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S K I N  I N F L A M M A T I O N

Classification of human chronic inflammatory skin 
disease based on single-cell immune profiling
Yale Liu1,2,3†, Hao Wang4†, Mark Taylor2, Christopher Cook2,3, Alejandra Martínez-Berdeja2, 
Jeffrey P. North2, Paymann Harirchian2,3, Ashley A. Hailer2,3, Zijun Zhao5, Ruby Ghadially2,3, 
Roberto R. Ricardo-Gonzalez2,6, Roy C. Grekin2, Theodora M. Mauro2,3, Esther Kim7, 
Jaehyuk Choi8, Elizabeth Purdom4‡, Raymond J. Cho2*‡, Jeffrey B. Cheng2,3*‡

Inflammatory conditions represent the largest class of chronic skin disease, but the molecular dysregulation un-
derlying many individual cases remains unclear. Single-cell RNA sequencing (scRNA-seq) has increased precision 
in dissecting the complex mixture of immune and stromal cell perturbations in inflammatory skin disease states. 
We single-cell–profiled CD45+ immune cell transcriptomes from skin samples of 31 patients (7 atopic dermatitis, 
8 psoriasis vulgaris, 2 lichen planus (LP), 1 bullous pemphigoid (BP), 6 clinical/histopathologically indeterminate rashes, 
and 7 healthy controls). Our data revealed active proliferative expansion of the Treg and Trm components and universal 
T cell exhaustion in human rashes, with a relative attenuation of antigen-presenting cells. Skin-resident memory 
T cells showed the greatest transcriptional dysregulation in both atopic dermatitis and psoriasis, whereas atopic 
dermatitis also demonstrated recurrent abnormalities in ILC and CD8+ cytotoxic lymphocytes. Transcript signa-
tures differentiating these rash types included genes previously implicated in T helper cell (TH2)/TH17 diatheses, 
segregated in unbiased functional networks, and accurately identified disease class in untrained validation data 
sets. These gene signatures were able to classify clinicopathologically ambiguous rashes with diagnoses consist-
ent with therapeutic response. Thus, we have defined major classes of human inflammatory skin disease at the 
molecular level and described a quantitative method to classify indeterminate instances of pathologic inflamma-
tion. To make this approach accessible to the scientific community, we created a proof-of-principle web interface 
(RashX), where scientists and clinicians can visualize their patient-level rash scRNA-seq–derived data in the con-
text of our TH2/TH17 transcriptional framework.

INTRODUCTION
Atopic dermatitis (AD) and psoriasis vulgaris (PV), prototypical 
inflammatory skin diseases, collectively affect about 10% of adults 
in the United States (1–3). AD is classically viewed as a T helper 2 
(TH2)–skewed inflammatory disease, with PV displaying a TH1/TH17 
predominance. Biologic therapies now successfully target specific, 
dysregulated immune pathways in each disease—interleukin-4 re-
ceptor subunit  (IL4R) or IL-13 inhibitors in AD and IL-17 or IL-23 
antagonists in PV. Whereas these drugs represent marked advances 
in treatment, ~20 to 50% of patients still do not achieve substantial 
improvement on a given drug (4–6). One major challenge is the clin-
ical heterogeneity of inflammatory skin disease (7), which can pre-
clude a definitive diagnosis and complicates treatment choice. A 
molecular endotyping approach could offer clinicians more objec-
tive criteria to classify inflammatory disease and select therapy.

Identification of molecular abnormalities distinguishing inflam-
matory skin disease is challenging using bulk cell–based profiling 

methods, which likely obscure cell type–specific transcriptional 
dysregulation. Studies have attempted to overcome disease hetero-
geneity by comparing internally controlled patient populations (8). 
Single-cell RNA sequencing (scRNA-seq) has identified previously 
unknown disease-specific perturbations across diverse inflamma-
tory pathologies (9–13). Such high-resolution methods capturing 
simultaneous molecular portraits of different cell types are particu-
larly appealing in human skin, where the complex composition 
of tissue limits mechanistic biology. scRNA-seq studies of AD- 
affected skin reveal increased type 2/type 22 T cells, inflamma-
tory dendritic cells, and tissue-resident memory T (Trm) cells 
(12, 14, 15). Dupilumab-treated AD is characterized by persistence 
of transcriptionally defined mature dendritic cell subsets and 
Trm subpopulations (i.e., type 2/type 22 T cells and TH2A) (11). 
In PV, single-cell transcriptomic studies show increased TH17/Tc17 
cells in active lesions, with two nonexhausted, CXCL13-expressing 
Tc17 subpopulations correlating with disease severity (9, 12). 
However, these advances do not clarify whether inflammatory skin 
diseases as a whole can be reliably molecularly classified on the 
patient level.

In this study, we hypothesized that by focusing exclusively on 
cutaneous immune cells and applying increased analytic resolution 
(i.e. 41 cutaneous immune cell type classes), scRNA-seq approaches 
could improve identification and understanding of molecular ab-
normalities discriminating AD and PV. T cells and antigen-presenting 
cells (APCs) from rashes were profiled using unbiased single-cell 
droplet microfluidics RNA (10X Genomics) (16) and protein epitope 
[cellular indexing of transcriptomes and epitopes by sequencing 
(CITE-seq)] (17) approaches. Our study targeted a series of eight PV, 
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seven AD, and also six clinical/histopathologically indeterminate 
rashes (CIRs), which presented in adulthood and harbored clinical 
and histopathologic features of both PV and AD. To more precisely 
define the cell type–specific transcriptional alterations distinguish-
ing these diseases, we used molecular signatures to investigate and 
segregate these CIRs in the context of AD and PV. We also cre-
ated a web-based interface to help clinicians and scientists classify 
their clinically indeterminate skin rash cases.

RESULTS
scRNA-seq detected conserved skin CD45+ immune 
cell classes
Our dataset included eight samples of PV, seven samples of AD, one 
case of BP, two cases of LP, six CIRs harboring clinical and histo-
pathologic features of both PV and AD, and seven healthy controls 
(HCs). Additional clinical characteristics for each sample are de-
scribed in table S1. After enzymatic digestion of donor skin biop-
sies, we flow-sorted live CD45+ cells and performed Chromium 3′ 
scRNA-seq and CITE-seq protein epitope sequencing. We obtained 

transcriptomic data from 158,037 single cells after quality control 
filtering (removal of doublets and poor-quality cells). Using Seurat, 
clustering was performed using Louvain community detection–
based modularity optimization (18). We first used a resolution 
parameter of 0.4 based on clustree optimization approaches (19), 
delineating 16 immune cell clusters, including 6 lymphocyte clus-
ters (CD3+ or KLRB1+), 9 APC clusters [human leukocyte antigen 
(HLA)–DRA+], and a mast cell cluster highly expressing TPSAB1 
(tryptase) (fig. S1, A and B, and table S2).

