
Modeling, Analysis, and Optimization of
Data-Driven Scientific Workflows

By

SVEN KÖHLER
Dipl.-Inf. (Ilmenau University of Technology, Germany) 2005

M.S. (University of California, Davis) 2011

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Bertram Ludäscher, Chair

Professor Todd J. Green

Professor Vladimir Filkov

Committee in Charge

2014

i

Abstract
Sven Köhler
March 2014

Computer Science

Abstract Page 1 of 2

This dissertation presents improvements to the modeling and efficient execution of scientific

workflows. Many scientific workflow systems have been developed to solve a specific problem

well, but many fail to address needs of a broader group of scientists. While there may never be a

system that can satisfy all needs completely, a better balance between diverging design goals can

be found. To this end, this work identifies a number of desiderata that occur in the design of a

scientific workflow system and discusses to which degree they are addressed in current scientific

workflow systems. A selection of systems is presented in detail and strengths and weaknesses with

respect to the desiderata are described. From this discussion, beneficial characteristics, properties

and implementation details of scientific workflow systems are derived, yielding a proposal for

an improved scientific workflow system. Recently, the declarative database language Datalog

gained popularity in research and was used in workflow-oriented projects. Therefore, the use of

Datalog as (i) a workflow description language and (ii) as a tool for implementing components is

investigated. Different and novel approaches to understand, visualize and profile the evaluation

of a Datalog program are developed and demonstrated. Finally, new techniques for capturing and

employing data and workflow provenance are developed. For example, provenance information

is used to understand and debug database queries and workflow execution traces, or to more

efficiently resume workflow execution after parameter changes or even system crashes.

ii

Sven Köhler
March 2014

Computer Science

Abstract Page 2 of 2

Provenance is critical for scientists using workflow systems and is therefore studied exten-

sively. This dissertation presents an overview of current research topics in the field of provenance

and some methods used to analyze provenance data using Datalog. When Datalog is used as a

workflow description language, provenance of data has to be defined and available. Conversely,

research in the field of database systems and Datalog can be extended to scientific workflow

systems, for example to capture and analyze provenance. A new game-theoretic notion of prove-

nance is presented that yields a detailed visual description of Why/How provenance for facts but

also provide answers to Why-Not questions for missing facts in the result. A novel modification

of the provenance game construction is sketched that removes dependencies on the active domain

from the provenance explanations. Returning to classical workflow systems, some approaches to

model and automate scientific problem solving are studied and discussed. This ultimately leads

to the definition of a new scientific workflow system that is based on existing concepts that were

identified as beneficial earlier but strives to improve on weaknesses identified in the presented

case studies. Finally, a new method to improve fault tolerance of a scientific workflow system,

which demonstrates all technologies discussed, is presented. Provenance of the workflow exe-

cution is analyzed, for example using Datalog, and used to speed up recovery of the workflow

execution after a failure.

iii

Contents

List of Figures vii

1 Introduction 1

2 Requirements and Desiderata of Scientific Workflow Systems 6
2.1 Desiderata . 6
2.2 The Problem: Desiderata vs. Reality . 8

3 State-of-the-art Scientific Workflow Systems 9
3.1 DAGMan and Job Dependency Graphs . 9
3.2 Dataflow Models of Computation in Kepler . 11

3.2.1 Synchronous Dataflow (SDF) . 11
3.2.2 Process networks . 13
3.2.3 COMAD . 16

3.3 Taverna . 18
3.4 RestFlow . 19
3.5 Vistrails . 23
3.6 DFL: A dataflow language . 25
3.7 Map-Reduce Online . 29
3.8 Others . 30

4 Prelimiaries: Datalog 31

5 Provenance 33
5.1 Datalog for Provenance Analysis . 34
5.2 A Unified Provenance Model . 38
5.3 Hamming Workflow Variants . 42

5.3.1 Structural Validity . 42
5.3.2 User-Defined Provenance Queries . 43

5.4 Summary . 44

6 Datalog Profiling and Debugging 48
6.1 Introduction . 48
6.2 Provenance Rewritings for Datalog . 51

6.2.1 Recording Rule Firings: P
F
; PF . 51

6.2.2 Graph Reification of Firings: PF
G
; PG 52

6.2.3 Statelog Rewriting: PG
S
; PS . 53

iv

6.3 Debugging and Profiling using Provenance Graphs 55
6.3.1 Debugging Declarative Rules . 55
6.3.2 Logic-Based Profiling . 56

6.4 GPAD Prototype Implementation . 60
6.5 Related Work . 60
6.6 Summary . 62

7 First-Order Provenance Games 63
7.1 Introduction . 63
7.2 A Game on Graphs . 65

7.2.1 Solving Games: Labeling Nodes (Positions) 67
7.2.2 Game Provenance: Labeling Edges (Moves) 69

7.3 Provenance Games . 71
7.3.1 Query Evaluation Games . 71
7.3.2 Relationship with Provenance Polynomials – Provenance for RA+ 76
7.3.3 Why-Not Game Provenance for RA+ . 81
7.3.4 Game Provenance for First-Order Queries 82
7.3.5 Variants of the Evaluation Game Graph 83

7.4 Extension to Well-Founded Recursive Datalog¬ 85
7.5 Domain Independence . 92
7.6 Conclusions . 95

8 Towards a Better Workflow Model 98
8.1 Desiderata Revisited . 99
8.2 Comparison of Workflow Systems . 102
8.3 Case study: Improving a Monitoring Workflow 102

8.3.1 Workflow Analysis . 103
8.3.2 Workflow Re-modeling with COMAD . 105
8.3.3 Extensions of COMAD . 106
8.3.4 Summary . 108

8.4 Case study: Growing Degree Day (GDD) Workflow 108
8.4.1 Introduction . 108
8.4.2 Conventional GDD Workflow Design . 110
8.4.3 Chunker Actor: Flexible Window-Based Grouping 112
8.4.4 Growing Degree Days Workflow Using A Chunker 116
8.4.5 Summary . 117

8.5 Case study: MotifCatcher . 118
8.6 Case study: Kuration Workflow . 119
8.7 Improved Distributed Execution . 121

8.7.1 Introduction . 123
8.7.2 Preliminaries: MapReduce . 125
8.7.3 Framework . 127
8.7.4 Parallelization Strategies . 132
8.7.5 Experimental Evaluation . 146
8.7.6 Related Work and Conclusion . 152

8.8 A New Workflow System Prototype . 153
8.8.1 New Workflow System Overview . 153

v

8.8.2 Implementation . 155
8.8.3 Kuration Workflow in New System . 156

9 Workflow Fault-Tolerance and Provenance 159
9.1 Introduction . 159
9.2 Related Work . 162
9.3 Fault Tolerance Approach . 163

9.3.1 Basic Workflow Model . 164
9.3.2 Review of Provenance Model . 166

9.4 Recovery Strategies . 168
9.4.1 The Replay Strategy: Fast-Forwarding Actors 168
9.4.2 The Checkpoint Strategy: Using State Information 172
9.4.3 Recovering SDF and PN Workflows . 174

9.5 Evaluation . 177
9.6 Summary . 180

10 Conclusions & Outlook 181

vi

List of Figures

3.1 A DAGMan “workflow” consisting of four jobs and their dependencies. An edge
X → Y indicates that job Y can only start after job X has finished. 9

3.2 Dataflow network with its different representations. a) complete view, b) data-
centric view and c) actor-oriented view . 11

3.3 SDF model elements overview: Actors can be invoked repeatedly up to the fir-
ing count limit. Actors read from and write to channels. Channels behave as
FIFO queues. The amount of data tokens produced and consumed by an actor is
statically defined. Parameters allow to supply constants to an actor. 12

3.4 PN model elements overview: Actors are invoked multiple times and are only
synchronized through channels. Parameters pass constant data to an actor without
a port. 14

3.5 Example of suboptimally scheduled PN workflow. 15
3.6 Theoretical optimal schedule for executing a stateless actor B that processes only

one input per firing. 15
3.7 COMAD model elements overview: Based on PN, COMAD uses a hierarchical

data structure that is streamed over channels. Read scopes mark the sub-tree
that is processed by an actor. Data bindings specify which data from the read
scope is passed to the actor. 16

3.8 Restflow model elements overview: Restflow uses ideas of PN but refines actors.
Nodes encapsulate actors and handle data sources. An actor provides the compu-
tational function with a fixed signature. Data is published to a folder like structure
using flow expressions. Another actor reads this data if its inflow expression, i.e.,
a subscription URL, matches. 20

3.9 Vistrails model elements overview: A connect element is used to exchange un-
ordered data tuples between modules. Actors are stateless and their computations
can be reused if the cacheable annotation is present. 24

3.10 A basic DFL graph: First, an input Boolean token is evaluated using an edge
annotation. The gen() function then creates an integer and a string token. Both
tokens are passed to function f(x, y), where edge labels ensure the correct assign-
ment of token values to the corresponding parameters. The output of f is a list
of strings that instantly gets unnested to a set of string tokens. 26

5.1 Do the observables x
read→ P and P

write→ y imply that y was-derived-from x? Or
that tread < twrite holds? . 34

5.2 z was-derived-from x. Does tread2 < twrite2 follow? 35
5.3 Trace T (left) and workflow W (right). 36

vii

5.4 Workflow W (top) vs Trace T (bottom): Traces are associated to workflows, guar-
anteeing structural consistency; workflow-level (firing or data) constraints induce
temporal constraints ≤f and ≤d on traces. 38

5.5 Workflow variants H1, H3; output queue is Q8. 43
5.6 Excerpt of a Hamming workflow trace TH containing solid (black) and dashed (red)

edges: This trace is homomorph to H1 in Figure 5.5a but it is not homomorph
to H3 in Figure 5.5b since the dashed (red) edges in TH cannot be mapped to
corresponding edges in H3. 46

5.7 User-defined provenance for Hamming numbers up to 1000 (a) for H1 (“Fish”)
and (b) for H3 (“Sail”) . 47

6.1 P rtc-provenance graph for input e, with derivations of tc(a,b) highlighted in (c) . 50
6.2 Subgraph with two rule firings fire1(a, b) and fire2(a, b, b), both deriving tc(a,b) . 52
6.3 State-annotated provenance graph g for the derivation of tc(a,b). Annotations [in

brackets] show the round (state number) in which an atom was first derived. To
avoid clutter, firing nodes are often depicted without variable bindings. 54

6.4 Provenance graphs with annotations for profiling P rtc and P dtc on a 5-node linear
graph. P dtc causes more rule firings than P rtc and also derives facts in multiple ways.
Numbers denote len(F) (in firing nodes) and len(A) (in atom nodes), respectively. 58

7.1 Position values in G (left) are revealed by the solved game Gγ = (V,M, γ) on the
right: positions are won (green boxes), lost (red octagons), or drawn (yellow cir-
cles). This separates “good” moves (solid, colored arcs) from “bad” ones (dashed,

gray). The length ` of a move x
`→y indicates how quickly one can force a win, or

how long one can delay a loss, using that move. 66
7.2 Depending on node labels, moves x → y are either winning (or green) (W

g
; L),

delaying (or red) (L
r
; W), or drawing (or yellow) (D

y
; D). All other moves are

either bad (allowing the opponent to improve the outcome), or non-existent (n/a):
e.g., if x is lost, then there are only delaying moves (i.e., ending in won positions
y for the opponent). 71

7.3 Move types of the query evaluation game (left) and implicit claims made (right). Moving

along an edge, a player aims to verify a claim, thereby refuting the opponent. Initially,

player I is a verifier, trying to prove A, while II tries to spoil this attempt and refute it.

Roles are swapped (I
 II) when moving through a negated goal (R;N;A). 72
7.4 Provenance game for the FO query Qneg:= A(X) :− B(X,Y),¬C(Y). The well-

founded model of the rule win(X) :− M(X,Y),¬win(Y), applied to the move
graph M, solves the game. 73

7.5 Input graph for program Q3Hop in (a) using edge labeling according to (b). Game
provenance ΓQ3Hop,D for the query 3Hop(a, a) on input database of (a) is shown in
(d). When labeling leaf nodes according to (b), lost inner nodes by “×”, and won
inner nodes by “+” then the operator DAG GΩ shown in (e) is created. This DAG
represents the semiring-provenance polynomial for the query 3Hop(a, a) shown in
(c) and [KG12]. 80

7.6 Why-not provenance for 3Hop(c, a) using provenance games. 81
7.7 Provenance graphs for Qneg with database D = {B(a, b), B(b, a), C(a)}. Both why

and why-not graphs might contain leaf nodes representing existent and missing
input facts. 83

viii

7.8 Creating Trio(X) style provenance game variants for Q3Hop by dropping positional iden-

tifiers in the Skolem function for goal nodes. The operator tree on the right reads p+ 2pqr. 84
7.9 Game provenance for QTC. 87
7.10 Color-Propagation Example: A positive cycle in the predicate dependency graph

can lead to unfounded sets. When computing game provenance, unfounded sets
are initially represented as drawn positions yielding the yellow subgraph. By
modifying QCP to Q

′
CP, unfounded positions are forced to be false. This yields

the desired provenance information for the well-founded semantics. 89
7.11 Solving provenance games for well-founded Datalog¬. 91
7.12 Construction of game graphs using constraints. 94
7.13 Why provenance for 3Hop(a, a) using constraint provenance games. 95
7.14 Why-not provenance for 3Hop(c, a) using constraint provenance games. 96

8.1 Original Monitoring Workflow: The top-level PN workflow shows all steps of the
workflow. Additional parameters are contained in the parameter set in the top left
corner. In the upper left corner, the workflow starts with initialization actors. Four
pipelines that use a polling technique to observe a job execution follow: The first
pipeline just contains one actor that observes the job execution and adjusts the
flag “JobIsRunning” according to the status of the job. The other three pipelines
start with a sampling actor that continuously creates a trigger value until the
“JobIsRunning” parameter value changes to false. 104

8.2 Remodeled Monitoring Workflow using COMAD: The top-level model uses the
COMAD director. Composites use SDF and DDF directors, but the handling of
explicit stop files is not required anymore. 106

8.3 Crossing actor: The data stream is passed through into the loop and later read.
The stream is not directly modified at this point but additional flags are introduced
into the main stream passing through. This allows the construction of a simple
loop construct with better streaming support. 107

8.4 Plot of average temperature (upper curve with scale on the right) and GDD (lower
curve with scale on the left) for CIMIS02 station. 109

8.5 Conventional “Token Counting” GDD workflow The data stream is split into non-
overlapping windows of fixed size by counting data tokens using Sequence to Array

with a statically defined data token count. Here, the maximum length of data ar-
rays is calculated from constant parameters provided in the lower right of the
workflow graph. 111

8.6 Grouping by “Token Counting” with Sequence to Array actor Incoming data
tokens are counted and starting from position b the temperature data stream is
split into windows of fixed size s. Thus, grouping of data tokens depends on the
correct position in the stream and windows cannot be constructed based on the
timestamp ti associated with data stream. 112

8.7 Examples for desirable time windows Window 1 and 3 are consecutive, non over-
lapping and of fixed size. Window 4 has a different window length that cannot
be generated using Sequence to Array because of a fixed parameter for the win-
dow size. Window 2 represents an overlapping window, which cannot be realized
with Sequence to Array because the fixed window sizes also determines the start
position of the following window. 113

ix

8.8 Flexible, window-based Grouping Incoming data tokens from D are matched with
all incoming windows W . If the timestamp ti of a data token is enclosed in window
j : bj ≤ ti ≤ ej then the value of this data token is grouped with this window. If
configured by the user, the value is also used to update aggregations stored for the
window. Once the end time of window ej has passed, i.e., incoming data tokens
have a greater timestamp, aggregations are finalized and the completed window is
output. 114

8.9 New GDD workflow design with Chunker actor Through two separate streams, one
containing data and the other containing user-defined windows, the Chunker actor
can group data into arbitrary windows. Here, the actor is configured to output only
the running min, max, and average over windows and not the window data itself.
This data is subsequently extracted from the output array by a RecordDisassembler
and plotted in a similar design as before but with streaming to allow continuous
monitoring. 117

8.10 Kuration workflow modeled in COMAD. 120
8.11 Small automated Kuration workflow. 121
8.12 Suboptimal COMAD workflow execution. Time is progressing towards the bot-

tom. (2) is the delay caused by serial execution of invocations of stateless actor B
that can be executed in parallel. (3) is the delay caused by the COMAD imple-
mentation to allow adding annotations as long as the collection is open. 122

8.13 XML Pipeline with five steps. Each step has a defined scope (e.g.,//B, //C) to
“work on”. Sample input data is shown in the bottom left, data partitioning for
Step 1 and 5 is shown in the bottom right of the figure. 123

8.14 Splits and groups for Parallel execution. For each step in the pipeline the data
is partitioned such that all data for one scope match is inside one fragment while
each fragment holds at most one match. 128

8.15 Image transformation pipeline: All images are blurred ; then from each image, four
new images are created by coloring ; and finally a big montage is created from all
images below each “B”. 131

8.16 Processes and dataflow for the three parallelization strategies. 133
8.17 Split, Map, Reduce for Naive strategy. 134
8.18 Split and Map for XMLFS . 138
8.19 Split for XMLFS & Parallel . 139
8.20 Example of how to change fragmentation from //D to //B in parallel. Since

splitting from row two to row three is performed independently in each fragment
this step can be performed in the Mapper. Grouping from row three to row four is
performed in parallel by the shuffling and sorting phase of MapReduce such that
the merge can be done in the Reducers, also in parallel. 142

8.21 Map and Reduce for Parallel . 144
8.22 Group and sort for Parallel strategy . 145
8.23 Main differences for compilation strategies . 145
8.24 Serial versus MapReduce-based execution. Comparing wall-clock runtimes times

for image processing pipeline (Figure 8.15) in seconds. All three strategies out-
perform a serial execution. Relative speedups range from around 20 for #C = 10
to above 10 for #C = 1. #B was set to 200. 149

x

8.25 Runtime comparison of the three strategies executing the pipeline given in Fig-
ure 8.13. On the X-Axis #B is varied, Y-axis shows wall-clock runtime of the
pipeline. For small XML structures, Naive and XMLFS outperform Parallel since
fewer tasks have to be executed. The larger the data the more superior is Parallel. 151

8.26 Components of the newly proposed workflow system. 155

9.1 Example workflow with stateful actors: To recover the workflow execution after a
fault, unconsumed tokens inside workflow channels and internal states of all actors
except the stateless Align have to be restored. 161

9.2 Unified model. Relations to describe the workflow are shown on the left. The three
relations on the right summarize provenance information. The blue highlighted
relations capture SDF specific extensions. 165

9.3 Input queues with history and token state: Each token produced during workflow
execution can be in one of five states. Events on the producing and consuming
actors trigger transitions between token states, shown on the left. The right graph
shows three views of a channel: (1) the current content of the queue during an
execution in the first row, (2) the history of all tokens passed through this channel
associated with their state in the middle row, and (3) the rescue sequence of tokens
that needs to be restored in the third row. 168

9.4 Checkpoint strategy. Each recovery step uses provenance views shown on top. . . 173
9.5 SDF workflow example with state annotations. 174
9.6 Schedule corresponding to Figure 9.5. The schedule describes the execution order.

The red circle indicates the failure during the second invocation of B. 175
9.7 Workflow execution up to failure in B:2. The states of actors B and D are stored,

but no checkpoint exists for C. Token t1 is only send once, but is duplicated by
the link to both actors B and C. Tokens t4 and t7 are never read. 176

9.8 Individual stages to recover the sample workflow with checkpoint strategy. . . . 176
9.9 Synthetic SDF workflow. Actor A is a stateful actor generating a sequence of

increasing numbers starting from 0. B is a stateless actor that has a running time
of 15 seconds. C is stateful and needs 5 seconds for each invocation. D is a fast
running stateless actor. E is a stateful “Display” actor. 179

9.10 Performance evaluation of different recovery strategies. 179

xi

Chapter 1

Introduction

With the availability of new technology and automation, science has become increasingly data-

driven. New instruments are able to produce increasingly larger amounts of sensor data. For

example, modern telescopes have a much higher resolution and work for longer times so that

they produce terabytes of data. The Large Synoptic Survey Telescope (LSST) project [ITA+08]

generates and processes 30 terabytes of data every night. In the biological sciences, sequencing

machines automatically process larger number of samples with a higher precession, resulting in

large collections of data. Such data volumes require special handling and are kept at various

locations in various formats. The analysis and the use of this data is extremely computationally

intensive. Computations are performed not only on one system but increasingly distributed on

clusters and clouds. The runtime of scientific programs can be in the order of hours, days or

even weeks.

Scientific workflow systems aim to provide an integrated solution for efficiently executing

a pipeline of scientific computations and providing the required data for each step. Workflow

systems typically provide a library of computational functions readily available for use in mod-

els. Workflows are created using a workflow description language. Most workflow description

languages are based on a visual language representing graphs while a few use a purely textual

modeling language. The way a workflow model is executed is determined by the execution se-

mantics of this model. The combination of a workflow modeling language with its associated

execution semantics forms a model of computation (MoC) [Pto14].

1

Note that “first-class” features of a scientific workflow system, e.g., stream parallelism or

structured data models, are determined by the MoC and not by the library. Limitations in the

MoC are often compensated by adding additional computational functions to the library that

users have to add to workflow models, e.g. string parsers or MapReduce actors in Kepler.

Workflow systems are increasingly adopted in research and science. They have been used for

such diverse purposes as the automation of monitoring particle physics simulations as well as

archiving and post-processing results in the Center for Plasma Edge Simulation project [PLK07],

the characterization of microbial organisms and search for links to diseases [HRM+10], or the data

management, simulation and monitoring of reservoir uncertainty analysis for petroleum engineers

[CAWK08]. Furthermore, there are numerous commercial systems available, e.g., Pipeline Pilot

[Pip13] or InforSense Suite [Inf13].

Scientific workflows allow users to repeatedly perform a set of given task over different sets of

input data. Thus, they should be easy to create and modify. However, despite their increasing

adoption, solid foundations of scientific workflow systems are still lacking. Scientific workflow

systems are promising, but further research is required to improve both, workflow usability and

the efficiency of workflow executions. The design of workflows should be as simple as possible,

but must also provide enough information to allow an efficient execution.

Preferably, data used and produced by a scientific workflow should be well organized. In

order to provide value for science, output data should be reproducible and justifiable. To that

end, it should be captured on what inputs a given set of output data depends and through which

computational steps it was processed. This history of data is referred to as provenance. Scientific

workflow systems should support the recording and management of provenance.

Provenance information typically forms a graph describing dependencies of events or data.

Scientific workflow systems frequently store provenance information in relational databases or

specialized graph databases. Thus, simple and efficient tools to create, manage and analyze

provenance data are required. Datalog is a declarative logic programming language well suited

for querying graphs in general and provenance specifically [DKBL12]. Datalog has well-studied

properties and has enjoyed long-term popularity in research. Besides being used as a query

language, efforts are made to use Datalog as a workflow description language itself. Such an

2

approach requires to study the provenance of a Datalog program evaluation itself.

Much research has been done over the past years on how to improve modeling and execution

strategies. For example, Frank Kühnlenz addresses usability issues of workflows in his disser-

tation [Küh13]. First, he describes current problems with adopting workflow systems. Then,

he proposes a meta-language to describe workflows that can be compiled to different workflow

description languages and thus can be executed on multiple systems. Shahaan Ayyub addresses

the difficulty of using distributed computing platforms in his dissertation [Ayy13]. He describes

another environment in which workflows should be executed efficiently and the difficulties that

arise when using contemporary scientific workflow systems. Finally, he develops a system that

uses dynamic process networks to better utilize distributed resources and speed up the execu-

tion of a workflow. Furthermore, provenance of scientific workflows is still the focus of many

research projects [SPG05, MGS11]. For example, Robert Ikeda studied provenance in data-

oriented workflows in his dissertation [Ike12]. First, he provides new definitions for provenance

and its properties. Then, he describes new methods to capture provenance in a Map-Reduce

based environment and how to use that provenance for selective updates. Finally, he developed

a system called Panda (for Provenance And Data) that allows selective recomputing, debug-

ging, and drill-down using logical provenance of outputs in data-oriented workflows. Finally,

provenance of database query languages and Datalog especially has been studies extensively

[KIT10, KG12, HCDN08]. However, practical systems typically use extensions of Datalog where

well established provenance approaches are not applicable anymore, e.g., [GBA10].

This thesis presents further research conducted to improve scientific workflow systems and

data provenance. This work can be seen as a continuation of Daniel Zinn’s dissertation “Modeling

and Optimization of Scientific Workflows” [Zin10] and further extends the presented approaches.

In particular, the following contributions are presented:

Desiderata (Chapter 2). The author defines a collection of features that scientific workflow

systems are commonly expected to provide. This features serve as guidelines for evaluating

workflow systems and as goals for further optimizations.

Scientific workflow systems survey (Chapter 3). A survey created by the author sum-

3

marizes different state-of-the-art workflow systems and evaluates to which degree they

address the expectations presented in Chapter 2. Furthermore, current approaches to

improve workflow systems are presented.

Datalog (Chapter 4). The declarative programing language Datalog is introduced as a can-

didate for a scientific workflow description language as well as a tool to analyze workflows

and provenance.

Provenance in scientific workflow systems (Chapter 5). The concept of provenance and

commonly used notations are introduced. Furthermore, methods to query, process, and

analyze provenance are presented. A concrete method is developed to use the declarative

language Datalog to analyze provenance information. This research was conducted by

Saumen Day with contributions by the author and was published in [DKBL12].

Datalog Debugging and Profiling (Chapter 6). A framework is presented that was devel-

oped by the author to understand, debug and profile the evaluation of Datalog programs.

The approach employs various program rewriting techniques to capture the provenance

and creates a graphical representation of the Datalog evaluation. When Datalog is used

as a workflow description language, this closely corresponds to workflow provenance. In

the other use case of Datalog as a tool to analyze provenance, it is important to verify the

correctness of the program. This work was published in [KLS12].

First-Order provenance games (Chapter 7). Building upon the previous contribution, the

author developed a novel system that views a (non-recursive) Datalog¬ program evaluation

as a game. The developed game construction provides provenance information for data in

the output of the program but also for absent data. This work was partially published in

[KLZ13].

Towards a new scientific workflow system (Chapter 8). A brief study performed by

the author provides a comparison of existing scientific workflow systems and proposes

approaches for their improvement. The study provides a list of features that have been

proposed to address requirements of scientific workflows. Common attributes and workflow

4

system elements are pointed out. In addition, case studies are presented that show how sci-

entific workflow systems are used in practice and how well they perform. First, a case study

performed by the author shows how the Process Networks model of computation in the

Kepler scientific workflow system is used for monitoring simulations on a supercomputer

and identifying. This study points out design challenges and weaknesses in this model of

computations. Another case study by the author shows how the collection oriented CO-

MAD model of computation is used to compute growing degree days on streaming data.

This study points out some benefits of a structured data model in workflows and was pub-

lished in [KGC+12]. In addition, a workflow developed by the author shows how to identify

motifs in genome data on distributed resources using Kepler Map-Reduce. The workflow

is briefly summarized and an abstract was published in [KSFL12]. A more recent case

study demonstrates specimen data curation using the collection oriented COMAD model

of computation in the Filtered-Push project [WDK+09, DHL+11, MGH+13]. It identifies

shortcomings in scalability imposed by the order of data items in the collection structure.

With some contributions be the author, Daniel Zinn devised a method to parallelize the

execution of a XML like collection oriented workflow using Map-Reduce. A summary of

the publication in [ZBKL10] is presented in this work. Based on the technologies used

in workflow and impressions from case studies, this dissertation presents a draft of a new

workflow system specification that offers improved workflow execution and the benefits of

a structured data model.

Fault tolerance for workflow systems using provenance (Chapter 9). An approach

to reduce re-execution time of a workflow after a failure was developed by the author and

published in [KRZ+11]. This work defines two smart resume strategies to efficiently recover

a workflow execution using readily available provenance information.

Finally, Chapter 10 summarizes the contributions of this thesis and proposes directions of future

research.

5

Chapter 2

Requirements and Desiderata of

Scientific Workflow Systems

The intend of scientific workflow system development is to provide various features to users and

developers. The user’s goal is to perform scientific computations with minimal manual labor, less

expensive and as fast as possible. Based on this usage profile, certain requirements of scientific

workflows exist and should be addressed by all systems. T. McPhillips et al.[MBZL09] described

requirements that workflows systems should address. The desiderata described here are inspired

by this work, but emphasize different aspects. The requirements should be applicable to a wide

range of workflow systems and address usability as well as performance.

2.1 Desiderata

In this section, some basic desired properties are defined. For each property, a concrete example

is provided to show how it is addressed or violated in workflow systems. This work will provide

more workflow features that address the properties presented here.

Automation. Scientific workflow systems should automate the process of executing different

programs or scripts necessary for scientific research [LAB+09]. The order, in which processes

must be executed, should be determined by the workflow system. Furthermore, the system

should conduct all data transfer necessary for computations transparently for the user. The

6

actual execution of the workflow should not require user intervention. For example, the workflow

system should store authentication information for long running jobs instead of prompting the

user after an authenticated session expires. Furthermore, the system should handle setup and

cleanup of the computing environment.

Simplicity. Users should be able to design a workflow, i.e., create a workflow using existing

computational functions and combining them into a pipeline, easily. Workflow components often

require access to and processing of complex, nested data structures. This can lead to loss of

simplicity [MBZL09, ZBML09a].

Reusability. Workflows and their parts should be reusable to create other workflows con-

taining similar steps. In particular, it should be easy to extract workflow parts, to save them

persistently, to share them with collaborators and to integrate them into a different model in a

few steps [GDR07].

Generality. It should be possible to model a wide range of different problems in different

fields of science within the same scientific workflow system [DGST09]. In particular, the data

model as well as the computational functions allowed, should not impose any restrictions on the

applicability of a scientific workflow system.

Abstraction. The system should provide a sufficient level of abstraction, so that users do not

need a deep understanding of programming languages, the execution semantics of the workflow

system and the resources the workflow is run on. A user should not need to study the definition

of multiple models of computation to be able to create a workflow that processes a variable

amount of data provided in a list.

Understandability. Workflows should be readable and understandable by a different user.

For example, after sharing a workflow with collaborators, they should be able to identify the

scientific problem solved [MBZL09].

Modifiability. Furthermore, a workflow should be modifiable easily. In particular, local

changes should not cascade through larger partitions of a workflow. The system should also

provide a convenient way for the user to conduct such modifications. A scientist should be able

to replace a computational function by another method without an analysis of hidden dataflows

7

in the file system or re-designing data structures [ZBML09a].

Scalability. When multiple computational resources are available, the workflow system

should be able to use them in order to speed up workflow executions [DBG+04, FPD+07]. This

should not require complex reconfigurations nor changes in the workflow itself. The execution and

the optimization of resource usage should be handled transparently by the workflow system. If a

large computing cluster is available, the system should be able to execute an available workflow

on multiple computing nodes without changes.

Robustness. A workflow system should be fault-tolerant. It should be able to handle faults in

individual computational functions without crashing and loosing successfully computed results.

Furthermore, a crash of the whole workflow, e.g., due to hardware failures, power outages or

other external events, should not require re-executing the whole workflow from the beginning.

Reproducibility. Finally, the computations done by a workflow system should be repro-

ducible. In order to verify the correctness, scientists should be able to analyze from which input

or intermediate data results were derived and which methods were used. If a data item of the

workflow output is obviously flawed, the user should be able to identify corrupted input data

that lead to the error.

2.2 The Problem: Desiderata vs. Reality

Some requirements defined here are generic and also apply to other systems, e.g., database

management systems. However, other requirements, e.g., Automation and Reproducibility,

are especially targeting scientific workflows.

Now, the question arises to what degree current workflow systems address those requirements.

Developers of different systems frequently have their own perception of requirements and no

common foundations have been established. In the next chapter, this work will introduce a

selection of scientific workflow system, showing that some requirements have not been addressed

by many applications. Only a small number of systems provide good Scalability. Robustness

is addressed only partially with various specialized methods.

8

Chapter 3

State-of-the-art Scientific Workflow

Systems

This chapter provides a survey of prominent workflow systems and their associated models. The

main characteristics of each approach will be presented in order to evaluate to which degree they

address the expectations on workflows presented in the previous Chapter 3.

3.1 DAGMan and Job Dependency Graphs

DAGMan is a job scheduling framework, but can also be viewed as a workflow execution engine.

Simple workflows can be expressed as directed acyclic graphs (DAGs) of interdependent jobs.

The basic modeling elements are depicted in Figure 3.1.

Workflow Description. Nodes represent a single job (or an actor firing). In the pure DAGMan

model, there is no further information available which data this job requires, which data it

A

B

C

D

Figure 3.1: A DAGMan “workflow” consisting of four jobs and their dependencies. An edge
X → Y indicates that job Y can only start after job X has finished.

9

produces or if the job is stateful. Furthermore the system does not know if the same task is

invoked again as another job later on, since there is no information about the content of jobs

used for scheduling. The workflow designer models edges between nodes in this directed graph

based on his understanding of either control flow or data dependencies. The edges themselves

do not carry any information on what kind of dependency they represent.

Execution Semantics. During execution, the jobs, whose predecessors all have finished, are

started. By default a job’s output is available to downstream jobs only after the job completed,

i.e., the execution model does not include streaming as a first-class feature1.

Fault Tolerance. A basic fault tolerance mechanism exists for workflows managed by DAGMan

[HC07]. Jobs are scheduled according to a directed graph that represents dependencies between

those jobs. DAGMan uses the concept of a Rescue-DAGs that contains all job currently running

or yet to be executed. If a failure occurs, the workflow execution can be resumed using the

Rescue-DAG, only restarting those jobs that were interrupted.

Summary. Because of its nature and tight integration with the job scheduler Condor, DAGMan

offers an easy way to run workflows on a distributed system.

DAGMan requires the user to model most of the workflow details. The user has to make sure

that data is passed between jobs in the correct way. Data dependencies are hard to understand,

since they are not explicitly modeled. This makes it also much harder to modify a workflow.

A major weakness is that DAGMan by itself is completely unaware of data and its shipping.

Data dependencies have to be explicitly modeled by the workflow designer and cannot be inferred

from a workflow description. Kosar et al. [KL04] presented an approach that should overcome this

issue but it still does not provide a fine-grained level of data handling into workflow scheduling.

Finally, the scheduling is based on a whole job as the smallest element. This does not

allow any kind of build-in stream or pipeline parallelism. Instance parallelism, where multiple

independent jobs can run in parallel depends on the workflow designer’s understanding of the

exact behavior of jobs.

1This does not exclude that a DAGMan provides jobs, that setup streams, but those are then outside the model.

10

Actor i Actor jChannel
k

Channel
m

Channel
n

Channel
k

Channel
m

Channel
n

Actor i Actor j

a)

b) Data oriented c) Process oriented

Figure 3.2: Dataflow network with its different representations. a) complete view, b) data-centric
view and c) actor-oriented view

3.2 Dataflow Models of Computation in Kepler

Dataflow models represent a family of relatively simple workflow models of computation that are

widely used in scientific workflows. The concepts are derived from dataflow programming and

hardware design [Den80]. Computational entities (actors) perform, e.g., scientific data analysis

steps. These actors consume or produce data items (tokens) that are sent between actors over

uni-directional FIFO queues (channels). In general, output tokens are created in response to

input tokens. One round of consuming input tokens and producing output tokens is referred to

as an actor invocation.

Frequently dataflow models are described using a graphical notation of a directed graph as

shown in Figure 3.2. A complete view of a dataflow would include the data as input, intermediate

results and output as well as the processing entities (actors).

synchronous The following sections describe a selection of models based on dataflow principles

in more detail.

3.2.1 Synchronous Dataflow (SDF)

The synchronous dataflow network was proposed by Lee et al. in [LM87a] mainly targeted for

hardware-software co-design. A SDF model is a dataflow network that is described graphically.

An overview of the model elements is given in Figure 3.3.

11

Actori

Actorj

Parameter

output
port

input
port

production
rate

consump-
tion rate

Token

firing
count

firing
count

Figure 3.3: SDF model elements overview: Actors can be invoked repeatedly up to the firing
count limit. Actors read from and write to channels. Channels behave as FIFO queues. The
amount of data tokens produced and consumed by an actor is statically defined. Parameters
allow to supply constants to an actor.

Model Description. A SDF model is a directed graph that could have cycles. The nodes of

this graph are actors that perform computational functions.

Similar to DAGMan, nodes represent processes and data elements are usually not drawn.

However, unlike in DAGMan, in dataflow models such as SDF,data tokens are a part of the model

and data channels are often drawn together with queues or tokens traveling on the channels. In

order to map certain channels to specific arguments of a computational function encapsulated

by an actor, the channels are connected to the actor via named ports.

Note that these ports are not the data channel’s representation. One channel could be fed

by one outgoing port from an actor but can connect to many incoming ports. Ports have the

semantics of a named FIFO queue that stores incoming tokens.

In addition to the very basic description of actors and their connecting channels, many other

properties are defined in the model. Each actor can be annotated with a maximum firing count

which specified how often this actor can be invoked in total during one workflow execution (run).

A similar firing count is also defined for the whole model and it specifies how often the whole

SDF schedule is executed. SDF models are typed, that is, ports only accept tokens with a

matching (sub)type.

Finally, the main characteristic of SDF is that the number of tokens produced by an actor

through an output port and the number of tokens consumed through an input port are known

before the workflow execution. these consumption and production rates are thus port annota-

tions.

Execution Semantics. The execution semantics is based on those properties and will be

12

described in the following: Before the actual execution the model will be verified. This includes

mainly checking for incompatible types. The next step is calculating a schedule in which actors

will be fired during execution. In order to calculate a schedule, balance equations based on token

consumption and token production rates need to be solved. This will make sure that actors are

called a different number of times to compensate non matching token rates. The final schedule

will contain a number of actor firings that guarantee the consumption of all tokens before a new

iteration of the schedule begins. One execution of the schedule is called round. This schedule

can than be executed repeatedly until either the model firing count or some actors firing counts

are reached.

The execution of SDF models heavily depends on the system used. The Kepler scientific

workflow engine is an extension of Ptolemy II, which are briefly described here. After the

schedule is computed, Kepler iterates through this schedule and executes each actor individually.

Independent actors that do not share any connection are executed serially to improve scheduling

efficiency.

Summary. The SDF model by itself is simple and is automatically checked for some errors

based on typing and token consumption and production rates. However, it requires fixed token

consumption and production rates. This restriction does not allow conditional branches or con-

ditional loops. It also can not handle dynamically changing data sizes as appear frequently in

scientific workflows unless encapsulated in one data token. Such an encapsulation would also

reduce the amount of parallel execution in a possibly parallel implementation of an SDF execu-

tion engine. A disadvantage for general application is the serial execution of the schedule. Even

if enough tokens are available for multiple invocations, the actor is not invoked concurrently.

However, this characteristic is very useful in workflow models to force a fixed execution order,

e.g., because of restrictions implied by external programs.

3.2.2 Process networks

Process networks (PN) were proposed by Kahn et al. in [Kah74] as an approach to simplify design

of parallel systems. Besides this use case, it also has been used to model scientific workflows in

Kepler.

13

Actori
Actorj

Parameter

output
port

input
port

Token

Figure 3.4: PN model elements overview: Actors are invoked multiple times and are only syn-
chronized through channels. Parameters pass constant data to an actor without a port.

Model Description. Process networks are similarly to dataflow networks described as a di-

rected graph. An overview of the model elements is given in Figure 3.4. The nodes of this

graph represent processes, which are similar to actors. The directed edges model channels

that are used for communication. Processes can consume data from incoming and produce

new data on outgoing channels. This Kahn processes [Kah74] are required to be prefix mono-

tonic, i.e., that F (x′) = F (x).∆y where x is a prefix of x′ and where ∆x is the remainder.

So y′ = F (x).∆y = y.∆y, i.e., when more input ∆x is revealed, the output y′ can only be an

extension of y = F (x).

Execution semantics. While the original semantics does not know about firings or iterations

practical implementations as the PN director available in Ptolemy II and Kepler use firings to

implement the theoretical model. In those PN implementations processes represent actors. An

actor will be invoked by the execution engine as long as it does not signal to be done with its

task.Each of this invocations is an firing or invocation. During one invocation the actor could

read an arbitrary amount of data or possibly no data. In the same invocation the actor also

produces and arbitrary amount of data (or no data). To guarantee the monotonicity the actor

does not know how much data is available on a channel.

The end of a PN workflow does not need to be signaled directly. It either ends if all actors

signaled to be done with all computations or when all actors that did not signal to be done are

deadlocked on a read from another actor. This makes the creation of PN very easy and also

flexible. However it makes it harder to understand certain characteristics. While an actor could

be deadlocked on a read from one channel it is not guaranteed that the data on other channels

was read. Therefore the workflows modeled in that way may have data waiting in queues that

never get processed, Due to the flexible nature of PN and no further annotations that clarify the

14

A:1

B:1

B:2

B:3

d1

d2

d3

Actor A Queue Actor B

1
2

Figure 3.5: Example of suboptimally scheduled PN workflow.

A:1

B:1

B:2

B:3

d1

d2

d3

Actor A Queue Actor B

Figure 3.6: Theoretical optimal schedule for executing a stateless actor B that processes only
one input per firing.

behavior, the applications for static analysis are very restricted.

Weaknesses. Since PN workflow descriptions do not contain firing rules nor information if

an actor is stateful or not, no parallel invocations of one actor is allowed. In the example of

Figure 3.5 a stateless actor B could be invoked in parallel for multiple data tokens as shown in

Figure 3.6.

Summary. The PN model is very flexible and allows a high level of parallelism. However, the

knowledge about actors and their behavior is very limited. This allows no further optimizations

of data shipping or instance parallelism. Scientific workflows modeled in PN either require

additional actors in order to handle complex data types or complex data has to be encoded into

one data token preventing parallelized operations on its components.

15

Actori

Actorj

Parameter

output
port

input
port

read scope data binding

Figure 3.7: COMAD model elements overview: Based on PN, COMAD uses a hierarchical data
structure that is streamed over channels. Read scopes mark the sub-tree that is processed by an
actor. Data bindings specify which data from the read scope is passed to the actor.

3.2.3 COMAD

Collection Oriented Modeling and Design (COMAD) is a stream-oriented workflow description

language in the Kepler scientific workflow system. Its concepts and an application of this workflow

language are described by Lei Dou et al. in [DZM+11]. The implementation is based on the PN

dataflow network of Ptolemy II but the semantics are modified.

Workflow Description. As the workflow language its implementation is based on, COMAD

is a graphical workflow modeling language. The graph structure is usually linear but some

extensions allow branching and merging of that graph using special nodes. An overview of the

model elements is given in Figure 3.7. Nodes in this graph represent actors and encapsulate

the scientific functions. COMAD is designed as a hierarchical modeling language and therefore

allows nesting of other COMAD models and even basic data flow network inside an actor. The

edges of a workflow graph describe channels on which one data structure is streamed through

the actors.

The data transmitted between actors could be viewed as one tree structure, similar to an

XML document. One node type in this data tree is a collection (ordered list) of other nodes.

Another node type is a data token that only appears as leaf node. The type of this data token

can be one of the complex types available in Kepler but it cannot be a collection or any other

type appearing in the data tree. The last tree node type is an annotation. Annotations can be

associated with collections or data tokens and consist of one label (of type string) and one value

of any data type. The data types available in Ptolemy II and Kepler include primitive types such

as Boolean, integer and string as well as complex types such as records or arrays. All operations

16

of actors are only allowed to add data to the end of collections. Data removed from the data

structure will not be removed entirely but tagged with a special annotation that indicates its

deletion.

The workflow language also provides model elements that specify how the data is extracted

form and inserted into the stream by actors. Sub-trees of the whole data structure that the actor

could operate on are specified by read scopes associated with actors. This scope expression is

comparable to XPath definitions and may return more than one match. A read scope needs to

be absolute, thus starting with a ‘/’. For the scope expression both child axis ‘/’ and descended

axis ‘//’ are allowed.

The read scope only specifies where the actor is allowed to read data from the tree structure.

It does not always provide the exact data items used nor does it provide any information where

data is written. For this purpose data binding expression are associated with an actor as well.

Input data bindings provide a label for the data that will be extracted and the data itself to the

actor. Output data bindings define a path within the read scope or a newly created neighbor

node in the data tree where data will be stored.

The data binding expressions use the same XPath like language as the read scope but allow

more conditions and references to other data binding. The expression language allows specifying

constraints on matching nodes of the path just like XPath but with a slightly modified syntax.

It is possible to refer to another data binding of the same actor. Output data bindings allow

specifying if and when new collections should be created for output values. Both data bindings

and read scope also specify the data type that will be read or written by an actor.

In some cases, COMAD allows non linear workflow graphs. A branch in the workflow, i.e., two

channels leaving one actor node, results in two copies of the whole data structure that are send

over the different branches. All modifications to the data structure on the individual branches

are local and do not affect the other branches. Merging of two branches (two incoming channels

into one actor) is supported because of restrictions in the model and is handled by a special

actor with two input ports. This special actor has annotations that define a dominant and a

recessive branch that get merged. Unchanged data will be present in the merged stream once. If

differences occur, the dominant’s branch changes are merged to the stream first followed by the

17

recessive branches content.

