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ABSTRACT OF THE DISSERTATION

Fault-Tolerant Quantum Computation Through Quantum Low-Density Parity-Check
Codes

by

Weilei Zeng

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2021

Dr. Leonid P. Pryadko, Chairperson

Quantum computation has shown advantages in several problems over the corre-

sponding classical algorithms. The noisy intermediate-size quantum devices with dozens of

qubits make it more promising in the past decade, as the quantum advantage was demon-

strated experimentally. Before entering the era of scalable quantum computation, one has to

resolve the errors in a quantum many-body system, which is inevitable due to the environ-

ment interaction during quantum control processes. The goal of quantum error correction

is to reduce such errors and increase decoherence time.

The most successful candidates of quantum error correction codes are topological

codes, especially surface codes, which were discovered by Alexei Kitaev. The ordered phase

of the 2D Ising model on a torus ensures that toric codes are fault-tolerant below a critical

error probability. Other than the FT threshold, the topological codes feature efficient

encoding and decoding, local measurements, but suffer from asymptotically zero code rate.

To encode more logical qubits with finite resources, one can loosen the condition on

locality and extend to a broader class of quantum low-density parity-check (LDPC)codes.
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There are many known algebraic constructions for such codes, but only a precious few of

them have finite code rates and meet the fault-tolerant condition: the stabilizer weight is

bounded and the distance scales at least logarithmically with the code size. In this the-

sis, I construct the higher-dimensional quantum hypergraph product (HQHP) codes, which

generalize quantum hypergraph product (QHP) codes and toric codes in all dimensions.

The HQHP codes projected into a single space gives subsystem product codes, which can

then be gauge fixed to concatenated codes or homological product codes. Those include

some common CSS codes, like Shors codes, Bacon Shors codes, and subsystem QHP codes.

The HQHP codes can be mapped to the tensor product of chain complexes, which provides

an algebraic framework to construct quantum LDPC codes with finite code rates, square

root distances, FT thresholds and single-shot properties with redundant checks. Mean-

while, their rich connection to other codes are very instructive and may lead to further

optimizations. Regarding the remained procedures towards fault-tolerant universal quan-

tum computation through quantum LDPC codes, I will discuss the fault-tolerant condition

for each code, including distance, stabilizer weight, decoding, fault-tolerant gates and mea-

surement protocols.
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Chapter 1

Introduction

1.1 Quantum computation and quantum error correction

In the 1980s, the idea of quantum computation was proposed by Feynman and

Manin[1, 2]. Various algorithms have confirmed its advantage over classical computers,

including Shor’s factoring algorithm[3] and Grover’s search algorithm[4]. Though still far

away from matching DiVincenzo’s criteria[5] for quantum computers, Noisy Intermediate

Scale Quantum (NISQ) devices[6] have been available with dozens of faulty qubits over the

past decade, which may already be useful for quantum simulators of many-body physics

[2, 7], variational quantum eigensolvers for quantum chemistry and electronic structure

[8], quantum optimizers[9], and quantum machine learning[10]. To move forward towards

scalable quantum computation, one needs to reduce error and extend decoherence time of

qubits. The main technique is quantum error correction (QEC).

QEC encodes the logical information into a subspace of the Hilbert space of phys-

ical qudits/qubits. A quantum error correction code (QECC) needs to be robust against
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faulty quantum memory, fault quantum gates, faulty quantum preparation, and faulty mea-

surements. To achieve that goal, a QECC needs to have efficient encoding and decoding,

large code distance, finite resource overhead or code rate, redundant checks, and essentially

fault-tolerant threshold. Dozens of constructions have been designed to improve different

aspects among those features, but none of them have satisfied all the conditions.

1.2 Quantum LDPC codes

Topological QECCs, generalizations of the toric code[11, 12, 13, 14, 15, 16, 17]

invented by Kitaev[18], are presently at the crux of research in QEC. Such a code can be

constructed from any tessellation of an arbitrary surface or a higher-dimensional manifold.

The essential advantage of topological codes is locality: stabilizer generators, operators to

be measured frequently, involve only qubits in the immediate vicinity of each other; this is

what makes planar surface codes so attractive and practical. However, locality also limits

the parameters of topological codes[19, 20, 21, 22]. In particular, for a code of length n

with generators local in two dimensions, the number of encoded qubits k and the minimal

distance d satisfy the inequality[19] kd2 ≤ O(n). This implies asymptotically zero rate,

R = k/n→ 0, whenever d diverges with n.

More general quantum low-density parity-check (LDPC) codes have stabilizer gen-

erators of bounded weight but no locality constraint. This is the only class of codes known

so far to combine finite rates with non-zero fault-tolerant (FT) thresholds[23, 24], to allow

scalable quantum computation with a finite multiplicative overhead[25]. However, unlike

in the classical case, where capacity-approaching codes can be constructed from random
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sparse matrices[26, 27, 28, 29], matrices suitable for constructing quantum LDPC codes are

highly atypical in the corresponding ensembles. Thus, an algebraic ansatz is required to

construct large-distance quantum LDPC codes. Precious few examples of algebraic con-

structions are known that give finite rate codes and also satisfy sufficient conditions[24]

for fault-tolerance: bounded weight of stabilizer generators and minimum distance that

scales logarithmically or faster with the block length n. Such constructions include hy-

perbolic codes on two- and higher-dimensional manifolds[30, 31, 32, 33, 34], and quantum

hypergraph-product (QHP) & related codes[35, 36, 37, 38]. Further, some constructions,

e.g., in Refs. [39, 40, 41, 42, 43], have finite rates and relatively high distances, with the

stabilizer generator weights that grow with n logarithmically. It is not known whether these

codes have non-zero FT thresholds. However, such codes can be modified into those with

provable FT thresholds with the help of weight reduction[44, 45].

1.3 HQHP codes

Central idealization in topology is the focus on continuity while sizes are ignored.

Topologically speaking, an opening through a straw is no different than a pinhole in a piece

of paper, or a missing pixel in an image. Yet a missing pixel could be just an artifact of the

noisy data. No wonder that in practical applications the sizes and distances are important,

and are incorporated into computational algorithms in a variety of ways[46, 47, 48, 42, 49].

Quantum stabilizer and, more generally, subsystem codes offer an excellent exam-

ple of a problem where such a distance is extremely relevant[14, 50, 42]. Namely, a qubit

quantum stabilizer code is isomorphic to a chain complex C with three finite-dimensional
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binary spaces, where logical operators correspond to elements of the first homology group

H1(C). In the case of a Calderbank-Shor-Steane[51, 52] (CSS) code, the rank of this group

gives the number k of encoded qubits, the code length n is the dimension of the corre-

sponding space C1, while the distance d of the quantum error correcting code (QECC),

the minimum weight of a non-trivial element in H1(C) (or the corresponding co-homology

group), has to be sufficiently large for the code to offer protection against environmental

errors.

The original QHP ansatz[35] by Tillich and Zémor can be seen as a tensor product

of two chain complexes A and B, each involving just two finite-dimensional binary spaces

with chosen bases, so that the corresponding boundary operators are just binary matrices

without any additional constraints. The resulting chain complex has three spaces; elements

of the first homology group of dimension k = rankH1(A×B) form half of the quantum code

Q1(A × B) encoding k qubits (the other half comes from the corresponding co-homology

group). This dimension can be immediately recovered from the Künneth formula[53, 54].

The main result by Tillich and Zémor is the expression for the minimal distance. This was

generalized to homology groups in a tensor product of a general chain complex over binary

spaces with that involving just two spaces[38].

In Ref. [55], the distance result was again generalized to a tensor product of two

chain complexes of vector spaces over any finite field F , with one of the complexes still

required to be a linear map between a pair of spaces. While the original proof[38] would

still work with a general field, Ref. [55] gives a simpler proof for the lower bound on the

minimum distance, formulated in terms of a projected product complex with the level-j
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subspace projected onto just one subspace Ai ⊗ Bj−i ⊂ (A × B)j . As a result of the

projection, the quantum code Qj(A × B) associated with the j-th homology group of the

product complex is replaced by an F -linear quantum subsystem code; its distance gives a

lower bound on the distance associated with the homology group Hj(A×B) of the original

product complex. When one of the complexes has length two, the minimum distance of the

subsystem code can be computed and, as in the binary case, the result saturates the upper

bound.

While the construction also works for a product of chain complexes of arbitrary

length, we failed to find a tight lower bound on the distance of the corresponding projected

codes. Further, we have found a class of examples, a generalization of the homological

product of Steane code with itself[40, 42], where the distance in the projected complex

is strictly smaller than the upper bound. However, through extensive numerics for q ∈

{2, 3, 22, 5, 7, 23, 32, 11}, we could not find a single case where the homological distance in

the full product complex would fail to saturate the upper bound. We conjecture that in

a product of general chain complexes, the upper bound on the homological distance is

saturated.

1.4 Applications of HQHP codes

In theory of QEC, in addition to defining new classes of quantum LDPC codes

with parameters known explicitly, our construction of HQHP codes may be useful for: (i)

optimizing repeated measurements in the problem of FT quantum error correction[56, 57,

23, 24], (ii) related problem of single-shot error correction[58, 59, 60, 61], (iii) analysis of
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transformations between different QECCs, like the distance-balancing trick by Hastings[44],

and (iv) construction of asymmetric quantum CSS codes optimized for operation where error

rates for X and Z channels may differ strongly[62, 63, 64, 65, 66, 67].

More generally, Künneth formula is one of the most important and widely known

results in algebraic topology, see, e.g., Ref. [68]. Its well known consequence is the relation

between the Betti numbers of two manifolds and their product, which can be written in

terms of a product of the corresponding generating functions, the Poincare polynomials

p(x) = b0 + b1x + b2x
2 + . . .. Generally, bk is the rank of the k th homology group. For

manifolds in three dimensions, the zeroth Betti number, b0, gives the number of connected

components, the first, b1, the number of one-dimensional holes (incontractible cycles), and

b2 the number of closed surfaces that cut out internal cavities. In particular, for a torus,

p(x) = 1 + 2x+x2, which can be written as (1 +x)2, the square of the Poincare polynomial

for a circle.

Our results can be seen as equipping Künneth formula with a distance. For exam-

ple, consider a torus defined via periodic boundary conditions on a plane, e.g., with periods

Lx and Ly along the x and y directions. Then, the systola (girth in the case of a graph)

is min(Lx, Ly), while the surface area (number of plaquettes) is LxLy. More generally,

for a tensor product of a circle with perimeter L and an arbitrary manifold with systola

L′1, minimum surface area L′2, etc., the corresponding dimensions are given by min(L,L′1),

min(LL′1, L
′
2), . . .
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1.5 Data-syndrome codes

Quantum stabilizer codes are designed to be robust against qubit errors. However,

syndrome measurement cannot be done perfectly: necessarily, there are some measurement

errors whose probability grows with the weight of the checks (stabilizer generators). Fur-

thermore, both the syndrome measurement protocol and the syndrome-based decoding have

to operate in a fault-tolerant (FT) regime, to be robust against errors that happen during

the measurement.

When all checks have relatively small weights, as in the case of the surface codes,

one simple approach is to repeat syndrome measurement several times[13]. Then, FT

syndrome-based decoding can be done in the assumption that the data errors accumu-

late while measurement errors be independently distributed. While there is always a non-

vanishing probability to have some errors at the end of the cycle, what matters in practice

is the ability to backtrack all errors after completion of several rounds of measurement.

Another approach is to measure an overcomplete set of stabilizer generators, using

redundancy to recover the correct syndrome. Such an approach was used in the context

of higher-dimensional toric and/or color codes[17, 69], the data-syndrome (DS) codes[58,

59, 60], and single-shot measurement protocols[70, 71, 61]. Here decoding is done in the

assumption that data error remains the same during the measurement.

We note that with both approaches, the error models assumed for decoding do

not exactly match the actual error probability distribution. In particular, any correlations

between errors in different locations and/or different syndrome bits are typically ignored.

Nevertheless, simulations with circuit-based error models which reproduce at least some of
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the actual correlations show that both the repeated syndrome measurement protocol[72, 73]

and the syndrome measurement protocols relying on an overcomplete set of generators[69]

can result in competitive values of FT threshold.

The choice of the measurement protocol is typically dictated by the structure

of the code, specifically, availability of an overcomplete set of stabilizer generators of the

minimum weight. Such an approach is expected to be practical when typical gate infidelities

are comparable with the probability of an incorrect qubit measurement. However, there is

also a price to pay: codes with redundant sets of small-weight checks can be generally

expected to have worse parameters.

On the other hand, if the physical one- and two-qubit gates are relatively accurate,

it may turn out more practical to measure redundant sets of checks which include stabilizer

generators of higher weights. Then, a DS code can be designed from any stabilizer code[58,

59, 60]. As a result, one faces the problem of constructing an optimal measurement protocol

given the known gate fidelities and measurement errors.

I compare several single-shot and repeated measurement/decoding protocols for a

simple quantum convolutional code[74] with the parameters [[24, 6, 3]] and syndrome gener-

ators of weight 6. We construct several computationally efficient schemes using the classical

Viterbi algorithm[75, 76] to decode data and syndrome errors sequentially or simultaneously,

and compare their effectiveness both with phenomenological and circuit-based depolarizing

error models. In particular, we show that a DS code which requires measuring checks of

weight up to wmax = 9 has performance (successful decoding probability) exceeding that

of the repeated measurement scheme when single-qubit measurement error probability q1
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equals ten times the gate error probability p1 (taken to be the same for Hadamard and

CNOT gates).

1.6 Chapter overview

The outline of the rest of the thesis is as follows.

In Chapter 2 we go over the necessary background facts on the theory of classical

and quantum error-correcting codes, as well as chain complexes of vector spaces over a finite

field F . We also establish the relation between (co)homology groups in such a complex and

F -linear quantum codes.

In Chapter 3 we describe the construction and derive upper and lower bounds for

minimal distances of several related families of “product” codes constructed in terms of

Kronecker products of matrices associated with a pair of quantum codes whose parameters

are known.

In Chapter 4 we formulate main results in application to chain complexes, give

detailed proofs, and discuss their use in fault-tolerant quantum error correction.

In Chapter 5, I show an alternative proof for the lower distance bound when one

of the chain complexes has length 2, in the binary field. Although it has been proved in

the previous chapter with a simpler method, this proof may give some hints on deriving the

distance in the general case.

In Chapter 6, I introduce data-syndrome code as a way of adding redundancy in

measurements. Both repetition code and a classical convolutional code were used to form

9



Table 1.1: List of Acronyms

QEC Quantum error correction

QECC Quantum error correcting code

LDPC Low-density parity-check

qLDPC quantum LDPC

FT Fault-tolerant

CSS Calderbank-Shor-Steane

QHP quantum hypergraph-product

HQHP higher-dimensional QHP

DS Data-syndrome

higher-dimensional QHP codes by a tensor product with a quantum convolutional code.

Various error models including circuit error model were tested in our numerical simulations.

Finally, in Section 7, we summarize the results and list some open questions in the

development of qLDPC codes and beyond.

10



Chapter 2

Background

In this chapter, I introduce QECCs with qudits in general fields, and the map

between CSS codes and chain complexes.

