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ABSTRACT OF THE DISSERTATION

Evaluation and Construction of Space-Filling Designs

Based on Stratification

by

Ye Tian

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Hongquan Xu, Chair

Space-filling designs are commonly used in computer experiments aiming to build statistical sur-

rogate models. In this thesis, we propose a minimum aberration type criterion and the stratified L2-

discrepancy for evaluating space-filling properties of designs based on design stratification prop-

erties on various grids. The idea of stratification comes from the stratified orthogonality of strong

orthogonal arrays. The space-filling criterion provides a systematic way of classifying and rank-

ing space-filling designs including various types of strong orthogonal arrays and Latin hypercube

designs according to the space-filling hierarchy principle. Strong orthogonal arrays of maximum

strength are favorable under the proposed space-filling criterion. The stratified L2-discrepancy

assesses the projection properties of designs based on points stratification properties and can be

tuned flexibly. Projection uniformity is considered with respect to all possible stratifications with

proper weights. The stratified L2-discrepancy includes the space-filling criterion as a special case,

and is suitable for evaluating all kinds of designs with little curse of dimensionality. We further

derive lower bounds for the stratified L2-discrepancy and the space-filling pattern enumerator via

defining a metric space that reveals the distance between points based on stratification. We show
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that generalized Hadamard matrices achieve the lower bounds and present a simple way to con-

struct generalized Hadamard matrices via Galois fields. Comparisons between the optimal designs

and other space-filling designs are illustrated.
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CHAPTER 1

Introduction

Computer models are commonly used to simulate complex systems in science and engineering

research. Computer experiments help to build up statistical surrogate models for computer models

and make computation and optimization easier (Santner et al., 2003; Fang et al., 2006). Space-

filling designs are widely chosen for computer experiments. As the name suggests, space-filling

designs spread points uniformly in the design region. There are a number of different types of

space-filling designs such as Latin hypercube designs and variations (Lin and Tang, 2015; Ba

et al., 2015; Zhou and Xu, 2015; Xiao and Xu, 2017), maximin distance designs (Xiao and Xu,

2018; Wang et al., 2018; Li et al., 2020), and uniform designs (Fang et al., 2018). The curse of

dimensionality makes it difficult for design points to cover the high-dimensional design region

uniformly. In these cases, the space-filling properties of projection designs, phrased as projection

properties, are evaluated. Projection properties in a low-dimensional space have been considered

based on the assumption that the number of active factors is small. Joseph et al. (2015) and Sun

et al. (2019) pointed out that maximin distance designs and uniform designs may have poor low

dimensional projections which are not space-filling. Latin hypercubes based on orthogonal arrays

(Tang, 1993; Xiao and Xu, 2018), maximum projection designs (Joseph et al., 2015) and uniform

projection designs (Sun et al., 2019; Wang et al., 2020) are designs with good low-dimensional

projection properties.

Orthogonality between columns naturally enhances projection properties of designs. Suppose

we stratify the design region to subregions equally, designs are said to achieve stratification if they

have an equal number of points in each subregion. Latin hypercube designs achieve stratifica-
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tions in all univariate projections. Using orthogonal arrays of strength t ≥ 2, Owen (1992) and

Tang (1993) gave construction of space-filling designs that achieve stratifications in all t and lower

dimensional projections. Motivated by digital nets in quasi-Monte Carlo methods, He and Tang

(2013) proposed strong orthogonal arrays that are more space-filling than comparable ordinary or-

thogonal arrays. A strong orthogonal array of strength t achieves stratifications in all t-dimensional

margins as comparable ordinary orthogonal arrays do. Further, it achieves stratifications on finer

grids in all g-dimensional margins for any g < t. Latin hypercubes constructed from strong or-

thogonal arrays are more space-filling than those constructed from comparable ordinary orthogonal

arrays in all g-dimensional projections for any 2 ≤ g ≤ t−1. The stratified orthogonality of strong

orthogonal arrays inspires a new way to assess design projection properties based on stratification.

There are plenty of follow-up work related to the strong orthogonal arrays. Characterization

of strong orthogonal arrays of strength 3 is presented by He and Tang (2014) through the notion

of semi-embeddability. Despite the great space-filling properties of strong orthogonal arrays of

strength 3, the run size n is often too large. He et al. (2018) introduced strong orthogonal arrays

of strength 2+ and presented construction results for such designs. Strong orthogonal arrays of

strength 2+ achieve the same 2-dimensional stratifications as strong orthogonal arrays of strength

3 while keeping run sizes small. Shi and Tang (2019) proposed methods to distinguish strong

orthogonal arrays of strength 2+ and 2 based on 3-dimensional and 2-dimensional projections, re-

spectively. Zhou and Tang (2019) studied the construction of strong orthogonal arrays of strength

2+ and 3− with column-orthogonality. Lin and Tang (2015) and Li et al. (2021) studied sliced

strong orthogonal arrays and column-orthogonal nearly strong orthogonal arrays. Shi and Tang

(2020) further proposed construction methods of strong orthogonal arrays of strength 3 with addi-

tional stratification properties. Despite all this progress, the important topic of design selection of

strong orthogonal arrays has not been systematically addressed. As we will show, there are many

strong orthogonal arrays of the same strength, yet they have quite different space-filling properties.

Orthogonality and stratification discussed above are for designs with a fixed number of levels.

Uniform designs are the kind of space-filling designs that spread design points uniformly on unit
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hypercubes with low discrepancy (Fang et al., 2006, 2018). Discrepancy measures the deviation

between the empirical distribution of the design and the theoretical uniform distribution. The

famous Koksma–Hlawka inequality in quasi-Monte Carlo method shows that the overall mean

model could benefit from designs with low star discrepancy

|ȳ(P)− E(y)| ≤ V (f)D∗(P)

where ȳ(P) is the sample mean, E(y) is the expectation, V (f) is the total variation of the function

f in the sense of Hardy and Krause (Hua and Wang, 1981) andD∗(P) is the star discrepancy (Weyl,

1916) of design P . The star discrepancy is a special case of star Lp-discrepancy when p =∞ and

it cannot be computed in polynomial time (Winker and Fang, 1997). The star L2-discrepancy can

be calculated with a simple formula in O(n2m) time where n is the number of points in design

and m is the number of dimensions. However, projection property is not well measured for the star

L2-discrepancy. Proposed by Hickernell (1998), the family of generalized L2-discrepancy adopts

a general structure that considers the projection property in all subset dimensions. The generalized

L2-discrepancy can be defined as a norm in a reproducing kernel Hilbert space, where analytical

formula of the discrepancies can be derived easily. The centered L2-discrepancy and wrap-around

L2-discrepancy are the most widely used ones among the family. Both of the discrepancies share

good geometric interpretations and simple computation formula. Nevertheless, as pointed out

by Zhou et al. (2013) and He et al. (2020), the centered L2-discrepancy suffers from curse of

dimensionality and prefers points close to the center. The wrap-around L2-discrepancy is not

sensitive to location shift.

In Chapter 2, we will propose a minimum aberration type criterion for assessing the space-

filling properties of designs based on design stratification properties on various grids. A space-

filling hierarchy principle is proposed as a basic assumption of the criterion where stratifications

on larger volume grids are preferred over stratifications on smaller volume grids. Stratification

properties are characterized numerically by a vector called the space-filling pattern, each entry

of which reveals how space-filling the design points are on stratifications with certain volume

grids. We rank and select designs that sequentially minimize the entries of the space-filling pattern.
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The space-filling criterion is applicable to designs with sp levels where s, p are positive integers,

including Latin hypercube designs, strong orthogonal arrays and variations. Connection can be

seen between our criterion, the generalized minimum aberration criterion (Xu and Wu, 2001) and

minimum G2-aberration criterion (Tang and Deng, 1999). We show that the space-filling criterion

is capable of selecting efficient space-filling designs for building statistical surrogate models via a

simulation comparison study.

In Chapter 3, we will propose the stratified L2-discrepancy to evaluate uniform designs based

on stratification properties. The stratification scheme applied on the unit hypercube is flexibly de-

termined by users. A stratified region is proposed to calculated the local projection discrepancies.

The stratified L2-discrepancy could be treated as a member of the generalized L2-discrepancy

family with specialty in the way projection properties are considered. Stratifications on various

grids are assessed with allocated weights so that stratifications are considered in different impor-

tance levels. This enables the stratified L2-discrepancy to adopt principles based in the demand of

the users. Curse of dimensionality is eliminated in our discrepancy. We establish the connection

between the space-filling pattern and the stratified L2-discrepancy by the space-filling pattern enu-

merator. The space-filling criterion in Chapter 2 is a special case of the stratified L2-discrepancy

under the space-filling hierarchy principle. We provide examples and comparisons to show the

advantages of the stratified L2-discrepancy over other discrepancies.

