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Abstract

Traditional Hardy–Weinberg equilibrium (HWE) tests (the v2 test and the exact test) have long been used as a metric for evaluating geno-
type quality, as technical artifacts leading to incorrect genotype calls often can be identified as deviations from HWE. However, in data sets
composed of individuals from diverse ancestries, HWE can be violated even without genotyping error, complicating the use of HWE test-
ing to assess genotype data quality. In this manuscript, we present the Robust Unified Test for HWE (RUTH) to test for HWE while account-
ing for population structure and genotype uncertainty, and to evaluate the impact of population heterogeneity and genotype uncertainty
on the standard HWE tests and alternative methods using simulated and real sequence data sets. Our results demonstrate that ignoring
population structure or genotype uncertainty in HWE tests can inflate false-positive rates by many orders of magnitude. Our evaluations
demonstrate different tradeoffs between false positives and statistical power across the methods, with RUTH consistently among the best
across all evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform HWE tests across millions of
markers and hundreds of thousands of individuals while supporting standard VCF/BCF formats. RUTH is publicly available at https://www.
github.com/statgen/ruth.

Keywords: population structure; principal components analysis; next-generation sequencing; genotype likelihoods

Introduction
Hardy–Weinberg equilibrium (HWE) is a fundamental theorem of
population genetics and has been one of the key mathematical
principles to understand the characteristics of genetic variation
in a population for more than a century (Hardy 1908; Weinberg
1908). Genetic variants in a homogeneous population typically
follow HWE except for unusual deviations owing to very strong
case–control association and enrichment (Nielsen et al. 1998), sex
linkage, or nonrandom sampling (Waples 2015).

HWE tests are often used to assess the quality of microsatel-
lite (Van Oosterhout et al. 2004), SNP-array (Wigginton et al. 2005),
and sequence-based (Danecek et al. 2011) genotypes (GTs).
Testing for HWE may reveal technical artifacts in sequence or GT
data, such as high rates of genotyping error and/or missingness,
or sequencing/alignment errors (Nielsen et al. 2011). It can also
identify hemizygotes in structural variants which are incorrectly
called as homozygotes (McCarroll et al. 2006). Quality control for
array- or sequence-based GTs typically includes a HWE test to de-
tect and filter out artifactual or poorly genotyped variants (Laurie
et al. 2010; Nielsen et al. 2011).

Although HWE tests are commonly and reliably used for vari-
ant quality control in samples from homogeneous populations,
applying them to more diverse samples remains challenging.
When analyzing individuals from a heterogeneous population,
the standard HWE tests may falsely flag real, well-genotyped var-
iants, unnecessarily filtering them out for downstream analyses
(Hao and Storey 2019). This problem is important since genetic
studies increasingly collect genetic data from heterogeneous pop-
ulations. In principle, HWE tests in these structured populations
can be performed on smaller cohorts with homogenous back-
grounds (Bycroft et al. 2018), and the test statistics combined
using Fisher’s or Stouffer’s method (Mosteller and Fisher 1948;
Stouffer 1949). However, such a procedure requires much more
effort than using a single HWE test across all samples. In addi-
tion, this approach cannot account for any heterogeneity within
each of the smaller cohorts.

Here, we describe RUTH (Robust Unified Test for Hardy–
Weinberg Equilibrium) which tests for HWE under heterogeneous
population structure. Our primary motivation for developing
RUTH is to robustly filter out artifactual or poorly genotyped var-
iants using HWE test statistics. RUTH is (1) computationally effi-
cient, (2) robust against various degrees of population structure,
and (3) flexible in accepting key representations of sequence-
based GTs including best-guess GTs and genotype likelihoods
(GLs). We perform systematic evaluations of RUTH and

alternative methods for HWE testing using simulated and real
data to explore the advantages and disadvantages of these meth-
ods for samples of diverse ancestries.

Materials and methods
Unadjusted HWE tests
Consider a study of n participants with true (unobserved) GTs
g1; g2; . . . ; gn at a bi-allelic variant coded as 0 (reference homozy-
gote), 1 (heterozygote), or 2 (alternate homozygote). Represent
the best-guess/hard-call (observed) GTs as ĝ1; ĝ2; . . . ; ĝn. A simple
HWE test uses the v2 statistic to compare the expected and ob-
served GT counts, assuming no population structure and no GT
uncertainty. The v2 HWE test statistic is defined as Tv2 ¼P2
k¼0

ck � ĉkð Þ2=ĉk where cj ¼
Pn

i¼0 Iðĝi ¼ jÞ (ignoring missing GTs),
p̂ ¼ ðc1 þ 2c2Þ=2n; q̂ ¼ 1� p̂; ĉ0 ¼ nq̂2

; ĉ1 ¼ 2np̂q̂; and ĉ2 ¼ np̂2.
Under HWE, the asymptotic distribution of Tv2 is assumed to fol-
low v2

1 (Rohlfs and Weir 2008). An exact test is known to be more
accurate for finite samples, particularly for rare variants
(Wigginton et al. 2005), and using mid-P-values instead of exact
P-values will lead to slightly less conservative estimates
(Graffelman and Moreno 2013). HWE tests stratified by case–con-
trol status are known to prevent an inflation of Type I errors for
disease-associated variants (Li and Li 2008). Widely used software
tools such as PLINK (Purcell et al. 2007) and VCFTools (Danecek
et al. 2011) implement an exact HWE test based on best-guess
GTs. We will refer to the exact test as the unadjusted test.

Existing HWE tests accounting for structured
populations
The unadjusted HWE test assumes a homogeneous population. If
a study is composed of a set of discrete structured subpopula-
tions, a straightforward extension of the unadjusted test is to (1)
stratify each study participant into exactly one of the subpopula-
tions, (2) perform the unadjusted HWE test for each subpopula-
tion separately, and (3) meta-analyze test statistics across
subpopulations to obtain a combined P-value using Stouffer’s
method (Stouffer et al. 1949). More specifically, let z1; z2; . . . ; zs be
the z-scores from HWE test statistics for s distinct subpopulations
with sample sizes n1; n2; . . . ; ns. A combined meta-analysis
HWE test statistic across the subpopulations is Tmeta ¼

Ps
i¼1

�
zi
ffiffiffiffi
ni
p Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPs
i¼1 ni

q
, which asymptotically follows a standard normal

distribution when each subpopulation follows HWE.
When the population cannot be easily stratified into distinct

subpopulations (e.g., intra-continental diversity or an admixed
population), a quantitative representation of genetic ancestry,
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such as principal component (PC) co-ordinates or fractional mix-
ture over subpopulations, can be more useful for representing ge-
netic diversity (Rosenberg et al. 2002; Price et al. 2006). HWES
takes PCs as additional input to perform HWE tests under popu-
lation structure with logistic regression (Sha and Zhang 2011),
and a similar idea was suggested by Hao et al. (2016). However,
existing implementations do not support sequence-based GTs
(where GT uncertainty may remain at low or moderate sequenc-
ing depth) or other commonly used formats for genetic array
data. A recent method PCAngsd estimates PCs from uncertain
GTs represented as GLs (Meisner and Albrechtsen 2019) and uses
these estimates to perform a likelihood ratio test (LRT) for HWE,
similar to the LRT version of RUTH with differences in computa-
tional performance (see below).