2.1 Classical q-ary codes

A classical q-ary code[77] C with parameters (n,K, d)q is a collection of K strings

(codewords) of length n over an alphabet with q symbols. The code distance d is the

minimum number of positions where two strings in the code differ. A linear q-ary code,

where q is a power of a prime, is a k-dimensional subspace of the n-dimensional vector space

Fn over the field F ≡ Fq. Such a code contains K = qk strings. A linear code C ≡ CG with

parameters [n, k, d]q can be defined in terms of a generator matrix G whose rows are the

chosen basis vectors; the dimension k of the code CG is k = rankG. For a linear code, the

distance d is the minimum Hamming weight of a non-zero vector in the code.

11



A linear subspace in Fn can be also specified in terms of its orthogonal subspace.

To this end, one has to choose the inner product to be used[78, 79, 80]. The simplest choice

is the usual Euclidean scalar product, a·b ≡ a bT , where a, b ∈ Fn are considered as length-n

row vectors, and bT is the transposed vector. Respectively, the dual C⊥ of a linear code C

is a collection of q-ary row vectors orthogonal to any vector in C,

C⊥ = {b ∈ Fn|c bT = 0,∀c ∈ C}. (2.1)

For a linear code of size |C| = qk and dimension k, the dual code has size |C⊥| = qn−k.

Generator matrix H of the dual code, CH ≡ C⊥G , is called a parity check matrix of the

original code. More generally, a pair of n-column matrices G and H with elements in F are

called mutually dual if

GHT = 0, rankG+ rankH = n. (2.2)

Given a string c ∈ Fn, denote V ≡ {1, 2, . . . , n} the set indexing the individual

characters. For any index set I ⊆ V of length |I| = r, let c[I] ∈ F r be a substring of c

with the characters in all positions i 6∈ I dropped. Similarly, for an n-column matrix G

with rows gj , G[I] is formed by the rows gj [I]. If C = CG is an F -linear code with the

generating matrix G, the code of length |I| with the generating matrix G[I] is the code

punctured outside I, Cp[I] ≡ {c[I] | c ∈ C}.

The shortened code Cs[I] is formed similarly, except only from the codewords

supported inside I, Cs[I] = {c[I] | c = (c1, c2, . . . , cn) ∈ C and ci = 0 for each i 6∈ I}. The

dual of a punctured code Cp[I] is the shortened dual code, (Cp[I])⊥ = (C⊥)s[I]. To express

this relation in terms of matrices, consider a pair of mutually dual matrices in Eq. (2.2) and

a code C ≡ CG = C⊥H . Denote a generator matrix of the shortened code Cs[I] as GI . Duality
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between the punctured original and the shortened dual codes implies that the corresponding

generator matrices GI and H[I] are also mutually dual[77],

H[I]GTI = 0, rankGI + rankH[I] = |I|. (2.3)

Similarly, HI is a dual of the punctured matrix G[I].

In relation to quantum codes, we also consider q-ary linear space F 2n of length-2n

vectors in the form e = (a|b), where both a and b are row vectors of length n. The symplectic

product of two such vectors is defined as

e′ ? e ≡ a′ · b− b′ · a ≡ e′Σ eT . (2.4)

The right-most form contains the symplectic matrix,

Σ ≡ Σn =

 In

−In

 , (2.5)

with In an n × n identity matrix. For a row vector e ∈ F2n, the (symplectic) conjugate is

ẽ = eΣT = −eΣ, so that the symplectic product can be also written as e′ ? e = e′ ẽT . The

code orthogonal with respect to the symplectic product to a given q-ary code C ⊆ F 2n is

denoted C⊥?. A code C⊥?G orthogonal to CG has generator matrix G?, a (symplectic) parity

check matrix of the original code CG and also a Euclidean dual of the matrix G̃ = −GΣ,

see Eq. (2.2), except that the code length here is 2n. Explicitly, for a generator matrix in

the block form G = (A|B), where each block has n columns, rows of G? are orthogonal to

the rows of G̃ = (B| −A), G̃(G?)T = 0.
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2.2 Quantum stabilizer codes over qudits

A single qudit is an isolated quantum-mechanical system whose pure states are

described by vectors |ψ〉 in a q-dimensional Hilbert space Hq. Pure states of n qudits are

described by vectors in the Hilbert space H⊗nq , the tensor product of n single-qudit spaces.

The corresponding physical observables are described by Hermitian operators acting inH⊗nq .

An n-qudit quantum error-correcting code Q with parameters ((n,K))q is a K-dimensional

subspace of H⊗nq .

When q = pm is a power of a prime, there is a particularly nice basis for single-qudit

operators acting in Hq. Following Ref. [79], choose q orthonormal basis vectors |z〉 ∈ Hq,

z ∈ F , enumerated by elements of the finite field F ≡ Fq. Two kinds of unitary operators,

X̂(a) and Ẑ(a), a ∈ F , also enumerated by elements of the field, are defined in terms of

their action on the basis vectors,

X̂(a) |z〉 = |z + a〉 , Ẑ(b) |z〉 = ωtr(bz) |z〉 , (2.6)

where, with q = pm a prime power,

tr(x) ≡ trF/Fp
(x) = x+ xp + . . .+ xp

m−1
(2.7)

is the trace operation from the extension field F = Fq to the prime field Fp, and ω = e2πi/p is

a primitive p th root of unity. The basis of interest is formed by the q2 operators X̂(a)Ẑ(b),

a, b ∈ F .

The same operators can be used to construct a basis of operators acting in an n-

qudit Hilbert space H⊗nq . Namely, given a q-ary vector a ∈ Fn, define the n-qubit operators

X̂(a) and Ẑ(a) as tensor products over components, e.g., X̂(a) = X̂(a1) ⊗ X̂(a2) ⊗ . . . ⊗
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X̂(an). These operators generate the n-qudit Pauli group

Pn =
{
ωcX̂(a)Ẑ(b)|c ∈ Fp, a, b ∈ Fn

}
. (2.8)

The weight wgt(Û) of an operator Û ∈ Pn is defined as the number of qudits that Û acts

upon non-trivially. Up to a phase, a Pauli operator Û(a, b; c) ≡ ωcX̂(a)Ẑ(b) can be specified

by the vector e ≡ (a|b) ∈ F2n
q . The commutation relation between two such operators (with

inessential phase factors suppressed) reads

Û(a, b)Û(a′, b′) = ωtr(a·b′−b·a′)Û(a′, b′)Û(a, b). (2.9)

In particular, the two operators commute if and only if the trace symplectic form tr(a · b′−

b · a′) vanishes.

An n-qudit stabilizer code is a common +1 eigenspace of all operators in a stabilizer

group S,

Q ≡ QS =
{
|ψ〉 ∈ H⊗nq |Û |ψ〉 = |ψ〉 ,∀Û ∈ S

}
, (2.10)

where S is an abelian subgroup of Pn whose only zero-weight member is the identity opera-

tor. It is easy to see that any Pauli operator Ê which does not commute with an element of

the stabilizer throws the code QS into an orthogonal space ÊQS ; such operators are called

detectable errors. Undetectable errors commute with all elements of S. In particular, all

elements of S are undetectable. However, since these operators act trivially in the code,

such errors can be ignored. Only undetectable errors outside of S (up to a phase) are

relevant for error correction. Such errors act non-trivially in the code and correspond to

logical operators. The distance d of a stabilizer code is defined as the minimum weight of

an undetectable Pauli operator not equal (up to a phase) to an element of S. Similarly,
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errors Ê ∈ Pn and Ê′ = ωcŜÊ that differ by an element Ŝ ∈ S of the stabilizer group

(again, up to a phase) are called mutually degenerate; for all practical purposes such errors

are equivalent.

Up to the choice of the phases of its generators, a stabilizer group can be also

represented as a length-2n additive code over Fq, isomorphic to a length-2nm linear code

over the prime field Fp, where q = pm. The commutation condition gives an additional

requirement that the rows of the generator matrix be mutually orthogonal with respect to

the symplectic trace product. In general, any element x ∈ Fq of an extension of a field of

prime degree p is p-periodic with respect to addition, p x = 0. Respectively, the size of a

stabilizer group is a power of the prime p. This gives the code dimension K = qn/|S| = ps,

which is not necessarily an integral power of q. Thus, excluding the case of a prime field

analyzed in Ref. [81], a stabilizer code does not necessarily encodes an integer number of

qudits. The latter condition is satisfied under an additional constraint, s mod m = 0.

2.3 F -linear quantum codes

In this work we focus on the special case of F -linear length-2n codes formed by

vectors of the form e = (a|b), a, b ∈ Fn, and duality implemented in terms of the Euclidean

symplectic product (2.4). Unlike in Eq. (2.9), there is no field trace in this expression.

Thus, e ? e′ = 0 gives a sufficient but not a necessary condition for the Pauli operators Û(e)

and Û(e′) to commute, unless q is a prime. Such an approach follows the definition of CSS

codes in Ref. [79]. Alternatively, many of the same results can be obtained by classifying

generators in terms of a lifted Pauli group as suggested by Gottesman[82].
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Degeneracy is the key difference of quantum codes from their classical counterparts.

Two vectors e and e′ in F 2n are called degenerate with respect to elements of the F -linear

code CG generated by an r× 2n matrix G iff there exists an α ∈ F r such that e′ = e+ αG.

Degeneracy with respect to CG is denoted e′
G' e, where the generating matrix may be

omitted if the meaning is clear from context.

In the simplest case rows of the generator matrix H = (A|B) (here and below

denoted as H to indicate that orthogonality is expected) are mutually orthogonal with

respect to the symplectic product,

HH̃T ≡ HΣHT = ABT −BAT = 0, (2.11)

which is equivalent to CH ⊆ C⊥?H . The space CH is readily seen as the symplectic map of a

stabilizer group acting in H⊗nq . The corresponding dual code C⊥?H , with any pair of vectors

degenerate with respect to CH identified, is called an F -linear stabilizer code. The same

object is also known as the quotient space C⊥?H /CH .

Given any set of (m rankH) additively independent basis vectors of CH , a stabilizer

group S ⊆ Pn can be constructed by assigning each generator a phase c ∈ Fp. With this

map, vectors in C⊥?H correspond (up to a phase) to undetectable Pauli errors, i.e., operators

acting in the space QS ⊆ H⊗nq stabilized by S. Stabilizer group being abelian, it is a

subgroup of the group LS of all undetectable Pauli errors acting in H⊗nq . Thus, mutually

non-degenerate logical operators are classified by elements of the quotient group LS/S.

If we ignore the phases, this group is isomorphic to the F -linear stabilizer code C⊥?H /CH .

Notice that the subspace QS ⊆ H⊗nq is also called a stabilizer code, but this should not

cause a confusion as we will exclusively use the former meaning.
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For an F -linear stabilizer code based on the generator matrix H, any codeword

c satisfies H̃cT = 0, see Eq. (2.11); equivalent codewords are mutually degenerate, c′
H' c.

Using orthogonalization, we can construct k = n− rankH pairs of canonically conjugated

codewords ci, c
′
i such that ci ? c

′
j = δij , i, j ≤ k. Equivalently, we can construct a logical

generator matrix L whose rows are orthogonal to those of H̃, H̃LT = 0, are linearly

independent from rows of H, and, in addition,

LΣnL
T = Σk. (2.12)

More generally, with G̃GT not necessarily zero, CG-degeneracy classes of different

vectors in C⊥?G correspond to an F -linear subsystem code, a generalization of qubit subsystem

codes[83, 84]. Elements of CG form a symplectic map of subsystem code’s gauge group,

while vectors c ∈ C⊥?G correspond to bare logical operators. Multiplication of a bare logical

operator Û(c) by an element of the gauge group gives a dressed logical operator; with

the symplectic map this corresponds to adding a linear combination of the rows of G.

Nonequivalent logical operators in Pn map to vectors in F 2n which are not degenerate with

respect to CG, c′ 6'c.

A subsystem code can also be defined in terms of a stabilizer code whose stabilizer

group maps to the space CH ≡ CG ∩ C⊥?G of dimension r = rankG − 2κ, where 2κ =

rank(GG̃T ). The space CH is generated by code’s stabilizer generator matrix H whose rows

are linear combinations of the rows of G, and also G̃HT = 0. The corresponding orthogonal

space C⊥?H contains k+κ = n−r canonically conjugated vector pairs, including κ such pairs

in CG (these correspond to gauge qudits) and k pairs in C⊥?G \ CG corresponding to logical

operators of the data qudits.
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In the following, we will be mostly interested in CSS codes[79], a special class

of F -linear subsystem (or stabilizer) codes whose generator matrices can be chosen in a

block-diagonal form, G = diag(GX , GZ), with each block containing n columns. The cor-

responding stabilizer generator matrix also has a block form, H = diag(HX , HZ); the

symplectic orthogonality is equivalent to GXH
T
Z = 0 and GZH

T
X = 0. Such a code, denoted

CSS(GX , GZ), is a direct sum of an X- and a Z-like codes,

CSS(GX , GZ) = CX ⊕ CZ = C⊥HZ
/CGX

⊕ C⊥HX
/CGZ

, (2.13)

where each term in the r.h.s. is a quotient of two linear spaces. Clearly, the spaces CX

and CZ are identical to those in gauge-fixed stabilizer codes with generator matrices H1 =

diag(GX , HZ) and H2 = diag(HX , GZ), respectively. Gauge generator matrix contains κ

conjugate vector pairs not in CH , thus rankGX = rankHX +κ and rankGZ = rankHZ +κ.

As a result, both codes in the r.h.s. of Eq. (2.13) contain k = n − rankHX − rankGZ

inequivalent vectors. The distances of the two codes are

dX = min
x∈C⊥HZ

\CGX

wgt(x), dZ = min
x∈C⊥HX

\CGZ

wgt(x). (2.14)

Any k inequivalent codewords from CX can be chosen to form the rows of a logical generator

matrix LX ; in general LXH
T
Z = 0. However, it is convenient to choose bare codewords for

the basis, so that also LXG
T
Z = 0. Using bare codewords for the basis of the logical generator

matrix of the other code, LZ , this matrix will satisfy LZG
T
X = 0. In addition, choosing

conjugate vector pairs for the two bases, we can also ensure

LXL
T
Z = Ik; (2.15)
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with the full-code logical generator matrix in the block-diagonal form, L = diag(LX , LZ).

This is the CSS form of Eq. (2.12). Parameters of such a CSS code are denoted as

[[n, k, (dX , dZ)]]q, where the usual code distance is given by the minimum, d = min(dX , dZ).

2.4 Chain complex of F -linear spaces.

Generally, a chain complex is a sequence of abelian groups and a sequence of homo-

morphisms (boundary operators) between pairs of consecutive groups such that the image

of each homomorphism be included in the kernel of the next. Here we will be concerned

with the special case of chain complexes of finite-dimensional vector spaces . . . ,Aj−1,Aj , . . .

over a finite field F = Fq, where q = pm is a power of a prime p. In this case the bound-

ary operators are linear transformations ∂j : Aj−1 ← Aj that map between each pair of

neighboring spaces, with the requirement ∂j∂j+1 = 0, j ∈ Z. We define an `-complex

A ≡ K(A1, . . . , A`), a bounded chain complex which only contains `+ 1 non-trivial spaces

with fixed bases, in terms of nj−1 × nj matrices Aj with elements from F serving as the

boundary operators, j ∈ {1, . . . , `}:

A : . . .← {0} ∂0← A0
A1← A1 . . .