In Chapter 4, we will derive lower bounds for the stratified L2-discrepancy and the space-

filling pattern enumerator. A distance metric, called the NRT-distance is defined to reveal the

distance between points based on stratification. Both the stratified L2-discrepancy and the space-

filling pattern enumerator could be expressed based on NRT-distance. We find that a class of

optimal designs that achieve the lower bounds are the generalized Hadamard matrices. There

are fruitful results on the construction of generalized Hadamard matrices. We present a series

of simple construction methods using the multiplication tables over Galois fields. Examples of

optimal designs are given. We compare our optimal designs with other space-filling designs based

on various discrepancies and sub-dimensional projection properties. The optimal designs show

4



competitive performance under other discrepancies and outperform the rest of the space-filling

designs in lower-dimensional projections.
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CHAPTER 2

A Minimum Aberration Type Criterion for Selecting

Space-Filling Designs

This chapter proposes a minimum aberration type criterion for classifying and selecting space-

filling designs in a systematic way. The new criterion is inspired by the popular minimum aberra-

tion criterion and its extensions, which are widely used for selecting and ranking fractional factorial

designs; see Mukerjee and Wu (2006), Wu and Hamada (2009) and Cheng (2014). The underly-

ing assumption for the minimum aberration criterion is the effect hierarchy principle (Wu and

Hamada, 2009): (i) lower-order effects are more likely to be important than higher-order effects;

(ii) effects of the same order are equally likely to be important. However, the minimum aberration

criterion and its extensions cannot be used to assess the space-filling properties of Latin hypercube

designs and strong orthogonal arrays; for example, all Latin hypercubes of the same size, whether

orthogonal array-based or not, have the same generalized wordlength pattern.

Instead of considering factorial effects, we take stratification properties into consideration when

assessing space-filling properties. Our space-filling criterion is based on the following space-filling

hierarchy principle: (i) stratifications on larger grids are more likely to be important than strati-

fications on smaller grids; (ii) stratifications on the same volume grids are equally likely to be

important. We formalize the principle here although it was implicitly used in the development of

strong orthogonal arrays. We carefully define the space-filling pattern to characterize the stratifi-

cation properties on various grids according to this principle. The new space-filling criterion is to

select the designs that sequentially minimize the space-filling pattern. The new criterion can be

applied to a broader class of designs including aforementioned various strong orthogonal arrays
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and Latin hypercube designs. We further show that strong orthogonal arrays of maximum strength

are favorable under the space-filling criterion and present examples to show that the new criterion

can classify and rank designs of the same strength.

2.1 Notation and Backgrounds

Let Zs = {0, 1, . . . , s − 1} be the ring of integers modulo s. An orthogonal array of strength t,

denoted by OA(n,m, s1 × · · · × sm, t), is an n × m matrix whose entries of its jth column are

taken from Zsj and in any t-column subarray, all possible level combinations appear equally often.

If s1 = · · · = sm = s, the orthogonal array is symmetric and can be written as OA(n,m, s, t). For

a symmetric orthogonal array of strength t, the number of rows must be a multiple of st. Define

n = λst where λ is called the index of the orthogonal array. Latin hypercubes are n×m matrices

of which each column is strictly a permutation of n evenly spread levels, say {0, . . . , n− 1}. They

are special orthogonal arrays of strength 1 with λ = 1.

A strong orthogonal array of n runs, m factors, st levels and strength t is an n×m matrix with

entries from Zst such that any subarray of g columns for any 1 ≤ g ≤ t can be collapsed into an

OA(n, g, su1×· · ·×sug , g) for any set of positive integers {u1, . . . , ug} satisfying u1+· · ·+ug = t.

Collapsing st levels into suj levels is done by calculating ba/st−ujc for a = 0, 1, . . . , st − 1,

where bxc denotes the largest integer not exceeding x. We denote this strong orthogonal array as

SOA(n,m, st, t) with its properties called the stratified orthogonality. Similarly, the index λ of a

strong orthogonal array is defined as n = λst. If λ = 1, the corresponding strong orthogonal array

is also a Latin hypercube. Strong orthogonal arrays are closely related to nets and sequences from

quasi-Monte Carlo methods. Suppose an elementary interval in base s is an interval in [0, 1)m

defined as
∏m

j=1

[
Aj
suj
,
Aj+1

suj

)
where nonnegative integer Aj, uj satisfying 0 ≤ Aj < suj . For

a given dimension s ≥ 1, an integer base s ≥ 2, a positive integer k, and an integer w with

0 ≤ w ≤ k, a point set of sk points in [0, 1)m is called a (w, k,m)-net in base s if every elementary

interval in base s of volume sw−k contains exactly sw points. Digital nets is a general framework
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for the construction of (w, k,m)-nets.

A design matrix with fixed levels can be seen as design points distributed in a grid space. An

SOA(n,m, st, t) can be treated as n design points spreading within an stm hypercube. To assess the

space-filling property of a design, especially in a high dimensional space, we could assess its low

dimensional projections. As a result of stratified orthogonality, strong orthogonal arrays of strength

t achieve stratification no matter in what way the design space is divided into st equal-volume grids

from projection. For example, strong orthogonal arrays of strength 3 guarantee stratifications on s3

grids in any one dimension, s2×s and s×s2 grids in any two dimensions, and s×s×s grids in any

three dimensions of the design region. Other examples include strong orthogonal arrays of strength

2+ which achieve stratifications on s2 grids in any one dimension, and s2 × s and s × s2 grids in

any two dimensions, strong orthogonal arrays of strength 3− which achieve all stratifications as

of strength 3 except for s3 grids in any one dimension as the total number of levels is only s2.

Stratified orthogonality guarantees good projection properties on finer grids.

To discuss a broader class of space-filling designs, we introduce the concept of general strong

orthogonal arrays which include strong orthogonal arrays as special cases. A general strong or-

thogonal array of n runs, m factors, sp levels and strength t, denoted by GSOA(n,m, sp, t), is an

n×m matrix with entries from Zsp such that any subarray of g columns for any 1 ≤ g ≤ t can be

collapsed into an OA(n, g, su1×· · ·×sug , g) for any set of positive integers {u1, . . . , ug} satisfying

u1 + · · · + ug = t and ui ≤ p for i = 1, . . . , g. General strong orthogonal arrays of strength t

achieve stratification no matter in what way the design space is divided into st equal-volume grids

from projection. Strong orthogonal arrays have the constraint t = p, that is, a GSOA(n,m, st, t)

is an SOA(n,m, st, t). Without this constraint, general strong orthogonal arrays include any de-

sign with sp levels to the framework. Specifically, general strong orthogonal arrays of strength

t = 3 and p = 2 are strong orthogonal arrays of strength 3−, that is, a GSOA(n,m, s2, 3) is an

SOA(n,m, s2, 3−). General strong orthogonal arrays with p = 1 are ordinary orthogonal arrays,

that is, a GSOA(n,m, s1, t) is an OA(n,m, s, t). There may be situations where s and p are not

clear. In such situations we will explicitly state either s or p or both. In this chapter we focus on
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Table 2.1: Mapping functions and weights for x ∈ Z23 .

x f1(x) f2(x) f3(x) ρ(x)

0 0 0 0 0

1 0 0 1 1

2 0 1 0 2

3 0 1 1 2

4 1 0 0 3

5 1 0 1 3

6 1 1 0 3

7 1 1 1 3

p > 1 even though the criterion and results apply for p = 1.

2.2 A Space-Filling Criterion

2.2.1 Characters

We first define a series of mapping functions fi from Zsp to Zs. For i = 1, . . . , p and x ∈ Zsp ,

let fi(x) = bx/sp−ic mod s. Function fi(x) gives out the ith digit of x in the base-s numeral

system. The set of mapping functions is a bijection function that expands x to a p-dimensional

vector whose elements are from Zs. This expansion makes it possible to obtain information of x

in each possible division. To transfer back, x =
∑p

i=1 fi(x)sp−i.

For x ∈ Zsp , define weight ρ(x) = p + 1 − min{i|fi(x) 6= 0, i = 1, . . . , p} if x 6= 0 and

ρ(0) = 0. The weight ρ(x) is a generalization of the Hamming weight and represents the number

of digits needed to express x in the base-s numeral system after wiping out all the leading zeros.

As an example, Table 2.1 lists the mapping functions and the weights for all possible x ∈ Z23 .
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Table 2.2: Characters χu(x) for u, x ∈ Z23 .

x χ0(x) χ1(x) χ2(x) χ3(x) χ4(x) χ5(x) χ6(x) χ7(x)

0 1 1 1 1 1 1 1 1

1 1 1 1 1 −1 −1 −1 −1

2 1 1 −1 −1 1 1 −1 −1

3 1 1 −1 −1 −1 −1 1 1

4 1 −1 1 −1 1 −1 1 −1

5 1 −1 1 −1 −1 1 −1 1

6 1 −1 −1 1 1 −1 −1 1

7 1 −1 −1 1 −1 1 1 −1

Define an inverse inner product between u, x ∈ Zsp as

〈u, x〉 = fp(u)f1(x) + · · ·+ f1(u)fp(x) =

p∑
i=1

fp−i+1(u)fi(x).