Robust HWE testing with RUTH
Here we describe RUTH (Robust and Unified Test for Hardy–
Weinberg equilibrium) to enable HWE testing under structured
populations, which is especially useful for large sequencing stud-
ies. We developed RUTH to produce HWE test statistics to allow
quality control of sequence-based variant callsets from increas-
ingly diverse samples. RUTH models the uncertainty encoded in
sequence-based GTs to robustly distinguish true and artifactual
variants in the presence of population structure, and seamlessly
scales to millions of individuals and genetic variants.

We assume the observed GT for individual i can be repre-
sented as a GL LðGÞi ¼ PrðDataijgi ¼ GÞ, where Datai represents ob-
served data (e.g., sequence or array), and gi 2 f0; 1; 2g the true
(unobserved) GT. For example, GLs for sequence-based GTs can
be represented as LðGÞi ¼

Qdi
j¼1 Prðrijjgi ¼ G; qijÞ where di is the se-

quencing depth, rij is the observed read, and qij is the correspond-
ing quality score (Ewing and Green 1998; Jun et al. 2012). We
model GLs for best-guess GTs ĝi from SNP arrays as L Gð Þ

i ¼
1� eið Þ2; 2ei 1� eið Þ; e2

i for ĝi ¼ 2; 1; 0 where ei is the assumed
per-allele error rate. Imputed GTs may also be approximately
modeled using this framework, but the current implementation
requires creating a pseudo-GL to describe this uncertainty (see
Discussion section).

Accounting for population structure with
individual-specific allele frequencies
We account for population structure by modeling individual-spe-
cific allele frequencies from quantitative coordinates of genetic
ancestry such as PCs, similar to Hao et al. (2016). For any given
variant, instead of assuming that GTs follow HWE with a single
universal allele frequency across all individuals, we assume that
GTs follow HWE with heterogeneous allele frequencies specific to
each individual, modeled as a function of genetic ancestry. Let
xi 2 R

k represent the genetic ancestry of individual i, where k is
the number of PCs used. We estimate individual-specific allele
frequency p as a bounded linear function of genetic ancestry

pðxi; bÞ ¼

bTxi e � bTxi � 1� e

e bTxi < e

1� e bTxi > 1� e;

8>>>><
>>>>:

where e is the minimum frequency threshold. We estimate b̂

with an Expectation–Maximization (E-M) algorithm. We used e ¼
1=4n in our evaluation. Although we used a linear model for
pðxi; bÞ for computational efficiency, it is straightforward to apply

a logistic model, which is arguably better (Yang et al. 2012; Hao

et al. 2016).
Let pi ¼ p xi; bÞ and qi ¼ 1� pi

�
be the individual specific allele

frequencies of the nonreference and reference alleles for individ-

ual i. Under the null hypothesis of HWE, the frequencies of GTs

(0, 1, 2) are q2
i ; 2piqi; p2

i

h i
. Under the alternative hypothesis, we

assume that these frequencies are q2
i þ hpiqi; 2piqið1� hÞ;

h
p2

i þ

hpiqi� where h is the inbreeding coefficient. This model is a

straightforward extension of a fully general model where pi; qi is

identical across all samples. Then the log-likelihood across all

study participants is

l b; hÞ ¼
Xn

i¼1
log L 0ð Þ

i q2
i þ hpiqi

� �
þ L 1ð Þ

i 2piqi 1� hð Þ þ L 2ð Þ
i p2

i þ hpiqi

� �h i�

Under both the null ðh ¼ 0Þ and alternative h 6¼ 0ð Þ hypotheses,

we maximize the log-likelihood using an E-M algorithm

(Dempster et al. 1977). As we empirically observed quick

convergence within several iterations in most cases, we used a

fixed (n¼ 20) number of iterations in our implementation

(Supplementary Figure S2).

RUTH score test
The score function of the log-likelihood is the derivative of the

log-likelihood with respect to h:

U hð Þ ¼
Xn

i¼1

piqi Lð0Þi � 2L 1ð Þ
i þ Lð2Þi

h i

Lð0Þi q2
i þ hpiqi

� �
þ Lð1Þi 2piqið1� hÞ þ Lð2Þi p2

i þ hpiqi

� �

¼
Xn

i¼1
ui hð Þ

Since u
0

i hð Þ ¼ �u2
i hð Þ, we construct a score test statistic of H0 :

h ¼ 0 vs H1 : h 6¼ 0 as:

Tscore ¼
Uð0Þ½ �2

Ið0Þ ¼
Pn

i¼1 ui 0ð Þ
� �2
Pn

i¼1 u2
i 0ð Þ

where I(0) is the Fisher information under the null hypothesis.

Under the null, Tscore has an asymptotic v2 distribution with one

degree of freedom, i.e., Tscore � v2
1. A detailed algorithm is shown

in Supplementary Figure S1.

RUTH likelihood ratio test
The log-likelihood function l b; hÞð can also be used to calculate an

LRT statistic:

TLRT ¼ 2½max
b;h

l ðb; hÞ �max
b

l ðb; 0Þ�:

Like the score test, we estimate MLE parameters b; h iteratively

using an E-M algorithm to test H0 : h ¼ 0 vs H1 : h 6¼ 0. Under the

null hypothesis, the asymptotic distribution of TLRT is expected

to follow v2
1. This test is very similar to the likelihood-ratio test

proposed by PCAngsd (Meisner and Albrechtsen 2019), except

PCAngsd does not re-estimate b under the alternative hypothesis.

In principle, the RUTH LRT should be slightly more powerful ow-

ing to this difference; we expect the practical difference in power

to be small, as deviations from HWE usually do not change the

estimates of b substantially.
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Simulation of GTs and sequence reads under
population structure
We simulated sequence-based GTs under population structure
using the following procedure. First, for each variant, we simu-
lated an ancestral allele frequency and population-specific allele
frequencies. Second, we sampled unobserved (true) GTs based on
these allele frequencies. Third, we sampled sequence reads based
on the unobserved GTs. Fourth, we generated GLs and best-guess
GTs based on sequence reads. Our goal was to simulate variants
such that each subpopulation will have different average allele
frequencies from other subpopulations.

To simulate ancestral and population-specific allele
frequencies, we followed the procedure of Balding and Nichols
(1995), except we sampled ancestral allele frequencies from p �
Uniformð0; 1Þ instead of p � Uniformð0:1; 0:9Þ to include

rare variants. For each of K 2 f1; 2; 5; 10g populations, we
sampled population-specific allele frequencies from pk � Beta

p 1�Fstð Þ
Fst

; ð1�pÞ 1�Fstð Þ
Fst

� �
, where k 2 f1; . . . ;Kg, and Fst 2

f0:01; 0:02; 0:03; 0:05; 0:10g was the fixation index to quantify
the differentiation between populations, as suggested by
Holsinger (2004) and implemented in the previously published
studies (Holsinger et al. 2002; Balding 2003). Because pk no longer
follows the uniform distribution, we used rejection sampling to
ensure that �p ¼ 1

K

PK
k¼1

pk is uniformly distributed across 100 bins
across simulations to avoid artifacts caused by systematic differ-
ences in allele frequencies.

The unobserved GT Gi 2 f0; 1; 2g for individual i 2 f1; . . . ; nkg,
belonging to population k with sample size nk, was simulated

from GT frequencies q2
k þ h pkqk; 2pkqk 1� hð Þ; p2

k þ h pkqk

� �
,

where qk ¼ 1� pk and h 2 �min qk
pk
; pk

qk

� �
; 1

h i
quantifies deviation

from HWE; h ¼ 0 represents HWE, whereas h < 0 and h > 0 repre-
sent excess heterozygosity and homozygosity compared to HWE
expectation, respectively. In our experiments, we evaluated
h 2 f0;60:01;60:05;60:1; 60:5g. When h was smaller than the
minimum possible value for a specific population, we replaced
it with the minimum value.

