥∥∥∥ < βαt,

for some 0 < α < 1 and β > 0.

Proof. Proof of Lemma 8 can be found in the appendix.

71

4.5.2 Reconstructing the State with Compressed Measurements

In this subsection we argue that if Wi[t] is close enough to (D⊗ In)Y [t] then reconstructing

the state x[t] is nothing more than solving a standard SSR problem. Once again, for the

sake of simplicity we are not going to provide the rigorous definition of the SSR problem in

this chapter, which can be found in [MMS22].

In the reconstruction step, each node seeks a state x̂ ∈ Rn and a vector Ê ∈ Rpn contain-

ing no more than s non-zero blocks that best explain the tracked compressed measurements

Wi. This problem can be solved in different ways. In this chapter we adopt an optimization

formulation by requiring each node to minimize ∥Wi − (D ⊗ In)(Ox̂ + Ê)∥2. Note that we

dropped the time index t here to simplify notation. In other words, each node solves the

following optimization problem:

(x̂, Ê) = argmin(x̃,Ẽ) ∥Wi − (D ⊗ In)(Ox̃ + Ẽ)∥2,

s.t. ∥Ẽ∥l0/lr ≤ s, (4.9)

where ∥Ẽ∥l0/lr denotes the number of non-zero blocks of the vector Ẽ. The following lemma

states that the solution x̂ of (4.9) is a good estimate of the system state when the tracking

of the compressed measurements is accurate enough.

Lemma 9 Let D ∈ Rv×p and assume (A,C) is 2s-sparse detectable with respect to D.

There exists a constant β ∈ (0,+∞) such that for any α ∈ (0,+∞), x ∈ Rn, Wi ∈ Rvn, and

Y ∈ Rpn satisfying Y = Ox and ∥Wi − (D ⊗ In)Y ∥2 ≤ α, the solution x̂ to the optimization

problem (4.9) satisfies ∥x̂− x∥2 ≤ βα.

Proof. Proof of Lemma 9 can be found in the appendix.

As a special case, when Wi = (D ⊗ In)Y , the optimization problem in (4.9) degenerates

to the following equality:

(D ⊗ In)Y = (D ⊗ In)Ox̂i + (D ⊗ In)Êi.

72

Solving this equality is equivalent to finding the state x̂i, a vector T ∈ ker(D ⊗ In) and a

vector Êi containing no more than s non-zero blocks such that:

Y = Ox̂i + Êi + T,

holds. Now we define a matrix N which has np rows and the least possible number of columns

such that R(N) = ker(D ⊗ In), and the optimization problem (4.9) is further reduced into

finding the state x̂i, a vector r̂i of appropriate dimension and a vector Êi containing no more

than s non-zero blocks satisfying:

Y = Ox̂i + Êi + Nr̂i =
[
O N

]x̂i

r̂i

+ Êi.

Hereby we conclude that reconstructing the state x from compressed measurements (D⊗In)Y

is a special case of the SSR problem since Y contains n consecutive measurements from all

nodes in the network, and any algorithmic solution to the SSR problem, for example [SCW18]

and [MSK16], can be applied to solve the DSST problem if they do not require additional

assumptions.

The preceding discussion directly leads to the sufficiency result:

Theorem 10 Consider the linear system subject to attacks defined in (4.1) satisfying As-

sumptions 2-6 and a communication network satisfying Assumption 1. The tracking algo-

rithm (4.8) together with a state-reconstruction algorithm enables each node to asymptoti-

cally track the state of the system (4.1) and consequently solves the DSST problem, if the

pair (A,C) is 2s-sparse detectable.

Remark 10 We note that, the tracking of compressed measurements has a delay of n − 1

time steps, and consequently, our solution of the DSST problem (i.e., tracking of the state

x[t]) also has a delay of n−1 time steps. However, in the special cases when the observability

index of the system (4.1) is smaller than n, and the evolution of stacked measurements (i.e.,

Equation (4.7)) is governed by a matrix of smaller size, the delay will be shorter than n− 1

time steps.

73

Combining Theorem 9 (necessary part) and Theorem 10 (sufficient part) we obtain the

main result of the chapter.

Theorem 11 The DSST problem associated with a communication network satisfying As-

sumption 1 and a linear system subject to attacks defined in (4.1) satisfying Assumptions 2-6

is solvable if and only if the pair (A,C) is 2s-sparse detectable.

4.6 Numerical Example

In this section we borrow an example from [HRS20] with slight modifications to illustrate

how we solve the DSST problem by asking all nodes to track the compressed version of the

measurements. With this example we also compare the performance of our algorithm and

the one proposed in [LKS20].

We consider a scalar system with A = 1.0006, Ci = 1, i = 1, . . . , 30. The initial state

satisfies x[0] = 1 and consequently x[t] = 1.0006t. All thirty nodes are connected via a

communication network, the topology of which is shown in Figure 1. This communication

graph is identical to figure 1 in [HRS20]. In this graph, every circle represents a node and

a line connecting two circles represents a communication link between the connected nodes.

Attack-free nodes are colored in gray, while attacked nodes are colored in red, i.e., nodes 2,

16, and 29 are attacked.

This scalar system has 30 nodes and we can easily conclude that it is 29-sparse detectable.

In other words, this system can tolerate up to 14 attacked sensors. In this example, we assume

that only 3 sensors (sensors 2, 16, and 29) are attacked by an adversary. This gap makes

possible for designing a compression matrix D which compresses down the redundant part

of the measurements.

The matrix D should satisfy the necessary conditions, i.e., the system should be 7-sparse

detectable with respect to D. In this case, any matrix of proper dimensions whose rank is

74

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

Figure 4.1: The communication graph.

greater than or equal to 7 is a good candidate for D. For simplicity, we pick the compression

matrix D ∈ R7×30 as follows:

Dij =

0 if 4 ≤ (j − i− 3) mod 30 ≤ 26,

1 otherwise,
(4.10)

where Dij is the (i, j)th entry in the matrix D. We now use this simple example to illustrate

why tracking compressed measurements DY suffices to reconstruct the state. We first note

that, the most naive way of solving the DSST problem associated with this system is by

asking all nodes to collect measurements from all sensors throughout the network, which

requires all nodes to store 30 scalar variables. However, we notice that only three out of thirty

nodes are under attack, therefore seven suitably chosen linear combinations of measurements

(with different weight sets) suffice to reconstruct the state despite the attacks. In this case,

all nodes only need to store 7 scalars, which reduces communication cost and storage.

Practically, we ask all nodes to run concurrently seven versions of the tracking algorithm

(4.8), each associated with a different weight set. For example, to track3 D1Y , each node i

3We recall that D1 is the first row of D.

75

executes algorithm (4.8) with reference signal ϕ1
i [t] = d1iyi[t], or explicitly:

ϕ1
i [t] =

1.0006t i = 1, 3, 4, 5, 6, 7,

k × 1.0006t i = 2,

0 otherwise,

(4.11)

for some k ∈ R arbitrary chosen by the attacker4. In the experiment we pick k = 3 and

consequently D1Y = 0.3 × 1.0006t. In Figure 4.2 we show the tracking error of Algorithm

(4.8) and observe that all the nodes are able to track the compressed measurements D1Y ,

which verifies our theoretical results.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Numerical Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Measurement Tracking Value

Compressed Measurement

Measurement Tracking Error

Figure 4.2: The measurement tracking error ∥W 1 −D1Y ∥ versus iterations.

The reconstruction step is simple since the state can be reconstructed via majority voting

for a scalar system. In Figure 4.3 we show that the reconstructed state tracks the true

state asymptotically. We also compare our algorithm with the distributed median solver

in [LKS20]. As we can see from Figure 4.3, solution in [LKS20] reaches steady state quickly

at around 3.1ms after the algorithm started executing. However, it has a steady-state error

4We note that the measurement of the attacked sensor 2 must be in this form in order to pass the local
sanity check.

76

0 500 1000 1500 2000 2500

Numerical Iterations

-8

-7

-6

-5

-4

-3

-2

-1

0

1

S
ta

te
 T

ra
c
k
in

g
 E

rr
o
r

(l
o
g
 s

c
a
le

)

Distributed Median Solver [18]

Our Algorithm

iteration = 1508

t = 24ms
iteration = 38

t = 3.1ms

Figure 4.3: The state tracking error ∥x̂− x∥ versus iterations.

of around 0.03. Compared with [LKS20], our algorithm takes longer to converge, 24ms for

the tracking error to decrease below 0.03. However, our algorithm asymptotically converges

to the correct solution whereas the algorithm in [LKS20] does not.

4.7 Concluding Remarks

In this chapter, we studied the problem of tracking the state of a linear system against

sensor attacks in a network. Motivated by recent works in the dynamic average consensus

literature and the simple observation that a compressed version of measurements suffices to

reconstruct the state, we proposed a novel decentralized observer that enables each node

in the network to track the state of the linear system without making any non-necessary

assumptions except one regarding the sampling rate.

Future directions include developing a decentralized state-tracking algorithm robust against

other types of adversarial attacks, for example, a byzantine attack which is not only able

to alter measurements but also forces attacked nodes to deviate from their prescribed algo-

77

rithm. One additional problem of interest is the extension of the proposed results to the

case where inputs are present but unknown to the nodes.

78

CHAPTER 5

Decentralized Robust Optimization

5.1 Introduction

This chapter concerns decentralized optimization problem that has seen several applications

in the past decade [PKP06,BPC11], including federated learning [MNG18,KMA19]. In this

problem, we have a set of nodes connected via a communication network, each equipped with

a local function, which are collectively searching for the minimizer of the aggregation of their

local functions. However, in some scenarios, nodes may suffer from malicious attacks, which

render most solutions developed for faultless networks [CL99,DHP04] invalid. Therefore, it

is of significant importance to develop learning algorithms that are robust to attacks.

5.1.1 Existing Works

Some works have addressed the robust learning problem (or the robust optimization problem)

in the distributed case [DD21, DD20, GMK21, LXC19, GHY19] and references therein. In

these works, the existence of a central server is assumed, which is connected to all nodes

in the network and is responsible for learning the model or computing the minimizer. In

this chapter, we do not assume the existence of such a central server, i.e., we consider a

decentralized setting. We ask each node to learn a model (or obtain the minimizer), using

its own local information and messages exchanged with its neighbors. Moreover, we adopt

the more general heterogeneous problem setting, where the data set (or the local function)

at each node is different.

79

The problem of global optimization when nodes are spread in a network (i.e., decen-

tralized setting) has been well-studied [NO09, MSL16, Bul19]. However, these solutions are

vulnerable to attacks: they completely break down if some local functions are altered by an

adversary. This consideration motivated some other works which focus on developing robust

decentralized optimization algorithms. Depending on the relationship between the global

minimum point x∗ (which is typically assumed to uniquely exist) and the set of minimiz-

ers, Si, of the local function fi, these works can be roughly divided into the following three

classes:

Class one: Each local function has only one local minimum point which coincides with

the global optimizer, i.e., Si = {x∗}, i = 1, 2, . . . , p. This scenario typically takes place in

a machine learning problem setting where all nodes are collaboratively learning a model by

performing stochastic gradient descent using the same data set, or when the data samples at

all nodes are drawn i.i.d. from the same statistical distribution. In this case, even without

communication, non-adversarial nodes can reach consensus on the global optimizer, hence

most efforts have been devoted to accelerating convergence speed by suitably exchanging

messages between neighboring nodes. Representative works in this class include [YB19a,

YB19b]. In [YB19b], each node is asked to perform coordinate-wise gradient descent based

on a resiliently aggregated version of its received gradients. The solution in [YB19a] is similar

to [YB19b] but nodes are asked to perform vanilla gradient descent instead. Both [YB19a]

and [YB19b] showed that collaboration among nodes in a network increases the speed of

model-training notwithstanding a small fraction of nodes being attacked by a Byzantine

adversary.

Class two: The global optimizer belongs to the set of local minimum points of any node,

i.e., x∗ ∈ Si, i = 1, 2, . . . , p, and at least one local function has two or more minimizers. In

this case, nodes must rely on messages exchanged with their neighbors in order to obtain

the global optimal point. The following interesting observation was made in [GV20]: in this

setting, it is possible for all nodes to retrieve the exact global minimum point whereas in the

80

most general case, when there is no direct relationship between the global minimum point and

the sets of local minimum points, x∗ is not retrievable. Papers [SV16] and [GV20] fall into

this class. In particular, [SV16] showed that nodes are able to agree on the global optimal

point given that any local cost function can be decomposed into a non-trivial weighted

sum of uni-variate strictly convex functions which comes from a common size-limited set

of basis functions. Their later work [GDV20] extended this result to the multivariate case

and dropped the weighted sum decomposition assumption made in [SV16]. However, the

algorithm in [GV20] only applies to the special case when all nodes are connected via a

complete network.

Class three: The global optimizer x∗ is not the local minimum point for some functions,

i.e., there exists i ∈ {1, 2, . . . , p} so that x∗ /∈ Si. Paper [SV16] was the first work that stud-

ied this setting under the assumption that all local functions are uni-variate, in which the

authors novelly proposed the Synchronous Byzantine Gradient (SBG) method which forces

all nodes to reach consensus on the minimum point of a non-uniformly weighted sum of the

local functions. Similar techniques have been adopted by [SG18] in its Local Filtering (LF)

algorithm, which significantly outperforms the SBG algorithm in terms of communication

load at the price of requiring an unnecessary assumption on the communication graph topol-

ogy. A later work [KXS20] extended the result in [SV16] and [SG18] to the multivariate

case. However, the fundamental limitation of SBG (or LF)-type algorithms is still present

in [SG18], as the consensus point is only guaranteed to lie in the smallest hyper-rectangle

that contains all the local minimum points.

There is also a vast literature devoted to the learning problem when a fraction of data

samples is under attack [RWR20, WRK20, RSL18]. However, these works differ from our

RDGO problem setting in the sense that they assume a fraction of data samples to be

attacked, whereas we assume that all the data samples in a fraction of nodes are attacked.

As a consequence, we are able to filter the information from a set of nodes whereas such

approaches are not applicable in most adversarial learning problems.

81

5.1.2 Our Contributions

As we can see from the previous discussion, all existing works on decentralized optimization

in the presence of attacks have its limitations: they either consider a simpler case where

some special relationships exist between the global optimal point and the sets of local optimal

points, or are only able to provide a loose bound on the distance between the consensus point

and the global minimum point x∗. However, it is noteworthy that all these works consider

the attacker to be byzantine and to possesses full knowledge of the system: including, but

not limited to, the graph topology, all local functions, and the algorithms running at each

node. Moreover, an attacked node may arbitrarily deviate from its prescribed rules if it is

attacked by a byzantine adversary. In this chapter, we consider a milder type of attacks

known as data poisoning attacks, where the adversary still has full knowledge of the system,

but is only able to change the local functions of the attacked nodes. The main difference

between byzantine attacks and data poisoning attacks is that an attacked node is still able

to execute its program if it is subject to data poisoning attacks. To the best of authors’

knowledge, the decentralized optimization problem against data poisoning attacks, which

we refer to as the Resilient Decentralized Global Optimization (RDGO) problem, has not

yet been studied.

The main contributions of this chapter are:

1. We propose a a novel filtering algorithm which robustly estimates the weighted sum of

a set of vectors in Rn in the presence of data poisoning attacks. The algorithm is given

in Algorithm 2. Moreover, the distance between the computed weighted sum and the true

value scales well with the dimension n (∝
√
n), and the fraction ϵ of attacked vectors (∝ ϵ).

