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Abstract

We propose a lateral inhibition system and analyze contrasting patterns of gene expression. The 

system consists of a set of compartments interconnected by channels. Each compartment contains 

a colony of cells that produce diffusible molecules to be detected by the neighboring colonies. 

Each cell is equipped with an inhibitory circuit that reduces its production when the detected 

signal is sufficiently strong. We characterize the parameter range in which steady-state patterns 

emerge.

I. Introduction

Lateral inhibition is a mechanism where cell-to-cell signaling induces neighboring cells to 

diverge into sharply contrasting fates, enabling developmental processes such as 

segmentation and boundary formation [1]. The best-known example is the Notch pathway in 

Metazoans where membrane-bound Delta ligands bind to Notch receptors on the 

neighboring cells. This binding releases the Notch intracellular domain in the neighbors, 

which then inhibits their Delta production [2], [3], [4]. Lateral inhibition is not limited to 

complex organisms: a contact-dependent inhibition (CDI) system has been identified in E. 

coli where delivery via membrane-bound proteins causes downregulation of metabolism [5]. 

Despite the research on these natural pathways, a synthetic lateral inhibition system for 

pattern formation has not been developed.

We propose a compartmental lateral inhibition setup to generate contrasting patterns. This 

system consists of a set of compartments interconnected by channels as in Figure 1. Each 

compartment holds a colony of cells that produce diffusible molecules to be detected by the 

neighboring colonies. Furthermore, each cell has an inhibitory circuit that reacts to the 

detected signal. To prevent auto-inhibition, the system uses orthogonal diffusible quorum 

sensing pairs [6], and two types of inhibitory circuits that are able to detect only one type of 

molecule and produce the other type. In the examples of Figure 1, cells of type A produce a 

diffusible molecule X only detectable by cells of type B, and cells of type B produce a 

diffusible molecule Y only detectable by cells of type A.

To derive conditions under which this system will exhibit contrasting patterns, we define a 

graph where each compartment corresponds to a vertex. The diffusion of molecules between 

two compartments occurs through the channels and is represented by the graph edges. We 
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model the diffusion with a compartmental model, and represent the compartment-to-

compartment communication by the Laplacian matrix. The edge weights depend on the 

distance between the compartments and the diffusivity of the quorum sensing molecules. We 

then use the graph-theoretic notion of equitable partition to ascertain the existence of 

contrasting steady-state patterns. Equitable partitions reduce the steady-state analysis to 

finding the fixed points of a scalar map. We also show that the slope of the scalar map at 

each fixed point provides a stability condition for the respective steady-states. Finally, we 

apply our analysis to an example and study parameter ranges for patterning.

Graph theoretical results have been used to analytically determine patterning by contact 

inhibition, in networks of identical cells [4]. The present paper employs diffusion for 

communication between compartments and allows two cell types to avoid auto-inhibition.

Most reaction-diffusion mechanisms rely on one-way communication. A two-way 

communication mechanism using orthogonal quorum sensing systems has been employed to 

demonstrate a predator-prey system, [7]. Unlike these results, we implement lateral 

inhibition between cell colonies within connected compartments, and achieve spatial 

patterning.

Due to space constraints, all the proofs are provided as supplemental material.

II. An Analytical Test for Patterning

A. Composing a Compartmental Lateral Inhibition Model

Consider a network of NA compartments of type A and NB compartments of type B. Each 

cell of type A produces diffusible species X, and only cells of type B are equipped with a 

receiver species that binds to X and forms a receiver complex. Similarly, the diffusible 

species Y is produced by cells of type B and detected by cells of type A. We represent the 

dynamics in each cell type with three modules: the transmitter module where species X (or 

Y) is produced and released; the receiver module where Y (or X) is detected; and an 

inhibitory module which inhibits the transmitter activity in the presence of the receiver 

complex.

To facilitate the analysis, we separate the transmitter module of A and receiver module of B 

and merge them into a “transceiver” module for the diffusible species X, which also includes 

the diffusion process (similarly for the transceiver of Y). The network is represented in 

Figure 2. Each compartment is represented with a block labeled HA or HB, corresponding to 

the inhibitory circuit of types A and B, respectively. The concentration of the autoinducer 

synthase for the production of X (respectively, Y) is denoted by yA (yB), and RA (RB) is the 

concentration of the receiver complex, the result of Y (X) binding to the receiver protein.