Execution Semantics. The execution of a COMAD model follows the semantics of PN. The

data tree structure is split into tokens. Collections are represented by an opening and a closing

token. All other elements are represented just by one token. All tokens are streamed through

channels. Actors can read tokens from the stream and these elements can be forwarded to the

next actor, since changes are made at the end of the collection only. The whole data structure

is distributed over the whole workflow and actors could work in parallel on this stream (stream

parallelism). During the execution phase each actor keeps track of the stream position it is in

and extracts and inserts data according to the data bindings.

Summary. The COMAD workflow language offers some degree of parallel execution of the

workflow based on streaming a data structure. Because of the detailed annotations on actors

which data is used or produced many optimizations are possible. The data shipping optimization

presented in [ZBML09b] could be used to minimize shipping. The expressive scope language

allows to arbitrary pick data from a stream and no shims actors are necessary to access nested

data. Static analysis allows predicting the resulting data tree and can help to verify correct

execution of the workflow.

One major disadvantage is the baroque expression language. It is sometimes not easy to

find a good data structure layout to provide an actor with the right combination of data from

multiple data bindings. COMAD also does not provide any annotations providing information if

an actor keeps an internal state. This makes further optimizations as invoking multiple instances

of a stateless actor in parallel impossible.

3.3 Taverna

Taverna [TMG+07] is a widely used scientific workflow system that uses a graphical descriptions

of workflows.

Workflow Description. Building on basic dataflow principle, its workflow language supports

processors, i.e., actors as well as data links, i.e., channels, between them. Processors represent

computational function either implemented as Java classes or web services. Constant processors

18

just provide basic input values. Data links define the flow of output data of one processor

to the input of another processor. In addition, Taverna’s workflow language supports control

links between processors indicating that a processor can start only after another processor has

finished its execution. Ports connect processors with links and allow multiple input or output

values on one processor. Workflows are conceptually similar to processors and also have inputs

and outputs. Multiple workflows and processors can be interconnected to form a new workflow.

Data values and ports in Taverna have associated types. The type system supports base

types and nested lists of those types. The data itself is XML formatted.

Execution Semantics. Taverna invokes processors in the order defined by dependencies that

are implied by data and control link. The workflow system handles the data shipping. If the type

of input data does not match the type of a port but differs by one level of hierarchy, Taverna will

nest or unnest types automatically. If a port expects a list of type τ and the input is just of type

τ then this input will be converted to a single element list [τ]. Unnesting, i.e., transforming a

single list of types [τ1, τ2] into a sequence of multiple values τ1, τ2, results in multiple invocations

of the processor iterating over all elements of the original list. If types of multiple input ports

are unnested, the processor is called with all possible combinations of unnested values in cross

product style.

Summary. Taverna allows structured data types and it supports implicit nesting and unnesting

operations. However, Taverna implements the dot product in a separate actor and not in the

workflow description language. The simple nesting and unnesting approach does not support

random access to different levels of hierarchical types.

3.4 RestFlow

Restflow [MM10] is a purely textual workflow description language that is partially based on

data flow ideas.

Model Description. A workflow is defined using YAML text files, which contain a workflow

section. This workflow section contains a list of other entities belonging to this workflow. One

entity type is a node, which defines a container for a computational function. The actual function

19

Nodei

Actork

Nodej

Actorm

Parameter

outflow inflow

input

input

flow expression

FIFO

Figure 3.8: Restflow model elements overview: Restflow uses ideas of PN but refines actors.
Nodes encapsulate actors and handle data sources. An actor provides the computational function
with a fixed signature. Data is published to a folder like structure using flow expressions. Another
actor reads this data if its inflow expression, i.e., a subscription URL, matches.

that operates on one set of inputs to produce a set of outputs is described in an actor. A node

refers to such actors and encapsulates actors written in different languages. The following table

summarizes differences of nodes and actors.

Another modeling element is a director, which is comparable to the director concept in

Ptolemy II. A director defines the execution semantics of this workflow and as Ptolemy II, Rest-

flow provides many different directors to choose from. In contrast to data flow descriptions, this

language does not require explicit declarations of channels. Each node defines inflows, outflows

or parameters. Inflows describe a location using flow expressions, similar to a path, where data

could be read and passed on to the actor. Outflows describe where data will be placed. Param-

eters provide values directly to the actor without a specific location. Data for Parameters can

also be specified as lists over which the workflow system will iterate through its execution. The

actor itself has input names and output names declared. The node maps inflows or parameters

to those inputs and similarly outputs of an actor to outflows. If one outflow publishes data to

the same location where another inflow location reads from (subscribes) then a data channel is

implicitly formed. Currently Restflow only supports unique location descriptors.

Restflow also allows nested workflows where another workflow could be enclosed by a node.

One workflow could be nested in another workflow multiple times, where each subworkflow is its

own instance. For such nested workflows additional node types called Portals are provided to

map inflows and outflows. Portals are “one-way gateways” that pass data between workflow and

subworkflow. An InPortal routes one or more data flows into the subworkflow. Correspondingly,

20

Node Actor

Unique A particular node can
be employed in only one place in
one workflow.

Reusable Multiple instances of
the same actor can be used by
many nodes in the same or dif-
ferent workflows.

Specific Signifies the role played
by an actor in a particular work-
flow.

General Is completely unaware
of the role played in a particular
workflow.

Connected Interacts directly
with data flowing through the
workflow, exchanging data
with upstream and downstream
nodes.

Isolated Each running instance
of an actor exchanges data di-
rectly only with the one node
that refers to it. It is unaware of
other nodes, actors, or the work-
flow as a whole.

Abstract Independent of how
the computational step it repre-
sents is performed.

Concrete Directly or indirectly
defines the implementation of the
computational step performed.

Technology-neutral Works in-
dependently of the technology
used to implement the computa-
tion it represents.

Technology-specific Depends
on specific technologies to imple-
ment a computation.

Flow-based Employs data flows
to interact with other nodes in
the workflow.

Variable-based Employs vari-
ables to interact with code imple-
menting computation.

Data-source configurable
Configurable to accept data via
parameters or inflows depending
on the role of the node in the
workflow.

Data-source independent Re-
ceives data in a uniform fashion
regardless of whether the corre-
sponding node receives data from
parameters, inflows, etc.

Pluggable Different actors with
the same signature (input and
output variable names) can be
swapped in easily.

Node-independent Can be
plugged into any node that
provides compatible inputs.

Customizable Parameters and
inflows can be used to override all
or just a few of the default values
provided by an actor.

Standardizable Default values
for input variables can be used to
standardize the use of algorithms
or external programs.

Table 3.1: Differences between actors and nodes from [MM10]

21

an OutPortal routes the dataflow from a subworkflow into the surrounding workflow.

Actors could be annotated to be stateful in this workflow language. This means that the

output of an actor not only depends on its current inputs but also the previously received input

values. A director will fire such actors individually for each data set it receives.

Execution Semantics. Since Resflow provides a number of different directors, the execution

semantics can’t be described generally. One option provided is the data driven director which to

some extend comparable with the data flow approaches described earlier.

During execution Restflow triggers nodes according to the rules provided by the director.

Nodes will be triggered if there is sufficient data available on all inflows to fire the actor. Data

produced will be published at the specified locations and can in turn trigger new nodes. This

means that the director here determines the availability of data directly in contrast to the PN

approach which deadlocks on read events. The schedule, in which actors are triggered, has a

fixed order - much like SDF. And only one node is triggered at a given time. The director can

determine if a workflow has finished executing once it fired all actors and no additional data

appeared on any outflow.

If a node has two inflows and there is more than one data set available to fire the actor, data

of different inflows will be matched together according to their arrival time (zip or dot product

behavior).

This data driven firing allows to implement conditional control flow structures (e.g., if-then-

else or while loops) and filtering constructs, which can not be implemented with SDFs static

token production and consumption rates. Data sources are a special case, since such nodes do

not have any inflows. By default they will step one time for each parameter set assigned to

the node. If there are no parameters on a node it will be triggered one time. For stateful data

sources the director also has no means to decide when it should not trigger the actor again. In

such cases the actor needs to be designed to send a null token explicitly and that actor also has

to be annotated with the endFlowOnNull property. This annotation is necessary since normal

actors could produce null tokens throughout their normal invocations without the intention to

end the workflow.

Restflow allows nodes to specify optional data requirements as well as default data. Actors

22

are able to indicate if they require more data on an input during runtime. Another element

of the execution semantic is only available within actor code. Through an API an actor could

declare to not be ready to receive further data on a given port for one stepping.

Another director available for Restflow workflows is the multithreaded data driven director.

It is closely related to the data driven director and shares most of its semantics. The major

difference is that actors can be invoked in parallel and will concurrently produce and consume

data in an unpredictable order. This allows pipeline parallelism in the workflow where actors

work already on new data while nodes subscribed to this actor still work on previously produced

output.

Summary. Restflow does not use deadlock detection to end workflows but instead could infer

the end of the workflow from the amounts of data produced. This allows distinguishing between

real deadlocks and the intended workflow end.

This workflow system makes it easier to integrate external applications such as shell scripts.

Reading from external file is also much more integrated since publish and subscribe locations are

mapped to file system paths.

Restflow as well as Kepler provide a large selection of different execution semantics and require

the user to choose the best fitting one. This requires the user to have a deeper understanding

of each execution semantic, which is a limiting factor for user friendliness. There are also some

properties of the execution semantics as the blocking of an inflow that can only used from actors

source code and are not usable otherwise.

3.5 Vistrails

Vistrails [BCS+05] is a system that is mainly used for visualization but also includes a data

flow based workflow system that is used to describe the process of generating visualizations.

The dataflow is used to describe the steps how the visualization was created (provenance) and

how it could automatically be recreated. It provides a graphical user interface creating and

modifying such workflows. The modeling elements are similar to those used in other data flow

based languages.

23

Modulei

Modulej

Cachable

oport iport

unordered

Figure 3.9: Vistrails model elements overview: A connect element is used to exchange unordered
data tuples between modules. Actors are stateless and their computations can be reused if the
cacheable annotation is present.

Model Description. The nodes of the data flow graph are formed by Vistrails modules. These

modules encapsulate one or more functions, each having a set of parameters as attribute-value

pairs and a return value. A module can represent different applications ranging from simple

scripts or VTK modules to web services. The system also allows the specification of custom

modules that have to fit into the data flow model used and they have to provide function for

execution.

A module could be annotated with a Boolean flag that provides information of whether this

modules computations could be cached to speed up re-execution or not.

The edges in the data flow graph are represented by a connect element. These connection

elements represent data dependencies between the linked modules. On one side of the connect

element a module provides data through an oport while the data could be received through an

iport on the other end of the connection. Those data dependencies are used to define a order over

the execution of modules and are also used to cache data produced by one module depending on

the its input. The model description elements are summarized in Figure 3.9.

Execution Semantics. Before the execution the Vistrails description is translated to its cor-

responding data flow graph and classes are created for the modules. During execution Vistrails

invokes each module in a step starting from the sink of the workflow. The order of invocations

is determined by a depth first search through the workflow graph following the connect elements

backwards. The execution semantics is derived from a Prolog engine. The Vistrails prototype is

based upon the execution engine of XSB Prolog/deductive database system [RSS+97].

To optimize the execution, a signature (e.g., name, parameters and input values) of cacheable

24

modules is stored together with the output of that execution. If during the data flow execution the

same set of inputs is received by a module, the result is looked up in the cache in constant time to

avoid a redundant and possibly expensive re-execution of the modules function. Subworkflows are

handled by the cache manager in a similar way to store as much intermediate results as possible.

For more details refer to the description in [BCS+05]. When the workflow itself changes, the

data dependencies are used to only re-compute parts of the data flow that was affected by the

change. Vistrails shares the cache content between all possible data flow executions in order to

optimize the execution of similar or equivalent subworkflows in different Vistrails workflows.

In order to use this type of caching the system restricts modules to be stateless. The com-

putation of modules and subworkflow should only be dependent on the name of the module and

its parameter values from outputs of upstream modules. The authors believe that this should be

the case for scientific functions because it guarantees the reproducibility of outputs.

Summary. The Prolog based semantics without an order allow an efficient and flexible execution

also in a distributed setting. The restriction to stateless modules (actors) may be suitable for

the Prolog based execution semantics but is rarely the case in practical use.

3.6 DFL: A dataflow language

Jan Hidders et al. present a data flow oriented workflow modeling language DFL in [HKS+08].

Their approach defines a graphical notation based on Petri nets combined with nested relational

calculus. The general control flow is defined by the Petri nets while the computational ele-

ments are derived from nested relational calculus. The following paragraphs will give a short

introduction to the modeling language.

Model Description. The basic skeleton of this model is formed by common Petri net elements.

Places and Transitions form the nodes of a directed graph. Edges connect a place with a transition

or a transition with a place, but not two elements of the same type. Places can store a bag of

different tokens and they have an associated maximum capacity of tokens that is assumed to be

infinite if there is no annotation specifying a number. The distribution of tokens over all places

is called a marking or a state of the Petri net. Transitions are computational elements in the

25

Petri net and an invocation of this computation is called a firing. In order for a transition to fire

some conditions have to be fulfilled. All places connected with an edge directed to the transition

(input places) need to have the number of tokens required by the transition. All places that are

connected to the transition with the edge pointing towards the place (output places) need to

have enough free space to store the produced tokens.

The dataflow network used in this model adds some restriction to the structure. The network

should be an acyclic workflow net which has a designated source and a sink place. A workflow net

adds the restriction that the Petri net has to be strongly connected if an edge with a transition

would be added between sink and source. Petri nets are strongly connected if there exists a path

from every place to every other place, i.e., a place is always reachable from itself.

f()

x

y

[=true]
gen *

boolean

string

integer

string

Figure 3.10: A basic DFL graph: First, an input Boolean token is evaluated using an edge
annotation. The gen() function then creates an integer and a string token. Both tokens are
passed to function f(x, y), where edge labels ensure the correct assignment of token values to
the corresponding parameters. The output of f is a list of strings that instantly gets unnested
to a set of string tokens.

In addition the dataflow network has some extensions. Tokens could have different types:

Primitive types such as Boolean, integers and string are supported. Records composed of labels

and associated nested types as well as bags of other tokens allow more structured data. Finally

this model also allows arbitrary nesting of data for example through sets and records. During

execution of the model which is described below the tokens will also carry a history. This

extension also implied that there should be types associated with places. These place types

restrict the types of tokens that could be stored in a place. Also types need to be annotated

on edges to and from transitions. Incoming edges to the transition will be labeled with allowed

input types which define the type of data fed to the transition over this edge. Similarly, output

26

types assign the types of tokens generated by the transition on an edge.

Transitions are annotated with transition labels that specify the computational function this

transition performs. A core set of transition labels were borrowed from nested relational calculus

and additional labels could be defined by the user. The function of this labeling is to specify the

computational function, but it also indirectly specifies the number of incoming transitions, since

they are mapped to parameters of the computational function. Also the input and output types

are defined by the signature of the function used.

Edge labels are added to disambiguate the association of incoming edges of transition to

parameters of the function. The labels carry the name of the parameter to which the edge

should map.

The last extension is the edge annotation that provides important features: One type of edge

annotation could be a comparison to form a conditional branch. There are only four annotations

allowed: tokens could be checked for their Boolean values or for empty or non-empty sets. The

second type of edge annotations is the ‘*’ for nest/unnest operations. Is an edge leaving a place

annotated with a star sets are unnested by passing all contained data items as separate tokens

to the transition. If an edge leaving a transition is annotated with a star it will nest tokens again

into a complex data structure. The way this nesting is performed depends on the history stored

in tokens during a unnest operation.

Each token carries by default an empty history. During an unnest operation, the tokens that

were unnested are annotated with a value that allows the nest operation to reassemble the tokens

in the same type. This so called history is a list of pairs where each pair consists of the whole

data token and the item that was just unnested top create the new token. This second part of

the history pair is used to capture the position in the original whole token and will not change.

During nesting operations the new value of the token will be inserted at the same location in

the data structure where the original value was in the whole token according to the history. In

order to nest tokens all tokens have to have the same history and all tokens from the original

unnest operation have to be present. The transaction only becomes enabled once that condition is

fulfilled for one set of tokens. A special case is handling of an empty set for unnesting operations.

The place with all unnested tokens will receive no new tokens. By using the construction rules

27

mentioned below, it is guaranteed that there is a second branch in the model that transmits the

original set with its unnest history. This branch is created by an edge starting from the same

transition as the unnest edge but it is not annotated with ‘*’. A transition with incoming nest

edges can then fire if there is an empty collection token with a history of an empty collection in

the place connected by an unannotated edge. The other placed connected with incoming nest

edges do not need to have any tokens available to enable the transition. This model allows a

high degree of parallelism. Many transitions could be enabled at a given time and could also fire

concurrently.

A valid and well defined workflow should be modeled in a certain way. The resulting workflow

network should be derivable from a single place. In the following a variety of refinement rules will

be applied to replace existing network elements with a slightly larger network. This construction

principle guarantees that a nest/unnest branch also has a parallel branch without nest/unnest

operation in order to handle empty collections. After the construction is complete the network

could be labeled to get the final workflow. A sample DFL graph using various model elements is

shown in Figure 3.10.

Workflows constructed using this hierarchical refinement rules described briefly above and in

more detail in [HKS+08] are always semi sound. That is, if one input token is present in the

input place, only the output place will contain the result of the workflow computation after a

finite sequence of firing transitions. There will be no data tokens left in other places once there

is a data token in the output place. And most importantly there is always a firing sequence that

will produce an output token in the output place.

This model shows some similarities with other existing data flow models described above.

Transitions of the Petri net could easily be viewed as actors in dataflow network. The places are

representing the channels, by making the data that is shipped over channels explicit. In contrast

to dataflow models presented above the order of data sent to a channel does not need to equal

the order of data read from the channel. This implies that the functions used for transitions need

to be stateless in a general use case. The data model is similar to the hierarchical data model

used for example in COMAD [DZM+11].

Summary. This modeling language provides a graphical method to describe workflows that

28

includes data and control flow elements. The data could be modeled in different complex data

types and allows tree like organization. The underlying principles of Petri nets allow some static

analysis, of which the semi soundness property is probably the most important one for workflow

design.

The structure of the data is reflected in the workflow, which the authors claim to be desirable.

However, in many practical situations data models will change and this will imply a major

redesign of the workflow. Also, in order to access data in a complex data structure many

subsequent unnest followed by nest operations are required. This introduces many shims in the

workflow, that are only responsible for handling data structure design instead of the actually

computations that are important to scientists. Finally the execution semantics doesn’t introduce

any order of transition firing, which requires transitions and therefore also external scientific

programs or libraries to be stateless and not interfering with other instances.

3.7 Map-Reduce Online

MapReduce online, an implementation of MapReduce that allows more streaming, was presented

in [CCA+10]. A more detailed discussion of MapReduce can be found in Section 8.7. MapReduce

can be viewed as a workflow engine where mappers and reducers are actors that are invoked

multiple times. The equivalent to tokens are data splits that are fragments of the whole data set.

Therefore, this framework can be roughly compared with other streaming workflow execution

engines present in this chapter. The standard fault tolerance mechanism in MapReduce re-

executes all mappers and reducers that were not committed. It requires checkpointing for the

mappers to record which part of a split was already read and has produced output splits for the

reducer. This approach is comparable to the standard provenance recording in other scientific

workflow systems. However, this fault tolerance solution benefits from the very basic concepts of

maps and reduces. All map and reduce operations are stateless, neatly sidestepping the issue of

restoring state. Also, the structure of map-reduce programs is highly regular, always consisting

of exactly one map step followed by exactly one reduce step. This fault tolerance model is

comparable to Rescue DAGs with added checkpointing and speculative execution.

29

3.8 Others

In addition to the workflow systems presented here, a number of others are used or are in

development. Ewa Deelman et al. [DGST09] presented a survey that covers a variety of systems

not included here. Triana is an open source workflow system developed at Cardiff University,

which is described in more detail in [DGST09]. Askalon [FPD+07] allows an easy creation and

optimization of applications running on Grid systems. Pipeline Pilot is prominent, commercial

workflow system by SciTegic/Accelrys [Pip13].

30

Chapter 4

Prelimiaries: Datalog

Scientific workflow systems typically contain a small number of actors that process a larger

amount of data. This observation suggests using technologies that store and process data such

as database systems or Hadoop that was discussed earlier as workflow systems.

Datalog, a purely declarative programming language, has become more popular in many areas

such as database systems, programming languages, and even workflow systems [BP12, AMC+09].

Datalog itself is based on first order logic, programs are guaranteed to terminate and run in

PTIME. The syntax of Datalog is similar to that of Prolog, but is evaluated differently. There are

various extensions to Datalog allowing negation, adding aggregation functions, allowing creation

of new constants, or supporting Skolem functions. All this extensions, modify the expressiveness

of the language and the runtime of programs.

A detailed description of Datalog can for example be found in [AHV95]. The remaining

chapter provides a brief overview of Datalog and its evaluation. Later chapters will provide more

details for the specific aspects of Datalog discussed. In Datalog, data is represented in relation

of the form predicate(attribute1, . . . , attributen), where predicate is a string specifying the name

of the relation and attributes are constants of some (possibly typed) domain.

Datalog programs are collection of rules of the form:

head(X̄)← body1(Ȳ1), . . . , bodyn(Ȳn)

31

where the head head is either empty or a single relation and the body of the rule body1, . . . , bodyn

is a (possibly empty) conjunction of relations. X̄, Ȳ1, . . . , Ȳn are lists of variables or constants

where a single variable or constant can appear in different list. During the evaluation of the

program, each variable is bound to constants in a way to make each body term true. If all body

terms in the conjunction evaluate to true in a given variable binding, the head is derived to

be true with the corresponding variable binding and creating a new IDB fact. When the head

is empty the rule represents a integrity constraint and causes an exception or the model being

invalid. If the body of the rule is empty and the head only contains constants then the rule

represents an EDB fact and can be written as: head(X̄).

In the context of scientific workflows, Datalog can serve multiple purposes. First, it can be

used as a workflow system itself where the process of processing data is described by declarative

rules. The execution of a workflow defined in Datalog can be optimized using the strategies

that are successfully employed in database systems. The evaluation (or execution) of a Datalog

program can use distributed resources efficiently [ZGL12]. Furthermore, by creating user defined

predicates, other computational tasks or even shell scripts can be used in a workflow defined in

Datalog.

Furthermore, Datalog can be used to query and analyze workflow descriptions, workflow

models of computation, or the execution of workflows. In the following chapters, Datalog is used

frequently as a means to describe and analyze workflows and their execution.

32

Chapter 5

Provenance

The word provenance describes the source or the history of an object. It is used in art or dig-

ital libraries, where it refers to the documented history of an art object, or the documentation

of processes in a digital object’s life cycle [Hig09]. Provenance is also an important concept

in the “e-science community” [SPG05] that workflow systems should provide to guarantee Re-

producibility of scientific analysis and processes. It describes the dependencies of processes

and data items, i.e., the lineage and processing history of data. Scientific workflow systems of-

ten record events during their execution to capture such dependencies. Commonly used models

for provenance are the Read/Write model [BML+06], and the Open Provenance Model (OPM)

[MCF+10]. Events are recorded when actors consume tokens (read or used by events) and

produce tokens (write or generated by events). Therefore, provenance persists all activities

necessary to reconstruct the workflow execution and the content of queues.

Provenance in scientific workflow systems is still an active research area. A recent publication

[CVDK+12] gave an overview of uses of provenance and open research questions. Datalog can

easily be used to describe, query, and analyze provenance information.

Workflow descriptions and provenance are frequently specified as graphs. Sometimes it is

desirable to provide a limited but user friendly interface to perform graph queries. Regular path

queries have emerged as a tool that can be utilized to query graphs in a simple and intuitive

way. In [DCVK+13] it is described how to implement regular path queries in various relational

database engines and in Datalog. Datalog performs particular well showing it is well suited even

33

as a back-end for other graph query languages to analyze workflows and provenance.

When using Datalog as a workflow description language but also as a component to an-

alyze provenance in a scientific workflow system, it is important to develop correct code and

to understand the behavior of a purely declarative Datalog program. The following chapters

present various novel techniques how to visualize and analyze the evaluation of a Datalog pro-

gram. Later chapters will present novel techniques developed to analyze provenance of workflows

using Datalog and to use this information to improve the description and execution of scientific

workflows.

The remaining chapter presents the ideas developed by Saumen Dey and the author that

appeared in [DKBL12]. Logic rules are proposed as a formal foundation for graph-based, tem-

poral models of provenance, for querying provenance graphs (traces), and for reasoning about

traces and their connection to the workflows that generated them. In particular, arguments are

provided that Datalog provides a “lingua franca” for provenance.

5.1 Datalog for Provenance Analysis

The Open Provenance Model (OPM) [MCF+11] provides a small, extensible core for representing

and exchanging provenance information in a technology-neutral manner. By design, OPM is a

least common denominator, leaving aside certain aspects, including how to query provenance

information. Similarly, OPM comes with a set of inference rules (e.g., for transitively closing

some relations, or for stating temporal constraints that are implied by provenance assertions),

but as pointed out by [KMVdB10], the temporal semantics of OPM graphs is only partially

defined in [MCF+11], leading to ambiguous or incompletely specified situations.

 P x
 used

y write read
 gen-by

 was-derived-from ??

Figure 5.1: Do the observables x
read→ P and P

write→ y imply that y was-derived-from x? Or that
tread < twrite holds?

34

 Pa ywrite1 Pb zwrite2x read1

read3
was-derived-from

read2

Figure 5.2: z was-derived-from x. Does tread2 < twrite2 follow?

Example 1 Consider the provenance graph in Figure 5.1. In OPM, it shows a (data) artifact

x that was used by process P , and another artifact y that was-generated-by (short: gen-by) P .

The rest of this chapter uses the terminology that the graph records a “read” and a “write”

observable, denoted x
read→ P and P

write→ y, respectively. Given this information, it may seem

natural to assume that (1) y was-derived-from x (the dotted line), and that (2) the read event

(tread) occurred before the write event (twrite), i.e., tread < twrite. However, neither (1) nor (2)

are logical consequences of the provenance in Figure 5.1, i.e., it cannot be inferred that y was-

derived-from x! Indeed, OPM correctly treats was-derived-from as a separate observable, e.g., P

might have written y first, then read x afterwards, and so it cannot be assumed (and thus not

inferred) that y was-derived-from x.1

If, on the other hand, the fact that y was-derived-from x has been (independently) asserted,

can it be inferred from Figure 5.1 that x was used by P before y was generated by P , i.e.,

that tread < twrite holds? Again, the somewhat surprising answer is: No! For example, the use

(reading) and generation (writing) of x and y by P are not necessarily the only things that

happened. In particular, there might be another derivation of y from x (which gave rise to the

was-derived-from edge in the first place), making tread > twrite a real possibility. 2

Example 2 Consider the provenance graph in Figure 5.2, asserting that z was-derived-from x.

Does tread2 < twrite2 or tread3 < twrite2 follow? As before, if no further information is available,

neither proposition can be inferred: it is simply unknown whether the path x.Pa.y.Pb.z or the

path x.Pb.z (or yet another one, not included in the figure) are the reason for the was-derived-

from edge in Figure 5.2. The OPM semantics also handles this case correctly and does not imply

that treadi < twritej (for any i ≤ j). On the other hand, OPM also does not provide a means to

1If the computation P is a function or service call, then P indeed first consumes all inputs, then produces all
outputs. This assumption is often correct, but a process P is not necessarily limited to such strict behavior and
may interleave read/write events in many ways [Kah74, LP95].

35

specify when such inferences would indeed be correct, e.g., in the common case where the result

of a write is in fact directly dependent on an earlier read. 2

When employing OPM as a model for provenance recorded by a scientific workflow system

[DF08], another limitation becomes apparent: OPM only deals with retroactive provenance (the

usual data lineage captured in a trace graph T), but not with so-called prospective provenance2,

i.e., workflow specifications W , which are recipes for future (and past) derivations [LLCF10].

These were out of scope for OPM and, apparently, are also out of scope for current W3C stan-

dardization efforts [W3C].

On the other hand, it is easy to see that distinguishing between traces T and workflows W

(and then interpreting the former as instances of the latter) can provide valuable information

and additional functionality for provenance applications.

 a
ywrite

 b A

x

write

Yout
 B

X
outin

in

read

read

Figure 5.3: Trace T (left) and workflow W (right).

Example 3 Consider the graphs in Figure 3: executing workflow W , might have produced the

trace T .

In order to validate T ’s structure, i.e., to check whether T can be an instance of W , its nodes

and edges are linked to W : e.g., edges x
read→ a and a

write→ y in T (data x was read and data y was

written by process invocation a), have corresponding edges X
in→ A and A

out→ Y in W , linking

data containers X and Y to the process (or: actor) A. Clearly, in order to validate T ’s structure,

a representation of the workflow structure W is needed in the first place.

However, even if T is structurally valid w.r.t. W , other (here: temporal) inconsistencies may

arise: The cycle in T indicates an inconsistent trace,3 but the correctness is uncertain (for similar

2This “near-oxymoron” captures a practically useful notion: When a scientist is asked to explain how a certain
result was obtained, in the absence of runtime traces, he can point to the script/workflow that was used to generate
the data products; so workflows are provenance, too.

3If read and write observables are temporally or causually linked, a strict partial order is implied and a cycle
shouldn’t have been observed.

36

reasons as those in the previous examples). On the other hand, the cycle in W is usually not

a concern: it simply means that W has a feedback loop, which is a rather common workflow

pattern (cf. Section 5.3). 2

Motivated by these examples, the next sections present the following contributions: (1) A

semi-structured data model is presented, i.e., graphs with labeled edges x
`→ y, as a uniform

representation of all provenance information, i.e., traces (à la OPM) and associated workflows

of which they are instances. This allows the use of regular path queries [CDGLV03] as a con-

venient “macro-language” for concisely expressing generalized reachability queries on traces and

workflows. By representing schema-level information (workflows) and instance-level information

(traces) together in a single model, structural constraints can be expressed and checked easily

using Datalog rules.

(2) The use of integrity constraints is proposed, i.e., rules of the form falseic(Ȳ)← denial(X̄)4

as a way to express provenance semantics. Workflow systems differ in their models of computation

(MoCs) and thus make different assumptions about how workflow components (a.k.a. actors,

processors, modules, etc.) work, i.e., whether, and in which way, they can be stateful; how

they consume their inputs, produce their outputs; and so on. As a result, different systems

use different models of provenance (MoPs), with different temporal semantics. Thus, instead of

“hard-wiring” a fixed temporal semantics to a particular graph-based MoP, logic constraints are

used again to obtain a “customizable” temporal semantics.

(3) This concept is illustrated by providing firing constraints at the workflow level, which

induce temporal constraints ≤f at the level of traces (cf. Figure 5.4). These temporal-constraint

generating rules can be chosen to conform to the temporal axioms in [KMVdB10], or to accom-

modate a different temporal semantics, as implied by the MoC of a specific workflow or workflow

system.

The following sections describe only some of the many ways in which logic rules and Datalog

can be harnessed for provenance querying and reasoning. An overview of the approach is given

and a few illustrative examples are provided.

4The rule body denial(X̄) specifies the “bad” situations to be avoided; Ȳ ⊆ X̄ are witnesses of constraint
violations.

37

A

a

X

x

in

read

Y

y

out

write

B

b

in

read

firing
constraint

data
constraint

homomorphism h

≤f ≤d

Z

z

out

write

in

read

Workflow W

Trace T

Figure 5.4: Workflow W (top) vs Trace T (bottom): Traces are associated to workflows, guar-
anteeing structural consistency; workflow-level (firing or data) constraints induce temporal con-
straints ≤f and ≤d on traces.

5.2 A Unified Provenance Model

The approach presented here, aims to integrate trace-level provenance information, schema-level

information (workflow specifications), and temporal information in a single, uniform represen-

tation. The approach is based on an underlying semistructured data model, which consists of

labeled, directed graphs of the form G = (V,E,L), with vertices V , labels L, and labeled edges

E ⊆ V × L× V .

In the following, workflows W and traces T are viewed as subgraphs of G. Similarly, the

temporal model consists of labeled edges (modeling one or more “before” relations).

Workflows. A workflow W = (VW , EW , LW) is a labeled graph whose nodes VW = C ∪ P are

data containers C and processes P . Processes are computational entities (often consisting of

smaller internal steps, a.k.a. invocations or firings) that can send and receive data. Containers

represent structures, e.g., FIFO queues, that hold data during the communication between pro-

cesses. In a workflow W , edges EW = Ein ∪ Eout are either input edges Ein ⊆ C × {in} × P , or

output edges Eout ⊆ P ×{out}×C, so LW = {in, out}. We also write in(C,P) and out(P,C) to denote

edges C
in→ P and P

out→ C, respectively. The former means process P can read data artifacts from

38

container C, while the latter means that process P can write data artifacts to container C.

Traces. A trace T = (VT , ET , LT) is a labeled graph whose nodes VT = D∪I are data artifacts

D or process invocations I; edges ET = Eread∪Ewrite∪Edf are read edges Eread = D×{read}×I,

write edges Ewrite = I × {write} × D, or derived-from edges Edf = D × {df} × D, so LT =

{read,write, df}. The link between traces and workflows is established through homomorphisms:

Definition 1 Let G = (V,E, L) and G′ = (V ′, E′, L′) be labeled graphs, and let h = (h1, h2) be

a pair of mappings h1 : V → V ′ and h2 : L→ L′. Then h is a homomorphism from G to G′ if

(x
`→ y) ∈ E implies (h1(x)

h2(`)→ h1(y)) ∈ E′.

The functions h1 and h2 map nodes and labels from G to corresponding ones in G′. The

model described here associates read and write edges in T with in and out edges in W , so

h2 = {read7→in,write 7→out}. The mapping h1 is usually given as part of a trace, i.e., when

testing whether T is valid w.r.t. a workflow W , it is not necessary to search for h. Instead,

traces needing validation already have corresponding workflow annotations embedded within

them: Mappings cont: D → C and proc: I → P associate data items and process invocations

with data containers and processes, respectively. The following rules derive false iff trace T with

workflow mappings cont and proc are not a homomorphism:

1 false H(read(D,I),in(C,P)) :−

read(D,I), cont(D,C), proc(I,P), !in(C,P).

3 false H(write(I,D),out(P,C)) :−

write(I,D), cont(D,C), proc(I,P), !out(P,C).

Thus, if falseHom is empty, trace T is structurally-valid w.r.t. workflow W . Additional structural

constraints for traces can be easily defined in a similar manner:

A write-conflict occurs when a data artifact has multiple incoming write edges; a type-conflict

occurs when edges link nodes of the wrong type (e.g., directly linking invocations, instead of going

through data nodes). In the integrity constraint rules, the following auxilliary view for transitive

dependencies is used:

39

dep(X,Y) :− read(X,Y).

2 dep(X,Y) :− write(X,Y).

tcdep(X,Y) :− dep(X,Y).

4 tcdep(X,Y) :− tcdep(X,Z), tcdep(Z,Y).

cycle(X,Y) :−tcdep(X,Y), tcdep(Y,X), !X=Y.

The processes involved in a write-conflict is computed using the following rule:

1 false wc(X,Y) :−

write(X,D), write(Y,D), !X=Y.

Furthermore, a type-conflict is computed using the rule:

false tc(X,Y) :−

2 dep(X,Y), cont(X,C1), cont(Y,C2).

false tc(X,Y) :−

4 dep(X,Y), proc(X,P1), proc(Y,P2).

Temporal Model. A temporal semantics is obtained on top of the graph-based model by

using rules to define a “before” relation (e.g., ≤f and ≤d in Figure 5.4) amongst events. During

workflow execution, the following events are observed: When a process is executed an invocation

event is recorded, when a data artifact is read by an invocation a read event is recorded, and

when an invocation writes a data artifact a write event is recorded. In the temporal model the

order of events are constrained: bf(E1,E2) means that E1 happened before E2 and bfs(E1,E2) means

that E1 happened before or simultaneously with E2.

A data-constraint between out-edges PA
out→ CY and in-edges CY

in→ PB of a data container CY at

the workflow-level, implies an obvious temporal constraint at the trace-level: A write (creation)

of data y must come before any read of y (also see Figure 5.4):

bf(write(I,D), read(D,J)) :− write(I,D), read(D,J).

40

Read, write, and derived-from edges in T capture dataflow. This information gives rise to a

temporal order (“flow-time”) among events. This temporal order is inferred and the correspond-

ing temporal relations bf and bfs are created using the rules described here. Skolem functions are

used in rules (safely), e.g., to create unique identifiers, and to reify edges as nodes of a temporal

structure: e.g., the (unspecified) execution time of an invocation is represented by a term invoc(I).

Before an invocation reads data, it must have started:

1 bfs(invoc(I), read(D,I)) :− read(D,I).

Similarly, a data artifact could not have been written after an invocation has been completed:

1 bfs(write(I,D), invoc(I)) :− write(I,D).

When a data artifact is written by a process invocation and read by another invocation, the

former must not have started after the latter has completed:

1 bfs(invoc(I), invoc(J)) :− write(I,D), read(D,J).

When a data artifact is derived from another data artifact, the latter must have been written

before the former:

1 bf(write(J,Y), write(I,X)) :− df(X,Y), write(I,X), write(J,Y).

A firing-constraint between in-edges CX
in→ PA and out-edges PA

out→ CY of a process PA is

defined via a relation fc(CX ,PA,CY). This constraint ensures that any invocation of process PA

that reads data from container CX and that writes into container CY has an associated temporal

constraint: the invocation output depends on the read input.

If a user-defined constraint is provided by fc(X,B,Z) (cf. Figure 5.4), then the bf(read(x,b),write(b,z))

temporal relation at the trace-level can be inferred:

1 bf(read(X,I), write(I,Y)) :−

fc(C1,P,C2), read(X,I), proc(I,P),

3 write(I,Y), cont(X,C1), cont(Y,C2).

Wall-Clock Time: In addition to temporal dependencies inferred from dataflow observables

(“flow-time”), a provenance recorder may record events with a wall-clock timestamp. The ob-

41

servable time(E,T) means that event E was recorded with wall-clock time T. Wall-clock time and

flow-time constraints can combined to infer additional temporal information for a trace:

1 bf(E1, E2) :− time(E1, T1), time(E2, T2), T1 < T2.

bfs(E1, E2) :− time(E1, T1), time(E2, T2), T1 <= T2.

5.3 Hamming Workflow Variants

To illustrate the earlier definitions of this chapter, this section uses two variants of a workflow

to compute the Hamming numbers5 H = {2i · 3j · 5k | i, j, k ≥ 0} incrementally, i.e., as an

ordered sequence 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, . . . Two workflow variants H1 and H3 are shown in

Figure 5.5. Note that the workflow graphs contain the same nodes (processes and containers), but

are wired slightly differently (as it turns out, this makes a big difference). The data containers

Qi are queues (FIFO buffers); Q8 is the distinguished output, where the Hamming numbers will

appear in the correct order. M1 and M2 are merge actors, i.e., processes which take two ordered

input sequences and merge them into an ordered output sequence. If presented with the same

item in both streams, the output stream will only contain one copy of the element, so duplicates

are removed. The actors X2, X3, and X5 multiply their inputs with 2, 3, and 5, respectively.

Last not least, the sample-delay actors S2, S3, S5 are used “to prime the pump”: initially (i.e.,

before reading any input), they output the number 1 to get the loop(s) going. Subsequently,

they simply output whatever they received as an input. By design, the Hamming workflows H1

and H3 define an infinite output stream, i.e., the processes “run forever”.

5.3.1 Structural Validity

Figure 5.6 shows a (partial) trace TH , i.e., for computing the Hamming numbers n ≤ 15.6

In order to test if a trace T is structurally-valid w.r.t. a workflow W , it is checked if there

is a homomorphism from T to W . Here, a homomorphism between TH , in Figure 5.6 and

the 1-loop variant H1 of the Hamming workflow in Figure 5.5a can be established. However,

5a.k.a. regular numbers; see [Dij81, Hem88] for details
6Figure 5.7 shows user-defined trace-views for n ≤ 1000.

42

X2

X3

X5

S2

S3

S5

Q1

Q2

Q3

M1

M2

Q4

Q5

Q6

Q7

Q8

(a) Hamming workflow H1: “one loop” variant

X2

X3

X5

S2

S3

S5

Q1

Q2

Q3

M1

M2

Q4

Q5

Q6

Q7

Q8

(b) Hamming workflow H3: “three loops” variant

Figure 5.5: Workflow variants H1, H3; output queue is Q8.

when attempting to find a homomorphism between the same trace and the 3-loop variant H3 in

Figure 5.5b, corresponding in-edges cannot be found for the dashed (red) read-edges in Figure 5.6.

Note that the “bad” (missing) edges can be found automatically with the Datalog (denial) rules

for falseHom in Section 5.2.

5.3.2 User-Defined Provenance Queries

The unified provenance model can easily be queried further using Datalog. For example, a user

might want to know the lineage of a particular Hamming number (i.e., which other Hamming

numbers “went into it”), or how many duplicates were derived in their particular workflow

variant, etc. The dependencies between data items can be obtained by focusing on the read/write

observables of certain processes P :

q(D1,P,D2) :− read(D1,I), write(I,D2), proc(I,P), focus(P).

Here, focus is a user-defined predicate to limit query answers to processes of interest, e.g., we

may focus on X2, X3, and X5. Thus, tuples in the answer relation q can be viewed as edges d1
p→ d2,

43

linking data items to each other, with the label p denoting the process (multiplication factor)

involved. Figure 5.7 shows the resulting graph structure7 for a trace containing the computation

of Hamming numbers up to 1000. Labels for edges are represented by a different coloring (here:

red, blue, and green are used to represent labels “×5”, “×3”, and “×2”, respectively).

One can clearly see on the in-degree of nodes that in Figure 5.7a many Hamming numbers are

produced in multiple ways, i.e., the custom-provenance graph is a DAG. In contrast, Hamming

numbers in H3 are produced by one path only without unnecessary duplicates as can be seen in

Figure 5.7b, i.e., this graph is a tree.

5.4 Summary

The theory and practice of provenance are not always as well aligned as one may wish for.8 The

DBLP (databases & programming languages) community, among others, has been advancing

our understanding of fundamental principles of provenance, and notions such as Why, How, and

Where provenance [BKT01, CCT09], provenance semirings [GKT07], provenance as proof-trees,

dependencies, program slicing [CAA07], relationships to causal reasoning [MGH+10, Che10], etc.

are slowly becoming more widely known and understood better. At the same time, the many

practical applications of provenance have led practitioners and system developers to move ahead

rapidly with “provenance-enabling” their systems, proposing models, languages, and even W3C

standards. As a contribution to further grow the connections between theory and practice of

provenance [ABC+10], we have proposed to use logic rules, and Datalog in particular for querying

provenance, checking structural constraints (e.g., whether a trace is valid, i.e., homomorph to its

associated workflow), and specifying temporal constraints.

Datalog seems particularly well-suited as a “lingua franca” and bridge between theory and

practice: On the one hand, there is a rich body of research and formal results about the complex-

ity and expressiveness of Datalog and numerous fragments or extensions [DEGV01]. Queries on

labeled graphs are well supported, e.g., regular path queries have a direct encoding in Datalog,

and theoretical results on query containment and view-based query processing [CDGLV03] can be

7Nodes are not intended to be readable, but if desired can be zoomed-into in the PDF version.
8In theory, there is no difference between theory and practice; but in practice, there is.

44

exploited in various ways. Similarly, Datalog variants such as Statelog [LLM98] or Datalog-LITE

[GGV02] provide means to naturally express temporal queries over provenance graphs. From a

practitioner’s point of view, Datalog is also attractive: powerful Datalog engines are available for

experimentation with rule sets (e.g., to test and compare different provenance semantics), and

can be used to deploy provenance querying and reasoning systems. Datalog prototypes for the

approach demonstrated here are under development.

45

x2:1

x3:1

x5:1

s2:1

s3:1

s5:1

m1:1

m2:1

1

1

1

1

1

2

3

5

s2:2

s3:2

s5:2

m1:2

m2:2

2

3

5

2

2

x2:2

x3:2

4

6

s2:3

s3:3

m1:3 m2:34

6

3 3

m1:4 m2:4

x2:3 6 s2:4 6

4 4

m1:5 m2:56 5

x5:2 10 s5:3 10

x3:3 9 s3:4 9

x5:3 15 s5:4 15

Figure 5.6: Excerpt of a Hamming workflow trace TH containing solid (black) and dashed (red)
edges: This trace is homomorph toH1 in Figure 5.5a but it is not homomorph toH3 in Figure 5.5b
since the dashed (red) edges in TH cannot be mapped to corresponding edges in H3.

46

1

2

3

5

4

6

10

9

15

25

8

12

20

18

30

50

27

45

75

16

24

40

36

60

100

125

54

90

150

32

48

80

72

120

200

81

135

225

250

108

180

300

375

64

96

160

144

240

400

162

270

450

500

216

360

600

625

243

405

675

750

128

192

320

288

480

800

324

540

900

1000 432

720

486

810

256

384

640

576

960

648

729

864

972

512

768

(a)

1

2

3

5

4

6

10

9

15

25

8

12

20

18

30

50

27

45

75

16

24

40

36

60

100

125

54

90

150

32

48

80

72

120

200

81

135

225

250

108

180

300

375

64

96

160

144

240

400

162

270

450

500

216

360

600

625

243

405

675

750

128

192

320

288

480

800

324

540

900

1000

432

720

486

810

256

384

640

576

960

648

729

864

972

512

768

(b)

Figure 5.7: User-defined provenance for Hamming numbers up to 1000 (a) for H1 (“Fish”) and
(b) for H3 (“Sail”)

47

Chapter 6

Datalog Profiling and Debugging

A challenge in using Datalog as a workflow description language is the difficulty to express

workflow correctly in this declarative language. Addressing these difficulties, this chapter presents

a framework for declarative debugging and logic profiling developed by the author and published

on in [KLS12]. It also describes a prototypical implementation of this framework called Gpad.