As an illustration, suppose the entries of a design matrix are from Z23 . Mapping functions

for u = 2 and x = 6 are (f1(2), f2(2), f3(2)) = (0, 1, 0) and (f1(6), f2(6), f3(6)) = (1, 1, 0).

The inverse inner product between u and x is 〈2, 6〉 = f3(2)f1(6) + f2(2)f2(6) + f1(2)f3(6) =

0 · 1 + 1 · 1 + 0 · 0 = 1.

For u, x ∈ Zsp , define character χu(x) = ξ〈u,x〉, where ξ = e2πi/s is the primitive sth root of

unity. For simplicity, we use i for both (−1)1/2 and an index. The meaning of i should be clear

from the context. As an example, for u = 2 and x = 6, we have χ2(6) = ξ〈2,6〉 = (−1)1 = −1.

Table 2.2 shows the values of all possible characters χu(x), u, x ∈ Z23 .

We can expand the definitions of weight and character to vectors over Zsp . For u = (u1, . . . , um) ∈

Zmsp , the weight ρ(u) =
∑m

i=1 ρ(ui) is defined as the summation of individual weights, and the char-

acter χu(x) =
∏m

i=1 χui(xi) for any x = (x1, . . . , xm) ∈ Zmsp is defined as the tensor product of

individual characters. For u = (2, 3, 6), x = (6, 5, 4) ∈ Z3
23 , ρ(u) =

∑m
i=1 ρ(ui) = 2 + 2 + 3 = 7,

and χu(x) = χ2(6)χ3(5)χ6(4) = ξ〈2,6〉+〈3,5〉+〈6,4〉 = (−1)2 = 1.
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Let τ = smp. Let x1, . . . , xτ and let u1, . . . , uτ denote all possible x, u ∈ Zmsp in Yates order.

Let H = (χuj(xi)) be the τ × τ matrix of characters evaluated at all possible points in Zmsp . Both

the first row and first column of H are vectors of ones. The matrix H is symmetrical because

χu(x) = χx(u). Table 2.2 shows the H matrix with s = 2, p = 3 and m = 1. When s > 2, H is a

matrix of complex numbers. Let H∗ be the conjugate transpose of H .

Theorem 2.1. The character matrix H is symmetrical and orthogonal, that is, HT = H and

H∗H = HH∗ = τI , where I is an identity matrix of order τ .

2.2.2 Characteristics and Space-Filling Pattern

Let D be a design with n runs, m columns and sp levels. Design D can be regarded as n points

spreading in the design space Zmsp . There are in total τ distinct points in Zmsp . For each x ∈ Zmsp ,

let Nx be the number of times x appearing in D. If we ignore row orders, the design matrix can

be represented uniquely by the frequency vector N(D) = (Nx1 , . . . , Nxτ ), where x1, . . . , xτ are

all of the distinct points in Zmsp arranged in Yates order. We call this vector N(D) the frequency

representation of D.

For any u ∈ Zmsp , define χu(D) =
∑

x∈D χu(x) where x is a row ofD and the summation is over

all rows of D. The set of characteristics of D is defined as χ(D) = (χu1(D), . . . , χuτ (D)), where

u1, . . . , uτ are all distinct points in Zmsp in Yates order. The set of all χu(D) fully characterizes

the properties of D. The following theorem shows that the set of characteristics and the frequency

representation are connected through H .

Theorem 2.2. The set of characteristics and the frequency representation uniquely determine each

other as follows: χ(D) = N(D)H and N(D) = τ−1χ(D)H∗.

Now we are ready to define the space-filling pattern. For j = 0, . . . ,mp, define

Sj(D) = n−2
∑
ρ(u)=j

|χu(D)|2 = n−2
∑
ρ(u)=j

χu(D)χu(D), (2.1)
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Table 2.3: A Latin hypercube (left) and an SOA(8, 3, 8, 3) (right).

0 0 0

1 1 4

2 4 1

3 5 5

4 2 2

5 3 6

6 6 3

7 7 7

0 0 0

2 3 6

3 6 2

1 5 4

6 2 3

4 1 5

5 4 1

7 7 7

where the summation is over all u ∈ Zmsp with ρ(u) = j and χu(D) is the complex conjugate of

χu(D). It is easy to show S0(D) = 1. The vector (S1(D), . . . , Smp(D)) is called the space-filling

pattern.

Example 2.1. Table 2.3 lists an 8 × 3 Latin hypercube design D and an SOA(8, 3, 8, 3). The

Latin hypercube design is generated from an OA(8, 3, 2, 3) according to Tang (1993) while the

SOA(8, 3, 8, 3) is from He and Tang (2014). Here is an illustration on how to calculate the space-

filling pattern. The entries of the designs are from Z23 . The mapping functions with weights and

the table of characters are given in Tables 2.1 and 2.2. The collection of u ∈ Z3
23 with weight one

is the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, so

S1(D) = n−2
∑
ρ(u)=1

|χu(D)|2 =
1

64

(
|χ(1,0,0)(D)|2 + |χ(0,1,0)(D)|2 + |χ(0,0,1)(D)|2

)
= 0.

The rest of the space-filling pattern can be calculated in a similar way. The sizes of sets {u : u ∈

Z3
23 , ρ(u) = i} for i = 0, . . . , 9 are 1, 3, 9, 25, 42, 72, 104, 96, 96, 64, respectively. The sum of the

sizes is the total number of possible points in Z3
23 . The space-filling pattern of the Latin hypercube

design is (0, 0, 3, 5, 9, 16, 10, 12, 8). Note that Si(D) = 0, i = 1, 2 as all χu(D) = 0 for u with

0 < ρ(u) ≤ 2. S3(D) = 3 implies that not all χu(D) are zeros for u of weight 3. Specifically,

χu(D) = 8 for u = (1, 2, 0), (1, 0, 2) or (2, 1, 0). Furthermore, the space-filling pattern for the
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SOA(8, 3, 8, 3) is (0, 0, 0, 12, 6, 13, 12, 12, 8). For both designs,
∑9

j=1 Sj(D) = 63.

The following theorem shows that the space-filling pattern captures the strength of a general

strong orthogonal array.

Theorem 2.3. A general strong orthogonal array D has strength t if and only if Sj(D) = 0 for

1 ≤ j ≤ t.

Theorem 2.3 establishes the connection between stratified orthogonality and the space-filling

pattern. If the first j elements of the space-filling pattern are zeros, the general strong orthogonal

array achieves stratification on any sj grids from projection. For example, S1(D) = 0 guarantees

that there is an equal number of design points when the design region is cut into s equal-volume

grids in any one dimension. If S1(D) = S2(D) = 0, there is an equal number of design points in

any s2 equal-volume grids cut by projection: either s2 grids of any one dimension or s× s grids of

any two dimensions.

2.2.3 A minimum aberration type space-filling criterion

The space-filling pattern describes space-filling properties sequentially when the design is pro-

jected into coarse margins to finer margins. The properties are evaluated in the cluster of pro-

jections with respect to the volume of grids instead of dimensions. The space-filling hierarchy

principle suggests that stratifications on larger grids are more likely to be important than stratifi-

cations on smaller grids. The minimum aberration type space-filling criterion is to select designs

that sequentially minimize the space-filling pattern Sj(D) for j = 1, . . . ,mp. Here is a formal

definition.

Definition 2.1. Suppose that designsD1 andD2 have space-filling patterns (S1(D1), . . . , Smp(D1))

and (S1(D2), . . . , Smp(D2)), respectively. If Sj(D1) = Sj(D2) for j = 1, . . . , l, and Sl+1(D1) <

Sl+1(D2), then D1 is more space-filling than D2. Design D1 is the most space-filling if there is no

other design that is more space-filling than D1.
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Figure 2.1: Projection plots: 2× 4 (upper) and 4× 2 (lower).
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Example 2.2. Recall that the space-filling patterns of the Latin hypercube and SOA(8, 3, 8, 3) in

Table 2.3 are (0, 0, 3, 4, 9, 16, 10, 12, 8) and (0, 0, 0, 12, 6, 13, 12, 12, 8), respectively. According to

the space-filling criterion, the SOA(8, 3, 8, 3) is more space-filling as its S3 = 0 compared with

S3 = 3 for the Latin hypercube. Both designs achieve stratifications in each dimension, 2×2 grids

in 2 dimensions and 2 × 2 × 2 grids in 3 dimensions. Figure 2.1 presents their 2 × 4 and 4 × 2

projection plots. The projection dimensions are 1& 2, 1 & 3 and 2 & 3 from left to right. The

strong orthogonal array achieves stratifications as each grid has exactly one design point. On the

other hand, the Latin hypercube does not have an equal number of points in all 2 × 4 and 4 × 2

grids. We highlight the grids that do not have any design points. Our ranking agrees with the

conclusion in He and Tang (2013) that Latin hypercubes based on strong orthogonal arrays are

more space-filling than comparable Latin hypercubes based on orthogonal arrays.