The algorithm is also light-weighted since its computational complexity scales linearly with

n.

2. We propose an algorithm that solves the RDGO problem when the aggregated function

is either convex or belongs to a special class of non-convex functions. The algorithm is given

82

in Algorithm 2. The algorithm guarantees the Euclidean distance between the obtained

minimizer and the true one (in the absence of attacks) to be proportional to
√
n and ϵ,

which is proved in Theorem 12. Moreover, the proposed algorithm tolerates an attack up to

half of the nodes.

3. We verify the theoretical results with a numerical example, where we ask 20 nodes in a

communication network, each equipped with a non-overlapping portion of the MNIST data

set, to collectively train a binary classification model, despite an adversary which is able to

alter the data sets at three nodes.

To the best of authors’ knowledge, our algorithm outperforms any existing solution, under

the same or less stringent problem setting (e.g., a distributed setting). In the following table

we list 3 representative works on robust centralized/distributed optimization and compare

our results with theirs.

[GHY19,GMK21] [DD20,DD21] [LXC19] [RWR20] Our algorithm

Network Topology distributed distributed distributed centralized decentralized

Error Tolerance 1
2

1
4

1
2

1
2

1
2

Error vs Dimension O(n) O(
√
n) O(n) O(

√
n) O(

√
n)

Error vs Fraction

of Attacked Nodes
O(ϵ) O(

√
ϵ) O(ϵ) O(ϵ) O(ϵ)

Table 5.1: A comparison between solutions to the RDGO problem in [GHY19, GMK21],

[DD20,DD21], [LXC19], [RWR20], and this chapter.

We also note that, any result in this chapter can be conveniently applied to the distributed

case, even when the attack is Byzantine. More details regarding this claim can be obtained

in Remark 15.

83

5.1.3 Chapter Organization

The remainder of the chapter is organized as follows. Section 5.2 formulates the RDGO

problem. In Section 5.3 we introduce Resilient Averaging Gradient Descent (RAGD) algo-

rithm which solves the RDGO problem. This is followed by Section 5.4 in which how to

robustly estimate the weighted sum of a set of vectors is investigated. The performance of

the RAGD algorithm is studied in Section 5.5. Lastly, in Section 5.6 we verify our theoretical

results via a numerical example, and in Section 5.7 we conclude this chapter.

5.2 Preliminaries

5.2.1 Notation

Let R, R+, and N denote the set of real, positive real, and natural numbers, respectively.

Given a vector v ∈ Rn where n is a positive natural number, we use ∥v∥2 to denote the

l2 norm of v. Also, we define the all-ones vector of length n by 1n = (1, 1, . . . , 1)T and In

to be the identity matrix of order n. The largest and smallest singular values of a matrix

A ∈ Rn×p is denoted by σM(A) and σm(A), respectively, where n, p are positive natural

numbers. Moreover, we use ∇f(x) to denote the gradient of a function f : Rn → R evaluated

at x ∈ Rn. Further let r ∈ R+. We denote by B(x, r) = {y ∈ Rn|∥y − x∥2 ≤ r} the ball

centered at x with radius r. Moreover, the distance D(x, S) between a point x ∈ Rn and a

set S ⊆ Rn is defined by D(x, S) = infy∈S ∥x− y∥2.

A weighted directed graph G = (V , E ,A) is a triple consisting of a set of vertices V =

{v1, v2, . . . , vp} with cardinality p, a set of edges E ⊆ V×V , and a weighted adjacency matrix

A ∈ Rp×p which will be defined very soon. The set of in-neighbors of a vertex i ∈ V , denoted

by N in
i = {j ∈ V|(j, i) ∈ E}, is the set of vertices connected to i by an edge. Similarly, the

set of out-neighbors of a vertex i ∈ V is defined by N out
i = {j ∈ V|(i, j) ∈ E}. We assume

each vertex is both an in-neighbor and an out-neighbor of itself. The weighted adjacency

84

matrix A of the graph G is defined entry-wise. The entry in the i-th row and j-th column,

aij, satisfies 0 < aij < 1 if (i, j) ∈ E and otherwise aij = 0.

5.2.2 Problem Formulation

We consider a set P of p nodes connected via a communication network, modelled as a

directed graph G = (V , E ,A). The set V in G represents the set of nodes and the set E

represents the set of communication links between all pairs of nodes. In particular, an edge

(i, j) ∈ E exists if and only if node j can receive information from node i. Moreover, each

communication link (i, j) is associated with a positive scalar value aij > 0, which, we recall,

is the (i, j)-th entry of A.

We now formally define the RDGO problem.

Definition 11 Consider a set P of p nodes connected via a communication network. Each

node i ∈ P is equipped with a local function fi : Rn → R where x ∈ Rn is the optimization

variable. The RDGO problem asks each node to find the optimizer x∗ of the aggregation of

the local functions:

f =
∑
i∈P

fi,

using its local function fi and messages exchanged with its neighboring nodes, notwithstanding

some local functions have been altered by a data poisoning attack.

In the decentralized federated learning problem, each node i has a local data set Zi =

{zi1, zi2, . . . , ziN} of cardinality N . The federated learning problem asks all nodes to collec-

tively minimize the following risk function 1
N

∑p
i=1

∑N
j=1 l(w, zij) with respect to w. In this

case, each local function fi(w) = 1
N

∑N
j=1 l(w, zij) is implicitly defined by the local data set

Zi at node i. The aggregation f of local functions is also named as the global function in

this chapter.

85

5.2.3 Attack Model

The solution to the global optimization problem is trivial in the absence of attacks [NO09,

MSL16, MLR16, Bul19]. However, the problem gets more interesting and also complicated

when some nodes are subject to attacks. In this note, we assume that a subset Pb ⊂ P of

nodes are subject to a data poisoning attack, which is able to replace the original function

fj of an attacked node j ∈ Pb with f̃j ̸= fj. Moreover, we define Sg = S\Sb to be the set of

attack-free nodes. For simplicity, we also use f̃i to denote the local function of an attack-free

node i ∈ Sg after the data poisoning attack. It is trivially seen that, for an attack-free node

i, f̃i = fi.

The adversary that launches the data poisoning attack is assumed to be omniscient,

i.e., it has full knowledge of the communication graph, the local functions of all nodes, the

algorithm each node executes, etc. Moreover, it is able to arbitrarily alter the local functions

of the attacked nodes. However, differently from Byzantine attacks, we assume that all

nodes, even those subject to data poisoning attacks, are able to execute their protocols

correctly. Moreover, in the context of this chapter, we assume the attack is perpetrated

before the nodes start executing the algorithm that solves the RAGD problem, which we

will soon discuss in the next section. The attacked local functions will not change once the

algorithm starts running. This definition of the data poisoning attack is in line with other

works (for example [XBB15], [BCL17], [SMT13], and [SMY15]) where data poisoning attacks

are studied.

Remark 11 It was argued in [SV16] that it is impossible to exactly recover the optimizer x∗

when some local functions are attacked by an adversary and when there is no special relation-

ships between the local functions. Therefore, instead of exactly recovering the optimizer x∗,

we study in this chapter how well each node can approximate x∗ using its possibly attacked

local function and messages exchanged with its neighbors.

86

5.2.4 Assumptions

We study the RGDO problem under the following assumptions, some of which have already

been discussed:

Assumption 7 The communication graph is fixed, connected, and doubly-stochastic (i.e.,

the adjacency matrix A of the graph is a doubly-stochastic matrix). Moreover, the weight

associated with each link is known to the corresponding receiver node, for example, node j is

aware of aij for any i ∈ P .

Assumption 8 There exists an 0 < ϵ < 1
2
, known to all nodes in the network, such that

for any node j, the sum of link weights corresponding to its attacked in-neighbors is upper

bounded by ϵ, i.e.: ∑
i∈N in

j ∩Sb

aij ≤ ϵ, ∀j ∈ P. (5.1)

Assumption 9 Each local function is differentiable, and the Euclidean distance between the

gradients of any two local functions evaluated at any point x in the working domain1 is upper

bounded by some constant κ > 0, i.e.:

∥∇fi(x) −∇fj(x)∥2 ≤ κ, ∀i, j ∈ P. (5.2)

Assumption 7 is a constraint on the communication network topology. This assumption

is the simplest one that enables a solution to the Decentralized Average Consensus (DAC)

problem, where a network of nodes, each having a local initial value, seeks to agree on the

average of their initial values [XBK07,CI14]. Note that the DAC problem is a special case of

the RDGO problem2, which justifies our Assumption 7. Assumption 8 restricts the power of

the adversary. For example, if node j has k neighbors and the weight on each link to node j is

1A brief discussion on the working domain will be provided at the end of the chapter.

2Consider a special class of the RDGO problem where the local function at node i is chosen to be
fi(x) = (x− xi)

T (x− xi). We note that the global optimizer of this RDGO problem is x∗ =
x1+x2+···+xp

p .

87

1/k, Assumption 8 requires that less than half of the links can be attacked since ϵ is required

to be smaller than 1/2. Similar assumptions were made in [SG18], with the slight difference

that in [SG18] it is assumed that the number of attacked nodes in a neighborhood is upper-

bounded. Lastly, Assumption 9 is widely accepted in decentralized (distributed) machine

learning literature, for example, [YB19b] and [DD21] adopted very similar assumptions to

enable filtering information from attacked nodes.

Apart from Assumptions 7-9, in this chapter we also need one of the following two

assumptions to solve the RDGO problem.

Assumption 10 The global function f is L-smooth and ν-strongly convex, each local func-

tion fi is L1-smooth.

Assumption 11 is based on the following definition [KNS16].

Definition 12 A differentiable function f : Rn → R satisfies the Polyak-Lojasiewicz (PL)

inequality with parameter µ ∈ R+ if the following inequality holds:

1

2
∥∇f(x)∥22 ≥ µ(f(x) − f(x∗)), (5.3)

for any x ∈ Rn and x∗ being a minimizer of the function f .

Assumption 11 The global function f is L-smooth and satisfies the PL inequality with

parameter µ, each local function fi is L1-smooth.

We note that a ν-strongly convex function must satisfy the PL inequality. This result

can be observed by choosing µ = ν. However, the opposite does not hold. For example, a

function that satisfies the PL inequality may have multiple minimizers. We also note that if

a function f is both L-smooth and satisfies the PL inequality with parameter µ, then µ < L.

88

5.3 The Resilient Averaging Gradient Descent Algorithm

In this section, we introduce an algorithm called the Resilient Averaging Gradient Descent

(RAGD), which enables all nodes to approximate the global minimum x∗ and thus solves

the RDGO problem. Algorithm 1 is a pseudo-code description of the RAGD algorithm.

Algorithm 1: Resilient Averaging Gradient Descent (RAGD) Algorithm for Node

j

Input: {aij|i ∈ N in
j }, f̃j, ϵ, η, τ ∈ N;

Initialization: x0
j [0] := 0;

for t = 0, 1, 2, . . . do

for k = 0, 1, 2, . . . , τ − 1 do

Broadcast xk
j [t] ;

Receive xk
i [t] from i ∈ N in

j ;

xk+1
j [t] :=

∑
i∈N in

j
aijx

k
i [t];

end

Compute and broadcast the gradient Xj[t] := ∇f̃j(x
τ
j [t]) of its local function;

Receive Xi[t] from i ∈ N in
j ;

µ̂j[t] := RWSE({(aij, Xi[t]), i ∈ N in
j }, ϵ) where the RWSE algorithm will be

introduced in Section 5.4;

x0
j [t + 1] := xτ

j [t] − ηµ̂j[t];

end

Output: xτ
j [t];

The RAGD algorithm has two loops, an inner loop (lines 4-8) and an outer loop (lines

3-13). In the inner loop, all the nodes are asked to run a linear iterative algorithm aiming at

reaching consensus on the average of their local estimates. The input parameter τ controls

the number of iterations executed in the inner loop. The estimate at node j in t-th iteration

89

of the outer loop and k-th iteration of the inner loop is denoted by xk
j [t]. To proceed, we

directly provide the following result on the convergence property of the inner loop.

Lemma 10 Consider a set P of nodes, each starts with an initial value x0
i [t], executes lines

4-8 of the RAGD algorithm in parallel. Define x̄[t] = 1
p

∑
i∈P x0

i [t] and d
k[t] = maxi,j∈P ∥xk

i [t]−

xk
j [t]∥2. The following two properties regarding xτ

1[t], xτ
2[t], . . . , xτ

p[t] hold for any t ∈ N:

1. 1
p

∑
i∈P xτ

i [t] = x̄[t], ∀τ ∈ N.

2. there exists an a ∈ R+ and a ρ ∈ (0, 1) such that for any τ ∈ N, dτ [t] ≤ aρτd0[t].

In the outer loop, all nodes are first asked to reach consensus on the average of their local

estimates by executing the inner loop. Then each node is asked to compute and broadcast the

gradient of its (possibly attacked) local function (lines 9-10). We note that some gradients

are not reliable since some local functions have been altered by the data poisoning attack.

Upon receiving gradients from all its neighbors, each node runs a screening algorithm (the

RWSE algorithm) which allows each node to resiliently approximate the weighted average of

the gradients it receives (line 11), and in the end updates its local parameter by performing

a gradient descent step based on the output of the RWSE algorithm (line 12).

Remark 12 In line 9 of Algorithm 1, we ask each node j to compute the gradient of its

(possibly attacked) local function evaluated at its current local estimate xτ
j [t]. If node j is

free from attack, then Xj[t] = ∇fj(x
τ
j [t]), i.e., the computed gradient equals the gradient

of its original local function evaluated at the same point. However, if node j is attacked,

we make no assumptions on the relationship between Xj[t] and ∇fj(x
τ
j [t]) except that Xj[t]

exists.

Detailed discussion on the RAGD algorithm will be presented in Section 5.5.

90

5.4 The Robust Weighted Sum Estimation Algorithm

In this section, we study the problem of how each node can resiliently compute the weighted

sum of its neighbors’ gradients under assumptions 7-9, despite a portion of the gradients

having been attacked. To solve this problem, we propose a novel algorithm termed the

Robust Weighted Sum Estimation (RWSE) algorithm.

The RWSE algorithm is not only the key for solving the RDGO problem, but also

has other applications, for example, it can be conveniently applied to solve the distributed

Byzantine-resilient federated learning problem3. Moreover, we note that the robust weighted

sum estimation problem is a generalization of the well-known RME problem, hence RWSE

solves the robust mean estimation problem assuming Assumptions 7-9 hold.

5.4.1 Algorithm Description

Since the execution node j is fixed, in this section we drop this index and represent the

weights {aij : i ∈ P} by {ai : i ∈ P}. Note that
∑

i∈P ai = 1 by Assumption 7. Let

S = N in
j , the message Xi that node j receives from node i satisfies:Xi = ∇fi, i ∈ Sg,

Xi ̸= ∇fi, i ∈ Sb,
(5.4)

where we also dropped time indices t and τ and used ∇fi in lieu of ∇fi(x
τ
i [t]) for sim-

plicity. The goal is to approximate the weighted average µg =
∑

i∈S ai∇fi using the data

{(a1, X1), (a2, X2), . . . , (ap, Xp)} under Assumptions 8 and 9. Algorithm 2 is a pseudo code

description of the RWSE algorithm.

To explain the RWSE algorithm we describe its execution on the example in Figure 1.

In Figure 1, a red dot denotes an attacked vector while a black dot denotes an attack-free

vector. All attack-free vectors (black dots) lie in a ball with diameter κ whereas there are

3See [DD21] for a formal definition of the distributed Byzantine-resilient federated learning problem.