We speculated that more finely demarcating immune cell popu-
lations might reveal new cell type–specific expression differences, 
either between healthy and inflamed skin or between disease classes. 
We separately subclustered the CD3+/KLRB1+ lymphocyte populations 
and HLA-DRA+ APC populations into 23 and 24 higher-resolution 
classes, respectively, again based on clustree-based optimization. After 
removal of clusters containing mostly nonimmune or low-quality 
cells, 21 CD3+/KLRB1+ clusters and 19 HLA-DR+ clusters were re-
tained (fig. S1C). Including the previously described mast cell cluster, 
this classification generated 41 final clusters [displayed as a Uniform 
Manifold Approximation and Projection (UMAP) representation 

Fig. 1. Immune single-cell landscape of rash-affected and healthy control human skin (31 samples). (A) UMAP representation of 41 scRNA-seq defined immune cell classes. 
(B) UMAP representation of cell distribution across immune cell classes for disease classes and HC skin. (C) Expression of critical marker transcripts (columns) distinguishing 
immune cell classes (rows). Size of dots represents the fraction of cells expressing a particular marker, and color intensity indicates mean-normalized scaled expression levels. 
(D) Expression of protein epitope (CITE-seq) markers for the 41 transcript-based immune cell clusters. Color intensity represents fraction of cells expressing a given marker.
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in Fig. 1A and tables S3 and S4]. Larger immune clusters were well 
represented across healthy control and major disease classes, 
suggesting limited distortion from sample-specific batch effects 
(Fig. 1B and fig. S1D).

We next assigned identities to the 41 immune cell populations 
by comparing marker genes for each cluster (i.e., the most differen-
tially expressed transcripts or epitope markers between cells in that 
cluster versus all other cells; table S5) against canonical markers 
for established cell types. Among T cells, we identified two CCR7+, 
SELL+, KLF2+ (20), CD3D+ populations, one corresponding to 
central memory cells (Tcm) with elevated CD69 and CD45RO 
protein epitope expression (CITE-seq data) and one smaller cluster 
representing a naïve T cell population with high CD45RA protein 
expression (Fig. 1, C and D). We also identified three CCR7+/SELL− 
migratory memory classes (Tmm1, Tmm2, and Tmm3) (21). Three 
CD3D+ T cell clusters expressed Trm cell marker transcripts ITGAE 
(CD103), CXCR6, and the CD69 protein epitope (CITE-seq data) 
(22), which we termed Trm1, Trm2, and Trm3 and contained both 
CD4+ and CD8A+ cells (Fig. 1, C and D). Three other CD4+ popula-
tions were identified as regulatory T (Treg) cells based on the expres-
sion of FOXP3, TIGIT, CTLA4, IL2RA (CD25), and IKZF2 (Helios) 
(Fig. 1C) (23, 24). Two of these Treg cell populations displayed effec-
tor markers (TNFRSF18 and PRDM1) (25) and were termed eTreg1 
and eTreg2, whereas a third CD45RO+ class harboring SELL and 
CCR7 transcript was classified as central memory Tregs (cmTreg; 
Fig. 1, C and D) (26). A small CD3D+ T cell cluster bearing elevated 
levels of numerous epigenetic regulators, transcription factors, and 
long noncoding RNAs—such as BATF, SNHG12, and ZFAS1—was 
named Tet.

Two CD8A+CD8B+ clusters were defined as cytotoxic T lymphocytes 
based on expression of GZMB, NKG7, and CCL5, including an acti-
vated cluster (CTLac) expressing TNFRSF4, TNFRSF18, and CD96 
(27, 28), and a closely related class enriched in canonical exhaustion 
markers such as PDCD1 and LAG3 (CTLex) (Fig. 1C) (29). We also 
defined three innate lymphoid/natural killer cell populations as 
KLRB1 (CD161)+ with absent or relatively low CD3D, CD19/
MS4A1, CD14, and HLA-DRA expression (30). Of these, one small 
cluster expressed the type 2 transcriptional factors GATA3 and PT-
GDR2 and was identified as an innate lymphoid cell population 
(ILC2) (12). Two populations of KLRD1+, GNLY+, PRF1+, and 
GZMB+ cells were assigned as either natural killer (NK) or ILC/
NK cells, with the former expressing high levels of the CD56 epi-
tope by CITE-seq (Fig. 1, C and D).

We also identified a group of myeloid lineage subpopulations 
(31) (Fig. 1, C and D). Four macrophage populations were enriched 
for CD68, CEBPB, and FCER1G (32). Two were distinguished by 
complement transcripts C1QB and C1QC as well as the scavenger 
receptor CD163 (Mac1 and Mac3), another by alternative activation 
and suppression markers NR4A1, NR4A2, KLF4 (Mac2) (12), and 
the fourth by monocyte (Mono) markers CD14 and S100A9 (Mac4). 
Three Langerhans cell populations (LC1, LC2, and LC3) were 
identified on the basis of CD207 transcript and protein and CD1c 
and EPCAM expression.

Five Mono or Mono-derived cell populations shared expression 
of Mono-associated genes MS4A7, LYZ, and SERPINA1 (Fig.  1C) 
(33). One cluster representing classical Monos expressed higher lev-
els of CD14 transcript and protein and S100A9 (Fig  1,  C  and  D) 
(34), whereas we designated another inflammatory Monos (InfMo-
no) because of enrichment for IL1B, IL23A, and CXCL3 (12). The 

three remaining clusters also expressed major histocompatibility 
complex II molecules (HLA-DRA and HLA-DRB1) and were la-
beled Mono-derived dendritic cells (DCs) (moDC1, moDC2, and 
moDC3). We identified four DC classes (HLA-DRA+), one en-
riched in CD1C and CLEC10A (DC1), with two others expressing 
CLEC9A, CLEC10A, and XCR1 (DC2 and DC3) (Fig. 1C) (12). 
There was an additional migratory DC population that expressed 
CD1C and migratory/mature markers, such as FSCN1, LAMP3, and 
CCR7 (35).

Two minor populations were enriched in immunoglobulin (Ig) 
genes (IGHG, IGHA, IGKC, and JCHAIN), consistent with B cell 
lineage. One was identified as B cells (CD19+ and MS4A2+; Fig. 1C), 
also enriched for CD19 and CD21 epitopes (Fig. 1D), and one as plas-
ma cells (CD19−, MS4A2−, and IGHG1/IGHG4+) (36). A large pop-
ulation of mast cells (Mast) was easily distinguished by expression 
of TPSAB1 (tryptase) and TPSB2 (Fig. 1C) (37).

Five clusters showed elevated cell division transcripts, such as 
MKI67, TOP2A, CENPF, and UBE2C (Fig. 1C) (38). Four of these 
cycling cell subpopulations mapped closely to existing T cell clus-
ters and were named accordingly: Tregs (Treg-c), Trm (Trm-c), CD8+ 
cytotoxic T cells (CTL-c), and NK and ILC cells (NK/ILC-c). One 
mitotically active myeloid group expressed mast cell markers and 
was named Mast-c.