We simulated sequence reads based on unobserved GTs, se-
quence depths, and base-call error rates. To reflect the variation
of sequence depths between individuals, we simulated the mean
depth of each sequenced sample as li � Uniformð1; 2D� 1Þ,
where D is the expected depth and D ¼ 5 and D ¼ 30, representing
low-coverage and deep sequencing, respectively. For each se-
quenced sample and variant site, we sampled the sequence
depth from di � PoissonðliÞ. Each sequence read carried either
of the possible unobserved (true) alleles rij 2 f0; 1g, where
j 2 f1; . . . ; dig. Given unobserved GT Gi, we generated
rij � Bernoulli Gi

2

� �
, with observed allele oij ¼ 1� eij

� �
rij þ eij 1� rij

� �
flipping to the other allele when a sequencing error occurs with
probability eij � Bernoulli eð Þ. We used e ¼ 0:01 throughout our sim-
ulations (which corresponds to phred-scale base quality of 20)
and assumed that all base-calling errors switched between refer-
ence and alternate alleles.

We then generated GLs and best-guess GTs from the simu-
lated alleles. Let ti ¼

Pdi
j¼1 oij be the observed alternate allele

count. The GLs for the three possible GTs are
Lð0Þi ¼ 1� eð Þdi�ti eð Þti ; Lð1Þv ¼ 0:5di ; Lð2Þi ¼ eð Þdi�ti 1� eð Þti . We called
best-guess GTs by using the overall ancestral allele frequency �p
for a given variant as the prior, then calling the GT corresponding
to the highest posterior probability among

L 0ð Þ
i ð1��pÞ2; 2Lð1Þi �pð1��pÞ2; Lð2Þi �p2

� �
for each individual.

For each possible combination of Fst, K, and h, we generated

50,000 independent variants across a set of n ¼ 5000 samples
with per-ancestry samples sizes nk ¼ n=K.

Evaluation of Type I error and statistical power
We used different P-value thresholds, Fst values, number of an-
cestry groups K, and average sequencing depth D to determine
the number of variants significantly deviating from HWE. To
evaluate Type I error, we simulated sequence reads under HWE
(h ¼ 0) and calculated the proportion of significant variants at
each P-value threshold. In RUTH tests, we assumed that PCs were
accurately estimated using true GTs unless indicated otherwise.
For real data, we summarized ancestral information by projec-
ting PCs estimated from full genomes onto the reference PC space
of the Human Genome Diversity Project (HGDP) panel (Li et al.
2008) using verifyBamID2 (Zhang et al. 2020), similar to the proce-
dure for variant calling in the TOPMed Project, which has inte-
grated RUTH as part of its quality control pipeline (https://github.
com/statgen/topmed_variant_calling).

In all data sets, we evaluated the tradeoff between Type I
Error and power for each method using precision-recall curves
(PRCs) and receiver-operator characteristic curves (ROCs). In
simulated data, we considered variants with h ¼ 0 to be true neg-
atives and variants with h ¼ �0.05 to be true positives. For real
data, we labeled high-quality (HQ) variants as negative and low
quality (LQ) variants as positive.

Data source
To evaluate our method, we used sequence-based GT data from
the 1000 Genomes Project (1000G) (Auton et al. 2015) and the
Trans-Omics Precision Medicine (TOPMed) Project (Taliun et al.
2021). In both cases, we used subsets of variants from chromo-
some 20. For 1000G, we started with 1,812,841 variants in 2504
individuals, with an average depth of 7:0�. For TOPMed,
we started with 12,983,576 variants in 53,831 individuals, with an
average depth of 37:2�.

Application to 1000 genomes data
To test our method on 1000G data, we first needed to define
two sets of variants: one set which is expected to follow HWE,
and another set which is expected to deviate from HWE. Unlike
simulated data, variants in 1000G are not clearly classified into
“true” or “artifactual,” so evaluation of false positives and power
is less straightforward. We focused on two subsets of variants in
chromosome 20 which serve as proxies for these two variant
types. We selected non-monomorphic sites found in both the
Illumina Infinium Omni2.5 genotyping array and in HapMap3
(The International HapMap Consortium et al. 2010) as HQ var-
iants that mostly follow HWE after controlling for ancestry, end-
ing up with 17,740 variants. We selected variants that displayed
high discordance between duplicates or Mendelian inconsisten-
cies within family members in TOPMed as LQ variants which
should be enriched for deviations from HWE even after account-
ing for ancestry, ending up with 10,966 variants. Among 329,699
LQ variants from TOPMed in chromosome 20, we found that
only 10,966 overlap with 1000G samples. We suspect that a sub-
stantial fraction of these 10,966 LQ variants are true variants
since they passed all of the 1000G Project’s quality filters.
Nevertheless, we still expect a much larger fraction of these LQ
variants to deviate from HWE compared to HQ variants.

We evaluated multiple representations of sequence-based
GTs from 1000G. As 1000G samples were sequenced at relatively
low-coverage of 7:0� on average, best-guess GTs inferred only
from sequence reads (raw GT) tend to have poor accuracy.
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Therefore, the officially released best-guess GTs in 1000G were
estimated by combining GLs, calculated based on sequence
reads, with haplotype information from nearby variants
through linkage-disequilibrium (LD)-aware GT refinement using
SHAPEIT2 (Delaneau et al. 2013). This procedure resulted in more
accurate GTs (LD-aware GT), but it implicitly assumed HWE dur-
ing refinement. As different representations of sequence GTs
may result in different performance in HWE tests, we evaluated
all three representations—raw GT, LD-aware GT, and GL. In all
tests of RUTH using hard GT calls, we assumed the error rate for
GT-based GTs to be 0.5%, which is representative of a typical
non-reference GT error rate for SNP arrays. We restricted our
analyses to biallelic variants. The positions and alleles of 1000G
and TOPMed variants were matched using the liftOver software
tool (Kuhn et al. 2013).

We evaluated all tests as described above. For meta-analysis
with Stouffer’s method, we divided the samples into 5 strata, us-
ing the five 1000G super population code labels—African (AFR),
Admixed American (AMR), East Asian (EAS), European (EUR), and
South Asian (SAS). To obtain PC co-ordinates for 1000G samples,
we estimated 4 PCs from the aligned sequence reads (BAM) with
verifyBamID2 (Zhang et al. 2020), using PCs from 936 samples
from the Human Genome Diversity Project (HGDP) panel as refer-
ence coordinates. The RUTH score test and LRT used these PCs as
inputs, along with GTs in raw GT, LD-aware GT, and GL formats.
For PCAngsd, we used GLs from all variants tested as the input.
We limited the analysis to a single chromosome due to the heavy
computational requirements of PCAngsd.

Application to TOPMed data
We analyzed variants from 53,831 individuals from the TOPMed
sequencing study (Taliun et al. 2021). These samples came from
multiple studies from a diverse spectrum of ancestries, leading to
substantial population structure. Using the same criteria as our
1000G analysis, we identified 17,524 HQ variants and 329,699
low-quality variants across chromosome 20. Since TOPMed
genomes were deeply sequenced at 37:2� ð64:5�), LD-aware GT
refinement was not necessary to obtain accurate GTs. Therefore,
we used two GT representations—raw GT and GL—in our evalua-
tions. This GT data contained no missingness.