91

𝜅i

h

𝜅i

h

𝜅i

h

𝜅i

h

removed

(a) (b)

(c) (d)

Figure 5.1: Visualization of Algorithm 2.

no restrictions on the position of attacked vectors. In each iteration, the execution node

first finds the pair of vectors (i, h) with the maximum Euclidean distance (subgraph (a),

also line 4 in Algorithm 2), then computes and compares the weighted sum of the distance

between vector i and all other vectors and the weighted sum of the distance between vector

h and all other vectors (subgraph (b) and (c), also lines 5-6 in Algorithm 2). In the problem

instance represented by Figure 1, vector h is closer to the rest of vectors compared with the

attacked vector i, hence in the last subgraph (d) vector i is removed according to lines 6-12

in Algorithm 2.

In addition, we use a scalar variable temp to store the identity of the latest removed

vector. By Assumption 8 if the weight ai associated to a vector Xi satisfies ai > ϵ, then this

vector cannot be attacked. Therefore, if a vector Xi with weight ai > ϵ is removed at some

iteration and then the algorithm terminates, there is no harm restoring this vector Xi since

it must be a good vector. By doing so we have the following guarantee of the weight sum of

the remaining vectors: ge ≥ 1− 2ϵ, where ge is defined in line 14 and line 16 in Algorithm 2.

92

5.4.2 Performance

It is trivial that Algorithm 2 will terminate (once enough nodes are removed the guard in

line 3 will be violated). Therefore we only need to check how close the output µ̂ is to the

true average µg. To do this, we divide all possibilities regarding the execution of Algorithm

2 into three cases. The classification rule is shown in Table 1, where r stands for a good

vector and a stands for an attacked vector. An execution of the RWSE algorithm falls into

a certain case if for sufficient number of iterations as shown in the first column of this row,

an indicated pair of vectors in the second column is chosen since their distance is larger than

any other pair, and in the end a certain (good or attack) vector is removed as indicated by

the third column in this row. For example, if for at least one iteration, two good vectors are

chosen and one of them is removed, then the execution falls into Case two.

Now we study the execution of the RWSE algorithm case by case.

Case 1: During each iteration one attacked vector is removed.

Observation 1 If Case 1 holds during the execution of the RWSE algorithm, then for any

two vectors Xi, Xh such that i, h ∈ Ve we have ∥Xi −Xh∥2 ≤ κ.

We proceed by examining case 2. As we will soon see, Case 1 and Case 2 are very similar.

Case 2: In some iterations the distance between a pair of good vectors is larger than

any other pair. Due to this reason a good vector is removed in this iteration.

Observation 2 If Case 2 holds during the execution of the RWSE algorithm, then for any

two vectors Xi, Xh such that i, h ∈ Ve we have ∥Xi −Xh∥2 ≤ κ.

Now we study the performance of the RWSE algorithm when either Case 1 or Case 2

holds. The following lemma guarantees that the output µ̂ of the RWSE algorithm is a good

estimate of µg if either Case 1 or Case 2 holds.

93

Lemma 11 If Case 1 or Case 2 holds during the execution of the RWSE algorithm, then

the output µ̂ of the RWSE algorithm satisfies:

∥µ̂− µg∥2 ≤
(

2 +
2

1 − 2ϵ

)
ϵκ. (5.5)

Case 3: In some iterations the maximum distance lies between a good vector and a bad

vector, leading to a good vector being removed.

We first make a claim on the distance between any remaining attacked vector Xq and

the vector ∇fq which was replaced. This result will be used in the analysis of the RWSE

algorithm if Case 3 holds.

Lemma 12 If Case 3 holds, then for any q ∈ Ve ∩ Sb, we have ∥Xq −∇fq∥2 ≤ (2 + 1
1−2ϵ

)κ.

Lemma 13 If Case 3 holds during the execution of the RWSE algorithm, then the output µ̂

of the RWSE algorithm satisfies:

∥µ̂− µg∥2 ≤
(

2 +
3 − 4ϵ

(1 − 2ϵ)2

)
ϵκ. (5.6)

By taking the worst case over the bounds for each of the three cases we obtain the

following result:

Lemma 14 Consider the RWSE algorithm with inputs {(a1, X1), (a2, X2), . . . , (ap, Xp)} sat-

isfying (1) a1 + a2 + · · · + ap = 1, (2) ai > 0, ∀i ∈ P , (3) ∥∇fi − ∇fh∥2 ≤ κ, ∀i, h ∈ P ,

and ϵ satisfying (4) ϵ < 1
2
. Define µg =

∑p
i=1 ai∇fi. The output µ̂ of the RWSE algorithm

satisfies:

∥µ̂− µg∥2 ≤
(

2 +
3 − 4ϵ

(1 − 2ϵ)2

)
ϵκ. (5.7)

Remark 13 We see from the description that the RWSE algorithm scales well with the

dimension n, since the computational complexity of the RWSE algorithm grows linearly with

the increase of n. Moreover, according to Lemma 14, the error of the RWSE algorithm scales

94

with ϵ, which outperforms many RME algorithms whose error scales with
√
ϵ [DKK19]. The

authors believe this is a consequence of Assumption 9 where we assume the dissimilarity

among two good gradients is upper bounded, whereas in RME algorithms usually deal with

randomized data. It is also noteworthy that the error of the RWSE algorithm scales with κ,

which implicitly grows with
√
n.

5.5 Performance of the RAGD Algorithm

In this section we prove the correctness of the RAGD algorithm. We start with an intuitive

explanation of the RAGD algorithm: the inner loop can be considered as an initialization

step, in which each node initializes their estimate to be the average of estimates of all nodes

throughout the network, up to some error which decreases exponentially with τ by Lemma

10. Executing lines 9-12 in Algorithm 1 brings the following two consequences:

1. The average of local estimates moves towards the minimum point (or a minimum point

if there are multiple), up to some constant error.

2. The distance between two local estimates may increase.

The proof idea is simple. We will prove the following two facts: (1) the local estimates of

all nodes are clustered in a ball, and (2) the centroid of the ball moves towards the minimizer

up to a constant error. It is a natural consequence of these two facts that the estimate at

any node is close to the minimizer. We recall the definition dk[t] = maxi,j∈P ∥xk
i [t] − xk

j [t]∥2

from and proceed with our first result in this section:

Lemma 15 Consider a set P of nodes in a communication network satisfying Assumption

7. Each node has a local function which satisfies Assumption 9 whereas some local functions

are altered by a data poisoning attack which satisfies Assumption 8. Let all nodes run the

RAGD algorithm in parallel. Moreover, let either Assumption 10 or 11 hold. For any pair

of nodes i, j ∈ P , any t ∈ N and any τ ∈ N, the output of these nodes xτ
i [t], xτ

j [t] in iteration

95

t and the maximum distance dk[t] satisfy:

∥∇fi(x
τ
i [t]) −∇fj(x

τ
j [t])∥2 ≤ κ + 2L1d

τ [t]. (5.8)

Moreover, in this case, the variable µ̂j[t] in line 11 of the RWSE algorithm at any node j ∈ P

and iteration t ∈ N satisfies:

∥µ̂j[t] − µj[t]∥2 ≤ cϵ(κ + 2L1d
τ [t]), (5.9)

for any j ∈ P and any t ∈ N, where µj[t] =
∑

i∈N in
j
aij∇fi(x

τ
i [t]) and cϵ = 3ϵ−4ϵ2

(1−2ϵ)2
.

Moreover, in the following proposition we show that dτ [t] can be uniformly upper bounded

over time t if τ is large enough:

Proposition 6 Under the assumptions of Lemma 15, for any step size η > 0 and any given

input r > 0, there always exist a τ0 ∈ N such that dτ [t] ≤ r implies dτ [t + 1] ≤ r for any

t ∈ N, if τ ≥ τ0.

This proposition tells that, for any given r, as long as all nodes start from the same initial

value in the first iteration (i.e., t = 0), then dτ [t] ≤ r holds for any t ∈ N if τ ≥ τ0 holds.

Combining Lemma 15 with Proposition 6, we notice that for any iteration t and any node

j ∈ P , the variable (defined in line 11 of Algorithm 1) µ̂j[t] satisfies:

∥µ̂j[t] − µj[t]∥2 ≤ cϵ(κ + 2L1r). (5.10)

Now we are ready to analyze the performance of the RAGD algorithm. Recall the def-

inition x̄[t] = 1
p

∑
j∈P x0

j [t]. The following result shows that in the RAGD algorithm the

average of local estimates is approximately updated with a gradient descent step:

Proposition 7 Under the assumptions of Lemma 15, for any t ∈ N, η > 0, r > 0, assume

dτ [t] ≤ r holds for any τ ∈ N, then the following equation holds:

x̄[t + 1] − x̄[t] = −η

p
∇f(x̄[t]) +

η

p
l[t], (5.11)

for some l[t] satisfying ∥l[t]∥2 ≤ pcϵ(κ + 2L1r) + pL1r.

96

For simplicity, we define ξ = pcϵ(κ + 2L1r) + pL1r. Inequality (5.11) shows that, if we

compare the average at the iteration t + 1 and the average at iteration t, we determine that

the average x̄[t] is updated with a “polluted” gradient, which differs from the true gradient

∇f(x̄[t]) by a vector l[t] whose Euclidean norm is upper bounded by ξ, using step size η
p
. As

we will soon see, performing gradient descent on a strongly convex function (or a function

that satisfies the PL condition) using an approximate gradient makes the average estimate

x̄[t] converge to the optimizer x∗, up to some constant error.

We proceed by describing the performance guarantee of the RAGD algorithm, which is

also the main result of this chapter.

Theorem 12 Consider a set of nodes in a communication network satisfying Assumption

7, each equipped with a local function satisfying Assumption 9. Moreover, assume a subset

of nodes are subject to a data poisoning attack satisfying Assumption 8. Suppose all nodes in

the network run the RAGD algorithm with η = p
L
and parameter τ ≥ τ0 in Equation4 (7.43),

then the output of every node j ∈ P satisfies one of the two possibilities:

1. Let β =
√

1 − ν
L
. Assumption 10 implies the following inequality:

∥xτ
j [t] − x∗∥2 ≤ βk∥x0

j [0] − x∗∥2 +
ξ

(1 − β)L
+ r, (5.12)

2. Let β′ = 1 − µ
L

and S∗ be the set of minimizers of f . Assumption 11 implies the

following inequality:

D(xτ
j [t], S∗) ≤

√
L

µ
β′ t2D(x0

j [0], S∗) +
Lξ

µ
+ r. (5.13)

Remark 14 It can also be seen from Theorem 12 that the output xτ
j [t] at node j will converge

to the ball B(x∗, ξ
(1−β)L

+ r), if Assumption 10 holds. Moreover, if x0
j [0] is not in the ball

mentioned above, then the estimate xτ
j [t] will move towards the ball. From this discussion we

4Equation (7.43) can be found in the supplementary file.

97

also learn that for any t ∈ N, xτ
j [t] always lies in the ball B(x∗,max(∥x∗∥2, ξ

(1−β)L
+ r)) since

all x0
j [0] are assumed to be 0. The result in Theorem 12 implicitly assumes that the working

domain contains the ball mentioned above. A similar analysis also applies to the case when

Assumption 11 holds.

Remark 15 In either case, our RAGD algorithm guarantees that the distance between the

computed minimizer and the true global minimizer (in the absence of attacks) is bounded by a

constant error term. This differs some existing works [SG18,KXS20] in which the computed

minimizer is only guaranteed to lie in the smallest hyper-rectangle that contains all local

minimizers5. Moreover, our error term scales linearly with
√
n and ϵ when at most half of

nodes are under attack, which matches, or even outperforms its counter part in the distributed

case [DD21,GMK21,HKJ20]. We also note that in the absence of attacks, i.e., when ϵ = 0,

the RAGD algorithm degenerates to the well-known decentralized gradient descent algorithm.

Lastly, it is observed that the RAGD algorithm can be applied to solve the distributed resilient

federated learning problem, even when the adversary is Byzantine.

5.6 Numerical Results

In this section, we use a numerical example to illustrate our theoretical results. We consider

a decentralized binary classification problem using the MNIST handwritten digits data set.

In this task, a total of 20 nodes in a randomly generated communication network are asked

to classify digits in two classes corresponding to the digit 0 and the digit 1, using a logistic

regression function collectively trained by themselves.

In this test, we use 12000 samples from the MNIST data set, 6000 samples are pictures

of handwritten zero digits and the rest are pictures of handwritten one digits. The set of

samples is split into a training set of size 10000 and a testing set of size 2000. Moreover, the

5Some of these works assume the attack to be Byzantine.

98

training set is equally split into 20 subsets each of size 500, and each node in the network

has access to only one subset of samples.

We first generate a random doubly-stochastic square matrix of size 20 to represent the

communication graph. In this experiment, we perform an attack which changes all the gra-

dients from two nodes to a random vector generated using Gaussian distribution N (0, In)).

In the simulation we set r = 0.05 and choose the number of iterations of the inner loop τ0

to be 10. The step size is set to be 1 × 10−6.

0 50 100 150 200 250 300 350 400 450 500

Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es

tin
g

A
cc

ur
ac

y

No attack
Attack+RAGD
Attack

Figure 5.2: Testing accuracy over iterations of the RAGD algorithm for decentralized train-

ing a logistic regression function on MNIST data set in the presence of attacks changing

gradients.

Figure 2 shows a typical execution of the proposed algorithm in comparison with the

absence of attacks and the attack-only case. The yellow curve corresponds to the testing

accuracy over iterations when two nodes are subject to the attack mentioned above. In this

case, the testing accuracy is around 60%, whereas in the absence of attacks the classification

accuracy is above 98%. The red curve corresponds to the case when we implement our

RAGD algorithm to combat against the attacks. As we can see in Figure 2, the RAGD

algorithm significantly enhances the testing accuracy to more than 95%.

99

5.7 Conclusion

In this chapter, we proposed a resilient averaging gradient descent algorithm, which solves

the decentralized global optimization problem in the presence of data poisoning attacks. The

proposed algorithm enables all nodes to approximate the global optimizer, with an error that

scales linearly with
√
n where n is the dimension and the fraction ϵ of attacked nodes.

100

Algorithm 2: Robust Weighted Sum Estimation (RWSE)

Input: {(a1, X1), (a2, X2), . . . , (ap, Xp)}, ϵ;

Initialization: g := 1, temp := 0, w0 := 0, V := {X1, X2, . . . , Xp}, Ve := {}, ge := 0;

while g > 1 − ϵ do

compute the Euclidean distance between every pair of nodes and find out a pair

with the maximum distance. If there are multiple pairs, pick one of them

arbitrarily. Without loss of generality we assume that vectors Xi and Xh are

picked;

si :=
∑

z∈V (az∥Xi −Xz∥2);

sh :=
∑

z∈V (az∥Xh −Xz∥2);

if si > sh then

u := i;

else

u := h;

end

V := V \{Xu}, g := g − au, temp := u;

end

if atemp > ϵ then

Ve =: V ∪ {Xtemp}, ge := g + atemp;

else

Ve := V , ge := g;

end

Output: µ̂ := 1
ge

∑
i∈Ve

aiXi;

101

of iterations {i, h} u Case

All iterations {r, a} ∨ {a, a} a 1

At least 1 iteration {r, r} r 2

At least 1 iteration {r, a} r 3

Table 5.2: Illustration of the classification rule.

102

CHAPTER 6

Future Directions

In this chapter we conclude the dissertation by outlining some problems that represent my

ongoing research.