6.1 Introduction

Developing declarative, rule-based programs can be surprisingly difficult in practice, despite (or

because of) their declarative semantics. Possible reasons include what Kunen long-ago called

the PhD effect [Kun91], i.e., that a PhD in logic seems necessary to understand the meaning of

certain logic programs (with negation). Similarly, An Amateur’s Introduction to Recursive Query

Processing [BR88] from the early days of deductive databases, rather seems to be for experts

only. The following sections describe the difficulties a workflow developer and aspiring Datalog

programmer faces who wants to develop complex programs.

The meaning and termination behavior of a Prolog program P depends on, among other

things, the order of rules in P , the order of subgoals within rules, and even (apparently minor)

updates to base facts. Consider, e.g., the program for computing the transitive closure of a

48

directed graph, i.e., Ptc =

r1: tc(X,Y)← e(X,Y).

r2: tc(X,Z)← e(X,Y), tc(Y,Z).

Seasoned logic programmers know that Ptc is not a correct way to compute the transitive closure

in Prolog. 1 Under a more declarative Datalog semantics, on the other hand, Ptc indeed is

correct, since the result does not depend on rule or subgoal order. The flip side, however, is

that effective and practically useful procedural debugging techniques for Prolog, based on the

box model [TB93], are not available in Datalog. Instead, new debugging techniques are needed

that are solely based on the declarative reading of rules.

Let M=P (I) be the model of P on input I. Bugs in P (or I) manifest themselves through

unexpected answers (ground atoms) A ∈ M , or expected but missing A /∈ M . The key idea of

the developed approach is to rewrite P into a provenance-enriched program P̂ , which at runtime

records the derivation history of M=P (I) in an extended model M̂=P̂ (I). A provenance graph

G is extracted from M̂ , which the user can explore further via predefined views and ad-hoc

queries.

Use Cases Overview. Given an IDB atom A, Gpad allows to answer questions such as the

following: What is the data lineage of A, i.e., the set of EDB facts that were used in a derivation

of A, and what is the rule lineage, i.e., the set of rules used to derive A? When chasing a bug

or trying to locate a source of inefficiency, a user can explore further details: What is the graph

structure GA of all derivations of A? What is the length of A, i.e., of shortest derivations, and

what is the weight, i.e., number of simple derivations (proof trees) of A?

For another example, assume the user encounters two “suspicious” atoms A and B. It is easy

to compute the common lineage GAB = GA ∩ GB shared by A and B, or the lowest common

ancestors of A and B, i.e., the rule firings and ground atoms that occur “closest” to A and B

in GAB, thus triangulating possible sources of error, similar to ideas used in delta debugging

1For I = {e(a, b), e(b, a)} the query ?-tc(c,X) correctly returns “No”, while the similar ?-tc(X,c) will not ter-
minate! Prolog’s behavior gets worse when swapping rules r1 and r2, or when creating left- or doubly-recursive
variants P ltc, P

d
tc, respectively.

49

a b c d
(a) Input graph: edge relation e

a b
c

d
(b) Output: transitive closure tc = e+

e(a,b)

r1

r2

r2

r2

tc(a,b)

tc(a,c)

tc(a,d)

e(b,c) r1

r2

r2

r2

tc(b,c)

tc(b,b)

tc(b,d)

e(c,b)

r1

r2

r2

r2

tc(c,b)

tc(c,c)

tc(c,d)
e(c,d) r1

(c) Provenance graph G; highlighted subgraph Gtc(a,b); firing nodes r (boxes), atom nodes A

(ovals); edge types A
in→ r and r

out
_A (edge labels not shown)

Figure 6.1: P rtc-provenance graph for input e, with derivations of tc(a,b) highlighted in (c)

[Zel02].

Since nodes in GA are associated with relation symbols and rules, a user might also want

to compute other aggregates, i.e., not only at the level of GA (ground atoms and firings), but

at the level of (non-ground) rules and relation symbols, respectively. Through this schema-level

profiling, a user can quickly find the “hot spots” in P , e.g., rules having the most (or least)

number of firings.

Running Example. Figure 6.1 gives an overview using a very simple example: (a) depicts

an input graph e, while (b) shows its transitive closure tc = e+. The structure and number of

distinct derivations of tc atoms from base edges in e can be very different, e.g., when comparing

the right-recursive Ptc (=P rtc) above, with left-recursive or doubly-recursive variants P ltc or P dtc,

respectively.

The provenance graphG (or the relevantGA ⊆ G, given a goal A) provides crucial information

50

to answer the above use cases. Figure 6.1c shows the provenance graph for the computation of

tc via P rtc from above. Box nodes represent rule firings, i.e., individual applications of the

immediate consequences operator TP , and connect all body atoms to the head atom via a unique

firing node. For the goal atom A = tc(a, b) the subgraph GA, capturing all possible derivations

of A, is highlighted (through filled nodes and bold edges).

The following sections present the method for debugging and logically profiling a Datalog

program P via a provenance-enriched rewriting P̂ in more detail. The key idea is to extract from

the extended model M̂ a provenance graph G which is then queried, analyzed, and visualized

by the user. Given a debug goal A, relevant subgraphs GA can be obtained easily and further

analyzed via a library of common debug views and ad-hoc user queries. At the core of the

approach are rewritings that (i) capture rule firings, then (ii) reify them, i.e., turn them into nodes

in G (via Skolem functions), while (iii) keeping track of derivation lengths using Statelog [LLM98,

Lud98], a Datalog variant with states. The simplicity and system-independence is an important

benefit of this approach. The approach is rapidly prototyped for rather different Datalog engines,

i.e., DLV [LPF+06] and LogicBlox [MHB+10], Furthermore, there is a close relationship of the

provenance graphs generated by Gpad with provenance semirings [GKT07]. But the focus of

this approach is on presenting a simple, effective method for debugging and profiling declarative

rules for “mere mortals”.

6.2 Provenance Rewritings for Datalog

This section describes the three Datalog rewritings P
F
; · G; · S

; P̂ for capturing rule firings,

graph generation, and Statelog evaluation, respectively.

6.2.1 Recording Rule Firings: P
F
; P F

The first rewriting (cf. Green et al. [GKIT07]), records the provenance of rule firings. Let r be a

unique identifier of a rule in P . We assume r to be safe, i.e., every variable in r must also occur

positively in the body:

r : H(Ȳ)← B1(X̄1), . . . , Bn(X̄n)

51

e(a,b)
fire1(a,b)(*)

fire2(a,b,b)

(*) tc(a,b)
(+)

(+)

tc(b,b)

(*)

Figure 6.2: Subgraph with two rule firings fire1(a, b) and fire2(a, b, b), both deriving tc(a,b)

Let X̄ =
⋃
i X̄i include all variables in r, ordered, e.g., by occurrence in the body. Since r is safe,

Ȳ ⊆ X̄, i.e., the head variables are among the X̄. The rule r is now replaced by two new rules

in the rewritten program PF :

rin : firer(X̄)← B1(X̄1), . . . , Bn(X̄n)

rout : H(Ȳ)← firer(X̄)

Thus PF records, for each r-satisfying instance x̄ of X̄, a unique fact: firer(x̄).

Example. The transitive closure program P rtc from above is rewritten into 4 rules: Rule (1)

is converted into two rules fire1(X,Y) ← e(X,Y) and tc(X,Y) ← fire1(X,Y). and rule (2) is

transformed into fire2(X,Y, Z)← e(X,Y), tc(Y, Z) and tc(X,Z)← fire2(X, , Z).

6.2.2 Graph Reification of Firings: P F G
; PG

To facilitate querying the results of the previous step, ground atoms and firings are reified as

nodes in a labeled provenance graph G. For each pair of rules rin, rout above, n rules (i = 1, . . ., n)

are added to generate the in-labeled edges in G:

g(Bi(X̄i), in, firer(X̄))← firer(X̄)

and one more rule for generating out-labeled edges in G as well:

g(firer(X̄), out, H(Ȳ))← firer(X̄)

Note the safe use of atoms as Skolem terms in the rule heads: for finitely many rule firings in

firer(X̄), a finite number of in- and out-edges in G is obtained.

52

Example. After applying both transformations · F
; · G

; · to Ptc from above, the rewritten

program PGtc can be executed, yielding a labeled graph with edges g(V1, L, V2) in the enriched

model M̂ . Figure 6.2 shows a subgraph with two rule firings, both deriving the atom tc(a,b).

Oval (yellow) nodes represent atoms A and boxed (blue) nodes represent firings F . Arrows with

solid heads and label (*) are in-edges, while those with empty heads and label (+), represent out-

edges. Note that according to the declarative semantics, in (out) edges, model logical conjunction

“∧” (logical disjunction “∨”), respectively. Thus, w.r.t. their incoming edges, boxed nodes are

AND-nodes, while oval nodes are OR-nodes.2

6.2.3 Statelog Rewriting: PG S
; P S

Statelog [LLM98, Lud98] is a state-oriented Datalog extension for expressing active rules (up-

dates) and declarative rules in a unifying framework. The next rewriting simulates a Statelog

derivation in Datalog via a limited (safe) form of “state-generation”. The key idea is to keep

track of the firing rounds In+1 := TP (In) of the TP operator (I0 := I is the input database).

This provides a simple yet powerful means to detect tuple re-derivations, to identify unfounded

derivations (those whose goal atom A depends on itself in all derivations), etc.

First, replace all rules rin, rout above with their state-oriented counterparts:

rin : firer(S1, X̄)← B1(S, X̄1), . . . , Bn(S, X̄n), next(S,S1).

rout : H(S, Ȳ)← firer(S, X̄).

The goal next(S, S1) is used for the safe generation of new states: The next state s+1 is generated

only if in the previous state s at least one atom A was new:

next(0, 1)← true.

next(S, S1)← next(, S), new(S, A), S1 := S + 1.

2In semiring parlance, they are product “⊗” and sum “⊕” nodes, respectively.

53

e(a,b) r1 [1]

r2 [3]

tc(a,b)
[1]e(b,c)

r2 [2] tc(b,b)
[2]

e(c,b)
r1 [1]

r2 [3]

tc(c,b)
[1]

Figure 6.3: State-annotated provenance graph g for the derivation of tc(a,b). Annotations [in
brackets] show the round (state number) in which an atom was first derived. To avoid clutter,
firing nodes are often depicted without variable bindings.

An atom A is newly derived if it is true in S1, but not in the previous state S:

newAtom(S1, A)← next(S,S1), g(S1, , out, A), ¬ g(S, , out, A).

Similarly, rule firing F is new if it is true now (in S1), but not previously in S:

newFiring(S1, F)← next(S, S1), g(S1, F, out,), ¬ g(S, F, out,).

The n rules for generating in-edges are replaced with state-oriented versions:

g(S, Bi(X̄i), in, firer(X̄))← firer(S, X̄)

and similarly, for the out-edge generating rules:

g(S, firer(X̄), out, H(Ȳ))← firer(S, X̄).

It is not difficult to see that the above rules are state-stratified (a form of local stratification) and

that the resulting program terminates after polynomially many steps [Lud98]: When no more

new atoms (or firings) are derived in a state, then the above rules for next can no longer generate

new states, thus in turn preventing rules of type rin from generating new firer(S1, X̄) atoms.

Example. When applying the transformations · F; · G; · S; · to the transitive closure program

P rtc, a 4-ary graph g is created, with the additional Tp-round counter in the first (state) argument

54

position. Figure 6.3 shows the graphical representation of g for our running example (observe

the cycle in g, caused by the cycle in the input e).

6.3 Debugging and Profiling using Provenance Graphs

When debugging and profiling Datalog programs typically all program transformations P
F
; · G;

· S
; P̂ are employed, i.e., the enriched model M̂ contains the full provenance graph relation g

with state annotations.

6.3.1 Debugging Declarative Rules

If a Datalog program does not compute the expected model, it is very helpful to understand

how the model was derived, focusing in particular on certain goal atoms during the debugging

process. Since relation g captures all possible derivations of the given program, various views

can be defined on g to support debugging. This section presents views for some of the typical

questions that arise during a debugging session.

Provenance Graph. The complete description of how a program was evaluated can be derived

by just visualizing the whole provenance graph g, optionally removing the state argument through

projection:

1 ProvGraph(X,L,Y) :− g(,X,L,Y).

Figure 6.1c shows the provenance graph for a transitive closure computation. One can easily see

that all transitive edges were derived and, by following the edges backwards, on which EDB facts

each edge depends.

Provenance Views. Since provenance graphs are large in practice, it is often desirable to just

visualize subgraphs of interest. The following debug view returns all “upstream” edges, i.e., the

provenance subgraph relevant for debug atom Q:

1 ProvView(Q,X,out,Q) :− g(,X,out,Q).

ProvView(Q,X,L,Y) :− ProvView(Q,Y, ,), g(,X,L,Y).

55

Figure 6.3 shows the result of this view for the debug goal Q = tc(a, b); the large (goal-irrelevant)

remainder of the graph is excluded. Figure 6.1c, in contrast, shows the same query but now in

the context of the whole provenance graph.

Computing the Length of Derivations. A typical question during debugging is when and

from which other facts a debug goal was derived. Such temporal questions can be explained

using the state rewriting of the program. We annotate atoms and firings with a length attribute

to record in which round they were first derived. The length is defined as follows:

len(F) = 1 + max{ len(A) | (A in→ F) ∈ g } ; if F is a firing node

len(A) =

min{ len(F) | (F out→ A) ∈ g } ; if A is an IDB atom

0 ; if A is an EDB atom

A rule firing F can only succeed one round after the last body atom (i.e., having maximal length)

has been derived. Conversely, the length of an atom A is determined by its first derivation

(i.e., having minimal length). The Statelog rewriting captures evaluation rounds, so the state

associated with a new firing determines the length of the firing:

len(F,LenF) :− newFiring(S,F), LenF=S.

Similarly, the length of an atom is equal to the first round it was derived:

1 len(A,LenA) :− newAtom(S,A), LenA=S.

Figure 6.4 shows a provenance graph with such length annotations.

Customized Queries. In addition to the queries presented here, the provenance graph g can

be used to answer various user defined queries. For example, one might be interested in common

facts and rules in the provenance graph that a set of unexpected facts depends on. This query

can be computed as an intersection of multiple provenance queries defined above.

6.3.2 Logic-Based Profiling

There are multiple ways to write a Datalog program that computes a desired query result and

the performance of these programs may vary significantly. For example, consider an EDB with

56

a linear graph e having 10 nodes. In addition to the right-recursive program P rtc, consider

the doubly-recursive variant P dtc with the rules: (1) tc(X,Y) ← e(X,Y) and (2) tc(X,Y) ←

tc(X,Z), tc(Z, Y). When computing tc, the two programs perform differently and the cause

should be identified. This section presents queries for profiling measures of Datalog programs

that can help to answer such questions.

Counting Facts. When evaluating a Datalog program on an input EDB, a number of IDB

atoms are derived. It is assumed here that the resulting model only contains desired facts, i.e.,

the program was already debugged with the methods described earlier. The number of derived

IDB atoms can now be used as a baseline for profiling a program. This number can be computed

easily via aggregation:

1 DerivedFact(H) :− g(,out,H).

DerivedHeadCount(C) :− C = count{ H : DerivedFact(H) }.

Both P rtc and P dtc derive 45 facts for our small graph example, which is exactly the number of

transitive edges in the graph.

Counting Firings. An important measure in declarative profiling is the number of rule firings

needed to produce the final model. It can be computed from the out-edges and another simple

aggregation:

Firing(F) :− g(,F,out,).

2 FiringCount(C) :− C = count{ F : Firing(F) }.

This measure exposes a clear difference between the two variants of the transitive closure program.

While the right-recursive program P rtc uses 45 rule firings to compute the model, the doubly-

recursive variant P dtc causes 129 rule firings to derive the same 45 transitive edges. The reason is

that P dtc will use all combinations of edges to derive a fact, while P rtc extends paths only in one

direction, one edge at a time.

For better readability, Figure 6.4 shows the provenance graph for a smaller input graph

consisting of a 5-node linear chain. Nodes annotated with their length, i.e., earliest possible

derivation round. Note, how some atom nodes in the graph for P dtc in Figure 6.4b have more

57

e(a,b) 1

2

3

4

tc(a,b)
[1]

tc(a,c)
[2]

tc(a,d)
[3]

tc(a,e)
[4]

e(b,c) 1

2

3

tc(b,c)
[1]

tc(b,d)
[2]

tc(b,e)
[3]

e(c,d)
1

2

tc(c,d)
[1]

tc(c,e)
[2]

e(d,e) 1 tc(d,e)
[1]

(a) P rtc:right-recursive

3

tc(a,d)
[3]3

3 tc(a,e)
[3]

3 tc(b,e)
[3]

3

4

4

e(a,b) 1 tc(a,b)
[1]

e(b,c) 1 tc(b,c)
[1]

e(c,d) 1 tc(c,d)
[1]

e(d,e) 1 tc(d,e)
[1]

2

2

2

tc(a,c)
[2]

tc(b,d)
[2]

tc(c,e)
[2]

(b) P dtc:doubly-recursive

Figure 6.4: Provenance graphs with annotations for profiling P rtc and P dtc on a 5-node linear
graph. P dtc causes more rule firings than P rtc and also derives facts in multiple ways. Numbers
denote len(F) (in firing nodes) and len(A) (in atom nodes), respectively.

incoming edges (and derivations), than the corresponding nodes in the P rtc variant shown in

Figure 6.4a.

Computing the Maximum Round. Another measure is the number of states (TP rounds),

needed to derive all conclusions. The state final state created by the rewriting PS can easily be

determined:

MaxRound(MR) :− MR = max{ S : g(S, , ,) }.

This measure shows another clear difference between P rtc and P dtc: While P rtc requires 10 rounds

to compute all transitive edges in our sample graph, P dtc only needs 6 rounds. Generally, the

doubly-recursive variant requires significantly fewer rounds, i.e., logarithmic in the size of the

58

longest simple path in the graph versus linear for the right-recursive implementation.

Counting Rederivations. To analyze the number of derivations in more detail, the Statelog

rewriting PS can be used to capture temporal aspects. With each application of the TP operator,

some facts might be rederived. Note that, if a fact is derived via different variable bindings in

the body of a rule (or different rules), the re-derivation is captured already in firings. However,

re-derivations occurring repeatedly until a fixpoint was reached can only be captured using the

Statelog rewriting:

1 ReDerivation(S,F) :− g(S,F,out,A), len(A,LenA), LenA < S.

ReDerivationCount(S,C) :− C = count{ F : ReDerivation(S,F) }.

3 ReDerivationTotal(T) :− T = sum{ C : ReDerivationCount(S,C) }.

When comparing the re-derivation counts, the difference between the Ptc variants becomes even

clearer. P rtc rederives facts 285 times until the fixpoint is reached. The double-recursive program

P dtc causes 325 re-derivations.

Schema-Level Profiling. The number of facts per relation that are used in each round to

derive new facts can be determined easily:

1 FactsInRound(S,R,A) :− g(S,A,in,), RelationName(A,R).

FactsInRound(S1,R,A) :− g(S, ,out,A), next(S,S1), RelationName(A,R).

3 NewFacts(S,R,A) :− g(S, ,out,A), !FactsInRound(S,R,A), RelationName(A,R).

NewFactsCount(S,R,C) :− C = count{ A : NewFacts(S,R,A) }.

This measure can be used to “plot” the temporal evolution for our result relation R = tc:

For P rtc and S = 1, . . . , 9 the counts are C = 9, 8, 7, 6, 5, 4, 3, 2, 1, while for P rtc and S = 1, . . . , 5

the numbers are C = 9, 8, 13, 14, 1. As expected, P dtc requires fewer rounds than P rtc, but the

number of new facts increases over time, while for P rtc, the sequence is decreasing.

Confronting the Real-World. In practical implementations, the doubly-recursive version P dtc

has horrible performance. For a representative, realistic graph3 with 1710 nodes and 3936 edges,

3The specifics are secondary to our argument, but are listed for completeness. The graph is the application-level
call-graph (i.e., a graph with the application’s methods as nodes and edges indicating whether a method can call
another) for the pmd program from the DaCapo benchmark suite, as produced by a precise low-level program

59

the right-recursive P rtc runs in 2.6 sec, while the doubly-recursive P dtc takes 15.4 sec. The metrics

described above can easily explain the discrepancy. The tc-fact count for both versions is 304,000,

but the rule firing count varies widely. Using the program rewriting and the profiling view

FiringCount(C), it can be discovered that P dtc has over 64 million different rule firings, while P rtc has

under 566 thousand. One reason is that the doubly-recursive rule tc(X,Y)← tc(X,Z), tc(Z, Y)

derives the same tc(X,Y) fact many times over. This practical example also illustrates the burden

of declarative debugging. Adding the profiling calculation to the right-recursive version, P rtc only

grows the running time slightly, to 3 sec. Adding it to the doubly-recursive P dtc however, makes

the running time 51.3 sec. This is due to the cost of storing the over-64-million combinations of

variables on the right hand side of a rule firing.

6.4 GPAD Prototype Implementation

By design, the method of provenance-based debugging and profiling only relies on the declar-

ative reading of rules, i.e., is agnostic about implementation details or evaluation techniques

specific to the underlying Datalog engine. Indeed, parallel with the development of the method,

two incarnations of a Graph-based Provenance Analyzer and Debugger were developed, i.e.,

prototypes Gpad/dlv and Gpad/lb, for declarative debugging with the DLV [LPF+06] and

LogicBlox [MHB+10] engines, respectively. Both prototypes “wrap” the underlying Datalog

engine, and outsource some processing aspects to a host language.

For example, Gpad/dlv uses Swi-Prolog [WSTL10] as a “glue” to automate (1) rule rewrit-

ings, (2) invocation of DLV, followed by (3) result post-processing, and (4) result visualization

using Graphviz.

6.5 Related Work

Work on declarative debugging, in particular in the form of algorithmic debugging goes as far

back as the 1980’s [Sha82, DNT89]. Algorithmic debugging is an interactive process where

analysis (a 2-object-sensitive with context-sensitive heap points-to analysis). Timings are on a quad-core Xeon
E5530 2.4GHz 64-bit machine (only one thread was active at a time) with plentiful RAM (24GB) for the analysis,
using LogicBlox Datalog ver. 3.7.10.

60

the user is asked to differentiate between the actual model of the (presumably buggy) program

and the user’s intended model. Based on the user’s input, the system then tries to locate the

faulty rules in an interactive session. The approach presented above differs in a number of

aspects. First, algorithmic debugging is usually based on a specific operational semantics, i.e.,

SLDNF resolution, a top-down, left-to-right strategy with backtracking and negation-as-failure,

which differs significantly from the declarative Datalog semantics. Moreover, while algorithmic

debugging is applicable, in principle, in an interactive way, this suggests a tighter coupling

between the debugger and the underlying rule engine. In contrast, the approach presented

above and its Gpad implementations do not require such tight coupling, but instead treat the

rule engine as a black box. In this way, debugging becomes a post-mortem analysis of the

provenance-enriched model M̂ = P̂ (I) via simple yet powerful graph queries and aggregations.

Another approach, more closely related to Gpad, is the Datalog debugger [CGRSP08], devel-

oped for the DES system. Unlike prior work, and similar to Gpad, they do not view derivations

as SLD proof trees, but rather use a computation graph, similar to the labeled provenance graph

presented here.

Gpad differs in a number of ways, e.g., reification of derivations in a labeled graph allows the

use of regular path queries to navigate the provenance graph, locate (least) common ancestors

of buggy atoms, etc. Another difference is the use of Statelog for keeping track of derivation

rounds, which facilitates profiling of the model computation over time (per firing round, identify

the rules fired, the number of (re-)derivations per atom or relation, etc.) Recent related work also

includes work on trace visualization for ASP [CLRV09], step-by-step execution of ASP programs

[OPT11], and an integrated debugging environment for DLV [PRT+07].

Debugging and Provenance. Chiticariu et al. [CT06] present a tool for debugging database

schema mappings. They focus on the computation of derivation routes from source facts to a

target. The method includes the computation of minimal routes, similar to shortest derivations

in the graphs generated by Gpad. However, their approach seems less conducive to profiling

since, e.g., provenance information on firing rounds is not available in their approach.

There is an intriguingly close relationship between provenance semirings, i.e., provenance

polynomials and formal power series [GKT07], and the labeled provenance graphs G. The semi-

61

ring provenance of atom A is represented in the structure of GA. Consider, e.g., Figure 6.2: the

in-edges of rule firings correspond to a logical conjunction “∧”, or more abstractly, the product

operator “⊗” of the semiring. Similarly, out-edges represent a disjunction “∨”, i.e., an abstract

sum operator “⊕”, mirroring the fact that atoms in general have multiple derivations. It is easy

to see that a fact A has an infinite number of derivations (proof trees) iff there is a cycle in GA:

e.g., the derivation of A = tc(a, b) in Figures 6.1 and 6.2 involves a cycle through tc(b,b), tc(c,b),

via two firings of r2. This also explains Prolog’s non-termination, which “nicely” mirrors the fact

that there are infinitely many proof trees. On the other hand, such cycles are not problematic

in the original Datalog evaluation of M = P (I) or in the extended provenance model presented

here M̂ = P̂ (I), both of which can be shown to converge in polynomial time.

6.6 Summary

In this chapter, a framework for declarative debugging and profiling of Datalog programs was

presented. The key idea is to rewrite a program P into P̂ , which records the derivation history

of M = P (I) in an extended model M̂ = P̂ (I). P̂ is obtained from three simple rewritings

for (1) recording rule firings, (2) reifying those into a labeled graph, while (3) keeping track of

derivation rounds in the style of Statelog. After the rewritten program is evaluated, the resulting

provenance graph can be queried and visualized for debugging and profiling purposes.

The declarative profiling approach was illustrated by analyzing different, logically equivalent

versions of the transitive closure program Ptc. The measures obtained through logic profiling

correlate with runtime measures for a large, real-world example. Two prototypical systems

Gpad/dlv and Gpad/lb are implemented, for DLV and LogicBlox, respectively. The presented

approach is designed for positive Datalog only. However, it is not difficult to see how it can

be extended, e.g., for well-founded Datalog. Indeed, the Gpad prototypes already support the

handling of well-founded negation through a simple Statelog encoding [LLM98, Lud98]. The

following chapter will present an extension of the Gpad approach that supports non-recursive

Datalog¬ programs and also provides detailed explanations of negated atoms or of missing output

tuples.

62

Chapter 7

First-Order Provenance Games

As argued in Chapter 5, provenance of a workflow execution has many applications. When using

Datalog as a workflow description language, provenance of a Datalog program evaluation must be

collected and analyzed. To this extend, this chapter presents an approach to record, understand

and visualize provenance of a Datalog program using game theory, which was developed by

Koehler et al. and appeared in [KLZ13]. This approach is an extension of the Gpad approach

presented in the last chapter.

7.1 Introduction

A number of provenance models have been developed in recent years that aim at explaining why

and how tuples in a query result Q(D) are related to tuples in the input database D (see [CCT09,

KG12] for recent surveys). Motivated by applications in data warehousing, Cui et al. [CWW00]

defined a notion of data lineage to trace backward which tuples in D contributed to the result.

Buneman et al. [BKT01] refined and formalized new forms of why- and where-provenance, and

introduced a notion of (minimal) witness basis to do so. Later, Green et al. [GKT07] proposed

a form of how -provenance through provenance semirings that emerged as an elegant, unifying

framework for provenance. For RA+ (positive relational algebra) queries, provenance semirings

form a hierarchy [Gre11], with provenance polynomials N[X] as the most informative semiring at

the top (i.e., providing the most detailed account how a result was derived), and other semirings

63

with “coarser” provenance information below, e.g., Boolean provenance polynomials B[X] [Gre11],

Trio provenance [BSHW06], why-provenance [BKT01], and lineage [CWW00]. The key idea of

the unifying framework is to annotate each tuple in the input database D with an element

from a semiring K and then propagate K-annotations through query evaluation. Semiring-style

provenance support has been added to practical systems, e.g., Orchestra [GKIT07] and Logic-

Blox [HGL11]. However, the semiring approach does not extend easily to negation and other

non-monotonic constructs, thus spawning further research [GP10, GIT11, ADT11a, ADT11b].

This chapter presents a fresh look at provenance by employing games. Game theory has a

long history and many applications, e.g., in logic, computer science, biology, and economics. The

first formal theorem in the theory of games was published by Ernst Zermelo exactly 100 years ago

[Zer13].1 In 1928, von Neumann’s paper “Zur Theorie der Gesellschaftsspiele” [vN28] marked

the beginning of game theory as a field. In it he asks (and answers) the question of how a player

should move to achieve a good outcome. The approach presented here employs such “good”

moves to define a natural notion of provenance for games G, which is called game provenance

Γ (= ΓG), and which is thus closely related to winning strategies. The crux is that by considering

only “good” moves while ignoring “bad” ones, one can get a game-theoretic explanation for why

a position is won, lost, or drawn. By viewing query evaluation as a game, game provenance can

be applied to obtain an elegant new provenance approach, which is called provenance games.

Game Plan. Section 7.2 introduces basic concepts and terminology for games G and shows

how to solve them using a form of backward induction. Then the regular structure inherent

in solved games Gγ is discussed and is used to define our notion of game provenance Γ. The

solved positions imply a labeling of moves as “good” or “bad”, which is used to define the game

provenance Γ(x) of position x as the subgraph of G, reachable from x without “bad” moves.

The value of a position is determined by its game provenance, and it captures why and how a

position is won, lost, or drawn.

Section 7.3 describes how game provenance is applied to first-order (FO) queries in Datalog¬

form, by viewing the evaluation of query Q on database D as a game GQ,D. By construction, the

provenance games yield the standard semantics for FO queries. For positive relational queries

1Some confusion prevails about Zermelo’s theorem, but it is all sorted out in [SW01].

64

RA+, game provenance ΓQ,D is equivalent to the most general semiring of provenance poly-

nomials N[X]. Variations of the provenance game yield other semirings, e.g., Trio(X). While

provenance games are equivalent to provenance semirings for positive queries, the former also

handle negation seamlessly, as complementary claims and negation are inherent in games. Pro-

venance games can thus also answer why-not questions easily: The explanation for why x is not

won is the same as why x is lost (or drawn, for games that are not draw-free). Since provenance

games are always draw-free for first-order queries, a simple and elegant provenance model for FO

that combines how-provenance and why-not provenance can be obtained. Finally, Section 7.6

concludes this chapter and suggest some future work in this field.

7.2 A Game on Graphs

Here, Games are seen as graphs G = (V,M), where two players move alternately between posi-

tions V along the edges (moves) M ⊆ V × V . It is assumed that G is finite, i.e., |V | <∞,2 but

game graphs can have cycles and thus may result in infinite plays. Each v0 ∈ V defines a game

Gv0 = (V,M, v0) starting at position v0.

A play π (= πv0) of Gv0 is a (finite or infinite) sequence of edges from M :

v0
M→ v1

M→ v2
M→ · · · (π)

i.e., where for all i = 0, 1, 2, . . . the edge vi
M→ vi+1 is a move (vi, vi+1) ∈M . A play π is complete,

either if it is infinite, or if it ends after n = |π| moves in a sink of the game graph. The player

who cannot move loses the play π, while the previous player (who made the last possible move)

wins π. Thus, if |π| = 2k + 1: π =

v0
I→ v1

II→ v2
I→ · · · II→ v2k

I→ v2k+1 (I moves last)

and π is won for I. Conversely, if II moves last, then |π| = 2k for some π =

v0
I→ v1

II→ v2
I→ · · · II→ v2k (II moves last)

2Many game-theoretic notions and results carry over to the transfinite case; cf. [Flu00].

65

a

b c

d e

f g h

m

k

l

n

(a) What are the “good moves”, e.g., in position
e? Is e won (or lost, or drawn), and if so how?

a

b

 1

c

3

d e

f

1

g

 3

m

h

1

k

l

 oo

n

oo

 oo

 oo

2 2

 2

(b) The solved game reveals the answer: move
e→h is winning; the moves e→d and e→m are
not.

Figure 7.1: Position values in G (left) are revealed by the solved game Gγ = (V,M, γ) on the
right: positions are won (green boxes), lost (red octagons), or drawn (yellow circles). This
separates “good” moves (solid, colored arcs) from “bad” ones (dashed, gray). The length ` of a

move x
`→y indicates how quickly one can force a win, or how long one can delay a loss, using

that move.

so π is lost for I, and II wins the play. A play π of infinite length is a draw (in finite games G,

this means that M must have a cycle).

Example. Consider G = (V,M) in Figure 7.1a and a start position for player I, say e. In the

play π1= e
I→ d

II→ f, I cannot move, so π1 is lost (for I). However, in π2= e
I→ h, II cannot

move, so π2 is won (for I). So from position e, the best move is e→h; the other moves are “bad”:

e→d loses (see π1), while e→m only draws (if II sticks to m→n).

The Value of a Position: Playing Optimally. To determine the true value of v ∈ V , plays

with bad moves are not of interest, but instead those plays are considered, where the opponents

play optimally, or at least “good enough” so that the best possible outcome is guaranteed. This

leads to the question: can I force a win from v ∈ V (no matter what II does), or can II force I

to lose from v? If neither player can force a win, v is a draw and both players can avoid losing

by forcing an infinite play. This is formalized using strategies.

A (pure) strategy is a partial function S : V → V with S ⊆ M . It prescribes which of the

66

available moves a player will choose in a position v.3 We define v0 to be won for player I in

(at most) n moves, if there is a strategy SI for I, such that for all strategies SII of II, there is a

number j = 2k+ 1 ≤ n such that vj = SI ◦ (SII ◦SI)
k(v0) is defined, but SII(vj) is not: II cannot

move. In this case, SI is a winning strategy for I at v0. Conversely, v0 is won for player II in

(at most) n moves, if there is a strategy SII, such that for all strategies SI, there is a number

j = 2k ≤ n such that vj = (SII ◦SI)
k(v0) is defined, but SI(vj) is not: I cannot move. With this,

the value of v0 is won (lost) if it is won for player I (player II). If v0 is neither won nor lost,

its value is drawn, so neither I nor II can force a win from v0, but both can avoid losing via an

infinite play.

7.2.1 Solving Games: Labeling Nodes (Positions)

Let G = (V,M) be the game in Figure 7.1a. How can G be solved, i.e., determined whether

the value of x ∈ V is won, lost, or drawn? The value of x represent using a node labeling

γ : V → {W, L,D} and Gγ = (V,M, γ) denotes a solved game.

The following Datalog¬ query, consisting of a single rule, solves games:

win(X) :− move(X,Y),¬win(Y) (QG)

QG says that position x is won in G if there is a move to position y, where y is not won. For

non-stratified Datalog¬ programs like QG (having recursion through negation), the three-valued

well-founded model W [VGRS91] provides the desired answer:

Proposition 1 (QG Solves Games) Let P := (QG ∪ move) be the Datalog¬ query QG plus

finitely many “move” facts, representing a game G = (V,M). For all x ∈ V :

WP (win(x)) =

true

false

undef

 ⇔ γ(x) =

W

L

D

 .

3In our games, the same positions can be revisited many times. Accordingly, strategies are based on the current
position v only and do not take into account how one arrived at v.

67

When implemented via an alternating fixpoint [VG93], one obtains an increasing sequence of

underestimates U1 ⊆ U2 ⊆ . . . converging to the true atoms Uω from below, and a decreasing

sequence of overestimates O1 ⊇ O2 ⊇ . . . converging to Oω, the union of true or undefined atoms

from above. Any remaining atoms in the “gap” have the third truth-value (undef). For the game

query QG above, Uω contains the won positions V W; the “gap” (if any) Oω \ Uω contains the

drawn positions V D; and the atoms in the complement of Oω (i.e., which are neither true nor

undefined) are the lost positions V L.

To solve G directly, consider, e.g., the three moves e→d, e→h, and e→m in Figure 7.1a. The

move e→h is clearly winning, as it forces the opponent into a sink. However, the status of the

moves e→d and e→m is unclear unless the game has been solved. Figure 7.1b depicts the solved

game Gγ . The set of positions is a disjoint union V = V W ∪̇ V L ∪̇ V D.

To obtain Gγ , proceed as follows: First, find all sinks x, i.e., nodes for which the set of

followers F(x) = {y | (x, y) ∈ M} is empty. These positions are immediately lost and colored

red: V L
0 = {x ∈ V | F(x) = ∅}. In our example, V L

0 = {b, f, h}. Then, find all nodes x for which

there is some y with (x, y) ∈ M such that y ∈ V L
0 . These positions are won and colored green;

here: V W
1 = {a, d, e}. Then, find the unlabeled nodes x for which all followers y ∈ F(x) are

already won (i.e., colored green). Since the player moving from that position can only move to

a position that is won for the opponent, those x are also lost and added to V L
2 . In the running

example V L
2 = {c, g}. Now iterate the above steps until there is no more change. One can

show that V W
1 ⊆ V W

3 ⊆ V W
5 · · · converges to the won positions V W, whereas V L

0 ⊆ V L
2 ⊆ V L

4 · · ·

converges to the lost positions V L; the drawn positions are V D := V \ (V W ∪ V L).

Algorithm 1 depicts the details of a simple, round-based approach to solve games. It also

computes the length of a position, which adds further information to a solved game Gγ , i.e., how

quickly one can win (starting from green nodes), or how long one can delay losing (starting from

red nodes). In Figure 7.1, the (delay) length of f is 0, since f is a sink and no move is possible.

In contrast, the (win) length of d is 1: the next player moving wins by moving to f. For g, the

(delay) length is 2, since the player can move to d, but the opponent can then move to f. So g

is lost in 2 moves.

Remark. As described, Algorithm 1 proceeds in rounds to determine the value of positions, i.e.,

68

Algorithm 1: Solve game Gγ = (V,M, γ)

V W := ∅ ; // Initially no won positions are known

V L := {x ∈ V | F(x) = ∅} ; // . . . but all sinks are lost . . .

len(x) := 0 for all x ∈ V L ; // . . . immediately: their length is 0.

repeat
for x ∈ V \ (V W ∪ V L) do

F L := F(x) ∩ V L; FW := F(x) ∩ V W ;

if F L 6= ∅ then
V W := V W ∪ {x} ; // some y ∈ F(x) is lost, so x is won

len(x) := 1 + min{len(y) | y ∈ F L} ; // shortest win

if F(x) = FW then
V L := V L ∪ {x} ; // all y ∈ F(x) are won, so x is lost

len(x) := 1 + max{len(y) | y ∈ FW} ; // longest delay

until V W and V L change no more;

V D := V \ (V W ∪ V L) ; // remaining positions are now draws

len(x) :=∞ for all x ∈ V D ; // . . . and can be delayed forever

γ(x) := W/L/D for all x ∈ V W/V L/V D, respectively.

in each round i, all newly won positions, and all newly lost positions are determined. This could

be used, e.g., to simplify the computation of the length of a position (len(x) can be derived from

the first round in which the value of x becomes known). On the other hand, this is not strictly

necessary: one can replace the for-loop ranging over all unlabeled nodes by a non-deterministic

pick of any unlabeled node. As long as nodes are picked in a fair manner, the non-deterministic

version will also converge to the correct result, while allowing more flexibility during evaluation

[ZGL12].

7.2.2 Game Provenance: Labeling Edges (Moves)

In order to answer the original question: why is x ∈ V won, lost, or drawn, this section defines a

suitable notion of game provenance Γ(x) that is similar in spirit to the how-provenance devised

for positive queries [GKT07], but that works for games and explains the value (won, lost, or

drawn) of x. Some desiderata of game provenance are immediate: First, only nodes reachable

from x can influence the outcome at x, i.e., only nodes and edges in the transitive closure F+(x).

Thus, one expects Γ(x) to depend only on F+(x). In addition, one expects the value γ(x) of

position x to be independent of “bad moves”, i.e., which give the opponent a better outcome

69

than necessary. A partial edge-labeling function λ is used to distinguish different types of moves.

Definition 1 (Edge Labels) Let Gγ = (V,M, γ) be a solved game. The edge-labeling λ :

V × V → {g, r, y} defines a color for a subset of edges from M as shown in Figure 7.2. 2

As in Figure 7.2, γ(x) and γ(y), i.e., node labels W, D, and L of moves (x, y) ∈ M are used to

derive an appropriate edge label. The edge labeling allows to distinguish provenance-relevant

(“good”) moves (winning, drawing, or delaying), from irrelevant (bad) moves. The latter are

excluded from game provenance:

Definition 2 (Game Provenance) Let Gγ = (V,M, γ) be a solved game. The game prove-

nance Γ(=ΓG) is the λ-colored subgraph of Gγ . For x ∈ V , Γ(x) is defined as the subgraph of

Γ, reachable via λ edges. 2

Consider the solved game on the right in Figure 7.1. Since bad (dashed) edges are excluded,

the game provenance consists of two disconnected subgraphs: (i) The bipartite “red-green”

subgraph, which is draw-free, i.e., every position is either won or lost, and (ii) the “yellow”

subgraph, representing the drawn positions.

The figure also reveals that solved games Gγ and thus game provenance Γ have a nice, regular

structure. The following is immediate from the underlying game-theoretic semantics of G.

Theorem 1 (Provenance Structure) Let Gγ = (G,M, γ) be a solved game, Γ its edge-labeled

provenance graph. The game provenance Γ has a regular structure:

Γ(x) =

Mg.(r.g)∗(x) ; if x is won

M(r.g)∗(x) ; if x is lost

My+(x) ; if x is drawn

Here, for a regular expression R, and a node x ∈ V , the expression MR(x) denotes a subset of

labeled edges of M , i.e., for which there is a path π in Γ whose labels match the expression R.

As will be shown below, for positive queries, the bipartite structure of won and lost nodes nicely

corresponds to the structure of provenance polynomials [KG12].

70

y won (W) y drawn (D) y lost (L)

x won (W) bad bad g: winning

x drawn (D) bad y: drawing n/a

x lost (L) r: delaying n/a n/a

W

 bad Dbad

L winning
bad

 drawing

n/a

 delaying

n/a

 n/a

Figure 7.2: Depending on node labels, moves x → y are either winning (or green) (W
g
; L),

delaying (or red) (L
r
; W), or drawing (or yellow) (D

y
; D). All other moves are either bad

(allowing the opponent to improve the outcome), or non-existent (n/a): e.g., if x is lost, then
there are only delaying moves (i.e., ending in won positions y for the opponent).

7.3 Provenance Games

The previous section showed that games can be viewed as arguments between players I and II.

The game semantics (avoiding bad moves) yields a natural model of provenance. Now this notion

is applied to queries expressed using non-recursive Datalog¬ rules. Any first-order query ϕ(x̄) on

input database D can be expressed as a non-recursive Datalog¬ program Qϕ with a distinguished

relation ans ∈ idb(Qϕ) 4 such that evaluating Qϕ with input D under the stratified semantics5

agrees with the result of ϕ(x̄). In the following,Q(D) denotes the result of evaluating Q on input

D.

7.3.1 Query Evaluation Games

Query evaluation of Q(D) can be seen as a game between players I and II who argue whether

an atom A ∈ Q(D). This approach is similar to the ideas of Lorenzen et al. [LL78]. The

argumentation structure is stylized in Figure 7.3. There are three classes of positions in the

game as shown on the left of Figure 7.3:

4The arity of ans matches that of ϕ(x̄).
5which coincides with the well-founded semantics on non-recursive Datalog¬

71

A

Rule (R)¬A

¬Goal (N)Goal (G)

∃

I
 II

Move Claim made by making the move

A
∃
; R “A is true: it’s the head of this instance of R.”

R ; G “Positive goal gk(=A′) in your rule body fails!”

G ; ¬A “No! Its negation ¬A′ fails and A′ is true.”

¬A ; A “No: atom A′ fails!”

R ; N “Negative goal ¬A′ in the rule body fails.”

N ; A “No: ¬A′ succeeds, but A′ fails.”

Figure 7.3: Move types of the query evaluation game (left) and implicit claims made (right). Moving
along an edge, a player aims to verify a claim, thereby refuting the opponent. Initially, player I is a
verifier, trying to prove A, while II tries to spoil this attempt and refute it. Roles are swapped (I
 II)
when moving through a negated goal (R;N;A).

• Relation nodes—depicted as circles,

• Rule nodes—depicted as rectangles, and

• Goal nodes—depicted as rectangles with rounded corners.

Both relation nodes and goal nodes can be positive or negative.

Usually, an evaluation game starts with I claiming that a ground atom A(x) is true. That is

she starts the game in a relation node for A. To substantiate her claim she moves to a rule that

has A as a head atom and specifies constants for the remaining existentially quantified variables

in the body of the rule. Now, II tries to reject the validity of the rule by selecting a goal atom

(e.g., B) in its body that he thinks is not satisfied (e.g., II moves to the goal node for B). I then

moves to a negated relation node for this goal (e.g., a node ¬B), claiming the goal is true because

its negation is false. From here, II moves to the relation node B, questioning I’s claim that B is

true. The game then continues in the same way. Note that the graph on the left of in Figure 7.3

is a schema-level description. When one cycle (relation;rule;goal;¬relation;relation) is

complete, the actual fact that is argued about has changed (e.g., from A to B). If II selects a

negated goal (e.g., ¬C) in the body of a rule then player I moves directly from the negated goal

node to the relation node for C. This essentially switches the roles of I and II since now player

II has to argue for a relation node C.