We clustered our CD45+ cells into a comparatively large number 
of classes to maximize discovery of molecular abnormalities 
that might be obscured in conflated populations. Our classification 
comported well with both other published scRNA-seq cutaneous 
immune cell landscapes (fig. S1, E and F) (11, 12) and canonical 
CD45+ classes. As the latter classifications were developed primarily 
from flow cytometry experiments in blood and other noncutaneous 
tissues, we expected our approaches to yield some small differences 
in subclass definition. Overall, our scRNA-seq–derived analysis re-
trieved most well-established skin CD45+ immune cell populations, 
with robust representation in both rashes and HCs.

Inflamed skin is characterized by CD8+ T cell exhaustion 
and Treg expansion
To discern differences in immune cell composition between healthy 
control and rash-affected skin, we first calculated each cluster’s ag-
gregate representation in each of these two states. This analysis 
showed that inflammation was accompanied by relative increases 
in multiple lymphoid cell classes and proportionate decreases in 
myeloid populations (Fig. 2A). We next applied a weighted Gaussian 
linear model to compare healthy control and rash-derived CD45+ 
cell proportions (see the “Weighted Gaussian linear model for dif-
ferential immune cell composition analysis” section in Materials and 
Methods), identifying 27 clusters with statistically significant alter-
ations (Fig. 2B). Chronic inflammatory skin diseases showed an in-
crease in exhausted CD8+ T cells (CTLex class up 80.4%, from 4.5 to 
8.2%), highlighting marked exhaustion of CD8+ cells in virtually every 
rash sample assayed (table S6). We also noted a substantial expan-
sion of all three Treg classes (2.19- to 3.13-fold), generalizing a trend 
reported anecdotally in some rash types (table S6) (39). Resident 
memory T cell classes were also proportionately increased, with 
Trm1 up 71.4% from 6.3 to 10.7% and Trm2 up 108.7% from 4.3 to 
9.0%, (table S6). Mitotically active cell clusters were markedly ex-
panded in rashes, revealing active proliferation of Trm, Treg, ILC/
NK, and CD8+ T cell populations in lesional skin (Fig.  2B and 
table S6).
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Analyses specific to AD and PV were also performed. Cell pop-
ulation frequency assessment for PV and AD showed similar pat-
terns for CTLac, Trm1, and Trm2 cell populations (in AD, down by 
34.9, up by 70.2, and up by 109.6%, respectively; in PV, down by 
29.2, up by 84.5, and up by 89.1%, respectively; fig. S3 and table S6). 
However, CTLex and NK cells were more elevated in PV than in 
AD (in PV versus HC samples, up by 74.6 and 99.4%, respectively; 
in AD, up by 23.0 and 20.4%, respectively; fig. S3 and table S6). Al-
though absolute cell numbers were low, plasma and B cells also both 
showed significant increases in rash samples in aggregate and for 
plasma cells in both AD and PV (relative to HC skin; table S6). Both 
disease-level analyses again showed expanded Treg and Trm cells 
and exhausted CD8+ T cells, suggesting involvement of these sub-
populations in initiating or maintaining cutaneous inflammation.

Distinct, cell type–specific patterning differentiates forms 
of pathologic skin inflammation
We applied a hurdle model–based analysis of single-cell transcrip-
tomics (MAST) (40) across all 41 CD45+ cell populations to detect 
differentially expressed genes (DEGs) between (i) lesional PV and 
HC skin, (ii) lesional AD and HC skin, and (iii) lesional AD and PV 
skin (table S7). In each comparison, we required an absolute log2 
fold-change difference of 0.425 and P < 0.001 of genes for further 
consideration.

The Trm1, CTLac, ILC/NK, Trm3, moDC1, InfMono, Mono, and 
LC2 populations showed abundant DEGs differentiating inflamed 
versus control skin (Fig. 3A and table S11). For example, the num-
ber of DEGs for PV versus HC and AD versus HC comparisons in 
Trm1 were 531 and 327, respectively; in CTLac, 306 and 574; and in 
InfMono, 522 and 451 (Fig. 3A and table S11). In distinguishing AD 
from PV, these eight T cell and APC populations also displayed the 
most statistically significant DEGs (Fig. 3A). For example, DEGs 
that differentiated AD and PV numbered 95 in Trm1, 137 in CT-
Lac, and 242 in InfMono (Fig. 3A and table S11).

The treatment of single cells as distinct data sources in DEG ap-
proaches such as MAST generates very low P values for even relatively 
small fold-change differences. We reasoned that such small differ-
ences were more likely to be biologically meaningful if observed in 
multiple samples. We therefore applied a stringent filter in which at 
least 80% of individual AD or PV samples were required to display 
statistically significant differential expression for a given DEG, in 
comparison to all HC samples. The largest number of statistically 
significant DEGs passing this heterogeneity filter generally resided 
in the clusters containing the most cells, likely because of the in-
creased effective sample size in these comparisons. However, Trm1 
had a disproportionately large number of DEGs in the three com-
parisons (e.g., in the PV versus HC comparison, 514 DEGs for Trm1 
cells compared to 197 for Tcm and 238 for eTreg1 cells; Fig. 3B and 
table S11).

We next examined PV versus AD transcriptional abnormalities 
that met the aforementioned criteria for at least one lymphocyte 
population. We reasoned that DEGs identified in this way would be 
dysregulated in most of our patient samples but exclude nonspecific 
inflammatory genes present in both diseases. We observed that such 
PV-specific up-regulated genes were heavily concentrated in skin- 
resident memory classes Trm1 and Trm3, although there was also 
marked involvement of all migratory memory classes (Fig. 3C). An 
abundance of TH17-linked transcripts was immediately apparent. In 
addition to the known PV markers IL17F and CXCL13 (9), these 
PV-specific up-regulated DEGs include granulysin GNLY and 
CTLA4, whose loci have been linked genetically to PV (41, 42), KLRB1, 
which is down-regulated by the tumor necrosis factor– blocker 
alefacept in psoriatic lesions (43), MGAT4, which is down- 
regulated during ustekinumab treatment of psoriatic arthritis (44), 
and PIK3R1 whose germline loss of function impairs cutaneous 
immunity (45). We also detected recurrent overexpression of 
signaling components such as MAP3K4 and PTPN13 restricted 
to the Trm1 and Trm3 classes, possibly helping explain why such 

Fig. 2. Enrichment of Treg, Trm, and exhausted CD8+T cell populations in rash-affected skin. (A) Distribution of immune cell populations for 7 HC and 24 rash-affected 
(Rash) skin samples. X axis represents different immune cell populations. Y axis represents proportion of CD45+ immune cells for each immune cell population in either 
rash-affected or HC skin. (B) Quasi-binomial model log2 fold change for rash-affected versus HC skin (y axis); unpaired two sample t test was used. X axis represents differ-
ent immune cell populations. Red colored bars indicate statistically significant changes (P value < 0.05). (C) Proportion of CD45+ immune cell subpopulations for each 
individual sample.
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disease-specific transcripts have not been reported in prior bulk 
analysis studies (table S7).