A`← A`
∂`+1← {0} . . . (2.16)

Here the neighboring matrices must be mutually orthogonal, Aj−1Aj = 0, j ∈ {2, . . . , `}. In

addition to boundary operators given by the matrices Aj , implicit are the trivial operators

∂0 : {0} ← A0 and ∂`+1 : A` ← {0} (with the image being the zero vector in A`) treated

formally as rank-zero 0× n0 and n` × 0 matrices.

Elements of the subspace Im(∂j+1) ⊆ Aj are called boundaries; in our case these

are linear combinations of columns of Aj+1 and, therefore, form an F -linear code with the
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generator matrix ATj+1, Im(Aj+1) = CAT
j+1

. In the singular case j = `, Im(∂`+1) = {0},

a trivial vector space. Elements of Ker(∂j) ⊂ Aj are called cycles; in our case these are

vectors in a F -linear code with the parity check matrix Aj , Ker(Aj) = C⊥Aj
. In the singular

case j = 0, Ker(∂0) = A0, the entire space.

Because of the orthogonality ∂j∂j+1 = 0, all boundaries are necessarily cycles,

Im(∂j+1) ⊆ Ker(∂j) ⊆ Aj . The structure of the cycles in Aj that are not boundaries is

described by the j th homology group,

Hj(A) ≡ H(Aj , Aj+1) = Ker(Aj)/ Im(Aj+1). (2.17)

Group quotient here means that two cycles [elements of Ker(Aj)] that differ by a boundary

[element of Im(Aj+1)] are considered equivalent; non-zero elements ofHj(A) are equivalence

classes of homologically non-trivial cycles. Explicitly, the equivalence of x and y in Aj

implies that for some α ∈ Aj+1, y = x + αATj+1. The rank of j-th homology group is the

dimension of the corresponding vector space; one has

kj ≡ rankHj(A) = nj − rankAj − rankAj+1. (2.18)

The homological distance dj is the minimum Hamming weight of a non-trivial element (any

representative) in the homology group Hj(A) ≡ H(Aj , Aj+1),

dj = min
06'x∈Hj(A)

wgtx = min
x∈Ker(Aj)\Im(Aj+1)

wgtx. (2.19)

By this definition, dj ≥ 1. To address singular cases, throughout this work we define the

minimum of an empty set as infinity; kj = 0 is always equivalent to dj =∞. In particular,

the distance of the homology group H0(A) is d0 = 1, unless A1 has full row rank, giving

k0 = 0, in which case we get d0 =∞. In the case of the homology group H`(A), the distance

21



d` is that of the F -linear code C⊥A`
. Again, we get d` = ∞ if k` = 0, which happens when

A` has full column rank.

In addition to the homology group H(Aj , Aj+1), there is also a co-homology group

H̃j(Ã) = H(ATj+1, A
T
j ) of the same rank (2.18); this is associated with the co-chain complex

Ã formed from the transposed matrices ATj taken in the opposite order. A quantum CSS

code with generator matrices GX = Aj and GZ = ATj+1 is isomorphic with the direct sum

of the groups Hj and H̃j , cf. Eq. (2.13),

CSS(Aj , A
T
j+1)

∼= H(Aj , Aj+1)⊕H(ATj+1, A
T
j ). (2.20)

The two terms correspond to Z and X logical operators, respectively. This gives for the

homological distances in the chain complex and in the co-chain complex, respectively, dj =

dZ and d̃j = dX .

The tensor product A×B of two chain complexes A and B is defined as the chain

complex formed by linear spaces decomposed as direct sums of Kronecker products,

(A× B)j =
⊕

i∈Z
Ai ⊗ Bj−i, (2.21)

with the action of the boundary operators

∂′′′(a⊗ b) ≡ ∂′a⊗ b+ (−1)ia⊗ ∂′′b, (2.22)

where a ∈ Ai, b ∈ Bj−i, and the boundary operators ∂′, ∂′′, and ∂′′′ act in complexes

A, B, and A × B, respectively. Notice that the two terms in Eq. (2.22) are supported in

different subspaces of the expansion (2.21). When both A and B are bounded, that is, they

include finite numbers of non-trivial spaces, the dimension nj(C) of a space Cj in the product
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C = A× B is

nj(C) =
∑

i
ni(A)nj−i(B). (2.23)

The homology groups of the product C = A × B are isomorphic to a simple expansion in

terms of those of A and B which is given by the Künneth formula,

Hj(C) ∼=
⊕

i
Hi(A) ⊗ Hj−i(B). (2.24)

One immediate consequence is that the rank kj(C) of the j th homology group Hj(C) is

kj(C) =
∑

i
ki(A) kj−i(B). (2.25)

Such a convolution can be also written as a product of the Poincare polynomials pA(x) ≡∑
j kj(A)xj corresponding to the two complexes, pC(x) = pA(x)pB(x).
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Chapter 3

Minimal distances of certain

F -linear CSS codes

The HQHP codes generalize quantum hypergraph product (QHP) codes and toric

codes in all dimensions. The HQHP codes projected into a single space gives subsystem

product codes, which can then be gauge fixed to concatenated codes or homological product

codes. Those include some common CSS codes, like Shors codes, Bacon Shors codes, and

subsystem QHP codes. In this chapter I introduce those codes and related properties.

3.1 Subsystem product codes and their gauge-fixed versions

Our main tool is the map (2.20) between a CSS code and the homology groups of

associated chain and co-chain complexes. In this section we derive the minimum distances of

several classes of CSS codes which are relevant for the analysis of the homological distances
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in the tensor products of chain complexes. Although the derivations are not technically

hard, these results may be of independent value.

The distance bounds are constructed using the following two Lemmas which, in

turn, follow from Eq. (2.3) and the fact that for any CSS stabilizer code CSS(HX , HZ)

with logical generator matrix L = diag(LX , LZ), the dual code C⊥HX
coincides with the

space generated by the combined rows of HZ and LZ , while C⊥HZ
coincides with the space

generated by rows of HX and LX combined.

Lemma 1 (Z-puncturing bound) Consider a stabilizer code Q = CSS(HX , HZ); denote

V the set indexing its variable nodes (columns of the matrices HX , HZ). For any decom-

position into complementary sets I ⊂ V and J = V \ I, let Q′ = CSS
(
(HX)I , HZ [I]

)
and

Q′′ = CSS
(
(HX)J , HZ [J ]

)
be the codes whose X generator matrices are shortened and Z

generator matrices punctured to I and J , respectively. Then the Z-distances of the three

codes satisfy the inequality dZ ≥ min(d′Z , d
′′
Z), if the logical qubits satisfy k = k′ + k′′.

Proof. Assume the code Q encodes k > 0 qudits (the case k = 0 is trivial), and let the

matrix HZ contain r rows. The distance dZ of the code is the minimum weight in the set

QZ = C⊥HX
\ CHZ

of all non-trivial codewords and their equivalent vectors. For any c ∈ QZ ,

the punctured codeword c[I] is either trivial or it is in Q′Z . Similarly, c[J ] is either trivial or

in Q′′Z . For any c ∈ ΩZ , we have wgt c[I] + wgt c[J ] = wgt c > 0. The punctured codewords

c[I] and c[J ] contribute to the distances of the corresponding codes only if the corresponding

weight is non-zero. Let d(c) equal infinity if wgt c = 0, and wgt c ≥ 1 otherwise. Then,

min
(
d(c[I]), d(c[J ])

)
≤ d(c). Minimize over all c ∈ QZ to get the desired inequality.

25



Lemma 2 (Z-shortening bound) Consider a stabilizer code Q = CSS(HX , HZ) with the

set V indexing its variable nodes. For any index set I ⊂ V , let Q′ = CSS
(
HX [I], (HZ)I

)
be

the code whose X generator matrix is punctured and Z generator matrices shortened to I.

Then (i) the Z-distances of the original code does not exceed that of Q′, dZ ≤ d′Z . (ii) This

inequality is saturated if the support of a minimum-weight codeword in QZ is contained in

I.

Proof. This follows from the facts that (a) any codeword in Q′Z is also in QZ , and (b) that

any codeword in QZ which is supported on I is also in Q′Z .

We now consider several “product” codes related to the subsystem code Qsubs =

CSS(GX , GZ) with the gauge generator matrices

GX =

 HA
X ⊗ I(nB)

I(nA)⊗HB
X

 , GZ =

 HA
Z ⊗ I(nB)

I(nA)⊗HB
Z

 , (3.1)

constructed in terms of generator matrices of a pair of stabilizer codes QA = CSS(HA
X , H

A
Z )

and QB = CSS(HB
X , H

B
Z ) with parameters [[nA, kA, (d

A
X , d

A
Z)]]q and [[nB, kB, (d

B
X , d

B
Z )]]q,

respectively.

Lemma 3 (Subsystem product code) Denote LAX , LAZ and LBX , LBZ the logical gener-

ator matrices of the CSS stabilizer codes CSS(HA
X , H

A
Z ) and CSS(HB

X , H
B
Z ), respectively,

chosen so that

LAX(LAZ)T = I(kA), LBX(LBZ )T = I(kB). (3.2)

Then the subsystem product code with CSS gauge generator matrices (3.1) has logical

generator matrices

LX = LAX ⊗ LBZ , LZ = LAZ ⊗ LBZ , (3.3)
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and stabilizer generator matrices

HX =


HA
X ⊗HB

X

HA
X ⊗ LBX

LAX ⊗HB
X

 , HZ =


HA
Z ⊗HB

Z

HA
Z ⊗ LBZ

LAZ ⊗HB
Z

 . (3.4)

Proof. Matrices

PA =

 LAZ

HA
Z

 , PB =

 LBZ

HB
Z

 (3.5)

are the parity check matrices for the classical F -linear codes with generator matrices HA
X

and HB
X , respectively. Thus, a classical code with generator matrix GX in Eq. (3.1) has a

parity check matrix PA ⊗ PB. Out of the four row blocks of the latter matrix, only rows of

LZ = LAZ ⊗ LBZ are linearly independent from the rows of GZ , as can be verified by taking

scalar products with the rows of LX . The remaining row blocks can be readily seen as linear

combinations of the rows of GZ ; they form the matrix HZ . The proof for LX and HX is

similar.

Theorem 4 (Concatenated-stabilizer CSS code) Let QA and QB be two F -linear CSS

stabilizer codes used to define matrices (3.1), with logical generator matrices (3.2). Use nB

copies of the code QA, with logical operators used as qudits for the outer code, to form a

concatenated-stabilizer code Q with CSS generator matrices

HX =

 HA
X ⊗ I(nB)

LAX ⊗HB
X

 , HZ =

 HA
Z ⊗ I(nB)

LAZ ⊗HB
Z

 . (3.6)

The logical generator matrices of thus constructed code are given by Eq. (3.3), and the

parameters are given by the corresponding products [[nAnB, kAkB, (d
A
Xd

B
X , d

A
Zd

B
Z )]]q.
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Proof. It is easy to check that HXH
T
Z = 0; this is a stabilizer code. Similarly, we

get HXL
T
Z = 0, HZL

T
X = 0, LXL

T
Z = I(kA)⊗ I(kB), and the matrix ranks

rankHX = rankHA
X nB + kA rankHB

X , (3.7)

rankHZ = rankHA
Z nB + kA rankHB

Z , (3.8)

rankLX = rankLZ = kAkB; (3.9)

these expressions add up to the code length nAnB. This verifies the CSS construction

and the number of encoded qudits k = kAkB. The case k = 0 is trivial; in the following,

assume k > 0. To construct the upper distance bounds, e.g., dZ ≤ dAZd
B
Z , consider pairs of

conjugated codewords a, a′ and b, b′ in QA and QB, respectively, where a and b are Z-like

with wgt a = dAZ , wgt b = dBZ , and a′aT = b′bT = 1. Then the vector c = a ⊗ b of weight

dAZd
B
Z satisfies HXc

T = 0. Further, its dual a′ ⊗ b′ is orthogonal to the rows of HZ , which

implies that c cannot be a linear combination of the rows of HZ . Taken together, this

proves c ∈ QZ , thus its weight gives a valid upper bound on dZ .

To construct a matching lower distance bound, assume there is a non-trivial code-

word c ∈ QZ such that wgt(c) < dAZd
B
Z . This implies HXc

T = 0, and also that c must be

linearly independent from the rows of HZ . Let ej ∈ FnB , j ∈ {1, . . . , nB} be vectors with

all zero components except a one at position j. Consider a decomposition

c =
∑
j

aj ⊗ ej , where aj ∈ FnA . (3.10)

From the upper row blocks of the generators (3.6), each non-zero aj must either be a non-

trivial Z-like vector in the code QA, or a linear combination of the rows of HA
Z . This implies

that any non-zero aj such that wgt(aj) < dAZ can be removed from c (set to zero) without
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any other changes; the resulting vector c′ should remain in the code as the two vectors

are degenerate with respect to CHZ
. This vector has weight wgt(c′) ≤ wgt(c) < dAZd

B
Z ,

and any non-zero component aj in its expansion (3.10) has weight dAZ or larger. Let J ⊂

{1, 2, . . . , nB} be the set of positions j corresponding to non-zero aj in the expansion of c′.

By this logic,

dAZd
B
Z > wgt(c′) =

∑
j∈J

wgt(aj) ≥ dAZ |J |; (3.11)

the total number of positions in J satisfies |J | < dBZ . Denote VA = {1, 2, . . . , nA} and

I ≡ VA ⊗ J ; the punctured vector c′[I] preserves all non-zero positions in c′. Thus, c′[I]

should be in the code Q′ = CSS
(
HX [I], (HZ)I

)
, see Lemma 2. By construction, the

matrices HX [I] and (HZ)I have the same structure (3.6), except the code QB is replaced

with Q′B = CSS
(
HX [J ], (HZ)J

)
of length |J |. This latter code also satisfies Lemma 2;

we expect the corresponding distance to serve as an upper bound to dBZ . However, since

its length |J | < dBZ , the only possibility is for the code Q′B to encode no qubits, k′B = 0.

Necessarily, the code Q′ also has k′ = kAk
′
B = 0, which makes the initial assumption about

the existence of the codeword c invalid; this proves dZ = dAZd
B
Z .

3.2 Bounds on the minimal distance

Notice that rows of HZ in Eq. (3.4) are linear combinations of rows of HZ in

Eq. (3.6), whose rows are, in turn, linear combinations of rows of GZ in Eq. (3.1). Similar

relation exists between the corresponding X matrices. As a result, there is a sequence of

inclusions,

C⊥GX
\ CHZ

⊆ C⊥
HX
\ CHZ

⊆ C⊥HX
\ CGZ

, (3.12)
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which implies a sequence of inequalities for the three related codes:

dZ(GX , HZ) ≥ dZ(HX , HZ) ≥ dZ(HX , GZ), (3.13)

where, e.g., dZ(GX , HZ) is the Z-distance in the code CSS(GX , HZ).