Values of the space-filling pattern quantify the stratified orthogonality. Leading zeros indicate

stratifications on certain number of equal-volume grids. The first non-zero element reveals how

space-filling the design performs when projected to the specific number of grids. Specifically,

the Sj(D) value reveals how uniform the points are distributed when the design is projected to

sj grids. When two general strong orthogonal arrays have the same strength, the space-filling

criterion selects the design that is more space-filling in the next finer projections.

Theorem 2.4. For a design D with n runs, m columns and sp levels. The sum of its space-filling

pattern has a lower bound:
mp∑
j=1

Sj(D) ≥ smp

n
− 1. (2.2)

The equality holds if and only if D has no replicated points.

Theorem 2.4 shows that the space-filling pattern characterizes whether a design has replicated

points. Designs without replicated points are more space-filling and have smaller
∑mp

j=1 Sj(D)

than designs with replicated points. Latin hypercube designs do not have replicated points, so the

equality in (2.2) always holds for Latin hypercube designs.
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Figure 2.2: Projection plots of designs D1, D2, D3, D4 (from left to right): 2× 8 (upper) and 8× 2

(lower).

Example 2.3. Consider the SOA(32, 9, 8, 3) listed in Shi and Tang (2020). We search over all

36 two-column subarrays and find a total of four distinct space-filling patterns, which differ in

(S4, S5, S6). The four distinct patterns of (S4, S5, S6) are (0, 0, 1) for columns (1, 2) denoted as

D1, (0, 2, 1) for columns (2, 6) as D2, (1, 1, 1) for columns (1, 8) as D3, and (2, 0, 1) for columns

(1, 7) as D4, respectively. For D1, there are no replicated points and the equality in (2.2) holds as∑6
j=1 Sj(D1) = 1. For other three designs, there are only 16 distinct points and

∑6
j=1 Sj(D) = 3.

The space-filling criterion ranks D1 the best, followed by D2, D3 and D4. Figure 2.2 shows the

2 × 8 and 8 × 2 projection plots of these four designs. For D1 and D2, S4 = 0 guarantees

stratification on any 24 grids. Design D1 with S5 = 0 achieves stratifications on 4 × 8 and 8 × 4

grids whereas D2 does not. Between D3 and D4, D3 is more space-filling than D4 and achieves

stratification on 2× 8 grids, whereas D4 does not achieve stratifications on 2× 8 and 8× 2 grids.

Example 2.4. Table 1 of Sun et al. (2019) lists four 25 × 3 Latin hypercubes: a uniform de-
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sign, a maximin distance design, a maximum projection design and a uniform projection design.

We can compare and rank them using the space-filling criterion. Their space-filling patterns are

(S1, S2, S3, . . .) = (0, 0.64, 26.08, . . .), (0, 1.84, 22.48, . . .), (0, 0.96, 25.12, . . .), (0, 0, 28, . . .), re-

spectively. The uniform projection design has strength 2 whereas other three designs have strength

1. This agrees with the scatter plots in Fig. 1 of Sun et al. (2019). Among these four designs, the

uniform projection design is the most space-filling, and the maximin distance design is the least

space-filling. The uniform design is more space-filling than the maximum projection design. The

ranking of these four designs under the space-filling criterion is consistent with the ranking under

the uniform projection criterion used by Sun et al. (2019).

2.2.4 Connections with other criteria

Here we explore the connection between the space-filling criterion and other criteria. When s = 2

and p = 1, the characteristics χu(D) are called J-characteristics by Tang and Deng (1999) and

Tang (2001). For regular designs, any two factorial effects either can be estimated independently

of each other or are fully aliased. Designs that do not possess this property are called nonregular

designs. For two-level nonregular designs, the space-filling pattern defined in (2.1) coincides with

the generalized wordlength pattern and the space-filling criterion is equivalent to the minimum

G2-aberration criterion proposed by Tang and Deng (1999).

For general s ≥ 2 and p = 1, the set of characters {χu;u ∈ Zs} forms the normalized orthog-

onal contrasts (Xu and Wu, 2001). For u = (u1, . . . , um) ∈ Zms , the weight ρ(u) is the Hamming

weight of u, i.e., the number of nonzero elements of u. For a designD with n runs, m factors and s

levels, Xu and Wu (2001) defined the generalized wordlength pattern (A1(D), . . . , Am(D)) where

Aj(D) = n−2
∑
ρ(u)=j

|χu(D)|2. (2.3)

The generalized wordlength pattern reveals the aliasing structure of the design. The Aj(D) mea-

sures the overall aliasing between all j-factor interactions and the intercept. It also measures the

overall aliasing between all (j − 1)-factor interactions and all main effects. The generalized mini-
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mum aberration criterion proposed by Xu and Wu (2001) is to sequentially minimize the elements

in the generalized wordlength pattern.

The definition of Aj(D) in (2.3) is a special case of the definition of Sj(D) in (2.1) with p = 1,

so the generalized wordlength pattern is also a special case of the space-filling pattern. As a result,

the space-filling criterion is more general than the generalized minimum aberration criterion.

Despite the similarity of the definitions, it is important to notice the differences between these

two concepts. The generalized wordlength pattern and generalized minimum aberration criterion

are defined for selecting factorial designs under an ANOVA model. The generalized wordlength

pattern considers the aliasing among factorial effects whereas the space-filling pattern considers

the stratification properties of the designs. The generalized minimum aberration criterion treats the

s levels as nominal symbols so that permuting levels for any column does not alternate the gener-

alized wordlength pattern. In contrast, the space-filling criterion treats the sp levels as numerical

values so that permuting levels for any column may alternate design stratification structure and the

space-filling pattern. For example, consider the two designs in Table 2.3. When we view them as

ordinary 8-level factorial designs with s = 8 and p = 1, both designs have the same generalized

wordlength pattern (A1, A2, A3) = (0, 21, 42). In contrast, when we view them as general strong

orthogonal arrays with s = 2 and p = 3, they have different space-filling patterns and different

strengths; see Examples 2.1, 2.2 and Fig. 2.1.

Shi and Tang (2019) considered design selection for strong orthogonal arrays with strength two

plus. The criterion they used is equivalent to the minimization of S3(D). Their criterion works

only for strong orthogonal arrays constructed from regular designs whereas our criterion is more

general and works for any type of general strong orthogonal arrays.

2.3 Applications and Simulation Comparisons

We first apply the space-filling criterion for selecting and ranking designs. Shi and Tang (2020)

considered constructions of strong orthogonal arrays of strength 3. They listed an SOA(32,m, 8, 3)
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Table 2.4: Number of distinct space-filling patterns.

Number of columns

Design 2 3 4 5 6 7 8 9

SOA(32, 7, 8, 3) 2 4 4 2 1 1 - -

SOA(32, 8, 8, 3) 3 5 8 5 3 1 1 -

SOA(32, 9, 8, 3) 4 23 92 121 83 35 7 1

for m = 7, 8, 9. We conduct an exhaustive search over all subarrays of these three designs. Ta-

ble 2.4 presents the numbers of distinct space-filling patterns for all m-column subarrays of these

three designs for m = 2, ..., 9. The numbers of distinct space-filling patterns vary substantially for

different designs. For either SOA(32, 7, 8, 3) or SOA(32, 8, 8, 3), there are only a small number of

distinct space-filling patterns. Subarrays of these designs are clustered with similar space-filling

properties. However, for SOA(32, 9, 8, 3), there are a large number of distinct space-filling pat-

terns. For example, there are 121 distinct space-filling patterns among the total 126 5-column

subarrays of SOA(32, 9, 8, 3). For m = 6, 7, 8, the numbers of distinct space-filling pattern are 83,

35, 7, which are just 1 or 2 less than the total numbers of all subarrays, 84, 36, 9, respectively.

Almost all subarrays have different space-filling properties.