In this dissertation, we made an attempt to identify the attacked nodes in a CPS by

studying the messages sent by each nodes and having them compared against one another.

However, the algorithm we design is not able to remove attacked nodes. In plain words,

they simply enable attack-free nodes to filter out erroneous messages, or ”neglect” to them.

The attacked nodes and messaged still lie in the network and they are simply neglected.

However, it is not always the case that people want to live along with attacks in a system.

In many cases, people want to prevent attacks from coming into being, and, if there is really

attacked nodes, people want to remove them and replace them. For example, people in

industry tend to build firewalls and come up with data encryption/decryption algorithms to

keep the network safe. This motivates my current research, which is based on the following

beliefs:

1. No CPS is absolutely safe.

2. We can make a CPS safer with hybrid security measures.

As we see from the previous discussion, they way people in industry deal with attacks is

quite different from my approach presented in this dissertation. However, these two kinds

of safety measures are not mutually exclusive - we can build a firewall, or implement two-

factor authentication measure, and simultaneously double check each piece of information

103

we receive from neighboring nodes to make sure they make sense. How the combination

of these two safety measures restricts the strategy of the attacker and how to robustify a

system is part of my ongoing research.

To the best of my knowledge, not too many works have addressed this problem. A

most recent work [KP22] considers the state reconstruction problem in a centralized system

when data transmission can be partially checked using an authentication rule, and an earlier

work [KLS16] showed that by encrypting controller signals the power of the adversary will

be limited and thereby increase the robustness of networked systems.

This research area is rich and many questions can be asked. In the following context I’ll

list some questions that worth exploring:

1. How can a safety measure (like a 2-factor authentication) limit the capability of the

adversary? Instead of arbitrarily changing the measurements from attacked sensors,

which is a common assumption in the related literature, attackers must carefully design

how an attack could be launched without being spotted/stopped by safety measures.

2. Is stealthy attack still possible in a given CPS system with an alarm? If so, how much

damage can the adversary do before the alarm rings? Some systems are protected by

an alarm system, which rings when the value of a certain internal state exceeds a given

threshold. However, it seems different attack strategies will lead to different outcomes

regarding this internal state, which might be very sensitive to one kind of attack, but

may not even ring if another attack is launched.

3. How much redundancy can we save with shared information? As said, a vast literature

is devoted to identifying attacked nodes by comparing messages from that node and

other messages in the network. To do this, one needs to deploy more nodes than neces-

sary in order to do the job, where the information redundancy is used for checking if a

certain set of messages is reliable. However, with even a little bit of shared information,

some nodes will be able to know if a given node, paired with him, is attacked or not.

104

The tradeoff between the amount of shared information and the redundancy needed is

another interesting topic.

There are also other interesting ideas that worth a try:

4. How do we collaborate a network with attacked nodes and also with trusted nodes?

5. How to define the robustness of a graph subject to different kinds of cyber-attacks,

and, if we have the freedom of adding more nodes in the graph, how should we design

these nodes and where should we place them?

6. It is easily seen that any algorithm robust against attacks will be outperformed by its

counterpart (which only works in the attack-free case). A simple reason is the attack-

free case can be viewed as an attack-existing case when the number of attacked nodes

is zero. However, there lacks an understanding of the tradeoff between the performance

of the algorithm and the robustness of the algorithm. How to balance these two aspects

might be another interesting research topic.

105

CHAPTER 7

Appendix

The missing proofs in Chapters 4 and 5 are provided in this chapter.

7.1 Proofs for Chapter 4

7.1.1 Proof of Lemma 8

We first present the following three lemmas which will be used in the proof of Lemma 8.

Lemma 16 Consider a positive semi-definite matrix B = BT ∈ Rn×n and a matrix S ∈

Rn×m such that R(S) ∩ ker(B) = {0}. The matrix STBS is diagonalizable and positive

definite.

Proof. The matrix STBS being symmetric implies it is diagonalizable and positive semi-

definite since B is also positive semi-definite. Assume, for the sake of contradiction, that

it is not positive definite. Then, there exists x ̸= 0 ∈ Rn such that xTSTBSx = 0. Since

xTSTBSx = ∥
√
BSx∥22 we conclude that

√
BSx = 0, i.e., Sx ∈ ker(B) since any matrix B

and its square root
√
B have the same kernel, a contradiction with R(S)∩ker(B) = {0}.

Lemma 17 Consider a block square matrix H =

A B

C D

, where A,B,C,D ∈ Rr×r and

r ∈ N satisfy the following properties: (1) blocks A and D are upper-triangular and have

a1, a2, . . . , ar and d1, d2, . . . , dr as their diagonal entries respectively, and (2) blocks B and

106

C are diagonal and have b1, b2, . . . , br and c1, c2, . . . , cr as their diagonal entries respectively.

The matrix H is stable if every 2 × 2 matrix

ai bi

ci di

 is stable for i ranging from 1 to r.

Proof. We will only prove the special case when r = 2 since the rest of the proof follows by

an induction argument, which we omit for the sake of brevity.

We explicitly write out the matrix H:

H =

a1 a0 b1

a2 b2

c1 d1 d0

c2 d2

 ,

and compare with another matrix Ĥ:

Ĥ =

a1 b1 a0

c1 d1 d0

a2 b2

c2 d2

 .

We observe that Ĥ can be obtained from H by a similarity transformation: Ĥ = T−1HT ,

where

T = T−1 =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

In other words, matrices H and Ĥ share the same set of eigenvalues. Moreover, we obtain

that Ĥ is a block diagonal matrix with both of its diagonal blocks

a1 b1

c1 d1

 and

a2 b2

c2 d2

being stable. This shows Ĥ is a stable matrix, which finishes our proof.

Comment 1 Moreover, to simplify we write the dynamics x[t + 1] = Hx[t] as x+ = Hx

since t does not play a role in our analysis.

107

We consider the following linear system of order 4:
x1

x2

x3

x4

+

=

a1 a0 b1

a2 b2

c1 d1 d0

c2 d2

︸ ︷︷ ︸

H

x1

x2

x3

x4

 . (7.1)

To prove H is stable, it is sufficient to prove the system (7.1) is stable, under the assumption

that both matrices

a1 b1

c1 d1

 and

a2 b2

c2 d2

 are stable. We note that system (7.1) can be

decomposed into the following 2 sub-systems each of order 2:

x2

x4

+

=

a2 b2

c2 d2

x2

x4

 ,

x1

x3

+

=

a1 b1

c1 d1

x1

x3

+

a0x2

d2x4

 .

(7.2)

The first sub-system has x2 and x4 as its states. By the assumption that the matrix

a2 b2

c2 d2

is stable, this system is a stable system. Furthermore, the second sub-system with states

x1 and x3 is input-to-state stable if we treat the last term

a0x2

d2x4

 as the input, since by

assumption

a1 b1

c1 d1

 is also stable. Since the interconnection of an ISS system with an

asymptotically stable system results in an asymptotically stable system (see, e.g., [Son08]),

we conclude that H is a stable matrix.

Lemma 18 Consider a block matrix B of the form B =

A− I − 2k2
Iλ

2In −2kIkPλIn

kIλIn A

108

where A ∈ Rn×n and λ is a non-zero eigenvalue of L. There always exist kI , kP ∈ R such

that B is stable1 if A satisfies Assumption 6 in Section 4.2.

Proof. We first find the Jordan decomposition of A. Let J = T−1AT be the Jordan form

of A, J is an upper-triangular matrix with entries a1, a2, . . . , an on its diagonal. Instead of

matrix B, we focus on the following matrix which has the same eigenvalues as B:T−1

T−1

A− I − 2k2Iλ
2In −2kPkIλIn

kIλIn A

T
T

=

J − I − 2k2Pλ
2In −2kPkIλIn

kPλIn J

 .

Now we invoke Lemma (17) and obtain that B is stable if the matrix

R(a, λ) =

a− 1 − 2k2
Iλ

2 −2kPkIλ

kIλ a

is stable for any a ∈ {a1, a2, . . . , an} being an eigenvalue of A and any λ being a non-zero

eigenvalue of L. In the next step we compute the eigenvalues k1, k2 of matrix R(a, λ):

(a− 1− 2k2Iλ
2 − k)(a− k) + 2kPk

2
Iλ

2 = 0

⇒ k2 + (2k2Iλ
2 − 2a+ 1)k + (2kpk

2
Iλ

2 + a2 − a− 2ak2Iλ
2)

= 0.

The eigenvalues of the matrix R(a, λ) are given by:

2k1 = −2k2
Iλ

2 + 2a− 1 +
√

(2k2
Iλ

2 + 1)2 − 8kPk2
Iλ

2,

2k2 = −2k2
Iλ

2 + 2a− 1 −
√

(2k2
Iλ

2 + 1)2 − 8kPk2
Iλ

2.

Lastly, we provide a possible choice of λ and c such that for any aforementioned a and λ,

both eigenvalues k1 and k2 are stable. We pick kP = 1 and kI = 1√
2λmax(L)

, where we recall

that λmax(L) is the largest eigenvalue of L. This choice leads to:

k1 = a− 1, k2 = a− λ2

λ2
max(L)

.

1We recall that a matrix is stable if and only if the magnitude of all its eigenvalues is strictly less than 1.

109

By Assumption 6 both k1 and k2 are stable for any feasible choice of a and λ, which finishes

our proof.

Now we are ready to prove Lemma 8.

Proof of Lemma 8: To begin with, we reproduce Algorithm (4.8) for the sake of conve-

nience:

W 1
i [t + 1] = (Â− I)W 1

i [t] + 2kI
∑
j∈Ni

(ηj[t] − ηi[t])

+ ϕ1
i [t],

bi[t + 1] = Âbi[t] − kI
∑
j∈Ni

(W 1
j [t] −W 1

i [t]),

ηi[t] = kP bi[t] − kI
∑
j∈Ni

(W 1
j [t] −W 1

i [t]),

(7.3)

and rewrite it in the following compact form:

W 1[t + 1] = (Ip ⊗ Â− Inp)W
1[t] + ϕ1[t]

− 2kI(L ⊗ In)η[t],

b[t + 1] = (Ip ⊗ Â)b[t] + kI(L ⊗ In)W 1[t],

η[t] = kP b[t] + kI(L ⊗ In)W 1[t],

(7.4)

where W 1 =
[
(W 1

1)T (W 1
2)T . . . (W 1

p)T
]T

and ϕ1 =
[
(ϕ1

1)
T (ϕ1

2)
T . . . (ϕ1

p)
T

]T
are ob-

tained by concatenating estimates and weighted measurements from all nodes in the network,

b =
[
bT1 bT2 . . . bTp

]T
and η =

[
ηT1 ηT2 . . . ηTp

]T
are similarly defined.

We will take three steps to prove Lemma 8. In step 1, we decompose the stacked version

of the tracking algorithm (7.4) and show that, the sum of local estimates
∑p

i=1W
1
i and

the dissimilarity between local estimates at different nodes W 1
i −W 1

j (i ̸= j) can be studied

independently. This motivates our step 2 in which we show that the sum of local estimates∑p
i=1 W

1
i converges to the sum of local reference signals

∑p
i=1 ϕ

1
i . Lastly, in step 3, we argue

that local estimates at all nodes are identical if t is sufficiently large. Combining these three

steps we finish our proof.

110

Step 1: Decomposition. We first introduce the matrix R = 1√
p
1p and pick S ∈ Rn×(n−1)

such that the matrix
[
R S

]
∈ Rn×n is orthogonal. Then we left multiply

RT ⊗ In

ST ⊗ In

 on

both sides of all three equations in the set (7.4). The following set of equalities is obtained:

RT ⊗ In

ST ⊗ In

W 1[t + 1] =

RT ⊗ In

ST ⊗ In

 (Ip ⊗ Â− Inp)
[
R⊗ In S ⊗ In

]RT ⊗ In

ST ⊗ In

W 1[t]

− 2kI

RT ⊗ In

ST ⊗ In

 (L ⊗ In)
[
R⊗ In S ⊗ In

]RT ⊗ In

ST ⊗ In

 η[t]

+

RT ⊗ In

ST ⊗ In

ϕ1[t],

RT ⊗ In

ST ⊗ In

 b[t + 1] =

RT ⊗ In

ST ⊗ In

 (Ip ⊗ Â)
[
R⊗ In S ⊗ In

]RT ⊗ In

ST ⊗ In

 b[t]

+ kI

RT ⊗ In

ST ⊗ In

 (L ⊗ In)
[
R⊗ In S ⊗ In

]RT ⊗ In

ST ⊗ In

W 1[t],

RT ⊗ In

ST ⊗ In

 η[t] = kP

RT ⊗ In

ST ⊗ In

[R⊗ In S ⊗ In

]RT ⊗ In

ST ⊗ In

 b[t]

+ kI

RT ⊗ In

ST ⊗ In

 (L ⊗ In)
[
R⊗ In S ⊗ In

]RT ⊗ In

ST ⊗ In

W 1[t].

(7.5)

Exploiting the facts that L1p = 0 and L is a symmetric matrix, Equation (7.5) is sim-

plified to:

z1[t + 1] = (Â− In)z1[t] + φ1[t], (7.6)

111

and:

z2[t + 1] = (Ip−1 ⊗ Â− In(p−1))z1[t] + φ2[t]

− 2kI(L′ ⊗ In)η2[t],

b2[t + 1] = (Ip−1 ⊗ Â)b2[t] + kI(L′ ⊗ In)η2[t],

η2[t] = kP b2[t] − kI(L′ ⊗ In)z2[t],

(7.7)

where z1[t] = (RT ⊗ In)W 1[t], z2[t] = (ST ⊗ In)W 1[t], φ1[t] = (RT ⊗ In)ϕ1[t], φ2[t] =

(ST ⊗ In)ϕ1[t], b2[t] = (ST ⊗ In)b[t], η2[t] = (ST ⊗ In)ηt, and L′ = STLS. To proceed, we

invoke Lemma 16 here and observe that L′ is diagonalizable and positive definite. Moreover,

by construction of matrix S, L and L′ share the same set of non-zero eigenvalues.

Step 2: Track the Sum of Reference Signals. In this part we show that z1 (which

resembles the sum of estimates at all nodes) converges to φ1 (which resembles the sum of

reference signals).

We have the following set of equalities:

z1[t + 1] − φ1[t + 1]

(a)
= z1[t + 1] − (RT ⊗ In)ϕ1[t + 1]

(b)
= (Â− In)z1[t] + φ1[t] − (RT ⊗ In)ϕ1[t + 1]

= (Â− In)z1[t] + φ1[t] − (RT ⊗ In)(Ip ⊗ Â)ϕ1[t]

= (Â− In)z1[t] + φ1[t] − (RT ⊗ Â)ϕ1[t]

= (Â− In)z1[t] + φ1[t] − (1 ⊗ Â)(RT ⊗ In)ϕ1[t]

(c)
= (Â− In)z1[t] + φ1[t] − Âφ1[t]

= (Â− In)(z1[t] − φ1[t]), (7.8)

where in steps (a) and (c) we use the definition φ1 = (RT ⊗ In)ϕ1[t], and in step (b) we plug

in Equation (7.6).

To see why Â − In is a stable matrix, we consider any eigenvalue m + ni of Â − In, we

observe that m+ni+ 1 must be an eigenvalue of Â, which is also an eigenvalue of A since Â

112

and A share the same spectrum. By Assumption 6 we have m2 + n2 < 1, which shows that

Â− In is a stable matrix.