On the other hand, from linear relations between the rows of matrices involved,

Lemma 3 and Theorem 4, it follows that all of the three codes in Eq. (3.12) are gauge-fixed

versions of the subsystem code with the generators (3.1). They share the logical generator

matrices (3.3), which implies a common upper bound dZ ≤ dAZd
B
Z ; the proof is similar to

that in Statement 4. We get

dZ(GX , GZ) = dZ(HX , GZ) ≤ dAZdBZ , (3.14)

dZ(GX , HZ) = dZ(HX , HZ) = dAZd
B
Z . (3.15)

Unfortunately, we are not able to get the exact values for the Z-distances in the

l.h.s. of Eq. (3.14). It is clear that the general upper bound (3.14) is sharp. In particular,

the upper bound is saturated whenever one of the codes has distance one. This follows from

the following two lower bounds which we adapted from Ref. [42].

Statement 5 (Lower distance bound I) Consider an F -linear code CSS(HX , GZ) with

stabilizer generator matrices HX and GZ given by Eqs. (3.4) and (3.1), respectively. (a)

The corresponding Z-distance satisfies the inequality

dZ(HX , GZ) ≥ max(dAZ , d
B
Z ). (3.16)

(b) In addition, assume that dAZ > 1. Then, with F = Fq,

dZ(HX , GZ) ≥ q

q − 1
dBZ . (3.17)
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The proof is based on the following Lemma from Ref. [42]:

Lemma 6 (Lower distance bound II) Consider an F -linear stabilizer code Q = CSS(HX , GZ)

with generator matrices HX and GZ in Eqs. (3.4) and (3.1), respectively. Given a ∈ QXA ,

consider a set ΩA(a) = {x1, x2, . . . , xN} of vectors degenerate with a with respect to CHA
X

,

such that each i ∈ {1, 2, . . . , nA} is in the support of no more than K of these vectors. Then,

for any Z-like codeword c ∈ QZ such that [a⊗ I(nB)] cT 6= 0,

wgt(c) ≥
⌈
N

K
dBZ

⌉
. (3.18)

Proof. Given c in Eq. (3.18), consider an expansion

c =

nA∑
j=1

fj ⊗ bj , bj ∈ FnB ,

where components of fj ∈ FnA are all zero except for fj [j] = 1, j ∈ {1, . . . , nA}. By

assumption, the dot-product ai ⊗ I(nB) with c is non-zero; for any ai ∈ ΩA(a),

xTi ≡ (ai ⊗ InB ) cT =
∑
j

ai[j] b
T
j .

It is easy to check that the resulting vector xi ∈ FnB satisfies HB
Xx

T
i = 0, while LBXx

T
i 6= 0.

That is, xi is in QZB, so that wgt(xi) ≥ dBZ . Let us now sum the weights of vectors xi

corresponding to all elements of ΩA(a),

NdBZ ≤
N∑
i=1

wgt(xi) ≤
nA∑
j=1

N∑
i=1

wgt(ai[j] b
T
j )

≤ K

nA∑
j=1

wgt(bj) = K wgt(c),

which gives Eq. (3.18) since wgt(c) is an integer.

Proof of Statement 5. Both (a) and (b) are trivial if kAkB = 0; assume

otherwise below. (a) The construction is symmetric with respect to constituent codes QA
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and QB; without limiting generality assume dBZ ≥ dAZ . Use the set ΩA(a) = {a} in Lemma

6 with N = K = 1, which proves dZ(HX , GZ) ≥ dBZ . (b) The condition dAZ > 1 implies

that any all-zero column in HA
X (say, at position i ≤ nA) must be matched by a row (or

a linear combination of rows) of HA
Z with the only non-zero element at i. This guarantees

that any X-like codeword a has no support at such position(s). For any a ∈ QAX , consider

the set Ω ≡ ΩA(a) of size N = qrankH
X
A which contains all vectors degenerate with a. For

any i ≤ nA, the set of characters Ω[i] ≡ {x[i] : ∀x ∈ ΩA(a)} either contains all zeros, or

contains equal numbers of all elements of F—this can be seen by considering a generating

matrix with all except one row not supported on i. For such a set, K = (q− 1)q(rankH
X
A −1),

which proves Eq. (3.17).

Another application of Lemma 6 is demonstrated by the following

Example 7 Let QA = CSS(HA
X , H

A
Z ) be a single-qubit encoding (consta)cyclic CSS code

with parameters [[nA, 1, (d
A
X , d

A
Z)]]. Then, for any QB = CSS(HA

X , H
A
Z ), the Z-distance of

the product code CSS(HX , GZ) with stabilizer generator matrices (3.4) and (3.1) satisfies

dZ(HX , GZ) ≥ dnAdBZ/dAXe. (3.19)

Proof. Use Lemma 6 with ΩA(a) a set of size N = nA constructed by shifting an X-like

minimum-weight codeword a ∈ QXA , wgt(a) = dAX by 0, 1, . . . , nA − 1 positions. The

resulting vectors xi ∈ ΩA(a) cannot be linear combinations of rows HA
X , or else the original

vector a would be too, thus they must be in the code. Since kA = 1, they must be degenerate

with a. The lower bound (3.19) is obtained if we notice that for this set, K = dAX .

The discussed lower distance bounds are pretty far from the generic upper bound

(3.14). On the other hand, at least in the binary case, it is not easy to construct an
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example of a subsystem product code with the distance strictly below the upper bound.

Discovering such examples is dramatically simplified with the help of the ansatz in the

following Theorem 8, a generalization of the construction based on the homological product

of Steane’s [[7, 1, 3]] code with itself[40, 42] (see Example 11 below)

Theorem 8 (X–Z-symmetric product codes) Consider codes QA = CSS(HA
X , H

A
Z ) and

QB = CSS(HA
Z , H

A
X) with X and Z generator matrices interchanged. The distances of the

corresponding subsystem product code CSS(GX , GZ) with generators (3.1) satisfy

dX(GX , GZ) ≤ nA, dZ(GX , GZ) ≤ nA. (3.20)

The inequality (3.14) becomes strict if nA < dAZd
B
Z ≡ dAZdAX .

Proof. The construction is symmetric with respect to X and Z parts of QA; it is sufficient

to prove the bound for dZ ≡ dZ(GX , GZ) = dZ(HX , GZ) with HX in Eq. (3.4). We have

nA = nB; consider a vector c =
∑nA

j=1 ej ⊗ ej of weight nA, where ej are weight-one vectors

as in Eq. (3.10). Using Eq. (3.2) and the orthogonality between the rows of remaining X

and Z generator matrices, verify that HXc
T = 0 while LXc

T 6= 0. Thus, c is a valid Z-like

codeword in CSS(HX , GZ) and dZ ≤ nA.

It is known that long CSS codes with distances scaling linearly with the code

length n exist[51]. For a pair of such codes, the generic upper bound (3.14) has asymptotic

scaling d ≤ O(nAnB), linear in the length of the product code. On the other hand, the

upper bound for the corresponding X–Z-symmetric product codes, see Theorem 8, gives

d ≤ nA, a square root of the length of the product code. Thus, we can not expect the

generic upper bound to be saturated. The following explicit Examples demonstrate that

such a saturation does not happen for any finite field F .
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Example 9 For any field F = Fq with q ≡ 2t + 1 odd, consider a [[3, 1, (2, 2)]]q code with

CSS generators HX = (1, 1, 1), HZ = (t, t, 1). The corresponding X–Z-symmetric product

code in Theorem 8 has distances dX = dZ = 3, smaller than the upper bound (3.14). For

q = 3, this saturates the lower bound (3.17).

Example 10 For any q = 2m with m even, so that r ≡ (q− 1)/3 be an integer, consider a

stabilizer code [[3, 1, (2, 2)]]q with cyclic HA
X and constacyclic HB

Z generators,

HA
X =

(
1 1 1

)
, HA

Z =

(
1 xr x2r

)
, (3.21)

where x ∈ Fq is a primitive element, i.e., xq−1 = 1. Construct an X–Z-symmetric product

code as in Theorem 8. Combining Eq. (3.20) with the lower bound (3.19) again gives

dZ(GX , GZ) = 3, smaller than dAZd
B
Z = dAZd

A
X = 4.

Example 11 (Square of Steane’s code[40, 42]) For any q = 2m, m ∈ N, consider a

pair of identical cyclic codes [[7, 1, (3, 3)]]q with stabilizer generator polynomials hAX(x) =

hBZ (x) = 1 + x2 + x3 + x4. Combination of the X–Z symmetric product construction from

Theorem 8 and the lower bound (3.19) gives dZ(GX , GZ) = 7, smaller than dAZd
B
Z = 9.

3.3 Previously known constructions

In the remainder of this Section, we discuss several existing code families which

can be described as special cases of the subsystem product code construction in Lemma 3,

or as gauge-fixed versions of such codes.

The first such family, homological product codes from Refs. [40, 42], is based on

square nilpotent matrices such that δ2 = 0, with elements from a field F = Fq with q = 2m,
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m ∈ N. Such a matrix δ and its transposed δT can be used to construct the stabilizer code

CSS(δ, δT ) and its symmetric CSS(δT , δ). Alternatively, stabilizer generators of a CSS code

with rankHX = rankHZ can be used to form such a nilpotent matrix, δ = HT
XMHZ , where

M is a matrix of appropriate dimensions chosen to preserve the rank of the product.

Example 12 (Homological product codes) For q = 2m, m ∈ N, consider a pair of

F -linear stabilizer codes Qµ = CSS(δµ, δ
T
µ ) with parameters [[nµ, kµ, (d

µ
X , d

µ
Z)]]q based on

nilpotent matrices δµ, where µ ∈ {A,B}. Then the matrix δC = I(nA) ⊗ δB + δA ⊗ I(nB)

is also nilpotent. The corresponding code CSS(δC , δ
T
C) has logical generator matrices given

by Eq. (3.1), and parameters [[nAnB, kAkB, (d
C
X , d

C
Z )]]q, where, e.g.,

dZ(GX , GZ) ≤ dCZ ≤ dAZdBZ . (3.22)

Proof. It is easy to check that the logical generator matrices are given by Eq. (3.3); the

upper bound on the distance follows. On the other hand, rows of δC and δTC , respectively,

are linear combinations of the rows of GX and GZ , see Eq. (3.1). This implies that the

stabilizer code defined by this matrix is a gauge-fixed version of the subsystem product code

CSS(GX , GZ), which gives the lower bound.

As before, the upper distance bound is sharp, but it is not necessarily saturated.

In particular, an example[40] can be constructed along the lines of Example 11, as a ho-

mological product code combining two Steane’s codes with identical symmetric nilpotent

matrices δ. Such a code has distance d = 7, while the the upper bound in Eq. (3.22) gives

d ≤ 9.

Our last example shows that subsystem product codes and the corresponding

gauge-fixed codes from Lemma 3 can be seen as a generalization of subsystem hypergraph-
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product codes and corresponding gauge-fixed codes recently constructed by Li and Yoder[85]

which are, in turn, a generalization of Bacon-Shor[84] and Shor’s[86] codes, respectively. The

Li–Yoder construction is based on a pair of classical codes, it is similar but not identical to

those in Refs. [87, 88]. Namely, the gauge and stabilizer generator matrices can be obtained

from Eqs. (3.1) and (3.4) by considering the classical codes as degenerate quantum codes

with empty HA
Z and HB

X matrices.

Example 13 (Subsystem QHP codes[85]) Given a pair of F -linear classical codes with

parameters [nµ, kµ, dµ]q, parity check matrices Pµ, and generator matrices Qµ, where µ ∈

{A,B}, consider a subsystem code CSS(GX , GZ) with gauge generator matrices

GX = (PA ⊗ InB ), GZ = (InA ⊗ PB). (3.23)

The corresponding stabilizer generator matrices are

HX = (PA ⊗QB) , HZ = (QA ⊗ PB) . (3.24)

Assuming kAkB > 0, the parameters of the subsystem and both gauge-fixed codes are

[[nAnB, kAkB, (dA, dB)]]q.

The parameters of the codes follow from Theorem (4) where we should use dAX = dBZ = 1.

In particular, we get the original Bacon-Shor (BS) and Shor’s codes if we take repetition

codes for both classical codes.

We also notice that a subsystem product code constructed from a BS code and

a repetition code coincides with the 3-dimensional BS code as proposed by Napp and

Preskill[89] (this construction differs from the 3D code originally suggested by Bacon[84]).

Napp & Preskill construction can be seen as a three-fold subsytem product of repetition
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codes, and can be generalized to higher dimensions. However, it is easy to check that these

single-qubit encoding codes are just rearrangements of conventional BS codes from a 2D

lattice to higher dimensions. The only differences are the measurement redundancy and

local connectivity of neighboring qubits, as defined by the specific sets of gauge generators

used in the construction.
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Chapter 4

Homological distances in tensor

products of chain complexes

Example 13 may serve as a nice introduction to the subject of this chapter. Indeed,

Bacon-Shor code can be obtained from Kitaev’s toric code by erasing qubits on all vertical

(or all horizontal) bonds. The latter code corresponds exactly to a CW-complex associated

with a square lattice with periodic boundary conditions—a tensor product of two cycle

graphs. More general gauge generator matrices (3.23) can be seen as a result of erasing one

of the blocks in a QHP code[35, 36] with stabilizer generator matrices

HX = (PA ⊗ InB |IB ⊗ P
T
B ),

HZ = (InA ⊗ PB| − P
T
A ⊗ IA), (4.1)

where the dimensions of the identity matrices IA and IB match the numbers of rows in the

two check matrices. The matrices HX and HT
Z correspond exactly to the boundary operator

matrices in a product of the chain complexes K(PA) and K(P TB ). In this section we consider
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tensor products of general bounded F -linear chain complexes. The corresponding boundary

operators, see Eq. (4.8) below, have row- and column-blocks with the structure of the gauge

generator matrices (3.1).

4.1 Main results for F -linear chain complexes

Our main result is the expression for the homological distance in a tensor product

of two bounded chain complexes of finite-dimensional vector spaces over a finite field F ,

where one of the complexes contains just two non-trivial spaces. Specifically, let A be such

a complex of any length specified in terms of boundary operators ∂j : Aj−1 ← Aj defined

explicitly as matrices, ∂j = Aj such that AjAj+1 = 0, and B a complex with just two non-

trivial spaces B0 and B1 and a single non-trivial boundary operator (matrix) B1 : B0 ← B1

mapping between them. Then, the homological distance dj(C) for the j th homology group

in the tensor product C = A× B of the two complexes is

dj(C) = min
(
dj(A)d0(B), dj−1(A)d1(B)

)
. (4.2)

This is a generalization of the identical expression for the tensor product of binary chain

complexes from Ref. [38].

There is actually a stronger statement which concerns the homological distance

dj(Ci,j−i) after a projection onto a single subspace Ci,j−i = Ai ⊗ Bj−i, where j − i ∈ {0, 1}.