72

A(X)

C(X)B(X,Y)

r1(X,Y)

g1
1(X,Y) g2

1(Y)

rB(X,Y) rC(X)

¬A(X)

¬B(X,Y) ¬C(X)

B(X,Y) C(X)

X:=Y

∃Y

(a) Qneg as a game diagram

Atoms A,B, and C
M(f¬A(X), fA(X)) :− d(X).
M(f¬B(X,Y), fB(X,Y)) :− d(X), d(Y).
M(f¬C(X), fC(X)) :− d(X).
IDB A via rule r1

M(fA(X), fr1(X,Y)) :− d(X), d(Y).
M(fr1(X,Y), fg11(X,Y)) :− d(X), d(Y).

M(fr1(X,Y), fg21(Y)) :− d(X), d(Y).

M(fg11(X,Y), f¬B(X,Y)) :− d(X), d(Y).

M(fg21(X), fC(X)) :− d(X).

EDB B and C
M(fB(X,Y), frB(X,Y)) :− B(X,Y).
M(fC(X), frC(X)) :− C(X).

(b) Rules defining the moves for Qneg

¬C(a)

¬C(b)

¬B(a, a)

¬B(a, b)

rB(b, a)

r1(b, a)¬A(b)

¬A(a)
g1

1(a, a)

B(a, b)

B(a, a)

C(a)

g2
1(a)

g2
1(b)

C(b)

¬B(b, a)

¬B(b, b)

rC(a)

A(b)

A(a)

r1(a, b)

r1(a, a)

g1
1(a, b) rB(a, b)

r1(b, b)
g1

1(b, b)

g1
1(b, a)

B(b, b)

B(b, a)

∃a

∃b

∃b

∃a

(c) Instantiated game GQneg,D for D = {B(a, b), B(b, a), C(a)}

¬C(a)

¬C(b)

¬B(a, a)

¬B(a, b)

rB(b, a)

r1(b, a)¬A(b)

¬A(a)
g1

1(a, a)

B(a, b)

B(a, a)

C(a)

g2
1(a)

g2
1(b)

C(b)

¬B(b, a)

¬B(b, b)

rC(a)

A(b)

A(a)

r1(a, b)

r1(a, a)

g1
1(a, b) rB(a, b)

r1(b, b)
g1

1(b, b)

g1
1(b, a)

B(b, b)

B(b, a)

∃a

∃b

∃b

∃a

(d) Solved game GγQneg,D
. Lost positions are (dark) red; won positions are (light) green. Provenance edges (good

moves) are solid; bad moves are dashed. A(a) (resp. A(b)) is true (resp. false), indicated by position value W
(resp. L). The game provenance Γ(A(a)) explains why/how A(a) is true; Γ(A(b)) explains why-not A(b).

Figure 7.4: Provenance game for the FO query Qneg:= A(X) :− B(X,Y),¬C(Y). The well-founded
model of the rule win(X) :− M(X,Y),¬win(Y), applied to the move graph M, solves the game.

73

Now, the general argumentation scheme is demonstrated for a concrete Datalog¬ program

Qneg. The program Qneg consists of a single rule r1:

r1 : A(X) :− B(X,Y)︸ ︷︷ ︸
g

, ¬ C(Y)︸ ︷︷ ︸
g

(Qneg)

The game diagram for Qneg is shown in Figure 7.4a. Player I starts in a relation node of type

A(X) with a concrete instantiation X = x to prove that A(x) ∈ Q(D). In her first move, she

picks the rule r1 together with bindings for all existentially quantified variables in r1, which is

just a instantiation y for Y in r1; essentially picking a ground instance r1(x, y) such that the

variable X is bound to the desired x. She claims the rule body is satisfied. If this is not the

case, II can falsify the claim by selecting a goal from the body, i.e., either g1
1(x, y), thus making

a counter-claim that B(x, y) is false, or g2
1(y), claiming instead that C(y) is true. Positive case,

e.g., II moved to g1
1(x, y). Player I will move from g1

1(x, y) to ¬B(x, y), from which II will move

to B(x, y). In this node, there is an edge for player I if and only if B(x, y) ∈ D, that is if there

is a trivial, bodyless rule rB(x, y) representing this fact. Thus, I wins the game if B(x, y) ∈ D

and II wins if B(x, y) 6∈ D. Negative case, e.g., II just moved to g2
1(y). Player I moves to the

instantiation C(y) of relation node C(X). For this move in the diagram, variables used in the

goal node are explicitly renamed to the single variable name used in the corresponding relation

node. With this move, II loses and I wins if C(y) 6∈ D; II wins the argument if C(y) ∈ D by

moving to the trivial rule node, forcing I to lose.

Construction of Evaluation Game Graph. A game is constructed in a way that the constants

of the program are also encoded within the game positions. Figure 7.4b provides the Datalog

rules that define the move relation M of the evaluation game GQneg,D for Qneg with an input

database D. Here, d is a relation that contains the active domain of Qneg and D.

A positive and a negative relation node is created for each ground atom. Skolem functions

are used to create “node identifiers”. For example, the ground atom S(a1, . . . , an) is represented

by its positive relation nodes fS(a1, . . . , an) and its negative relation nodes f¬S(a1, . . . , an). The

first three rules in Figure 7.4b create an edge from the negative to the positive node.6

6The use of Skolems is for convenience only. Instead, constants can be used and the arity of relations must be
increased accordingly, or constants could be avoided by using [FKL97, FKL00].

74

Furthermore, a rule node is created for each rule ri in the ground program. The node has a

unique identifier fri(X1, . . . , Xn) that includes the rule number and the assignments of variables

found in the rule’s body to constants. For simplicity, variables are alphabetically ordered and

the constants are provided in this order. There is an edge from the ground head atom to the

ground rule node (cf. Figure 7.4b first line of middle block). For example, the Skolem function

fr1(a, b) encodes the whole rule body r1 : [B(a, b),¬C(b)].

Then, moves are added that start from the rule node and go to the corresponding goal nodes

gji . Goal nodes are identified by the rule number i they occur in, their positions j within the

body, and the bound constants. (cf. lines 2 and 3 of middle block). From positive (negative)

goal nodes, moves go to negative (positive) relation nodes keeping the bound constants fixed (cf.

lines 4 and 5 of middle block). Finally, for EDB relations, an edge is added starting from the

positive relation node R(c̄) and going to a rule node frR(c̄) iff R(c̄) ∈ D. This ensures that a

player reaching the relation node R(c̄) wins iff R(c̄) ∈ D. In Figure 7.4c the game graph for

Qneg with input database D = {B(a, b), B(b, a), C(a)} is shown. The solved game is shown in

Figure 7.4d. Here, I has a winning strategy for e.g., A(a), B(b, a), and C(a).

Acyclicity of FO Games. For FO queries, represented by non-recursive Datalog¬ programs,

no relation node is reachable from itself and the resulting game graph is acyclic.

Theorem 2 (FO Provenance Game) Consider a first-order query ϕ in the form of a non-

recursive Datalog¬ program Qϕ with output relation ans and input database facts D. Let GγQϕ,D =

(V,M, γ) be the solved game. Then:

1. GγQϕ,D is draw-free.

2. Qϕ(ans(x̄)) =

true

false

⇔ γ(fans(x̄)) =

W

L

 2

Sketch. It is easy to see that one can associate with every non-recursive Datalog¬ program Q

and input D an evaluation game graph GQ,D together with a solved game GγQ,D. Since the game

graph is acyclic, the solved game will not contain any drawn positions. Further, by construction,

GγQ,D models query evaluation of Q(D).

75

7.3.2 Relationship with Provenance Polynomials – Provenance for RA+

Game graphs are constructed to preserve provenance information available in program and

database. It turns out that for positive Datalog programs Q they generate semiring provenance

polynomials as defined in [GKT07, KG12] for atoms A(x̄) ∈ Q(D).

Semiring Provenance Polynomials. Semiring provenance [GKT07, KG12] attaches pro-

venance information to EDB and IDB facts. The provenance information are elements of a

commutative semiring K. A commutative semiring is an algebraic structure with two distinct

associative and commutative operations “+” and “×”. During query evaluation, result facts are

annotated with elements from K that are created by combining the provenance information from

input facts. For example, in the join R(a, b) :− S(a, b), T(a) with S(a, b) being annotated with

p1 ∈ K and T(a) being annotated with p2 ∈ K, the result fact R(a, b) will be annotated with

p1 × p2. Intuitively, “×” is used to combine provenance information of joint use of input facts,

whereas “+” is used for alternative use of input facts.

Depending on the semiring used, different (provenance) information is propagated during

query evaluation. The most informative7 semiring is the positive algebra provenance semiring

PN[X] [GKT07, KG12] whose elements are polynomials with variables from a set X and coeffi-

cients from N. The operators “×” and “+” in PN[X] are the usual addition and multiplication of

polynomials. Usually, facts from the input database D are annotate by variables from a set X.

Formally, PN[X] is used as a function that maps a ground atom to its provenance annotation.

Obtaining Semiring Polynomials from Game Provenance. Consider only positive pro-

grams, and fix an atom A(x̄) with A(x̄) ∈ Q(D). The provenance graph ΓQ,D(fA(x̄)) = (V,M, γ)

for A(x̄) can easily be transformed into an operator tree for a provenance polynomial. The

operator tree is represented as a DAG GΩ(A(x̄)) in which common sub-expressions are re-used.

GΩ(A(x̄)) = (V ′,M ′, δ) has nodes V ′, edges M ′, and node labels δ. For a fixed A(x̄), the struc-

tures of Γ and GΩ coincide, that is V = V ′ and M = M ′. The labeling function δ maps inner

nodes to either “+” or “×”, denoting n-ary versions of the semiring operators. Leaf nodes in

game provenance graphs correspond to atoms over the EDB schema. We here only assign ele-

7In the sense that for any other semiring K′, there exists a semiring homomorphism H : PN[X] → K′. This has
important implications in practice [GKT07, KG12].

76

ments from K to leaf nodes of the form frR(x̄). Formally, the labeling function δ is defined as

follows:

δ(v) =

PN[X](A(x̄)) if F(v) = ∅ and v = frA(x̄)

“×” if F(v) 6= ∅ and γ(v) = L

“+” if F(v) 6= ∅ and γ(v) = W

(7.1)

We use Ω to denote the transformation of obtaining GΩ(A(x̄)) from ΓQ,D(fA(x̄)). The provenance

semiring polynomial of fact A(x̄) is now explicit in GΩ(A(x̄)). An inner node “+” (or “×”) with n

children represents an n-ary version of + (or ×) from the semiring. Since the semiring operators

are associative and commutative, their n-ary versions are well-defined.

Proposition 2 For positive Q, and A(x̄) ∈ Q(D), all leaves in ΓQ,D(A(x̄)) are of type frB(X,Y);

thus the labeling described above is complete.

Sketch. For positive programs, positive relation nodes are reachable from other positive relation

nodes over a path of length four as shown on the left side of Figure 7.3. For an atom A(x̄) ∈ Q(D),

all reachable rule nodes are lost and all reachable goal nodes are won. 2

The following theorem relates semiring provenance polynomials to the provenance expressions

obtained in GΩ:

Theorem 3 Let ΓQ,D be the game provenance of an RA+ query Q (in the form of a positive,

non-recursive Datalog program) over database D. Then ΓQ,D represents the provenance polyno-

mials N[X] as follows: for all A(x̄) ∈ Q(D),

Ω ◦ ΓQ,D(fA(x̄)) ≡ PN[X]
Q,D (A(x̄)).

Sketch. Our game graph construction is an extension of the graph presented in Section 4.2 of

[KG12]. Rule nodes correspond to the join nodes presented in [KG12]. Named goal nodes can

be seen as labels on the edges between (goal) tuple nodes and join nodes and allow us to identify

at which position a tuple was used in the body. 2

77

Proof The evaluation of the transformed game graph Ω◦ΓQ,D(fR(x̄)) is structurally equivalent

to the evaluation of provenance semiring polynomials of the annotated Q(D):

EDB Facts: Using provenance semirings, a fact R(x̄) has the annotation PN[X]
Q,D (R(x̄)). The

evaluation of provenance polynomials using provenance games starts at the positive relation

node fR(x̄). Since R(x̄) ∈ Q(D) and by definition of the game graph this relation node has one

reachable node F(fR(x̄)) = {frR(x̄)}: Ω ◦ ΓQ,D(fR(x̄)) = Ω ◦ ΓQ,D(frR(x̄)). The node frR(x̄) is a

leaf node, so the evaluation Ω returns its label L(frR(x̄)) = PN[X]
Q,D (R(x̄)) and:

Ω ◦ ΓQ,D(fR(x̄)) = L(frR(x̄)) = PN[X]
Q,D (R(x̄)).

Union: Let Q(D) := {r1 : U(x̄)← R1(x̄). r2 : U(x̄)← R2(x̄).}When evaluating Q(D), the prove-

nance semiring polynomial for fact U(x̄) ∈ Q(D) is: PN[X]
Q,D (U(x̄)) = PN[X]

Q,D (R1(x̄))+PN[X]
Q,D (R2(x̄)).

The evaluation of provenance polynomials for U(x̄) ∈ Q(D) using provenance games starts

at the positive relation node fU(x̄). By definition of the game graph for Q(D), F(fU(x̄)) =

{fr1(x̄), fr2(x̄)} and since γ(fU(x̄)) = W both terms are combined with L(fU(x̄)) =“+”:

Ω ◦ ΓQ,D(fU(x̄)) = Ω ◦ ΓQ,D(fr1(x̄)) + Ω ◦ ΓQ,D(fr2(x̄))

Each rule node in ΓQ,D has exactly one outgoing edge to a goal node. Since the program is

positive, each goal node has exactly one following negated relation node. Those negated relation

nodes in turn have exactly one corresponding positive relation node. As shown above for EDB

facts, for positive programs and a head node U(x̄) ∈ Q(D), positive relation nodes lead to the

corresponding provenance annotations:

Ω ◦ ΓQ,D(fU(x̄)) = Ω ◦ ΓQ,D(fg11(x̄)) + Ω ◦ ΓQ,D(fg12(x̄))

= Ω ◦ ΓQ,D(f¬R1(x̄)) + Ω ◦ ΓQ,D(f¬R2(x̄))

= Ω ◦ ΓQ,D(fR1(x̄)) + Ω ◦ ΓQ,D(fR2(x̄))

= PN[X]
Q,D (R1(x̄)) + PN[X]

Q,D (R2(x̄))

Join: Let Q(D) := {r1 : J(x̄)← R1(x̄), R2(x̄).} Evaluating Q(D) for a J(x̄) ∈ Q(D) using prove-

78

nance semiring annotations yields: PN[X]
Q,D (J(x̄)) = PN[X]

Q,D (R1(x̄))×PN[X]
Q,D (R2(x̄)). The evaluation

of provenance polynomials for J(x̄) ∈ Q(D) using provenance games starts at the positive relation

node fJ(x̄). By definition of the game graph for Q(D), fJ(x̄) connects to exactly one rule node:

F(fJ(x̄)) = {fr1(x̄)}. This rule node in turn leads to two goal nodes F(fr1(x̄)) = {fg11(x̄), fg21(x̄)},

which are combined with L(fr1(x̄)) =“×”, since γ(fr1(x̄)) = L:

Ω ◦ ΓQ,D(fJ(x̄)) = Ω ◦ ΓQ,D(fr1(x̄))

= Ω ◦ ΓQ,D(fg11(x̄))× Ω ◦ ΓQ,D(fg21(x̄))

Since the program is positive, each goal node has exactly one following negated relation node.

Those negated relation nodes in turn have exactly one corresponding positive relation node. As

shown above for EDB facts and for positive programs with a head node J(x̄) ∈ Q(D), positive

relation nodes lead to the corresponding provenance semiring annotations:

Ω ◦ ΓQ,D(fJ(x̄)) = Ω ◦ ΓQ,D(f¬R1(x̄))× Ω ◦ ΓQ,D(f¬R2(x̄))

= Ω ◦ ΓQ,D(fR1(x̄))× Ω ◦ ΓQ,D(fR2(x̄))

= PN[X]
Q,D (R1(x̄))× PN[X]

Q,D (R2(x̄))

Example 3hop from [KG12]. Consider the 3Hop query Q3Hop used in Figure 7 of [KG12]:

r1 : 3Hop(X,Y) :− hop(X,Z1), hop(Z1, Z2), hop(Z2, Y).

The query uses an input database consisting of a single binary EDB relation hop representing a

directed graph. It asks for pairs of nodes that are reachable via exactly three edges(=hops). An

input database D and PN[X]
Q3Hop,D

annotations of Q3Hop are shown in Figure 7.5b. Figure 7.5d shows

the game provenance Γ(f3Hop(a, a)) of fact 3Hop(a, a). Positive won relation nodes indicate the

existence of the corresponding fact in Q3Hop(D). To obtain the provenance polynomial of fact

f3Hop(a, a), Ω is applied to Γ(f3Hop(a, a)) as shown in Figure 7.5e: inner won nodes are replaced

by “×”, inner lost nodes by “+”, and leaf nodes by their respective annotations from K as given

79

a cb
r

q

p

s

(a) Input database D

hop ΓQ3Hop,D δ

a a frhop(a, a) p

a b frhop(a, b) q

b a frhop(b, a) r

b c frhop(b, c) s

(b) Labels δ for leaf nodes of ΓQ3Hop,D.

3hop ΓQ3Hop,D PN[X]
Q3Hop,D

a a f3Hop(a, a) p3 + 2pqr

a b f3Hop(a, b) p2q + q2r

a c f3Hop(a, c) pqs

b a f3Hop(b, a) p2r + qr2

b b f3Hop(b, b) pqr

b c f3Hop(b, c) qrs

(c) Provenance for inner relation nodes of
ΓQ3Hop,D.

r1(a, a, b, a)

g2
1(a, a)

¬hop(b, a)

g1
1(a, a)

hop(b, a)

g2
1(a, b) g3

1(b, a)

rhop(b, a)

r1(a, a, a, a)

r1(a, a, a, b)

3Hop(a, a)

g3
1(a, a)

rhop(a, a)

hop(a, b)

¬hop(a, a)

g1
1(a, b)

rhop(a, b)

g2
1(b, a)

¬hop(a, b)

hop(a, a)

∃ a,a ∃ b,a

∃ a,b

(d) Γ(3hop(a, a))

×

+

×

+

+

+ +

r

×

×

+

+

p

+

×

+

q

+

×

+

(e) DAG GΩ = Ω ◦ Γ(3hop(a, a)). Interpreting
GΩ yields p3 + 2pqr.

Figure 7.5: Input graph for program Q3Hop in (a) using edge labeling according to (b). Game
provenance ΓQ3Hop,D for the query 3Hop(a, a) on input database of (a) is shown in (d). When
labeling leaf nodes according to (b), lost inner nodes by “×”, and won inner nodes by “+” then
the operator DAG GΩ shown in (e) is created. This DAG represents the semiring-provenance
polynomial for the query 3Hop(a, a) shown in (c) and [KG12].

80

g2
1(c, a)

¬3Hop(c, a)

g2
1(c, c)g1

1(c, c)

r1(c, a, c, b)

¬hop(c, b)

hop(c, a)

g2
1(b, b)

¬hop(a, c)

hop(c, c)

g1
1(c, a)

r1(c, a, b, c)r1(c, a, a, b)

3Hop(c, a)

hop(b, b)

g2
1(c, b)g2

1(a, c)

r1(c, a, a, c)

¬hop(c, c)

hop(c, b)

¬hop(c, a)

g1
1(c, b)

r1(c, a, b, b)

¬hop(b, b)

g3
1(c, a)

r1(c, a, a, a) r1(c, a, b, a)

hop(a, c)

r1(c, a, c, a) r1(c, a, c, c)

∃ a,b ∃ a,c ∃ c,a ∃ c,c∃ b,c ∃ b,b∃ b,a∃ a,a ∃ c,b

Figure 7.6: Why-not provenance for 3Hop(c, a) using provenance games.

in Figure 7.5b and [KG12]. The so relabeled graph encodes the provenance equation

Ω ◦ ΓQ3Hop,D(f3Hop(a, a)) = (p× p× p) + (p× q × r) + (p× q × r) = p3 + 2pqr

ProgD which is equivalent to the annotation of provenance semiring polynomials as shown in

Figure 7.5c and [KG12].

7.3.3 Why-Not Game Provenance for RA+

Game provenance also yields meaningful explanations for why-not questions. the active do-

main. Consider for example the query Q3Hop and its input database D. The atom 3Hop(c, a)

is not in Q3Hop(D) and explanation for “why” is desired. Figure 7.6 shows the game prove-

nance ΓQ3Hop,D(f¬3Hop(c, a)) of the missing fact 3Hop(c, a). The lost relation node 3Hop(c, a)

indicates that player I will lose the argument that tries to show that 3Hop(c, a) ∈ Q3Hop(D).

The game provenance explains why: Any ground instantiation of rule r1 will be winning node

for player II. Consider, e.g., moving to r1(c, a, a, a) which represents the rule instantiation for

X/c, Y/a, Z1/a, Z2/a. Player II wins the game here by questioning that the first goal g1
1(c, a)

is satisfied. And indeed, player I will move from g1
1(c, a) to ¬hop(c, a); II to hop(c, a). Now,

I loses the game since hop(c, a) 6∈ D and thus there is no move out of hop(c, a). Another rule

instantiation X/c, Y/a, Z1/a, Z2/b fails for the same reason: the missing hop(c, a). The instanti-

ation X/c, Y/a, Z1/b, Z2/a fails because hop(c, b) is not in the input. Other instantiations, such

as X/c, Y/a, Z1/c, Z2/b, fail because two facts are missing from the input, here hop(c, b) and

81

hop(c, c).

It is no coincidence that all leaf nodes represent missing EDB facts for why-not provenance

in positive non-recursive Datalog programs:

Proposition 3 Let Q be a non-recursive Datalog program, D a database, Γ(fA(x̄)) the game

provenance for facts A(x̄) 6∈ Q(D). All leaves of Γ(fA(x̄)) have type fR(ȳ) and represent ground

EDB atoms R(ȳ) that are missing from the input. These nodes are labeled with a unique ¬k,

where k ∈ K is a new constant in K that is not used for any other present or missing fact. 2

The above proposition illustrates that for positive queries, the ultimate reason for failure to

derive outputs are missing inputs, represented by the leaves in provenance games. Accordingly,

the labeling function L of (7.1) supports additional leave nodes of type fR(x̄):

L(v) =

PN[X](R(x̄)) if F(v) = ∅ and v = frR(x̄)

¬kR(x̄) if F(v) = ∅ and v = fR(x̄) with kR(x̄) a fresh value in K

“×” if F(v) 6= ∅ and γ(v) = L

“+” if F(v) 6= ∅ and γ(v) = W

(7.2)

As defined, game provenance is sensitive to the active domain of query and input database,

which can lead to interesting effects. Consider the following query variant Q′neg:

C(y) :− E(y, z).

A(x) :− B(x, y),¬C(y).

with input D = {B(a, a)}. Here, game provenance shows that A(a) depends on the presence of

B(a, a) as well as on the absence of E(a, a). The game provenance graph does not mention that

the absence, e.g., of E(a, b) is important as well—simply because b is not in the active domain.

7.3.4 Game Provenance for First-Order Queries

This section presents provenance games in the presence of negation within the query. When

constructing game graphs for Datalog¬ queries with negated goals, graphs are optained in which

82

g2
1:¬C(b) C(b)

¬B(a,b)

A(a)

B(a,b)

r1:[B(a,b),¬C(b)]
g1

1:B(a,b) rB:(a,b)
∃b

(a) Game provenance graph Γ(fA(a)) for A(a) ∈ Qneg(D).

C(a)g2
1:¬C(a)

g1
1:B(b,b)

¬A(b)
¬B(b,b)

rC :(a)

r1:[B(b,b),¬C(b)]

r1:[B(b,a),¬C(a)]
A(b)

B(b,b)
∃b
∃a

(b) Game provenance graph Γ(f¬A(b)) for A(b) 6∈ Qneg(D)

Figure 7.7: Provenance graphs for Qneg with database D = {B(a, b), B(b, a), C(a)}. Both why
and why-not graphs might contain leaf nodes representing existent and missing input facts.

there exists a path of length three between positive relation nodes. This switches roles between

player I and II. In other words, to explain why a negated subgoal is satisfied, an argument like

in the why-not case is used. In general, this leads to provenance graphs that contain leaf nodes

of both kinds: fC(x̄) representing missing facts R(x̄) 6∈ D and frR(x̄) representing input facts

R(x̄) ∈ D.

In the following, examples are based on the Qneg query (cf. Figure 7.4) with input database

D = {B(a, b), B(b, a), C(a)}.

Why Provenance. Figure 7.7a shows the provenance graph for the output fact A(a). One can

see that A(a) could be derived via rule r1 with the bindings X/a, Y/b. The positive goal succeeds

due to the existence of the EDB fact B(a, b). The negative goal g2
1 succeeds due to the missing

fact C(b) from the input D.

Why-Not Provenance. Figure 7.7b shows the provenance graph for A(b) which is not part of

Qneg(D). It is shown that a player starting in ¬A(b) will win the argument since A(b) cannot be

shown. Both attempts to derive A(b) fail. With X/b, Y/a the second goal ¬C(a) is not satisfied

since C(a) ∈ D. With X/b, Y/b the first goal B(b, b) fails since B(b, b) 6∈ D.

7.3.5 Variants of the Evaluation Game Graph

In the graph construction for provenance games, the definition of the Skolem functions is critical

to capture provenance equivalent to N[X] provenance polynomials. Recall that the Skolem

function for rule node identifiers, e.g., fr1(X,Y), depend on the rule (here r1) as well as the

83

r1(a, a, b, a)

g1(b, a)g1(a, b)

rhop(b, a)

¬hop(b, a)

r1(a, a, a, a) r1(a, a, a, b)

3Hop(a, a)

rhop(a, a)

hop(a, b)

¬hop(a, a)

g1(a, a)

rhop(a, b)

hop(b, a)

¬hop(a, b)

hop(a, a)

∃ b,a∃ a,a ∃ a,b

(a) Γ
Trio(X)
Q3Hop,D

for 3Hop(a, a)

×

+ +

r

×

× ×

+

p

+

×

+

q

+

×

+

(b) Ω ◦ Γ
Trio(X)
Q3Hop,D

for 3Hop(a, a)

Figure 7.8: Creating Trio(X) style provenance game variants for Q3Hop by dropping positional identifiers
in the Skolem function for goal nodes. The operator tree on the right reads p+ 2pqr.

constants assigned to body variables. Skolem functions of goal node identifiers, e.g., fg21(X,Y),

depend on the rule they belong to (here 1), the exact position in the rule body at which that

goal occurs (here 2), and values of the bound variables.

By changing the definition of one or more Skolem functions, more compact but also less

informative provenance can be encoded. We here only describe a simple variant that will create

Trio(X) [BSHW06] style provenance instead of N[X] provenance polynomials for RA+ queries.

When changing the Skolem function of goal node identifiers by removing the positional argument

for the goal, goals that appear at different positions in the body of a rule collapse into a single

node. This construction yields a modified operator graph. In particular, using the same fact

multiple times jointly in a rule will be recorded only as a single use—as it is the case in Trio(X)

provenance polynomials.

The game graph Γ
Trio(X)
Q3Hop,D

(
f3Hop(a, a)

)
and the corresponding operator graph are shown in

Figure 7.8. Reading out the polynomial results in the Trio-provenance-polynomial p + 2pqr for

the input fact annotations given in Figure 7.5b.

84

7.4 Extension to Well-Founded Recursive Datalog¬

The previous sections described game construction and interpretation for non-recursive Datalog¬

only. This section describes the case when Q ∈ Datalog¬ contains recursion. In this case, the

solution of the evaluation game represents the least fixpoint of the Fitting operator [Fit85]. This

Fitting semantics F(D) is a 3-valued semantics (with truth values true, false, and undef). It

computes the least fixpoint8 of interpreting the rules under the strong 3-valued Kripke-Kleene

logic.

Theorem 4 (Games) Let Q ∈ Datalog¬ with input D9. Then the associated game ΓQ,D cor-

responds to the Fitting semantics of F(Q,D), that is for any ground fact of the Herbrand base

A(x̄) ∈ BQ:

1. fA(x̄) is won in ΓQ,D ⇔ A(x̄) is true in F(Q,D)

2. fA(x̄) is lost in ΓQ,D ⇔ A(x̄) is false in F(Q,D)

3. fA(x̄) is drawn in ΓQ,D ⇔ A(x̄) is undef in F(Q,D) 2

Sketch. Proof via an induction that relates the algorithm to determine won and lost positions

given in the introduction to the confluent rewrite system 7→PNSF from [BDFZ01]; then claim is

immediate since 7→PNSF corresponds to the Fitting semantics (Theorem 14 in [BDFZ01].

As is the case for RA+, semiring equations can be derived from the operator tree created

from the solved game-graph for IDB facts A ∈ Q(D). Like in [GKT07], the obtained equations

might contain recursive definitions that would require additional properties for the semiring K

to hold in order to allow “solving” for a particular output fact. Here, only the correspondence

between semiring provenance and provenance polynomials derived using provenance games is

stated briefly. The game provenance is generated only for ground IDB atoms A(x̄) ∈ Q(D) by

ΓQ,D(fA(x̄)).

8The ordering used is the information ordering where undef ≺ true and undef ≺ false
9We here and in the following identify P with a set of Datalog¬ rules. The formulation Q with input D means

that D is a subset of the Herbrand base over the EDB schema of Q.

85

Example. Consider the right recursive transitive closure program QTC:

(r1) TC(X,Y) ← E(X,Y).

(r2) TC(X,Y) ← E(X,Z), TC(Z, Y).

with an input instance D = {E(a, b), E(b, b)} shown in Figure 7.9a. The corresponding prove-

nance graph is shown in Figure 7.9. The following provenance equation can be derived from

ΓQTC,D(fTC(b, b)) for the IDB fact TC(b, b) using the annotations of Figure 7.9b and Figure 7.9c:

v = q + (q × v)

This states that TC(b, b) can be recursively obtained from E(b, b) and E(b, b) together with

TC(b, b).

Why-Not Provenance. For recursive Datalog programs, the solved provenance game can have

three different solutions for relational nodes, i.e., won, lost, or drawn10. Provenance from won

and lost-nodes can be derived in the same way as for non-recursive Datalog¬, the reason for

why a position is drawn is different: Drawn positions represent infinitely failed SLD trees; or

unfounded sets as first defined in [VGRS91].

The game provenance presented above computes the Fitting semantics. In particular, as seen

in the previous example, game solution will yield drawn positions for unfounded sets. This differs

from the well-founded semantics which assigns the fact a truth value of false. This discrepancy

can now cause problems in stratified and non-stratified Datalog¬ programs: If the drawn fact

is used in a negated goal-atom, the goal should be satisfied–yet the provenance game solution

will yield another drawn node11. The key idea here is to perform explicit loop-detection as in

[BDFZ01]. This approach will now be demonstrated on an example.

The example program QCP in Figure 7.10(a) performs Color propagation for a graph with

two kinds of edges E and S. Rule (r1) states that if Y is colored and there is an Edge to X then X

should also be colored. Rule (r2) states that if node Y is not colored and there is a Switch edge

10e.g., for Ptcunder the Fitting semantics
11as does the Fitting semantics

86

a b
p

q

(a) Input database D

E ΓQTC,D δ

a b frE(a, b) p

b b frE(b, b) q

(b) Labels δ for leaf nodes of
ΓQTC,D.

E ΓQTC,D δ

a a fTC(a, a) s

a b fTC(a, b) t

b a fTC(b, a) u

b b fTC(b, b) v

(c) Labels δ of IDB facts in ΓQTC,D.

¬E(a, a)

E(a, b)

r2(a, b, a)

E(b, b)

g1
2(a, b)

g1
2(b, b)

r2(b, b, a)

TC(a, a)

¬E(b, a)

TC(b, a)

r1(a, b)

g2
2(b, b)

¬TC(a, a)

¬TC(b, a)

E(a, a)

g1
1(b, b)

¬TC(b, b)

r2(a, b, b)

RE(a, b)

g1
1(a, b)

r1(b, b)

¬E(b, b)

g2
2(b, a)

TC(a, b)

r2(b, b, b)

¬TC(a, b)

TC(b, b)

E(b, a)

¬E(a, b)

RE(b, b)

∃ b∃ b

∃ b ∃ b

(d) Game provenance graph ΓQTC,D

Figure 7.9: Game provenance for QTC.

87

from Y to X then node X should be colored. The game diagram for this program is shown in

Figure 7.10(b). Observe how QCP has a positive cycle as well as a negative cycle in the predicate

dependency graph, each translating to a cycle in the game diagram.

Now consider the input depicted in Figure 7.10(c). The positive cycle p←→q in the ground-

atom dependency graph is an unfounded set [VGRS91]. Also in the game graph, the relational

node is a drawn position If player I is at position fC(p) then the following (optimal) moves can

be taken to avoid loosing:

C(p)
I
; r1(q, p)

II
; g2

1(q)
I
; ¬C(q)

II ;
I;

¬C(p)
I ;g2

1(p)
II ;r1(p, q)

II ;C(q)

Loop detection. To “patch” the results obtained from the solved provenance game or Fit-

ting semantics, an explicit loop detection step is executed which is similar to loop detection in

[BDFZ01]. For this, consider the ground instantiated program P ∗ and color each atom in rules

according to the status in the solved game graph. Then, focus on the instantiated rules with a

yellow/draws head atom. In this example, rules with drawn heads are:

C(p)D:−C(q)D, E(q, p)W. C(r)D:−¬C(q)D, S(q, r)W.

C(q)D:−C(p)D, E(p, q)W. C(s)D:−¬C(r)D, S(r, s)W.

C(s)D:−C(t)D, E(t, s)W. C(u)D:−¬C(t)D, S(t, u)W.

C(t)D:−C(s)D, E(s, t)W. C(u)D:−¬C(v)D, S(v, u)W.

C(v)D:−¬C(u)D, S(u, v)W.

Note that in the body of these rules there can only be won or drawn positions. Then, all sub-goals

of the body are removed which correspond to won positionsor are negated drawn goals. Thus,a

88

g2
1 : C(Y)

¬E(Y,X)

g1
1 : E(Y,X)

r2 : ¬[S(Y,X),¬C(Y)]

g2
2 : ¬C(Y)

S(Y,X)

RE(Y,X)

¬C(X)

r1 : ¬[E(Y,X), C(Y)]

¬S(Y,X)

E(Y,X)

g1
2 : S(Y,X)

RS(Y,X)

C(X)

∃ Y∃ Y

X := Y

E(Y,X) S(Y,X)

X := Y

(a) Game diagram for QCP

q r
S

p
E

s
S

t
E

E
u

S
v

S

S

E

(b) EDB input D for QCP

g2
2

¬C(p)

g2
2

g2
1

r1(s, t)

C(u)

¬C(t)r1(q, p) C(r)

C(p) ¬C(r)

r2(r, s)

¬C(u)

r1(t, s)

g2
1

g2
2

g2
1

C(s)

r2(u, v)

¬C(v)

g2
2

g2
1

g2
2

C(v)

g2
2

C(t)

r1(p, q)

C(q)

r2(v, u)

¬C(q)

r2(q, r)

¬C(s)

g2
1 r2(t, u)

g2
2

g2
1

g2
1

∃ s

∃ q ∃ p

∃ t

∃ v

∃ r

∃ q

∃ u

∃ t

(c) Subgraph of drawn positions for ΓQCP,D

Figure 7.10: Color-Propagation Example: A positive cycle in the predicate dependency graph
can lead to unfounded sets. When computing game provenance, unfounded sets are initially
represented as drawn positions yielding the yellow subgraph. By modifying QCP to Q

′
CP, un-

founded positions are forced to be false. This yields the desired provenance information for the
well-founded semantics.

89

positive program P+
D is obtained:

C(p)D :− C(q)D. C(r)D :− .

C(q)D :− C(p)D. C(s)D :− .

C(s)D :− C(t)D. C(u)D :− .

C(t)D :− C(s)D. C(u)D :− .

C(v)D :− .

Since goals were only removed to obtain P+
D , the program computes an overestimate of true

facts, i.e., the possibly true facts; cf. [BDFZ01]. Any facts that are not reproduced by P+
D cannot

possibly be true. Thus, yellow facts U that are occurring in heads of P ∗ but are not part of the

model of P+
D are an unfounded set according to [VGRS91]. In this example, U = {C(p), C(q)}.

Accordingly, a new program Q
′
CP is created from the original program QCP such that the

well-founded semantics of QCP agrees with the Fitting semantics of Q
′
CP; cf. Figure 7.10. For

this, an additional atom ¬uC(Y) is added to r1. uC is initially empty, and unfounded atoms are

added as they are discovered. After the first round of loop-detection, uC contains {(p), (q)} in

this example.

Loop-guarded program. More generally, for any Datalog¬ program Q, the following transfor-

mation is used to transform it into the loop-guarded program Q′:

1. Let U ⊆ idb(Q) be the IDB predicate symbols of Q that are part of a positive cycle in the

predicate dependency graph of Q.

2. idb(Q′) = idb(Q). edb(Q′) = {uR | R ∈ U}. The arity of uR is the same as the arity of R.

3. The rules in Q′ are rules from Q, except that whenever the positive atom R(X̄) with R ∈ U

occurs in a rule body, another atom ¬uR(X̄) is added.

Games for Datalog¬. Consider again the example in Figure 7.10. With uC = {(p), (q)},

the game/Fitting semantics determines C(p) and Cq as lost/false. Consequently, C(r) will be a

won/true position. Now, an additional unfounded cycle is caused by the E-loop s←→t. A second

90

Input: Q ∈ Datalog¬ with input D.
Output: Solved provenance game ΓQ,D.

1. Compute loop-guarded version Q′ = L(Q)

2. Let U = ∅
3. Solve game for GQ,D∪U of Q′ on D ∪ U .

4. Perform loop detection to obtain the set UF of unfounded ground atoms. Let

U := U ∪ {uR(X̄) | R(X̄) ∈ UF}

5. If UF 6= ∅ goto 3.

Figure 7.11: Solving provenance games for well-founded Datalog¬.

round of loop detection finally yields

uC = {(p), (q), (s), (t)}

In general, given a Datalog¬ program Q with input D, the procedure from Figure 7.11 is per-

formed to obtain the provenance-enriched game graph ΓQ,D. It is easy to see that this procedure

terminates, and in fact corresponds to a derivation of the well-founded semantics as described in

[BDFZ01] or in [HW02]. The following proposition briefly states the correctness of this approach:

Proposition 4 Let Q ∈ Datalog¬ with input D and Q′ the corresponding loop-guarded program.

Let U be the set computed in Figure 7.11. Then evaluating the game for Q′ on input D ∪ U

yields the same result as evaluating W(Q,D). That is won/lost/drawn positions in the game

correspond to true/false/undefined facts under the well-founded semantics. 2

Sketch. The algorithm mimics a derivation of the well-founded semantics according to [BDFZ01].

Note that it is possible that the procedure terminates with undefined nodes. These nodes are

the undefined facts according to the well-founded semantics. For example consider Figure 7.10

again. The third loop u←→v in the EDB is not a positive loop (it is via the Switch relation). The

positive reduction of the ground program will reproduce C(u) and C(v) since the corresponding

91

rules will have an empty body (the negated dependency has been removed). The truth value for

C(u) and C(v) is undef under the well-founded semantics.

7.5 Domain Independence

The game construction for evaluating non-recursive Datalog¬ presented in the last section makes

the provenance sensitive to the active domain of query and input database. This is a short-coming

which can lead to interesting effects. Consider the following program:

rs(x) :− r(x, y).

ans(x) :− q(x),¬rs(x).

with input instance D = {q(a)}. Here, the game provenance would show that ans(a) dependents

on the presence of q(a) as well as on the absence of r(a, a). The game provenance graph does

not mention that the absence of r(a, b) is important as well—simply because b is not in the

active domain. To mitigate this effect, this section presents an alternative domain independent

construction. Instead of using all instantiated rules with all combinations of domain elements

from the herbrand base, this construction uses constraints to capture non-existing tuples in EDB

and IDB.

The construction uses the same node and edge types as the evaluation game graphs presented

above. Relation nodes in the EDB are constructed as described above but the assignment of

constants is done using constrains with equalities (cf. Figure 7.13). For example, the fact q(a) is

translated to a fact with variables, named after the relation and the position of the arguments,

as well as a constraint: q(q1) : q1 = a. All constraints of existing EDB facts are aggregated

with a logical or operation and negated to form the basic equation for the non-existing EDB

facts in conjunctive normal form (CNF). This CNF is then transformed to a disjunctive normal

form (DNF). This DNF is processed to generate disjoint conjunctions. This process is similar to

algorithms used for constructive negation. For each conjunction in the resulting DNF, a positive

and a negative relation node are created and connected. This nodes have no connection to a

rule node without a body, thus representing a group of facts that are not in the EDB. Now,

92

following the dependencies in the predicate dependency graph, all rules are processed using the

following procedure until no new nodes are created anymore: Given a rule, all possible goal

nodes are created by identifying relation nodes with matching predicate name and renaming

the variables used in the relation node constraints to the variables used in the specific goal. A

new edge connects each goal node with the relation node it was created from. Then, rule nodes

are processed by first combining all instantiations of the required goal nodes and creating a big

conjunction from all contributing goal node constraints. For each rule node, the conjunction of

all goal constraints is checked for unsatisfiability and if there are no contradictions the constraint

is simplified. From each simplified constraint, a rule node is created and connected to the

contributing goal nodes. Finally, the relation nodes forming the head of the rule are processed

in a similar way as EDB relations are created. The constraints of all rule nodes are combined

with a logical or operation to form a DNF. Then, this DNF is processed to generate disjoint

conjunctions. For each resulting conjunction in the processed DNF a positive and a negative

relation node is created in the same way as for the standard evaluation game construction. The

positive relation node is then connected to all rule nodes for which the constraint of the relation

node in conjunction with the rule node constraint is satisfiable. The process of constructing the

game graph is illustrated in Figure 7.12. After the game graph is constructed using constraints,

the game can be solved and interpreted in the same way as described earlier. However, missing

facts have to be linked to the corresponding relation node with matching constraint. The resulting

provenance graphs and derived provenance equations provide why and why-not provenance that

does not depend on the active domain.

Example. Consider again the query Q3Hop and its input database D discussed earlier in Sec-

tion 7.3.2. Figure 7.5 presents the original evaluation game, provenance and operator graph

for the fact 3Hop(a, a). Now, Figure 7.13 presented the evaluation game using constraints for

the same program Q3Hop, database D and fact 3Hop(a, a). Note that the graph structures are

equivalent and that the constraints correspond exactly to the ground facts.

Similarly, Section 7.3.3 described the standard evaluation game approach for Q3Hop and miss-

ing tuples. Figure 7.6 depicts the provenance graph for the missing tuple 3Hop(c, a). Figure 7.14

shows the provenance graph using constraints for the same missing fact. Note that the num-

93

ConstrGame: Q q, D d → (V , E)
2 FOREACH p(c1,. . . ,cn) ∈ d DO

constr = {(p1 = c1), . . . , (pn = cn)}
4 inst[p] = inst[p] ∪ {constr}

inst[!p] = inst[!p] ∪ {constr}
6 inst[R p] = inst[R p] ∪ {constr}

E = E ∪ {(!p:constr, p:constr)}
8 E = E ∪ {(p:constr, R p:constr)}

10 FOREACH p ∈ d:
FOREACH constr ∈ inst[p]:

12 CNF &= NOT(AND.join(constr))
dnf = createDNFfrom(CNF)

14 ddnf = make disjoint(dnf)
FOREACH conj ∈ ddnf:

16 inst[p] = inst[p] ∪ {conj}
inst[!p] = inst[!p] ∪ {conj}

18 E = E ∪ {(!p:conj, p:conj)}

20 WHILE new nodes created:
FOREACH rule i ∈ q:

22 FOREACH goal j ∈ body(rule):
goal constr = inst[predicateOf(goal)]

24 rename vars in goal constr to variables in goal
inst[g iˆj] = inst[g iˆj] ∪ goal constr

26 E = E ∪ {(g iˆj:goal constr, predicateOf(goal):inst[predicateOf(goal)])}

28 FOREACH rule constr ∈ inst[g iˆ0] × · · ·× inst[g iˆm]:
IF rule constr satisfiable:

30 inst[r i] = inst[r i] ∪ {rule constr}
FOREACH g iˆj used in rule constr:

32 E = E ∪ (r i:rule constr, g iˆj:inst[g iˆj])

34 FOREACH rule constr ∈ inst[r i]:
head inst[h i] = head inst[h i] ∪ {filter vars(rule constr, X)}

36 inst[h i] = make disjoint(head inst[h i])
inst[!h i] = inst[h i]

38 FOREACH head constr ∈ inst[h i]:
E = E ∪ {(!h i:head constr, h i:head constr)}

40 FOREACH rule constr ∈ inst[r i]:
IF (rule const ∧ head constr) satisfiable:

42 E = E ∪ (h i:head constr, r i:rule constr)

Figure 7.12: Construction of game graphs using constraints.