Skin-resident memory classes also prominently expressed 
AD-specific up-regulated DEGs (Fig.  3D), including the 
known TH1-inhibiting transcriptional regulator TWIST1 (46), 
IL17RB, which has been implicated in the related TH2 diathesis of 
asthma (47), and the candidate AD susceptibility loci NBAS 

and CYSLTR1 (48, 49). A similar number of AD-specific transcripts 
were also elevated in ILC classes and effector memory CTLs, 
including MLL1 (KMT2A), an epigenetic regulator required to 
maintain TH2 memory cell responses (50), the lncRNA NEAT1, 
which up-regulates TH2 cytokines in CD4+ T cells, and the 
experimentally TH2-inducible transcript AHNAK (51). This 
pattern reinforced existing models positing a central role for ILC 

Fig. 3. Conservatively selected transcriptional abnormalities discriminating PV and AD demonstrate cell type–specific patterning. (A) Number of DEGs per im-
mune cell population for AD and PV based on the MAST statistical framework. Number of DEGs (adjusted P value < 0.001, absolute log2FC > 0.425; on y axis) for each immune 
cell population (x axis) for seven AD versus seven HC sample comparisons (left), eight PV versus seven HC samples (middle), and seven AD versus eight PV samples (right). 
(B) Number of DEGs per immune cell population for AD and PV comparisons as in (A) but for DEGs present in 80% of samples from a disease class. (C and D) Heatmap 
showing immune cell population–specific transcriptional patterns for PV-specific genes (C) and AD-specific genes (D) (table S7) across lymphocyte subtypes (columns). 
Color key reflects the average log2FC for eight PV versus seven HC samples (C) or seven AD versus seven HC samples (D).
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(52) and CD8+ T cells (53, 54) in the pathogenesis of atopic diathe-
ses (table S7).

For both PV and AD, fewer DEGs were detected in regulatory 
T and exhausted CD8+ T cells (Fig. 3, A and B, and table S11). 
Differentiating transcripts were also sparse in APC classes, which 
frequently contained less than 100 cells per sample, underpowering 
them for DEG discovery (Fig. 3, A and B, and table S11). However, we 
did detect elevated expression of the antimicrobial gene epiregulin in 
atopic patients, consistent with its previous discovery in nonlesional 
skin from atopics (55), in both classical Monos and the macrophage 
class Mac1. Atopic Monos also harbored elevated transcripts of the 
inflammatory protein S100A4, previously identified as a pro-TH2 
mediator (56), and AREG was highly expressed in mast cells 
from psoriatic skin, potentially contributing to psoriasiform 
epidermal hyperplasia (table S7) (57). Similar DEGs were ob-
served when differential expression analyses were reperformed 
using an alternative, nonparametric (Mann-Whitney) approach 
(fig. S4).

Skin-resident memory T cell DEGs distinguish PV versus AD 
samples in a validation cohort
To further assess disease specificity of these transcripts, we focused 
on lymphocyte subpopulations, in which the most DEGs were found. 
We generated gene set average expression scores for these DEGs that 
met the stringent criteria as an AD- or PV-specific gene in at least 
80% of samples for at least one lymphocyte subpopulation (table S7 
and the “Differential expression analysis between rash-affected and 
HC skin” section in Materials and Methods). As in the Fig.  3 
(C and D) heatmaps, we saw that AD-specific gene expression was 
accentuated in skin-resident memory T cells, ILC classes, and effec-
tor memory CTLs of AD samples, whereas PV-specific genes were 
most prominently represented in skin-resident memory T cells of PV 
samples (Fig. 4, A and B).

We examined the Trm1 cell class because it harbored the largest 
number of conserved PV- and AD-specific DEGs (Fig.  3) and is 
functionally implicated in both diseases (58, 59). As the Trm1 pop-
ulation likely contained closely interrelated cell types [e.g., Tc17 cells 
express Trm protein epitopes; (60)], we manually gated for Tc2/TH2 
cells, Tc17, and TH17 cells to better understand cell subtypes within 
this cluster. In PV samples, there was a large proportional increase 
of Tc17 and TH17 cells, whereas in AD samples, there were more 
Tc2/TH2 cells, consistent with previous studies (fig. S5) (12). For Trm1 
cells, the CD4:CD8 cell ratios in AD and PV samples were roughly 
comparable (fig. S6).

Whereas the relative proportions of these Trm1 cell subtypes alone 
could not discriminate AD from PV samples, we reasoned that DEGs 
from this population might. We thus tested the discriminative power 
of Trm1 AD- and PV-specific genes in an unrelated, external data-
set (three PV and four AD samples from Reynolds et al. (12)). First, we 
calculated gene set expression scores for our Trm1 AD- or PV-specific 
genes in a transcriptionally analogous Trm population from the 
Reynolds et al. dataset samples (Fig. 4C, table S7, and the “Differential 
expression analysis between rash-affected and HC skin” section in 
Materials and Methods). We also used these AD- and PV- specific Trm1 
DEGs to visually map relatedness of these external dataset samples 
(Fig. 4D and the “Hyperdimensionality proximity analysis” section 
in Materials and Methods). By both measures, our disease-specific 
DEGs accurately identified the two rash types in the Reynolds et al. 
dataset (Fig. 4, C and D). Thus, we demonstrated the potential to 

identify rash type, on a patient level, based entirely on molecular 
data from Trm1 cells.

Transcriptional abnormalities differentiating PV and AD 
in skin-resident memory cells segregate within unbiased 
functional networks
We sought to assess the functional significance of the hundreds of 
DEGs identified by our scRNA-seq approach. We again focused on 
the Trm1 cluster, which contained the established PV genes IL17F, 
IFNG, and CXCL13 (9). We mapped PV- and AD-specific Trm1 
DEGs (table S7) onto a coexpression correlation network built on 
our scRNA-seq data. Gene-gene transcriptional correlation values 
were calculated and the resulting network visualized by qgraph 
(61). The AD- and PV-specific genes segregated sharply in this net-
work (Fig. 5A), which was expected because such differences in 
single-cell expression aided in their discovery. We next evaluated the 
functional interrelatedness of these PV- and AD-specific genes. We 
looked for interactions among these DEGs using an external data-
base of known and predicted protein-protein interactions (STRING) 
and identified 98 protein nodes (genes), which formed 394 interac-
tions (Fig. 5B) (62). As visually apparent, the PV- and AD-associated 
genes occupied distinct sectors of the protein-protein functional 
interaction network, recapitulating their segregation in the tran-
scriptional expression network (Fig. 5A). We quantified this func-
tional segregation by calculating the normalized cut score (63) 
between AD- and PV-specific genes, which compares the weighted 
number of edges connecting two groups relative to those within 
each group. These two groups showed significantly smaller linkages 
between the two groups than in multiple permutation tests that ran-
domly assigned these genes to the AD- and PV-specific categories 
(P = 0.001; Fig. 5B). The segregation of PV- and AD-specific Trm1 
genes in both transcriptional and protein interaction networks fur-
ther supports a model in which coherent pathways drive these two 
disease classes.