Here, a chain complex with the space Cj reduced to its subspace has modified boundary

operators ∂′i and ∂′i+1. The latter is defined as a composition of a projector P and the original

boundary operator ∂i+1, ∂
′
i+1 ≡ P∂i+1, where P 2 = P and the image of P is the subspace of

interest. The modified boundary operator ∂′i is defined to ensure the composition to vanish,
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∂′i ∂
′
i+1 = 0. For thus defined chain complex C′i,j−i with the space Cj in the original product

complex C projected to its subspace Ci,j−i, the homological distance at level j is given by

one term only,

dj(C′i,j−i) = di(A)dj−i(B), j − i ∈ {0, 1}. (4.3)

Our third result concerns with the minimal distance in a tensor product of two

arbitrary-length chain complexes of vector spaces over a finite field F . Here the upper

bound on the homological distance reads

dj(C) ≤ min
i∈Z

di(A)dj−i(B). (4.4)

A lower bound for the same distance dj(C) can be constructed by projecting onto the

individual product spaces Ai ⊗ Bj−i, i ∈ Z, whose direct sum gives the degree-j space Cj

in the product complex. This gives dj(C) ≥ mini d(C′i,j−i). The result of the projection can

be seen as an F -linear quantum subsystem code with CSS gauge generator matrices in the

product form (3.1),

GX =

 I(ai)⊗Bj−i

Ai ⊗ I(bj−i)

 , GZ =

 I(ai)⊗BT
j−i+1

ATi+1 ⊗ I(bj−i)

 , (4.5)

where I(a) ≡ Ia is the size-a identity matrix, and ai and bi, respectively, are the dimensions

of the degree-i spaces in the chain complexes A and B. Thus, the Z-distance of the subsys-

tem code with CSS generators (4.5) may serve as a lower bound for dj(C), complimentary

to Eq. (4.4).

Unfortunately, such a projection is not an ideal tool for finding the minimum

distances in the product complex, as the distance may actually be reduced in some cases.
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The examples of such a reduction are based on Theorem 8 in the previous Section; it may

happen for any finite field.

However, this reduction only concerns the minimum distances in tensor prod-

ucts of chain complexes after projection to one of the subspaces, it does not prevent

the inequality (4.4) from being saturated. We conducted extensive numerical calcula-

tions finding homological distances for products of random Fq-linear chain complexes with

q ∈ {2, 3, 22, 5, 7, 23, 32, 11} and space dimensions of up to 12, and an exhaustive enumera-

tion of products of binary chain complexes with individual spaces of dimension up to 7. Yet

we haven’t been able to find a single example of a pair of chain complexes whose product

would fail to reach the upper bound (4.4). Combined with analytical results for multiple

products of chain complexes involving just two spaces, we conjecture that in general, for

any finite field F = Fq, the homological distances in a tensor product of a pair of bounded

chain complexes of vector spaces over F satisfy the equality

dj(A× B) = min
i∈Z

di(A)dj−i(B). (4.6)

4.2 Upper bound on the distance

Statement 14 Consider two F -linear chain complexes A = K(A1, . . . , A`) and B = K(B1, . . . , B`′).

Then, for any i, j ∈ Z, the homological distance of the product complex C = A× B at level

j satisfies the inequality

dj(C) ≤ di(A)dj−i(B). (4.7)
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Proof. By definition, the distances di(A) and dj−i(B) are natural or infinite. Thus, if one or

both homology groups are trivial, ki(A) = 0 or kj−i(B) = 0 (in which case the corresponding

distance is infinite), the r.h.s. of Eq. (4.7) equals infinity, so that the inequality in question

is trivially satisfied.

Otherwise, with both homology groups non-trivial, consider a pair of minimum-

weight homologically non-trivial vectors a ∈ Hi(A) and b ∈ Hj(B) such that wgt(a) =

di(A) and wgt(b) = dj(B). Vector a is a non-trivial Z-like codeword in the stabilizer code

CSS(Ai, A
T
i+1); denote a′ an X-like codeword in the same code conjugate to a, that is,

a′ · a = 1. In other words, this vector is a co-cycle in Ãi. [In fact, a′ is a member of the

co-homology group Hi(Ã), but this is not needed for the proof.] Similarly, denote b′ an

X-like codeword in the code CSS(Bj−i, B
T
j−i+1) conjugate to b, a co-cycle in B̃j . Construct

c ∈ Cj by assigning non-zero value ci,j−i = a⊗ b in the subspace Ai ⊗ Bj−i, and zero in all

other subspaces at level j. Clearly, wgt(c) = di(A)dj−i(B); to prove the upper bound (4.7)

we just need to show that c 6' 0. To this end, consider a vector c′ constructed similarly to

c but from vectors a′ and b′; it is easy to check that c · c′ = 1. In addition, this vector is

a co-cycle in C̃j , i.e., c′Cj+1 = 0, where the matrix is a boundary operator in the product

complex C, cf. Eq. (2.22). Any vector equivalent to c has the form c+ x(Cj+1)
T , for some

x ∈ Cj+1. However, such a combination is never zero, as can be verified by taking a dot

product with c′.

The upper bound (4.4) immediately follows from Statement 14 by minimizing over

i.
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4.3 Lower bounds on the distance

To make the map with the product codes in Sec. 3 evident, we start by writing

out the block form of a matrix in the product complex C = A⊗B, where the spaces Ai and

Bj have dimensions ai and bj , respectively:

Cj =



Aj ⊗ I(b0) (−1)j−1I(aj−1)⊗B1

Aj−1 ⊗ I(b1) (−1)j−2I(aj−2)⊗B2

. . .
. . .

A1 ⊗ I(bj−1) I(a0)⊗Bj


.

(4.8)

For ease of mapping of the homology group Hj(C) to the CSS stabilizer code with generators

HX = Cj and HZ = CTj+1, we also write the latter matrix explicitly

CT
j+1 =



AT
j+1 ⊗ I(b0)

(−1)jI(aj)⊗BT
1 AT

j ⊗ I(b1)

(−1)j−1I(aj−1)⊗BT
2 AT

j−1 ⊗ I(b2)

. . .
. . .

−I(a1)⊗BT
j−1 AT

1 ⊗ I(bj)

I(a0)⊗BT
j+1



.

(4.9)

Clearly, in general, the generator matrices HX = Cj and HZ = CTj+1 have j + 1 column

blocks, with each block row and block column incident on no more than two non-zero blocks.

Our strategy is to construct bounds on the distance of these codes using Lemmas 1 and 2.

First, let us construct the codes Q(i,j−i), i ∈ Z, each projected into a single sub-

space Ai⊗Bj−i as in Lemma 1. The corresponding lower bound on the homological distance

at the level j of the product complex C reads

dj(C) ≥ min
i∈Z

dZ

(
Q(i,j−i)

)
. (4.10)
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Denote I ≡ Iji the index set corresponding to the subspace Ai⊗Bj−i in Cj . The punctured

matrix GZ [I] is obtained by selecting the appropriate column block in the matrix (4.9).

When expressed in terms of the two small stabilizer codes QA = CSS(Ai, A
T
i+1) and QB =

CSS(Bj−i, B
T
j−i+1) associated with the homology groups Hi(A) and Hj−i(B), respectively,

the resulting matrix has exactly the form of the gauge generator matrix GZ in Eq. (3.1).

To construct the matching shortened matrix (HX)I , notice that only two row blocks in Cj

give non-zero contribution,

Cj [I
j
i+1 ∪ I

j
i ∪ I

j
i−1]

=



(−1)i+1I(ai+1)⊗Bj−i−1

Ai+1 ⊗ I(bj−i−1) (−1)iI(ai)⊗Bj−i

Ai ⊗ I(bj−i) (−1)i−1I(ai−1)⊗Bj−i+1

Ai−1 ⊗ I(bj−i+1)


.

The shortening to the middle column block, Iji , is achieved with the help of row

operations equivalent to left multiplication of the second row block by A∗ ⊗ I(bj−i−1) and

of the third row block by I(ai−1)⊗B∗, where

A∗ =

 Ai

LAX

 , B∗ =

 Bj−i

LBX

 (4.11)

are the largest-rank matrices with rows orthogonal to the columns of Aj+1 and Bj−i+1,

respectively. Here and below, we denote LAX , LAZ and LBX , LBZ the canonical logical generator

matrices (2.15) of the same stabilizer codes, QA and QB. As a result of the multiplication,

we obtain the shortened matrix (HX)I in the exact form of the stabilizer generator matrix

HX in Eq. (3.4), again, when expressed in terms of the matrices associated with the codes
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QA and QB. According to Lemma 3, the corresponding stabilizer code CSS
(
(HX)I , HZ [I]

)
has exactly the same Z-distance as the subsystem code CSS

(
HX [I], HZ [I]

)
obtained by

puncturing both matrices HX = Cj and HZ = CTj+1 to the single subspace Ai ⊗ Bj−i.

With the help of the upper bound (3.14) and the loose lower bound (3.16), we

obtain

Statement 15 The Z-distance dZ ≡ dZ(Q(i,j−i)) of the F -linear CSS code Q(i,j−i) obtained

by Z-puncturing the CSS code corresponding to homology group Hj(A⊗B) to the subspace

Ai ⊗ Bj−i satisfies the bounds

max
(
di(A), dj−i(B)

)
≤ dZ ≤ di(A)dj−i(B). (4.12)

Since d0(A) and d0(B) are restricted to be either zero or infinity, this gives exact

values for the distance in two special cases:

dZ(Q(j,0)) = dj(A)d0(B), (4.13)

dZ(Q(0,j)) = d0(A)dj(B). (4.14)

In addition, the structure of the homologically non-trivial vectors is somewhat clarified by

the following restricted result:

Statement 16 Consider a vector c ∈ Cj at level j in the product chain complex C = A×B,

and assume that for some i ≤ j, c has a non-zero weight in Hi(A) ⊗ Hj−i(B), while the

components of c are zero in spaces Ai′ ⊗ Bj−i′ with i′ < i. Then wgt(c) ≥ di(A)dj−i(B).

Proof. The vector is a Z-like codeword in the CSS code with generator matrices (4.8) and

(4.9). The condition can be used to construct a Z-shortened code, with all blocks to the
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right of the block Ai⊗Bj−i removed as in Lemma 2. This amounts to dropping all column

blocks of Cj and CTj+1 to the right of the (j − i+ 1) th block-column which corresponds to

the subspace Ai ⊗ Bj−i, and multiplication of the last block-row that remains non-zero in

CTj+1 by (A∗)T ⊗ I(bj−i), where A∗ is given by Eq. (4.11). After a subsequent application

of a Z-puncture, so that all block columns to the left of the block Ai⊗Bj−i are removed as

in Lemma 1, we obtain exactly the concatenated-stabilizer code in Theorem 4, constructed

from QA = CSS(Ai, A
T
i+1) and QB = CSS(Bj−i, B

T
j−i+1). The Z-distance of this code is

dZ = dAZd
B
Z = di(A)dj−i(B). Moreover, by assumption, vector c punctured to the space

Ai ⊗ Bj−i is non-trivial in the product code, which guarantees wgt(c) ≥ dZ .

Clearly, the same lower bound also applies for vectors with zero weight in all spaces

Ai′ ⊗Bj−i′ with i′ > j. In addition, the condition of Statement 16 is automatically satisfied

when Bj−i is the last non-trivial matrix in the complex B, i.e., j− i = `′, see Statement 14.

In this case, again, the upper bound in Eq. (4.12) is saturated, dZ(Q(i,`′)) = di(A)d`′(B).

The same is true also when Ai is the last non-trivial boundary operator in the complex A,

i = `; we have dZ(Q(`,j)) = d`(A)dj(B).

The special cases in Statements 15 and 16 combine to give exact distances in

the case where one of the complexes in the product contains just one non-trivial boundary

operator. This gives an extension of the main result in Ref. [38] to F -linear chain complexes:

Theorem 17 Consider a tensor product C = A × B of two F -linear chain complexes,

where one of the complexes contains just two non-trivial spaces, e.g., A = K(A1, . . . , A`)

and B = K(B1). Then, for any j ∈ Z, the homological distance at level j of the product
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complex C = A× B is

dj(C) = min
i∈Z

di(A)dj−i(B). (4.15)

In Ref. [38], we conjectured that in the binary case, q = 2, the identity (4.15)

be applicable to products of arbitrary bounded complexes. The conjecture was based on

extensive numerical simulations of products of length-three binary complexes corresponding

to pairs of randomly-generated CSS codes.

In addition, here we have conducted numerical simulations of product chain com-

plexes based on pairs of random Fq-linear stabilizer codes, with all CSS generators of full-

row-rank, so that in the corresponding chain complexes only the homology groups H1(A)

and H1(B) be non-trivial. For each q ∈ {2, 3, 22, 5, 7, 23, 32, 11}, we generated some 2× 104

such code pairs of length 3 ≤ a1 ≤ b1 ≤ 11, and calculated the homological distances d2(C)

and d2(C̃) of the corresponding (co)chain product complexes using a version of the covering

set algorithm[90, 91, 92]. Not a single instance was found where the inequality (4.7) would

not be saturated.

Notice that our search went over a tiny fraction of all code pairs, in particular,

since the number of codes (matrices) scales exponentially with the number of entries, i.e.,

super-exponentially with the matrix size. To ensure that we did not miss any instances, we

also enumerated all pairs of non-trivial binary CSS codes of size n ≤ 7, and constructed

tensor products of the corresponding chain complexes. Eq. 4.15 was satisfied for all of these.

Based on these numerical results, combined with the analytical result in Theorem

17 and the results for multiple products of 1-complexes, see Sec. 4.4, we propose
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Conjecture 18 The homological distances dj(A× B) in a product of any pair of bounded

chain complexes of vector spaces over a finite field is given by Eq. (4.15).

Of course, one should be aware that, even when highly suggestive, numerical ev-

idence cannot substitute a proof. A recent example is the Hedetniemi conjecture about

the chromatic number in a tensor product of graphs[93, 94]. The conjecture held up for

over half a century; a counterexample was only recently discovered by Yaroslav Shitov in

a beautiful 2019 paper[95, 96]. Significantly, the smallest graphs known so far to provide a

counterexample to Hedetniemi’s conjecture have over 104 vertices[97].

4.4 Applications in quantum error correction

In classical error correction it is usually safe to assume a channel model, where

errors may happen during transmission but not during encoding/decoding. In comparison,

when a quantum error-correcting code (QECC) is used, errors may happen at any step; to

measure a syndrome one has to perform a complex set of elementary quantum unitaries,

gates, which may result not only in additional data errors but also syndrome measurement

errors. Measurement errors become more likely with operators of large weight, as the

measurement circuit has to be constructed from elementary quantum gates which typically

can operate at most on two qudits at a time.

As a result, FT operation requires quantum codes where all (or most) stabilizer

generators have small weights. These are analogous to classical LDPC codes.

Here we consider tensor products of several F -linear 1-complexes, chain complexes

with just two non-trivial spaces. Basic parameters such as space dimensions, row and
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column weights, or homological distances do not depend on the order of the terms in the

product. Further, if the matrices used to construct 1-complexes are (υ, ω)-sparse, that is,

their column and row weights do not exceed υ and ω, respectively, the matrices in the

resulting m-chain product complex are (mυ,mω)-sparse. In particular, when K = K(R) is

a 1-complex associated with a circulant check matrix of the repetition code, K×D recovers

all the D-dimensional toric codes.