The transceiver blocks incorporate diffusion in an ordinary differential equation model that 

describes the concentrations of the diffusible species in each compartment. We define an 

undirected graph  = (V, E) where each element of the set of vertices V represents one 

compartment, and each edge (i, j) ∈ E represents a channel between compartments i and j. 

For each edge (i, j) ∈ E we define a weight dij = dji. The constant dij is proportional to the 
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diffusivity of the species and inversely proportional to the square of the distance between 

compartments. We define the weighted Laplacian:

(1)

The dynamical model of the transceiver tx/rx for X is then:

(2)

where  is the concentration of species X in compartments A due to production, 

 the concentration of species X in compartment B due to diffusion, and 

the concentration of complexes in compartment B formed by the binding of X with a 

receiver protein. The functions , and  are 

concatenations of the decoupled elements , i = 1, …, NA, 

 and , j =1, …, NB, and assumed to be continuously 

differentiable. The function  models the production and the degradation of X in 

compartment i of type A, the function  models the degradation of X and the binding 

of X with the receiver protein in compartment j of type B, and  models the binding of 

the receiver complex in compartment j of type B. The transceiver tx/rxB→A for Y is defined 

similarly.

Assumption 2.1—For each constant input  (and ), the subsystem (2) 

has a globally asymptotically stable steady-state ( ), which is a hyperbolic 

equilibrium, i.e., the Jacobian has no eigenvalues on the imaginary axis. Furthermore, there 

exist positive and increasing functions  and  s.t.

(3)

The increasing property of these maps means that a higher autoinducer synthase input leads 

to more production and, thus more detection on the receiver side.

Next, we represent the blocks , i = 1, …, N of type k ∈ {A, B} with models of the form:

(4)

where  describes the vector of reactant concentrations in compartment i, ui ∈ ℝ≥0 

the input of i (concentration of the receiver complex), and yi ∈ ℝ≥0 the output of i 
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(concentration of an autoinducer synthase). We denote 

, and , for 

k ∈ {A, B}.

We assume that fk(·, ·) and hk(·) are continuously differentiable and further satisfy the 

following properties:

Assumption 2.2—For k ∈ {A, B} and each constant input u* ∈ ℝ≥0, the subsystem (4) has 

a globally asymptotically stable steady-state x* ≜Sk(u*), which is a hyperbolic equilibrium. 

Furthermore, the maps  and , defined as:

(5)

are continuously differentiable, and Tk(·) is a positive, bounded and decreasing function.

The decreasing property of Tk(·) is consistent with lateral inhibition, since higher input in 

one cell leads to lower output.

B. When do Contrasting Patterns Emerge?

We now present a method to find steady-state patterns for the system in (2)–(4). Given 

Assumptions 2.1 and 2.2, the existence of variables  and  such that:

(6)

with  (similar for ), is 

sufficient to conclude the existence of a steady-state for the full system (2)–(4). Our goal is 

to determine when zA and zB exhibit contrasting values.

We use the notion of equitable partition [8] to reduce the dimension of the maps in (6). For 

a weighted and undirected graph (V, E), with Laplacian matrix L, a partition of the vertex 

set V into classes O1, …, Or is said to be equitable if there exists d̄
ij for i, j = 1, …, r, such 

that

(7)

This means that the sum of the edge weights from a vertex in a class Oi into all the vertices 

in a class Oj (i ≠ j) is invariant of the choice of the vertex in class Oi. We let the quotient 

Laplacian L̄ ∈ ℝr×r be formed by the off-diagonal entries d̄
ij, and 

.

Assumption 2.3—The partition of the compartments V into the classes OA of type A and 

OB of type B is equitable.
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This implies that the total incoming edge weight of the species X (and Y) is the same for all 

the compartments of type B (A). For example, the network in Figure 1(left) is equitable with 

respect to the classes OA and OB if d13 + d14 = d23 + d24 and d13 + d23 = d14 + d24. Since the 

edge weights dij are inversely proportional to the square of the distance, this means that 

opposite channels must have the same length, thus exhibiting a parallelogram geometry.