CIRs, BP, and LP share molecular features  
with AD or PV
Many adult-onset rashes do not completely match clinical and his-
topathologic criteria for classic AD or PV, causing diagnostic and 
therapeutic ambiguity. Instead, these clinically indeterminate cases 
harbor overlapping eczematous/spongiotic features (as typically 
seen in AD) and psoriasiform patterns, either by histopathology or 
clinical presentation (64). We termed such cases CIRs. Six CIRs were 
profiled by scRNA-seq in this study whose clinical features were 
summarized in table S1. These patients lacked a clinical history con-
sistent with canonical AD, i.e., eczematous rashes or lichenification 
in flexural areas beginning in early childhood. All patients with CIR 
were offered a trial on the IL4R-blocking AD treatment dupi-
lumab, three of whom accepted. Two of the patients (CIR-A and 
CIR-B) showed near resolution of itch and clinically appreciable 
lesions within 2 months of treatment initiation. The third patient, 
CIR-E, suffered from a dermatitis with some eczematous features, 
including a spongiotic histopathology, in a background of known 
PV. This patient’s rash showed no improvement after 3 months of 
dupilumab treatment.

We used our PV- and AD-distinguishing DEGs from the Trm1 
population from Fig. 5 to group these samples (table S7). CIR-A and 
CIR-B, the dupilumab–responsive cases, segregated more closely 
with AD (Fig.  6,  A  and  B). The lone dupilumab failure, CIR-E, 
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segregated with PV. To develop a test of significance, we calculated 
all-versus-all distances in the hyperdimensional plane for AD- and 
PV-specific genes in Trm1 cells and then asked whether the prox-
imity of any CIR profile was closer to the PV centroid or the AD 
centroid than expected by random chance. The statistically derived 
distances show that samples CIR-A, CIR-B, and CIR-C are signifi-
cantly more similar to AD, whereas CIR-E and CIR-F are more 
similar to PV (Fig. 6C and table S8). The histopathology of the CIRs 
that molecularly stratified with AD did not more closely resemble 
AD, nor did the histology of the CIRs that molecularly stratified with 
PV more closely resemble PV. As we were unable to classify CIRs 
merely by the presence of the previously described Tc2/TH2 and 
Tc17 subpopulations within the Trm1 cluster, these observations 

reinforced the potential value in molecularly classification using 
disease-specific gene sets. We also tested how our PV- and AD-dis-
tinguishing DEGs would classify our two LP and one BP samples. In 
both the heatmap representations and hyperdimensionality map 
(fig. S7 and table S8), we saw the BP sample segregate more closely 
with AD and the LP samples with PV.

A web interface (RashX) to visualize patient-level rash 
scRNA-seq–derived data in context of this TH2/TH17 
sample framework
Atypical rashes that are not easily classified into canonical clinical 
categories, such as the CIRs, occur frequently in dermatology clinics. 
We constructed a proof-of-principle interface, RashX (hosted at 

Fig. 4. AD and PV-specific gene module scores are elevated for their respective disease classes and classify samples from an external dataset. (A and B) Cell 
populations that corresponded to high-scoring AD and PV gene set scores. (A) AD- and (B) PV-specific lymphocyte DEG set (table S7) expression scores (calculated by 
Seurat AddModuleScore) displayed for lymphocytes on a single-cell level from seven AD samples (middle) and eight PV samples (right) in pseudocolored feature plots. 
(C) AD- and PV-specific Trm1 DEG set (table S7) scores displayed on a single-cell level for Trm1 cells in pseudocolored feature plots for four AD (left) or three PV (right) 
samples from the Reynolds et al. dataset (12). (D) Hyperdimensionality plot classification of the Reynolds et al. AD and PV validation cohort using AD- and PV-specific Trm1 
DEG set modules from this study (table S7).
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https://rashX.ucsf.edu), in which transcriptional abnormalities from 
any individual rash’s Trm1 population can be placed in context of 
the TH2/TH17 AD-PV stratification shown in Fig. 6. To support a 
universal input format, our portal accepts standard 10X Genomics 
scRNA-seq immune cell dataset matrices (in an RDS file format). 
The web interface first identifies cells in the external dataset that 
are most similar to our Trm1 population. Differential gene expres-
sion analysis for the Trm1 disease–specific genes (table S7) is then 
performed on the external dataset’s Trm1 cells in comparison to 
those from our HCs. Heatmaps for these AD- and PV-specific genes 
and a hyperdimensionality plot as in Fig. 6 are then generated for 
the external sample. To illustrate use of RashX, we included dataset 
matrices from an external AD sample and a PV sample at the web-
site portal. Example web portal outputs showed that these samples 
segregated closely to their parent class (fig. S8). Thus, we have cre-
ated a globally accessible resource allowing any researcher to place 
their disease sample scRNA-seq data in context of our Trm1 TH2/
TH17 framework.

DISCUSSION
Here, we present single-cell transcriptomic profiles of chronic in-
flammatory skin disease, encompassing 24 rash and 7 HC samples. 
We identified 41 T cell and APC subpopulations within these samples 
and produced a detailed global portrait of molecular derangements 
unique to AD and PV. Globally, we found proliferation-driven ex-
pansion of the Treg and Trm components and universal cytotoxic 
T cell exhaustion by diverse forms of chronic skin inflammation. 
Our findings indicated that Tregs usually proliferate in rashes in an 
attempt to control pathogenic skin inflammation but that one or 
more qualitative factors prevented successful regulation. Cytotoxic 
lymphocyte exhaustion was evident in every case; however, these 

cells harbored relatively few distinguishing abnormalities between 
disease classes, suggestive of a shared end state rather than a caus-
ative force.

Patient-level studies have previously attempted to identify PV- 
and AD-specific genetic changes, with a limited number of genes 
showing reproducibility between reports (7, 8, 65–68). We suspect 
that a limitation in these prior bulk profiling experiments is conflation 
of transcriptional differences arising in distinct cell populations. 
For example, both our AD and PV disease–specific transcriptional 
signatures were only found in CD69+ CD103+–resident memory 
T cells, which play central roles in chronic inflammatory disease. In 
skin disease, there is significant Trm cell infiltration of active psoriatic 
lesions (60). Underscoring their cutaneous functional importance, 
grafting of prepsoriatic human skin (and associated Trm cells) onto 
mice leads to development of psoriatic lesions, whereas blockade of 
cutaneous T cell migration by E-selectin inhibition does not improve 
PV (69, 70). Trm cells are also enriched in joints and mediate arthritis 
flares (71), and expansion and/or rejunevation of CD8+ pulmonary 
Trm cell populations after influenza infection is associated with 
aberrant fibrosis (72). The discovery of our AD- and PV-specific 
transcriptional signatures in Trm cells highlights the importance of 
this cell population in chronic tissue inflammation and identifies a 
large set of candidate effectors driving each disease, which can now 
be functionally investigated.

Transcripts distinguishing AD and PV in Trm cells included 
previously described TH2- and TH17-specific genetic abnormali-
ties in each class [e.g., IL17F, CXCL13, GNLY, and NBAS 
(9, 37, 48, 49)]. However, our data tied both known and unknown 
dysregulated genes into coherent signatures demonstrating recur-
rent patient-level segregation between the two disease classes. Each 
gene set also showed significantly enhanced interconnection in 
unbiased functional networks, indicative of biological cooperativity. 