Similar to 1000G, for best-guess GTs (raw GT), we used PLINK
for the unadjusted test. For meta-analysis, we assigned each
sample to one of the five 1000G super populations as follows.
First, we summarized the genetic ancestries of aligned sequenced
genomes with verifyBamID2 by estimating 4 PCs using HGDP as
reference. Second, we used Procrustes analysis (Dryden and
Mardia 1998; Wang et al. 2010) to align the PC coordinates of
HGDP panels (to account for different genome builds) so that the
PC coordinates were compatible between TOPMed and 1000G
samples. Third, for each TOPMed sample, we identified the 10
closest corresponding individuals from 1000G using the first 4 PC
coordinates with a weighted voting system (assigning the closest
individual a score of 10, next closest a score of 9, and so on until
the 10th closest individual is assigned a score of 1, then adding
up the scores for each super population) to determine the super
population code that had the highest sum of scores, and there-
fore best described that sample. In this way, we classified 15,580
samples as AFR, 4836 as AMR, 29,943 as EUR, 2960 as EAS, and
716 as SAS. Among these samples, 94.5% had the same super
population code for all 10 nearest 1000G neighbors. To evaluate
the RUTH score test and LRT for both raw GT and GL, we used 4
PCs estimated by verifyBamID2 (Zhang et al. 2020), consistent
with the method applied for the 1000G data.

Impact of ancestry estimates on adjusted HWE
tests
We examined the effect of changing the number of PCs used as
input for RUTH tests by using 2 PCs as opposed to 4 PCs. We also
evaluated the impact of using different approaches to classify an-
cestry when adjusting for population structure with meta-analy-
sis. By default, our analysis classified the 1000G subjects into 5
continental super populations based on published information
(Auton et al. 2015). For TOPMed, the best-matching 1000G conti-
nental ancestry was carefully determined using the PCA-based
matching strategy described above. However, in practice, ances-
try classification may be performed with a coarser resolution (Jin
et al. 2019). To mimic plausible scenarios in which sample ances-
tries are not carefully determined, we used k-means clustering
on the first 2 PCs of our samples to divide individuals into three
distinct groups, roughly corresponding to East Asian, European,
and African populations, and performed meta-analyses based on
this coarse classification for both 1000G and TOPMed data.

Data availability
RUTH is available at https://github.com/statgen/ruth. GT data
from 1000G are available from the International Genome Sample
Resource at https://www.internationalgenome.org (last accessed
March 22nd, 2021). TOPMed data are available via a dbGaP appli-
cation for controlled-access data (see https://www.nhlbiwgs.org
[last accessed March 22nd, 2021] for details). Supplementary
materials have been uploaded to figshare: https://doi.org/
10.25386/genetics.14068970.

Results
Simulation: effect of GT uncertainty
To evaluate the impact of GT uncertainty, we first compared
tests in the absence of population structure (i.e., single ancestry).
For the unadjusted test, we used only best-guess GTs. For
PCAngsd, we used only GLs. For RUTH score and LRTs, we used
both.

Using GLs over GTs substantially reduced Type I errors in
HWE tests, especially in low-coverage data (Figure 1, A–C). For ex-
ample, the standard HWE test based on GTs resulted in a 229-
fold inflation (22.9%) at P < 0.001 (Figure 1B and Supplementary
Table S1), a threshold which allows the evaluation of Type I error
with reasonable precision with 50,000 variants (50 expected false
positives under the null). GT-based RUTH score and RUTH-LRT
tests showed similar inflation. When GLs were used instead of
best-guess GTs, RUTH score and RUTH-LRT had Type I errors
close to the null expectation (0.001 for RUTH score and 0.0012 for
RUTH-LRT). PCAngsd, which also accounts for GT uncertainty
(Meisner and Albrechtsen 2019), had similar performance. The
severely inflated Type I errors with best-guess GTs can largely be
attributed to high uncertainty and bias toward homozygote refer-
ence GTs in single-site calls from low-coverage sequence data,
resulting in apparent deviations from HWE. For high-coverage se-
quence data, inflation of Type I error with GTs was substantially
attenuated; inflation nearly disappeared when using GLs (0.004
for RUTH score and 0.002 for RUTH-LRT; Figure 1, D–F).

Next, we evaluated the power to identify variants truly deviat-
ing from HWE at various levels of inbreeding (h). For low-coverage
sequence data, we skip interpretation of power of GT-based tests
owing to their extremely inflated false-positive rates. All GL-
based tests behaved similarly, achieving �19–21% power at P <

0.001 with moderate excess heterozygosity (h ¼ �0.05) (Figure 2B
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and Supplementary Table S1). For high-coverage sequence data,
the power of GL-based tests at the same P-value threshold in-
creased to �56–60%, comparable to corresponding GT-based
tests. Interestingly, the unadjusted GT-based test showed
much lower power than RUTH and PCAngsd tests under excess
heterozygosity (h < 0) while demonstrating much higher power
with excess homozygosity (h> 0). Upon further investigation,
we observed that the tests have lower power than the exact test
specifically for rare variants with excess homozygosity owing
to the mismatch between the empirical and the asymptotic null
distributions (for details, see Discussion section).

We also generated PRC and receiver-operator characteristic
(ROC) curves to better understand the tradeoff between the Type
I errors and power under moderate excess heterozygosity (h ¼
�0.05) (Supplementary Figure S3, C and D). Again, accounting for
GT uncertainty resulted in better empirical power and Type I er-
ror, especially for low-coverage data: at an empirical false-posi-
tive rate of 1%, GL-based tests had 41–45% power, as opposed to
4–10% for GT-based tests. For high-coverage data, GL-based tests
had 1–2% greater power than GT-based tests at the same false-
positive rate. These results suggest that ignoring GT uncertainty
in HWE tests is reasonable for high-coverage sequence data.

Simulation: Impact of Population Structure on
HWE Test Statistics
As expected, the unadjusted HWE test had substantially inflated
Type I errors under population structure based on the model of
Balding and Nichols (1995) (Figure 1 and Supplementary Table
S1). Even for an intra-continental level of population differentia-
tion (FST ¼ 0.01), the Type I errors at P < 0.001 were inflated 13.5-
fold even for high-coverage data. With an inter-continental level

of differentiation (FST ¼ 0.1), we observed orders of magnitude
more Type I errors across different simulation conditions.
This inflation is expected to increase with larger sample sizes,
suggesting that adjustment for population structure is important
even if a study focuses on a single continental population.

One simple approach to account for population structure is to
stratify individuals into distinct subpopulations and apply HWE
tests separately, as was done in UK Biobank (Bycroft et al. 2018),
then meta-analyze the results (Figure 3B). Type I errors were ap-
propriately controlled with this approach in high-coverage but
not low-coverage data, likely owing to unmodeled GT uncertainty
(Figure 1 and Supplementary Table S1). Instead of classifying
individuals into distinct subpopulations, RUTH incorporates PCs
to jointly perform HWE tests (Figure 3C). By estimating individ-
ual-specific allele frequencies, RUTH was able to adjust for the
simulated population structure. For both low- or high-coverage
data, GL-based RUTH tests and PCAngsd showed well-controlled
Type I errors, whereas GT-based tests showed slight (high-cover-
age) to severe (low-coverage) inflation.