From Equation (7.8) and the fact that (Â− In) is a stable matrix we draw the following

conclusion:

Conclusion 1 For any solution z1[t] of (7.6), there exist 0 < α < 1 and β > 0 such that:

∥z1[t] − φ1[t]∥ < βαt.

Step 3: Reach Consensus. In this part we show that the local estimates W 1
i at all nodes

reach consensus. Practically, we prove that z2 = (ST ⊗ In)W 1 converges to 0 which serves

the same purpose.

Substituting η2 with kP b2−kI(L′⊗ In)z2 (i.e., the third equation in (7.7)), we obtain the

following dynamics:

z2[t + 1]

b2[t + 1]

 = B ·

z2[t]
b2[t]

+

φ2[t]

0

 , (7.9)

where B = Ip−1 ⊗ Â− In(p−1) − 2k2
I (L′2 ⊗ In) −2kIkP (L′ ⊗ In)

kI(L′ ⊗ In) Ip−1 ⊗ Â

 .

It is simple to see that, if B is stable, for any two solutions w and w′ of (7.9), we have

limt→∞(w[t]−w′[t]) = 0, since z = w−w′ satisfies z[t+ 1] = Bz[t]. In other words, if we can

prove: 1. there exists a function b̂2[t] : R → Rn(p−1) such that (0, b̂2) is a solution of (7.9),

and 2. the matrix B is Hurwitz, then the proposition is proved.

First we prove that (0, b̂2[t]) is the solution of (7.9) for some b̂2[t]. By substituting z2 = 0

into (7.9) we obtain: φ2[t] = 2kPkI(L′ ⊗ In)b̂2[t],

b̂2[t + 1] = (Ip−1 ⊗ Â)b̂2[t].
(7.10)

113

We make a guess that (ẑ2 = 0, b̂2[t] = 1
2kP kI

(L′−1⊗ In)φ2[t]) is a feasible solution of Equation

(7.9) since the first equation in (7.10) is naturally satisfied. To prove this is a solution of

(7.9), we show that if the second equality in (7.10) holds at time t, then it will also hold at

time t+ 1. Then a simple induction can be conducted and the proof could thus be obtained.

We check that:

b̂2[t + 1] =
1

2kPkI
(L′−1 ⊗ In)φ2[t + 1]

=
1

2kPkI
(L′−1 ⊗ In)(ST ⊗ In)ϕ1[t + 1]

=
1

2kPkI
(L′−1 ⊗ In)(ST ⊗ In)(Ip ⊗ Â)ϕ1[t]

=
1

2kPkI
(L′−1 ⊗ In)(Ip−1 ⊗ Â)(ST ⊗ In)ϕ1[t]

=
1

2kPkI
(L′−1 ⊗ In)(Ip−1 ⊗ Â)φ2[t]

=
1

2kPkI
(Ip−1 ⊗ Â)(L′−1 ⊗ In)φ2[t]

= (Ip−1 ⊗ Â)b̂2[t].

This concludes our proof that (ẑ2, b̂2) is a solution to (7.9).

To prove that matrix B can be made stable by properly choosing kP and kI , we recall

that L′ is positive definite, which implies L′ is diagonalizable. Assume P−1L′P is a diagonal

matrix, where P ∈ Rp−1, we consider the following similarity transformation of B:

B̃ =

P−1 ⊗ In 0

0 P−1 ⊗ In

B

P ⊗ In 0

0 P ⊗ In

 .

For the sake of brevity we do not write down matrix B̃ explicitly. However, we note that

B̃ and B have the same set of eigenvalues. We can also conclude, from the structure of the

matrix B̃, that B̃ is stable if all the following blocks:A− I − 2k2
Iλ

2In −2kIkPλIn

kIλIn A

 ,

114

are stable, where λ is an eigenvalue of L′. We invoke Lemma 18 and see that there exist a

choice of kI and kP such that for any λ being an eigenvalue of L′, the aforementioned matrix

is stable, which finishes our proof that B can be made Hurwitz.

The conclusion of step 3 is as follows:

Conclusion 2 For any solution (z2[t], b2[t]) of (7.7) we have:

∥z2[t]∥ < βαt,

for some 0 < α < 1 and β > 0.

Combining Conclusions 1 and 2 we obtain the proof of Lemma 8.

7.1.2 Proof of Lemma 9

Proof. The solution (x̂, Ê) to the optimization problem (4.9) satisfies the following set of

inequalities:

∥Wi − (D ⊗ In)(Ox̂ + Ê)∥2

≤ ∥Wi − (D ⊗ In)(Ox + E)∥2

≤ α,

which implies:

∥(D ⊗ In)(O(x̂− x) + (Ê − E))∥2 ≤ 2α. (7.11)

Moreover, let K1 be the index set of non-zero blocks in E, K2 be the index set of non-

zero blocks in Ê, and K = K1 ∪ K2. Note that |K| ≤ 2s. We pick L ∈ P2s such that2

ker(L) = span{ei, i ∈ K} and ∥L∥2 = 1. We observe that the following inequality holds:

∥((L⊗ In)(D ⊗ In)(O(x̂− x))∥2 ≤ 2α. (7.12)

2The definition of P2s can be found in the definition of sparse detectability with respect to a matrix in
Section 4.3, and the norm condition can be satisfied by a proper normalization.

115

By assumption (A,C) is 2s-sparse detectable with respect to D, it follows that the matrix

(L ⊗ In)(D ⊗ In)O has full column rank. In other words, we can pick β−1 = 1
2
σmin((L ⊗

In)(D ⊗ In)O) > 0 and then Equation (7.12) directly implies ∥x̂− x∥2 ≤ βα, which finishes

our proof.

7.2 Proofs for Chapter 5

7.2.1 Proof of Lemma 10

We first introduce the following two results which will be used in the proof of Lemma 10.

Lemma 19 ([CLS04]) Consider a schur stable3 matrix F ∈ Rr×r. There always exist

m ≥ 1 and 0 < ρ < 1 such that for any n ∈ N, the following bound holds:

∥F n∥2 ≤ mρn. (7.13)

Proof. We first perform a Jordan decomposition of the matrix F : F = T−1JT where T ∈

Rn×n is an invertible matrix and J is in block diagonal form, i.e., J = diag{J1, J2, . . . , Jl},

where each Ji is a Jordan block. To prove Lemma 4.1, it suffices to prove the existence of

mi ≥ 1 and 0 < ρi < 1 for each block Ji such that ∥Jn
i ∥2 ≤ miρ

n
i holds.

Let the eigenvalue corresponding to block Ji be λi, and furthermore assume Ji is of size

si × si. We explicitly write out Jn
i as:

Jn
i =

λn
i

(
n
1

)
λn−1
i

(
n
2

)
λn−2
i . . .

(
n

si−1

)
λn−si+1
i

0 λn
i

(
n
1

)
λn−1
i . . .

(
n

si−2

)
λn−si+2
i

...
...

.
...

0 0 . . . λn
i

(
n
1

)
λn−1
i

0 0 . . . 0 λn
i

, (7.14)

3A matrix is called schur stable if all of its eigenvalues lie strictly in the unit circle.

116

from which we have:

∥Jn
i ∥2 ≤

√
n∥Jn

i ∥1 =

si−1∑
j=0

(
n

j

)
|λi|n−j. (7.15)

For simplicity, we define Ui(n) =
∑si−1

j=0

(
n
j

)
|λi|n−j. We note that Ui(n) is a decaying sequence

of n when n is large enough, since:

Ui(n + 1)

Ui(n)
=

∑si−1
j=0

(
n+1
j

)
|λi|n+1−j∑si−1

j=0

(
n
j

)
|λi|n−j

(7.16)

=

∑si−1
j=0

(n+1)!
j!(n+1−j)!

|λi|n+1−j∑si−1
j=0

n!
j!(n−j)!

|λi|n−j
(7.17)

≤ |λi| max
j∈{0,1,...,si−1}

(n+1)!
j!(n+1−j)!

n!
j!(n−j)!

(7.18)

= |λi| max
j∈{0,1,...,si−1}

n + 1

n + 1 − j
(7.19)

= |λi| ·
n + 1

n + 2 − si
. (7.20)

By assumption F is a schur stable matrix, its eigenvalue λi satisfies |λi| < 1, which shows

there exists N0 ∈ N such that for any n ≥ N0,
Ui(n+1)
Ui(n)

< 1. By picking mi = max{1, Ui(N0)}

and ρi = |λi| · N0+1
N0+2−si

we finish the proof.

Lemma 20 The doubly-stochastic adjacency matrix A ∈ Rp×p associated with a connected

graph has exactly one eigenvalue with value 1 and corresponding eigenvector 1p. Any other

eigenvalue of A lies strictly inside the unit circle.

Proof. Lemma 20 is a standard result. For the sake of completeness we provide a sketch of

its proof.

The proof is based on the definition and known facts about the degree matrix D and the

Laplacian matrix L corresponding to a graph G = {V , E ,A}. The degree matrix D ∈ Rp×p

of the graph G is a diagonal matrix with its i-th diagonal element defined by dii =
∑p

j=1 aij.

The Laplacian matrix L of the graph G is defined by L = D − A. It is well-known in

117

the literature that if the graph is connected, by spectral theory, 0 is an eigenvalue of L of

algebraic multiplicity 1 and its corresponding eigenvalue is 1p.

It is also well-known that the magnitude of any eigenvalue of a doubly-stochastic matrix

A is less or equal to 1. Moreover, since L = D − A has an eigenvalue 0 with algebraic

multiplicity 1, and D is the identity matrix since A is doubly-stochastic, it is trivially seen

that the algebraic multiplicity of eigenvalue 1 of A is 1.

With Lemma 19 and Lemma 20 we provide the proof of Lemma 10 in the main file.

Proof of Lemma 10.([KVC19]) We define xk[t] =
[
(xk

1[t])T , (xk
2[t])T , . . . , (xk

p[t])T
]T

for any

k = 0, 1, . . . , τ and t ∈ N. This definition allows us to write the mathematical representation

of the linear iterative algorithm as the following:

xk+1[t] = (AT ⊗ In)xk[t]. (7.21)

To proceed, we find an orthogonal matrix
[
R S

]
∈ Rp×p where R = 1√

p
1p and define the

following change of coordinates: zk1 [t] = (RT ⊗ In)xk[t] which is the sum of local values, and

zk2 [t] = (ST ⊗ In)xk[t]. To understand the implication of the vector zk2 [t], we note that zk2 [t]

can be equally divided into p − 1 blocks each of size n and each of which can be explained

as a linear combination of vectors in the set {xk
i [t], i ∈ P}, i.e., there exists a set of weights

{w1, w2, . . . , wp} such that each block in zk2 [t] can be written as
∑

i∈P wix
k
i [t]. Moreover,

by construction of the matrix S, we have
∑

i∈P wi = 0. This observation shows that by

properly combining terms with positive and negative coefficients, each block in zk2 [t] can

be alternatively expressed by a weighted sum of vectors in the set {xk
i [t] − xk

j [t], i, j ∈ P}

where any weight w′
ij is non-negative. This argument shows that zk2 [t] is closely related to

the difference among local values from different nodes. We also point out the following two

properties regarding the weight values wi and w′
ij, which will very soon be used in this proof:

• Fact 1:
∑

i∈P,wi>0wi ≤
√

p
2
, which is obtained by combining facts

∑
i∈P wi = 0 and∑

i∈P w2
i = 1 with the Cauchy-schwardz inequality,

118

• Fact 2:
∑

i,j∈P w′
ij =

∑
i∈P,wi>0wi ≤

√
p
2
.

With the understanding of the change of coordinates, we obtain the following set of

equalities stating from (7.21):

xk+1[t] = (AT ⊗ In)xk[t]

(a)⇒ (

RT

ST

⊗ In)xk+1[t] = (

RT

ST

⊗ In)(AT ⊗ In)xk[t]

(b)⇒ (

RT

ST

⊗ In)xk+1[t] = (

RT

ST

⊗ In)(AT ⊗ In)(
[
R S

]
⊗ In)(

RT

ST

⊗ In)xk[t]

⇒ (

RT

ST

⊗ In)xk+1[t] = (

RTATR RTATS

STATR STATS

⊗ In)(

RT

ST

⊗ In)xk[t]

(c)⇒ (

RT

ST

⊗ In)xk+1[t] = (

RTR RTS

STR STATS

⊗ In)(

RT

ST

⊗ In)xk[t]

(d)⇒ (

RT

ST

⊗ In)xk+1[t] = (

1 0

0 STATS

⊗ In)(

RT

ST

⊗ In)xk[t],

where in step (a) we left multiply a matrix (

RT

ST

⊗In) on both sides of the equation and in

step (b) we use the fact that
[
R S

]
is an orthogonal matrix. Moreover, step (c) is true since

by Assumption 7 the adjacency matrix of the communication graph A is doubly-stochastic,

and so is its transpose AT , which implies ATR = R as well as RTAT = RT . Lastly, in step

(d) we again invoke the orthogonality of the matrix
[
R S

]
and the definition of the vector

R. From these set of equalities we observe that Equation (7.21) can be decoupled into:zk+1
1 [t] = zk1 [t],

zk+1
2 [t] = (A′ ⊗ In)zk2 [t],

(7.22)

where A′ is defined as A′ = STATS. We note that Equation (7.22) can be easily generated

119

to: zτ1 [t] = z01 [t],

zτ2 [t] = (A′ ⊗ In)z02 [t],
(7.23)

Recall the definition zk1 [t] = (RT ⊗ In)xk[t] = 1√
p

∑
i∈P x0

i [t] =
√
px̄[t], the first property is

obtained.

To prove the second property, we note that xk
i [t]−xk

j [t] = (Bij⊗In)xk[t] where Bij ∈ R1×p

is a sparse row vector with zeros almost everywhere except its i-th entry being 1 and its j-th

entry being −1. This definition allows the following chain of equations:

xk
i [t]−xk

j [t] = (Bij ⊗ In)xk[t] = (Bij ⊗ In)(S⊗ In)(ST ⊗ In)xk[t] = ((BijS)⊗ In)zk2 [t], (7.24)

where the second step holds since Bij is perpendicular to the left kernel of S. Moreover, we

note that the following matrix:RT

ST

A
[
R S

]
=

1 0

0 STAS

has exactly the same set of eigenvalues as matrix A by construction of

[
R S

]
. Since A

has only one eigenvalue 1 and the rest of its eigenvalues lie strictly in the unit circle, we

conclude that all eigenvalues of (A′ ⊗ In) strictly lie in the unit circle. Combining these two

observations we obtain the following set of inequalities:

dτ [t] = max
i,j∈P

∥xτ
i [t] − xτ

j [t]∥2
(a)
= max

i,j∈P
∥((BijS) ⊗ In)zk2 [t]∥2

(b)

≤ max
i,j∈P

∥((BijS) ⊗ In)∥2 · ∥(A′ ⊗ In)τz02 [t]∥2

≤
√

2σM(S)∥A′ ⊗ In∥m2 · ∥z02 [t]∥2
(c)

≤
√

2σM(S)mρτ∥z02 [t]∥2
(d)

≤
√

2σM(S)ρτ
√

p− 1

√
p

2
max
i,j∈P

∥x0
i [t] − x0

j [t]∥2

< pσM(S)︸ ︷︷ ︸
a

ρτd0[t], (7.25)

120

where in step (a) and step (b) we plug in Equations (7.24) and (7.23), respectively. In step

(c) we invoke Lemma 19 since A′ is proved to be a schur stable matrix.