Assumption 2.3 allows us to search for solutions to (6) where the compartments of the same 

type have the same steady-state, i.e.,

(8)

where z̄A ∈ ℝ≥0 and z̄B ∈ ℝ≥0. This means that the transceiver input-output maps become 

decoupled and , with TAB: ℝ≥0 → ℝ≥0. The same holds for 

 with TBA: ℝ≥0 → ℝ≥0. Furthermore, z̄A and z̄B satisfy the following reduced system 

of equations:

(9)

where T̄
A: ℝ≥0 → ℝ≥0 and T̄

B: ℝ≥0 → ℝ≥0 are a composition of scalar maps. Let z̃A be a 

solution to the top equation in (9), then z̃B ≜ TB(TAB(z̃A)) must be a solution to the bottom 

one.

From Assumptions 2.1 and 2.2, T̄
A(·) and T̄

B(·) in (9) are positive, increasing and bounded 

functions. Figure 3 illustrates typical shapes of the input-output maps T̄
A(·) and T̄

B(·). In Fig. 

3(a) there exists only one solution (orange circles). This is a near-homogeneous steady-state, 

where the discrepancy between z̃A and z̃B is due only to nonidentical T̄
A(·) and T̄

B(·). The 

map T̄
A(·) in Fig. 3(b) has three fixed points: a middle solution (near-homogenous steady-

state), a large fixed point (blue triangle), and a small fixed point (green square). The latter 

two have a corresponding opposite fixed point in T̄
B(·), specifically z̃B ≜ TB(TAB(z̃A)), and 

therefore represent a contrasting steady-state pattern.

Note that a contrasting pattern emerges when the near-homogenous steady-state has a slope 

greater than 1, that is:

(10)

Indeed, due to the boundedness and strictly increasing properties of the map T̄
A(·), there 

must exist two other fixed point pairs of (9),( ) and ( ) for 

which
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(11)

We show that (10) implies that the near-homogenous steady-state is unstable, setting the 

stage for contrasting patterns and providing a parameter tuning principle for patterning.

C. Convergence to Contrasting Patterns

To analyze convergence to the steady-state patterns in (9), we employ monotonicity 

assumptions. A monotone system is one that preserves a partial ordering of the initial 

conditions as the solutions evolve in time. A partial ordering is defined with respect to a 

positivity cone in the Euclidean space that is closed, convex, pointed (K ∩(−K) = {0}), and 

has nonempty interior. In such a cone, x ⪯ x̂ means x̂ − x ∈ K. Given the positivity cones 

KU, KY, KX for the input, output, and state space, the system ẋ = f(x, u), y = h(x) is said to be 

monotone if x(0) ⪯ x̂(0) and u(t) ⪯ û(t) for all t ≥ 0 imply that the resulting solutions satisfy 

x(t) ⪯ x̂(t) ∀t ≥ 0, and the output map is such that x ⪯ x̂ implies h(x) ⪯ h(x̂) [9].

Assumption 2.4—The system tx/rxA→B in (2) is monotone with respect to 

, and . Similarly tx/rxB→A is monotone with respect to 

, and .

Assumption 2.5—The systems HA and HB in (4) are monotone with respect to KU=−KY 

=ℝ≥0, and KX=K, where K is some positivity cone in ℝ.

These monotonicity assumptions are consistent with Assumptions 2.1–2.2, as they imply the 

increasing property of , and the decreasing behavior of TA(·), TB(·).

Theorem 2.6—Consider the network (2)-(4) and suppose Assumptions 2.1, 2.2, 2.4 and 

2.5 hold. Let the partition of the compartments into the classes OA and OB be equitable. The 

steady-state described by (9) is asymptotically stable if

(12)

and unstable if (10) holds.

III. Example

In this section we study an example in which each block , i=1, …, N of type k ∈{A, B} is 

represented as

(13)
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where nT represents the cooperativity, γIX/Y is the degradation rate, ℓ the leakage rate, KT the 

dissociation constant, vT the velocity rate, and c is a scaling factor. The variable xi ∈ ℝ≥0, 

represents the concentration of a signaling protein (e.g., RFP) in compartment i, as well as 

the output concentration  of autoinducer synthase.