Although meta-analysis resulted in well-controlled Type I
errors for high-coverage data, it was considerably less powerful
than RUTH. For example, with moderate excess heterozygosity (h
¼ �0.05) across five ancestries (FST ¼ 0.1), RUTH tests identified
20–27% more variants as significant at P < 0.001 (Figure 2 and
Supplementary Table S1) compared to meta-analysis. PRCs also
clearly showed better operating characteristics for RUTH and
PCAngsd compared to meta-analysis (Supplementary Figure S4).
For example, at an empirical false-positive rate of 1%, RUTH
showed much greater power (66–68%) than meta-analysis (43%)
although the simulation scenario favors meta-analysis because
samples were perfectly classified into distinct subpopulations.

Figure 1 Evaluation of Type I Errors between various HWE tests on simulated GTs. Under each combination of simulation conditions (number of
ancestries, sequencing coverage, and fixation index), we simulated 5000 samples with 50,000 variants that follow HWE within each of the
subpopulations and determined the Type I error performances of different HWE tests based on the proportion of variants labeled as having significant
P-values. Five HWE tests—(1) Unadjusted HWE test (Wigginton et al. 2005) implemented in PLINK-1.9 (Purcell et al. 2007) using hard GTs, (2) meta-
analysis using Stouffer’s method across ancestries using hard GT, (3) RUTH test using hard GTs, (4) RUTH test using phred-scale likelihood (GL)
computed from simulated sequence reads, and (5) PCAngsd (Meisner and Albrechtsen 2019)—were tested under HWE with various parameter settings.
Gray dotted lines indicate targeted Type I Error rates. Top panels (A–C) represent results from shallow sequencing (5�), and the bottom panels (D–F)
represent results from deep sequencing (30�). Using GL-based GTs resulted in Type I Error rates closer to the targeted rate than using GT-based GTs across
different numbers of ancestries (A, D), P-value thresholds (B, E), and fixation indices (C, F). The difference is especially large for low-coverage GTs.
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Figure 2 Evaluation of power between different HWE tests on simulated GTs. Under each combination of simulation conditions (number of ancestries,
sequencing coverage, fixation index, and deviation from HWE), we simulated 50,000 variants for 5000 samples and evaluated the ability of different
HWE tests to find the variants significant. Unless otherwise specified, the default simulation parameters are five ancestries, with FST ¼ 0.1, P-value
threshold ¼ 0.001, and Theta ¼ �0.05. Tests that can find a larger proportion of significant variants are considered more powerful. Five HWE tests—(1)
Unadjusted HWE test (Wigginton et al. 2005) implemented in PLINK-1.9 using hard GTs, (2) RUTH test using hard GTs, (3) RUTH test using phred-scale
likelihood (PL) computed from simulated sequence reads, (4) meta-analysis using Stouffer’s method across ancestries using hard GTs, and (5) PCAngsd
(Meisner and Albrechtsen 2019)—were tested for variants deviating from HWE with various parameter settings, for low coverage (A–D) and high
coverage (E–H) data. (A, E) Theta controls the degree of deviation from HWE, with negative values indicating excess heterozygosity and positive values,
indicating heterozygote depletion. The high Type I Error rates in GT-based tests (Figure 2) lead to those methods appearing to have higher power in
some scenarios. The unadjusted test suffers from this problem the most. GL-based methods have slightly lower powers than GT-based methods in
exchange for a much better controlled Type I error rate. This pattern mostly holds across different numbers of ancestries (B, F), P-value thresholds (C,
G), and fixation indices (D, H). Meta-analysis had the lowest power in the presence of excess heterozygosity.

Figure 3 Schematic diagrams of different methods to test HWE under population structure. Three different methods to test HWE under population
structure are described. (A) In the standard (unadjusted) HWE test, all samples are tested together using best-guess GTs. This test does not adjust for
sample ancestry. (B) In a meta-analysis of stratified HWE tests, the samples must first be categorized into discrete subpopulations, determined a priori
based on their GTs or self-reported ancestries. Next, standard HWE tests (based on best-guess GTs) are performed on each of these subpopulations.
Then, the resulting HWE statistics are converted into Z-scores and combined in a meta-analysis using Stouffer’s method, with the sample sizes of the
subpopulations as weights. (C) In our proposed method (RUTH), either best-guess GTs or GLs can be used as input for HWE test. We assume that the
genetic ancestries of each sample are estimated a priori, typically as PCs. We combine the GTs and PCs to perform either a score test or an LRT to obtain
a joint ancestry-adjusted HWE statistic for each variant across all samples.
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When stratified by allele frequency, RUTH showed better
operating characteristics for common variants compared to rare
variants owing to a difference in power (Supplementary Figure S5).

Application to 1000 Genomes whole-genome
sequence data
Next, we evaluated the performance of various HWE tests in low-
coverage (�6�) sequence data from the 1000G. We evaluated
three representations of GTs: (1) raw GT, (2) LD-aware GT, and (3)
GL, as described in Materials and Methods section. Among chro-
mosome 20 variants, we selected 17,740 HQ variants that are
polymorphic in GWAS arrays, and 10,966 LQ variants enriched
for GT discordance in duplicates and trios. Unlike simulation
studies, not all LQ variants are expected to violate HWE, so we

consider the proportion of significant LQ variants as a lower
bound for the sensitivity to identify significant variants.
Similarly, not all HQ variants are expected to follow HWE, so the
proportion of significant HQ variants serves as an upper bound
for the false-positive rate.

Consistent with simulation results, all tests based on raw GTs
generated from low-coverage sequence data had severe inflations
of false positives (Figure 4A and Table 1). This was true even for
HQ variants, presumably owing to genotyping errors and bias in
raw GTs. Standard HWE tests, which model neither GT uncer-
tainty nor population structure, showed the highest inflation of
false positives at 44% for P< 10�6, a threshold commonly used for
HWE testing in large genetic studies (Locke et al. 2015; Fritsche
et al. 2016). Modeling population structure substantially reduced

Figure 4 Evaluation of different HWE tests on 1000G and TOPMed variants. In 1000G data (A, B), we identified 17,740 HQ variants and 10,966 LQ variants
in chromosome 20. In TOPMed data (C, D), we identified 17,524 HQ variants and 329,699 LQ variants in chromosome 20. A well-behaved HWE test
should maximize the proportion of significant LQ variants while controlling the false-positive rate for HQ variants. Dotted gray lines represent targeted
Type I error levels if we assume all HQ variants follow HWE. (A) Both the unadjusted test and the PCAngsd found substantially more significant
variants than expected in the 1000G HQ variant set, whereas both RUTH and meta-analysis were more conservative. Methods that used raw GTs
showed substantial false-positive rates, whereas methods that used GLs and LD-aware GTs had much better control of false positives. (B) In 1000G LQ
variants, meta-analysis lagged behind RUTH and the unadjusted test in discovering significant deviation from HWE. RUTH behaved well for HQ
variants while having more power to find low-quality variants significantly deviating from HWE. (C) In TOPMed data, the unadjusted test resulted in an
excess of false positives. Tests using GL-based GTs outperformed tests using GT-based GTs. (D) Methods using GL-based GTs were able to discover more
LQ variants than methods using GT-based GTs, demonstrating the advantage of accounting for GT uncertainty in HWE tests.
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inflation, with RUTH tests showing fewer false positives (0.7–1.0%
at P< 10�6) than meta-analysis (2.0% at P< 10�6). False positives
were inflated across all methods when using raw GTs.