First, consider an r× c full-row-rank q-ary matrix P with r < c, and assume that

the F -linear code C⊥P has distance δ. The 1-complex K ≡ K(P ) has two non-trivial spaces of

dimensions r and c; the corresponding homology groups have ranks 0, κ and the distances

∞, δ. The 1-complex K̃ ≡ K(P T ) generated by the transposed matrix has equivalent spaces

taken in the opposite order, with the same homology group ranks, but the distances are

now 1 and∞, respectively. It is easy to see that in any chain complex constructed as tensor

products of K and/or K̃, there is going to be only one homology group with a non-zero

rank. Since order of the products is not important, we will write these as powers. For

(a + b)-complex K(a,b) ≡ K×a × K̃×b, the only non-trivial homology group is Ha(K(a,b)),

acting in the space of dimension

na(K(a,b)) =

a∑
i=0

c2ira+b−2i
(
a

i

)(
b

i

)
< (r + c)a+b,

it has rank κa+b and distance δa. The corresponding quantum CSS code has the mini-

mum distance min(δa, δb), and its stabilizer generators have weights not exceeding (a +

b) max(υ, ω).

Good weight-limited classical LDPC codes with asymptotically finite rates κ/c and

finite relative distances δ/c can be obtained from ensembles of large random matrices[26,
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27, 28, 29, 98, 99]. Any of these can be used in the present construction. Then, for any

pair (a, b) of natural numbers, we can generate weight-limited quantum LDPC codes with

finite rates and the distances dX = δa, dZ = δb whose product scales linearly with the code

length. The quantum hypergraph-product codes are a special case of this construction with

a = b = 1.

More generally, take arbitrary ri × ci matrices Pi, i = 1, 2, . . . with elements from

F ≡ Fq. Let F -linear codes with parity check matrices Pi and P Ti , respectively, have

parameters [ci, κi, δi] and [ri, κ̃i, δ̃i], where the distance is assumed infinite whenever the

corresponding code is trivial, κ = 0. Then, for a product of m such 1-complexes, the space

dimensions and ranks of the homology groups following from the Künneth formula can be

written in terms of the generating polynomials

n(m)(x) ≡ n
(m)
0 + xn

(m)
1 + . . . xmn(m)

m

=
∏m

j=1
(rj + xcj),

k(m)(x) ≡ k
(m)
0 + xk

(m)
1 + . . . xmk(m)

m

=
∏m

j=1
(κ̃j + xκj).

The homological distance d
(m)
j can be seen as the minimum over the products of distances

corresponding to those terms that give non-zero contributions to k
(m)
j , with the substitution

κj → δj , 0 6= κ̃j → 1.

It is easy to check that none of the higher-dimensional quantum hypergraph-

product codes discussed here have parameters that are better than for regular QHP codes

(m = 2) originally constructed by Tillich and Zémor[35]. In addition, the row- and column-

weights of the corresponding matrices tend to get bigger with increasing m. The advantage
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of higher-dimension QHP codes, or, more generally, codes from m-chain complexes with

m ≥ 4, is that the rows of matrices G
(a)
X = Ka, G(a)

Z = KTa+1 satisfy a large number of linear

relations resulting from the orthogonality with the matrices Ka−1 and Ka+2, respectively.

These can be used to correct syndrome measurement errors. Even though the resulting

syndrome codes do not have large distances (with a finite probability some errors remain),

the use of such codes in repeated measurement setting could simplify the decoding and/or

improve the decoding success probability in the case of adversarial noise[61]. Such improve-

ments with stochastic noise have been demonstrated numerically in the case of D = 4 toric

codes in Ref. [100].

4.5 Extensions

Throughout this work, we concentrated on the Hamming distance. A simple, and

yet offering a range of possible applications, extension of Theorem 4, Statement 14, and

Theorem 17 can be given by using weighted distances, defined for a vector c ∈ Fn in terms

of the norm

wgt
W

(c) ≡
∑

i:c[i]6=0

Wi, (4.16)

where W ≡ (W1,W2, . . . ,Wn) is a vector of positive weights Wi > 0, i ≤ n. For the

corresponding proofs to work, the only requirement is that the weights WCi,j in each space

Cij ≡ Ai ⊗Bj used to form the product complex C = A×B be related to the weights WAi

and WBj in the original complexes, namely, WCi,j = WAi ⊗WBj . Indeed, all the proofs

are based either on Eq. (3.3), or a projection inequality as in Eq. (3.11); both arguments

are readily modified to account for weighted norm (4.16).
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In particular, this implies an extension to extremal length L1 (systole) and higher-

dimensional analogs Lj , j > 1, representing minimal structures with non-trivial homology

on a given manifold(see e.g. [101]). Indeed, in the simplest case, the edge (j = 1), plaquette

(j = 2), etc. weights associated with a given tessellation can be chosen as the corresponding

Euclidean length, area, etc. Then the weighted norm (4.16) gives the corresponding measure

of the elements in the structure, and the homological distance—the corresponding minimum,

going over to Lj in the continuum limit. We assume the manifolds be sufficiently smooth

so that the corresponding limits exist (see e.g. [102]).

Second, an extension of some of the bounds to chain complexes of K-modules,

modules over a commuting ring K, is possible if K is a principal ideal domain (PID). Here

we only consider the ring K = Zq of modular integers, and assume torsion-free case, i.e.,

with all Smith normal form invariants of all matrices either zero or one. In this case one

gets[103] dCZ ≥ dAZd
B
Z for the stabilizer-product code in Theorem 4. Further, the lower

bound in Theorem (5) remains intact, while Eq. (4.15) also becomes an inequality, dj(C) ≥

mini∈Z di(A)dj−i(B).
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Chapter 5

Alternative proof in the binary

field

The previous chapter has demonstrated the distances in general field, when one of

the chain complexes has length 2. The proof cannot be extended to the general cases with

arbitrary chain complexes, due to existing counter examples. As another attempt to prove

the distance for arbitrary chain complexes, this chapter gives an alternative proof for the

distance in the special case with one of the chain complex has length 2 in the binary field.

Though this one hasn’t resulted in a general proof yet, it may give some hint on how to

move farward.
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5.1 Introduction

We start by introducing some notation of error correcting codes in the binary field.

Meanwhile, one should assume all the chain complexes and codes in this chapter are in the

binary field.

A classical binary linear code C with parameters [n, k, d] is a k-dimensional sub-

space of the vector space Fn2 of all binary strings of length n. The code distance d is the

minimal Hamming weight of a nonzero string in the code. A code C ≡ CG can be specified

in terms of the generator matrix G whose rows are the basis vectors of the code. All vectors

orthogonal to the rows of G form the dual code C⊥G = {c ∈ F2
n|GcT = 0}. The matrix G is

also called the parity check matrix of the code C⊥G .

Using the same proof in Chapter 4, one can get an upper bound on the distances

of the homological groups in a chain complex A× B, an immediate extension of Cor. 2.14

from Ref. [42],

dj(C) ≤ min
i
di(A) dj−i(B). (5.1)

5.2 Lower bound on the distance

Here I present an alternative proof for the lower bound on the distance for the

special case where B = K(P ) is a 1-complex induced by an r × c binary matrix P . This

bound matches the upper bound in Eq. (5.1), and thus ensures the equality for the case

where B is a 1-complex. This expression,

dj(A× B) = min
(
dj(A) d0(B), dj−1(A) d1(B),

)
, (5.2)
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where B = K(P ) is a 1-complex, is our main result.

With A the m-complex in Eq. (2.16), the tensor product C ≡ A×B can be written

as an (m+ 1)-complex, C = K(C1, . . . , Cm+1), with the block matrices

Cj+1 =

 Aj+1 ⊗ Er (−1)jEnj ⊗ P

Aj ⊗ Ec

 , (5.3)

where Er denotes the r × r identity matrix. The sign in the top-right corner ensures

orthogonality CjCj+1 = 0; in our case spaces are binary and signs have no effect. We also

notice that since ∂0 and ∂m+1 in A are both trivial, matrices C1 and Cm+1, respectively, will

be missing the lower and the left block pairs. If we denote u ≡ rankP , the two homology

groups associated with B have ranks κ0 ≡ k0(B) = r−u and κ1 ≡ k1(B) = c−u, respectively.

Equations (2.23) and (2.25) give in this case,

n′j = njr + nj−1c and k′j = kjκ0 + kj−1κ1, (5.4)

where we use the primes to denote the parameters of C, n′j ≡ nj(C) and k′j ≡ kj(C). We

now prove the claimed lower bound for the distance:

Theorem 19 Consider m-complex A in Eq. (2.16), and assume that homological groups

Hj(A) have distances dj, 0 ≤ j ≤ m. Given an r × c binary matrix P of rank u, construct

matrices Cj in Eq. (5.3). Denote δ the minimum distance of a binary code with the parity

check matrix P ; by our convention, δ = ∞ if u = c. The minimum distance d′j ≡ dj(C) of

the homology group H(Cj , Cj+1), 0 ≤ j ≤ m+ 1, satisfies the following lower bounds:

(i) if r > u, d′j ≥ min(dj , dj−1δ), otherwise,

(ii) if r = u, d′j ≥ dj−1δ.
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We notice that in Eq. (13), dj(A) ≡ dj , d1(B) = δ, while d0(B) = 1 in case (i) and it is

infinite in case (ii).

Given a matrix Aj and a subset I of its column indices, we consider a punctured

matrix Aj [I] formed only by the columns in I. Obviously, for any vector e such that

Aje
T = 0, as long as the support of e is included in I, we also have Aj [I](e[I])T = 0.

Further, our chain complex A also has a boundary operator Aj+1 such that

AjAj+1 = 0. In order to preserve the orthogonality when we puncture Aj to Aj [I], we

also need to modify Aj+1. It is clearly not sufficient to just take a subset I of its rows, as

the orthogonality would not necessarily be preserved in this case. Instead, from all linear

combinations of the columns of Aj+1 we select those with the support in I. We call any

basis of this linear subspace, with all-zero rows outside of I dropped, a row-shortened matrix

Aj+1 to I, denoted as I(Aj+1).

Explicitly, let DI be a matrix such that Aj+1DI has all zero rows outside I, and

any linear combination of the columns of Aj+1 with the support in I can be constructed

as a linear combination of columns of Aj+1DI . Then I(Aj+1) = (E[I])TAj+1DI is formed

by dropping the (all-zero) rows of Aj+1DI outside I (here E ≡ Enj is the identity matrix

in the space Aj). In this case, if e has support in I, and (e[I])T = I(Aj+1)α
T is a linear

combination of the rows of the row-shortened matrix, then eT = Aj+1DIα
T gives an explicit

form of the corresponding linear combination of the rows of the original matrix Aj+1. This

is correct since any vector in the form Aj+1DIα
T has support limited to I.

Conversely, if eT has support in I and is a linear combination of columns of Aj+1,

by construction, (e[I])T is a linear combination of columns of I(Aj+1).
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In the proof below we start with a pair of matrices Cj , Cj+1, and certain vector e

such that Cje
T = 0, and construct a sequence of transformations of the corresponding chain

complex C which include punctures/row-shortenings and the equivalence transformations, to

arrive at a chain complex C′′ with the boundary operators given by matrices C ′′j , C ′′j+1, and

a vector e′′ such that C ′′j (e′′)T = 0, with the trivial homology group, rankH(C ′′j , C
′′
j+1) =

0. This implies e′′ must be a linear combination of the columns of C ′′j+1; unraveling the

transformations proves the original vector e a linear combination of the columns of Cj+1.

Detailed Proof of Theorem 19. Start with case (i). Take a block vector

e = (e1|e2), with e1 ∈ Fnjr
2 , e2 ∈ Fnj−1c

2 , component weights w1 ≡ wgt(e1) < dj , w2 ≡

wgt(e2) < dj−1δ, and assume Cje
T = 0. We are going to show that e is a linear combination

of columns of Cj+1.

Step 1: This step is needed if dj is finite; otherwise let C ′j = Cj , C
′
j+1 = Cj+1, e

′ = e, and

proceed to step 2.

In this step we construct a set I1 ⊆ {1, 2, . . . , nj} and matrices A′j = Aj [I1],

A′j+1 = I1(Aj+1) such that the (j − 1) st homology group H(Aj−1, A
′
j)
∼= H(Aj−1, Aj) is

preserved, while the j th homology group H(A′j , A
′
j+1) becomes trivial. We show that the

corresponding matrices C ′j and C ′j+1 constructed from Aj−1, A
′
j , A

′
j+1 and P using Eq. (14)

can be also obtained from Cj and Cj+1, respectively, as a puncture and row-shortening to

a set J1 such that e[J1] retains all non-zero bits of e.

Begin by marking the columns of Aj which are incident on non-zero positions in

e1. That is, write

e1 =

r∑
i=1

ai ⊗ xi,
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where ai ∈ Fnj

2 , and xi ∈ Fr2 with the only non-zero bit at position i. Take I0 the union of the

supports of all vectors ai. Let A
(0)
j = Aj [I0] denote Aj punctured to I0, and A

(0)
j+1 ≡ I0(Aj+1)

denote Aj+1 row-shortened to I0.

By construction, n
(0)
j ≡ |I0| ≤ w1; since w1 < dj and any element in H(A

(0)
j , A

(0)
j+1)

can be mapped back to an element in H(Aj , Aj+1) with the same weight, the homology

group H(A
(0)
j , A

(0)
j+1) must be trivial. Further, the homology group remains trivial if we

increase I0 by adding a set of all linearly independent columns of Aj , to form an enlarged

column set I1 ⊇ I0, such that A′j ≡ Aj [I1] satisfies |I1| − |I0| = rank(A′j)− rank(A
(0)
j ) and

rank(A′j) = rank(Aj). Indeed, denote A′j+1 as Aj+1 row-shortened to I1; the inclusion I0 ⊆

I1 gives the lower bound, rank(A′j+1) ≥ rank(A
(0)
j+1). On the other hand, the orthogonality,

A′jA
′
j+1 = 0, gives the matching bound:

rank(A′j+1) ≤ |I1| − rank(A′j)

= |I0| − rank(A
(0)
j ) = rank(A

(0)
j+1),

which proves the equality. The equality implies that A′j and A′j+1 form an exact sequence

(trivial homology):

rankH(A′j , A
′
j+1) = |I1| − rank(A′j)− rank(A′j+1)

= |I0| − rank(A
(0)
j )− rank(A

(0)
j+1)

= 0.

Meanwhile, since the column space of A′j coincides with that of the original matrix Aj , the

(j − 1) st homology group remains unchanged, H(Aj−1, Aj) = H(Aj−1, A
′
j).
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Now use Eq. (14) to construct the corresponding matrices

C ′j =

 A′j ⊗ Er Enj−1 ⊗ P

Aj−1 ⊗ Ec

 ,

C ′j+1 =

 A′j+1 ⊗ Er En′j ⊗ P

A′j ⊗ Ec

 ,

and define the punctured vectors e′1 =
∑

i ai[I1] ⊗ xi, e
′ = (e′1|e2) ≡ e[J1]. Since we

only removed zero positions, the new vector satisfies C ′j(e
′)T = 0. Moreover, using the

explicit form, A′j = Aj [I1] = AjEnj [I1], it is easy to see that C ′j = Cj [J1], while the

matrix C ′j+1 is a row-shortening of Cj+1 to J1. Indeed, if A′j+1 = (En1 [I1])
TAj+1DI1 , then

C ′j+1 = (E[J1])
TCj+1DJ1 , with

DJ1 =

 DI1 ⊗ Er Enj [I1]⊗ Ec

Enj [I1]⊗ Ec

 .