For the dynamics of the transceiver, we choose two quorum sensing pairs where the binding 

of the autoinducer synthase to the receptor is orthogonal with respect to autoinducer/receptor 

pairs. We denote by X and Y the concentration of diffusible molecules and by RB and RA the 

concentration of complexes at colonies of type B and A, respectively. For the transceiver of 

X, we consider  , i = 1, …, NA to be the concentration of species X in compartment i of 

type A, and , j = 1, …, NB the concentration of species X in compartment j of type B. Let 

 be the transceiver state, with 

and . The transceiver dynamics are:

(14)

where Li corresponds to the row i of the Laplacian matrix, pRk is the constitutive 

concentration of the receiver protein (bound and unbound), kon/koff are the binding rates, and 

ν is the generation rate of the diffusible molecule. The dynamics for the inhibitory circuit of 

cell type B and for the transceiver tx/rxB→A are obtained similarly.

For the analysis, note that HA, HB and tx/rxA→B, tx/rxB→A, meet the assumptions in the 

previous section.

Lemma 3.1

The transceiver dynamics in (14) meet Assumptions 2.1 and 2.4.

Under Assumption 2.3, we analyze the range of parameters where patterning occurs by 

looking for steady-states that are fixed points of the scalar maps T̄
A(·) as in (9)1. We use 

reaction parameters that correspond to the values suggested in [10, Parameter Set 1]. The 

slope of these maps at the fixed points depends on the edge weights dij and constitutive 

concentration of total LuxR pRi, which are tunable parameters. We can tune dij by changing 

the channel lengths, and pRi by changing the strength of the constitutive promoter. We 

consider two compartments connected by one channel, one of type A and the other of type B. 

This is equivalent to considering any equitable network topology with the same d̄
AB and 

d̄
BA.

1with the decoupled transceiver input-output scalar map , where d̄AB and d̄BA as 
in (7)
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Figure 4 maps the regions over the tunable pairs (pRi, dij) where contrasting patterns emerge. 

At the extreme values, if the concentration of pRi is too low, the detection ability of each cell 

is affected, which leads to a low concentration of the receiver complex. Thus, no cell is 

being inhibited and no contrasting patterning emerges. When pRi is too high, both 

compartments are inhibited since both cells are too sensitive to the receiver signal due to 

leakage.

Further analysis using condition (10) reveals that the circuit, for this set of parameters, is 

fairly robust to parameter uncertainty. We introduced a variation of 10% in each parameter 

and the patterning range didn’t suffer significant change. Patterning occurs when nT ≥ 2, 

greater nT implies stronger inhibition and shifts the patterning region slightly to the left.

For validation, we implemented a partial differential equations (PDEs) compartment 

network, using the finite element solver COMSOL. For shorter channels (≤ 4mm), we 

compute a correction factor for the ODE model, that compensates for the extra degradation 

of the diffusible molecule along the channels. In these regimes, we obtain an accurate 

steady-state and dynamical match between the ODE and the PDE model.

When the equitability condition is satisfied approximately rather than exactly, we treat the 

system as a perturbation of an equitable one and appeal to continuous dependence of 

solutions on the parameters dij.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Compartmental lateral inhibition system with cells of type A and B, where contrasting 

patterns between neighboring compartments emerge. In each compartment Ai (Bi) we place a 

colony with cells of type A (B) that communicate through channels. Each cell type can only 

detect signaling molecules produced by the other type, preventing auto-inhibition.
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Figure 2. 
Block diagram for two types of compartments A and B communicating through diffusion. 

For each type of diffusible species, the transceiver includes the dynamics of the senders’ 

transmitter modules, the receivers’ detection modules, and the diffusion process.
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Figure 3. 
Typical shapes of input-output maps T̄

A(·) and T̄
B(·): (a) The unique pair of fixed points 

(orange circles) is near-homogenous and no contrasting patterns emerge; (b) There exist 

three pairs of fixed points (orange circle, green square, and blue triangle), and the two 

additional solutions represent contrasting steady-state patterns.
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Figure 4. 
Patterning (yellow) vs. non-patterning (red) region, for varying pRi and d̄

AB = d̄
BA, and 

where: nT = 2; c = 1; ν = 1.34e-2s−1; γX = 7.7e-4s−1; kon = 1e9s−1M−1; koff = 50s−1; vT = 

1.03e-11s−1M; KT = 2.68e19M; ℓ = 1.98e-4; γIX = 1.16e-3s−1.
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