Similarly, GL-based RUTH tests further reduced false positives
(0.034% at P< 10�6). In contrast to our simulations, however,
PCAngsd demonstrated considerably higher false positives than
RUTH (2.1% at P< 10�6) because PCAngsd estimates PCs from the
input data without the ability to use externally provided PCs
(Discussion section). The sensitivity for detecting significant LQ
variants was also consistent with our simulations (Figure 4B and
Table 1). GL-based tests, which showed better control of false
positives, identified 22–25% of LQ variants as significant at
P< 10�6.

Strikingly, while using LD-aware GTs reduced false positives
with adjusted tests, it was at the expense of substantially re-
duced sensitivity to detect LQ variants. The false-positive rates of
any adjusted test with LD-aware GTs were uniformly lower than
those of any GL- and raw GT-based tests across all P-value
thresholds (Figure 4A). However, sensitivity was also substan-
tially reduced with LD-aware GTs (Figure 4B). For example, at
P< 10�6, GL-based RUTH tests identified 22–23% of LQ variants as
significant, while using LD-aware GTs halved the proportions.
Meta-analysis with LD-aware GTs had even lower sensitivity,
likely because the implicit HWE assumption in LD-aware GT re-
finement altered the LD-aware GTs to conform to HWE, further
reducing both false positives and sensitivity.

We evaluated PRCs between HQ and LQ variants to further
evaluate this tradeoff. The results clearly demonstrated that
HWE tests using LD-aware GTs are substantially less robust than
tests using other GT representations (Supplementary Table S2
and Figure S6A). For example, for the RUTH score test, when LD-
aware GTs identified 0.1% of HQ variants as significant, 17% of
LQ variants were identified as significant. However, with raw GT
and GL, 24–27% were identified as significant at the same

threshold. Even fewer were significant in meta-analysis with LD-
aware GTs (13%). Similar trends were observed across all thresh-
olds, suggesting that using LD-aware GTs results in substantially
poorer operating characteristics. As more accurate genotyping in
LD-aware GT refinement is expected to improve the performance
of QC metrics compared to raw GTs, these results are quite strik-
ing, and highlight a potential oversight in using LD-aware GTs in
various QC metrics for sequence-based GTs. It should also be
noted that the significance threshold we used can be subjective
(Discussion section), but the relative trends between the methods
largely remained similar (Table 1).

Application to TOPMed Deep whole-genome
sequence data
We evaluated the various HWE tests on a subset of the Freeze 5
variant calls from high-coverage (�37�) whole-genome sequence
data in the TOPMed Project (Taliun et al. 2021). We identified
17,524 HQ variants and 329,699 LQ variants using the same crite-
ria used for 1000G variants and evaluated raw GTs and GLs. We
did not evaluate PCAngsd owing to excessive computational time
(see Computational cost section).

We first evaluated the false-positive rates of different HWE
tests indirectly by using HQ variants. With a >20-fold larger sam-
ple size than 1000G, we identified more significant HQ variants,
whereas the false-positive rates were still reasonable with ad-
justed tests. At P< 10�6, 74% of HQ variants were significant with
unadjusted tests, whereas the adjusted GL-based tests identified
�0.3% at P< 10�6 (Figure 4, C and D; Table 2). Adjusted GT-based
tests had only slightly higher levels of false positives at P< 10�6.
However, inflation was more noticeable at less stringent P-value
thresholds, suggesting that GL-based tests may be needed for
larger sample sizes.

Next, we evaluated the proportions of LQ variants found to be
significant by different tests to indirectly evaluate their statistical

Table 1 Performance of the unadjusted test, meta-analysis, RUTH, and PCAngsd on 1000G chromosome 20 variants

Variant
category

GT format HWE test Proportion of significant variants Total variant
count

P<10�2 P<10�3 P<10�4 P<10�5 P<10�6

LQ variants Raw GT Unadjusted 0.487 0.432 0.394 0.366 0.339 10,966
Meta-analysis 0.392 0.343 0.307 0.283 0.262 10,966

RUTH score 0.418 0.367 0.333 0.305 0.284 10,966
RUTH-LRT 0.431 0.373 0.335 0.305 0.280 10,966

LD-aware GT Unadjusted 0.479 0.395 0.336 0.292 0.259 10,966
Meta-analysis 0.184 0.149 0.127 0.111 0.098 10,966

RUTH score 0.211 0.172 0.147 0.130 0.112 10,966
RUTH-LRT 0.215 0.177 0.151 0.131 0.115 10,966

GL RUTH score 0.336 0.295 0.264 0.242 0.223 10,966
RUTH-LRT 0.358 0.306 0.270 0.243 0.225 10,966
PCAngsd 0.380 0.331 0.300 0.275 0.255 10,920

HQ variants Raw GT Unadjusted 0.755 0.657 0.573 0.501 0.443 17,740
Meta-analysis 0.298 0.161 0.084 0.042 0.020 17,740

RUTH score 0.183 0.083 0.036 0.015 7.4 � 10�3 17,740
RUTH-LRT 0.200 0.095 0.044 0.021 0.010 17,740

LD-aware GT Unadjusted 0.623 0.507 0.422 0.361 0.311 17,740
Meta-analysis 0.019 3.1 � 10�3 5.6 � 10�4 1.7 � 10�4 1.1 � 10�4 17,740

RUTH score 0.011 1.9 � 10�3 1.1 � 10�4 0 0 17,740
RUTH-LRT 0.011 1.1 � 10�3 2.3 � 10�4 5.6 � 10�5 0 17,740

GL RUTH score 0.026 3.3 � 10�3 7.9 � 10�4 4.5 � 10�4 3.4 � 10�4 17,740
RUTH-LRT 0.036 6.4 � 10�3 1.3 � 10�3 5.1 � 10�4 3.4 � 10�4 17,740
PCAngsd 0.059 0.032 0.026 0.022 0.021 17,740

The numbers within cells represent the proportions of significant variants under the corresponding testing conditions at the given P-value threshold. We expect our
LQ variants to violate HWE at a higher rate than our HQ variants. A well-behaved test is expected to find a high proportion of LQ variants to be significant while
maintaining the targeted Type I Error rate in HQ variants. The unadjusted test consistently shows the highest false-positive rate among all the tests. HWE tests that
rely on raw GTs also show much higher false-positive rates than tests that use other GT representations. RUTH tests were the best at controlling false positives
while still maintaining comparable power to the other methods. PCAngsd had a much higher false-positive rate than RUTH-based methods, especially at more
stringent P-value thresholds.
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power. GT- and GL-based RUTH tests showed similar power,

whereas meta-analysis showed considerably lower power. For ex-

ample, at P< 10�6, meta-analysis identified 47% of LQ variants as

significant, whereas RUTH tests identified 54–58%. This pattern

was similar across different P-value thresholds (Figure 4, C and

D) or choices of LQ variants (Supplementary Table S3 and Figure

S7). Our results suggest that GL-based RUTH tests are suitable for

testing HWE for tens of thousands of deeply sequenced genomes

with diverse ancestries, and that using raw GTs will also result in

a comparable performance at typically used HWE P-value thresh-

olds (e.g., P< 10�6).
We used PRCs to evaluate the tradeoff between empirical

false-positive rates and power. Consistent with the previous

results, the GL-based RUTH test showed the best tradeoff be-

tween false positives and power, whereas the GT-based RUTH

test and meta-analysis were slightly less robust but largely com-

parable (Supplementary Figure S6). Notably, when we evaluated

the different methods at an empirical false-positive rate of 0.1%,

RUTH score tests had �4% higher power than RUTH LRT for both

raw GTs and GLs (Supplementary Figures S8 and S9).