Fig. 5. AD and PV-specific DEGs segregate discretely on the basis of unbiased pathway and network analysis. (A) Transcriptional network (qgraph) for Trm1 AD- 
and PV- specific genes (table S7). The Fruchterman-Reingold algorithm was used to determine the network layout. Color shading of the gene nodes denotes AD (green)– 
or PV (red)–up-regulated genes. Red lines represent positive correlation, whereas blue lines represent negative correlation. Edges and links are shown for the correlation 
values from scRNA-seq data, with stronger edge intensity or thicker links signifying correlation. (B) STRING protein-protein network analysis for the same Trm1 AD- and 
PV-specific genes. Color shading of the nodes denotes AD (green)– or PV (red)–specific genes.
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The PV- and AD-specific Trm1 signatures sets performed robustly, 
not only in classifying PV and AD samples from an unrelated, ex-
ternal dataset but also in discerning the TH2/TH17 bias of BP and 
LP samples. These commonalities between the BP sample and AD 
were consistent with the prominent type 2 inflammation of BP 
and its reported response to dupilumab (73). Similarly, LP exhibits 
TH1/TH17 activity, with reports of clinical improvement after ad-
ministration of IL17 antagonists used for PV (74, 75).

Our set of AD- and PV-specific Trm1 DEGs were able to match 
a subset of clinicopathologically ambiguous cases of skin inflammation 
into AD- or PV-like classes, consistent with therapeutic response 
to IL4R blockade. Although our CIRs represented only a small 

initial test set, these results suggest that 
clinical response in some fraction of 
such rashes may be predicted on the ba-
sis of their molecular similarity to exist-
ing diseases. Our findings thus make 
the case for larger, unbiased therapeutic 
trials based on the precision medicine 
approach described here.

A limitation of our study is that al-
though comparable in size to other 
studies (9, 11, 12), covariates (e.g., age 
and anatomic location) may contribute 
some variability given the relatively small 
sample size of our dataset. Further-
more, our unbiased CD45+ immune 
cell profiling strategy inevitably leads to 
certain populations, in particular APCs, 
harboring significantly fewer profiled 
single cells hindering discovery of their 
unique molecular abnormalities. Ex-
pansion of our dataset with a larger 
cohort of samples would both enable 
detection of complementary signatures 
in other subpopulations and further 
validate/generalize our T cell population 
discoveries. In addition, we anticipate 
that future samples using scRNA-seq 
approaches integrated with clonality as-
sessment will allow more complex and 
informative analyses of inflammatory 
dysregulation.

Our data, in combination with pub-
lished rash samples (11, 12), represent 
the beginnings of an inflammatory skin 
disease resource where scRNA-seq pro-
files of any rash can be compared. Our 
web interface at https://rashX.ucsf.edu 
provides an immediate means to avail 
our data and analytic methods to the 
translational community in general. By 
placing transcriptomic features of indi-
vidual rashes in the context of a large, 
existing dataset, we seek a standardized 
framework to link molecular features 
to disease prognosis and drug response 
based on contributions from clinical 
centers worldwide.

MATERIALS AND METHODS
Study design
We used CD45+ immune cell scRNA-seq to (i) more precisely define 
immune cell type–specific molecular abnormalities distinguishing 
canonical inflammatory skin diseases (i.e., PV and classic AD) and 
(ii) to use these patterns to better understand individual, indetermi-
nate cases of cutaneous inflammation displaying overlapping clini-
cal or histopathologic features of both diseases. We assessed CD45+ 
immune cells (~6000 cells per sample) using 10X Genomics 
droplet-based 3′ scRNA-seq from 31 enzymatically dissociated 

Fig. 6. CIRs show molecular stratification with AD- or PV-specific DEGs. (A) Heatmap showing relative expression 
levels (avg_log2FC) for each CIR Trm1 cell population relative to Trm 1 cells from all seven HCs. Column 1 shows 
avg_log2FC values for Trm1 cells from seven AD versus eight PV samples. Genes depicted are Trm1 AD–specific genes 
(table S7). (B) Same as (A) except genes depicted are Trm1 PV-specific genes (table S7). Column 1 shows avg_log2FC 
values for Trm1 cells from all PV versus all AD samples. (C) Hyperdimensionality plot showing stratification of CIR 
samples relative to AD and PV samples. Each AD, PV, and CIR sample is mapped on the basis of aggregate gene score 
of Trm1 population AD-specific genes (x axis) and PV-specific genes (y axis). One-sided Mann-Whitney tests used to 
calculate significance and P values shown in table S8.
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skin samples (7 AD, 8 PV, 2 LP, 1 BP, 6 CIR lesional samples, 
and 7 healthy controls). Detailed information regarding clinical 
characteristics of patient samples are in table S1.

Sample collection
Written informed consent was obtained from HC and rash-affected 
skin donors under protocols approved by the University of California, 
San Francisco (UCSF) Institutional Review Board. Punch biopsies 
(6 mm full thickness) were obtained from lesional rash–affected 
skin, whereas mammoplasty and abdominoplasty surgical skin tissue 
discards were used for healthy control samples. Diagnoses were made 
by a board-certified dermatologist on the basis of clinical evaluation 
and histopathology of a representative hematoxylin and eosin–
stained section of each skin sample reviewed by a board-certified 
dermatopathologist. The clinical characteristics and histopathologic 
diagnosis of patient samples were detailed in table S1. Samples were 
obtained from patients off of systemic immunosuppressives for 
at least 4 weeks (except for one sample) and topical steroids to the 
sampled area for at least 2 weeks before biopsy.

Immune cell isolation
Skin samples were initially placed in ice-cold phosphate-buffered 
saline (PBS) immediately after the biopsy for up to 8 hours before 
processing. Samples were then finely minced and transferred to 
3 ml of enzymatic digestion buffer [RPMI 1640 medium, 10% heat- 
inactivated fetal bovine serum (FBS), collagenase type IV (200 U/ml; 
LS004188, Worthington), and deoxyribonuclease (200ug/ml; 
DN25, Sigma-Aldrich)] at 37°C for 16 to 18 hours. After overnight 
digestion, samples were transferred to 50-ml conical tubes, shaken 
vigorously for 30  s, and then filtered through a 100-m cell 
strainer. Samples where CITE-seq antibodies were added before 
flow sorting (designated as “pre-flow” in table S10) were pelleted by 
centrifugation at 400g for 5 min and then cell surface receptors were 
blocked by adding 5 l of Human TruStain FcX (BioLegend) in 
100 l of Cell Staining Buffer (BioLegend) at 4°C for 10 min. After 
blocking, TotalSeq-A antibodies (BioLegend, see table S10) at a 
concentration of 1 g of antibody per 1 million cells and a 1:20 dilu-
tion of an anti-CD45 antibody conjugated to allophycocyanin fluo-
rophore (Thermo Fisher Scientific) were then added for 30 min at 
4°C. Cells were washed in PBS with 2% FBS, and samples were re-
suspended in 400 l of Cell Staining Buffer and filtered through a 
40-m filter before adding 4′,6-diamidino-2-phenylindole (DAPI) to 
a final concentration of 1 g/ml and flow sorting on an SH800 cell 
sorter for DAPI-negative and CD45-positive live immune cells 
(Sony Biotechnology). The samples were then washed one time 
and resuspended in Cell Staining Buffer before library preparation. 
Samples where CITE-seq antibodies were added subsequent to flow 
sorting (designated as “post-flow” in table S10) were pelleted by 
centrifugation at 400g for 5 min and then incubated with a 1:20 
dilution of an anti-CD45 antibody conjugated to allophycocyanin 
fluorophore (Thermo Fisher Scientific) in Cell Staining Buffer (Bio-
Legend) for 30 min at 4°C. Cells were washed in PBS with 2% FBS, 
and samples were resuspended in 400 l of Cell Staining Buffer and 
filtered through a 40-m filter before adding DAPI to a final con-
centration of 1 g/ml and flow sorting on a SH800 cell sorter 
(Sony Biotechnology). After gating out cell debris and doublets, 
DAPI-negative and CD45-positive live immune cells were collected 
into 3 ml of Cell Staining Buffer. Immune cells were then spiked 
with 5% murine splenocytes to serve as a nonspecific background 