Tables 2.5-2.7 list the best space-filling patterns and sets of representative column indices from

these three designs. For m = 2, the best designs have strength 5, so they achieve stratifications on

8× 4 and 4× 8 grids. For m = 3, 4, the best designs have strength 4, so they are strong orthogonal

arrays of strength 4−, analogous to the definition of strong orthogonal arrays of strength 3−, and

achieve stratifications on 4× 4, 8× 2, 2× 8, 4× 2× 2, 2× 4× 2, and 2× 2× 4 grids, and as well

as 2× 2× 2× 2 grids for m = 4. For m = 5–9, the best designs have strength 3. When m = 4–8,

the most space-filling design is either from SOA(32, 7, 8, 3) or SOA(32, 8, 8, 3). This indicates

that neither SOA(32, 7, 8, 2) nor SOA(32, 8, 8, 3) is a subarray of SOA(32, 9, 8, 3). In the supple-

mentary, we list all possible space-filling patterns of m-column subarrays from SOA(32, 7, 8, 3),

SOA(32, 8, 8, 3) and SOA(32, 9, 8, 3) for m = 2, ..., 9.
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Table 2.5: Best space-filling designs from SOA(32, 7, 8, 3).

m S4, S5, S6, S7 Columns Strength

2 0, 0, 1, - 1, 4 4

3 0, 1, 7, 3 1, 4, 7 4

4 0, 9, 19, 11 1, 2, 4, 7 4

5 1, 22, 40, 40 1, 2, 3, 4, 6 3

6 3, 42, 83, 104 1, 2, 3, 4, 5, 6 3

7 7, 70, 161, 224 1, 2, 3, 4, 5, 6, 7 3

Table 2.6: Best space-filling designs from SOA(32, 8, 8, 3).

m S4, S5, S6, S7 Columns Strength

2 0, 0, 1, - 1, 4 5

3 0, 1, 7, 3 1, 4, 6 4

4 0, 8, 20, 12 1, 2, 3, 5 4

5 3, 17, 44, 38 1, 2, 3, 5, 8 3

6 7, 36, 79, 108 1, 2, 3, 4, 5, 8 3

7 13, 62, 143, 248 1, 2, 3, 4, 5, 6, 7 3

8 22, 96, 252, 496 1, 2, 3, 4, 5, 6, 7, 8 3

20



Table 2.7: Best space-filling designs from SOA(32, 9, 8, 3).

m S4, S5, S6, S7 Columns Strength

2 0, 0, 1, - 1, 2 5

3 0, 1, 7, 3 1, 5, 9 4

4 0, 9, 19, 11 3, 7, 8, 9 4

5 3, 16, 42, 46 1, 5, 6, 8, 9 3

6 8, 26, 89, 121 1, 4, 5, 6, 8, 9 3

7 15, 52, 145, 278 1, 2, 4, 5, 6, 8, 9 3

8 27, 80, 248, 546 1, 2, 3, 4, 5, 6, 8, 9 3

9 42, 124, 400, 976 1, 2, 3, 4, 5, 6, 7, 8, 9 3

We next evaluate the performance of general strong orthogonal arrays and compare them with

other types of space-filling designs in building statistical surrogate models. We conduct simula-

tions and generate data from the 8-dimensional borehole function, which has been used by Fang

et al. (2006), Chen et al. (2016) and many others. We apply a log-transformation on the response

as suggested by Fang et al. (2006). We fit a Gaussian process model with a constant mean and

the Gaussian correlation function to approximate the borehole function. To measure the prediction

error, we use the normalized root mean square error, that is,

Normalized RMSE =

[
N−1

∑N
i=1{ŷ(xi)− y(xi)}2

N−1
∑N

i=1{ȳ − y(xi)}2

]1/2
where {x1, . . . , xN} is a set of N test data points, y(xi) is the true response at xi, ŷ(xi) is the

predicted response from the Gaussian process model, and ȳ is the mean response of the data used

to build the model. We generate a test dataset using a random Latin hypercube design with N =

10, 000 runs.

We consider two SOA(32, 8, 8, 3) according to Tables 2.6 and 2.7, which have S4 = 22 and

27, respectively. We also generate random Latin hypercube designs from these two 8-level de-

signs by expanding 8 levels to 32 levels following Tang (1993). These Latin hypercube designs
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are GSOA(32, 8, 32, 3) and have the same S4 values as the corresponding original SOA(32, 8, 8, 3)

while their S5 values may vary. We also consider other four types of space-filling designs: max-

imin Latin hypercube designs, maximum projection Latin hypercube designs, uniform designs,

and densest packing-based maximum projection designs. The maximin Latin hypercube design

and the maximum projection Latin hypercube design are generated using R packages SLHD (Ba

et al., 2015) and MaxPro (Joseph et al., 2015), respectively. We generate an 8-level and a 32-level

uniform design using R package UniDOE (Zhang et al., 2018). The densest packing-based maxi-

mum projection design is generated using R package LatticeDesign (He, 2020). All designs have

32 runs and 8 columns, and each variable is scaled to [0, 1]. Given any design, we consider per-

muting column labels and reflecting within columns for a random subset of inputs, which do not

change the design’s geometrical structure and space-filling pattern. Figure 2.3 shows the normal-

ized root mean square errors from 1,000 random permutations and reflections for each design. The

SOA(32, 8, 8, 3) with S4 = 22 and its associated Latin hypercube designs clearly outperform other

designs, including the SOA(32, 8, 8, 3) with S4 = 27 and its associated Latin hypercube designs.

Our new space-filling criterion is capable of selecting efficient space-filling designs for building

statistical surrogate models. The simulation also shows that designs with good asymptotic proper-

ties such as the densest packing-based designs and maximin designs may not work well when the

run sizes are not large.

2.4 Concluding Remarks

This chapter introduces a minimum aberration type space-filling criterion for classifying and se-

lecting space-filling designs. The new criterion selects designs based on the proposed space-filling

hierarchy principle, that is, it prefers designs that achieve stratifications on larger grids to smaller

grids. The space-filling pattern is defined to characterize the stratification properties on various

grids. Our criterion works for any design with sp levels. It favors strong orthogonal arrays of max-

imum strength and is also capable to distinguish strong orthogonal arrays with the same strength.
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Figure 2.3: Normalized root mean square errors for SOA(32, 8, 8, 3) with S4 = 22 (soa8) and its

associated Latin hypercube designs (soa8lhd), SOA(32, 8, 8, 3) with S4 = 27 (soa9) and its associ-

ated Latin hypercube designs (soa9lhd), maximin Latin hypercube designs (maximin), maximum

projection Latin hypercube designs (maxpro), 8-level uniform designs (ud8), 32-level uniform de-

signs (ud), and densest packing-based maximum projection designs (dpmpd).
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We further demonstrate that general strong orthogonal arrays selected by our criterion have com-

petitive performance among various types of space-filling designs in building statistical surrogate

models.

This chapter opens many new research areas in this topic. The new space-filling criterion

has a clear geometrical meaning. And it is helpful to have additional statistical justifications on

the performance and properties of the criterion. The generalized minimum aberration criterion

is closely related to various uniformity measures and the maximin criterion when all possible

level permutations are considered (Tang et al., 2012; Zhou and Xu, 2014; Fang et al., 2018). It

is interesting to investigate whether these connections can be extended to the new space-filling

criterion. One difficulty is that we have to restrict level permutations in order to keep the space-

filling pattern invariant. The calculation of the space-filling pattern by the definition (2.1) is tedious

for large designs. A future research is to find an efficient calculation method to support the use

of our criterion. For those designs with the same space-filling pattern, it is worth considering the

definition of isomorphism in terms of space-filling properties. Developing a systematic method for

constructing optimal general strong orthogonal arrays could be a big topic. We hope to develop

more theoretical results about general strong orthogonal arrays in the future.

2.5 Appendix: Proofs

We provide properties of the characteristics and proofs of the theorems in this section.

Proof of Theorem 2.1. First consider p = 1. For any u, v ∈ Zs,∑
x∈Zs

χu(x)χv(x) =
∑
x∈Zs

ξuxξ−vx =
∑
x∈Zs

ξ(u−v)x = sδu,v,

where ξ = e2πi/s, χv(x) is the complex conjugate of χv(x), and δu,v is 1 when u = v and 0

otherwise.

Next consider p ≥ 1. For any u, x ∈ Zsp , χu(x) =
∏p

i=1 ξ
fp−i+1(u)fi(x). Then for any u, v ∈
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Zsp , ∑
x∈Zsp

χu(x)χv(x) =
∑
x∈Zsp

p∏
i=1

ξ[fp−i+1(u)−fp−i+1(v)]fi(x).

As x varies over Zsp , fi(x) varies over Zs for i = 1, . . . , p. So we have

∑
x∈Zsp

χu(x)χv(x) =

p∏
i=1

∑
fi(x)∈Zs

ξ[fp−i+1(u)−fp−i+1(v)]fi(x) =

p∏
i=1

sδfp−i+1(u),fp−i+1(v) = spδu,v.

Now for x = (x1, . . . , xm), u = (u1, . . . , um) and v = (v1, . . . , vm) from Zmsp ,∑
x∈Zm

sp

χu(x)χv(x) =
∑
x∈Zm

sp

m∏
j=1

χuj(xj)χvj(xj) =
m∏
j=1

∑
xj∈Zsp

χuj(xj)χvj(xj)

=
m∏
j=1

spδuj ,vj = smpδu,v = τδu,v.

This proves HH∗ = τI , which also implies H∗H = τI .

Proof of Theorem 2.2. Simple algebra connects the set of characteristics with the frequency repre-

sentation by

χu(D) =
∑
x∈D

χu(x) =
∑
x∈Zm

sp

Nxχu(x).

Thus, the inner product between N(D) and columns of H produces the set of characteristics, that

is, χ(D) = N(D)H . By Theorem 2.1, we have N(D) = τ−1χ(D)H∗.