To see why step (d) holds, we recall that the vector z02 [t] can be equally divided into

p− 1 blocks each of size n. Moreover, echoing our discussion beneath the definition of zk2 [t],

each block in z02 [t] can be expressed by a non-negative weighted sum of vectors in the set

{x0
i [t] − x0

j [t], i, j ∈ P}, with the non-negative weight values {w′
ij, i, j ∈ P} sum up to at

most
√

p
2
. This observation leads to the following argument:∥∥∥∥∥∑

i,j∈P

w′
ij(x

0
i [t] − x0

j [t])

∥∥∥∥∥
2

≤
∑
i,j∈P

w′
ij∥x0

i [t] − x0
j [t]∥2

≤
∑
i,j∈P

w′
ij max

i,j∈P
∥x0

i [t] − x0
j [t]∥2

≤
√

p

2
max
i,j∈P

∥x0
i [t] − x0

j [t]∥2, (7.26)

which justifies our step (d) in which we claimed:

∥∥z02 [t]
∥∥
2
≤
√

p− 1

√
p

2
max
i,j∈P

∥x0
i [t] − x0

j [t]∥2. (7.27)

By choosing a to be a = pσM(S) we finish the proof.

7.2.2 Proof of Lemma 11

Proof. We prove the lemma by taking two steps. We first compare µ̂ = 1
ge

∑
i∈Ve

aiXi with

µ̂g = 1
ge

∑
i∈Ve

ai∇fi. This is understood as follows: there might be some attacked vectors

left in the set of vectors {Xi ∈ Rn|i ∈ Ve}, this is because these attacked vectors are so close

to good vectors that the filter is unable to filter them out. For the same reason they do not

pollute the estimate significantly. We first show if we restore the value of these vectors (i.e.,

replace Xi with ∇fi for i ∈ Ve ∩ Sb), the mean estimate does not change too much.

We have ∥Xi − ∇fi∥2 ≤ 2κ for any i ∈ Ve ∩ Sb. To see why this holds, we arbitrarily

121

choose an h ∈ Ve ∩ Sg, and we have ∥Xi − Xh∥2 ≤ κ as well as ∥∇fi − ∇fh∥2 ≤ κ. Since

Xh = ∇fh, we get the result by adding them up.

Therefore, we have:

∥µ̂− µ̂g∥2 ≤
∑

i∈Ve∩Sb
(ai∥Xi −∇fi∥2)

ge
≤ 2ϵ

1 − 2ϵ
κ. (7.28)

Moreover, we observe that µ̂g is close to the desired value µg due to the following two

reasons. (1) µ̂g is the average of the majority of good vectors while µg is the average of all

good vectors, and (2) by Assumption 9 any two good vectors do not differ too much. We

note first that if either Case 1 or Case 2 holds, then for any i ∈ S we have the following set

of inequalities:

∥∇fi − µ̂g∥2 ≤
∑

j∈Ve
(aj∥∇fi −∇fj∥2)

ge
≤ κ. (7.29)

With these inequalities we can upper bound the distance between µ̂g and µg, in the following

way:

∥µg − µ̂g∥2 =

∥∥∥∥∥∑
i∈S

ai∇fi − µ̂g

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i∈Ve

ai∇fi +
∑

i∈S\Ve

ai∇fi − (geµ̂g + (1 − ge)µ̂g)

∥∥∥∥∥∥
2

(a)
=

∥∥∥∥∥∥
∑
i∈Ve

ai∇fi +
∑

i∈S\Ve

ai∇fi − (
∑
i∈Ve

ai∇fi +
∑

i∈S\Ve

aiµ̂g)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i∈S\Ve

ai∇fi −
∑

i∈S\Ve

aiµ̂g

∥∥∥∥∥∥
2

≤
∑

i∈S\Ve

(ai∥∇fi − µ̂g∥2)

(b)

≤ 2ϵκ, (7.30)

where in step (a) we use the equalities µ̂g = 1
ge

∑
i∈Ve

ai∇fi and
∑

i∈S\Ve
ai = 1 − ge, and in

step (b) we use Equation (7.29). Summing up Equations (7.28) and (7.30):

∥µ̂− µg∥2 ≤ ∥µ̂− µ̂g∥2 + ∥µ̂g − µg∥2 ≤ 2ϵκ +
2ϵκ

1 − 2ϵ
=

(
2 +

2

1 − 2ϵ

)
ϵκ, (7.31)

122

we obtain the proof of the lemma.

7.2.3 Proof of Lemma 12

Proof. We consider the first time when an attacked vector Xi and a good vector Xh are

picked since they have the maximum distance, and Xh is going to be removed at the end of

this iteration. Note that at this point (before Xh is removed), the following inequality holds

since all the removed vectors are attacked:∑
z∈V ∩Sg

az ≥ 1 − ϵ.

We prove that, if it is the case, then there always exist an l ∈ V ∩Sg such that ∥Xi−Xl∥2 ≤
1

1−2ϵ
κ.

Before proving the claim, we first see what it implies. If ∥Xi −Xl∥2 ≤ 1
1−2ϵ

κ holds, and

by Assumption 9 the following holds: ∥∇fh − ∇fl∥2 = ∥Xh − Xl∥2 ≤ κ since we assumed

that h, l ∈ Sg, from which we conclude that:

∥Xi −Xh∥2 ≤ ∥Xi −Xl∥2 + ∥Xh −Xl∥2 ≤
(

1 +
1

1 − 2ϵ

)
κ. (7.32)

On the other hand, we note that for any q ∈ Ve ∩ Sb, we have:

∥Xq −Xh∥2 ≤ ∥Xi −Xh∥2 ≤
(

1 +
1

1 − 2ϵ

)
κ, (7.33)

since otherwise Algorithm 2 would not have picked the pair Xi and Xh. Again, we invoke

Assumption 9 and obtain that ∥Xh−∇fq∥2 = ∥∇fh−∇fq∥2 ≤ κ. Summing these inequalities

up we have:

∥Xq −∇fq∥2 ≤ ∥Xq −Xh∥2 + ∥Xh −∇fq∥2 ≤
(

2 +
1

1 − 2ϵ

)
κ, (7.34)

which is exactly the claim in the lemma.

Now we prove the claim by its contrapositive. Let Xf be the closest vector in V ∩Sg to Xi

in the Euclidean sense. For the sake of contradiction, assume the distance between Xi and

Xf is strictly larger than d, where d ≥ 1
1−2ϵ

κ. We consider the following set of inequalities:

123

∑
z∈V

az(∥Xi −Xz∥2 − ∥Xh −Xz∥2)

=
∑

z∈V ∩Sg

az(∥Xi −Xz∥2 − ∥Xh −Xz∥2) +
∑

z∈V ∩Sb

az(∥Xi −Xz∥2 − ∥Xh −Xz∥2)

≥
∑

z∈V ∩Sg

az(∥Xi −Xz∥2 − ∥Xh −Xz∥2) +

(∑
z∈V ∩Sb

az

)
(−∥Xi −Xh∥2)

(a)

≥
∑

z∈V ∩Sg

az(∥Xi −Xf∥2 − ∥Xh −Xz∥2) +

(∑
z∈V ∩Sb

az

)
(−∥Xi −Xf∥2 − ∥Xf −Xj∥2)

=

 ∑
z∈V ∩Sg

az −
∑

z∈V ∩Sb

az

 ∥Xi −Xf∥2 −
∑

z∈V ∩Sg

az∥Xh −Xz∥2 −
∑

z∈V ∩Sb

az∥Xf −Xj∥2

(b)
>

 ∑
z∈V ∩Sg

az −
∑

z∈V ∩Sb

az

 d−
∑

z∈V ∩Sg

azκ−
∑

z∈V ∩Sb

azκ

≥ (1 − 2ϵ)d− κ
(c)

≥ 0, (7.35)

where in step (a) we use the fact that Xf is the closest attack-free vector in V to Xi, and in

step (b) we directly replace with ∥Xi −Xf∥2 with d, and the inequality sign holds because∑
z∈V ∩Sg

az −
∑

z∈V ∩Sb
az > 0, i.e., the weight sum of attack-free vectors is higher than the

weight sum of attacked vectors. The last step (c) comes from the assumption that d ≥ 1
1−2ϵ

κ.

From this set of inequalities we reach a contradiction since by assumption the good vector

Xj was removed whereas Xh should have been removed.

7.2.4 Proof of Lemma 13

Proof. Given Lemma 12, the proof of Lemma 13 is similar to the proof of 11. In particular,

we have:

∥µ̂− µ̂g∥2 ≤
∑

i∈Ve∩Sb
(ai∥Xi −∇fi∥2)

ge
≤

ϵ(2 + 1
1−2ϵ

) · κ
1 − 2ϵ

=
3 − 4ϵ

(1 − 2ϵ)2
ϵκ,

124

where in the second step we invoke Lemma 5.4. Moreover, the following inequality also

holds:

∥µ̂g − µg∥2 ≤ 2ϵκ.

Summing up these two sets of inequalities we have:

∥µ̂− µg∥2 ≤
(

2 +
3 − 4ϵ

(1 − 2ϵ)2

)
ϵκ.

7.2.5 Proof of Lemma 15

Proof. We only prove the first claim. The second claim is a natural consequence the first

claim and Lemma 5.6.

To prove the first claim, we note that:

∥xτ
i [t] − x̄[t]∥2 ≤

∥∥∥∥∥xτ
i [t] − 1

p

∑
j∈P

xτ
j [t]

∥∥∥∥∥
2

≤ 1

p

∑
j∈P

∥xτ
i [t] − xτ

j [t]∥2 ≤ dτ [t]. (7.36)

The rest of the proof comes from the following direct computation:

∥∇fi(x
τ
i [t]) −∇fj(x

τ
j [t])∥2

≤ ∥∇fi(x
τ
i [t]) −∇fi(x̄[t])∥2 + ∥∇fi(x̄[t]) −∇fj(x̄[t])∥2 + ∥∇fj(x

τ
j [t]) −∇fj(x̄[t])∥2

(a)

≤ L1∥xτ
i [t] − x̄[t]∥2 + κ + L1∥xτ

j [t] − x̄[t]∥2
(b)

≤ 2L1d
τ [t] + κ,

where in step (a) we use Assumption 10 (or Assumption 11) and in step (b) we plug in

Equation (7.36).

7.2.6 Proof of Proposition 6

Proof. We consider an arbitrary pair of nodes i, j ∈ P . By Lemma 15 the following two

bounds hold:

∥µ̂i[t] − µi[t]∥2 ≤ (κ + 2L1d
τ [t])cϵ ≤ (κ + 2L1r)cϵ, (7.37)

125

∥µ̂j[t] − µj[t]∥2 ≤ (κ + 2L1d
τ [t])cϵ ≤ (κ + 2L1r)cϵ. (7.38)

In the proof of Lemma 15 we obtain that ∥∇fi(x
τ
i [t]) −∇fj(xjτ [t])∥2 ≤ κ + 2L1r holds for

any pair of nodes i, j ∈ P . This implies:

∥µi[t] − µj[t]∥2 ≤ κ + 2L1r, (7.39)

since both µi[t] and µj[t] are weighted sums of local gradients. Combining all these facts, we

have the following set of inequalities:

∥x0
i [t + 1] − x0

j [t + 1]∥2

= ∥(xτ
i [t] − ηµ̂i[t]) − (xτ

j [t] − ηµ̂j[t])∥2

≤ ∥xτ
i [t] − xτ

j [t]∥2 + η∥µ̂i[t] − µ̂j[t]∥2

≤ dτ [t] + η∥(µ̂i[t] − µi[t]) − (µ̂j[t] − µj[t]) + (µi[t] − µj[t])∥2

≤ r + η∥µ̂i[t] − µi[t]∥2 + η∥µ̂j[t] − µj[t]∥2 + η∥µj[t] − µj[t]∥2

≤ r + η(κ + 2L1r)(1 + 2cϵ). (7.40)

Since nodes i and j are picked arbitrarily, inequality (7.40) equivalently implies:

d0[t + 1] ≤ r + η(κ + 2L1r)(1 + 2cϵ). (7.41)

Equation (7.41) suggests that after the execution of lines 9-12 in each iteration of the RAGD

algorithm, the distance among the local parameters of a pair of nodes may increase, but will

not increase dramatically, i.e., the distance is upper bounded by (κ+2L1r)(1+2cϵ). In order

to make dτ [t + 1] ≤ r, we should mitigate the increase of distance by executing the inner

loop for sufficiently many iterations. This is made possible by Lemma 4.1 which shows the

existence of an a > 0 and a ρ ∈ (0, 1) such that dτ [t] ≤ aρτd0[t]. This provides a lower bound

of τ0 via the following analysis:

dτ [t + 1] ≤ aρτd0[t + 1] ≤ aρτ (r + η(κ + 2L1r)(1 + 2cϵ)). (7.42)

In order for dτ [t + 1] ≤ r, it suffices to pick τ0 to satisfy:

τ0 ≥ log 1
ρ

a(r + η(κ + 2L1r)(1 + 2cϵ))

r
. (7.43)

126

7.2.7 Proof of Proposition 7

Proof. By the RAGD algorithm, each node j updates its local parameter according to:

x0
j [t + 1] = xτ

j [t] − ηµ̂j[t], (7.44)

and then executes the linear iterative algorithm to reach consensus in the next iteration. Note

that x̄[t] = 1
p

∑
j∈P xτ

j [t] which was argued in Lemma 10. We have the following equalities:

x̄[t + 1] − x̄[t] =
1

p

∑
j∈P

(x0
j [t + 1] − xτ

j [t]) = −η

p

∑
j∈P

µ̂j[t]. (7.45)

Recall the definition of µj[t] in Lemma 15: µj[t] =
∑

i∈N in
j
aij∇fi(x

τ [t]), which is the

weighted sum of gradients node j should receive in the absence of attacks. Summing the

difference between µj and µ̂j over all nodes j ∈ P in the network, we obtain:∑
j∈P

µ̂j[t] −
∑
j∈P

µj[t]

=
∑
j∈P

µ̂j[t] −
∑
j∈P

∑
i∈N in

j

aij∇fi(x
τ
i [t])

=
∑
j∈P

µ̂j[t] −
∑
i∈P

∇fi(x
τ
i [t])

=
∑
j∈P

µ̂j[t] −∇f(x̄[t]) −
∑
i∈P

(∇fi(x
τ
i [t]) −∇fi(x̄[t]))

= −p

η
(x̄[t + 1] − x̄[t]) −∇f(x̄[t]) −

∑
i∈P

(∇fi(x
τ
i [t]) −∇fi(x̄[t])), (7.46)

where in the last step we used Equation (7.45). On the other hand, we have:∥∥∥∥∥∑
j∈P

µ̂j[t] −
∑
j∈P

µj[t]

∥∥∥∥∥
2

≤
∑
j∈P

∥µ̂j[t] − µj[t]∥2 ≤ pcϵ(κ + 2L1r), (7.47)

from the triangular inequality as well as Equation (5.10). Meanwhile, it also holds that for

any j ∈ P :

∥xτ
j [t] − x̄[t]∥2 = ∥xτ

j [t] − 1

p

∑
i∈P

xτ
i [t]∥2 ≤

1

p

∑
i∈P

∥xτ
j [t] − xτ

i [t]∥2 ≤ r, (7.48)

127

which, using Assumption 10 (or Assumption 11), yields:∥∥∥∥∥∑
i∈P

(∇fi(x
τ
i [t]) −∇fi(x̄[t]))

∥∥∥∥∥
2

≤ pL1r. (7.49)

The inequalities (7.46), (7.47), and (7.49) together imply:∥∥∥∥x̄[t + 1] − x̄[t] +
η

p
∇f(x̄[t])

∥∥∥∥
2

≤ ηcϵ(κ + 2L1r) + ηL1r, (7.50)

which directly implies the claim in the proposition.