94

Rhop(hop0, hop1) :
hop0 = a ∧ hop1 = b

3Hop(3Hop, 3Hop1) :
3Hop0 = a ∧ 3Hop1 = a

R1(X,U, V, Y) :
X = a ∧ U = a ∧
V = a ∧ Y = a

¬hop(hop0, hop1) :
hop0 = a ∧ hop1 = a

hop(hop0, hop1) :
hop0 = a ∧ hop1 = b

G2
1(U, V) :
U = b ∧
V = a

G2
1(U, V) :
U = a ∧
V = b

hop(hop0, hop1) :
hop0 = b ∧ hop1 = a

R1(X,U, V, Y) :
X = a ∧ U = a ∧
V = b ∧ Y = a

G2
1(U, V) :
U = a ∧
V = a

¬hop(hop0, hop1) :
hop0 = a ∧ hop1 = b

Rhop(hop0, hop1) :
hop0 = a ∧ hop1 = a

G3
1(V, Y) :
V = a ∧
Y = a

Rhop(hop0, hop1) :
hop0 = b ∧ hop1 = a

R1(X,U, V, Y) :
X = a ∧ U = b ∧
V = a ∧ Y = a

G1
1(X,U) :
X = a ∧
U = b

G1
1(X,U) :
X = a ∧
U = a

hop(hop0, hop1) :
hop0 = a ∧ hop1 = a

¬hop(hop0, hop1) :
hop0 = b ∧ hop1 = a

G3
1(V, Y) :
V = b ∧
Y = a

Figure 7.13: Why provenance for 3Hop(a, a) using constraint provenance games.

ber of explanations has increased. However, the constraint provenance graph provides answers

independently of the active domain.

7.6 Conclusions

This chapter, gave an answer to the question: What is the provenance of answers to the game

query QG? This non-stratified query consists of a single rule:

win(X̄) :− move(X̄, Ȳ),¬win(Ȳ) (QG)

95

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

V
6=
a
∧

V
6=
c
∧

U
=
b
∧

V
6=
b
∧

Y
6=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
c
∧

V
=
b
∧

Y
=
a

h
op

(h
op

0
,h
op

1)
:

h
op

1
6=
a
∧

h
op

1
6=
b
∧

h
op

0
=
a

¬h
op

(h
op

0,
h
op

1)
:

h
op

0
6=
a
∧

h
op

0
6=
b
∧

h
op

1
=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
a
∧

V
=
a
∧

Y
=
a

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
6=
c
∧

U
6=
a
∧

U
6=
b
∧

V
=
b
∧

Y
=
a

¬h
op

(h
op

0,
h
op

1)
:

h
op

1
6=
a
∧

h
op

1
6=
c
∧

h
op

0
=
b

¬h
op

(h
op

0,
h
op

1)
:

h
op

0
6=
a
∧

h
op

0
6=
b
∧

h
op

1
6=
c

3H
op

(3
H
op

0
,3
H
op

1)
:

3H
op

0
6=
a
∧

3
H
op

0
6=
b
∧

3H
op

1
=
a

h
op

(h
op

0
,h
op

1)
:

h
op

1
6=
a
∧

h
op

1
6=
c
∧

h
op

0
=
b

G
1 1
(X
,U

)
:

X
6=
a
∧

X
6=
b
∧

U
6=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

V
6=
a
∧

V
6=
b
∧

U
=
a
∧

Y
6=
c

¬h
op

(h
op

0,
h
op

1)
:

h
op

1
6=
a
∧

h
op

1
6=
b
∧

h
op

0
=
a

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
6=
c
∧

U
6=
a
∧

U
6=
b
∧

V
=
c
∧

Y
6=
c

G
2 1
(U
,V

)
:

V
6=
a
∧

V
6=
c
∧

U
=
b

G
2 1
(U
,V

)
:

V
6=
a
∧

V
6=
b
∧

U
=
a

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
b
∧

V
=
b
∧

Y
=
a

G
1 1
(X
,U

)
:

X
6=
a
∧

X
6=
b
∧

U
=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
b
∧

V
=
c
∧

Y
6=
c

G
2 1
(U
,V

)
:

U
6=
a
∧

U
6=
b
∧

V
=
c

G
3 1
(V
,Y

)
:

V
6=
a
∧

V
6=
b
∧

Y
6=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
6=
c
∧

U
6=
a
∧

U
6=
b
∧

V
=
a
∧

Y
=
a

h
op

(h
op

0
,h
op

1
)

:
h
op

0
6=
a
∧

h
op

0
6=
b
∧

h
op

1
=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
c
∧

V
=
a
∧

Y
=
a

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
a
∧

V
=
b
∧

Y
=
a

h
op

(h
op

0
,h
op

1)
:

h
op

0
6=
a
∧

h
op

0
6=
b
∧

h
op

1
6=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
b
∧

V
=
a
∧

Y
=
a

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
6=
c
∧

U
6=
a
∧

U
6=
b
∧

V
6=
c
∧

V
6=
a
∧

V
6=
b
∧

Y
6=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
c
∧

V
6=
c
∧

V
6=
a
∧

V
6=
b
∧

Y
6=
c

R
1
(.
..

)
:

X
6=
a
∧

X
6=
b
∧

U
=
c
∧

V
=
c
∧

Y
6=
c

G
2 1
(U
,V

)
:

U
6=
a
∧

U
6=
b
∧

V
6=
c

F
ig

u
re

7
.1

4:
W

h
y
-n

ot
p

ro
ve

n
an

ce
fo

r
3
H
o
p
(c
,a

)
u

si
n

g
co

n
st

ra
in

t
p

ro
ve

n
an

ce
ga

m
es

.

96

The answer to the question is given by a natural and intuitive notion of game provenance, which

is derived from basic game-theoretic properties of solved games: The value and provenance of

a position x depends only on a certain subgraph Γ(x) of “good” moves, reachable from x, but

is independent of “bad” moves. Γ(x) has an elegant regular structure, i.e., alternating winning

and delaying moves for positions that are won or lost, and drawing moves for positions that are

neither.

Since QG is a normal form for fixpoint logic [Kub95, FKL97, FKL00], all fixpoint queries

(and in particular all first-order queries FO) can be expressed as win-move games. Inspired by

the reduction of query evaluation to games in [FKL97], this chapter then sought to answer the

question: Can game provenance be used and applied to query evaluation games, thus hopefully

obtaining a useful provenance model for FO queries? It turns out, it can: First-order queries,

expressed as non-recursive Datalog¬ programs, can be evaluated using a simple and elegant

game that resembles the well-known SLD resolution. For positive queries this chapter has shown

that game provenance coincides with semiring provenance. Moreover, game provenance (unlike

semiring provenance) naturally extends to full first-order queries with negation. In particular,

a simple form of why-not provenance results from the use of a game-theoretic semantics for

querying.12 An extension of the interpretation of provenance games to full Datalog¬ is achieved

by amending the procedure to solve games with an explicit loop detection step. By differentiating

the drawn positions in the query evaluation game, the solved game coincides with the well-

founded model of Datalog¬ programs and provides why and wht-not provenance. Since the

construction of provenance games still depends on the active domain, constraints are added to

generate domain independent provenance.

12See [Hin96], [Hod13], and [Grä11] for other uses of game-theory for query evaluation and model checking.

97

Chapter 8

Towards a Better Workflow Model

Over the past years, many scientific workflow systems were created and nearly all of them in-

troduced one or more new workflow models as shown in earlier chapters. The earlier chapters

have introduced traditional workflow systems. Later chapters provided a closer look on Datalog

as a workflow system and as a means to analyze workflows and provenance. Though so many

systems are available, scientific workflow systems are still not widely adopted. The reason for

this slow adoption are manifold. One could cite the “steep learning curve” associated with de-

scribing a scientific workflow in many systems. Another might cite the expected low execution

performance compared to customized solutions for each workflow or the lag of integration into

distributed computation frameworks such as clouds or grids.

This chapter provides a brief comparison of some workflow systems presented in Chapter 3.

For that purpose, criteria are defined that can be used to classify workflow systems. By choosing

criteria that are intended to fulfill the expectations presented in Chapter 2, these criteria can

also be used to evaluate scientific workflows. To better understand the weaknesses of current

workflow systems their models of computation need to be formally analyzed.

Then some case studies are presented that show various aspects of scientific workflow mod-

eling and execution. In this context, some concrete methods to improve the design of scientific

workflow systems are identified. The goal is to design a better workflow model and a better

execution engine for this model while reusing as many existing components as possible. The use

of new model elements is targeted at improving the efficiency of the workflow execution while

98

the workflow language is kept simple.

8.1 Desiderata Revisited

Workflow systems frequently use similar concepts but they are named different, which makes a

direct comparison difficult. Timothy McPhillips made an effort to create a naming convention

for concepts frequently used in the field of scientific workflows.

This work uses some of these concepts but generalizes and applies them to a broader range

of scientific workflow systems. Most of our desiderata are directly related to concepts in models

of computation or strategies for workflow execution:

Dataflow oriented. An important comparison criterion is if the modeling of computation

is control or data flow oriented. This determines how a user has to think about modeling his

scientific workflow. In many cases data and the data processing are the main concern of scientists.

Therefore, dataflow oriented MoCs improve Simplicity and Understandability of scientific

workflows.

Ordered data flow. In a dataflow oriented MoC, another major difference is the order in which

data is processed. Data can be processed in the order the data was presented to the workflow

or created by other processes. Other approaches can process data in an arbitrary order. Missing

restrictions on the order of data allows more optimizations of the workflow execution, thus

contributing to Scalability and implicitly to Robustness.

Complex data structures. The supported data types vary among different workflow systems.

Some systems provide just primitive data types. Others add support for structured types, e.g.,

lists and records. Some systems also allow more complex types, i.e., they support nested lists and

tree structures, e.g., XML documents. The more data types are supported the easier it is to model

a variety of different problems in this workflow system, thus contributing to Generality and

Simplicity. If the workflow engine is aware of complex data structures, it is able to optimize the

workflow execution, e.g., by processing elements of an unordered list in parallel. Thus, complex

data structures can also increase Scalability.

Data structure independent design. Some workflow systems have a restricted way to handle

99

complex data type. Some systems use special elements of the workflow description language to

implement unnesting of one level of a hierarchical data structure, i.e., converting a list of types

into a sequence of these types. In such cases the workflow structure resembles the data struc-

ture. Some related work [HKS+08] proposed that this similarity should be the goal of scientific

workflow systems. However, this introduces many workflow elements that are not relevant for

the actual computations, reducing the readability of the workflow. Thus, a workflow design that

is independent of the data structure design increases Simplicity, Understandability and

Abstraction. In addition, a change in the data structure used does not imply a change in the

workflow structure, which improves Modifiability and Reusability.

Arbitrary accessible data. A very similar criterion is the accessibility of data. The previously

described nesting and unnesting of complex data structures limited to one level of the hierarchy

only reduces the accessibility of data in the workflow dramatically. But also binding expressions

as used in COMAD [DZM+11] can restrict the data access if not designed carefully. More

accessible data increases the Simplicity of modeling workflows.

Low Connection Complexity. Based on the MoC a workflow requires different amounts of

connections between actors. If complex data types are available the connectivity of the workflow

graph is lower. Thus a user can easily create and change a workflow with minimal labor. A lower

connectivity increases Simplicity and Modifiability

Stateful actors. Some workflow system do not allow stateful actors by design. Other workflow

systems disallow stateful actors to support certain features. In general, a workflow system should

support stateless and stateful actors to allow a high level of Abstraction and Generality.

Statefulness declared. If a workflow system allows stateful actors, it should provide a mech-

anism to identify them. This allows optimized handling of stateless actors. The support of

statefulness annotations increases Scalability and indirectly the Robustness of workflows.

Data-driven. During a workflow execution, some systems use a fixed order for invoking ac-

tors. This allows scheduling the workflow execution efficiently and removes the overhead for

synchronization. However, this approach also restricts parallelism. A better distribution of the

workload could be achieved by using a dynamic scheduling based on the availability of data.

100

Such data-driven architectures improve Scalability.

Multiple invocations. Another concept frequently used is to allow multiple invocations of

one actor. In DAGMan every execution of a computational function is a separate job. It is

simpler, if one actor is equivalent to one computational function that can be invoked multiple

times for different data sets. Therefore, the number of actors is reduced and the Simplicity of

the workflow increased.

Concurrent. To improve the Scalability of a workflow, actors can be invoked concurrently.

For further improvement not only different actors can be executed in parallel but also multiple

invocations of the same actor can be started concurrently.

Streaming. Multiple invocations and concurrency lead to another criterion. Data can not only

be passed from one actor to a concurrently invoked actor after the computation is finished but

also during invocation. Especially in combination with complex data structures this allows a

streaming behavior. Data can be processed more efficiently without wait times, thus further

increasing Scalability.

Side-effect handling. During invocation, an actor can cause a variety of side-effects, i.e., it

can write files or communication over networks. If a workflow system is aware of side effects or

can control them, the Reproducibility and the Robustness of the workflow is increased.

Provenance. In order to help scientists to verify their results workflow systems should provide

provenance information. Therefore, general information about an actor’s invocation as well as

dependencies between input data and output data of an actor are recorded. The availability of

provenance increases Reproducibility of workflow results. In addition provenance information

can be used to increase workflow Robustness, as presented in Chapter 9.

Workflow evolution provenance. The approach of recording provenance can be extended to

the modeling process. Some systems provide provenance information that describes the evolution

of the workflow. Changes in a workflow are recorded so that, not only the data can be verified

but also the workflow used at that time to produce this data. This

101

8.2 Comparison of Workflow Systems

Using the criteria defined above, scientific workflow systems can be more easily compared. Table

8.1 lists workflow systems together with the features they provide. COMAD, Restflow and

Vistrails have a significant amount of features addressing the requirements on scientific workflows.

With the exception of Restflow no scientific workflow systems make statefulness explicit in the

workflow description language. Side-effects are not handled by all workflow systems. The criteria

presented above and implemented by some scientific workflow systems describe features that

improve current systems. The following chapters provide further examples and discussions of

scientific workflow systems based on concrete use cases. At the end of this chapter, properties

and features identified as essential for a good workflow systems are determined and will form a

novel workflow system that addresses the requirements on scientific workflows better.

8.3 Case study: Improving a Monitoring Workflow

Scientific workflow systems were already used to model a variety of problems. An example is

the Monitoring Workflow developed by Podhorszki et al. [PLK07] using the Kepler workflow

system. This workflow is designed to monitor the execution of a scientific workflow pipeline

in a supercomputer environment. The Monitoring Workflow runs outside the supercomputer

environment and instruments applications within through SSH connections.

Here, the Monitoring Workflow is used for a case study to show the difference between a

MoC using a flat data model and one using structured date. A detailed analysis of the initial

design reveals weaknesses in the workflow design that are mainly implied by the specific model of

computation used. To improve the Simplicity and Understandability the same workflow is

modeled using the COMAD MoC that better fits the workflow structure. During the remodeling

process the workflow structure was extremely simplified but two workflow concepts were found

to be hard to express in COMAD as well. To resolve the difficulties in the COMAD modeling

process, this section presents some extensions to the COMAD MoC.

The remaining section is organized in the following: Section 8.3.1 presents the model of

the Monitoring workflow in more detail and weaknesses in the design described. Section 8.3.2

102

describes the remodeling of the workflow using COMAD. Limitations of this approach are then

addressed with novel extension in Section 8.3.3. Finally, Section 8.3.4 concludes this section with

a short summary.

8.3.1 Workflow Analysis

The Monitoring Workflow was originally modeled by Norbert Podhorszki using a PN director on

the top-level and embedded SDF as well as the dynamic data flow (DDF) models of computation.

The resulting model is shown in Figure 8.1.

The workflow starts with multiple initialization actors that set up variables and directories on

remote hosts. After this step, the workflow describes a polling loop, checking the running status

of the scientific workflow computation on the supercomputer. Within this outer loop several

workflow pipelines are implemented. In order to respond to the completion of the scientific com-

putation monitored, one pipeline just monitors the computation and updates a parameter value

with this status. All other pipelines evaluate this parameter value at various points and react dif-

ferently on the end of the external computation. Note that there is no visible connection between

the parameter and all actors that set or read its value, thus forming a “hidden” communication

link. Such hidden information flows reduce the Simplicity as well as the Understandability

of a workflow significantly.

All inner pipelines require a periodic directory listing from remote hosts and use the retrieved

file names for further analysis. An important detail is that, explicit stop markers are encoded into

a file name in order to indicate the end of a file listing, i.e., stop files. This stop files introduce

a significant number of model elements that either evaluate them or filter them out for certain

computations, thus extremely worsening the Simplicity of the overall workflow.

The actual computations of the Monitoring Workflow in form of image and video file creation

as well as data archiving or performed at the end of each pipeline and on the bottom of the

hierarchical workflow structure.

103

F
ig

u
re

8.
1:

O
ri

gi
n

a
l

M
o
n

it
or

in
g

W
or

k
fl
ow

:
T

h
e

to
p

-l
ev

el
P

N
w

or
k
fl

ow
sh

ow
s

al
l

st
ep

s
of

th
e

w
or

k
fl

ow
.

A
d
d

it
io

n
al

p
ar

am
et

er
s

ar
e

co
n
ta

in
ed

in
th

e
p

ar
am

et
er

se
t

in
th

e
to

p
le

ft
co

rn
er

.
In

th
e

u
p

p
er

le
ft

co
rn

er
,

th
e

w
or

k
fl

ow
st

ar
ts

w
it

h
in

it
ia

li
za

ti
on

ac
to

rs
.

F
ou

r
p

ip
el

in
es

th
at

u
se

a
p

o
ll

in
g

te
ch

n
iq

u
e

to
ob

se
rv

e
a

jo
b

ex
ec

u
ti

on
fo

ll
ow

:
T

h
e

fi
rs

t
p

ip
el

in
e

ju
st

co
n
ta

in
s

on
e

ac
to

r
th

at
ob

se
rv

es
th

e
jo

b
ex

ec
u

ti
o
n

a
n

d
ad

ju
st

s
th

e
fl

a
g

“J
o
b

Is
R

u
n

n
in

g”
ac

co
rd

in
g

to
th

e
st

at
u

s
of

th
e

jo
b

.
T

h
e

ot
h

er
th

re
e

p
ip

el
in

es
st

ar
t

w
it

h
a

sa
m

p
li

n
g

ac
to

r
th

at
co

n
ti

n
u

o
u

sl
y

cr
ea

te
s

a
tr

ig
g
er

va
lu

e
u

n
ti

l
th

e
“J

ob
Is

R
u

n
n

in
g”

p
ar

am
et

er
va

lu
e

ch
an

ge
s

to
fa

ls
e.

104

8.3.2 Workflow Re-modeling with COMAD

After the analysis of the original Monitoring workflow, the workflow was re-modeled using the

COMAD model of computation. COMAD is build upon a PN execution model that determines

when actors are invoked. The data model of COMAD uses complex data structures similar to

XML documents, i.e., COMAD collections, on the workflow level. These collections are split into

its elements and streamed through the workflow. Since all data is enclosed in one data stream,

conventional COMAD actors require only one input and one output port, thus simplifying the

workflow design.

In the redesigned model, the basic workflow structure was conserved, but the individual

pipelines inside the polling loops were modeled as linear COMAD workflow graphs. Most original

actors that performed actual computations were encapsulated in COMAD sub-workflows, i.e.,

composite coactors. The original actors mainly used parameters as input data, thus hiding the

actual dataflow. A re-implementation of those actors was not practical in the given time, but it

would have improved the usability greatly. Instead, each composite coactor received the input

data through ports from the stream and converted this data using additional modeling elements

to parameters.

Directory listings can naturally be represented as COMAD collections of files, making stop

files unnecessary. Collections are handled internally by the workflow system but can be processed

as a stream to allow a efficient execution. Furthermore, COMAD directly supports filtering of

collection contents trough binding expressions, improving workflow Simplicity. The remodeled

COMAD monitoring Workflow is presented in Figure 8.2

Polling processes, i.e., workflows repeatedly reading values to react on a change of the value,

are hard to model in COMAD, since the workflow graph is typically linear, thus not allowing

any feedback of downstream actors to those upstream. One existing solution is to implement

the polling process within one actor where information flow is unrestricted. However, this allows

no Reusability of existing actors to facilitate the polling process. Another approach currently

supported is a loop in the workflow. The loop actors merge two COMAD streams based on

their history together. First, a defined part of the data stream is send around the loop until

the loop condition is false. Then the data stream processed in the loop is embedded into the

105

Figure 8.2: Remodeled Monitoring Workflow using COMAD: The top-level model uses the CO-
MAD director. Composites use SDF and DDF directors, but the handling of explicit stop files
is not required anymore.

complete stream. To support this stream merge operations the streaming in the COMAD model

is restricted, which reduces the Scalability.

8.3.3 Extensions of COMAD

During the re-modeling process several shortcomings in the implementation of Kepler and the

COMAD MoC were identified. This section describes extensions of the Kepler GUI and a pro-

posed extension of COMAD to further improve workflow Simplicity.

Parameter Data Binding.. To simplify embedding of existing actors into COMAD’s composite

coactors, the workflow definition language was extended. During the construction of a composite

coactor the user has to define if the streamed input data will be bound to an input port within

the composite or if an internal parameter will be created and updated with the current value

in the data stream. A new flag in the data bindings of COMAD now switches between both

options.

Crossing Actor.. In order to support a more efficient handling of feedback loops, this work

proposes a modified loop construct for COMAD. The crossing actor shown in Figure 8.3 supports

106

process
stream

incoming
stream

looped
stream

outgoing
stream

read
stream

evaluate
stream and
add flags

Figure 8.3: Crossing actor: The data stream is passed through into the loop and later read. The
stream is not directly modified at this point but additional flags are introduced into the main
stream passing through. This allows the construction of a simple loop construct with better
streaming support.

polling in streaming workflows. Instead of merging the looped with the main data stream, passes

the main data stream on into the loop. Then, it reads the looped stream on another port

and passes it on without modifications. If the observed value was changed by an actor in the

loop, the crossing actor can inject any data into the main stream that will then influence the

downstream behavior. This approach avoids blocking the stream and allows modeling the flow

of data explicitly.

Drag and Drop.. Finally, the GUI can exploit the simple workflow structure imposed by

COMAD MoCs. With the exception of a very few special cases, all actors have two ports. The

input port is always labeled “input” and receives the data stream. Analogously, the output port

is always labeled “output” and sends out the whole data stream. This design makes it easy to

insert actors into a workflow or replace existing actors. To improve workflow Simplicity, the

Kepler user interface was extended. Dragging and Dropping of actors on a channel connecting

two actors will automatically insert the new actor between these two actors. Input and output

ports are automatically reconnected.

A similar extension was created to allow an easy replacement of actors, e.g., to substitute an

analysis step in a scientific workflow by an updated version. If an actor is dragged and dropped

over another actor, the existing actor is removed from the workflow and the new actor is inserted

107

at the same position. Input and output ports can easily be reconnected based on their names.

In addition, parameters that were set on the existing actor are mapped to parameters for the

new actor. First, parameters are compared using their names. Then, the data types of those

parameters are compared and if they match as well the parameter value is set as a default for

the parameter in the new actor as well.

8.3.4 Summary

By using the COMAD MoC and extending it by the features described above, the Monitoring

Workflow description was simplified. A comparison using various quantitative measures is shown

in Table 8.2. These results show how the choice of a MoC can influence the Simplicity and

Understandability of scientific workflows. To be able to make the correct choice of different

MoCs, a user needs a deeper understanding of multiple MoC. While this acceptable for simulation

and general modeling purposes, this should not be imposed on the user by a scientific workflow

system.

8.4 Case study: Growing Degree Day (GDD) Workflow

This sections presents a Kepler workflow published in [KGC+12] performing sliding window

calculations on streaming data.

8.4.1 Introduction

In environmental science, data often takes the form of historical or real-time continuous data

streams rather than static data sets. Processing and analysis of such data often requires grouping

of values within a given time window and subsequently applying aggregation functions. In fact,

those operations are a common component in any stream processing.

The REAP project [REA12] developed an example workflow in Kepler [BAJ+10] to integrate

sensor networks and to calculate Growing Degree Day (GDD) for a particular sensor. GDD

is a measure of heat accumulation used to predict plant maturity. The crop development rate

from emergence to maturity reliably depends upon the accrued daily temperatures. GDD is

108

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●
●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

Mar Apr May Jun

−5
0

5
10

15
20

25

AVG Temperature and Growing Degree Days at CIMIS02

date

N
um

be
r G

ro
w

in
g

D
eg

re
e

D
ay

s

0
5

10
15

20
de

gr
ee

s
C

● gdd
avg

Figure 8.4: Plot of average temperature (upper curve with scale on the right) and GDD (lower
curve with scale on the left) for CIMIS02 station.

important in other agricultural studies including pest and weed management, and irrigation

scheduling [BE69, ZGW+83]. The GDD measure is calculated as follows:

GDD(Tmin, Tmax) =

0 if Tmax < Tbase

Tmin+Tmax
2 − Tbase if Tbase ≤ Tmax ≤ Ttop

Tmin+Ttop
2 − Tbase if Ttop < Tmax

Tmin and Tmax are the day’s minimum and maximum temperatures. Tbase, the base temperature,

varies by crop type or application and sets a minimum threshold on the effect of the day’s

contribution to GDD. Similarly, Ttop acts as an upper bound on the contribution to GDD for a

single day. It is usually capped at 30 ◦C because most plants do not improve their growth beyond

that temperature. Figure 8.4 shows an example plot of the GDD and average temperatures for

a time window from the CIMIS02 [Cim12] sensor station.

The conventional Kepler workflow design as developed in the REAP project implements the

GDD computation, but also has a number of limitations. For example, grouping of data and

109

therefore aggregation functions can only be applied to time windows of fixed length. Furthermore,

overlapping windows and gaps between windows are not realizable. S. Gulati [Gul10] developed

the concept of a new actor that supports freely definable time-based sliding window computations

and efficient aggregation of streaming data. This case study presents the main concepts of the

“Chunker” actor that was developed for Kepler. Furthermore, it describes limitations of the

conventional design on the GDD workflow example and describes how the design can be improved

to fully support streaming.

The rest of this section is organized as follows. Section 8.4.2 describes the conventional design

of the GDD workflow in more detail. Section 8.4.3 introduces the new Chunker actor. In Section

8.4.4 a new workflow design using the Chunker actor is demonstrated.

8.4.2 Conventional GDD Workflow Design

The conventional GDD workflow design implemented in Kepler as shown in Figure 8.5 calculates

GDD from temperature measurements and plots it. The sensor data source, here a relational

PostgreSQL database, outputs measurementsas tuples (ti, di) where temperatures constitute a

data field di of the record and the time ti associated with the temperature reading constitutes

a timestamp field for the record. As daily minimum temperatures and daily maximum tem-

peratures are needed to calculate GDD, the incoming data stream is grouped into daily time

windows of fixed length using the Sequence to Array actor where each array contains a single

day’s temperature measurements. This method can only be applied for regularly spaced inputs

where the beginning of a day is known a priori. Kepler inherits aggregation actors from Ptolemy

that operate on a single array input at a time. Using such array-based aggregation, the minimum,

maximum and average temperatures can be calculated easily: First, the minimum, maximum

and average values are computed for each array of temperature readings form a whole day Then,

the GDD is computed using an R actor. The R actor in Kepler works on a single input tuple: An

array containing all readings is read from an input port. Then, it is converted to an R object, a

user-defined script is executed, and the result is emitted on the output port. Finally, the GDD

is plotted against timestamps with a plotting actor. This workflow will execute properly if it is

guaranteed that the number of temperature readings is constant every day. However, in a realis-

110

Figure 8.5: Conventional “Token Counting” GDD workflow The data stream is split into non-
overlapping windows of fixed size by counting data tokens using Sequence to Array with a
statically defined data token count. Here, the maximum length of data arrays is calculated from
constant parameters provided in the lower right of the workflow graph.

tic stream model the rate of measurements may vary, e.g., due to dropped readings or defective

sensores. This requires special handling and a strategy to fill “gaps” in the data stream. The

DataTurbine actor, for example, includes a “fillGaps()” for that purpose.

Aggregation by Token Counting. The Sequence to Array actor used in the GDD workflow

of Figure 8.5 divides the incoming stream into arrays with a given, fixed number of records. The

basic principle of this actor is shown in Figure 8.6. One incoming port receives a stream of data

D = d1, d2, . . . indexed by timestamps ti. The actor groups incoming data items into groups of

a fixed size specified by parameter s. Grouping of data starts immediately from receiving the

first token and thereby implicitly with the timestamp of the first data tokens b. There is no

integrated mechanism to introduce gaps between windows while grouping. After receiving the

specified number of data tokens, the completed window is output as an array.

Due to the fixed parameters for grouping, windows of different size, as in the case of Window

1 and Window 4 shown in Figure 8.7, are not possible. In the conventional “Token Counting”

approach, the incoming stream is split into arrays. Thus, it is not possible to insert a data item

into multiple time windows preventing overlapping windows as shown for Window 1 and Window

2 in Figure 8.7.

111

The conventional GDD workflow design also uses the synchronous dataflow director (SDF).

This statically scheduling director executes all actors serially according to a precalculated sched-

ule. Thus, it does not allow a variable number of data tokens emitted by an actor on a channel in

different scheduling rounds within the same workflow execution. Therefore, the use of the SDF

director is another reason preventing the use of variable windows, since the array to sequence

actor is required to output an array containing a window in a constant interval after consuming

a constant number of tokens from the data stream.

Finally, the R actor used to generate a plot requires all data to be available before the actor

can create a graph. Thus, it is not possible to display results in a continuous stream but rather

this requires the data stream for GDD measures to terminate.

8.4.3 Chunker Actor: Flexible Window-Based Grouping

In context of scientific workflows, the goal is to develop a single grouping actor that is simple

enough to be used easily in a number of scenarios, but at the same time is general enough that

it could be reused in a number of different workflows. To that end, the concept of a Chunker

actor shown in Figure 8.8 was developed for general grouping of streaming data into given time

windows. A Chunker implementation is available for the Kepler scientific workflow system at

[Com12]. The actor can be combined with different computational models including SDF, PN

and Comad as shown in [DZM+11].

Window based Approach. Given two input streams, a data stream D and a window stream

W , the Chunker will group input data for each window. The data stream is a sequence of pairs

fixed window size

data stream D

[t4,d4][t5,d5][t6,d6][t7,d7]...

s

...

...

Grouping

Sequence to Array

stream of complete windows

fixed start position

b

b

[t3,d3][t1,d1] ...

s

Figure 8.6: Grouping by “Token Counting” with Sequence to Array actor Incoming data tokens
are counted and starting from position b the temperature data stream is split into windows of
fixed size s. Thus, grouping of data tokens depends on the correct position in the stream and
windows cannot be constructed based on the timestamp ti associated with data stream.

112

Time

[4,8]

[2,6]

[8,10]

[0,4]Window 1

Window 2

Window 3

Window 4

0 1 2 3 4 5 6 7 8 9 10

[6,d4][4,d3][2,d2][0,d1] ...Data Stream [8,d5]

Figure 8.7: Examples for desirable time windows Window 1 and 3 are consecutive, non overlap-
ping and of fixed size. Window 4 has a different window length that cannot be generated using
Sequence to Array because of a fixed parameter for the window size. Window 2 represents
an overlapping window, which cannot be realized with Sequence to Array because the fixed
window sizes also determines the start position of the following window.

(ti, di) containing a timestamp ti and a value di. The window stream is another sequence of

pairs wi = (bi, ei) containing the beginning bi and the end ei timestamp of the window. For each

window in W , the Chunker will store the window in a list of active windows if the start time bi is

smaller than the current time stamp in the data stream. For each active window w = (b, e) ∈W

the actor checks if incoming data is contained in that window, i.e., b ≤ ti ≤ e, and if so the data

is stored with this window.

Since both D and W are possibly infinite streams, an order needs to be imposed on the

timestamps ti in D and on the start time of windows bi in W . Thus, groups can be built and

output without storing a possibly infinite amount of data that would otherwise be stored in

order to complete windows with start times reaching far back in time. Note that there is no

requirement for an order on ending times of windows. In fact, for the Chunker actor, windows in

W can overlap in an arbitrary manner. Whenever the timestamp ti of the data stream reaches

or exceeds the end time ei of a stored window, this window can be output and removed from the

list of active windows.

Since grouped data is frequently used in aggregation functions and windows can be large,

our Chunker actor computes aggregates over windows incrementally. The workflow developer

can choose if either the complete data for a window, a selection of aggregates, or both should

be output. The algorithm supports all standard aggregations, that can be computed using an

initialization state, and function that updates the state based on incoming data, and a function

that finalizes the aggregation state for output. Currently supported aggregates are: count, sum,

113

average, maximum, minimum, and array. The array aggregation collects a stream of input

data, into a single array for each window. This is essentially emulating the behavior of the

Sequence to Array actor described earlier but with support for variable-sized windows.

The Chunker implementation in Kepler requires tokens of type record on input streams. The

window stream records need to provide an attribute window that holds a tuple containing the

beginning and end time of the window. The data stream records need to provide at least two

attributes, the timestamp, and the value. When Kepler sets up the workflow in preparation

for execution, input and output ports are created to handle all streams. In addition, a priority

queue is instantiated that is used to maintain the order of windows and as a result, windows

are output ordered by window’s end timestamp or at their earliest possible computation. An

AggregationFactory is provided as a generic interface to any aggregation. New aggregates are

derived from the AggregationFactory by calling the create() method as shown in Algorithm 8.4.1.

Each aggregate has initialize, update and finalize methods used for setup, incremental update

and final computation of the aggregate function. The finalize method is invoked after all the

window stream W

data stream D

[t6,d6][t7,d7][t8,d8][t9,d9]...

[b3,e3][b4,e4][b5,e5][b6,e6]...

...

...

... ...

Grouping

Chunker

Aggregates

stream of complete windows

b1 [t3,d3][t2,d2] e1

Figure 8.8: Flexible, window-based Grouping Incoming data tokens from D are matched with all
incoming windows W . If the timestamp ti of a data token is enclosed in window j : bj ≤ ti ≤ ej
then the value of this data token is grouped with this window. If configured by the user, the
value is also used to update aggregations stored for the window. Once the end time of window ej
has passed, i.e., incoming data tokens have a greater timestamp, aggregations are finalized and
the completed window is output.

114

required data has been processed and returns the aggregates final value.

Algorithm 8.4.1: fire()

cur ← data.getNext()

while windows.hasNext() and cur.timestamp() ≥ windows.peek().start()

do

win← windows.getNext()

newAgg ← aggFac.create()

newAgg.initialize()

pq.insert(win.endTime(), newAgg)

while not pq.isEmpty() and pq.minKey() < cur.timestamp()

do

minAgg ← pq.getMin()

out.broadcast(minAgg.finalize())

pq.apply(update(cur.value()))

Algorithm 8.4.1 is implemented in the fire method of the Chunker to compute groups and

sliding window aggregates. First, a data token is accepted from the data port and stored in

the variable cur. cur is checked to see if it is contained in a window enqueued on the channel.

The check is performed by comparing the cur timestamp with the window’s start timestamp

and if it is greater, then the window is retrieved from the windows port. For each retrieved

window a new aggregate is created in newAgg and subsequently initialized, e.g., the aggregate

sum is initialized with 0. Then the initialized aggregate newAgg is stored in the priority queue

pq sorted by increasing end timestamp of win. Note that if cur timestamp is greater than

win end timestamp, then the window win is still inserted into pq. The algorithm continues to

process windows until the cur timestamp is less than the next windows start timestamp. After

checking for windows, the algorithm processes all windows that are now present in the priority

queue and sorted in increasing order of end timestamps. While the heap is not empty and cur

timestamp is greater than the stop timestamp (MinKey) of the entry in front of the priority

115

queue, an aggregate is retrieved from the queue, finalized by calling the corresponding function

and output. In the last stage of the algorithm, the APPLY method is executed to update the

aggregates of every remaining window in the heap with cur value. The postfire method of the

Chunker actor returns true so that the fire method will be invoked again to process the next data

token.

8.4.4 Growing Degree Days Workflow Using A Chunker

To demonstrate the functionality of our Chunker actor, it was used to model the GDD workflow.

The workflow shown in Figure 8.9 demonstrates processing of sliding window aggregate queries

on stream of hourly temperatures. The data stream is generated by querying a database con-

taining temperature readings together with a timestamp. The WindowsGenerator actor creates

a stream of windows defined by parameters specifying a start time and a variable length. Mul-

tiple WindowsGenerator actors can be used to create overlapping windows. For the purpose of

calculating and plotting daily GDD and daily temperature averages windows are generated for

the start of every day with a window size of one day. To calculate monthly averages overlapping

windows with a start time of the first day of a month and a size to cover the whole month are

used.

Another limitation of the conventional workflow design is the use of an R actor to calculate

and plot the GDD data. The Scatterplot R actor of Figure 8.5 has no streaming capabilities,

so that all required data has to be available before graphs are drawn. In the new design, a

generic Expression actor is used, which is able to process streaming data in order to calculate

the GDD values. Furthermore, SequencePlotter actor is used to display the final graphs. This

actor supports streaming data and updates the graph view whenever new data is received.

Finally, the new workflow design uses a PN director that executes every actor of the workflow

in a separate thread and therefore in parallel. In contrast to the conventional GDD workflow

design, this does not imply a fixed number of tokens flowing over channels since actors work in-

dependently and are only synchronized by writing to and reading from FIFO queues representing

channels.

The workflow is considerably simpler than the one in Figure 8.5, and aggregations can be

116

Figure 8.9: New GDD workflow design with Chunker actor Through two separate streams, one
containing data and the other containing user-defined windows, the Chunker actor can group
data into arbitrary windows. Here, the actor is configured to output only the running min, max,
and average over windows and not the window data itself. This data is subsequently extracted
from the output array by a RecordDisassembler and plotted in a similar design as before but
with streaming to allow continuous monitoring.

calculated independently of the number of measurements present every day, making the workflow

more robust. The results of the computation with a time window of one day are equivalent to

the one produced by the original workflow.

8.4.5 Summary

Kepler is a scientific workflow management system that exhibits a common problem in supporting

the calculation of aggregations in scientific workflows. There are no mechanisms for computing

sliding window aggregates based on timestamps apart from the very limited approach of counting

tuples in the data stream. A more general Chunker actor has been developed that can process

aggregations based on timestamps. The Chunker actor has shown to be a very useful tool in the

world of scientific workflows, and Kepler in particular, for computing sliding window aggregates.

It has eliminated the need for Sequence to Array based constructs employing token counting

and instead directly supports extracting data from a stream within arbitrary time windows.

Furthermore, this actor directly supports a selection of common aggregation functions in an

efficient streaming manner.

As demonstrated for the GDD workflow, the Chunker actor provides much more flexibil-

ity than the conventional token counting approach in creating workflows for answering sliding

window queries. Along with standard aggregates min, max, sum, count and average, an array

aggregate is provided that collects a stream of input data in a single array for each window,

117

corresponding to those data within that window.

Also, this case study demonstrated that extensions to the library of actors of existing workflow

systems are frequently necessary and replace missing features in the scientific workflow system.

Furthermore, it showed that the support for streaming is not obvious but critical for completing

the task in a real world scenario.

8.5 Case study: MotifCatcher

This section sketches a Kepler workflow for improved motif detection in large sequence sets with

random sampling that appeared in [KSFL12]. The discovery of functionally significant short,

statistically overrepresented subsequence patterns (motifs) in a set of biological sequences is a

challenging and important problem. Oftentimes, not all sequences in the set contain a motif.

When using traditional methods these non-motif-containing sequences complicate the algorithmic

discovery of motifs. MotifCatcher [Sof12] is a framework developed by Seitzer et al. [SWLF12]

that extends the sensitivity of existing motif-finding tools by applying random sampling to input

sequences. First, multiple subsets of sequences are randomly constructed. Some of these subsets

have a large number of motif-containing sequences. Traditional motif-finding tools are applied

to all subsets in parallel, and significant motifs are recovered from appropriate subsets. Finally,

this framework returns candidate functionally significant motifs and organizes them into a tree.

which allows further analysis. However, the current implementation of MotifCatcher does not

scale to large sets of sequences. This is due to the fact that the current implementation is

not suited for distributed computing, and the whole sequence set is kept in memory. In order to

achieve better scalability, implementation was redesigned by the author using the Kepler scientific

workflow system that addresses those shortcomings. Kepler functions as a convenient front end

to encode the computation into a Map Reduce pattern [WCA09] to archive high parallelism

for computationally intensive steps. Furthermore, Kepler greatly simplifies the substitution of

the motif finding algorithm used on each subset. By using the scientific workflow system and a

specialized MoC, the maximum size of the sequence sets in which motifs can be discovered and

the number of subsets processed in parallel could be increased significantly.

118

8.6 Case study: Kuration Workflow

This section briefly describes impressions gathered in the process of modeling and optimizing the

“Kuration” workflow used in the FilteredPush project. The workflow is used to automate the

curation process of specimen collection data of museums. The input to this process are records

of specimen collection events in various formats, e.g., Darwin-Core. In some cases, this records

have quality problems or simple errors introduced for example by mistakes when entering data

into a database. To curate, i.e., detect and resolve, such quality issues a number of checks are

performed on single records or groups of records. In some cases, this curation steps cannot be

performed automatically and require user feedback. In order to automate the curation process

a workflow was modeled in the Kepler scientific workflow system. This Kepler based curation

(“Kuration”) workflow was initially modeled using COMAD and is shown in Figure 8.10. In

addition to the automation, this workflow also provides a platform for easy modification and

extension of the workflow as well as provenance.

The workflow reads Darwin-Core records from a CSV file and curates each entry using

the following steps: First, geographic coordinates in latitude and longitude a verified or cor-

rected based on country, state, county and location by using a web service. Then, the sci-

entific name is curated using another web service. Then the flowering time is verified. The

CollectionEventOutlierFinder compares a group of records with similar characteristics to

identify outliers. All following steps are used to create a web-accessible spreadsheet that sug-

gests curation steps and allows a user to perform manual corrections. Finally, the resulting

corrections are sent out as notifications and the records are visualized and stored in a trace file.

Since the last steps require additional services and manual intervention, a smaller workflow

just consisting of the first three curation steps was created. This automated curation workflow

is shown in Figure 8.11. In contrast to the original workflow, it reads Darwin-Core records from

a database and writes curated records and provenance back to a database.

When executing the automated workflow on a relatively large dataset of approximately 4000

records the workflow execution slows down significantly. Furthermore, the workflow system

becomes unstable and frequently crashes after using up all available memory of a system with

4GB of main memory. As a reason for the slow execution and the high memory usage the

119

Figure 8.10: Kuration workflow modeled in COMAD.

120

Figure 8.11: Small automated Kuration workflow.

architecture and implementation of COMAD could be identified. Figure 8.12 illustrates the

principal of executing a small COMAD workflow with two actors A and B. COMAD is based upon

the the PN model of computation and inherits some of its drawbacks described in Chapter 3.

However, the size of queues in COMAD is not limited and grown on demand. This mitigates

the performance problem (1) illustrated in Chapter 3. However, COMAD does not provide

annotations to identify stateless actors and cannot execute independent invocations concurrently

as shown at (2) in Figure 8.12. Furthermore, COMAD imposes a fixed order on elements,

requiring annotations on collections to be inserted before the opening tag and forcing additions

to collections to happen at the end. Thus, the COMAD system queues up all elements of a

newly created collection in order to allow the actor designer to insert annotations at any time as

shown at (3) in Figure 8.12. This significantly slows down the workflow execution when a source

actor creates a large new collection at the beginning of a workflow execution. Furthermore, this

queuing increases the memory consumption significantly.

The required order in the collection structure of COMAD slows down execution. Furthermore,

the implementation of annotations in COMAD significantly reduces streaming, increases memory

consumption and slows down the workflow execution. In order to mitigate this performance

issues, COMAD was modified to allow explicit streaming of data if the user guarantees that no

annotations will be added to a collection after forcing the streaming behavior.

8.7 Improved Distributed Execution

Another focus of research on scientific workflow systems is the development of more efficient

execution strategies that utilize distributed resources. With some contributions by the author,

Daniel Zinn designed a method to parallelize the execution of a workflow definition that forms a

pipeline and uses a XML-like structured data model by using Map-Reduce [ZBKL10].

121

A:1

B:1

d1

d2

d3

Actor A Queue Actor B

2

Comad
layer

<C>

</C>

d1

d2

d3

<C>

</C>

B:1:2

B:1:3

B:1:1

Comad
layer

3

Figure 8.12: Suboptimal COMAD workflow execution. Time is progressing towards the bottom.
(2) is the delay caused by serial execution of invocations of stateless actor B that can be executed
in parallel. (3) is the delay caused by the COMAD implementation to allow adding annotations
as long as the collection is open.

122

Figure 8.13: XML Pipeline with five steps. Each step has a defined scope (e.g.,//B, //C) to
“work on”. Sample input data is shown in the bottom left, data partitioning for Step 1 and 5 is
shown in the bottom right of the figure.

8.7.1 Introduction

XML and XML-like tree structures are often used to organize and maintain collections of data,

and so it is natural to devise data-driven processing pipelines (e.g., scientific workflows) that

work over nested data (XML). A number of such approaches have recently been developed, e.g.,

within the web [AN05, Fag07, BPM05], scientific workflow [OGA+06, LAB+06, HKS+07], and

database communities [TRP+04, WM07, ACGG+02]. These approaches provide mechanisms

to create complex pipelines from individual computation steps that access and transform XML

data, where each step converts input data into new data products to be consumed by later

steps. Additionally, pipelines often include steps that are applied only to portions of their in-

put structures (leaving the remaining portions unchanged), in which case steps can be seen as

performing specialized XML update operations [OGA+06, MBZL08, ZBML09b]. The compo-

nents implementing these computation steps often employ techniques from XML processing (e.g.,

XPath, XQuery, XSLT), and call built-in functions or external applications to perform “scientif-

ically meaningful” computations (e.g., DNA sequence alignment, image processing, or similarly

specialized algorithms).