To prove Theorem 2.3, we need to consider properties of the characteristics and its relation to

projection designs. To facilitate the discussion of projection designs, we introduce some additional

notation. Let W = {0, . . . , p}m be the weight set containing all possible weight patterns for

u ∈ Zmsp . For any w = (w1, . . . , wm) ∈ W , let ‖w‖1 =
∑m

i=1wi and Uw = {u : u ∈ Zmsp , ρ(u1) ≤

w1, . . . , ρ(um) ≤ wm}. It is obvious that ρ(u) ≤ ‖w‖1 if u ∈ Uw. Let D = (d1, . . . , dm) be a

GSOA(n,m, sp, t), where di is the ith column of D. Let Dw = (bd1/sp−w1c, . . . , bdm/sp−wmc) be

the collapsed projection design of D onto sw1 × · · · × swm margins. If Dw is a full design with an

equal number of replicates, design D achieves stratification on sw1 × · · · × swm grids.
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Examples of collapsed projection designs are given in the following. Suppose design D =

(d1, d2, d3) is the SOA(8, 3, 8, 3) in Table 2.3 with s = 2 and p = 3. For w = (1, 2, 3), the three

columns of Dw = (bd1/4c, bd2/2c, bd3/1c) have 2, 4, and 8 levels, respectively. For w = (0, 3, 3),

Dw is the projection design of D to the second and the third dimensions, each with 8 levels. The

first dimension of Dw is negligible because all entries are zeros. In the following we call collapsed

projection designs as projection designs.

Lemma 2.1. For any w ∈ W , the projection design Dw is uniquely characterized by χu(D) for all

u ∈ Uw.

Proof. Let D = (d1, . . . , dm). When u ∈ Uw, ρ(uj) ≤ wj for j = 1, . . . ,m. If uj 6= 0, ρ(uj) =

p+1−min{i|fi(uj) 6= 0}, so min{i|fi(uj) 6= 0} ≥ p+1−wj and fi(uj) = 0 for i = 1, . . . , p−wj .

If uj = 0, fi(uj) = fi(0) = 0 for i = 1, . . . , p. Then

χu(D) =
∑
x∈D

χu(x) =
∑
x∈D

m∏
j=1

ξ
∑p
i=1 fp−i+1(uj)fi(xj) =

∑
x∈D

m∏
j=1

ξ
∑wj
i=1 fp−i+1(uj)fi(xj).

This implies that for each column dj , among the p mapped columns (f1(dj), . . . , fp(dj)), only the

first wj columns are involved in the calculation of χu(D). Furthermore, this set of wj mapped

columns uniquely determines the collapsed column bdj/sp−wjc. As a result, we have Dw =

(bd1/sp−w1c, . . . , bdm/sp−wmc) uniquely determined by χu(D), u ∈ Uw.

Lemma 2.2. For any w ∈ W , the projection design Dw is a full design with an equal number of

replicates if and only if χu(D) = 0 for all u ∈ Uw with ρ(u) > 0.

Proof. For clarity, we only prove the result for the special case when Dw = D. The proof for

general cases is similar but involves more complicated notation.

If D is a full design with an equal number of replicates, N(D) = λe where λ is the number

of replicates and e is a row vector of ones. By Theorem 2.2, χ(D) = N(D)H = λeH . Because

both the first row and the first column of H (and H∗) are a vector of ones, we have χ(D) =

(λτ, 0, . . . , 0).
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On the other hand, if χ(D) = (λ, 0, . . . , 0) for an integer λ, by Theorem 2.2, N(D) =

τ−1χ(D)H∗ = τ−1(λ, . . . , λ) = λτ−1e. Then D is a full design with an equal number of repli-

cates.

General strong orthogonal arrays of strength t achieve stratification when projected to any st

grids. Thus, any projection design to st grids is a full design with an equal number of replicates.

Applying Lemma 2.2, we have

Lemma 2.3. Design D is a GSOA(n,m, sp, t) if and only if χu(D) = 0 for all u ∈ Zmsp with

0 < ρ(u) ≤ t.

Proof. Suppose that D is a GSOA(n,m, sp, t). For any w ∈ W with ‖w‖1 = t, Dw is a projection

design of D to sw1 × · · · × swm = st grids. Since D has strength t, Dw is a full design with an

equal number of replicates. By Lemma 2.2, χu(D) = 0 for all u ∈ Uw with ρ(u) > 0. Because⋃
w∈W,‖w‖1=t Uw = {u ∈ Zmsp : ρ(u) ≤ t}, χu(D) = 0 for all u ∈ Zmsp with 0 < ρ(u) ≤ t.

On the other hand, suppose that χu(D) = 0 for u ∈ Zmsp with 0 < ρ(u) ≤ t. Then for any

w ∈ W with ‖w‖1 = t, χu(D) = 0 for all u ∈ Uw with ρ(u) > 0. By Lemma 2.2, Dw is a

full design with an equal number of replicates. This is true for all projection designs Dw with

‖w‖1 = t; therefore, D is a GSOA(n,m, sp, t).

Finally, Theorem 2.3 is a natural result of Lemma 2.3 and the definition (2.1).

Proof of Theorem 2.4. By the definition of Sj(D) in (2.1), we have
mp∑
j=0

Sj(D) = n−2
∑
u∈Zm

sp

|χu(D)|2 = n−2χ(D)χ(D)
T

.

By Theorem 2.2, χ(D)χ(D)
T

= N(D)HH∗N(D)T = τN(D)N(D)T. For any x ∈ Zmsp , Nx

is a nonnegative integer, so Nx(Nx − 1) ≥ 0 with equality if and only if Nx = 0 or 1. Thus,

N(D)N(D)T =
∑

x∈Zm
sp
N2
x ≥

∑
x∈Zm

sp
Nx = n, where the equality holds if and only if every Nx

is either 0 or 1 for every x ∈ Zmsp . Therefore,
∑mp

j=0 Sj(D) ≥ τ/n with equality if and only if D

has no replicated points. Finally, the result follows from the fact S0(D) = 1.
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2.6 Appendix: Tables

The search results of all possible space-filling patterns ofm-column subarrays from SOA(32, 7, 8, 3),

SOA(32, 8, 8, 3) and SOA(32, 9, 8, 3) for m = 2, ..., 9 in Shi and Tang (2020).

Table 2.8: Space-filling patterns for subarrays from SOA(32, 7, 8, 3).

m S4, S5, S6, S7 Columns Strength

2 0, 0, 1 1, 4 4

0, 2, 1 1, 2 4

3 0, 1, 7, 3 1, 4, 7 4

0, 3, 5, 3 1, 2, 4 4

0, 5, 3, 3 1, 2, 3 4

0, 6, 3, 2 1, 2, 7 4

4 0, 9, 19, 11 1, 2, 4, 7 4

0, 11, 15, 13 1, 2, 3, 6 4

0, 13, 11, 15 1, 2, 3, 5 4

1, 8, 14, 16 1, 2, 3, 4 3

5 1, 22, 40, 40 1, 2, 3, 4, 6 3

1, 24, 34, 46 1, 2, 3, 4, 5 3

6 3, 42, 83, 104 1, 2, 3, 4, 5, 6 3

7 7, 70, 161, 224 1, 2, 3, 4, 5, 6, 7 3
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Table 2.9: Space-filling patterns for subarrays from SOA(32, 8, 8, 3).

m S4, S5, S6, S7 Columns Strength

2 0, 0, 1 1, 4 5

0, 2, 1 1, 2 4

2, 0, 1 1, 8 4

3 0, 1, 7, 3 1, 4, 6 4

0, 3, 5, 3 1, 2, 5 4

0, 5, 3, 3 1, 2, 3 4

2, 2, 5, 2 1, 4, 5 3

2, 4, 3, 2 1, 2, 7 3

4 0, 8, 20, 12 1, 2, 3, 5 4

1, 4, 22, 12 1, 4, 6, 7 3

1, 8, 14, 16 1, 2, 5, 6 3

1, 12, 6, 20 1, 2, 3, 4 3

2, 8, 16, 12 1, 2, 5, 8 3

2, 10, 12, 14 1, 2, 3, 6 3

5, 8, 14, 8 1, 4, 5, 8 3

5, 12, 6, 12 1, 2, 7, 8 3

5 3, 17, 44, 38 1, 2, 3, 5, 8 3

3, 19, 38, 44 1, 2, 3,5, 6 3

3, 21, 32, 50 1, 2, 3, 4, 5 3

5, 20, 34, 38 1, 2, 3, 6, 7 3

5, 22, 28, 44 1, 2, 3, 6, 8 3

6 7, 36, 79, 108 1, 2, 3, 4, 5, 8 3

7, 38, 71, 120 1, 2, 3, 4, 5, 6 3

9, 40, 63, 108 1, 2, 3, 6,7, 8 3

7 13, 62, 143, 248 1, 2, 3, 4, 5, 6, 7 3

8 22, 96, 252, 496 1, 2, 3, 4, 5, 6, 7, 8 3
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Table 2.10: Space-filling patterns for subarrays from SOA(32, 9, 8, 3).