7.2.8 Proof of Theorem 12

We prove the following lemmas which state that instead of performing accurate gradient

descent, if we only have access to a gradient which is distance-bounded from the true one

by at most a constant (which we call a roughly correct gradient), the minimal point of a

strongly-convex function can be obtained up to some error. These results directly lead to

Theorem 12.

Lemma 21 Suppose function f : Rn → R satisfies Assumption 10. For any x[t] ∈ Rn

updated according to:

x[t + 1] = x[t] − 1

L
(∇f(x[t]) − l[t]), (7.51)

where ∥l[t]∥2 ≤ ξ for any t ∈ N, the following inequality holds for any t ∈ N and β =
√

1 − ν
L
:

∥x[t] − x∗∥2 ≤ βt∥x[0] − x∗∥2 +
ξ

(1 − β)L
. (7.52)

Proof. By Assumption 10, the function f is both ν-strongly convex and L-smooth. This

implies for any pair x, y ∈ Rn, the following two inequalities hold:

f(y) − f(x) ≤ ∇fT (x)(y − x) +
L

2
∥y − x∥22, (7.53)

f(x) − f(y) ≥ ∇fT (y)(x− y) +
ν

2
∥y − x∥22. (7.54)

128

A simple reorganization of Equation (7.54) yields:

f(y) − f(x) ≤ ∇fT (y)(y − x) − ν

2
∥y − x∥22. (7.55)

We consider the following set of equalities and inequalities for any x, y ∈ Rn and x+ =

x− 1
L
∇f(x), which will be used later.

f(x+) − f(y) = f(x+) − f(x) + f(x) − f(y)

≤ ∇fT (x)(x+ − x) +
L

2
∥x+ − x∥22 + ∇fT (x)(x− y) − ν

2
∥x− y∥22

= ∇fT (x)(x+ − y) +
1

2L
∥∇f(x)∥22 −

ν

2
∥x− y∥22

= ∇fT (x)(x− 1

L
∇f(x) − y) +

1

2L
∥∇f(x)∥22 −

ν

2
∥x− y∥22

= ∇f(x)T (x− y) − 1

2L
∥∇f(x)∥22 −

ν

2
∥x− y∥22.

In particular, when y = x∗, we have:

0 ≤ f(x+) − f(x∗) ≤ ∇fT (x)(x− x∗) − 1

2L
∥∇f(x)∥22 −

ν

2
∥x− x∗∥22. (7.56)

In the following we prove the result stated in the lemma.

∥x[t + 1] − x∗∥2

= ∥x[t] − x∗ − 1

L
(∇f(x[t]) − l[t])∥2

≤ ∥x[t] − x∗ − 1

L
∇f(x[t])∥2 +

1

L
∥l[t]∥2

≤ ∥x[t] − x∗ − 1

L
∇f(x[t])∥2 +

ξ

L

=

√
∥x[t] − x∗∥22 +

1

L2
∥∇f(x[t])∥22 −

2

L
∇fT (x[t])(x[t] − x∗) +

ξ

L
(a)

≤
√

(1 − ν

L
)∥x[t] − x∗∥22+ +

ξ

L

(b)
= β∥x[t] − x∗∥2 +

ξ

L
, (7.57)

where in step (a) we plug in Equation (7.56) with x = x[t] and in step (b) we use the

definition β =
√

1 − ν
L

. We note that β ∈ (0, 1). Solving Equation (7.57) recursively gives:

∥x[t] − x∗∥2 ≤ βt∥x[0] − x∗∥2 +
ξ

(1 − β)L
. (7.58)

129

Lemma 21 will be used in the proof of the first claim in Theorem 12. A similar result

when the global function f satisfies the PL inequality instead of the convexity condition will

also be provided in the following lemma.

Lemma 22 Suppose a function f : Rn → R satisfies Assumption 11. For any x[t] ∈ R

updated according to:

x[t + 1] = x[t] − 1

L
∇f(x[t]) + l[t], (7.59)

where ∥l[t]∥2 ≤ ξ for any t ∈ N. Let β′ = 1 − µ
L
∈ (0, 1), the following inequality holds for

any t ∈ N and:

f(x[t]) − f(x∗) ≤ β′t(f(x[0]) − f(x∗)) +
Lξ2

2(1 − β′)
, (7.60)

where f(x∗) is the minimum of the function f .

Proof. By L-smoothness of function f , we have the following inequality:

f(x[t + 1]) ≤ f(x[t]) + ∇fT (x[t])(x[t + 1] − x[t]) +
L

2
∥x[t + 1] − x[t]∥22. (7.61)

Combining with the update rule (7.59) yields:

f(x[t + 1]) − f(x[t]) ≤ ∇fT (x[t])(− 1

L
∇f(x[t]) + l[t]) +

L

2

∥∥∥∥− 1

L
∇f(x[t]) + l[t]

∥∥∥∥2
2

⇒ f(x[t + 1]) − f(x[t]) ≤ − 1

2L
∇fT (x[t])∇f(x[t]) +

L

2
lT [t]l[t]

⇒ f(x[t + 1]) − f(x[t]) ≤ − 1

2L
∥∇f(x[t])∥22 +

L

2
ξ2

(a)⇒ f(x[t + 1]) − f(x[t]) ≤ −µ

L
(f(x[t]) − f(x∗)) +

L

2
ξ2

⇒ (f(x[t + 1]) − f(x∗)) − (f(x[t]) − f(x∗)) ≤ −µ

L
(f(x[t]) − f(x∗)) +

L

2
ξ2

⇒ (f(x[t + 1]) − f(x∗)) ≤ (1 − µ

L
)(f(x[t]) − f(x∗)) +

L

2
ξ2

⇒ (f(x[t + 1]) − f(x∗)) ≤ β(f(x[t]) − f(x∗)) +
L

2
ξ2 (7.62)

130

Similarly, by solving Equation (7.62) recursively we obtain:

f(x[t]) − f(x∗) ≤ (β′)t(f(x[0]) − f(x∗)) +
Lξ2

2(1 − β′)
. (7.63)

Before giving our proof of Theorem 12, we need to state the following lemma, which will

be used in the proof.

Lemma 23 ([KNS16]) Let a function f : Rn → R satisfy the PL inequality with parame-

ter µ. For any x ∈ Rn, there always exist a minimizer x∗ of f such that:

f(x) − f(x∗) ≥ µ

2
∥x− x∗∥22. (7.64)

Proof. The proof can be found in [KNS16].

The most important implication of Lemma 23 is that if a function f : Rn → R satisfies

the PL inequality with parameter µ, then the following bound:

µ

2
D2(x, S∗) ≤ f(x) − f(x∗), (7.65)

holds, where S∗ is the set of minimizers of f . This bound will be used in the proof of the

main theorem.

Proof of Theorem 12. First let Assumption 10 hold. From Lemma 21, Equation (7.48),

and Equation (5.11) in the main file, we observe that:

∥xτ
j [t] − x∗∥2

≤ ∥xτ
j [t] − x̄[t]∥2 + ∥x̄[t] − x∗∥2

≤ βk∥x̄[0] − x∗∥2 +
ξ

(1 − β)L
+ r

= βk∥xτ
j [0] − x∗∥2 +

ξ

(1 − β)L
+ r. (7.66)

131

Similarly, the following inequality can also be obtained from Lemma 22 and Equation

(5.11) in the main file. Let Assumption 11 holds, for any x∗ ∈ S∗, we have:

f(x̄[t]) − f(x∗) ≤ (β′)t(f(x̄[0]) − f(x∗)) +
Lξ2

2(1 − β′)
. (7.67)

Combining Equation (7.67) with Equation (7.65), we obtain the following set of inequalities:

D(x̄[t], S∗) ≤

√
2

µ
(β′)t(f(x̄[0]) − f(x∗)) +

Lξ2

µ(1 − β′)

≤
√

2

µ
(β′)t(f(x̄[0]) − f(x∗)) +

√
Lξ2

µ(1 − β′)

≤

√
L

µ
(β′)tD2(x̄[0], S∗) +

√
Lξ2

µ(1 − β′)

=

√
L

µ

(√
β′
)t

D(x̄[0], S∗) +

√
Lξ2

µ(1 − β′)
. (7.68)

where in the third step we used L-smoothness of function f . In the end, we plug in inequality

(7.48) into (7.68) and obtain the following inequality:

D(x̄τ
j [t], S∗) ≤

√
L

µ

(√
β′
)t

D(x0
j [0], S∗) +

√
Lξ2

µ(1 − β′)
+ r, (7.69)

Plugging in the definition β′ = 1 − µ
L

into Equation (7.69) gives us:

D(x̄τ
j [t], S∗) ≤

√
L

µ

(√
β′
)t

D(x0
j [0], S∗) +

Lξ

µ
+ r. (7.70)

132

REFERENCES

[ALS10] Saurabh Amin, Xavier Litrico, S Shankar Sastry, and Alexandre M Bayen.
“Stealthy deception attacks on water SCADA systems.” In Proc. of the 13th
ACM Int. Conference on Hybrid Systems: Computation and Control, pp. 161–
170, 2010.

[AM07] Panos J Antsaklis and Anthony N Michel. Linear systems. Springer Science &
Business Media, 2007.

[AY17] Liwei An and Guang-Hong Yang. “Secure state estimation against sparse sensor
attacks with adaptive switching mechanism.” IEEE Transactions on Automatic
Control, 63(8):2596–2603, 2017.

[AY18] Liwei An and Guang-Hong Yang. “State estimation under sparse sensor attacks:
A constrained set partitioning approach.” IEEE Transactions on Automatic
Control, 64(9):3861–3868, 2018.

[BCL17] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir Safavi.
“Mitigating poisoning attacks on machine learning models: A data provenance
based approach.” In Proceedings of the 10th ACM Workshop on Artificial Intel-
ligence and Security, pp. 103–110, 2017.

[BFL10] He Bai, Randy A Freeman, and Kevin M Lynch. “Robust dynamic average
consensus of time-varying inputs.” In 49th IEEE Conference on Decision and
Control (CDC), pp. 3104–3109. IEEE, 2010.

[BPC11] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Now Publishers
Inc, 2011.

[BPG17] Cheng-Zong Bai, Fabio Pasqualetti, and Vijay Gupta. “Data-injection attacks
in stochastic control systems: Detectability and performance tradeoffs.” Auto-
matica, 82:251 – 260, 2017.

[Bul19] Francesco Bullo. Lectures on network systems. Kindle Direct Publishing, 2019.

[CAS08] Alvaro A. Cárdenas, Saurabh Amin, and Shankar Sastry. “Research Challenges
for the Security of Control Systems.” In Proceedings of the 3rd Conference on
Hot Topics in Security, HOTSEC’08, 2008.

[CFP15] László Czap, Christina Fragouli, Vinod M Prabhakaran, and Suhas Diggavi.
“Secure network coding with erasures and feedback.” IEEE Transactions on
Information Theory, 61(4):1667–1686, 2015.

133

[Che98] Chi-Tsong Chen. Linear system theory and design. Oxford University Press,
Inc., 1998.

[CI14] Kai Cai and Hideaki Ishii. “Average consensus on arbitrary strongly connected
digraphs with time-varying topologies.” IEEE Transactions on Automatic Con-
trol, 59(4):1066–1071, 2014.

[CKM18a] Yuan Chen, Soummya Kar, and Jose MF Moura. “Resilient distributed esti-
mation through adversary detection.” IEEE Transactions on Signal Processing,
66(9):2455–2469, 2018.

[CKM18b] Yuan Chen, Soummya Kar, and José MF Moura. “Topology free resilient dis-
tributed estimation.” arXiv: 1812.08902, 2018.

[CL99] Miguel Castro, Barbara Liskov, et al. “Practical byzantine fault tolerance.” In
OSDI, volume 99, pp. 173–186, 1999.

[CLR09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

[CLS04] Ben M Chen, Zongli Lin, and Yacov Shamash. Linear Systems Theory. 2004.

[CT05] Emmanuel J Candes and Terence Tao. “Decoding by linear programming.” IEEE
Transactions on Information Theory, 51(12):4203–4215, 2005.

[CWH15] Michelle S Chong, Masashi Wakaiki, and Joao P Hespanha. “Observability of
linear systems under adversarial attacks.” In 2015 American Control Conference
(ACC), pp. 2439–2444. IEEE, 2015.

[DD20] Deepesh Data and Suhas Diggavi. “Byzantine-resilient SGD in high dimensions
on heterogeneous data.” arXiv preprint arXiv:2005.07866, 2020.

[DD21] Deepesh Data and Suhas Diggavi. “Byzantine-resilient high-dimensional SGD
with local iterations on heterogeneous data.” In International Conference on
Machine Learning, pp. 2478–2488. PMLR, 2021.

[DDZ15] Katherine R Davis, Charles M Davis, Saman A Zonouz, Rakesh B Bobba, Robin
Berthier, Luis Garcia, and Peter W Sauer. “A cyber-physical modeling and
assessment framework for power grid infrastructures.” IEEE Transactions on
smart grid, 6(5):2464–2475, 2015.

[DHP04] Kevin Driscoll, Brendan Hall, Michael Paulitsch, Phil Zumsteg, and Hakan Siven-
crona. “The real byzantine generals.” In The 23rd Digital Avionics Systems
Conference (IEEE Cat. No. 04CH37576), volume 2, pp. 6–D. IEEE, 2004.

134

[DKK19] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. “Robust estimators in high-dimensions without the computa-
tional intractability.” SIAM Journal on Computing, 48(2):742–864, 2019.

[DP17] D. D’Auria and F. Persia. “A Collaborative Robotic Cyber Physical System for
Surgery Applications.” In 2017 IEEE International Conference on Information
Reuse and Integration (IRI), pp. 79–83, Aug 2017.

[DUS19] Mohammad Deghat, Valery Ugrinovskii, Iman Shames, and Cedric Langbort.
“Detection and mitigation of biasing attacks on distributed estimation networks.”
Automatica, 99:369–381, 2019.

[EV08] Tuvi Etzion and Alexander Vardy. “Error-correcting codes in projective space.”
In 2008 IEEE International Symposium on Information Theory, pp. 871–875.
IEEE, 2008.

[FR11] James P Farwell and Rafal Rohozinski. “Stuxnet and the future of cyber war.”
Survival, 53(1):23–40, 2011.

[FS07] Christina Fragouli and Emina Soljanin. “Network Coding Fundamentals.” Foun-
dations and Trends® in Networking, 2(1):1–133, 2007.

[FTD11] Hamza Fawzi, Paulo Tabuada, and Suhas Diggavi. “Secure state-estimation
for dynamical systems under active adversaries.” In 2011 49th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pp. 337–344.
IEEE, 2011.

[FTD14] H. Fawzi, P. Tabuada, and S. Diggavi. “Secure Estimation and Control for Cyber-
Physical Systems Under Adversarial Attacks.” IEEE Transactions on Automatic
Control, 59(6):1454–1467, 2014.

[GDV20] Nirupam Gupta, Thinh T Doan, and Nitin H Vaidya. “Byzantine Fault-Tolerance
in Decentralized Optimization under Minimal Redundancy.” arXiv preprint
arXiv:2009.14763, 2020.

[GHY19] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. “Ro-
bust federated learning in a heterogeneous environment.” arXiv preprint
arXiv:1906.06629, 2019.