Many of the above approaches employ pipeline parallelism to more efficiently execute pipelines

by streaming XML data through components, thus allowing different steps within a pipeline to

work concurrently over an XML stream. However, these approaches largely ignore data paral-

lelism, which can significantly reduce pipeline execution time by allowing the same step to be

executed in parallel over distinct subcollections of data.

This section presents three strategies that utilize MapReduce [DG08] to facilitate data-parallel

computation over XML: Naive, XMLFS, and Parallel. For example, consider the simple XML

processing pipeline shown in Figure 8.13. This pipeline consists of five steps, each of which

(i) receives XML structures from previous steps, and (ii) works over specific XML fragments

(subtrees) within these structures. These fragments are determined through XPath expressions

123

that specify the “scope” of a step. Steps are invoked over each scope match (i.e., matching XPath

fragment), and steps can perform arbitrary modifications to matched fragments using general

XML processing techniques (e.g., XQuery, XSLT). The modifications made by steps often involve

calling built-in (scientific) functions whose outputs are added within the matched fragment, or

used to replace existing parts of the fragment. The result is a modified (i.e., updated) XML

structure that is passed to subsequent steps. As an example, the first step of Figure 8.13 has

the scope “//B”, allowing it to perform arbitrary changes on “B”-rooted subtrees, i.e., new data

items or subtrees can be inserted anywhere below the “B” node. However, for the middle step

with scope “//D”, changes may only be performed at the leaves of the given structure shown

in the bottom-left of Figure 8.13. To exploit data parallelism, scope matches (fragments) are

mapped to “work-pieces” that are then processed in parallel by MapReduce. The bottom-right

of Figure 8.13 shows how the data is partitioned for the scope “//B” as used in Steps 1 and 5.

This naive strategy, however, can lead to bottlenecks in the splitting and regrouping phase

of the parallel MapReduce execution. For example, from Step 1 to 2 the subtrees shown at

the bottom right of Figure 8.13 must be partitioned further. Grouping all work-pieces together

again to then re-split for the second task is clearly inefficient. Furthermore, from Step 3 to 4, the

“D”-rooted trees must be re-grouped to form trees rooted at “C”. Performing this grouping in

a single global task also adds an unnecessary bottleneck because all required regroupings could

be done in parallel for each “C”-rooted subtree.

The XMLFS strategy maps XML data into a distributed file system to eliminate the grouping

bottleneck of the Naive strategy. The Parallel strategy further utilizes existing splits to re-split

the data in parallel, thereby fully exploiting the grouping and sorting facilities of MapReduce.

In general, each of these strategies offers distinct approaches for applying MapReduce to data-

parallel processing of XML.

In the following, Section 8.7.2 first describes the MapReduce paradigm and an example that

demonstrates the features utilized in the three strategies. Section 8.7.3 describes a framework for

XML processing pipelines, introduces important notions for their parallel execution, and gives

several pipeline examples. Then Section 8.7.4 presents the three parallelization strategies as well

as their advantages and trade-offs in more detail. Section 8.7.5 presents a thorough experimental

124

evaluation of all strategies. The experiments show a twenty-fold speedup (with 30 computing

nodes) in comparison to a serial execution, even when the basic Naive strategy is used. It is

shown that the Parallel approach significantly outperforms Naive and XMLFS for large data and

when the cost for splitting and grouping becomes substantial. The experiments consider a wide

range of factors —including the number of mapper tasks, the size of data and the XML nesting

structure, and different computational load patterns—and shows how these factors influence

overall processing time using the three strategies. Finally, Section 8.7.6 discusses related work

and concludes this section.

8.7.2 Preliminaries: MapReduce

MapReduce [DG08] is a software framework for writing parallel programs. Unlike with PVM

or MPI, where the programmer is given the choice of how different processes communicate with

each other to achieve a common task, MapReduce provides a fixed programming scheme. A

programmer employing the MapReduce framework implements map and reduce functions, and

the MapReduce library carries out the execution of these functions over corresponding input data.

While restricting the freedom of how processes communicate with each other, the MapReduce

framework is able to automate many of the details that must be considered when writing parallel

programs, e.g., check-pointing, execution monitoring, distributed deployment, and restarting

individual tasks. Furthermore, MapReduce implementations usually supply their own distributed

file systems that provide a scalable mechanism for storing large amounts of data.

Programming model. Writing an application using MapReduce mainly requires designing a

map function and a reduce function together with the data types they operate on. Map and

reduce implement the following signatures

map :: (K1, V1) → [(K2, V2)]

reduce :: (K2, [V2]) → [(K3, V3)]

where all Ki and Vi are user-defined data types. The map function transforms a key-value

pair (short kv-pair) into a list of kv-pairs (possibly) with different types. The overall input

125

of a MapReduction is a (typically large) list of kv-pairs of type (K1, V1). Each of these pairs

is supplied as a parameter to a map call. Here, the user-defined map function can generate a

(possibly empty) list of new (K2, V2) pairs. All (K2, V2) pairs output by the mapper will be

grouped according to their keys. Then, for each distinct key the user-defined reduce function is

called over the values associated to the key. In each invocation of reduce the user can output a

(possibly empty) list of kv-pairs of the user-defined type (K3, V3).

The MapReduce framework divides the overall input data into kv-pairs, and splits this po-

tentially large list into smaller lists (so-called input splits). The details of generating kv-pairs

(and input splits) can also be specified by the user via a custom split function. After kv-pairs are

created and partitioned into input splits, the framework will use one separate map process for

each input split. Map processes are typically spawned on different machines to leverage parallel

resources. Similarly, multiple reduce processes can be configured to process in parallel different

distinct keys output by the map processes.

Example. One task could be to generate a histogram and an inverted index of words for a large

number of text files (e.g., the works of Shakespeare), where the inverted index is represented as

a table with columns word, count, and locations. For each distinct word in the input data there

should be exactly one row in the table containing the word, how often it appears in the data, and a

list of locations that specify where the words were found. To solve this problem using MapReduce,

type K1 is designed to contain a filename as well as a line number (to specify a location), and

the type V1 to hold the corresponding line of text of the file. When given a (location, text) pair,

map emits (word, location) pairs for each word inside the current line of text. The MapReduce

framework will then group all output data by words, and call the reduce function over each word

and corresponding list of locations to count the number of word occurrences. Reduce then emits

the accumulated data (count, List of locations) for each processed word, i.e., the data structure

V3 will contain the required word count and the list of locations.

The MapReduce framework can additionally sort values prior to passing them to the reduce

function. The implementation of secondary sorting depends on the particular MapReduce frame-

work. For example, in Hadoop [Had] it is possible to define custom comparators for keys K2 to

determine the initial grouping as well as the order of values given to reduce calls. In our example

126

above, we could design the key K2 to not only contain the word but also the location. We would

define the “grouping” comparator to only compare the word part of the key, while the “sorting”

comparator would ensure that all locations passed will be sorted by filename and line number.

The reduce function will then receive all values of type location in sorted order, allowing sorted

lists of locations to be easily created.

In general, MapReduce provides a robust and scalable framework for executing parallel pro-

grams that can be expressed as combinations of map and reduce functions. To use MapReduce for

parallel execution of XML processing pipelines, it is necessary to design data structures for keys

and values as well as to implement the map and reduce functions. More complex computations

can also make use of custom group and sort comparators as well as input splits.

8.7.3 Framework

The general idea behind transforming XML processing pipelines to MapReduce is to use map

processes to parallelize the execution of each pipeline task according to the task’s scope expres-

sion. For each scope match the necessary input data is provided to the map tasks, and after all

map calls have executed, the results are further processed to form either the appropriate input

structures for the next task in the pipeline or the overall output data. For example, consider

again the pipeline from Figure 8.13. The partitioning and re-grouping of XML data throughout

the pipeline execution is shown in Figure 8.14: data in the first row is split into pieces such that

at most one complete “B” subtree is in every fragment, which is then processed in parallel with

the other fragments. Then, further splits occur for scope “C” and “D” respectively. Data is later

re-grouped to ensure that all elements corresponding to a scope match are available as a single

fragment.

The following sections define the data model and assumptions concerning XML processing

pipelines. Furthermore, operations are defined that may be performed on single fragments within

map calls (i.e., by pipeline tasks) to guarantee safe parallel execution.

127

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A
out

in

S

S

S

G

G

G

//B

//C

//D

//C

//B

Figure 8.14: Splits and groups for Parallel execution. For each step in the pipeline the data is
partitioned such that all data for one scope match is inside one fragment while each fragment
holds at most one match.

XML Processing Pipelines

The XML processing pipelines used here adopt the standard XML data model corresponding

to labeled ordered trees represented as sequences of tokens; namely, opening tags “T[”, closing

tags “]T”, and data nodes “#d ”. Data nodes typically represent data products whose specific

format is understood by the software components implementing pipeline tasks, but not by the

XML framework itself, which treats data as opaque PCData nodes. For instance, data nodes may

represent binary data objects (such as images) or simple text-based data (e.g., DNA sequence

alignments).

Pipeline tasks typically call “scientific” functions that receive data nodes as input and produce

data nodes as output. In addition, tasks are annotated with scopes that define where in the overall

XML structure input data is taken from and output data is placed. Each scope specifies XML

fragments within the input structure that represent the context of a task. Pipeline tasks may

insert data (including XML tree data) anywhere within their corresponding context fragments

or as siblings to the fragments, and remove data or complete subtrees anywhere within their

fragments (including removing the fragments themselves). It is often the case that a given XML

128

structure will contain multiple matching fragments for a task. In this case, the task is executed

over each such match. We assume tasks do not maintain state between executions, thus allowing

them to be safely executed in parallel over a given XML structure via the MapReduce framework.

More formally, a pipeline consists of a list of tasks T each of which updates an XML structure

X to form a new structure X ′. Further, T = (σ,A) where the scope σ is a (simple) qualifier-free

XPath expression consisting of child (/) and descendent-or-self (//) axes, and A is a function

over XML structures.

A subtree si in an input XML structure X is a scope match if σ(X) selects the root node

of si. For nested scope matches, only the highest-level match in X is considered—a common

restriction (e.g., [BCF03]) for avoiding nested executions. Formally, σ selects n non-overlapping

subtrees si from X:

σ(X) = {s1, . . . , sn}.

Then, the function A is called on each of these subtrees to produce a new XML fragment, i.e.:

for each si : s′i = A(si).

The output document X ′ is then formed by replacing all si subtrees in X by the respective

outputs s′i:

X ′ = X[s1 → s′1, s2 → s′2, . . .].

Amust be a function in the mathematical sense, i.e., a result s′i only depends on its corresponding

input si. This implies that s′i can be computed from si independently from data inside other

fragments sj or completely non-matched data in X.1

Operations on Token Lists

During pipeline execution, XML data is represented as a sequence (i.e., list) of tokens of the

form T[,]T , and #d . By convention, capital letters are used to denote token lists and lowercase

letters to denote trees and (ordered) forests. Token lists are partitioned into fragments that are

1In essence, a “map A” on the list of scope matches is performed with map being the standard map function of
functional programming languages. Thus A is required to be a function to parallelize A invocations.

129

sent to map calls for concurrent processing. Next, the changes the map calls may perform on

fragments to avoid jeopardizing overall data integrity are characterized. Note that the proposed

rules can be followed locally and thus eliminate the need for more involved locking mechanisms.

Definition (Balanced Token List). Given the following redexes to modify token lists:

A #d B ⇒ AB A,B ∈ Token List (8.1)

A X[]X B ⇒ AB A,B ∈ Token List (8.2)

rule (8.1) deletes any data node whereas (8.2) deletes matching Open and Close nodes if they

are next to each other within a sequence and have matching labels. As usual, T ⇒∗ T ′ is used

if there exists a sequence of token lists Ti such that T = T1 ⇒ T2 ⇒ · · · ⇒ Tn = T ′. A token list

T is balanced if it can be reduced to the empty list, i.e., T ⇒∗ [].

Note that ⇒∗ is normalizing, i.e., if T ⇒∗ [] and T ⇒∗ T ′ then T ′ ⇒∗ []. This means that

for a balanced list T , applying deletion rules (8.1) and (8.2) in any order will terminate in the

empty list (by induction on list length). Also note that an XML forest naturally corresponds to

a balanced token list and vice versa.

As described above, calls to map should compute new forests s′i from existing trees si. In

particular, s′i can be computed by performing tree insertion and tree deletion operations in

an arbitrary order on si. The following operations on token lists correspond to these allowed

operations on trees.

Observation (Safe insertions). Inserting a balanced token list I at any position into a bal-

anced token list T corresponds to inserting the forest i into the forest t (where forests i and t

correspond to token lists I and T , respectively). In particular this operation results in a balanced

token list T ′. This insertion is called a safe insertion.

Note that insertions which simply maintain the “balance” of a sequence, but are not safe, can

change ancestors of already existing nodes. Consider the case of inserting the unbalanced frag-

ment “]A A[” into the middle of the balanced token list “A[#d#d]A”. This insertion will result

in the balanced list “A[#d]A A[#d]A”. However, the second #d token has changed parent

130

A
B B B

C C C C
...

d’d’d’d’

A
B B B

C C C C
...

d d d d

A
B

C

A
B B B

C

d’

C C CC

d1d2d3d4d’

CC

d’...

CC

d4

...

A
B B B

A
B B B

d•d• d•

colorize montage

blur
σ : //C

colorize
σ : //C

montage
σ : //B

blur

Dataview:

Pipeline with read scopes:

Figure 8.15: Image transformation pipeline: All images are blurred ; then from each image, four
new images are created by coloring ; and finally a big montage is created from all images below
each “B”.

nodes without explicitly being touched.

Observation (Safe deletions). Removing a consecutive and balanced token list D from a

balanced token list T results in a balanced token list T ′. This operation corresponds to deleting

the forest d from t. This type of deletion is called a safe deletion.

Corollary 1 (Safe operations carry over to fragments of token lists). Viewing token-list

fragments as parts of the total (balanced) token list, safe insertions and safe deletions can be

performed to achieve the desired operations inside the scope of a pipeline task.

Corollary (1) ensures that map calls can change their fragments by performing safe insertions

and deletions without interfering with the data of other map calls. Moreover, since the complete

scope is inside the fragment received by the map call, each map call is able to delete its scope

match, or to perform any “localized” operations on it using all the data inside its scope.

XML-Pipeline Examples

In addition to the simple pipeline introduced in Figure 8.13, a more complex example of a common

image processing pipeline is shown in Figure 8.15. This pipeline is similar to a number of (more

complicated) scientific workflows that perform image processing, e.g., in functional Magnetic

131

Resonance Imaging (fMRI) [ZDF+05] and plasma-fusion data analysis [PLK07]. The pipeline

employs the convert and montage tools from the Image-Magick [Ima] suite to process multiple

images organized according to nested XML collections. As shown in Figure 8.15, a top-level “A”

collection contains several “B” collections, each of which contains several “C” collections with

an image d inside. The first step of the pipeline blurs the images (via the “convert -blur”

command). Since this operation is performed on each image separately, we define the task’s

scope σ using the XPath expression //C and its corresponding function A such that it replaces

the image within its scope with a modified image resulting from invoking the blur operation.

The next step in the pipeline creates a series of four colorized images from each blurred image

d’ using the command “convert -modulate 100,100,i ” with 4 different values for i . The last

step of the pipeline combines all images under one “B” collection into a single large image using

the montage tool. The scope σ of this last task is //B since all images inside a “B”-labeled tree

are input to the montage operation. Here the framework groups previously split fragments to

provide the complete “B” subtree to the montage task.

8.7.4 Parallelization Strategies

We consider three strategies, Naive, XMLFS and Parallel, whose main differences are shown in

Figure 8.16. These strategies use variations of key-value data structures as well as split, map,

and reduce operations, and build upon each other to address various shortcomings that arise in

large-scale and compute-intensive processing of nested data.

Naive Strategy

The Naive approach corresponds to a straightforward application of MapReduce over XML data.

As shown in Figure 8.16, XML token sequences are cut into pieces for the map calls, the task’s

operation A are performed on its scope, and finally the result are merged in the reduce step

of the MapReduction to form the final output2. The Naive approach uses the following data

structures for keys and values.

Key : Integer

2This parallelization is a form of a simple scatter and gather pattern.

132

XMLFS

in
p
u

t
in

X
M

L
F

S

S

o
u
tp

u
t

in
X

M
L

F
S

MapSplit

h
ad

o
o
p

fi
le

sy
st

em

Naive Parallel

on
e

in
p
u
t

fi
le

S

on
e

ou
tp

u
t

fi
le

Map ReduceSplit

G

sp
li
t

fo
r

a
ct

or
i

sp
li
t

fo
r

a
ct

o
r
i

+
1

G

G

G

G

G

G

w
it

h
n
a
m

in
g

sc
h
em

e

Reduce Map+Split Reduce

S

S

S

S

S

A

A A

A

A

A

A

A

A

A
A

A

A

A

A

AA A

Figure 8.16: Processes and dataflow for the three parallelization strategies.

Token := XOpen — XClose — Data

Value: TList := TokenList

Given an XML pipeline with multiple tasks, a MapReduction is created with split, map, and

reduce as given in Figure 8.17. From an XML structure, SplitNaive creates a kv-pair for each

match of the task’s scope: each pair comprises an Integer as key, and a TList as value.

To decide if a current token opens a new scope in line 4 of Figure 8.17, a straightforward

technique is used to convert the qualifier-free, simple XPath-expression σ into a DFA reading

strings of opening tokens. The DFA accepts when the read string conforms to σ. Using a stack

of DFA states, we keep track of the current open tags. Here, the current state for an open

token is pushed and the DFA is reset to the state popped from the stack when a closing token is

read. To prevent nested scope matches, the DFA goes into a non-acceppting state with self-loop

after encountering a match. Note that closing the match will “pop” the automaton back to the

state before the match. This simple and efficient approach can be used for streaming token lists

because of the simplicity of the XPath fragment in which scopes are expressed.3

The first pair constructed by SplitNaive contains all XML tokens before the first match, and

each consecutive pair contains the matching data, possibly followed by non-matching data. Each

3In general, this fragment is sufficient for modeling many scientific applications and workflows.

133

SplitNaive: TList input, XPath σ → [(Integer , TList)]
2 int i := 0; TList splitOut := []

FOREACH token IN input DO
4 IF (token opens new scope match with σ) AND

(splitOut 6= []) THEN
6 EMIT (i, splitOut) // one split for each scope match

i++; splitOut := []
8 splitOut.append(token)

EMIT (i, splitOut)
10

MapNaive: Integer s, TList val → [(Integer , TList)]
12 val’ := A(val) // execute pipeline task

EMIT (s, val’)
14

ReduceNaive: Integer s, [TList] vals → [(Integer ,TList)]
16 TList output := []

WHILE vals.notEmpty() DO
18 output.append(vals.getValue()) // collapse to single value

EMIT (0, output)

Figure 8.17: Split, Map, Reduce for Naive strategy.

pair is then processed in MapNaive. Then, ReduceNaive merges all data fragments back into the

final XML structure. Since the grouping comparator always returns “equal”, one reduce task

will receive all output from the mappers; also the fragments will be received in document order

because the MapReduce framework will sort the values based on the key, which is increasing in

document order. The output structure can now be used as input data for another MapReduce

that executes the next step in the pipeline.

Shortcomings of the Naive Strategy. The major shortcoming of the Naive approach is that

although data is processed in parallel by calls to map, both splitting and grouping token lists

is performed by a single task. Split and reduce can thus easily become a bottleneck for the

execution of the pipeline.

XMLFS Strategy

The XMLFS strategy removes the bottleneck in the reduce phase of the Naive approach by

mapping XML structures to a distributed file system (see Figure 8.16). Many MapReduce im-

plementations, including Hadoop and Google’s MapReduce, provide a distributed file system that

134

allows efficient and fault-tolerant storage of data in the usual hierarchical manner of directories

and files, and this distributed file system is employed in the XMLFS approach as follows.

Mapping XML structures to a file system. An XML document naturally corresponds to a

file-system-based representation by mapping XML nodes to directories and data nodes to files.

The ordering of XML data is encoded by pre-pending the XML-labels with identifiers (IDs) to

form directory and file names. The IDs will also naturally ensure that no two elements in the

same directory will have the same name in the file system even though they have the same tag.

Note that although XML attributes are not explicitly considered here, they could, e.g., be stored

in a file with a designated name inside the directory of the associated XML element.

Using a file system based representation of XML data has many advantages: (1) XML

structures can be browsed using standard file-system utilities. The Hadoop software package, e.g.,

provides a web-based file-system browser for its Hadoop file system (HDFS) [Bor07]. (2) Large

amounts of XML data can easily be stored in a fault-tolerant manner. Both Hadoop-FS and the

Google File System provide distributed, fault-tolerant storage. Specifically, they allow users to

specify a replication factor to control how many copies of data are maintained. (3) The file system

implementation provides a natural “access index” to the XML structure: In comparison to a naive

token list representation, navigating into a subtree t can be performed using simple directory

changes without having to read all tokens corresponding to subtrees before t. (4) Applications

can access the “distributed” XML representation in parallel, assuming that changes to the tree

and data are made at different locations. In particular, pipeline steps can write their output

data s′i in parallel.

XMLFS-Write. XMLFS adapts the Naive approach to remove its bottleneck in the reduce

phase. Instead of merging the data into a large XML structure, each task writes its modified

data s′i directly into the distributed file system. Since there is no need to explicitly group token

lists together to form bigger fragments, this operation is performed directly in the map calls. This

approach removes the overhead of shuffling data between map and reduce calls as well as the

overhead of invoking reduce steps. In particular, the XMLFS strategy does not use the grouping

and sorting feature of the MapReduce framework since each task is implemented directly within

the map function.

135

In XMLFS, the file system layer performs an implicit grouping as opposed to the explicit

grouping in the Naive reduce function. When map calls write the processed XML token list T

to the file system, the current path p from the XML root to the first element in T needs to be

available since the data in T will be stored under the path p in the file system. This information

is encoded as a leading path into the key. IDs for maintaining order among siblings must also

be available. Since map calls may not communicate with each other, the decisions about the

IDs must be purely based on the received keys and values, and the modifications performed by a

task’s operation A. Unfortunately, the received token lists are not completely independent: An

opening token in one fragment might be closed only in one of the following fragments. Data that

is inside such a fragment must be stored under the same directory on the file system by each

involved map call independently. It is therefore essential for data integrity that all map calls use

the same IDs for encoding the path from the document root to the current XML data. To make

these concepts more clear, requirements are now stated for IDs in general, and requirements for

ID handling in split and map functions are defined.

Requirements for Token-Identifiers (IDs). The following requirements need to be fulfilled

by IDs: Compact String Representation: A (relatively small) string representation of the ID is

required to be included in the token’s filename, since the ID has to be used for storing the XML

data in the distributed file system. Local Order: IDs can be used to order and disambiguate

siblings with possibly equal labels. Note that a total order is not required: IDs only need to

be unique and ordered for nodes with the same parent. Fast comparisons: Comparing two IDs

should be fast. Stable insertions and deletions: Updates to XML structures should not effect

already existing IDs. In particular, it should be possible to insert arbitrary data between two

existing tokens. It should also be possible to delete existing tokens without changing IDs of

tokens that have not been deleted.

Choice of IDs. Many different labeling schemes for XML data have been proposed; see

[HHMW07] for an overview. Here, any scheme that fulfills the requirements stated above could be

used. This includes ORDPATHs described in [OOP+04] or the DeweyID-based labels presented

in [HHMW07]. However, note that many proposed ID solutions (including the two schemes just

mentioned) provide global IDs, facilitate navigation (e.g., along parent-child axes), and allow

136

testing of certain relationships between nodes (e.g., whether a node is a descendent of another

node). All strategies presented here only require local IDs, i.e., IDs that are unique only among

siblings, and do not use IDs for navigation or testing, so a simpler (though less powerful) labeling

scheme is used. Of course, this IDs could easily be replaced by ORDPATHs, or other approaches,

if needed.

Simple decimal IDs. A natural choice for IDs are objects that form a totally ordered and dense

space such as the rational numbers. Here, a new number m can found between any two existing

numbers a and b, and thus neither a or b need to be changed to insert a new number between

them. Using only these numbers that have a finite decimal representation (such as 0.1203 as

opposed to 0.3 periodical 3) we would also gain a feasible string representation. However, there

is no reason to keep the base 10. Instead max-long is used as a base for the IDs. Concretely,

an ID is a list of longs. The order relation is the standard lexicographical order over these lists.

In the string representation a “.” is added between the single “digits”. Since one digit already

has a large number of values, long lists can easily be avoided: To achieve short lists, a heuristic

similar to the one proposed in [HHMW07] is used. When the initial IDs for a token stream are

created, instead of numbering tokens successively, a gap is introduced between numbers (e.g., an

increment of 1000). Note that since nodes are only labeled locally, Maxlong/10004 sibling nodes

are supported with a one-“digit” ID during the initial labeling pass. With a gap of 1000, a large

number of new tokens can be inserted into existing token lists before a second “digit” needs to

be added.

Splitting input data. Creating key-value pairs for the XMLFS strategy is similar to the Naive

strategy with the exception that IDs of XOpen and Data tokens are created and maintained.

The XMLFS strategy uses the following data structures for keys and values.

ID := List of Long

IDXOpen := Record{ id: ID, t: XOpen}

IDData := Record{ id: ID, t: Data}

IDToken := IDXOpen — IDData — XClose

4approximately 9×1015 on 32-bit systems

137

1 SplitXMLFS: TIDList input, XPath σ → [(PKey,TIDList)]
CALL Split(input, σ, [0], [maxlong], [])

3

MapXMLFS: PKey key, TIDList val → [(PKey , TIDList)]
5 IF (key.lp / val[0]) matches scope σ

val’ := A(val)
7 Store val’ in distributed file system

9 // No Reduce necessary, Map stores data

Figure 8.18: Split and Map for XMLFS

Key: XKey := Record{ start: ID, end: ID, lp: TIDList}

Value: TIDList := List of IDToken

In the key, lp is used to include the leading path from the XML root node to the first item in the

TIDList stored in the value. As explained above, this information allows data to be written back

to the file system based solely on the information encoded in a single key-value pair. Finally, the

IDs start and end are added to the key, which denote fragment delimiters that are necessary for

independently inserting data at the beginning or end of a fragment by map calls. For example,

assume data D should be inserted before the very first token A in a fragment5 f . For a newly

inserted D, an ID that is smaller than the ID of A need to be chosen. However, the ID must

be larger than the ID of the last token in the fragment that comes before f . Since the IDs form

a dense space, it is not possible to know how close the new ID D.id should be to the already

existing ID of A. Instead, the start ID in the key is used and it has the property that the last

ID in the previous fragment is smaller. Thus, the newly inserted data item can be given an ID

that is in the middle of start and A.id. Similarly, we store a mid-point ID end for insertion at

the end of a TIDList.6

Figure 8.18 and Figure 8.19 gives the algorithm for splitting input data into key-value pairs.

A stack openTags of currently open collections is maintained to keep track of the IDs in the

5The task might want to insert a modified version of its scope before the scope.
6When using ORDPATH IDs, we could exploit the so-called careting to generate an ID very close to another

one. However, this technique would increase the number of digits for each such insertion, which is generally not
desired.

138

1 Split: TIDList input, XPath σ, ID startID, ID endID, TIDList lp
→ [(PKey, TIDList)]

3 TIDList openTags := lp // list of currently open tags
TIDList oldOpenTags := lp // leading path

5 ID lastEnd := startID // ending ID of last fragment
ID lastTokenID := startID // ID of last token

7 TIDList splitOut := [] // accu for fragment value
FOREACH token IN input DO

9 IF (openTags / token matches scope σ) AND
(splitOut 6= []) THEN

11 ID newend := midPoint(lastTokenID, token.id)
key := NEW PKey(lastEnd, newend, oldOpenTags)

13 oldOpenTags := openTags
EMIT key, splitOut // output current fragment

15 lastEnd := newend; splitOut := []
splitOut.append(token);

17 IF token is IDData THEN
lastTokenID := token.id

19 IF token is IDXOpen THEN
openTags.append(token)

21 lastTokenID := [0]
IF token is Close THEN

23 lastOpenToken := openTags.removeLast()
lastTokenID := lastOpenToken.id

25 ENDFOR
key := new PKey(lastEnd, endID, oldOpenTags)

27 EMIT key, splitOut // don’t forget the last piece

Figure 8.19: Split for XMLFS & Parallel

various levels of an XML structure while iterating over the token list. Whenever the stream

is split in fragments (line 11) a mid-point is computed between the previous Token-ID and the

current one. The mid-point is then used as an end ID for the old fragment, and will later be the

start ID for the fragment that follows. Note that lastTokenID is reset to “[0]” whenever a new

collection is opened since the IDs are only local. Moreover, if a split occurs immediately after a

newly opened collection, the mid-point ID would be [500] (the middle of [0] and the first token’s

ID [1000]). It is thus possible to insert a token both at the beginning of a fragment and at the

end of the previous fragment.

Map step for XMLFS. As in the Naive strategy, the map function in the XMLFS approach

performs a task’s operation A on its scope matches. Similarly, safe insertions and deletions are

139

required to ensure data integrity in XMLFS. Whenever new data is inserted, a new ID is created

that is between the IDs of neighboring sibling tokens. If tokens are inserted as first child into

a collection, the assigned ID is between [0] and the ID of the next token. Similarly, if data is

inserted as the last child of a node (i.e., the last element of a collection), then the assigned ID

is larger than the previous token. Note that when performing safe insertions and deletions only,

the opening tokens that are closed in a following fragment cannot be changed. This guarantees

that the leading path, which is stored in the key of the next fragment, will still be valid after the

updates on the values. Also, XClose tokens that close collections opened in a previous fragment

cannot be altered with safe insertions and safe deletions, which ensures that following the leading

paths of fragments will maintain their integrity.

After data is processed by a map call, the token list is written to the file system. For

this write operation, the leading path in the key is used to determine the starting positions for

writing tokens. Each data token is written into the current directory using its ID to form the

corresponding file name. For each XOpen token, a new directory is created (using the token’s

ID and label as a directory name) and is set as the current working directory. When an XClose

token is encountered, the current directory is changed to the parent directory.

Shortcomings of the XMLFS Strategy. Although the XMLFS approach addresses the

bottleneck of having a single reduce step for grouping all data, splitting is still done in a single,

serial task, which can become a bottleneck for pipeline execution. Further, even the distributed

file system can become a bottleneck when all map calls write their data in parallel. Often only a

few (or even only one) master-server administers the distributed file system’s directory structure

and meta data. As the logical grouping of the XML structure is performed “on the file system”,

these servers might not be able to keep up with the parallel access. Since both the Google file

system and HDFS are optimized for handling a moderate number of large files instead of a large

number of (small) files or directories, storing all data between tasks to the file system using the

directory-to-XML mapping above can become inefficient for XML structures that have many

nodes and small data tokens.

Additionally, after data has been stored in the file system, it will be split again for further

parallel processing by the next pipeline task. Thus, the file system representation must be trans-

140

formed back into TIDLists. This work is unnecessary since the previous task used a TIDList

representation, which was already split for parallel processing. For example, consider two con-

secutive tasks that both have the same scope: Instead of storing the TIDLists back into the file

system, the first task’s map function could directly pass the data to the map function of the

second task. However, once consecutive tasks have different scopes, or substantially modify their

data to introduce new scope matches, simply passing data from one task’s map function to the

next is not sufficient. This problem is addressed in the Parallel strategy defined next.

Parallel Strategy

The main goal of the Parallel Strategy is to perform both splitting and grouping in parallel,

providing a fully scalable solution. For this, the existing partitioning of data is reused from one

task to the next while still having the data corresponding to one scope inside a key-value pair.

Imagine two consecutive tasks A and B. In case both tasks have the same scope, the data can

be passed from one mapper to the next if A does not introduce additional scope matches for

B, in which case fragments are split further. In case the scope of task B is a refinement of A’s

scope, i.e., A’s σ1 is a prefix of B’s σ2, A’s mapper can split its TIDList further and output

multiple key-value-pairs that correspond to B’s invocations. However, it is also possible that a

following task B has a scope that requires earlier splits to be undone. For example if task A’s

scope is //A//B whereas task B’s scope is only //A, then the fine-grained split data for A needs

to be partially merged before it is presented to B’s mappers. Another example is an unrelated

regrouping: here, splitting and grouping are necessary to re-partition the data for the next scope.

Even in this situation, the operation in parallel should be performed efficiently. MapReduce’s

ability of grouping and sorting is used to achieve this goal. In contrast to the Naive Approach,

not all data is grouped into one single TIDList. Instead, data is grouped into lists as they are

needed by the next task. As shown later, this can be done in parallel. Next, the necessary

analysis of the scopes as well as detailed algorithms for splitting, mapping, and reducing are

presented.

Regrouping example. Consider an arbitrarily partitioned TIDList. Figure 8.20 shows an

example in the second row. Each rectangle corresponds to one key-value pair: The value (a

141

J.5

O A1[B1[D1 D2]B X2 D3]A B2[D1]B

J.5 A1[B1[J.5 A1[B1[J1.5 A1[J2.5 B2[J.5

//D A1[B1[D1 D2]B X2 D3]A B2[D1]B

J.5 A1[J.5 A1[B1[J.5 A1[B1[J1.5 A1[J2.5 J1.5 B2[J.5

I A1[B1[D1 D2]B X2 D3]A B2[D1]B

NG A1[B1[A1[B1[A1[B1[NG B2[B2[

J.5 A1[J.5 A1[J2.5 J1.5

//B A1[B1[D1 D2]B X2 D3]A B2[D1]B

Figure 8.20: Example of how to change fragmentation from //D to //B in parallel. Since
splitting from row two to row three is performed independently in each fragment this step can
be performed in the Mapper. Grouping from row three to row four is performed in parallel by
the shuffling and sorting phase of MapReduce such that the merge can be done in the Reducers,
also in parallel.

142

TIDList) is written at the bottom of the box, whereas the key is symbolized at the top-left of the

box. IDXOpen and IDXData tokens are depicted with their corresponding IDs as a subscript;

XClose tokens do not have an ID. For ease of presentation decimal numbers are used to represent

IDs with the initial tokens having consecutively numbered IDs. The smaller text line in the

top of the boxes show the leading path lp together with the ID start. The key’s ID end is not

shown—it always equals the start-ID of the next fragment, and is a very high number for the

last fragment. The first box in the second row, for example, depicts a key-value pair with the

value consisting of two XOpen tokens, each of which having the ID of 1. The leading path in

the key is empty, and the start-ID of this fragment is 0.5. Similarly, the second box represents

a fragment that has as value only a token D[with ID 1. Its leading path is A1[B1[, and the

start-ID of this fragment is 0.5.

Now, consider that the split as shown in the second row of Figure 8.20 is the result after the

task’s action A is performed in the Mappers. Assume the next task has a scope of //B. In order

to re-fragment an arbitrary split into another split, two steps are performed: A split and a merge

operation.

Split-Operation. Inside the mapper, each fragment (or key-value pair) is investigated whether

additional splittings are necessary to comply with the required final fragmentation. Since each

fragment has the leading path, a start and an end-ID encoded in the key. Algorithm Split as

given in Figure 8.19 is used to further split fragments. In Figure 8.20, for instance, each fragment

in the second row is investigated if it needs further splits: The first and the fourth fragment will

be split since they each contain a token B[. If there were one fragment with many B subtrees,

then it would be split in many different key-value pairs, just like in the previous approach. Note

that this split operation is performed on each fragment independently from others. Therefore

Split operations are excecuted in parallel inside the Mappers as shown in the dataflow graph in

Figure 8.16 and the pseudo-code for the Mapper task in Figure 8.21, line 6.

Merge-Operation. The fragments that are output by the split-Operation contain enough

split-points such that at most one scope match is in each fragment. However, it is possible that

the data within one scope is spread over multiple, neighboring fragments. In Figure 8.20, for

example, the first B-subtree is spread over three fragments (fragment 2, 3, and 4). MapReduce’s

143

1 MapParallel: SKey key, TIDList val → [(SKey , TIDList)]
IF (key.lp / val[0]) matches scope σ

3 val’ := A(val)
List of (SKey, TIDList) outlist;

5 // split according to the scope σ′ of the following step
outlist := Split(val’, σ′, key.start, key.end, key.lp)

7 FOREACH (key,fragment) ∈ outlist DO
EMIT(key, fragment);

9

ReduceParallel: SKey key, [TIDList] vs → [(SKey , TIDList)]
11 TIDList out := []

WHILE (val := vs.next())
13 out.append(val);

key.end := val.end // set end in key to end of last fragment
15 EMIT(key, out)

Figure 8.21: Map and Reduce for Parallel

ability to group key-value pairs is used to merge the correct fragments in a Reduce step. For

this, additional GroupBy information is provided in the key. In particular, the key and value

data structures for the parallel Strategy are as follows:

GroupBy := Record{ group: Bool, gpath: TIDList }

Key: PKey := Record of XKey and GroupBy

Value: TIDList := List of IDToken

Fragments, that do not contain tokens that are within scope simply set the group-flag to false

and will thus not be grouped with other fragments by the MapReduce framework. In contrast,

fragments that contain relevant matching tokens will have the group flag set. For these, gpath

stores the path to the node matching the scope. Since there is at most one scope-match within

one fragment (ensured by the previous split-operation) there will be exactly one of these paths.

In Figure 8.20, this part of the key is depicted in the row between the intermediary fragments

I and the final fragments split according to //B: The first fragment, not containing any token

below the scope //B, is not going to be grouped with any other fragment. The following three

fragments all contain A1[B1[as gpath, and will thus be presented to a single Reducer task,

which will in turn assemble the fragments back together (pseudo-code is given in Figure 8.21.

144

1 GroupCompare: SKey keyA, SKey keyB → { <, =, > }
IF (keyA.group AND keyB.group) THEN

3 // group based on grouping−path
RETURN LexicCompare(keyA.gpath, keyB.gpath)

5 ELSE
// don’t group (returns < or > for two different fragments)

7 RETURN SortCompare(keyA, keyB)

9 SortCompare: SKey keyA, SKey keyB → { <, =, > }
// always lexicographically compare “leading path ⊕ start”

11 RETURN LexicCompare(keyA.lp ⊕ keyA.start,
keyB.lp ⊕ keyB.start)

Figure 8.22: Group and sort for Parallel strategy

Naive XMLFS Parallel

Data XML File File system representation Key-value pairs

Split Centralized Centralized Parallel

Group Centralized Via file system + naming Parallel by reducers

by one reducer No shuffle, no reduce

Key-Structure One integer Leading path with Ids Leading path with

Ids and grouping

information

Value-Structure SAX-elements SAX-elements with SAX-elements

XMLIds with XMLIds

Figure 8.23: Main differences for compilation strategies

The output will be a single key-value pair containing all tokens below the node B as required.

Order of fragments. The IDs inside the TokenList of the leading path lp together with the

ID start in a fragment’s key can be used to order all fragments in document order. Since IDs

are unique and increasing within one level of the XML data, the list of IDs on the path leading

from the root node to any token in the document forms a global numbering scheme for each

token whose lexicographical order corresponds to standard document order. Further, since each

fragment contains the leading path to its first token and the ID start, a local ID, smaller than

the ID of the first token, the leading path’s ID-list extended by start can be used to globally

order the fragments. See, for example Figure 8.20: In the third row (labeled with I) the ID lists

0.5 < 1, 0.5 < 1, 1, 0.5 < 1, 2.5 < 1.5 < 2, 0.5 are ordering the fragments from left to right. This

145

ordering is used for sorting the fragments such that they are presented in the correct order to

the reduce functions. Figure 8.22 shows the definitions for the grouping and sorting comparator

used in the Parallel strategy. Two keys that both have the group flag set, are compared based

on the lexicographical order of their gpath entries. Keys that have group not set are simply

compared. This ensures that one of them is strictly before the other that the returned order is

consistent. The sorting comparator simply compares the IDs of the leading paths extended by

start lexicographically.

Summary of Strategies

Figure 8.23 presents the main differences of the presented strategies, Naive, XMLFS, and Par-

allel. Note, that while Naive has the simplest data structures it splits and groups the data in a

centralized manner. XMLFS parallelizes grouping via the file system but still has a centralized

split phase. The Parallel strategy is fully parallel for both splitting and grouping at the expense

of more complex data structures and multiple reduce tasks.

8.7.5 Experimental Evaluation

This section shows which speedups can be achived over a serial execution. Furthermore, the

strategies are evaluated for scalability with an increasing data load. And finally, significant

differences between the strategies are presented.

Execution Environment. All experiments were performed on a Linux cluster with 40 3GHz

Dual-Core AMD Opteron nodes with 4GB of RAM and connected via a 100MBit/s LAN. Hadoop

[Had] were installed on the local disks7, which also serve as storage space for HDFS. Having

approximately 60G of locally free disk storage provides 2.4TB of raw storage inside the Hadoop

file system (HDFS). In all experiments, an HDFS-replication factor of 3 is used to tolerate node

failures. The cluster runs the ROCKS [roc] software and is managed by SunGrid-Engine (SGE)

[Gen01]; a special common SGE parallel environment is used that reserves a fixed number of

nodes used as nodes in the Hadoop environment while performing tests. 30 nodes are running as

7Running hadoop from a shared NFS-home directory results in extremely large start-up times for Mappers and
Reducers.

146

“slaves”, i.e., they run the MapReduce tasks as well as the HDFS name nodes for the Hadoop file

system. An additional node, plus a backup-node, are used for running the master processes for

HDFS and the MR task-tracker, to which jobs are submitted. Hadoop was used in version 0.18.1

as available on the web-page. Hadoop was configured to launch Mapper and Reducer tasks with

1024MB of heap-space (-Xmx1024) and the framework was restricted to use 2 Map and 2 Reduce

tasks per slave node. The measurements are done using the UNIX time command to measure

wall-clock times for the main Java program that submits the job to Hadoop and waits until it

is finished. While the experiments were running, no other jobs were submitted to the cluster to

prevent any interference with the runtime measurements.

Handling of Data Tokens. A first implementation of the strategies were reading the XML

data including the images into the Java JVM. Not surprisingly, the JVM ran out of memory

in the split function of the Naive implementation as it tried to hold all data in memory. This

happened for as few as #B = 50 and #C = 10. As each picture was around 2.3MB in size, the raw

data alone already exceeds the 1024MB of heap space in the JVM. Although all our algorithms

could be implemented in a streaming fashion (required memory is of the order of the depth of

the XML tree; output is successively returned as indicated by the EMIT keyword), references in

form of file-names are placed into the XML data structure, while keeping the large binary data at

a common storage location (inside hdfs). Whenever an image reference is placed into the XML

data, a free filename is optained from HDFS and the image is stored there. When an image

is removed from the XML structure it is also removed from HDFS. The strategy of storing the

image data not physically inside the data tokens also has the advantage that only the data that

is actually requested by a pipeline step is lazily shipped to it. Another consequence is that the

data that is actually shipped from the Mapper to the Reducer tasks is small and thus making

even the naive strategy a viable option.

Number of Mappers and Reducers. As described in Section 8.7.2, a split method is used

to group the input key-valuable pairs into so-called input splits. Then, for each input split one

Mapper is created, which processes all key-value pairs of this split. Execution times of MapRe-

ductions are influenced by the number of Mapper and Reducer tasks. While many Mappers

are beneficial to load balancing they certainly increase the overhead of the parallel computation

147

especially if the number of Mappers significantly outnumbers the available slots on the cluster.

A good choice is to use one Mapper for each key-value pair if the work per pair is significantly

higher than task creation time. In contrast, if the work A is fast per scope match then the

number of slots, or a small multiple of them is a good choice.

All output key-value pairs of the Mapper are distributed to the available Reducers according

to a hashing function on the key. Of course, keys that are to be reduced by the same reducer

(as in naive) should be mapped to the same hash value. Only the parallel approach has more

than one Reducer. Since the work for each group is rather small, 60 Reducers are used in the

experiments. The hash-function used is based on the GroupBy-part of the PKey. In particular

for all fragments that have the group flag set, a hash value h is computed based on the IDs

inside gpath: Let l be the flattened list of all the digits (longs) inside the IDs of gpath. Divide

each element in l by 25 and then interpreted l as a number N to the base 100. While doing so,

compute h = (N mod 263) mod the number of available reduce tasks. For fragments with the

group flag not set, a random number is returned to distribute these fragments uniformly over

reducers8. The used hash-function resulted in an almost even distribution of all k-v-pairs over

the available Reducers.

Comparison with Serial Execution

The experiments were performed on the image transformation pipeline (Figure 8.15), which

represents pipelines that perform intensive computations by invoking external applications over

PCData organized in a hierarchical manner. The number #C of “C” collections inside each “B”

was varied, i.e., the total number of with “C” labeled collections in a particular input data is

#B·#C. Execution times scaled linear for increasing #B (from 1 to 200) for all three strategies. The

pipeline was also executed in serial on one host of the cluster. Figure 8.24 shows the execution

times for #B = 200 and #C ranging over 1, 5 and 10. All three strategies significantly outperform

the serial execution. With #C = 10, the speedup is more than twenty-fold. Thus, although the

parallel execution with MapReduce has overhead in storing images in hdfs and copying the data

8Hadoop does not support special handling for keys that will not be grouped with any other key. Instead of
shuffling the fragment to a random Reducer, the framework could just reduce the pair at the closest Reducer
available.