staining control for CITE-seq antibodies (see table S1 for spike-in 
information). Cell surface receptors were blocked by adding 5 l of 
Human TruStain FcX (BioLegend) in a 100-l reaction volume at 
4°C for 10 min. After blocking, TotalSeq-A antibodies (BioLegend, 
see table S11) were added at a concentration of 0.5 g per 1 million 
cells per antibody for 30 min at 4°C. The sample was then washed 
three times and resuspended in Cell Staining Buffer before library 
preparation.

scRNA-seq and CITE-seq library preparation and sequencing
scRNA-seq libraries profiling ~6000 cutaneous immune cells per 
sample were prepared by the Genomics Core Facility, UCSF Insti-
tute for Human Genetics using the Chromium Single-Cell 3′ Solution 
V2 or V3 kits (10X Genomics, Pleasanton, CA) per the manufacturer’s 
protocol. For CITE-seq samples, 0.2 pmol of antibody-derived tag 
(ADT) additive primer was added at the RNA library cDNA ampli-
fication step. CITE-seq libraries were then prepared according to 
TotalSeq-A antibody manufacturer’s protocol (BioLegend). In brief, 
70 l of ADT-containing cDNA amplification supernatant was pu-
rified with two rounds of 2X solid phase reversible immobilization 
(SPRI) beads (Beckman-Coulter) and then amplified for 14 to 20 
cycles using HiFi HotStart ReadyMix (2X, KAPA, Roche Sequenc-
ing and Life Science, Wilmington, MA) and 2.5 M oligos corre-
sponding to SI polymerase chain reaction primer and TruSeq Small 
RNA PCR Primer Index-6 primers. After amplification, the re-
sulting amplification products were purified by a 1.2X SPRI bead 
cleanup and then quantified with the Qubit Double-Stranded DNA 
High Sensitivity Assay Kit. Quality for scRNA and ADT libraries 
was assessed by a TapeStation D1000 ScreenTape (Agilent Technol-
ogies) and quantitated using the KAPA Library Quantitation Kit 
before sequencing. mRNA and ADT libraries were sequenced using 
an Illumina HiSeq 4000 with paired-end 150–base pair sequencing 
parameters. Detailed information on sequencing metrics are shown 
in table S9.

scRNA-seq and CITE-seq data processing
scRNA-seq and ADT FASTQ files were aligned and quantified 
using Cell Ranger Software (version 3.0.2, 10X Genomics) against the 
human GRCh38 transcriptome (v 3.0.0). For samples with mouse 
splenocytes spike-in, FASTQ files were aligned to a combined 
human and mouse genome reference GRCh38 + mm10 (v3.1.0). 
Empty droplets were removed as part of internal Cell Ranger 
quality control algorithms. Quality of cells was assessed on the 
basis of the total number of detected genes per cell and the percentage 
of mitochondrial gene counts, with removal of cells containing 
less than 100 or more than 6000 unique genes. Cells with percentage 
of reads mapped to mitochondrial genes exceeding 20% were 
also removed.

Doublets were detected and removed by the function scDblFinder 
(R package, v1.5.7) (76). Similar results were obtained using the 
DoubletFinder package (77). Counts were normalized using the 
NormalizeData function in Seurat using the scale factor (1e4) with 
natural log transformation. Highly variable genes (HVGs; 2000) 
were then selected using FindVariableFeatures() in Seurat using the 
“versust” method. These HVGs were then scaled and centered on 
the basis of individual expression values.

ADT samples with >35% antibody reads in cells were kept for 
downstream analysis (table S11). For ADT data, we used Seurat 
centered log-ratio normalization to calculate the mean and SD for a 
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given antibody in mouse cells (to estimate nonspecific background 
staining) and then used a cutoff of 1.5 × SD + mean, where the 
ADT density distribution for mouse and human cells was clearly 
separated (fig. S9 and table S10) (17).

Dimension reduction and unsupervised clustering
Principal components were computed using the RunPCA() function 
in Seurat based on HVGs. We then provided this principal compo-
nents analysis matrix to the Harmony algorithm (78) within the Seurat 
workflow using sample, flow order, and mouse spike-in as technical 
covariates for batch correction. The batch-corrected coordinate space 
was then used for dimensional reduction and embedding as a UMAP 
representation under the RunUMAP() function in Seurat. The batch- 
corrected coordinate space was also used to compute the nearest 
neighbor graph by FindNeighbors() function (Seurat). The nearest- 
neighbor graph was applied to FindClusters() with the Louvain 
algorithm. Fourteen clusters with a resolution of 0.4 were retained 
on the basis of clustree results.

Cluster annotation
Cluster-specific differentially expressed genes were detected using 
the FindMarkers function in Seurat running MAST and was limited 
to genes with expression greater than 25% in either of the two popu-
lations tested, combined with a fold change cutoff of 0.25 (log2 scale). 
The P values were adjusted using the Bonferroni correction for 
multiple testing. Two major groups (HLA-DRA+ myeloid cells and 
CD3+ or KLRB1+ lymphoid cells) were subclustered for additional 
rounds of feature detection, embedding, dimensionality reduction, 
visualization, and clustering under the above-described clustering 
workflow, with further subclustering of an indeterminate CD3+/KLRB1+ 
cluster enriched in cycling transcripts. (fig. S1C and tables S3 and 
S4). After removal of clusters containing a sizable proportion of 
nonimmune or low-quality cells, 21 CD3+/KLRB1+ clusters and 
19 HLA−DR+ clusters were retained. The final 41 cluster immune 
cell object was composed of these subclustered populations and the 
original mast cell cluster and underwent supervised clustering based 
on 1328 high variable feature cluster markers.

Weighted Gaussian linear model for differential immune cell 
composition analysis
A weighted Gaussian linear model was used to analyze differential 
immune cell composition between rash-affected and HC samples. 
We denote Nik as the number of cells in a given sample (i) and a given 
cluster (k) and  Ni = ∑ k  N i  

k   as the total number of cells in sample 
i. For each cluster k and sample i, let pik = Nik/Ni. We applied 
weighted linear models on the log cluster compositions, log(pik), 
with sample disease status as the predictor and the SD of log pro-
portion, obtained using the delta method, as weights. Differential 
clusters were then selected with adjusted P value (adj_p_val) < 0.05 
for the two sample t test for the coefficient for disease status, which 
characterizes the average changes of the log proportion between 
rash-affected and normal samples.