Impact of ancestry estimation accuracy on
Hardy–Weinberg equilibrium tests
So far, our evaluations relied on genetic ancestry estimates care-

fully determined with sophisticated methods (Materials and

Methods section). However, using simpler approaches instead

during the variant QC step may affect the performance of ad-

justed HWE tests. We evaluated whether the number of PC co-

ordinates affected the performance of RUTH tests by comparing

the use of 2 vs 4 PCs (default). The results from both simulated

and real data sets consistently demonstrated that using 4 PCs led

to substantially reduced Type I errors compared to using 2 PCs at

a similar level of power (Supplementary Tables S2 and S4, Figure

S10). PRCs also clearly showed that using 4 PCs was more robust

against population structure across both simulated and real data

sets (Supplementary Figure S11).
We also evaluated whether the classification accuracy of sub-

populations affected the performance of meta-analysis. Instead

of assigning 1000G individuals into five continental populations,

we used the k-means algorithm on those samples’ top 2 PCs to

classify them into three crude subpopulations (Supplementary

Figure S12). This led to a much higher false-positive rate with vir-

tually no increase in true positives (Supplementary Figure S13

and Table S2). We saw the same pattern in simulated data

(Supplementary Figure S11 and Table S5).

Computational cost
We compared the computational costs of RUTH and PCAngsd for

simulated and real data. RUTH has linear time complexity to

sample size, whereas PCAngsd appears to have quadratic

time complexity owing to joint estimation of PCs (Table 3 and

Supplementary Table S6). RUTH also has low memory

Table 2 Performance of the unadjusted test, meta-analysis, and RUTH on TOPMed freeze 5 chromosome 20 variants

Variant set GT format HWE test Proportion of significant variants Total variant
count

P<10�2 P<10�3 P<10�4 P<10�5 P<10�6

LQ Variants Raw GT Unadjusted 0.592 0.561 0.539 0.521 0.506 329,699
Raw GT Meta-analysis 0.554 0.524 0.502 0.485 0.471 329,699
Raw GT RUTH score 0.608 0.587 0.572 0.559 0.549 329,699
GL RUTH score 0.635 0.608 0.590 0.575 0.563 329,699
Raw GT RUTH-LRT 0.610 0.580 0.556 0.538 0.522 329,699
GL RUTH-LRT 0.653 0.615 0.588 0.567 0.550 329,699

HQ Variants Raw GT Unadjusted 0.890 0.842 0.800 0.766 0.736 17,524
Raw GT Meta-analysis 0.065 0.022 9.0 � 10�3 4.8 � 10�3 3.3 � 10�3 17,524
raw GT RUTH score 0.145 0.047 0.172 7.1 � 10�3 3.5 � 10�3 17,524
GL RUTH score 0.034 0.011 4.9 � 10�3 3.1 � 10�3 2.5 � 10�3 17,524
raw GT RUTH-LRT 0.125 0.036 0.012 5.0 � 10�3 2.7 � 10�3 17,524
GL RUTH-LRT 0.041 0.018 8.5 � 10�3 4.3 � 10�3 3.1 � 10�3 17,524

The numbers within cells represent the proportions of significant variants under the corresponding testing conditions at the given P-value threshold. These results
are based on the tests that used likelihood-based GT representations as input. A well-behaved test should reduce the number of significant HQ variants while
increasing the number of significant low-quality (LQ) variants. The unadjusted test had a greatly inflated false-positive rate for HQ variants while showing a lower
true positive rate for LQ variants. While meta-analysis performed better for HQ variants, it had reduced power to find LQ variants to be significant. RUTH performed
the best, with fewer false positives (significant HQ variants) compared to both the unadjusted test and the meta-analysis, while at the same time finding more true
positives (significant LQ variants).

Table 3 Runtimes for RUTH and PCAngsd on simulated data

Sample size Wall Time (s) User Time (s)

RUTH-LRT RUTH score PCAngsd RUTH-LRT RUTH score PCAngsd

1,000 16.21 27.24 173.11 16.16 27.09 172.37
2,000 32.19 54.63 347.10 31.94 54.51 345.58
5,000 82.80 136.44 1,124.83 81.81 136.20 1,102.85
10,000 165.48 273.67 7,396.00 163.88 273.27 7,235.91
20,000 336.75 553.92 38,807.67 332.06 553.05 37,338.69
50,000 902.81 1,438.32 461,971.33 886.67 1,435.87 403,296.5

We simulated 10,000 GL-based variants for varying numbers of samples. Wall time indicates total runtime, whereas user time is the amount of time the CPUs spent
running each program. All programs were run in single-threaded mode. System processes make up the difference between the two values, with a majority
consisting of file I/O. We used VCF files with GL fields in RUTH and converted them to Beagle3 format for PCAngsd. The RUTH LRT was the fastest method, with the
score test about 60% slower. PCAngsd was about 10 times slower than RUTH-LRT with the smallest sample sizes and over 400 times slower with our largest tested
size of 50,000 samples.
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requirements compared to PCAngsd (e.g., 14 MB vs 2 GB for 1000G
data). Extrapolating our results to the whole-genome scale, ana-
lyzing 1000G (i.e., 80 million variants) is expected to take 120
CPU-hours for RUTH and 3200 CPU-hours for PCAngsd (with >1
TB memory consumption). Additionally, RUTH can be parallel-
ized into smaller regions in a straightforward manner.

Discussion
RUTH is a unified, flexible, and robust approach to incorporate genetic
ancestry and GT uncertainty for testing Hardy–Weinberg Equilibrium ca-
pable of handling large amounts of GT data with structured populations.
Sha and Zhang (2011) proposed HWES, an HWE test for struc-
tured populations, to address some of these challenges, but it has
not been widely used owing to the lack of an implementation
that supports popular GT data formats (e.g., PED, BED, VCF, or
BCF) and inability to handle imputed or uncertain GTs. Hao et al.
(2016) proposed sHWE which can only handle best-guess (hard
call) GTs (i.e., 0, 1, or 2 for biallelic variants) and does not account
for GT uncertainty. Meisner and Albrechtsen (2019) proposed
PCAngsd to address some of these issues, but it does not support
the standard VCF/BCF formats for sequence-based GTs, and its
current implementation scales poorly with genome-wide analy-
ses of large samples.

Similar to previous studies (Sha and Zhang 2011; Hao et al.
2016), our proposed framework uses individual-specific allele
frequencies rather than allele frequencies pooled across all
samples to systematically account for population structure
in HWE tests. Unlike those previous studies, we model GT uncer-
tainty in sequence-based GTs using a likelihood-based
framework. We implemented two RUTH tests—a score test and a
LRT—to test for HWE under population structure for GTs with
uncertainty. While RUTH LRT is similar to the independently
developed PCAngsd, the software implementation of RUTH is
more flexible, scales much better to large studies, and supports
the standard VCF format.

We provide a comprehensive evaluation of various
approaches for testing HWE using simulated and real data. Our
results demonstrate that modeling population stratification is
necessary for HWE tests on heterogeneous populations.
We showed that accounting for GT uncertainty via GT likelihoods
performs substantially better than using best-guess GTs,
especially for low-coverage sequenced genomes. Importantly, we
included evaluations for an unpublished but commonly used ap-
proach—meta-analysis across stratified subpopulations, cohorts,
or batches. Our results demonstrate that while meta-analysis
may be effective in reducing false positives, it does so at the
expense of substantially reduced power compared to RUTH.