m S4, S5, S6, S7 Columns Strength

2 0, 0, 1, - 1, 2 5

0, 2, 1, - 2, 6 4

1, 1, 1, - 1, 8 3

2, 0, 1, - 1, 7 3

3 0, 1, 7, 3 1, 5, 9 4

0, 1, 8, 1 1, 2, 3 4

0, 2, 5, 4 1, 2, 5 4

0, 3, 4, 3 5, 6, 9 4

0, 3, 5, 3 1, 2, 6 4

0, 3, 6, 1 2, 5, 9 4

0, 5, 3, 3 2, 3, 9 4

0, 6, 3, 2 3, 8, 9 4

1, 0, 5, 6 1, 4, 5 3

1, 1, 4, 3 1, 3, 5 3

1, 1, 7, 1 1, 2, 8 3

1, 2, 3, 6 1, 3, 9 3

1, 2, 4, 4 1, 3, 6 3

1, 3, 5, 1 1, 4, 8 3

1, 3, 5, 3 1, 2, 9 3

1, 3, 6, 1 1, 6, 8 3

2, 1, 4, 3 1, 2, 4 3

2, 1, 6, 3 1, 3, 4 3

2, 2, 5, 2 1, 2, 7 3

2, 3, 4, 3 3, 4, 8 3

2, 3, 5, 1 3, 4, 6 3

m S4, S5, S6, S7 Columns Strength

3 2, 4, 3, 2 1, 6, 7 3

4, 2, 4, 2 1, 5, 7 3

4 0, 9, 19, 11 3, 7, 8, 9 4

1, 5, 23, 9 1, 2, 3, 8 3

1, 6, 19, 11 1, 5, 6, 9 3

1, 6, 19, 13 2, 3, 5, 8 3

1, 7, 15, 19 1, 2, 5, 6 3

1, 7, 17, 15 5, 6, 8, 9 3

1, 7, 18, 16 1, 2, 5, 9 3

1, 8, 14, 18 4, 5, 6, 8 3

1, 8, 19, 9 1, 5, 6, 8 3

1, 9, 13, 17 2, 5, 6, 9 3

1, 10, 13, 15 2, 3, 8, 9 3

2, 2, 22, 16 1, 4, 5, 6 3

2, 3, 19, 17 1, 4, 5, 9 3

2, 4, 16, 20 1, 2, 3, 5 3

2, 4, 19, 15 1, 3, 5, 6 3

2, 5, 18, 16 4, 6, 7, 9 3

2, 5, 20, 8 2, 5, 7, 8 3

2, 6, 13, 23 2, 5, 8, 9 3

2, 6, 14, 20 1, 5, 8, 9 3

2, 6, 15, 17 1, 3, 5, 8 3

2, 6, 16, 14 1, 2, 3, 6 3

2, 6, 16, 16 1, 6, 8, 9 3

2, 6, 18, 12 1, 4, 5, 8 3
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Table 2.10: Continued.
m S4, S5, S6, S7 Columns Strength

4 2, 6, 18, 14 1, 4, 8, 9 3

2, 6, 19, 11 3, 4, 5, 6 3

2, 7, 13, 21 2, 3, 7, 9 3

2, 7, 14, 18 1, 2, 3, 9 3

2, 7, 15, 15 3, 4, 7, 9 3

2, 7, 15, 17 1, 3, 6, 8 3

2, 7, 18, 12 1, 2, 6, 8 3

2, 8, 12, 16 4, 5, 7, 8 3

2, 8, 13, 19 3, 4, 5, 8 3

2, 8, 14, 18 3, 5, 7, 9 3

2, 8, 16, 12 3, 4, 5, 7 3

2, 9, 9, 23 1, 3, 8, 9 3

2, 9, 11, 13 1, 2, 6, 9 3

2, 10, 10, 16 2, 3, 6, 9 3

2, 10, 10, 18 2, 6, 7, 9 3

2, 10, 11, 13 2, 4, 6, 7 3

2, 10, 12, 14 1, 2, 6, 7 3

2, 10, 13, 15 3, 5, 8, 9 3

2, 10, 14, 12 3, 6, 8, 9 3

3, 3, 17, 19 2, 3, 5, 6 3

3, 3, 18, 18 2, 3, 5, 7 3

3, 4, 18, 14 1, 2, 3, 7 3

3, 4, 18, 14 1, 3, 4, 9 3

3, 5, 11, 21 4, 5, 7, 9 3

3, 5, 13, 21 1, 3, 7, 9 3

m S4, S5, S6, S7 Columns Strength

4 3, 5, 14, 16 1, 3, 5, 9 3

3, 5, 14, 20 1, 2, 4, 5 3

3, 5, 14, 20 1, 2, 8, 9 3

3, 6, 12, 18 3, 4, 5, 9 3

3, 6, 13, 19 1, 2, 4, 6 3

3, 6, 13, 19 2, 5, 6, 7 3

3, 6, 15, 13 2, 4, 5, 7 3

3, 6, 17, 13 3, 4, 6, 9 3

3, 6, 18, 10 3, 5, 6, 7 3

3, 7, 10, 18 2, 6, 7, 8 3

3, 7, 12, 14 2, 4, 7, 8 3

3, 7, 14, 14 1, 4, 6, 7 3

3, 7, 14, 14 3, 6, 7, 9 3

3, 7, 15, 9 1, 2, 4, 8 3

3, 7, 17, 11 3, 5, 6, 9 3

3, 8, 11, 15 1, 3, 6, 7 3

3, 8, 12, 12 2, 4, 5, 9 3

3, 8, 13, 17 5, 6, 7, 9 3

3, 8, 15, 11 1, 2, 4, 9 3

3, 8, 16, 10 3, 4, 6, 7 3

3, 10, 13, 11 3, 4, 8, 9 3

4, 3, 14, 18 1, 3, 4, 5 3

4, 4, 18, 16 1, 3, 4, 6 3

4, 5, 10, 20 1, 3, 6, 9 3

4, 5, 14, 16 1, 3, 4, 8 3
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Table 2.10: Continued.
m S4, S5, S6, S7 Columns Strength

4 4, 5, 14, 16 1, 3, 7, 8 3

4, 6, 10, 22 3, 4, 6, 8 3

4, 6, 13, 19 2, 4, 7, 9 3

4, 7, 11, 17 1, 6, 7, 9 3

4, 7, 14, 14 1, 2, 7, 9 3

4, 7, 15, 11 1, 2, 5, 7 3

4, 8, 15, 7 1, 4, 7, 8 3

4, 9, 9, 19 2, 4, 6, 8 3

4, 9, 10, 12 2, 3, 4, 9 3

5, 4, 18, 10 1, 2, 3, 4 3

5, 5, 13, 19 1, 4, 5, 7 3

5, 5, 14, 16 2, 3, 4, 7 3

5, 5, 15, 11 1, 2, 7, 8 3

5, 6, 12, 12 1, 2, 4, 7 3

5, 6, 12, 14 1, 3, 5, 7 3

5, 7, 14, 10 1, 5, 6, 7 3

5, 8, 10, 16 1, 6, 7, 8 3

5, 9, 11, 9 2, 3, 4, 6 3

6, 6, 14, 8 1, 5, 7, 8 3

5 3, 16, 42, 46 1, 5, 6, 8, 9 3

3, 18, 36, 48 1, 2, 5, 6, 9 3

3, 19, 39, 46 3, 5, 7, 8, 9 3

4, 10, 49, 44 1, 4, 5, 6, 9 3

4, 12, 47, 42 2, 3, 5, 7, 8 3

4, 13, 42, 48 1, 2, 3, 5, 8 3

m S4, S5, S6, S7 Columns Strength

4, 13, 44, 48 1, 4, 5, 6, 8 3

4, 14, 41, 50 1, 3, 5, 6, 8 3

4, 14, 44, 44 1, 2, 3, 6, 8 3

4, 15, 36, 60 2, 5, 6, 8, 9 3

4, 15, 38, 48 4, 5, 6, 8, 9 3

4, 15, 39, 48 2, 3, 7, 8, 9 3

4, 16, 36, 56 1, 2, 3, 8, 9 3

4, 16, 37, 50 1, 2, 5, 6, 8 3

4, 17, 35, 54 2, 3, 5, 8, 9 3

4, 17, 37, 48 3, 4, 5, 7, 8 3

4, 17, 38, 46 3, 6, 7, 8, 9 3

4, 17, 41, 40 3, 4, 7, 8, 9 3

4, 19, 33, 50 2, 3, 6, 8, 9 3

4, 19, 34, 42 2, 4, 5, 6, 9 3

5, 11, 39, 58 1, 2, 3, 5, 6 3

5, 11, 41, 58 4, 6, 7, 8, 9 3

5, 12, 40, 52 1, 4, 5, 8, 9 3

5, 12, 40, 54 1, 4, 6, 8, 9 3

5, 13, 35, 62 1, 2, 3, 5, 9 3

5, 13, 35, 62 1, 2, 5, 8, 9 3

5, 13, 38, 56 1, 2, 4, 5, 6 3

5, 14, 34, 58 4, 5, 6, 7, 8 3

5, 14, 36, 58 2, 3, 5, 7, 9 3

5, 14, 37, 56 5, 6, 7, 8, 9 3

5, 14, 38, 48 3, 5, 6, 7, 8 3
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Table 2.10: Continued.
m S4, S5, S6, S7 Columns Strength