Differential expression analysis between rash-affected 
and normal skin
Differential expression analysis was performed between disease 
groups on a per cluster basis using the FindMarkers function from 
the Seurat R package using MAST (40) or Wilcox (Wilcoxon rank 
sum test) differential expression tests. For AD (or PV) versus HC 

DEGs, we performed a differential expression analysis with all AD 
(or PV) samples combined against all HC samples combined, on a 
per cluster basis, and then retained DEGs with adj_p_val < 0.001 
and absolute average log2 fold change (abs avg_log2FC) > 0.425. For 
AD versus PV DEGs, we merged all statistically significant (P value < 
0.001, |avg_log2FC| > 0.425) DEGs from the above AD versus 
HC and PV versus HC DEG comparisons. Using this gene list, we 
performed differential expression analysis between AD and PV 
samples. We then retained DEGs with |avg_log2FC| > 0.425 and 
adj_p_val < 0.001. For the 80% heterogeneity filter DEGs, we created 
a gene set containing significant DEGs from all combined AD (or 
PV) versus all combined HC sample comparisons from every clus-
ter to perform differential expression analysis for each individu-
al AD (or PV) sample versus all combined HCs and then retained 
DEGs with adj_p_val  <  0.001 and abs avg_log2FC >0.425. The 
DEGs from the seven or eight individual AD (or PV) comparisons 
were then combined, and genes that were significantly expressed 
in at least 80% of AD (or PV) individual samples comparisons were 
retained. For the 80% heterogeneity filter AD versus PV compari-
son, we merged all statistically significant (P value < 0.001, |avg_
log2FC| > 0.425) DEGs for the AD versus HC (80% filter) and PV 
versus HC (80% filter) DEG comparisons. Using this gene set, we 
performed differential expression analysis between all AD and PV 
samples. We then retained DEGs with |avg_log2FC| > 0.425 and ad-
j_p_val < 0.001. DEG gene set scores (calculating average expres-
sion levels in a single cell minus aggregated expression of a control 
gene set) were generated using AddModuleScore() in the Seurat 
package (79).

Transcriptional network visualization
To map the pairwise (bivariate) single-cell transcriptional correla-
tions between variables and the structures that emerge from these 
pairwise correlations, we used a method analogous to correlation net-
work analysis (80). We generated a subsetted data matrix for Trm1 
cluster cells (each listed in a separate row) with reads counts for AD- 
specific and PV-specific genes from Trm1 (|avg_log2FC|  >  0.425, 
adj_ p_val < 0.001; each in a separate column). Then, the cor() func-
tion in the R stats packages (81) was used to obtain Spearman 
coefficients of gene-gene correlation. We then plotted an overall 
transcriptional network graph in the R package qgraph (version 1.3.2) 
(61) using the correlation matrix. The coordinates of each node 
were computed using the Fruchterman-Reingold algorithm, where 
the attraction between nodes is proportional to the strength of the 
correlation between two genes (nodes).

STRING protein interaction network visualization
AD- versus PV-specific transcripts (|avg_log2FC| > 0.425, adj_ 
p_val < 0.001) from Trm1 were mapped onto the STRING protein 
interaction network (62). We used the STRINGdb package in R 
to link the genes to proteins in the STRING database and subsetted 
the network to only genes corresponding to our 110 DEGs using 
the string_db$map object in STRINGdb. A combined score greater 
than 0.4 was used as a cutoff. This resulted in 108 proteins (2 genes 
did not map to a protein). The resulting subnetwork constrained 
to these 108 proteins consisted of 98 nodes with connections to 
other nodes. The retained interactions were visualized by igraph, 
where each node corresponds to a gene/protein and each edge 
represents existing experimental and database evidence for protein 
interactions.
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We quantified the segregation and tested the significance between the 
AD-specific and PV-specific nodes on this graph by performing 
permutation tests conditional on the observed network. We randomly 
permuted the AD- or PV- specific labels for the 98 nodes (genes) and 
calculated the normalized cut score; we repeated this 100,000 times 
to construct a null distribution for the normalized cut score, condi-
tional on this gene network. A P value was calculated as the proportion 
of the resampled normalized cut scores smaller than the observed 
normalized cut score, resulting in a P value of 0.001.

Hyperdimensionality proximity analysis
Having identified two sets of DEGs in AD and PV from Trm1 cells 
(table S7), we wished to visualize how samples occurred in this 
hyperdimensional space, summarized by these two axes. We took 
the aggregate gene approach described in Cao et al. (82), in which 
genes along one axis for any particular cell are summed over nor-
malized gene counts with pseudocount values of 1. Because there 
were two gene sets of interest, we calculated these two AD and PV 
signatures for each cell. Cells were then grouped within sample 
by geometric mean. We then considered these samples bound to 
arbitrary regions within this hyperdimensional space and visualized 
these regions with hull plots using the R/ggforce (83) with con-
cavity = 5. We calculated whether indeterminate (CIR), BP, LP, or 
external dataset AD/PV samples were more proximate to the PV or 
AD region by calculating the sample- wise Canberra distance matrix 
(84) across the hull plane. We then tested whether the proximity 
for a sample was significantly closer to PV or AD by one-sided 
Mann-Whitney tests for the lesser distance.

Statistical analyses
Statistical analyses were performed with RStudio v.1.4.1717 and 
GraphPad Prism (version 8.0; GraphPad Software, La Jolla, CA). 
Differential immune cell composition between two groups was 
analyzed with a weighted Gaussian linear model. For single-cell 
analysis, we used Seurat, and a generalized linear model framework 
that treats cellular detection rate as a covariate or a nonparametric 
Wilcoxon rank sum test with Bonferroni correction. The length of a 
segment connecting two gene signatures was measured using Eu-
clidean distance or Canberra distance. Pearson’s correlation coeffi-
cient was calculated with the R function cor(). Adjusted P < 0.05 is 
considered significant for Seurat-based analyses, whereas P < 0.05 
was used for other analyses.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/sciimmunol.abl9165
Figs. S1 to S9
Tables S1 to S11

View/request a protocol for this paper from Bio-protocol.
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Gene interface tool to identify your rash
Many chronic skin conditions are caused by imbalances in the immune milieu of the environment, yet many of these
changes remain under characterized. Here, Liu and Wang et al. used single-cell profiling of immune cells from skin
samples of atopic dermatitis (AD), psoriasis vulgaris (PV), and healthy controls to profile the immune signatures of the
different diseases. They found that AD and PV samples had distinct T cell resident memory, innate lymphoid cell, and
CD8+ T cell gene signatures that could be validated in an external dataset. Using these signatures, they created a
tool that could classify previously clinicopathologically indeterminate rash samples. This tool is now available as a web
resource (RashX) for anyone to use to help further classify skin rashes.
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