We observed that the current implementation of PCAngsd
does not scale well to large-scale sequencing data, though in
principle, it can be implemented more efficiently, because the
underlying HWE test itself is similar to RUTH LRT. PCAngsd
requires loading all GTs into memory, which is often infeasible
for large sequencing studies. For example, loading all of 1000G
will require �4.8 TB of memory. In our evaluation of 1000G chro-
mosome 20 variants, the inability of PCAngsd to estimate PCs
from the whole genome may have contributed to the observed
difference in results from RUTH compared to our simulation
studies. Moreover, PCAngsd does not offer an option to externally
provide PCs or exclude false-positive variants when calculating
PCs, so it performs poorly when false-positive variants confound
PC estimation as demonstrated in the 1000G examples.

Although our 1000G experiments demonstrated the unex-
pected result that using raw GTs had better sensitivity than using
LD-aware GTs at the same empirical false-positive rates for low-
coverage data, we do not advocate using raw GTs for low-cover-
age sequence data. First, the results for raw GTs were still consis-
tently less robust than GL-based RUTH tests. Moreover, it would
be tricky to determine an appropriate P-value threshold when
false positives are severely inflated. Therefore, we strongly advo-
cate using GL-based RUTH tests for robust HWE tests with low-
coverage sequence data. For the now more typical high-coverage
sequence data, GL-based tests are still preferred, but GT-based
RUTH tests should be acceptable for cases in which GLs are
unavailable.

Our experiment compared using 2 vs 4 PCs only because the
verifyBamID2 software tool estimated up to 4 PCs projected onto
the HGDP panel by default (Zhang et al. 2020). Because our
method focuses on testing HWE during the QC steps in sequence-
based variant calls, a curated version of PCs, estimated from the
sequenced cohort themselves, may not be readily available.
However, it is possible to use a larger number of PCs (e.g., >10
PCs) if available at the time of HWE test. We expect that a larger
number of PCs will account for finer-grained population struc-
ture and may improve the performance of HWE tests, but addi-
tional experiments are needed to quantify the effect.

Our results demonstrate that RUTH score and LRT tests per-
form similarly in simulated and experimental data sets. Overall,
the RUTH-LRT was slightly more powerful than the RUTH score
test at the expense of slightly greater false-positive rates
although this tendency was not consistent. We observed that the
RUTH tests tended to be slightly more powerful in identifying
deviation from HWE in the direction of excess heterozygosity
than excess homozygosity when compared to adjusted
meta-analysis. These results might be caused by the difference
between our model-based asymptotic tests compared to the ex-
act test used in meta-analysis.

We did not evaluate our methods on imputed GTs in this man-
uscript. Because imputed GTs implicitly assume HWE, we sus-
pect that HWE tests based on imputed GTs may have reduced
power compared to directly genotyped variants. It is possible to
use approximate GLs instead of best-guess GTs for imputed GTs,
but this requires GT probabilities, not just GT dosages. If GT prob-
abilities Prðgi ¼ GjDataiÞ are available, they can be converted to
GLs LðGÞi ¼ PrðDataijgi ¼ GÞ using Bayes’ rule by modeling
Pr gi ¼ Gð Þ as a binomial distribution based on allele frequencies
(which implicitly assumes HWE). However, similar to LD-aware
GTs in low-coverage sequencing, the power of HWE tests with
imputed GTs may be poor. Further evaluation is needed to
understand the effect of using imputed GTs on the behavior of
HWE tests.

As described in our results, we observed that the current
implementations of RUTH (and PCAngsd) tests relying on asymp-
totic distributions do not work more robustly than the exact
test when testing for excess homozygosity (h > 0). This is mainly
because the empirical null distribution becomes increasingly
asymmetric between the two directions of effects for rarer
variants, but the asymptotic approximation assumes symmetry
between them, causing loss of power for excess homozygosity.
Using RUTH score test will further reduce power because score
tests are known to have reduced power than LRT when h strongly
deviates from zero, which happens in rare variants with excess
homozygosity. Applying Saddlepoint approximation (Dey et al.,
2017) or similar techniques may help address this issue.
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In practice, when we examined LQ variants, determined

by high Mendelian errors, the vast majority (65% for 1000G,
82% for TOPMed) of them deviated from HWE toward excess

heterozygosity (h < 0) as opposed to excess homozygosity (h > 0)

when we examined the direction of deviation from HWE regard-

less of its significance. On the other hand, the majority of HQ var-

iants (77% for 1000G, 64% for TOPMed) mildly deviated from

HWE toward excess homozygosity (h > 0), presumably owing
to residual population structure and cryptic relatedness. These

observations suggest that detecting excess heterozygosity is prac-

tically more important for variant QC, on which RUTH tests are

expect to perform well.
Our methods have room for further improvement. First,

we used a truncated linear model for individual-specific allele

frequencies for computational efficiency. Although such an ap-
proximation was demonstrated to be effective in practice (Zhang

et al. 2020), applying a logistic model or some other more sophisti-

cated model may be more effective in improving the precision

and recall of RUTH tests. Second, we did not attempt to model or

evaluate the effect of admixture in our method. Because HWE is

reached in two generations with random mating, accounting for
admixed individuals may only have a marginal impact. On the

other hand, admixture can lead to higher observed heterozygos-

ity. It may be possible to improve RUTH by explicitly modeling

and adjusting for the effect of admixture on individual-specific

allele frequencies. Systematic evaluations focusing on admixed

populations are needed to evaluate whether an admixture
adjustment is necessary. Third, RUTH tests do not account for

family structure or individual-level inbreeding. We suspect that

the apparent inflation of Type I error for the TOPMed data was

partially owing to sample relatedness. Accounting for family

structure or individual-level inbreeding in other ways, for exam-

ple using variance components models, will require much longer
computational times and may not be feasible for large-scale data

sets. Fourth, RUTH currently does not directly support imputed

GTs or GT dosages. In principle, it is possible to convert posterior

probabilities for imputed GTs into GT likelihoods to account for

GT uncertainty (by using individual-specific allele frequencies).

However, because most GT imputation methods implicitly as-
sume HWE, we suspect that HWE tests on imputed GTs will be

underpowered, similar to our observations with LD-aware GTs in

the 1000G data set, even though explicitly modeling posterior

probabilities may slightly mitigate this reduction in power.
The choice of a P-value threshold to indicate deviation from

HWE remains an open question. In previous studies, stringent

P-value thresholds were used to prevent high-quality variants from
being filtered due to population structure. Adjusting for population

structure with RUTH helps mitigate this problem, allowing the use

of less stringent thresholds to improve test performance, but the

choice of P-value threshold remains subjective, based on the trade-

off between sensitivity and specificity. Future development of more

robust methods to determine significance thresholds would help
further improve the use of HWE tests for variant quality control.

In summary, we have developed and implemented robust
and rapid methods and software tools to enable HWE tests

that account for population structure and GT uncertainty. We

comprehensively evaluated both our methods and alternative

approaches. Our tools can be used to evaluate variant quality in

very large-scale genetic data sets, with the ability to handle stan-

dard VCF formats for storing sequence-based GTs. Our software
tools are publicly available at http://github.com/statgen/ruth.
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