148

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

(a) #C = 10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

(b) #C = 5

 0

 500

 1000

 1500

 2000

 2500

(c) #C = 1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

Serial Naive XMLFS Parallel
Figure 8.24: Serial versus MapReduce-based execution. Comparing wall-clock runtimes times
for image processing pipeline (Figure 8.15) in seconds. All three strategies outperform a serial
execution. Relative speedups range from around 20 for #C = 10 to above 10 for #C = 1. #B was
set to 200.

from host to host during execution, speedups are substantial if the individual steps are relatively

compute intensive in comparison to the data size that is being shipped. In this example, each

image is about 2.3MB in size; and blur executed on the input image in around 1.8 seconds,

coloring the image once takes around 1 second, the runtime of montage varies from around 1

second for one image to 13 seconds for combining 50 images9.

In another experiment, the number of Mappers was changed. When creating one Mappers

for each fragment, the fastest and most consistent runtimes could be achieved (shown in the

graphs). When fixing the number of Mappers to 60, runtimes started to have high fluctuations

due to so-called “stragglers”, i.e., single Mappers that run slow and cause all other to wait for

the stragglers’ termination.

For this pipeline, all approaches showed almost the same run-time behavior. The reason is

that the XML structure that is used to organize the data is rather small. Therefore, not much

overhead is caused by splitting and grouping the XML structure, especially compared to the

workload that is performed by each processing step.

9There are 5 differently colored images under each “C”, with #C = 10, thus 50 images have to be “montaged”.

149

Comparison of Strategies

To analyze the overhead introduced by splitting and grouping, the pipeline given in the intro-

duction (Figure 8.13) is used. Since it does not invoke any expensive computations in each step,

the run times directly correspond to the overhead introduced by MapReduce in general and the

implemented strategies in particular. In the input data, 100 empty “D” collections are used as

leaves, then #B and #C are varied as in the previous example.

The results are shown in Figure 8.25. For small data sizes (#C = 1 and small #B) Naive

and XMLFS are both faster than Parallel, and XMLFS outperforms Naive. This confirms the

expectations: Naive uses fewer Reducers than the Parallel approach (1 vs. 60) even though the

60 reducers are executed in Parallel, there is some overhead involved to launch the tasks and

wait for their termination. Furthermore, the XMLFS approach has no reducers at all and is thus

as Mapper-only pipeline very fast. The pipeline ran with #C = 1 until #B = 1000 to investigate

behavior with more data. From approximately #B = 300 to around 700, all three approaches had

similar execution times. Starting from #B = 800, Naive and XMLFS perform worse than Parallel

(380s and 350s versus 230s, respectively).

Runtimes for #C = 10 are shown in Figure 8.25(b), Here, Parallel outperforms Naive and

XMLFS at around #B = 60 (with a total number of 60,000 “D” collections). This is very close to

the number of 80,000 “D” collections at the “break-even” point for #C = 1. In Figure 8.25(c) this

trend continues. The fine-grained measurements for #B = 1 to 10 show that the “break-even”

point is, again, around 70,000 “D” collections.

In this experiment, the number of Mappers was set to 60 for all steps as the work for each

fragment is small in comparison to task startup times. As above, 60 Reducers were used for the

Parallel strategy.

Experimentation result. The experiments confirmed that the three strategies can improve

execution time for (relatively) compute-intense pipelines. The image-processing pipeline executed

with a speedup of 20x. For XML data that is moderately sized, all three strategies work well,

often with XMLFS outperforming the other two. However, if data size increases Parallel clearly

outperforms the other two strategies due to its fully parallel split and group.

150

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

ru
nt

im
e

[s
ec

on
ds

] naive
xmlfs
parallel

(a) #C = 1

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180 200

ru
nt

im
e

[s
ec

on
ds

] naive
xmlfs
parallel

(b) #C = 10

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

ru
nt

im
e

[s
ec

on
ds

] naive
xmlfs
parallel

(c) #C = 100

Figure 8.25: Runtime comparison of the three strategies executing the pipeline given in Fig-
ure 8.13. On the X-Axis #B is varied, Y-axis shows wall-clock runtime of the pipeline. For small
XML structures, Naive and XMLFS outperform Parallel since fewer tasks have to be executed.
The larger the data the more superior is Parallel.

151

Inherited Benefits from using Hadoop

Using the Hadoop MapReduce implementation, not only provides speedups in execution time,

but also other features such as: Monitoring of jobs via a web-interface, having failed jobs being

re-run automatically by Hadoop, and a fault-tolerant, distributed storage (HDFS) for the data.

8.7.6 Related Work and Conclusion

The main contribution of this section is an approach for exploiting data parallelism in XML-

based processing pipelines. In particular, new strategies are created and analyzed which exploit

data parallelism in processing pipelines via a compilation to the MapReduce framework [DG08].

This techniques extend existing approaches within the area of scientific workflows and data

management (e.g., ETL and XML processing pipelines). For example, the parallel execution and

data management capabilities of MapReduce are exploited; and similarly, the workflow model is

inspired by existing work in scientific workflow modeling [LAB+06, OGA+06, MB05], dataflow

programming [Mor94, LP95], and general XML data processing[BCF03, KSSS04b, ABC+03].

Yang et al. present an extension of MapReduce to process relational operations, such as joins,

on relational data. The strategies presented here focus on updates to tree-structured data and

do not require modifications to the MapReduce framework itself.

Significant work has been done in the area of query processing over XML streams, e.g., see

[KSSS04b, CCD+03, CDTW00, BBMS05, KSSS04a, GGM+04, CDZ06] among others. Most of

these approaches consider optimizations for specific XML query languages or language fragments,

sometimes taking into account additional aspects of streaming data. FluXQuery [KSSS04b] fo-

cuses on minimizing the memory consumption of XML stream processors. The approach pre-

sented above, however, is focused on optimizing the execution of compute and data intensive

“scientific” functions and developing strategies for parallel and distributed execution of corre-

sponding pipelines of such components.

DXQ [FJM+07] is an extension of XQuery to support distributed applications, and similarly,

in Distributed XQuery [RBHS04], remote-execution constructs are embedded within standard

XQuery expressions. Both approaches are orthogonal to the approach presented in this section in

that they focus on expressing the overall workflow in a distributed XQuery variant, whereas the

152

strategies above focus on a dataflow paradigm with actor abstractions, along the lines of Kahn

process networks [Kah74]. A different approach is taken in Active XML [ABC+03], where XML

documents contain special nodes that represent calls to web services. This approach constitutes

a different type of computation model applied more directly to P2P settings, whereas approach

presented here is targeted at XML process networks, e.g., applied to the area of scientific appli-

cations deployed within in cluster environments.

In [PA06], a number of different parallel execution strategies are described for Grid-based

workflows, which includes the “parallel-for” construct implemented by the Askalon Grid work-

flow system [QF07, FPD+05]. This construct is used explicitly when designing workflows, and

implements a variant of the map higher-order function in which the function is called over each

element of a given list in parallel. The approach presented here extends this work for XML

processing pipelines in a number of ways, e.g., by implicitly applying data parallelism based on

task scope expressions at runtime and by supporting nested data collections as opposed to flat

lists of values.

8.8 A New Workflow System Prototype

Based on the desiderata and case studies presented earlier, this section will present a prototype

of a new scientific workflow model that combines beneficial properties seen mentioned earlier.

Due to the lack of time, there exists only a prototypical design of this new workflow model that

is designed to improve a modified version of the Kuration workflow presented in Section 8.6.

8.8.1 New Workflow System Overview

The new workflow description language is designed for Simplicity and is based on the PN

model of computation. Additional annotations, to the workflow description language, enable

performance optimizations that can be applied during workflow execution. Models of compu-

tation in Ptolemy use stream parallelism and provide distinct model elements before and after

a sub-workflow to allow instance parallelism of the enclosed sub-workflows. However, such ex-

plicit approaches increase the complexity of the workflow model. The new model proposed here

supports stream parallelism and provides optional annotations on actors for statefulness. Fur-

153

thermore, provenance of a workflow can be analyzed to identify stateless actors that support

instance parallelism and the system can propose to add additional annotations. In MoCs with

structured data models like COMAD, parallelism based on streaming is restricted by (1) the

definition of data structures, e.g., the order of elements, (2) the placement of annotations, and

(3) operations on multiple input data structures, e.g., the cross-product computation performed

on lists from multiple data bindings. The new model of computation supports a structured data

model similar to Restflow (cf. Section 3.4) but mitigates the performance penalties by dropping

the requirement for ordered data structures. Instead a descriptor is added to each data token

that contains the ID and location in the data structure. Similar to COMAD and Restflow, data

tokens also carry provenance information and the data stream can be enriched with additional

provenance tokens, e.g., deleted data tokens, that are not processed by actors but recorded in a

provenance trace.

The workflow execution engine is build upon the concurrent and distributed event-driven

computing framework Akka [Akk13]. Akka provides a framework for concurrent and distributed

actor invocations on distributed resources and has support for fault tolerance mechanisms. The

new workflow system supports the parallel execution of a workflow on distributed resources such

as multi-core systems, grids, and clouds through Akka. This allows the construction of workflow

with similar pattern and features as found in MapReduce. Furthermore, the workflow system

is designed to use available annotations to speed up the execution and to reach the maximum

degree of parallelism for actor invocations. To that end, the model of computation supports

streaming, i.e., concurrent actor invocations exchanging data when it is available. Furthermore,

the statefulness annotation enables instance parallelism, i.e., invoking multiple instances of one

actor at the same time. Figure 8.26 illustrated the principal components of the workflow system.

Planned extensions. Building on the dissertation of Daniel Zinn [Zin10] and [ZBML09b], a

smart data shipping strategy can be added to the distributed computing framework of Akka

which balances data transfer times and actor invocation times. If a data transfer requires a

longer time than the following actor invocation given the different machine loads, the actor will

be executed locally, i.e., on the same node where the data is stored. However, if some critical

resources, such as CPU cycles, memory or IO bandwidth run low, the actor my be executed on

154

onReceive

AkkaActori

Actork

AkkaActorj

Actorm

Parameterlocation + ID

FIFO

Router

Figure 8.26: Components of the newly proposed workflow system.

a different node, by shipping the input data to this node.

8.8.2 Implementation

This section briefly describes some implementation details of the prototype for the new workflow

system. The system is implemented in Java and uses the Java Akka framework. All actors in the

new system are encapsulated in a UntypedActor Akka actor. To allow parallel actor invocations,

stateless actors are encapsulated into a router actor that distributes messages according to a

user-definable strategy to a given number of actor instances. By default a shortest-message-

queue strategy is used. Future extensions can automatically determine the number of router

destinations, i.e., routees, that are required. In combination with the statefulness annotation

in the workflow description, this implements the Distributor and Commutator pattern used

in Ptolemy. Akka actors in the new system have exactly one receiving mailbox, i.e., queue.

Whenever a message arrives and no other message is processed the onReceive() method of the

actor is executed by the Akka framework. Ports can be simulated by messages, i.e., tokens, with

different attributes. In the new system, each received data token triggers an invocations and by

default each invocation consumes exactly one token but can produce any number of tokens. Due

to its similarity with the PN model of computation, simple PN actors with a token consumption

rate of 1 can be translated to actors in the new system easily. Other actors require a translation

layer that collects all required tokens before invoking the actor’s main function. Tokens are

immutable messages in Akka that contain the actual payload data and meta-data such as the

path in the structured data model, a unique ID, or provenance. If tokens are not modified they

can be passed along but in order to modify a token the underlying message has to be copied. In

155

contrast to the PN MoC, the workflow execution shut down is triggered by the source actors and

then propagated. Once all actors have terminated themselves, the workflow execution terminates

as well.

8.8.3 Kuration Workflow in New System

The performance of the newly proposed workflow system is demonstrated on the small Kuration

workflow shown in Figure 8.11. This workflow was modeled using the new workflow systems and

the same functions that are used in the COMAD actors are wrapped in the new actors. In both

workflow variants, input data is read and output data is written to the same location. Both

workflows use the same remote services.

To evaluate which performance improvements can be reached, both workflow variants were

executed repeatedly (at least 4 times) for each of the four different datasets. Table 8.3 shows

the average runtime and standard deviation of the runtime for all four datasets on COMAD and

on the new system. The new workflow system based on Akka is significantly faster in curating

all records. For each record, approximately four calls to remote web services are made. Since

web service calls might return with large delays, the serial processing of records in COMAD

within one actor cant compensate for rare large delays. In the new workflow system based on

Akka, multiple instances of one actor process web service requests in parallel and a large delay

in one response only slows down the processing of this instance. Another advantages of the new

workflow system is the simple and compact design that reduces the memory consumption.

The results of this preliminary test confirm the importance of parallel actor invocations in

a workflow execution. Since this instance-parallelism can only be used if the actor is stateless,

the annotation if a actor is stateless is critical for good performance as well. The next chapter

will present a fault tolerance approach for scientific workflows that demonstrates another use of

information about the state of an actor.

156

M
et

ri
c

D
A

G
S

D
F

P
N

C
O

M
A

D
R

es
tfl

ow
P

T
N

+
N

R
C

T
av

er
n

a
V

is
tr

ai
ls

M
R

O
n

li
n

e

D
a
ta

fl
ow

or
ie

n
te

d
-

+
+

+
+

+
+

+
+

O
rd

er
ed

d
a
ta

fl
ow

-
+

+
+

+
-

+
-

-

C
o
m

p
le

x
d

at
a

st
ru

ct
u

re
s

-
+

/-
+

/-
+

+
+

+
+

/-
-

D
a
ta

st
ru

ct
u

re
in

d
ep

en
d

en
t

-
+

/-
+

/-
+

+
-

+
/-

+
+

A
rb

it
ra

ri
ly

a
cc

es
si

b
le

d
a
ta

-
+

/-
+

/-
+

+
-

-
+

/-
-

L
ow

co
n

n
ec

ti
o
n

C
om

p
le

x
it

y
-

-
-

+
+

-
-

-
+

S
ta

te
fu

l
ac

to
rs

-
+

+
+

+
-

+
-

-

S
ta

te
fu

ln
es

s
d

ec
la

re
d

-
-

-
-

+
-

-
-

-

D
at

a
-d

ri
ve

n
-

-
+

+
+

+
+

+
+

M
u

lt
ip

le
in

v
o
ca

ti
on

s
-

+
+

+
+

+
+

+
+

C
o
n

cu
rr

en
t

+
-

+
+

+
+

+
+

+

S
tr

ea
m

in
g

-
-

+
+

+
+

+
+

+
/-

S
id

e-
eff

ec
t

h
an

d
li

n
g

-
-

-
-

-
-

-
-

-

P
ro

ve
n

an
ce

-
+

+
+

+
/-

-
+

+
-

W
o
rk

fl
ow

ev
ol

u
ti

on
p

ro
ve

n
an

ce
-

+
+

-
-

-
-

+
-

T
a
b

le
8.

1:
C

o
m

p
a
ri

so
n

of
M

o
C

s
T

h
e

fo
ll

ow
in

g
ab

b
re

v
ia

ti
on

s
ar

e
u

se
d

:
P

T
N

+
N

R
C

-
P

et
ri

n
et

s
w

it
h

n
es

te
d

re
la

ti
on

al
ca

lc
u

lu
s.

M
R

O
n

li
n

e
-

M
a
p

R
ed

u
ce

O
n

li
n

e.
A

sy
st

em
h

as
a

fe
at

u
re

+
,

h
as

it
p

ar
ti

al
ly

+
/-

,
or

d
o
es

n
ot

h
av

e
it

-.
In

ca
se

a
cr

it
er

ia
d

o
es

n
ot

ap
p

ly
d

u
e

to
a

m
is

si
n

g
co

n
ce

p
t,

th
e

ce
ll

is
m

ar
ke

d
w

it
h

a
‘-

’.

157

Measure Original
Workflow

Comad
Workflow

No. of Nodes 273 218

No. of Edge 387 325

No. of used Classes 11 0

Avg. No. of Input Ports 2.1502 2.1376

Avg. No. of Output Ports 1.5311 1.7064

Avg. No. of Ports 3.6813 3.8440

Avg. No. of Parameters 2.5128 3.2541

Parameter Complexity 0.0641 0.1591

Avg. Model Size 7.8000 4.9545

No. of nested Workflow Levels 5 7

No. of Types 10 11

Table 8.2: Comparison of the original workflow model and the COMAD model for the Monitoring
Workflow

Dataset COMAD new system

time [s] σ [s] time [s] σ [s]

1 (535 records) 871.058 473.218 64.240 0.589

2 (915 records) 1134.977 602.052 115.640 11.108

3 (1751 records) 1474.433 472.485 207.210 22.246

4 (4170 records) 4117.219 2243.602 592.427 85.221

Table 8.3: Runtime of the two Kuration workflow variants. Datasets include different records
and the runtime is not necessarily proportional to the number of records. The new workflow
system based on Akka shows significantly better performance.

158

Chapter 9

Workflow Fault-Tolerance and

Provenance

This chapter presents an approach to increase the fault tolerance of a scientific workflow execution

in the Kepler system that was developed by the author and presented in [KRZ+11]. This approach

connects the concepts of Datalog, provenance analysis and workflow systems presented earlier.

9.1 Introduction

Besides automating program execution and data movement, scientific workflow systems are de-

veloped to provide mechanisms for fault tolerance during workflow execution. There have been

approaches that re-execute individual workflow components after a fault [MSRO+10]. However,

less research has been done on how to handle failures at the level of the workflow itself, e.g.,

when a faulty actor or a power failure takes down the workflow engine itself. Circumstances that

lead to (involuntary) workflow failures are, for example software errors, power outages or hard-

ware failures—common in large supercomputer environments. Also, a running workflow might

be aborted voluntarily so that it can be migrated to another location, e.g., in case of unexpected

system maintenance.

Since typical scientific workflows often contain compute and data intensive steps, a simple

“restart-from-scratch” strategy to recover a crashed workflow is impractical. In this chapter,

159

two strategies (namely replay and checkpoint) are developed which allow workflows to be re-

sumed while mostly avoiding redundant re-execution of work performed prior to the fault. The

necessary book-keeping information to allow these optimizations is extracted from provenance in-

formation that scientific workflow systems often already record for data lineage reasons, allowing

this approach to be deployed with minimal additional runtime overhead.

Commonly used models for provenance are the Read/Write model [BML+06], and the Open

Provenance Model (OPM) [MCF+10]. In both provenance models, events are recorded when

actors consume tokens (read or used by events) and produce tokens (write or generated by

events). Thus, the stored provenance data effectively persists the data tokens that have been

flowing across workflow channels. This chapter shows how this data can be used to efficiently

recover faulty workflow executions. Here, the main challenges arise due to (1) the existence of

stateful multi-invocation actors, i.e., actors that maintain state from one invocation to the next;

(2) main-memory actor-actor data transport, i.e. dataflow achieved within the workflow engine

and without persisting the data to disk1; and (3) non-trivial scheduling algorithms for multiple

actor invocations based on data availability.

Example. Consider the small scientific pipeline shown in Figure 9.1, which carries out two tasks

automated by the WATERS workflow described in [HRM+10]. As in the full implementation of

WATERS, streaming data and stateful multi-invocation actors make an efficient recovery process

non-trivial.

The actor SequenceSource reads DNA sequences from a text file, emitting one DNA sequence

token via the output port per invocation. The total number of invocations of SequenceSource

is determined by the contents of the input file. On the group done port, it outputs a ‘true’ token

when the sequence output is the last of a predefined group of sequences, and ‘false’ otherwise.

Align consumes one DNA sequence token per invocation, aligns it to a reference model, and

outputs the aligned sequence. The ChimeraFilter actor receives the individually aligned se-

quences from Align and the information about grouping from the SequenceSource. In contrast

to Align, ChimeraFilter accumulates input sequences, one sequence per invocation, without

producing any output tokens until the last sequence of each group arrives. ChimeraFilter then

1Even if data is persisted to disk due to large data sizes, data handles are usually kept in main memory.

160

SS S
group_done

File

VS1

VSM

Out1Disp:1

Seq1 AS1

false

Seq
Src:1

Align:1
Chim
Fltr:1

Seq2 AS2

true

Seq
Src:2

Align:2
Chim
Fltr:2

OutMDisp:M
SeqN ASN

true

Seq
Src:N

Align:N
Chim
Fltr:N

File

state

Invoca-
tions

Invoca-
tions

Invoca-
tions

Invoca-
tions

Channel
1

Channel
2

Channel
3

Channel
4

state

statestate

state

...

...

Workflow

Execution
Trace

Figure 9.1: Example workflow with stateful actors: To recover the workflow execution after a
fault, unconsumed tokens inside workflow channels and internal states of all actors except the
stateless Align have to be restored.

checks the entire group for chimeras (spurious sequences often introduced during biochemical

amplification of DNA), outputs the acceptable sequences en masse, and clears its accumulated

list of sequences.

All actors but Alignment are stateful across invocations: SequenceSource and Display

maintain as state the position within the input file and the output produced thus far, respectively.

ChimeraFilter’s state is the list of sequences that it has seen so far in the current group. Now,

consider what runtime information would be lost if a fault occurred during the execution of

this workflow. Lost information would include (1) the content of the channels between actors,

i.e., tokens produced by actors but not yet consumed; (2) the point in the workflow execution

schedule as observed by the workflow engine; and (3) the internal states of all actors. Correctly

resuming workflow execution requires reconstructing all of this information. This chapter shows

how to do so efficiently with low runtime overhead.

161

9.2 Related Work

A basic fault tolerance mechanism exists for workflows managed by DAGMan [HC07]. Jobs

are scheduled according to a directed graph that represents dependencies between those jobs.

Initially the rescue-DAG contains the whole DAG but as soon as a job executes successfully, this

job is removed from the rescue-DAG. If a failure occurs, the workflow execution can be resumed

using the rescue-DAG, only repeating jobs that were interrupted.

Feng et al. [FL08] present a mechanism for fault management within a simulation environ-

ment under real time conditions. Starting from a “checkpoint” in the execution of an actor, state

changes are recorded incrementally and can then be undone in a “rollback”. This backtracking

approach allows to capture the state of an actor through a preprocessing step that adds special

handlers for internal state changes wherever a field of an actor is modified. However, this solution

can only be used during runtime of the workflow system. It does not provide checkpoints that

cover the full state, and, more importantly, no persistent state storage is available for access after

a workflow crash.

Dan Crawl et al. [CA08] employed provenance records for fault tolerance. Their Kepler

framework allows the user to model the reactions upon invocation failures. The user can either

specify a different actor that should be executed or that the same actor should be invoked again

using input data stored in provenance records. However, they don’t provide a fast recovery of

the whole workflow system. Neither is the approach applicable for stateful actors.

Fault tolerance in scientific workflows has often been addressed using caching strategies.

While still requiring a complete restart of the workflow execution, computation results of previ-

ous actor invocations are stored and reused. Swift [ZHC+07] extends the rescue-DAG approach

by adding such caching. During actor execution, a cache is consulted (indexed by the input data),

and if an associated output is found, it will be used, avoiding redundant computation. Swift also

employs this strategy for optimizing the re-execution of workflow with partially changed inputs.

Podhorszki et al. [PLK07] described a checkpoint feature implemented in the ProcessFileRT

actor; this actor uses a cache to avoid redundant computations. A very similar approach was

implemented by Hartman et al. [HRM+10]. Both techniques are used to achieve higher efficiency

for computation and allow a faster re-execution of the workflow. However, these implementations

162

are highly customized to their respective use cases and integrated in one or several actors rather

being a feature of the framework. Also, [PLK07] assumes that only external programs are com-

pute intensive, which is not always the case, as can be seen in [HRM+10], where actors perform

compute intensive calculations within the workflow system. Furthermore, caching strategies can

only be applied to stateless actors, making this approach very limited. In contrast, the approach

presented in this chapter aims to integrate fault tolerance mechanisms into the workflow engine.

Stateless actors are not re-executed during a recovery, since input and corresponding outputs are

available in provenance, and the actor state does not need to be restored.

Wang et al. [WLF+09] presented a transactional approach for scientific workflows. Here,

all effects of arbitrary subworkflows are either completed successfully or in case of any failure

undone completely (the dataflow-oriented hierarchical atomicity model described in [WLF+09]).

In addition, it provides a dataflow-oriented provenance model for those workflows. The authors

assumed that actors are white boxes, where data dependencies between input and output tokens

can be observed. They describe a smart re-run approach similar to those presented by Podhorszki

et al. and Hartman et al. [HRM+10]. Input data of actors is compared to previous inputs, and

if an actor is fired with the same data, the output can easily be restored from provenance

information rather than re-executing the actor. This white box approach differs from the black

box approach presented here which requires setting the internal state of stateful actors.

9.3 Fault Tolerance Approach

The fault tolerance approach described here generalizes the Rescue DAG method [Fre, DBG+04,

HC07], which is used to recover DAGMan workflows after workflow crashes. DAGMan is a

single-invocation model of computation, i.e., all actors are invoked only once with a read-input,

compute, and write-output behavior. The Rescue DAG is a sub-graph of the workflow DAG

containing exactly those actors that have not yet finished executing successfully. After a crash,

the rescue DAG is executed by DAGMan, which completes the workflow execution.

To facilitate the execution of workflows on streaming data, several models of computation

(e.g., synchronous data flow (SDF) [LM87b], process networks (PN) [LM08], collection oriented

modeling and design (COMAD) [DZM+11] and Taverna [TMG+08]) allow actors to have multiple

163

invocations. If the Rescue-DAG approach were applied directly to workflows based on these

models of computation, i.e. if all actors that had not completed all of their invocations were

restarted, then in many cases a large fraction of the actors in a resumed workflow would be

re-executed from the beginning. Instead, the approach presented here aims to resume each actor

after its last successful invocation. The difficulties of this approach are the following: (1) The

unfolded trace graph (which roughly corresponds to the rescue DAG) is not known a priori but is

implicitly determined by the input data. (2) Actors can maintain internal state from invocation

to invocation. This state must be restored. (3) The considered models of computation (e.g., SDF,

PN, COMAD, Taverna) explicitly model the flow of data across channels, and the corresponding

workflow engines perform these data transfers at run time. A successful recovery mechanism in

such systems thus needs to re-initialize these internal communication channels to a consistent

state. In contrast, data movement in DAGMan workflows is handled by the actors opaquely

to the DAGMan scheduler (e.g., via naming conventions) or by a separate system called Stork

[KL04]; materializing on disk all data passing between actors simplifies fault-tolerance in these

cases.

The following section presents a unifying model of workflow definitions and provenance in-

formation collected during workflow. A relational schema facilitates the definition of workflow

recovery strategies using logic rules. This approach is described here for the SDF and PN models

of computation, but the representation generalizes to other dataflow models such as the one used

in RestFlow [MM10], Taverna and Vistrails [BCS+05].

9.3.1 Basic Workflow Model

Scientific workflow systems use different languages to describe workflows and different semantics

to execute them. However, since most scientific workflow systems are based on dataflow networks

[Kah74, LM08] as discussed earlier, a common core that describes the basic workflow structure

can be found in every model of computation (see Figure 9.2).

Core model. Many workflow description languages allow nesting, i.e., embedding a sub-

workflow within a workflow. The relation subworkflow(W,Pa) supports this nesting in our

schema and stores a tuple containing the sub-workflow name W and the parent workflow name

164

Actor

ActorID

Workflow

Stateful

Port

Name

Actor

Direction

Link

Name

Port

Subworkflow

Workflow

Parent

MoC

State

Invocation

State
Invocation

ID

Actor

Number

Status

Event

Type

Token

Invocation

Port

Number

Moc

Workflow

Token_transfer

Actor

Port

Number

Firing_count

Actor

Number

Figure 9.2: Unified model. Relations to describe the workflow are shown on the left. The three
relations on the right summarize provenance information. The blue highlighted relations capture
SDF specific extensions.

Pa. Each workflow in this hierarchy is associated with a model of computation (MoC) using the

relation moc(W,M) that assigns the MoC M to the workflow W.

Actors represent computational functions that are either implemented using the language of

the workflow system or performed by calling external programs. The predicate actor(A,W,S)

embeds an actor with unique name A into the workflow W. The flag S specifies whether the actor

is stateful or stateless.

Although the data shipping model is implemented differently in various workflow systems,

it can be modeled collectively as follows: Each actor has named ports, which send and receive

data tokens. One output port can be connected to many input ports. In this situation the

token is cloned and sent to all receivers. Connecting multiple output ports to one channel is

prohibited due to the otherwise resulting write conflicts. Ports are expressed with the predicate

port(A,P,D) in our schema. The port with name P is attached to actor A. D specifies the direction

in which data is sent, i.e., in or out. Ports are linked to each other using link(A,P,L). Port P of

actor A is connected to a link with name L.

Application to Process Networks with Firing (PN). A Process Network, as defined by

[Kah74], is a general model of computation for distributed systems. In Kahn PN, computational

processes (actors) are communicating with each other through unidirectional FIFO channels of

165

unlimited size. Workflows of the model PN with firings [LM08], a refinement of Kahn PN, can be

described with the four core relations Subworkflow, Actor, Port, and Link. The PN execution

semantics allow a high level of parallelism, i.e., all actors can be invoked at the same time. After

an invocation ended, the actor will be invoked again. This procedure stops either when the

actor explicitly requests to be stopped or by reaching the end of the workflow execution. A PN

workflow ends when all remaining running invocations are deadlocked on reading from an input

port.

Application to Synchronous Data Flow (SDF). Besides the data captured by the four core

relations, workflow models can provide additional information. As an example, SDF workflow

descriptions require annotations on ports. In SDF, output ports are annotated with a fixed token

production rate and input ports have a fixed token consumption rate. Both rates are associated

with ports using the predicate token transfer(A,P,N) in our model. During an invocation,

each actor A is required to consume/produce N tokens from the input/output port P.

Another extension is the firing count of an actor that specifies the maximum number of

actor invocations during one workflow execution. The predicate firing count(A,N) provides

this number (N) for an actor A.

Unlike in PN, where the actors synchronize themselves through channels, the execution of

SDF is based on a static schedule that is repeatedly executed in rounds. The number of firings

of each actor per round is determined by solving balance equations based on token production

and consumption rates [LM87b].

9.3.2 Review of Provenance Model

Another critical part of the approach is the definition of a unifying provenance model. It defines

which observables are recorded during runtime. The open provenance model (OPM) [MFF+08]

captures the following basic observables: (1) artifact generation, i.e., token production (2) artifact

use, i.e., token consumption (3) control-flow dependencies, i.e., was triggered by relation, and

(4) data dependencies, i.e., was derived from relation. A more complex provenance schema

was defined by Crawl et al. in [CA08]. It captures the OPM observables in more detail, e.g., it

provides time stamps for the beginning and end of invocations. In addition, it records meta data

166

about the workflow execution as well as the evolution history of a workflow.

The provenance model used here builds up on the basic observables from OPM and adds

additional details about events that occurred during an invocation cycle. As soon as an invocation

starts, the actor name A and its corresponding invocation number N are stored in the relation

invocation(I,A,N,Z) with the status attribute Z set to running. A unique identifier I is assigned

to each invocation. Some models of computation allow an actor to indicate that all invocations

are completed, for instance if the maximum firing count in SDF is reached. This information is

captured in our provenance model as well. When an actor successfully completes an invocation

and indicates that it will execute again, the status attribute in the corresponding provenance

record should be updated to iterating. Otherwise, this attribute status should be set to done.

The second observable process in the model used here is the flow of tokens. Many workflow

engines treat channels that define the dataflow as first-class citizens of the model. The dependen-

cies between data tokens are of general interest for provenance. They can be inferred from the

core workflow model in combination with the token consumption (read) and production (write)

events.

The model stores read and write events in the event(Y,T,I,Po,N) relation. The first entry

Y determines the event type, i.e., token production events are indicated by the constant w while

consumption events are encoded with the value r. The data token value T is stored directly. The

following two attributes specify which actor invocation I triggered this event and on which port

Po it was observed. The last element N in the tuple is an integer value that is used to establish

an order for events during the same actor invocation on the same port. Establishing an order

using timestamps is not practical because of limited resolution and time synchronization issues.

Based on the event relation the queues of all channels can be reconstructed for an arbitrary

point in time. Figure 9.3 shows a queue at the time of a workflow failure on top. Provenance can

be used to restore the whole history of this queue (shown in the middle). Based on this history,

one can determine the rescue sequence of tokens that are independent of failed invocations, i.e.,

tokens in state S2 and S4.

167

S1 S4 S5

S2

S3

producing
invocation
done

dequeue

dequeue

producing
invocation
done

consuming
invocation

done

enqueue

A1 A2t5t6 t4 t3 t2 t1
A1

enq deq

t5t6

t5 t4 t3

latest queue content

history

rescue sequence

correctly queued faulty dequeued

Figure 9.3: Input queues with history and token state: Each token produced during workflow
execution can be in one of five states. Events on the producing and consuming actors trigger
transitions between token states, shown on the left. The right graph shows three views of a
channel: (1) the current content of the queue during an execution in the first row, (2) the history
of all tokens passed through this channel associated with their state in the middle row, and (3)
the rescue sequence of tokens that needs to be restored in the third row.

9.4 Recovery Strategies

Depending on the model of computation and the available provenance data, different recovery

approaches can be used. Here, the two strategies replay and checkpoint are presented.

9.4.1 The Replay Strategy: Fast-Forwarding Actors

Re-running the entire workflow from the beginning is a naive recovery strategy. It is also im-

practical in many cases, such as when a long-running workflow fails a significant period of time

into its execution. The role of provenance in restoring a workflow execution is similar to that of

log files used in database recovery.

168

Stage 1. In the first stage of the replay strategy, the point of a failure is determined using

provenance information. Invocations of actors that were running when the fault occurred are

considered faulty and their effects have to be undone. Query (1) retrieves the invocation identi-

fiers I of faulty invocations.

faulty invoc(I) :- invocation(I, , ,running). (1)

Note that in SDF models, faulty invocations can be determined even without an explicit

running flag. An actor invocation is faulty if the number of consumed and produced tokens as

recorded in the provenance data does not match the expected number declared in the workflow

model.

Actors with invocation status done are not recovered, since they are not needed for further

execution. All other actors A are retrieved by query (2) and they need to be recovered.

finished actors(A) :- invocation(,A, ,done).

restart actors(A) :- actor(A, ,), not finished actors(A). (2)

Stage 2. If an actor is stateless, it is ready to be resumed without further handling. However,

if an actor is stateful, its internal state needs to be restored to its pre-failure state, i.e., the

state after the last successful invocation. Each actor is executed individually by presenting it

with all input data the actor received during successful invocations. This input data is retrieved

from the provenance log, where it is readily available, if the input queues are persisted. The

replay(A,I) query (3) extracts the identifiers of all actor invocations that need to be replayed.

The tokens needed for those re-invocations are provided by (4). This query retrieves for each

port P of actor A the tokens T that are needed to replay invocation I. N is the sequence number

of token T at input port (queue) P. The replay does not need to be done in the same order as

in the original workflow schedule. All actors can be re-executed in parallel using only the input

data recorded as provenance. The actor output could either be discarded or checked against the

recorded provenance to verify the workflow execution.

169

replay(A,I) :- actor(A, ,stateful), invocation(I,A, ,), (3)

not faulty invoc(I).

replay token(A,P,I,T,N) :- replay(A,I), event(r,T,I,P,N). (4)

In order to correctly recover a workflow execution, the problem of side-effects still needs to

be addressed. Either stateful actors should be entirely free of side-effects or side-effects should

be idempotent. That is, it must not matter whether the side-effect is performed once or multiple

times. Examples of side-effects in scientific workflows include the creation or deletion of files,

or sending emails. Deleting a file (without faulting if the file does not exist) is an idempotent

operation. Further, creating a file is idempotent if an existing file is overwritten. Sending an

email is, strictly speaking, not idempotent, since if done multiple times, multiple emails will be

sent.

Stage 3. Once all actors are instantiated and in pre-failure state, the queues have to be initialized

with the restore sequence, i.e., those valid tokens that were present before the execution failed.

Tokens created by faulty invocations of an actor should be removed, and those consumed by

such an actor should be restored. This information is available in basic workflow provenance and

can be queried using (5). For each port Po of an actor A the query retrieves tokens T with the

main order specified by the invocation order N1. However, if multiple tokens are produced in one

invocation, the token order N2 is used for further ordering.

The auxiliary view invoc read(A,P,T) contains all actors A and the corresponding ports P

that read token T. The view connect(A1,P1,C,A2,P2) returns all output ports P1 of actor A1

that are connected to actor A2 over input port P2 through channel C. Using the auxiliary rule

(5.1) computes the queue content in state S2 (see Figure 9.3), i.e., tokens that were written by

another actor but not yet read by actor A2 on port P2. The second rule (5.2) adds back the

queue content in state S4, i.e., tokens that were read by a failed invocation of actor A2.

current queue(A2,P2,T,N1,M1) :- queue s2(A2,P2,T,N1,M1). (5)

current queue(A2,P2,T,N1,M1) :- queue s4(A2,P2,T,N1,M1).

170

queue s2(A2,P2,T,N1,M1) :- connect(A1,P1,C,A2,P2), (5.1)

invocation(I1,A1,N1,), event(w,T,I1,P1,M1),

not invoc read(A2,P2,T), not faulty invoc(I1).

queue s4(A2,P2,T,N1,M1) :- connect(A1,P1,C,A2,P2), (5.2)

invocation(I1,A1,N1,), event(w,T,I1,P1,M1),

invocation(I2,A2, ,),event(r,T,I2,P2,),

faulty invoc(I2).

invoc read(A,P,T) :- invocation(I,A, ,), event(r,T,I,P,).

connect(A1,P1,C,A2,P2) :- link(A1,P1,C), link(A2,P2,C),

port(A1,P1,out), port(A2,P2,in).

Stage 4. After restoring actors and recreating the queues, faulty invocations of actors that

produced tokens which were in state S3 have to be repeated in a “sandbox”. This ensures

that tokens in state S3 are not sent to the output port after being produced but are discarded

instead. Should these tokens be send, invocations based on them would be duplicated. Rule (6)

determines tokens T that were in state S3 and it returns the invocation ID I, the port P this token

was sent from, and sequence number in which the token was produced. Query (7) determines

which invocations produced tokens in state S3 and therefore have to be repeated in a sandbox

environment.

queue s3(I,P,T,N) :- invocation(I,A1, ,), (6)

faulty invoc(I), event(w,T,I,P,N),

connect(A1,P,C,A2,P2), invocation(I2,A2, ,),

not faulty invoc(I2), event(r,T,I2,P2,).

invoc sandbox(I) :- faulty invoc(I), queue s3(I, , , ,). (7)

Now the workflow is ready to be resumed. The recovery system provides information about

where to begin execution (i.e., the actor at which the failure occurred) to the execution engine

(e.g., the SDF scheduler) and then the appropriate model of computation controls execution

171

from that point on.

The most expensive operation in this strategy is the re-execution of stateful actors that is

required to reset the actor to its pre-failure state. The checkpoint strategy presented next provides

a solution to avoid this excessive cost.

9.4.2 The Checkpoint Strategy: Using State Information

Many existing workflow systems are shipped with stateful actors or new actors are developed that

maintain state. Because actors in scientific workflows usually have complex and long-running

computations to perform, the replay strategy can be very time-consuming or even impractical.

Current provenance models, such as the one used in [CA08], either do not include the state

of actors or record limited information about state as in [FL08], which is insufficient to restore

workflows. The Read-Write-Reset model (as presented in [LPA+08]), e.g., records only state

reset events, which specify that an actor is in its initial state again. This can be seen as a special

case of checkpointing, where states are only recorded when they are equal to the initial state.

To support a faster recovery, an actor’s state should be a distinct recorded entity for prove-

nance. Recording state information not only helps to recover workflows, but also makes prove-

nance traces more meaningful: Instead of linking an output token of a stateful actor to all input

tokens, our model links it to the state input and the current input only.

An actor’s state can be recorded by the workflow engine at any arbitrary point in time

when the actor is not currently invoked. To integrate checkpointing into the order of events,

state information is stored immediately after an invocation, using the invocation identifier as a

reference for the state. The predicate state(I,S) stores the actor’s state S together with the

identifier of the preceding invocation I of that actor. The information required to represent an

actor state depends on the workflow system implementation.

The procedure for a workflow recovery based on the checkpoint strategy is summarized in

the following graph:

Stage 1. Given this additional state information the workflow recovery engine can speed up the

recovery process. This checkpoint strategy is based on the replay strategy but extends it with

checkpointing.

172

Step 1:
Restore State

Step 2:
Replay Actors

Step 3:
Restore Queues

Step 4:
Reset Scheduler

latest_state current_queue

replay

replay_token

faulty_invoc

restart_actors

Figure 9.4: Checkpoint strategy. Each recovery step uses provenance views shown on top.

When normally executing the workflow, state is recorded in provenance. In case of a fault,

the recovery system first detects the point of failure. Then the provenance is searched for all

checkpoints written for stateful actors. Rule (8) retrieves the state S of each invocation I of a

given actor A. If no state was recorded then the invocation will not be contained in this relation:

restored state(A,I,N,S) :- actor(A, ,stateful), (8)

invocation(I,A,N,),state(I,S), not faulty invoc(I).

If states were stored for an actor, this actor is updated with the latest available state. Rule (9)

will determine the latest recoverable invocation I and the restorable pre-failure state S captured

after that invocation.

restored stateGTN(A,I,N2) :- restored state(A,I,N,), N > N2.

latest state(A,I,S) :- restored state(A,I,N,S), (9)

not restored stateGTN(A,I,N).

Stage 2. Now only those successfully completed invocations that started after the checkpoint

have to be replayed. This will use the same methods described above for the replay strategy.

Stage 3. After all actors are set up, the queues have to be filled with the rescue sequence.

Stage 4. Now the workflow is ready to be resumed as in the replay strategy. First, faulty invo-

cations are resumed in a sand-box to prevent sending tokens that were already successfully used.

Finally, the recovery system provides all necessary information to the scheduler to determine

173

with which actor’s invocations to start resuming normal workflow execution.

9.4.3 Recovering SDF and PN Workflows

The SDF example below demonstrates the checkpoint strategy. Later, the differences when

dealing with PN models are explained.

D

B

C

1

1

1

3

3

2

2

1 1

stateless statelessstateful

stateful

stateful

S

S

S

Figure 9.5: SDF workflow example with state annotations.

Synchronous Dataflow (SDF). Figure 9.5 shows a sample SDF workflow with annotated

ports. Actors A and E are stateless while all other actors have a state. A is a source and will

output one data item (token) each time the actor is invoked. A also has a firing count of two,

which limits the total number of invocations. Actors B and C consume one token on their input

ports and output three tokens. Outputs are in a fixed, but distinguishable, order, so that an

execution can fail between the production of two tokens. Actor D will receive two tokens in each

invocation from both B and C and will output one new token.

The schedule in Figure 9.6 was computed, as usual, before the workflow execution begins,

based on the token production and consumption rates in the model. Actors were then invoked

according to the schedule until the point at which the workflow crashed. All invocations up to

the second invocation of A (A:2) completed successfully, invocation B:2 was still running and all

other invocations were scheduled for the future.

The failed workflow execution, together with checkpointing and data shipping, is summarized

in Figure 9.7. For recovery, the workflow description as well as the recorded provenance is used

by our checkpoint strategy.

The recovery process is performed in the following stages: Stateless actors are in the correct

174

A:1

round 1
B:1

C:1

D:1 E:1

A:2 D:3

B:2

C:2

D:2 E:2 E:3

Figure 9.6: Schedule corresponding to Figure 9.5. The schedule describes the execution order.
The red circle indicates the failure during the second invocation of B.

state (i.e., pre-failure state) immediately after initialization. That is why actor E is in its proper

state after simple initialization and actor A is identified as done and will be skipped. Both actors

B and D are stateful and a checkpoint is found in the provenance. Therefore, the recovery system

instantiates these actors and restores them to the latest recorded state. The state at this point

in the recovery process is shown in Figure 9.8 above the first dotted line.

Second, stateful actors that either have no checkpoints stored (e.g., actor C) or that have

successful invocations after the last checkpoint need to be have those invocations replayed. The

corresponding input token t1 is retrieved from the provenance store.

In the next stage, all queues are restored. Since the second invocation of actor B failed, the

consumed token t9 is restored back to the queue. Additionally, all tokens that were produced

but never consumed (e.g., t4 and t7) are restored to their respective queues.

After all queues are rebuilt, the recovery system has to initialize the SDF scheduler so execu-

tion begins with the actor that was interrupted by the crash. After setting the next active actor

to B in the SDF scheduler, the recovery system can hand over the execution to the workflow

execution engine. This final state is shown in Figure 9.8, and when compared to Figure 9.7, the

recovery time is visibly shorter when compared to the original running time.

175

Actor A
(stateless)

Actor B
(stateful)

Actor C
(stateful)

Actor D
(stateful)

Actor E
(stateless)

State B1

t time of failure

done
A:2

iterate
B:1

iterate
C:1

iterate
D:1

iterate
E:1

State D1

iterate
A:1

running
B:2

t1 t1

t2

t3

t4 t5

t6

t7

t9

t8

t10

1

2

3

4

5

6

7

8

Figure 9.7: Workflow execution up to failure in B:2. The states of actors B and D are stored,
but no checkpoint exists for C. Token t1 is only send once, but is duplicated by the link to both
actors B and C. Tokens t4 and t7 are never read.