This is row-shortening of Cj+1 since any vector in the form Cj+1DJ1α
T has support limited

to J1.

Step 2: Here we construct a vector ē′ ' e′ equivalent to e′ in the chain complex C′ with

boundary operators given by the matrices C ′j , C
′
j+1. Explicitly, the transformation has the

form (ē′)T = e′T + C ′j+1(0|β2)T . This transformation is designed to remove some portions

from the second block of e′. At the same time we disregard any changes to its first block

which is no longer relevant since we are going to show that the j th homology group of C′′

is trivial, d′′j =∞.

Consider the decomposition

e2 =

c∑
`=1

f` ⊗ y`, f` ∈ Fnj−1

2 , (16)

59



where y` ∈ Fc2 has the only non-zero bit at `. The identity C ′j(e
′)T = 0 implies Aj−1f

T
` = 0

for any 1 ≤ ` ≤ c. For those ` where fT` is linearly dependent with the columns of

A′j , f
T
` = A′jα

T
` with some α` ∈ C′j = F

n′j
2 , render this vector to zero by the equivalence

transformation,

(e′)T → (e′)T + C ′j+1(0|α` ⊗ y`)T .

Such a transformation may modify the first block of e′ in a non-trivial fashion, but only

affects the vector f` in its second block. The resulting vector ē′ = (ē′1|e′2) = e′ + (0|β2)C ′Tj+1

has the second block of weight wgt(e′2) ≤ wgt(e2) < dj−1δ, it satisfies C ′j(ē
′)T = 0, and in

its block representation (16) the remaining non-zero vectors f` ∈ H(Aj−1, A
′
j) have weights

dj−1 or larger. Hence, there remains fewer than δ of non-zero vectors f`.

Step 3: In a decomposition, e′2 =
∑nj−1

j=1 zj ⊗ cj , where zj ∈ Fnj−1

2 have the only

non-zero bit at j, and cj ∈ Fc2, the union of supports of the vectors cj , I2, has a length

c′ ≡ |I2| < δ. Indeed, I2 is just the set of the indices ` corresponding to the remaining

non-zero vectors f`. Construct a punctured matrix P ′ = P [I2] by dropping the columns of

P outside of I2. Since there are fewer than δ columns left, c′ < δ, the resulting classical

code with parity check matrix P ′ contains no non-zero vectors, c′ = rankP ′. Construct the

modified matrices

C ′′j =

 A′j ⊗ Er Enj−1 ⊗ P ′

Aj−1 ⊗ Ec′

 ,

C ′′j+1 =

 A′j+1 ⊗ Er En′j ⊗ P
′

A′j ⊗ Ec′

 ,
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and define the punctured vectors e′′2 =
∑n0

j=1 zj ⊗ cj [I2] and e′′ = (ē′1|e′′2). This yields

C ′′j (e′′)T = 0.

Now, after we trimmed the columns of both Aj and of P , according to Eq. (15), the

homology group H(C ′′j , C
′′
j+1) is trivial. This implies that e′′ must be a linear combination

of the columns of C ′′j+1, that is, (e′′)T = C ′′j+1β
T , for some binary vector β.

Now, it is easy to see that C ′′j+1 can be also written as a row-shortening of C ′j+1.

Explicitly, C ′′j+1 = F TC ′j+1D, where

F =

 En′j ⊗ Er

Enj−1 ⊗ Ec[I2]

 ,

D =

 Enj+1 ⊗ Er

En′j ⊗ Ec[I2]

 .

Clearly, any vector in the form C ′j+1Dα
T will have all of its non-zero bits preserved after

multiplication by F T (which only affects the second block which is already projected by the

lower-right block of D).

We also have e′′ = ē′F . Since all non-zero bits in ē′ are preserved by this transfor-

mation, we have (ē′)T = C ′j+1Dβ
T , a linear combination of the columns of C ′j+1. Undoing

the equivalence transformation from step 2, we get

(e′)T = ē′T + C ′j+1(0|β2)T = C ′j+1β
′T ,

where β′ = βDT + (0|β2). The transformation from step 1 gives us

(E[J1])
T eT = (E[J1])

TCj+1DJ1β
′T .

As (E[J1])
T only trims zero positions for vectors involved on both sides, we conclude the

original two-block vector e = (e1|e2) is a linear combination of the columns of the original
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matrix Cj+1, e
T = Cj+1DJ1β

′T . Thus, any such e with block weights w1 < dj and w2 <

dj−1δ which satisfies Cje
T = 0 is necessarily a linear combination of the columns of Cj+1.

This guarantees d′j ≥ min(dj , dj−1δ).

To complete the proof, consider the case (ii). Here, step 1 can be omitted; the

matrices resulting from steps 2 and 3 alone would give trivial homology group, regardless of

the weight wgt(e1) of the first block. Thus, in this case we get the lower bound d′j ≥ dj−1δ.

This proof can be extended to nonbinary field, and may also leads to a proof for

the distance of the tensor product of two arbitrary chain complexes.

62



Chapter 6

Quantum convolutional

data-syndrome codes

Since measurements can be faulty as well, redundancy is required to eliminate

measurement errors. Those redundancy can be viewed as a HQHP code formed by a quan-

tum code and a classical code. The classical code implements redudancy into the quantum

code. Although I haven’t had a chance to study the performance of HQHP codes with

D¿=4 in FT regime as DS codes, here I study much simpler codes based on quantum con-

volutional codes. In this chapter, we use a quantum conlutional code as the quantum code,

use repetition code or a classical concolutional code as the classical code, hence construct

the quantum concolutional code. We consider its performance in a FT regime using several

syndrome measurement/decoding strategies and three different error models, including the

circuit model.
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6.1 Introduction

Quantum stabilizer codes are designed to be robust against qubit errors. However,

syndrome measurement cannot be done perfectly: necessarily, there are some measurement

errors whose probability grows with the weight of the checks (stabilizer generators). Fur-

thermore, both the syndrome measurement protocol and the syndrome-based decoding have

to operate in a fault-tolerant (FT) regime, to be robust against errors that happen during

the measurement.

When all checks have relatively small weights, as in the case of the surface codes,

one simple approach is to repeat syndrome measurement several times[13]. Then, FT

syndrome-based decoding can be done in the assumption that the data errors accumu-

late while measurement errors be independently distributed. While there is always a non-

vanishing probability to have some errors at the end of the cycle, what matters in practice

is the ability to backtrack all errors after completion of several rounds of measurement.

Another approach is to measure an overcomplete set of stabilizer generators, using

redundancy to recover the correct syndrome. Such an approach was used in the context

of higher-dimensional toric and/or color codes[17, 69], the data-syndrome (DS) codes[58,

59, 60], and single-shot measurement protocols[70, 71, 61]. Here decoding is done in the

assumption that data error remains the same during the measurement.

We note that with both approaches, the error models assumed for decoding do

not exactly match the actual error probability distribution. In particular, any correlations

between errors in different locations and/or different syndrome bits are typically ignored.

Nevertheless, simulations with circuit-based error models which reproduce at least some of
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the actual correlations show that both the repeated syndrome measurement protocol[72, 73]

and the syndrome measurement protocols relying on an overcomplete set of generators[69]

can result in competitive values of FT threshold.

The choice of the measurement protocol is typically dictated by the structure

of the code, specifically, availability of an overcomplete set of stabilizer generators of the

minimum weight. Such an approach is expected to be practical when typical gate infidelities

are comparable with the probability of an incorrect qubit measurement. However, there is

also a price to pay: codes with redundant sets of small-weight checks can be generally

expected to have worse parameters.

On the other hand, if the physical one- and two-qubit gates are relatively accurate,

it may turn out more practical to measure redundant sets of checks which include stabilizer

generators of higher weights. Then, a DS code can be designed from any stabilizer code[58,

59, 60]. As a result, one faces a problem of constructing an optimal measurement protocol

given the known gate fidelities and measurement errors.

In this work we compare several single-shot and repeated measurement/decoding

protocols for a simple quantum convolutional code[74] with the parameters [[24, 6, 3]] and

syndrome generators of weight 6. We construct several computationally efficient schemes

using the classical Viterbi algorithm[75, 76] to decode data and syndrome errors sequen-

tially or simultaneously, and compare their effectiveness both with phenomenological and

circuit-based depolarizing error models. In particular, we show that a DS code which re-

quires measuring checks of weight up to wmax = 9 has performance (successful decoding

probability) exceeding that of the repeated measurement scheme when single-qubit mea-
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surement error probability q1 equals ten times the gate error probability p1 (taken to be the

same for Hadamard and CNOT gates).

6.2 Background

Let Pn = {cM1⊗· · ·⊗Mn : Mj ∈ {I,X, Y, Z}}, with phase c ∈ {±1,±i} be the n-

qubit Pauli group; elements with c = ±1 have eigenvalues ±1. Any G = cM1 ⊗ · · · ⊗Mn ∈

Pn can be represented, up to a phase, by length-n vector g = (g1, . . . , gn) ∈ Fn4 , F4 =

{0, 1, ω, ω̄}, where ω2 ≡ ω̄ = ω + 1, and gj = 0, 1, ω, ω̄, if Mj is I, X, Z, or Y , respectively.

The weight wt(g) of g is the number of its nonzero elements gj 6= 0. A product of two Pauli

operators X and Y is mapped into a sum of the corresponding vectors, x + y. Further, a

pair of Pauli operators commute iff the trace inner product,

x ∗ yT ≡
∑n

i=1
Tr(xiȳi), (6.1)

of the corresponding vectors is zero, x ∗yT = 0. Here Tr(x) = x+x2 is the trace map from

F4 into F2, and ȳ is the conjugation of y ∈ F4 which interchanges ω and ω̄.

For numerics in this chapter, we use the family of quantum convolutional codes

(QCCs) of length 3(k + 2), k = 1, 2, . . ., based on linear (3, 1) self-orthogonal convolutional

codes whose generator matrces are constructed[74] by k+1 shifts of the row g1 = (111|1ωω̄).

The actual generating matrix of the QCC Qk with parameters [[3(k + 2), k, 3]] is obtained

by adding a copy of the same rows multiplied by ω, and four additional rows for proper
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termination. In the case k = 2, the stabilizer generating matrix has the form

G(Q2) =



1 ω ω

ω ω 1

1 1 1 1 ω ω

ω ω ω ω ω 1

1 1 1 1 ω ω

ω ω ω ω ω 1

1 1 1 1 ω ω

ω ω ω ω ω 1

ω ω 1

1 1 1



. (6.2)

6.3 Error models and data-syndrome codes

Unlike with classical codes, extracting a syndrome for a quantum code involves a

complicated quantum measurement which itself is prone to errors. To extract a syndrome

bit corresponding to a row g of G, one must execute a unitary which involves a non-trivial

interaction [some single-qubit gate(s) and an entangling gate, e.g., a quantum CNOT] with

each of the w ≡ wt(g) qubits in the support of g, then do a quantum measurement of

one or more auxiliary ancilla qubit(s). Data errors and measurement (ancilla) errors can

happen at every step of the process; moreover, errors can propagate through measurement

circuit unless it is designed using FT gadgets to prevent error multiplication[86]. Error

propagation can be simulated efficiently for any circuit constructed from Clifford gates

which map the Pauli group onto itself, which is sufficient to simulate the performance of
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any stabilizer code[104]. In this work we simulated such a circuit-based error model (C),

using depolarizing noise with probability p1 (randomly chosen X, Y , or Z on every qubit in

the interval between subsequent gates, including null gates for idle qubits), and additional

ancilla measurement error with probability q1 [72, 73].

While in principle it is possible to account for all correlations between the errors

that may result from error propagation in a given circuit, and design a corresponding

decoder, it would be a daunting task. Instead, one usually uses a decoder designed for some

phenomenological error model, and uses circuit model (C) only to check the performance

of such a decoder numerically. We consider two such error models.

Model (A) is a channel model where qubit errors (depolarizing noise with proba-

bility p) happen before the measurement, while each stabilizer generator (syndrome bit) is

measured with independent error probability q. This model[59, 60] is an idealization of a

situation where gate errors are small compared to qubit preparation and measurement er-

rors. Clearly, model (A) can get unphysical, as here one can extract the syndrome perfectly

with sufficient measurement redundancy.

This drawback is compensated somewhat in the phenomenological error model

(B) which includes several rounds of syndrome measurement, and includes qubit errors that

happen before each round (depolarizing noise with probability p; these errors accumulate

between measurement rounds), and independent syndrome measurement errors with prob-

ability q. Both in the phenomenological model (B) and in the circuit model (C) some

errors may remain after the last round of error correction; for simulations one includes an

additional round with perfect syndrome measurement[72].
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Phenomenological error models (A) and (B) can be used to construct DS codes

dealing both with qubit (data) and syndrome errors. We start with an r × n stabilizer

generator matrix G, which may include additional linearly-dependent rows, thus r ≥ n−k.

In model (A), we have a qubit error vector e ∈ Fn2 , and a syndrome measurement error

ε ∈ Fr2; the extracted syndrome vector is given by sT = G ∗ eT + εT . To characterize DS

codes, it is convenient to consider mixed-field vector spaces, with elements (e | ε), a pair of

a quaternary and a binary vectors. For such pairs we define the inner product

(e1, ε1) ? (e2, ε2)
T ≡ e1 ∗ eT2 + ε1ε

T
2 . (6.3)

By analogy with stabilizer codes, we define an additive code CDS ⊆ Fn4 ⊕ Fr2 with the

generator matrix

GDS =

(
G I

)
, (6.4)

and its dual with respect to the product (6.3), C⊥DS. The two orthogonal DS codes satisfy

|CDS| |C⊥DS| = 22n+r. Because the original code C is self orthogonal, G ∗GT = 0, the code

C⊥DS includes vectors in the form (e |0), where e = αG is an additive combination of the

rows of G, α ∈ Fr2. The distance dDS of thus defined DS code is the minimum weight of a

vector in C⊥DS \ (C ⊕ 0), it is upper bounded by the distance of the original quantum code

Q, dDS ≤ d.

In phenomenological error model (B), with `-times repeated syndrome measure-

ment (including the final perfect measurement), we denote qubit errors that occur before

the measurement t as et ∈ Fn4 , and the corresponding measurement errors as εt ∈ Fr2. The

qubit errors accumulate, thus we can write for the syndrome st obtained in the t th round
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of measurement:

G ∗ (e1 + e2 + . . .+ et) + εt = st.

In this work we do not attempt simultaneous decoding of data and syndrome errors over

several rounds of measurement. Instead we decode them sequentially, using the accumulated

errors ê1 + ê2 + . . .+ êt−1 extracted at previous decoding rounds to offset the error at time

t.