[GLB10] Abhishek Gupta, Cédric Langbort, and Tamer Başar. “Optimal control in the
presence of an intelligent jammer with limited actions.” In Proc. of the 49th
IEEE Conference on Decision and Control, pp. 1096–1101, 2010.

[GMK21] Avishek Ghosh, Raj Kumar Maity, Swanand Kadhe, Arya Mazumdar, and
Kannan Ramchandran. “Communication-Efficient and Byzantine-Robust Dis-
tributed Learning with Error Feedback.” IEEE Journal on Selected Areas in
Information Theory, 2021.

135

[GUC18] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,
Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell.
“A survey of physics-based attack detection in cyber-physical systems.” ACM
Computing Surveys (CSUR), 51(4):1–36, 2018.

[GV20] Nirupam Gupta and Nitin H Vaidya. “Resilience in collaborative optimization:
redundant and independent cost functions.” arXiv preprint arXiv:2003.09675,
2020.

[HKJ20] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. “Byzantine-robust learning
on heterogeneous datasets via resampling.” arXiv preprint arXiv:2006.09365,
2020.

[HMX19] Duo Han, Yilin Mo, and Lihua Xie. “Convex optimization based state estimation
against sparse integrity attacks.” IEEE Transactions on Automatic Control,
64(6):2383–2395, 2019.

[HRS20] Xingkang He, X. Ren, H. Sandberg, and K. Johansson. “How to Secure Dis-
tributed Filters Under Sensor Attacks?” ArXiv, abs/2004.05409, 2020.

[HTW18] Weixin Han, Harry L Trentelman, Zhenhua Wang, and Yi Shen. “A simple
approach to distributed observer design for linear systems.” IEEE Transactions
on Automatic Control, 64(1):329–336, 2018.

[KCM15] Solmaz S Kia, Jorge Cortés, and Sonia Martinez. “Dynamic average consensus
under limited control authority and privacy requirements.” International Journal
of Robust and Nonlinear Control, 25(13):1941–1966, 2015.

[Kha95] Leonid Khachiyan. “On the complexity of approximating extremal determinants
in matrices.” Journal of Complexity, 11(1):138–153, 1995.

[KK08] R. Koetter and F. R. Kschischang. “Coding for Errors and Erasures in Random
Network Coding.” IEEE Transactions on Information Theory, 54(8):3579–3591,
Aug 2008.

[KLS16] Junsoo Kim, Chanhwa Lee, Hyungbo Shim, Jung Hee Cheon, Andrey Kim,
Miran Kim, and Yongsoo Song. “Encrypting controller using fully homomor-
phic encryption for security of cyber-physical systems.” IFAC-PapersOnLine,
49(22):175–180, 2016.

[KMA19] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. “Advances and open problems in federated
learning.” arXiv preprint arXiv:1912.04977, 2019.

136

[KNS16] Hamed Karimi, Julie Nutini, and Mark Schmidt. “Linear convergence of gradi-
ent and proximal-gradient methods under the polyak- lojasiewicz condition.” In
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 795–811. Springer, 2016.

[KP22] Amir Khazraei and Miroslav Pajic. “Attack-resilient state estimation with inter-
mittent data authentication.” Automatica, 138:110035, 2022.

[KSC16] Taekyoo Kim, Hyungbo Shim, and Dongil Dan Cho. “Distributed Luenberger ob-
server design.” In 2016 IEEE 55th Conference on Decision and Control (CDC),
pp. 6928–6933. IEEE, 2016.

[KVC19] Solmaz S Kia, Bryan Van Scoy, Jorge Cortes, Randy A Freeman, Kevin M Lynch,
and Sonia Martinez. “Tutorial on dynamic average consensus: The problem, its
applications, and the algorithms.” IEEE Control Systems Magazine, 39(3):40–
72, 2019.

[KXS20] Kananart Kuwaranancharoen, Lei Xin, and Shreyas Sundaram. “Byzantine-
resilient distributed optimization of multi-dimensional functions.” In 2020 Amer-
ican Control Conference (ACC), pp. 4399–4404. IEEE, 2020.

[Lan11] Ralph Langner. “Stuxnet: Dissecting a cyberwarfare weapon.” IEEE Security
& Privacy, 9(3):49–51, 2011.

[Lau04] Alan J. Laub. Matrix Analysis for Scientists and Engineers. SIAM, 2004.

[LDJ18] T. Li, B. K. Dey, S. Jaggi, M. Langberg, and A. D. Sarwate. “Quadratically
Constrained Channels with Causal Adversaries.” In 2018 IEEE International
Symposium on Information Theory (ISIT), June 2018.

[LKS20] J. G. Lee, J. Kim, and H. Shim. “Fully Distributed Resilient State Estimation
Based on Distributed Median Solver.” IEEE Transactions on Automatic Control,
65(9):3935–3942, 2020.

[LS20] Jin Gyu Lee and Hyungbo Shim. “A tool for analysis and synthesis of het-
erogeneous multi-agent systems under rank-deficient coupling.” Automatica,
117:108952, 2020.

[LXC19] Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. “RSA:
Byzantine-robust stochastic aggregation methods for distributed learning from
heterogeneous datasets.” In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 1544–1551, 2019.

[LY17] AnYang Lu and GuangHong Yang. “Secure state estimation for cyber-physical
systems under sparse sensor attacks via a switched Luenberger observer.” Infor-
mation sciences, 417:454–464, 2017.

137

[LZK13] Heath J LeBlanc, Haotian Zhang, Xenofon Koutsoukos, and Shreyas Sundaram.
“Resilient asymptotic consensus in robust networks.” IEEE Journal on Selected
Areas in Communications, 31(4):766–781, 2013.

[LZS13] Heath J LeBlanc, Haotian Zhang, Shreyas Sundaram, and Xenofon Koutsoukos.
“Resilient continuous-time consensus in fractional robust networks.” In Proc. of
the American Control Conference, pp. 1237–1242. IEEE, 2013.

[MG16] Yilin Mo and Emanuele Garone. “Secure dynamic state estimation via local
estimators.” In 2016 IEEE 55th Conference on Decision and Control (CDC),
pp. 5073–5078. IEEE, 2016.

[MLR16] Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. “Network Newton dis-
tributed optimization methods.” IEEE Transactions on Signal Processing,
65(1):146–161, 2016.

[MMS19] Yanwen Mao, Aritra Mitra, Shreyas Sundaram, and Paulo Tabuada. “When is
the Secure State-Reconstruction Problem Hard?” In Proc. of the 58th IEEE
Conference on Decision and Control, pp. 5368–5373. IEEE, 2019.

[MMS22] Yanwen Mao, Aritra Mitra, Shreyas Sundaram, and Paulo Tabuada. “On the
computational complexity of the secure state-reconstruction problem.” Automat-
ica, 136:110083, 2022.

[MNG18] Meng Ma, Athanasios N Nikolakopoulos, and Georgios B Giannakis. “Fast de-
centralized learning via hybrid consensus ADMM.” In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3829–
3833. IEEE, 2018.

[MRB19] Aritra Mitra, John A. Richards, Saurabh Bagchi, and Shreyas Sundaram. “Re-
silient distributed state estimation with mobile agents: overcoming Byzantine ad-
versaries, communication losses, and intermittent measurements.” Autonomous
Robots, 43(3):743–768, Mar 2019.

[MS16] Aritra Mitra and Shreyas Sundaram. “Secure distributed observers for a class of
linear time invariant systems in the presence of Byzantine adversaries.” In Proc.
of the 55th IEEE Conference on Decision and Control, pp. 2709–2714, 2016.

[MS18] Aritra Mitra and Shreyas Sundaram. “Distributed observers for LTI systems.”
IEEE Transactions on Automatic Control, 63(11):3689–3704, 2018.

[MS19] Aritra Mitra and Shreyas Sundaram. “Byzantine-resilient distributed observers
for LTI systems.” Automatica, 108:108487, 2019.

138

[MSK16] Shaunak Mishra, Yasser Shoukry, Nikhil Karamchandani, Suhas N Diggavi, and
Paulo Tabuada. “Secure state estimation against sensor attacks in the presence
of noise.” IEEE Transactions on Control of Network Systems, 4(1):49–59, 2016.

[MSL16] Aryan Mokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro. “A decentralized
second-order method with exact linear convergence rate for consensus optimiza-
tion.” IEEE Transactions on Signal and Information Processing over Networks,
2(4):507–522, 2016.

[Nat95] Balas K. Natarajan. “Sparse approximate solutions to linear systems.” SIAM
journal on computing, 24(2):227–234, 1995.

[NM15] Yorie Nakahira and Yilin Mo. “Dynamic state estimation in the presence of
compromised sensory data.” In 2015 54th IEEE Conference on Decision and
Control (CDC), pp. 5808–5813. IEEE, 2015.

[NO09] Angelia Nedic and Asuman Ozdaglar. “Distributed subgradient methods for
multi-agent optimization.” IEEE Transactions on Automatic Control, 54(1):48–
61, 2009.

[PDB12] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. “Cyber-physical security
via geometric control: Distributed monitoring and malicious attacks.” Proc. of
the 51st IEEE Conference on Decision and Control, pp. 3418–3425, 2012.

[PDB13] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. “Attack detection and
identification in cyber-physical systems.” IEEE Transactions on Automatic Con-
trol, 58(11):2715–2729, 2013.

[PKP06] Joel B Predd, Sanjeev B Kulkarni, and H Vincent Poor. “Distributed learning in
wireless sensor networks.” IEEE Signal Processing Magazine, 23(4):56–69, 2006.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified defenses
against adversarial examples.” arXiv preprint arXiv:1801.09344, 2018.

[RWR20] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico Kolter. “Certified
robustness to label-flipping attacks via randomized smoothing.” In International
Conference on Machine Learning, pp. 8230–8241. PMLR, 2020.

[SCW18] Yasser Shoukry, Michelle Chong, Masashi Wakaiki, Pierluigi Nuzzo, Alberto
Sangiovanni-Vincentelli, Sanjit A Seshia, Joao P Hespanha, and Paulo Tabuada.
“SMT-based observer design for cyber-physical systems under sensor attacks.”
ACM Transactions on Cyber-Physical Systems, 2(1):1–27, 2018.

[SG18] Shreyas Sundaram and Bahman Gharesifard. “Distributed optimization under
adversarial nodes.” IEEE Transactions on Automatic Control, 64(3):1063–1076,
2018.

139

[SH10] Shreyas Sundaram and Christoforos N Hadjicostis. “Distributed function calcu-
lation via linear iterative strategies in the presence of malicious agents.” IEEE
Transactions on Automatic Control, 56(7):1495–1508, 2010.

[Smi11] Roy S Smith. “A decoupled feedback structure for covertly appropriating net-
worked control systems.” IFAC Proceedings Volumes, 44(1):90–95, 2011.

[Smi15] Roy S Smith. “Covert misappropriation of networked control systems: Presenting
a feedback structure.” IEEE Control Systems Magazine, 35(1):82–92, 2015.

[SMT13] Yasser Shoukry, Paul Martin, Paulo Tabuada, and Mani Srivastava. “Non-
invasive spoofing attacks for anti-lock braking systems.” In International Con-
ference on Cryptographic Hardware and Embedded Systems, pp. 55–72. Springer,
2013.

[SMY15] Yasser Shoukry, Paul Martin, Yair Yona, Suhas Diggavi, and Mani Srivas-
tava. “Pycra: Physical challenge-response authentication for active sensors un-
der spoofing attacks.” In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 1004–1015, 2015.

[SNS18] Yasser Shoukry, Pierluigi Nuzzo, Alberto L Sangiovanni-Vincentelli, Sanjit A Se-
shia, George J Pappas, and Paulo Tabuada. “Smc: Satisfiability Modulo Convex
Programming.” Proc. of the IEEE, 106(9):1655–1679, 2018.

[SOM05] Demetri P Spanos, Reza Olfati-Saber, and Richard M Murray. “Dynamic con-
sensus on mobile networks.” In IFAC world congress, pp. 1–6. Citeseer, 2005.

[Son08] Eduardo D Sontag. “Input to state stability: Basic concepts and results.” In
Nonlinear and optimal control theory, pp. 163–220. Springer, 2008.

[SS19] Lili Su and Shahin Shahrampour. “Finite-time guarantees for byzantine-resilient
distributed state estimation with noisy measurements.” IEEE Transactions on
Automatic Control, 2019.

[ST15] Yasser Shoukry and Paulo Tabuada. “Event-triggered state observers for sparse
sensor noise/attacks.” IEEE Transactions on Automatic Control, 61(8):2079–
2091, 2015.

[STJ10] Henrik Sandberg, André Teixeira, and Karl H Johansson. “On security indices
for state estimators in power networks.” In First Workshop on Secure Control
Systems (SCS), Stockholm, 2010, 2010.

[SV16] Lili Su and Nitin H Vaidya. “Fault-tolerant multi-agent optimization: optimal
iterative distributed algorithms.” In Proceedings of the 2016 ACM symposium
on principles of distributed computing, pp. 425–434, 2016.

140

[TDJ14] Ashish Tiwari, Bruno Dutertre, Dejan Jovanović, Thomas de Candia, Patrick D
Lincoln, John Rushby, Dorsa Sadigh, and Sanjit Seshia. “Safety envelope for
security.” In Proc. of the 3rd International Conference on High Confidence Net-
worked Systems, pp. 85–94. ACM, 2014.

[TV15] Lewis Tseng and Nitin H Vaidya. “Fault-tolerant consensus in directed graphs.”
In Proc. of the 2015 ACM Symposium on Principles of Distributed Computing,
pp. 451–460, 2015.

[Win] “State Farm Falls Victim to Credential-Stuffing Attack.”
https://threatpost.com/state-farm-credential-stuffing-attack/147139/. Accessed:
2020-12-23.

[WM17] Lili Wang and A Stephen Morse. “A distributed observer for a time-invariant lin-
ear system.” IEEE Transactions on Automatic Control, 63(7):2123–2130, 2017.

[WOM19] Sean Weerakkody, Omur Ozel, Yilin Mo, and Bruno Sinopoli. “Resilient Control
in Cyber-Physical Systems: Countering Uncertainty, Constraints, and Adversar-
ial Behavior.” Foundations and Trends® in Systems and Control, 7(1-2):1–252,
2019.

[WRK20] Eric Wong, Leslie Rice, and J Zico Kolter. “Fast is better than free: Revisiting
adversarial training.” arXiv preprint arXiv:2001.03994, 2020.

[XBB15] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert,
and Fabio Roli. “Is feature selection secure against training data poisoning?” In
international conference on machine learning, pp. 1689–1698. PMLR, 2015.

[XBK07] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. “Distributed average consensus
with least-mean-square deviation.” Journal of parallel and distributed computing,
67(1):33–46, 2007.

[YB19a] Zhixiong Yang and Waheed U Bajwa. “BRIDGE: Byzantine-resilient decentral-
ized gradient descent.” arXiv preprint arXiv:1908.08098, 2019.

[YB19b] Zhixiong Yang and Waheed U Bajwa. “ByRDiE: Byzantine-resilient distributed
coordinate descent for decentralized learning.” IEEE Transactions on Signal and
Information Processing over Networks, 5(4):611–627, 2019.

[YC06] Raymond Yeung and Ning Cai. “Network Error Correction, I: Basic Concepts
and Upper Bounds.” Communications in Information and Systems, 6, Jan 2006.

[YFF16] Sze Zheng Yong, Ming Qing Foo, and Emilio Frazzoli. “Robust and resilient esti-
mation for cyber-physical systems under adversarial attacks.” In 2016 American
Control Conference (ACC), pp. 308–315. IEEE, 2016.

141