Actor A
(stateless)

Actor B
(stateful)

Actor C
(stateful)

Actor D
(stateful)

Actor E
(stateless)

State B1

t

State D11

2

3

4

iterate
C:1

running
B:2

t1

t4 t7t9

t10

(done)
restore states

replay actors

restore queues

reset scheduler
& continue
execution

(new instance)(new instance) (new instance)(new instance)

{
{
{

{

Figure 9.8: Individual stages to recover the sample workflow with checkpoint strategy.

Process Networks (PN). The example SDF workflow shown in Figure 9.5 can also be modeled

using PN. Since actors under PN semantics have variable token production and consumption

rates, these constraints cannot be leveraged to narrow the definition of a faulty invocation.

Additionally, repeated invocations are not required for actors to perform their functions multiple

times. For instance, actor D can be invoked only once, while actor B is invoked multiple times.

All invocations in PN run concurrently, and tokens on a port have to be consumed after they are

produced and only in the order they were produced. Finally, there are no defined firing limits.

Many systems allow an actor to explicitly declare when it is done with all computations, which

is recorded in provenance. Actors without that information are invoked until all actors in the

176

workflow are waiting to receive data.

These characteristics have some implications on the recovery process. First, since all actors are

executed in parallel, a crash could potentially affect all actors in a workflow. Thus, the recovery

engine can safely restore actors in parallel. All actors are instantiated simultaneously at the

beginning of the workflow run, in contrast to Figure 9.7. Long-running actor invocations reduce

the availability of checkpoints and cause longer replay times. Finally, PN uses deadlock detection

to define the end of a workflow, which makes it difficult to determine whether a particular actor

is actually done (unless it explicitly says so) or just temporary deadlocked. Anything short of

all actors being deadlocked by blocking reads (meaning the workflow is done) gives no useful

information about which actors will exhibit future activity.

9.5 Evaluation

To evaluate the performance of the different recovery strategies, a prototype of the fault toler-

ance framework was implemented in Kepler [LAB+06]. The current implementation adds fault

tolerance to non-hierarchical SDF workflows. However, most of the existing implementation can

easily be reused for other models of computation and can easily be extended to hierarchical

models as well.

Implementation. The fault tolerance framework implements all features necessary for the

checkpoint recovery strategy. Currently, checkpoints are saved after each execution of the com-

plete schedule. One planned enhancement is to parametrize the time between checkpoint saving

as either a number of actor iterations, or in terms of wall clock time. All the recovery logic was

implemented in a separate workflow restore class and is instrumented from the director.

During a normal workflow execution, the system collects information about token firings

and actor invocations. The provenance system of Daniel Crawl et al. [CA08] was extended to

allow the storage of actor states and tokens. After each complete round of SDF invocations the

director initiates the checkpointing process. The framework traverses the current level of the

model hierarchy and captures the state of each stateful actor. An actor’s state is represented

by a serialization of selected fields of the Java class that implements the actor. There are two

177

different mechanisms that can be chosen: (1) a blacklist mode that checks fields against a list

of certain transient fields that should not be serialized, and (2) a whitelist mode that only saves

fields explicitly annotated as state. The serialized state is then stored together with the last

invocation id of the actor in the state relation of Kepler’s provenance database. The serialization

process is based on Java’s object serialization and also includes selected fields of super classes.

During a recovery, the latest recorded checkpoint of an actor is restored. All stored actor

fields are deserialized and overwrite the actor’s fields. This leaves transient member fields intact

and ensures that the restored actor is still properly integrated into its parent workflow.

Checkpoints are not necessarily stored after each invocation; but only after the last invocation

in a schedule. Successful invocations completed after a checkpoint or where no checkpoint exists

are replayed to restore the correct pre-failure state. For the replay, all corresponding serialized

tokens are retrieved from the provenance database. Then the input queues of an actor are

filled with tokens necessary for one invocation and the actor is fired. Subsequently, input and

output queues are cleared again before the next invocation of an actor is replayed. The current

implementation replays actors serially.

Next, all the queues are restored. For each actor, all tokens are retrieved that were written

to an input port of the actor and not read by the actor itself before the fault. These tokens are

then placed in the proper queues, preserving the original order.

Finally, the scheduling needs modifications to start at the proper point. This process is closely

integrated with the normal execution behavior of the SDF director. The schedule is traversed

in normal order, but all invocations are skipped until the failed invocation is reached. At this

stage, the normal SDF execution of the schedule is resumed.

In order to replay tokens to actors and for restoring the queue content, the provenance

recorder for Kepler presented in [Kep10] was changed. Instead of storing a string representation

of a token, which may be lossy, the whole serialized token is stored in the provenance database.

When using the standard token types, this increases the amount of data stored for each token only

slightly. Actors can be explicitly marked as stateless using an annotation on the implementing

Java class to speed up the recovery process. Stateless actors are not checkpointed, nor are their

input tokens replayed.

178

Experimental Evaluation. The synthetic workflow shown in Figure 9.9 was created to simulate

typical actor behavior in scientific workflows. This workflow was run to its completion to measure

the running time for a successful execution. Then the execution was interrupted during the third

invocation of actor C. After this, the workflow was loaded again and it resumed its execution

using the three different strategies: re-execution from the beginning, Replay and Checkpoint.

15 sec

5 sec

Figure 9.9: Synthetic SDF workflow. Actor A is a stateful actor generating a sequence of
increasing numbers starting from 0. B is a stateless actor that has a running time of 15 seconds.
C is stateful and needs 5 seconds for each invocation. D is a fast running stateless actor. E is a
stateful “Display” actor.

Figure 9.10: Performance evaluation of different recovery strategies.

The experiments were run three times for each strategy and the variation of all results was

small compared to the overall running time. The experimental results are shown in Figure 9.10.

The naive approach of re-running the whole workflow takes about 80 seconds, repeating about

55 seconds of execution time from before the crash. The replay strategy based on standard

179

provenance already achieves a major improvement. The total time for this recovery strategy of

approximately 12 seconds is dominated by replaying stateful actor C (5 seconds execution time)

twice. After the recovery, workflow execution finishes in 25 seconds. This strategy reduced the

cost for the actual recovery by 80% (55 seconds to 12 seconds). The checkpoint strategy also

avoids the expensive replay. Although the deserialization process for the state is complex, the

recovery time of this strategy is only about 0.6 seconds. This reduces the restore time by 99%

compared to the naive strategy. Checkpointing is so efficient because it does not scale linearly

with the number of tokens sent like the naive and replay strategies.

9.6 Summary

This chapter has shown how to use commonly available provenance information to recover a

workflow run after the execution system has crashed. It gave examples that show the necessity

of capturing the state of actors for faster recovery. This state information should be captured as

a separate observation in provenance records. This chapter has also shown queries against the

workflow model and a trace of a workflow execution that compute all important information for

reinitializing the workflow.

180

Chapter 10

Conclusions & Outlook

This dissertation presented a current research in overlapping fields of scientific workflow systems,

Datalog and provenance. A number of workflow systems were presented and their strengths

and weaknesses analyzed. The functionality provided by these systems was compared with

requirements from users. That comparison showed potential for simplification of the modeling

of workflows as well improving the efficiency of the workflow execution.

The recording and analysis of provenance is important for users of scientific workflow systems.

Additionally, this thesis presented approaches where provenance can also be used to improve the

repeated execution of scientific workflows by the workflow system.

Datalog has been evaluated as a scientific workflow system in some related projects and is

effective in modeling simple workflows [HRM+10] but it is less effective in modeling complex

workflows. With the goal to support creating workflows in Datalog, a new approach to visualize,

debug and profile Datalog programs was presented. Building upon that approach, an elegant

way to see Datalog query evaluation as a game was presented and provides provenance for non-

recursive Datalog¬ programs. In addition to using Datalog as a workflow system, it has been

shown to be well suited for analyzing provenance.

The Monitoring workflow, Growing-Degree-Day workflow and Curation workflow indicated

that support for a structured data model frequently simplifies design. Provenance traces of the

GDD and Curation workflows revealed that the execution of those workflows is frequently not

optimal. Motivated by the evaluation of the case studies, a new scientific workflow system was

181

devised but due to the lack of time not fully implemented. A prototype is under development and

evaluation in the Filtered-Push project. To improve fault tolerance of workflow systems a new

method was developed that demonstrates the use of provenance data by analyzing provenance

for a fast recovery of the workflow execution.

This thesis has demonstrated some use cases of provenance in the field of scientific workflow

systems but there remain many research opportunities: The provenance of data items can be

analyzed while executing workflows in order to mine actor properties such as token production

and consumption rates or actual data dependencies. This data could be used to improve the

scheduling of the running workflows. The application of provenance games to recursive Datalog¬

programs currently requires a separate step to determine the solution for drawn positions. An

alternative game construction can yield the correct solution directly. Another open problem is

how to describe provenance for disjunctive Datalog or answer set programs.

182

Bibliography

[ABC+03] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo. Dynamic XML
documents with distribution and replication. In SIGMOD, pp. 527–538, 2003. 152,
153

[ABC+10] U. Acar, P. Buneman, J. Cheney, J. Van den Bussche, N. Kwasnikowska, and
S. Vansummeren. A graph model of data and workflow provenance. In TaPP, 2010.
44

[ACGG+02] I. Avila-Campillo, T. Green, A. Gupta, M. Onizuka, D. Raven, and D. Suciu.
XMLTK: An XML toolkit for scalable XML stream processing. Proceedings of
PLANX, October, 2002. 123

[ADT11a] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate queries. In
PODS, pp. 153–164. ACM, 2011. 64

[ADT11b] Y. Amsterdamer, D. Deutch, and V. Tannen. On the Limitations of Provenance
for Queries With Difference. In Workshop on Theory and Practice of Provenance
(TaPP), Heraklion, Crete, 2011. 64

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995. 31

[Akk13] Akka Toolkit. Typesafe Inc., 2013. https://http://akka.io/. 154

[AMC+09] P. Alvaro, W. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and R. C. Sears.
Dedalus: Datalog in Time and Space. Technical Report UCB/EECS-2009-173,
EECS Department, University of California, Berkeley, Dec 2009. 31

[AN05] P. Amnuaykanjanasin and N. Nupairoj. The BPEL orchestrating framework for
secured grid services. Information Technology: Coding and Computing (ITCC), 1,
2005. 123

[ASK+12] H. H. Ali, Y. Shi, D. Khazanchi, M. Lees, G. D. van Albada, J. Dongarra, and
P. M. A. Sloot, editors. Proceedings of the International Conference on Computa-
tional Science, ICCS 2012, Omaha, Nebraska, USA, 4-6 June, 2012, volume 9 of
Procedia Computer Science. Elsevier, 2012. 189, 190

[Ayy13] S. Ayyub. Dynamic Process Nets. PhD thesis, Monash University. Faculty of
Information Technology. School of Information Technology, 2013. 3

183

http://portal.acm.org/citation.cfm?id=872757.872821
http://portal.acm.org/citation.cfm?id=872757.872821
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1005&context=db_research
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1428486
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1428486

[BAJ+10] D. Barseghian, I. Altintas, M. Jones, D. Crawl, N. Potter, J. Gallagher, P. Cornillon,
M. Schildhauer, E. Borer, and E. Seabloom. Workflows and extensions to the Kepler
scientific workflow system to support environmental sensor data access and analysis.
Ecological Informatics, 5(1):42–50, 2010. 108

[BBMS05] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault-Tolerance
in the Borealis Distributed Stream Processing System. In SIGMOD, 2005. 152

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-Centric General-
Purpose Language. In Intl. Conf. on Functional Programming (ICFP), pp. 51–63,
New York, NY, USA, 2003. 129, 152

[BCS+05] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. J. Crossno, C. T. Silva,
and J. Freire. VisTrails: Enabling Interactive Multiple-View Visualizations. Visu-
alization Conference, IEEE, 0:18, 2005. 23, 25, 164

[BDFZ01] S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up
computation of the well-founded model. TPLP, 1(5):497–538, 2001. 85, 86, 88, 90,
91

[BE69] G. L. Baskerville and P. Emin. Rapid Estimation of Heat Accumulation from
Maximum and Minimum Temperatures. Ecology, 50(3):pp. 514–517, 1969. 109

[BKT01] P. Buneman, S. Khanna, and W. C. Tan. Why and Where: A Characterization of
Data Provenance. In J. V. den Bussche and V. Vianu, editors, ICDT, volume 1973
of Lecture Notes in Computer Science, pp. 316–330. Springer, 2001. 44, 63, 64

[BML+06] S. Bowers, T. M. McPhillips, B. Ludäscher, S. Cohen, and S. B. Davidson. A Model
for User-Oriented Data Provenance in Pipelined Scientific Workflows. In L. Moreau
and I. T. Foster, editors, IPAW, volume 4145 of Lecture Notes in Computer Science,
pp. 133–147. Springer, 2006. 33, 160

[Bor07] D. Borthakur. The Hadoop Distributed File System: Architecture and Design.
Apache Software Foundation, 2007. 135

[BP12] P. Barceló and R. Pichler, editors. Datalog in Academia and Industry - Second In-
ternational Workshop, Datalog 2.0, Vienna, Austria, September 11-13, 2012. Pro-
ceedings, volume 7494 of Lecture Notes in Computer Science. Springer, 2012. 31,
190

[BPM05] Intl. Workshop on Web Service Choreography and Orchestration for BPM, Nancy,
France, September 2005. 123

[BR88] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In Readings in database systems, pp. 507–555. Morgan Kauf-
mann Publishers Inc., 1988. 48

[BSHW06] O. Benjelloun, A. Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
uncertainty and lineage. In VLDB, pp. 953–964, 2006. 64, 84

184

http://portal.acm.org/citation.cfm?id=1331904.1331907
http://portal.acm.org/citation.cfm?id=1331904.1331907
http://portal.acm.org/citation.cfm?id=944711
http://portal.acm.org/citation.cfm?id=944711
http://svn.apache.org/repos/asf/hadoop/core/tags/release-0.15.3/docs/hdfs_design.pdf
http://events.deri.at/bpm2005/

[CA08] D. Crawl and I. Altintas. A Provenance-Based Fault Tolerance Mechanism for
Scientific Workflows. In J. Freire, D. Koop, and L. Moreau, editors, Provenance
and Annotation of Data and Processes, volume 5272 of LNCS, pp. 152–159. Springer
Berlin / Heidelberg, 2008. 162, 166, 172, 177

[CAA07] J. Cheney, A. Ahmed, and U. Acar. Provenance as Dependency Analysis. In DBPL,
LNCS 4797, pp. 138–152, Vienna, Austria, 2007. 44

[CAWK08] E. Ceyhan, G. Allen, C. White, and T. Kosar. A grid-enabled workflow system
for reservoir uncertainty analysis. In Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments, CLADE ’08, pp.
45–52. ACM, 2008. 2

[CCA+10] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.
MapReduce online. In Proceedings of the 7th USENIX conference on Networked
systems design and implementation, NSDI’10, pp. 21–21, Berkeley, CA, USA, 2010.
USENIX Association. 29

[CCD+03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World. In CIDR, 2003.
152

[CCT09] J. Cheney, L. Chiticariu, and W. Tan. Provenance in databases: Why, how, and
where. Foundations and Trends in Databases, 1(4):379–474, 2009. 44, 63

[CDGLV03] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi. Reasoning on regular
path queries. ACM SIGMOD Record, 32(4):83–92, 2003. 37, 44

[CDTW00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Continuous
Query System for Internet Databases. In SIGMOD, pp. 379–390, 2000. 152

[CDZ06] Y. Chen, S. B. Davidson, and Y. Zheng. An Efficient XPath Query Processor for
XML Streams. In ICDE, 2006. 152

[CGRSP08] R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez. A theoretical framework for
the declarative debugging of datalog programs. Semantics in Data and Knowledge
Bases, pp. 143–159, 2008. 61

[Che10] J. Cheney. Causality and the semantics of provenance. Arxiv preprint
arXiv:1004.3241, 2010. 44

[Cim12] California Irrigation Management Information System, Office of Water Use Effi-
ciency, California Department of Water Resources. http://wwwcimis.water.ca.

gov/cimis/, 2012. 109

[CLRV09] F. Calimeri, N. Leone, F. Ricca, and P. Veltri. A visual tracer for DLV. In Proceed-
ings of the 2nd International Workshop on Software Engineering for Answer Set
Programming (SEA 2009), pp. 79–93, 2009. 61

[Com12] Comet Kepler Suite. https://code.kepler-project.org/code/kepler/trunk/

modules/comet/, 2012. 112

185

http://db.cs.berkeley.edu/papers/cidr03-tcq.pdf
http://db.cs.berkeley.edu/papers/cidr03-tcq.pdf
http://portal.acm.org/citation.cfm?id=335432
http://portal.acm.org/citation.cfm?id=335432
http://portal.acm.org/citation.cfm?id=1129938
http://portal.acm.org/citation.cfm?id=1129938
http://wwwcimis.water.ca.gov/cimis/
http://wwwcimis.water.ca.gov/cimis/
https://code.kepler-project.org/code/kepler/trunk/modules/comet/
https://code.kepler-project.org/code/kepler/trunk/modules/comet/

[CT06] L. Chiticariu and W. C. Tan. Debugging Schema Mappings with Routes. In
U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten,
S. K. Cha, and Y.-K. Kim, editors, VLDB, pp. 79–90. ACM, 2006. 61

[CVDK+12] V. Cuevas-Vicentt́ın, S. C. Dey, S. Köhler, S. Riddle, and B. Ludäscher. Scientific
Workflows and Provenance: Introduction and Research Opportunities. Datenbank-
Spektrum, 12(3):193–203, 2012. 33

[CWW00] Y. Cui, J. Widom, and J. Wiener. Tracing the lineage of view data in a warehousing
environment. ACM Transactions on Database Systems (TODS), 25(2):179–227,
2000. 63, 64

[DBG+04] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
and M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid. In Grid
Computing, volume 3165 of LNCS, pp. 131–140. Springer Berlin / Heidelberg, 2004.
8, 163

[DCVK+13] S. C. Dey, V. Cuevas-Vicentt́ın, S. Köhler, E. Gribkoff, M. Wang, and B. Ludäscher.
On implementing provenance-aware regular path queries with relational query en-
gines. In G. Guerrini, editor, EDBT/ICDT Workshops, pp. 214–223. ACM, 2013.
33

[DEGV01] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys, 33(3):374–425, 2001. 44

[Den80] J. B. Dennis. Data Flow Supercomputers. Computer, 13:48–56, November 1980. 11

[DF08] S. Davidson and J. Freire. Provenance and scientific workflows: challenges and
opportunities. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, pp. 1345–1350. ACM, 2008. 36

[DG08] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008. 123, 125, 152

[DGST09] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-Science: An
overview of workflow system features and capabilities. Future Generation Computer
Systems, 25(5):528 – 540, 2009. 7, 30

[DHL+11] L. Dou, J. Hanken, B. Ludäscher, J. Macklin, T. M. McPhillips, P. Morris, R. Mor-
ris, and Z. Wang. Building specimen-data curation pipelines using Kepler workflow
technology in a Filtered-Push network. In 26th Annual SPHNC Meeting, San Fran-
cisco, 2011. 5

[Dij81] E. W. Dijkstra. Hamming’s exercise in SASL, 1981. EWD-792. 42

[DKBL12] S. Dey, S. Köhler, S. Bowers, and B. Ludäscher. Datalog as a lingua franca for
provenance querying and reasoning. In Proceedings of the 4th USENIX conference
on Theory and Practice of Provenance, TaPP’12, pp. 13–13, Berkeley, CA, USA,
2012. USENIX Association. 2, 4, 34

[DNT89] L. Drabent and S. Nadjm-Tehrani. Algorithmic debugging with assertions. In
Meta-programming in logic programming. Citeseer, 1989. 60

186

http://portal.acm.org/citation.cfm?doid=1327452.1327492

[DZM+11] L. Dou, D. Zinn, T. M. McPhillips, S. Köhler, S. Riddle, S. Bowers, and
B. Ludäscher. Scientific workflow design 2.0: Demonstrating streaming data collec-
tions in Kepler. In S. Abiteboul, K. Böhm, C. Koch, and K.-L. Tan, editors, ICDE,
pp. 1296–1299. IEEE Computer Society, 2011. 16, 28, 100, 112, 163

[Fag07] J. Fagan. Mashing up Multiple Web Feeds Using Yahoo! Pipes. Computers in
Libraries, 27(10):8, 2007. 123

[Fit85] M. Fitting. A Kripke-Kleene semantics for logic programs. JLP, 2(4):295–312, 1985.
85

[FJM+07] M. F. Fernández, T. Jim, K. Morton, N. Onose, and J. Siméon. Highly distributed
XQuery with DXQ. In SIGMOD, pp. 1159–1161, 2007. 152

[FKL97] J. Flum, M. Kubierschky, and B. Ludäscher. Total and Partial Well-Founded Dat-
alog Coincide. In ICDT, pp. 113–124, 1997. 74, 97

[FKL00] J. Flum, M. Kubierschky, and B. Ludäscher. Games and total Datalog¬ queries.
Theoretical Computer Science, 239(2):257–276, 2000. 74, 97

[FL08] T. Feng and E. Lee. Real-Time Distributed Discrete-Event Execution with Fault
Tolerance. In Real-Time and Embedded Technology and Applications Symposium,
2008. RTAS ’08. IEEE, pp. 205 –214, April 2008. 162, 172

[Flu00] J. Flum. Games, Kernels, and Antitone Operations. Order, 17(1):61–73, 2000. 65

[FPD+05] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,
H. Truong, A. Villazon, and M. Wieczorek. ASKALON: A Grid Application Devel-
opment and Computing Environment. International Workshop on Grid Computing,
pp. 122–131, 2005. 153

[FPD+07] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig,
J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON:
A Development and Grid Computing Environment for Scientific Workflows. In
I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, editors, Workflows for
e-Science, pp. 450–471. Springer London, 2007. 8, 30

[Fre] J. Frey. Condor DAGMan: Handling inter-job dependencies. 163

[GBA10] B. Glavic, D. M. BOHLEN, and D. G. ALONSO. Perm: Efficient Provenance
Support for Relational Databases. PhD thesis, PhD thesis, University of Zurich,
2010. 3

[GDR07] C. A. Goble and D. C. De Roure. myExperiment: social networking for workflow-
using e-scientists. In Proceedings of the 2nd workshop on Workflows in support of
large-scale science, WORKS ’07, pp. 1–2, New York, NY, USA, 2007. 7

[Gen01] W. Gentzsch. Sun Grid Engine: Towards Creating a Compute Power Grid. In First
IEEE/ACM International Symposium on Cluster Computing and the Grid, 2001.
Proceedings, pp. 35–36, 2001. 146

187

http://www.infotoday.com/cilmag/nov07/index.shtml
http://portal.acm.org/citation.cfm?id=1247641
http://portal.acm.org/citation.cfm?id=1247641
http://portal.acm.org/citation.cfm?id=1253467.1253487
http://portal.acm.org/citation.cfm?id=1253467.1253487
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=923173

[GGM+04] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML
Streams with Deterministic Automata and Stream Indexes. TODS, 29(4):752–788,
2004. 152

[GGV02] G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: A deductive query lan-
guage with linear time model checking. ACM Transactions on Computational Logic
(TOCL), 3(1):42–79, 2002. 45

[GIT11] T. Green, Z. Ives, and V. Tannen. Reconcilable differences. Theory of Computing
Systems, 49(2):460–488, 2011. 64

[GKIT07] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update Exchange with
Mappings and Provenance. In C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava,
K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas,
and E. J. Neuhold, editors, VLDB, pp. 675–686. ACM, 2007. 51, 64

[GKT07] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In L. Libkin,
editor, PODS, pp. 31–40. ACM, 2007. 44, 51, 61, 63, 69, 76, 85

[GP10] F. Geerts and A. Poggi. On database query languages for k-relations. Journal of
Applied Logic, 8(2):173–185, 2010. 64

[Grä11] E. Grädel. Back and Forth Between Logic and Games. In Lectures in Game Theory
for Computer Scientists, chapter 4, pp. 99–145. Cambridge University Press, 2011.
97

[Gre11] T. Green. Containment of conjunctive queries on annotated relations. Theory of
Computing Systems, 49(2):429–459, 2011. 63, 64

[Gul10] S. S. Gulati. Computing Sliding Window Aggregates over Data Streams in a Sci-
entific Workflow System. Master’s thesis, Dept. of Computer Science, University of
California, Davis, June 2010. 110

[Had] Hadoop. http://hadoop.apache.org/. 126, 146

[HC07] I. Hernandez and M. Cole. Reliable DAG scheduling on grids with rewinding and
migration. In Proceedings of the first international conference on Networks for grid
applications, GridNets ’07, pp. 3:1–3:8. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2007. 10, 162, 163

[HCDN08] J. Huang, T. Chen, A. Doan, and J. Naughton. On the provenance of non-answers
to queries over extracted data. In VLDB, 2008. 3

[Hem88] D. Hemmendinger. The “Hamming problem” in Prolog. ACM SIGPLAN Notices,
23(4):81–86, 1988. 42

[HGL11] S. Huang, T. Green, and B. Loo. Datalog and emerging applications: an interactive
tutorial. In SIGMOD, pp. 1213–1216, 2011. 64

[HHMW07] T. Härder, M. Haustein, C. Mathis, and M. Wagner. Node labeling schemes for
dynamic XML documents reconsidered. Data & Knowledge Engineering, 60(1):126–
149, 2007. 136, 137

188

http://portal.acm.org/citation.cfm?id=1042051
http://portal.acm.org/citation.cfm?id=1042051
http://hadoop.apache.org/
http://linkinghub.elsevier.com/retrieve/pii/S0169023X05001795
http://linkinghub.elsevier.com/retrieve/pii/S0169023X05001795

[Hig09] S. Higgins. PREMIS Data Dictionary for Preservation Metadata. Digital Curation
Centre, March 2009. 33

[Hin96] J. Hintikka. The Principles of Mathematics Revisited. Cambridge University Press,
1996. 97

[HKS+07] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and J. V. den Bussche. A
Formal Model of Dataflow Repositories. In DILS, pp. 105–121, 2007. 123

[HKS+08] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and J. V. den Bussche. DFL:
A dataflow language based on Petri nets and nested relational calculus. Information
Systems, 33(3):261 – 284, 2008. 25, 28, 100

[Hod13] W. Hodges. Logic and Games. In E. N. Zalta, editor, The Stanford Encyclope-
dia of Philosophy. http://plato.stanford.edu/entries/logic-games/, March
2013. 97

[HRM+10] A. Hartman, S. Riddle, T. McPhillips, B. Ludascher, and J. Eisen. Introducing
W.A.T.E.R.S.: a Workflow for the Alignment, Taxonomy, and Ecology of Ribosomal
Sequences. BMC Bioinformatics, 11(1):317, 2010. 2, 160, 162, 163, 181

[HW02] P. Hitzler and M. Wendt. The well-founded semantics is a stratified Fitting seman-
tics. KI 2002: Advances in Artificial Intelligence, pp. 57–59, 2002. 91

[Ike12] R. Ikeda. Provenance in Data-Oriented Workflows. PhD thesis, Stanford InfoLab,
2012. 3

[Ima] Image-Magick. http://www.imagemagick.org. 132

[Inf13] InforSense Suite. ID Business Solutions Ltd., 2013.
https://www.idbs.com/products-and-services/inforsense-suite/. 2

[ITA+08] Z. Ivezic, J. Tyson, E. Acosta, R. Allsman, S. Anderson, J. Andrew, R. Angel,
T. Axelrod, J. Barr, A. Becker, et al. LSST: from science drivers to reference design
and anticipated data products. arXiv preprint arXiv:0805.2366, 2008. 1

[Kah74] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J. L.
Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP Congress,
pp. 471–475. North-Holland, New York, NY, 1974. 13, 14, 35, 153, 164, 165

[Kep10] Getting Started with the Kepler Provenance Module. https://code.kepler-
project.org/code/kepler/releases/release-branches/provenance-
2.1/docs/provenance.pdf, August 2010. 178

[KG12] G. Karvounarakis and T. J. Green. Semiring-annotated data: queries and prove-
nance. SIGMOD Record, 41(3):5–14, 2012. viii, 3, 63, 70, 76, 77, 79, 80, 81

[KGC+12] S. Köhler, S. Gulati, G. Cao, Q. Hart, and B. Ludäscher. Sliding Window Calcula-
tions on Streaming Data using the Kepler Scientific Workflow System. In Ali et al.
[ASK+12], pp. 1639–1646. 5, 108

[KIT10] G. Karvounarakis, Z. Ives, and V. Tannen. Querying data provenance. In SIGMOD,
pp. 951–962, 2010. 3

189

http://www.springerlink.com/content/4562844m321382m3/
http://www.springerlink.com/content/4562844m321382m3/
http://plato.stanford.edu/entries/logic-games/

[KL04] T. Kosar and M. Livny. Stork: Making Data Placement a First Class Citizen in the
Grid. In ICDCS, pp. 342–349. IEEE Computer Society, 2004. 10, 164

[KLS12] S. Köhler, B. Ludäscher, and Y. Smaragdakis. Declarative Datalog Debugging for
Mere Mortals. In Barceló and Pichler [BP12], pp. 111–122. 4, 48

[KLZ13] S. Köhler, B. Ludäscher, and D. Zinn. First-Order Provenance Games. In V. Tan-
nen, L. Wong, L. Libkin, W. Fan, W.-C. Tan, and M. Fourman, editors, In Search
of Elegance in the Theory and Practice of Computation, volume 8000 of Lecture
Notes in Computer Science, pp. 382–399. Springer Berlin Heidelberg, 2013. 4, 63

[KMVdB10] N. Kwasnikowska, L. Moreau, and J. Van den Bussche. A formal account of the open
provenance model. Technical Report 21819, University of Southampton, December
2010. 34, 37

[KRZ+11] S. Köhler, S. Riddle, D. Zinn, T. M. McPhillips, and B. Ludäscher. Improving
Workflow Fault Tolerance through Provenance-Based Recovery. In J. B. Cushing,
J. C. French, and S. Bowers, editors, SSDBM, volume 6809 of Lecture Notes in
Computer Science, pp. 207–224. Springer, 2011. 5, 159

[KSFL12] S. Köhler, P. Seitzer, M. T. Facciotti, and B. Ludäscher. Improved Motif Detection
in Large Sequence Sets with Random Sampling in a Kepler workflow. In Ali et al.
[ASK+12], page 1999. 5, 118

[KSSS04a] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based Schedul-
ing of Event Processors and Buffer Minimization for Queries on Structured Data
Streams. In VLDB, 2004. 152

[KSSS04b] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery: An Opti-
mizing XQuery Processor for Streaming XML Data. VLDB, pp. 1309–1312, 2004.
152

[Kub95] M. Kubierschky. Remisfreie Spiele, Fixpunktlogiken und Normalformen. Master’s
thesis, Universität Freiburg, Germany, 1995. 97

[Küh13] F. Kühnlenz. Design und Management von Experimentier-Workflows. PhD thesis,
Humboldt-Universität zu Berlin, 2013. 3

[Kun91] K. Kunen. Declarative Semantics of Logic Programming. Bulletin of the EATCS,
44:147–167, 1991. 48

[LAB+06] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones, E. A.
Lee, J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience, 18(10):1039–1065, 2006.
123, 152, 177

[LAB+09] B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow, E. Deelman,
D. Roure, J. Freire, C. Goble, M. Jones, et al. Scientific process automation and
workflow management. In A. Shoshani and D. Rotem, editors, Chapter 13 in Sci-
entific Data Management: Challenges, Existing Technology, and Deployment, pp.
476–508, Boca Raton, FL, 2009. Chapman & Hall/CRC Press. 6

190

http://portal.acm.org/citation.cfm?id=1316711
http://portal.acm.org/citation.cfm?id=1316711
http://portal.acm.org/citation.cfm?id=1316711
http://portal.acm.org/citation.cfm?id=1316821
http://portal.acm.org/citation.cfm?id=1316821

[LL78] P. Lorenzen and K. Lorenz. Dialogische Logik. Wissenschaftliche Buchgesellschaft,,
Darmstadt, 1978. 71

[LLCF10] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. Prospective and retrospective prove-
nance collection in scientific workflow environments. In Services Computing (SCC),
2010. 36

[LLM98] G. Lausen, B. Ludäscher, and W. May. On active deductive databases: The statelog
approach. Transactions and Change in Logic Databases, pp. 69–106, 1998. 45, 51,
53, 62

[LM87a] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235 – 1245, Sept. 1987. 11

[LM87b] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Trans. Comput., 36:24–35, January
1987. 163, 166

[LM08] E. Lee and E. Matsikoudis. The semantics of dataflow with firing. From Semantics
to Computer Science: Essays in memory of Gilles Kahn. Cambridge University
Press, Cambridge, 2008. 163, 164, 166

[LP95] E. A. Lee and T. Parks. Dataflow Process Networks. Proceedings of the IEEE,
83(5):773–799, May 1995. 35, 152

[LPA+08] B. Ludäscher, N. Podhorszki, I. Altintas, S. Bowers, and T. McPhillips. From com-
putation models to models of provenance: the RWS approach. Concurr. Comput. :
Pract. Exper., 20:507–518, April 2008. 172

[LPF+06] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (TOCL), 7(3):499–562, 2006. 51, 60

[Lud98] B. Ludäscher. Integration of active and deductive database rules. PhD thesis, Albert-
Ludwigs Universität, Freiburg, Germany, 1998. 51, 53, 54, 62

[MB05] T. M. McPhillips and S. Bowers. An Approach for Pipelining Nested Collections in
Scientific Workflows. SIGMOD Record, 34(3):12–17, 2005. 152

[MBZL08] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific Workflow Au-
tomation for Mere Mortals. Future Generation Computer Systems, 2008. in press.
123

[MBZL09] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific workflow design for
mere mortals. Future Generation Computer Systems, 25(5):541 – 551, 2009. 6, 7

[MCF+10] L. Moreau, B. Clifford, J. Freire, Y. Gil, P. Groth, J. Futrelle, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, Y. Simmhan, E. Stephan, and J. V. den Bussche. The
Open Provenance Model - core specification (v1.1). Future Generation Computer
Systems, 2010. 33, 160

191

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=381846
http://portal.acm.org/citation.cfm?id=1084805.1084809
http://portal.acm.org/citation.cfm?id=1084805.1084809
http://dx.doi.org/10.1016/j.future.2008.06.013
http://dx.doi.org/10.1016/j.future.2008.06.013

[MCF+11] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, et al. The open provenance model core specification
(v1.1). Future Generation Computer Systems, 27(6):743–756, 2011. 34

[MFF+08] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson. The
Open Provenance Model: An Overview. In Provenance and Annotation of Data
and Processes, volume 5272 of LNCS, pp. 323–326. Springer Berlin / Heidelberg,
2008. 166

[MGH+10] A. Meliou, W. Gatterbauer, J. Halpern, C. Koch, K. Moore, and D. Suciu. Causality
in databases. IEEE Data Eng. Bull, 33(3):59–67, 2010. 44

[MGH+13] P. Morris, E. Gilbert, J. Hanken, M. Kelly, S. Köhler, D. Lowery, B. Ludäscher,
J. Macklin, R. Morris, and T. Song. Expanding the scope of collections databases
without schema modifications: Using annotations, rules, and semantic web tech-
nologies to add a open world layer to natural science collections data. In Program
book and abstracts for the 28th annual meeting of the Society for the Preservation
of Natural History Collections (SPNHC), page 33, 2013. 5

[MGS11] A. Meliou, W. Gatterbauer, and D. Suciu. Bringing Provenance to its Full Potential
using Causal Reasoning. Theory and Practice of Provenance (TaPP), 2011. 3

[MHB+10] W. R. Marczak, S. S. Huang, M. Bravenboer, M. Sherr, B. T. Loo, and M. Aref.
SecureBlox: customizable secure distributed data processing. In SIGMOD, pp.
723–734, 2010. 51, 60

[MM10] T. McPhillips and S. McPhillips. RestFlow System and Tutorial.
https://sites.google.com/site/restflowdocs/, September 2010. 19, 21, 164

[Mor94] J. P. Morrison. Flow-Based Programming – A New Approach to Application Devel-
opment. Van Nostrand Reinhold, 1994. 152

[MSRO+10] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop, A. Williams,
T. Oinn, and C. Goble. Taverna, reloaded. In Scientific and Statistical Database
Management, pp. 471–481. Springer, 2010. 159

[OGA+06] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe. Taverna: Lessons in Creating a Workflow Environ-
ment for the Life Sciences. Concurrency and Computation: Practice & Experience,
18(10):1067–1100, August 2006. 123, 152

[OOP+04] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-friendly XML node labels. In Proceedings of the 2004 ACM SIGMOD in-
ternational conference on Management of data, pp. 903–908. ACM New York, NY,
USA, 2004. 136

[OPT11] J. Oetsch, J. Pührer, and H. Tompits. Stepping through an answer-set program.
Logic Programming and Nonmonotonic Reasoning, pp. 134–147, 2011. 61

192

http://books.google.com/books?id=z0gbAAAACAAJ
http://books.google.com/books?id=z0gbAAAACAAJ
http://eprints.ecs.soton.ac.uk/10908/01/taverna-ccpe-reviewed.pdf
http://eprints.ecs.soton.ac.uk/10908/01/taverna-ccpe-reviewed.pdf
http://portal.acm.org/citation.cfm?id=1007568.1007686
http://portal.acm.org/citation.cfm?id=1007568.1007686

[PA06] C. Pautasso and G. Alonso. Parallel Computing Patterns for Grid Workflows. In
Proceedings of the the Workshop on Workflows in Support of Large-Scale Science
(WORKS), 2006. 153

[Pip13] Pipeline Pilot. Accelrys Inc., 2013. http://accelrys.com/products/pipeline-pilot. 2,
30

[PLK07] N. Podhorszki, B. Ludaescher, and S. A. Klasky. Workflow automation for process-
ing plasma fusion simulation data. In Proceedings of the 2nd workshop on Workflows
in support of large-scale science, WORKS ’07, pp. 35–44, New York, NY, USA, 2007.
ACM. 2, 102, 132, 162, 163

[PRT+07] S. Perri, F. Ricca, G. Terracina, D. Cianni, and P. Veltri. An integrated graphic
tool for developing and testing DLV programs. In Proceedings of the Workshop on
Software Engineering for Answer Set Programming (SEA’07), pp. 86–100, 2007. 61

[Pto14] C. Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, 2014. 1

[QF07] J. Qin and T. Fahringer. Advanced data flow support for scientific grid workflow
applications. In Proceedings of the ACM/IEEE conference on Supercomputing (SC),
pp. 1–12. ACM, 2007. 153

[RBHS04] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. Workshop on
Information Integration on the Web, pp. 116–121, 2004. 152

[REA12] Real-time Environment For Analytical Processing. http://reap.

ecoinformatics.org/, 2012. 108

[roc] ROCKS Clusters. http://www.rocksclusters.org/. 146

[RSS+97] P. Rao, K. Sagonas, T. Swift, D. Warren, and J. Freire. XSB: A system for efficiently
computing well-founded semantics. In J. Dix, U. Furbach, and A. Nerode, editors,
Logic Programming And Nonmonotonic Reasoning, volume 1265 of Lecture Notes
in Computer Science, pp. 430–440. Springer Berlin / Heidelberg, 1997. 24

[Sha82] E. Shapiro. Algorithmic program debugging. Dissertation Abstracts International
Part B: Science and Engineering,, 43(5), 1982. 60

[Sof12] http://www.bme.ucdavis.edu/facciotti/resources_data/software/, 2012.
118

[SPG05] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Rec., 34:31–36, September 2005. 3, 33

[SW01] U. Schwalbe and P. Walker. Zermelo and the early history of game theory. Games
and Economic Behavior, 34(1):123–137, 2001. 64

[SWLF12] P. Seitzer, E. Wilbanks, D. Larsen, and M. Facciotti. A Monte Carlo-based frame-
work enhances the discovery and interpretation of regulatory sequence motifs. BMC
Bioinformatics, 13(1):1–16, 2012. 118

193

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3803&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?id=1362622.1362679
http://portal.acm.org/citation.cfm?id=1362622.1362679
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.7194&rep=rep1&type=pdf
http://reap.ecoinformatics.org/
http://reap.ecoinformatics.org/
http://www.rocksclusters.org/
 http://www.bme.ucdavis.edu/facciotti/resources_data/software/

[TB93] G. Tobermann and C. Beckstein. What’s in a Trace: The Box Model Revisited. In
P. Fritszon, editor, AADEBUG, volume 749 of Lecture Notes in Computer Science,
pp. 171–187. Springer, 1993. 49

[TMG+07] D. Turi, P. Missier, C. Goble, D. D. Roure, and T. Oinn. Taverna Workflows:
Syntax and Semantics. In Proceedings of the Third IEEE International Conference
on e-Science and Grid Computing, pp. 441–448, Washington, DC, USA, 2007. IEEE
Computer Society. 18

[TMG+08] D. Turi, P. Missier, C. Goble, D. De Roure, and T. Oinn. Taverna workflows: Syntax
and semantics. In e-Science and Grid Computing, IEEE International Conference
on, pp. 441–448. IEEE, 2008. 163

[TRP+04] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, and J. Myllymaki. Implementing a
scalable XML publish/subscribe system using relational database systems. SIG-
MOD, pp. 479–490, 2004. 123

[VG93] A. Van Gelder. The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences, 47(1):185–221, 1993. 68

[VGRS91] A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM (JACM), 38(3):619–649, 1991. 67, 86, 88, 90

[vN28] J. v. Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen,
100:295–320, 1928. 64

[W3C] W3C. Provenance Working Group. http://www.w3.org/2011/prov/. accessed
4/9/2012. 36

[WCA09] J. Wang, D. Crawl, and I. Altintas. Kepler + Hadoop: a general architecture
facilitating data-intensive applications in scientific workflow systems. In Proceedings
of the 4th Workshop on Workflows in Support of Large-Scale Science, WORKS ’09,
pp. 12:1–12:8, New York, NY, USA, 2009. ACM. 118

[WDK+09] Z. Wang, H. Dong, M. Kelly, J. A. Macklin, P. J. Morris, and R. A. Morris. Filtered-
Push: a Map-Reduce platform for collaborative taxonomic data management. In
Computer Science and Information Engineering, 2009 WRI World Congress on,
volume 3, pp. 731–735. IEEE, 2009. 5

[WLF+09] L. Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant, and J. L. Ram. Atomicity and
provenance support for pipelined scientific workflows. Future Generation Computer
Systems, 25(5):568 – 576, 2009. 163

[WM07] N. Walsh and A. Milowski. XProc: An XML Pipeline Language. W3C Working
Draft, April, 2007. 123

[WSTL10] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. CoRR,
abs/1011.5332, 2010. 60

[ZBKL10] D. Zinn, S. Bowers, S. Köhler, and B. Ludäscher. Parallelizing XML data-streaming
workflows via MapReduce. J. Comput. Syst. Sci., 76(6):447–463, 2010. 5, 121

194

http://portal.acm.org/citation.cfm?id=1007623
http://portal.acm.org/citation.cfm?id=1007623
http://www.w3.org/2011/prov/
http://www.w3.org/TR/2008/WD-xproc-20080501/diff.html

[ZBML09a] D. Zinn, S. Bowers, T. McPhillips, and B. Ludäscher. Scientific workflow design
with data assembly lines. In Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science, WORKS ’09, pp. 14:1–14:10, New York, NY, USA,
2009. ACM. 7, 8

[ZBML09b] D. Zinn, S. Bowers, T. McPhillips, and B. Ludäscher. X-CSR: Dataflow Optimiza-
tion for Distributed XML Process Pipelines. In Proceedings of the 2009 IEEE In-
ternational Conference on Data Engineering, pp. 577–580, Washington, DC, USA,
2009. IEEE Computer Society. 18, 123, 154

[ZDF+05] Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde. A notation and system for
expressing and executing cleanly typed workflows on messy scientific data. SIGMOD
Rec., 34(3):37–43, 2005. 132

[Zel02] A. Zeller. Isolating cause-effect chains from computer programs. In Proceedings of
the 10th ACM SIGSOFT symposium on Foundations of software engineering, pp.
1–10. ACM, 2002. 50

[Zer13] E. Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels. In Fifth Intl. Congress of Mathematicians, volume 2, pp. 501–504.
Cambridge University Press, 1913. 64

[ZGL12] D. Zinn, T. J. Green, and B. Ludäscher. Win-move is coordination-free (sometimes).
In A. Deutsch, editor, ICDT, pp. 99–113. ACM, 2012. 32, 69

[ZGW+83] F. G. Zalom, P. B. Goodell, L. T. Wilson, W. W. Barnett, and W. J. Bentley.
Degree-Days: The Calculation and Use of Heat Units in Pest Management. Uni-
versity of California Division of Agriculture and Natural Resources Leaflet, 21373,
1983. 109

[ZHC+07] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski, V. Nefedova, I. Raicu,
T. Stef-Praun, and M. Wilde. Swift: Fast, reliable, loosely coupled parallel compu-
tation. In 2007 IEEE Congress on Services, pp. 199–206. IEEE, 2007. 162

[Zin10] D. Zinn. Modeling and Optimization of Scientific Workflows. PhD thesis, UC Davis,
Davis, California, 2010. 3, 154

195

http://people.cs.uchicago.edu/~yongzh/pub/sigmod-swf-vdl.pdf
http://people.cs.uchicago.edu/~yongzh/pub/sigmod-swf-vdl.pdf