6.4 Convolutional DS codes

Now, given an [[n, k]] quantum code Q with the (full-row-rank) generating matrix

G(Q) of size (n − k) × n, we introduce redundant measurements by adding some linearly

dependent rows. Without limiting generality, a set of r′ additional rows F = AG(Q) can

be obtained by multiplying the original generating matrix by an r′× (n− k) binary matrix

A, so that the generating matrix 6.5 of the resulting DS code has the form

GDS =

 G(Q) In−k

AG(Q) Ir′

 . (6.5)

This matrix has additive rank r ≡ (n−k) + r′ equal to the number of rows. It is convenient

to rewrite this matrix in the following row-equivalent form,

G′DS =

 G(Q) In−k

A Ir′

 . (6.6)
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Denote [G(Q)]⊥ the additive dual of G(Q) with additive rank n+ k, and M a matrix such

that G(Q) MT = In−k. It is then easy to see that the matrix

HDS =

 [G(Q)]⊥

M In−k AT

 . (6.7)

has additive rank (n+ k) + (n− k) = 2n, while G′DS ?HT
DS = 0. Thus, HDS generates the

code C⊥DS .

We can now discuss the choice of the matrix A. First, we obtain redundant

syndrome bits by measuring operators Fj corresponding to the rows fj of the matrix F.

Since the corresponding error grows with the operator weight, we want to choose matrix A

to ensure that row weights of F be small. Second, we want to choose A so that the binary

linear code generated by (In−k,A
T ) has a large minimum distance. Third important issue is

the decoding complexity. Given the structure of the matrix HDS, see Eq. (6.7), it is natural

to choose AT to form a generator matrix of a classical convolutional code. Quantum

DS codes (6.5) obtained from a quantum convolutional code Q with such an A we call

convolutional DS codes.

6.5 Decoding of Convolutional DS Codes

Big advantage of classical convolutional codes is that one can use the maximum-

likelihood Viterbi decoding using a code trellis [76]. The “stripe” form of a generator

matrix of a convolutional code (with small band width) ensures that its code trellis has

relatively small number of states, which means that the Viterbi decoding has relatively

small complexity.
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In our case, it is not immediately obvious how to construct a code trellis with a

manageable number of states, since neither GDS nor HDS has the “stripe” form. However,

we show that GDS can be transformed into the stripe form.

Instead of presenting a general algorithm for this, we will consider a small example.

Let G(Q) and A be generated by vectors (v1|v2|v3) and (u1|u2|u3), respectively, and

assume that vi and ui have lengths n and n′. Then, in a particular case, the DS code

generator (6.6) has the form

G′DS =



v1 v2 v3 1

v1 v2 v3 1

v1 v2 v3 1

uT1 I

uT2 uT1 I

uT3 uT2 uT1 I

uT3 uT2 I

uT3 I



,

72



where I is the n′ × n′ identity matrix. With an appropriate permutation of columns and

rows, we can transform the above matrix into the form

G′′DS =



v1 v2 v3 1

I uT1

v1 v2 v3 1

I uT2 uT1

v1 v2 v3 1

uT3 I uT2 uT1

uT3 I uT2

uT3 I



,

where we marked the small matrix block that defines the repeating section of the syndrome

trellis. Now, the method in Ref. [105] gives the syndrome trellis, a particular form of the

code trellis.

Let (v, s) ∈ C⊥DS and define the received vectors x = v + e ∈ Fn4 , y = s + ε ∈

Fn−k+r
′

2 , where e and ε are qubit and syndrome errors, respectively. The syndrome allows

us to efficiently conduct the Viterbi minimum distance decoding (MDD) using (x,y) as an

input:

MDD(x,y) = arg min
(a,b)∈C⊥DS

wt(a− x) + wt(y − b).

However, unlike in the classical case where we receive (x,y) from a channel, in the quantum

case we have only y = s + e, and we do not have x. It is easy to check that in this case the

correct minimum distance decoding corresponds to MDD(0,y). For simulations in this work

we implemented a version of Viterbi decoding for non-binary classical codes with known
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symbol error probabilities. For DS decoding with phenomenological noise parameters p and

q, we used

Pr(X) = Pr(Y ) = Pr(Z) = p/3 and Pr(εj = 1) = q.

In addition, one can use several suboptimal decoders with significantly smaller complexity.

In particular, one may use the following 2 step algorithm

1. Construct the syndrome trellis, say T , for the DS code with GDS = (G|Ir). It will

have much smaller number of states compared with the trellis for Eq. (6.7).

2. Decode y by the Viterbi decoding of the code with generator (In−k,A
T ), to get a

tentative syndrome ŝ = (ŝ1, . . . , ŝn−k). Typically ŝ would have significantly smaller

number of errors than the measured syndrome.

3. Decode (0, ŝ) by the Viterbi decoding using trellis T .

Several variations of this algorithm are possible. For example we may decode y using a list

decoding of size L, get several tentative syndromes ŝi, i = 1, . . . , L, and use them in turn in

step 3 of the above algorithm, and choose the best result.

Another possibility is to use BCJR decoding for computing the tentative syndrome

ŝ = (ŝ1, . . . , ŝn−k).

6.6 Numerical results

We constructed the trellises and numerically analyzed the performance of several

quantum convolutional DS codes differing by the structure of the binary generating matrix

A. In all cases, we used as the starting code the code Q6 with parameters [[24, 6, 3]]
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constructed from a linear F4 convolutional code with generator g = (111|1ωω̄), one of the

many QCCs constructed in Ref. [74]. As discussed in Sec. 6.2, the stabilizer generators for

codes in this family have weights wt(gj) ∈ {3, 6}, see Eq. (6.2).

Specifically, we used the following choices. (i) Code “GA”, a quantum DS CC (6.5)

with the 16 × 18 matrix AT chosen as the generating matrix of the binary convolutional

code (CC) with the generator row g = (11|01|11). Explicitly,

AT
GA =


1 1 0 1 1 1

1 1 0 1 1 1

. . . . . . . . .

 . (6.8)

Matrix F = AGAG(Qk) has row weights wt(fj) ∈ {6, 9}.

(ii) Code “GR” (here R stands for “repetition”) is constructed similarly, except the matrix

AT is formed by a trivial CC code with g = (11). Explicitly, it has the form

AT
GR =


1 1

1 1

. . .

 . (6.9)

It is easy to see that such a matrix results from three-times repeated measurement of the

original set of generators in the 18 rows of G(Q6). Respectively, only the original stabilizer

generators of weights 3 and 6 need to be measured here.

(iii) Code “GI” is a trivial DS code with AGI = 0. The name is due to the structure of

the matrix (6.5): in this case it has the form GDS = (G(Q6) | I18). With phenomenological

error model (A) [Sec. 6.3] and three-times repeated measurement, we use this code as a

simpler alternative to code “GR”. Namely, we first perform majority vote on every bit of

the syndrome, then use the DS code GI for actual decoding.
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(iv) Finally, the code “G” stands for yet another simple DS decoding protocol for three-time

repeated measurements. Again, the syndrome bits are obtained using majority vote, but

the resulting syndrome is considered as error-free, and the decoding is done directly using

the QCC Q6. Main difference with the previous case is that here a single-bit syndrome

error after majority vote necessarily results in a decoding fault.

Results of simulations with phenomenological error model (A) are shown in Fig. 6.1,

along with a break-even line PBLER = 6p (k = 6 unprotected qubits). We did not attempt

to account for larger weight of measured operators in the case of code GA. Single-shot block

error probabilities PBLER for four decoders as indicated in the caption are shown. For each

point, simulations were done until N = 100 decoder failures. The slope is consistent with

the distance d = 3 of the quantum code. Results indicate that (with the exception of the

simplest decoder G) all decoders are able to correct most syndrome measurement errors

with q = p, and also for q = 10p in the interval p . 10−3. With larger error rates, code GA

works best, consistent with its larger distance for syndrome errors.

In simulations with phenomenological error model (B) we measured the average

fail time of the code[72]. Namely, in each simulation round j repeated decoding cycles

are done until decoding failure after round tj ; the corresponding average after N ≥ 100

simulation rounds was recorded. Effective block error rate PBLER = 1/(t̄ − 1) was then

extracted from the average fail time t̄ assuming Poisson distribution of life times t′j = tj − 1

with parameter λ = PBLER. We decoded every cycle t separately, using the accumulated

data error ê1 + ê2 + . . . + êt−1 found in the previous cycles as an offset. Consistent with

the standard protocol for quantum LDPC codes[72], a failure would be recorded if at time
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Figure 6.1: Phenomenological noise model (A) with depolarizing errors (probability p) and
syndrome bit measurement error probability q = p (left) and q = 10p (right). Symbols
show the block error probability PBLER for four decoders as indicated, see text for details.
Dotted lines give the nominal single-qubit break-even threshold, PBLER = 6p.

step t decoding with zero syndrome error εt = 0 gives a logical error. Otherwise, a new

estimated error êt would be computed with the syndrome error εt present, and calculation

repeated at t = t + 1. The results are shown in Fig. 6.2; they are largely consistent with

those for phenomenological error model (A).

In simulations with circuit error model (C) we constructed the actual circuits for

measuring quantum operators corresponding to rows of G, including the redundant rows

for code GA, with the attempt to maximally parallelize the measurements. We then used a

separate program to generate random Pauli errors with probability p1 per interval between

the gates, propagated the errors through the circuit, and recorded the actual accumulated

error et and the measured syndrome st at the end of each measurement cycle t = 1, 2, . . ..

Additional syndrome measurement error q1 was added at the time of subsequent processing.

These data then have been used with the decoders identical to those for model B.
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Figure 6.2: Effective block error rate PBLER with phenomenological error model B. Only
results for GA and single-interval GI decoders as indicated are shown.

The obtained effective block error rates are plotted in Fig. 6.3. One striking

difference with phenomenological error models A and B is that the calculated curves no

longer have quadratic dependence on BER, as would be expected for a code with distance

d = 3. The reason is that we have used non-FT circuits in simulations. As a result,

e.g., a single ancilla error can propagate and multiply through the circuit, resulting in a

higher-weight error which cannot be corrected by the code.

6.7 Discussion and Future Work

In conclusion, in this work we introduced quantum convolutional data-syndrome

codes, constructed an efficient decoder for this class of codes, and analyzed numerically

the performance of a family of DS codes based on a single QCC with parameters [[24, 6, 3]]
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Figure 6.3: Effective block error rate (per gate) for phenomenological error model C as a
function of gate error probability p1 scaled by cycle duration.

using three distinct error models. In particular, this was the first time a DS code has been

simulated with the circuit error model.

Here we exclusively relied on the QCCs designed in Ref. [74]. These codes have

relatively high weights of stabilizer generators. It is an open question whether degenerate

QCCs exist, with small-weight generators, large distances, and trellises with reasonably

small memory sizes. For the purpose of constructing convolutional DS codes, one would

further like to have a QCC with a redundant set of minimum-weight stabilizer generators.

For such codes, degenerate Viterbi decoding algorithm[106] would be particularly useful.

Our limited simulation results indicate that a DS code with large-distance classical

syndrome code may show competitive performance in the regime where measurement errors

are significant, even though the corresponding generators may have larger weights. This

regime is experimentally relevant, e.g., for superconducting transmon qubits with dispersive
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readout, where measurement time can be as large as 500ns, compared to under 50ns two-

qubit gates, with the error probabilities scaling accordingly. It is an open question whether

similarly constructed non-convolutional DS codes could be useful in this regime, e.g., for

optimizing the performance of surface codes in the current or near-future generation of

quantum computers.

One obvious way to improve the practical performance of DS codes is by using FT

gadgets for generator measurements, to control error propagation. In particular, we intend

to try flag measurement circuits[107], as this technique has relatively small overhead in the

number of qubits.
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Chapter 7

Conclusions

Our main work on the HQHP code focuses on the Hamming distance. This alge-

braic construction of LDPC codes with explicit parameters helps to answer the key question

in developing quantum LDPC codes, that is, the trade-off among n, k, d, w. Here w stands

for sparsity, the maximum row and column weight of the parity-check matrix. What is

the optimal code one can find, since there is no constraint saying that we can only get

d = O(
√
n)? Our approach to tackling this problem is by generalizing known codes and

discovering what is more fundamental and achievable. The HQHP codes[38] generalize both

QHP codes and toric codes in all dimensions. The subsystem product codes, obtained by

projecting the HQHP codes, can be gauge fixed to concatenated codes and homological

product codes. Those include the famous Shor’s code and Bacon-Shor code as special cases.

Meanwhile, HQHP codes can be mapped to tensor products of chain complexes, which

provides an algebraic framework to construct quantum LDPC codes with finite code rates,

square root distances, FT thresholds, and single-shot properties with redundant checks.
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Those code parameters can be even further improved after those generalizations by HQHP

codes. For example, the fiber bundle codes[45] break the square root distance record and

lifting it to n3/5/polylog(n). The construction implements a twist to the chain complex,

hence cannot be mapped to a product of two manifolds. If this twisting technique can be

generalized to HQHP codes, one can get a larger distance that is favored by FT threshold.

There are also other candidates like rotated HQHP codes which may increase the code rates.

Since toric code and its variants are always included in those constructions, it is necessary

to understand the trade-off between the FT threshold and locality in the case of toric code

and large code rates and distances in other cases.

Another designing goal of QECCs is the implementation of universal FT gates.

Among various qLDPC codes, it has been demonstrated for QHP codes[108] and homological

product codes[109]. Those are done by accommodating various initial states according to the

structure of the codes. The HQHP codes have similar structures, which make it possible to

design a protocol for HQHP codes, hence complete the puzzle for FT quantum computation.

In Chapter 6, we introduced quantum convolutional data-syndrome codes, con-

structed an efficient decoder for this class of codes, and analyzed numerically the perfor-

mance of a family of DS codes based on a single QCC with parameters [[24, 6, 3]] using three

distinct error models. In particular, this was the first time a DS code has been simulated

with the circuit error model.

Here we exclusively relied on the QCCs designed in Ref. [74]. These codes have

relatively high weights of stabilizer generators. It is an open question whether degenerate

QCCs exist, with small-weight generators, large distances, and trellises with reasonably
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small memory sizes. For the purpose of constructing convolutional DS codes, one would

further like to have a QCC with a redundant set of minimum-weight stabilizer generators.

For such codes, degenerate Viterbi decoding algorithm[106] would be particularly useful.

Our limited simulation results indicate that a DS code with large-distance classical

syndrome code may show competitive performance in the regime where measurement errors

are significant, even though the corresponding generators may have larger weights. This

regime is experimentally relevant, e.g., for superconducting transmon qubits with dispersive

readout, where measurement time can be as large as 500ns, compared to under 50ns two-

qubit gates, with the error probabilities scaling accordingly. It is an open question whether

similarly constructed non-convolutional DS codes could be useful in this regime, e.g., for

optimizing the performance of surface codes in the current or near-future generation of

quantum computers.

One obvious way to improve the practical performance of DS codes is by using FT

gadgets for generator measurements, to control error propagation. In particular, it would

be interesting to try flag measurement circuits[107], as this technique has relatively small

overhead in the number of qubits.
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