5 5, 14, 38, 50 4, 5, 6, 7, 9 3

5, 14, 42, 42 3, 4, 5, 6, 9 3

5, 15, 33, 58 1, 2, 6, 8, 9 3

5, 15, 33, 58 3, 4, 5, 6, 8 3

5, 15, 36, 52 2, 3, 5, 6, 9 3

5, 15, 37, 50 1, 2, 4, 5, 9 3

5, 15, 38, 44 1, 2, 3, 6, 7 3

5, 15, 42, 40 3, 4, 5, 6, 7 3

5, 16, 30, 60 3, 4, 5, 7, 9 3

5, 16, 31, 60 1, 3, 5, 8, 9 3

5, 16, 32, 56 2, 3, 6, 7, 9 3

5, 16, 34, 54 1, 3, 7, 8, 9 3

5, 16, 34, 56 2, 5, 6, 7, 9 3

5, 16, 35, 44 2, 4, 5, 7, 8 3

5, 16, 35, 48 2, 4, 5, 6, 7 3

5, 17, 31, 56 1, 3, 6, 8, 9 3

5, 17, 33, 46 1, 2, 4, 6, 9 3

5, 18, 30, 56 2, 4, 5, 6, 8 3

5, 18, 31, 52 2, 4, 6, 7, 9 3

5, 18, 38, 40 3, 5, 6, 8, 9 3

6, 9, 45, 50 2, 3, 5, 6, 7 3

6, 9, 46, 48 1, 3, 4, 5, 6 3

6, 11, 39, 54 1, 3, 4, 5, 8 3

6, 11, 44, 42 1, 2, 3, 7, 8 3

6, 12, 35, 56 2, 5, 6, 7, 8 3

m S4, S5, S6, S7 Columns Strength

5 6, 12, 39, 44 1, 3, 5, 6, 9 3

6, 12, 39, 50 1, 4, 6, 7, 9 3

6, 13, 36, 56 1, 2, 3, 7, 9 3

6, 13, 38, 48 1, 3, 4, 7, 9 3

6, 13, 41, 42 1, 4, 7, 8, 9 3

6, 14, 29, 58 4, 5, 7, 8, 9 3

6, 14, 33, 58 3, 4, 6, 7, 8 3

6, 14, 36, 52 1, 3, 4, 8, 9 3

6, 14, 37, 46 3, 4, 6, 7, 9 3

6, 15, 30, 52 2, 6, 7, 8, 9 3

6, 15, 32, 52 2, 4, 5, 7, 9 3

6, 15, 34, 52 1, 2, 4, 6, 8 3

6, 15, 38, 46 1, 2, 5, 7, 9 3

6, 15, 38, 46 3, 5, 6, 7, 9 3

6, 16, 27, 52 1, 2, 3, 6, 9 3

6, 16, 31, 54 1, 3, 6, 7, 8 3

6, 16, 34, 48 1, 2, 4, 8, 9 3

6, 16, 34, 50 3, 4, 6, 8, 9 3

6, 16, 35, 48 2, 3, 4, 5, 8 3

6, 17, 26, 56 2, 4, 6, 7, 8 3

6, 17, 27, 56 2, 4, 5, 8, 9 3

6, 17, 29, 54 3, 4, 5, 8, 9 3

6, 17, 30, 56 2, 4, 6, 8, 9 3

6, 17, 32, 48 1, 2, 5, 6, 7 3

6, 18, 29, 46 1, 2, 4, 6, 7 3
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Table 2.10: Continued.
m S4, S5, S6, S7 Columns Strength

5 6, 19, 26, 50 1, 2, 6, 7, 9 3

6, 19, 29, 44 2, 3, 4, 6, 9 3

7, 9, 41, 52 1, 3, 4, 6, 9 3

7, 10, 36, 50 1, 3, 4, 5, 9 3

7, 11, 35, 56 1, 4, 5, 7, 9 3

7, 11, 36, 60 1, 3, 4, 6, 8 3

7, 12, 36, 52 1, 2, 3, 5, 7 3

7, 12, 40, 46 1, 4, 5, 6, 7 3

7, 13, 32, 56 1, 3, 5, 7, 9 3

7, 13, 33, 54 1, 5, 7, 8, 9 3

7, 13, 37, 46 2, 3, 4, 7, 8 3

7, 13, 37, 48 2, 3, 4, 5, 7 3

7, 13, 41, 34 1, 2, 3, 4, 8 3

7, 14, 28, 58 1, 3, 6, 7, 9 3

7, 14, 31, 54 2, 4, 7, 8, 9 3

7, 14, 32, 56 1, 6, 7, 8, 9 3

7, 14, 35, 48 2, 3, 4, 5, 6 3

7, 14, 36, 42 1, 2, 3, 4, 9 3

7, 14, 36, 44 1, 3, 5, 6, 7 3

7, 15, 28, 56 2, 3, 4, 5, 9 3

7, 15, 30, 56 2, 3, 4, 7, 9 3

7, 15, 31, 52 1, 4, 6, 7, 8 3

7, 15, 35, 42 1, 3, 4, 7, 8 3

7, 16, 31, 46 1, 2, 6, 7, 8 3

7, 16, 34, 44 1, 5, 6, 7, 9 3

m S4, S5, S6, S7 Columns Strength

5 7, 16, 35, 44 1, 3, 4, 6, 7 3

7, 17, 34, 40 2, 3, 4, 6, 7 3

7, 20, 28, 42 2, 3, 4, 8, 9 3

8, 10, 35, 56 1, 2, 3, 4, 5 3

8, 12, 33, 50 1, 2, 7, 8, 9 3

8, 13, 37, 44 1, 2, 3, 4, 6 3

8, 13, 39, 34 1, 2, 5, 7, 8 3

8, 14, 32, 46 1, 3, 4, 5, 7 3

8, 14, 36, 40 1, 4, 5, 7, 8 3

8, 15, 31, 48 1, 2, 4, 5, 7 3

8, 15, 33, 42 1, 5, 6, 7, 8 3

8, 15, 34, 42 1, 2, 4, 7, 9 3

8, 16, 28, 52 2, 3, 4, 6, 8 3

8, 16, 32, 34 1, 2, 4, 7, 8 3

9, 13, 36, 38 1, 2, 3, 4, 7 3

6 8, 26, 89, 121 1, 4, 5, 6, 8, 9 3

8, 29, 83, 124 2, 3, 5, 7, 8, 9 3

8, 30, 75, 139 1, 2, 5, 6, 8, 9 3

8, 31, 79, 118 1, 2, 4, 5, 6, 9 3

9, 26, 82, 127 1, 2, 3, 5, 6, 8 3

9, 28, 73, 148 1, 2, 3, 5, 8, 9 3

9, 29, 78, 128 1, 2, 4, 5, 6, 8 3

9, 30, 74, 127 2, 3, 6, 7, 8, 9 3

9, 30, 77, 128 2, 3, 5, 6, 8, 9 3

9, 30, 78, 123 1, 3, 5, 6, 8, 9 3
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Table 2.10: Continued.
m S4, S5, S6, S7 Columns Strength

6 9, 31, 70, 136 1, 2, 3, 6, 8, 9 3

9, 31, 80, 116 3, 5, 6, 7, 8, 9 3

9, 32, 70, 131 2, 4, 5, 6, 8, 9 3

9, 32, 70, 131 3, 4, 5, 7, 8, 9 3

9, 32, 72, 125 2, 4, 5, 6, 7, 9 3

10, 22, 87, 127 2, 3, 5, 6, 7, 8 3

10, 23, 85, 136 1, 3, 4, 5, 6, 8 3

10, 26, 74, 140 4, 5, 6, 7, 8, 9 3

10, 26, 76, 138 2, 5, 6, 7, 8, 9 3

10, 26, 80, 134 2, 3, 5, 6, 7, 9 3

10, 27, 72, 135 1, 2, 3, 5, 6, 9 3

10, 27, 79, 126 1, 2, 3, 7, 8, 9 3

10, 27, 81, 118 1, 2, 3, 6, 7, 8 3

10, 28, 73, 133 3, 4, 5, 6, 7, 8 3

10, 28, 74, 132 1, 2, 4, 5, 8, 9 3

10, 28, 76, 130 3, 4, 6, 7, 8, 9 3

10, 28, 78, 124 3, 4, 5, 6, 7, 9 3

10, 28, 80, 118 2, 3, 4, 5, 7, 8 3

10, 29, 69, 136 2, 4, 5, 6, 7, 8 3

10, 29, 79, 116 1, 3, 4, 7, 8, 9 3

10, 30, 70, 134 1, 2, 4, 6, 8, 9 3

10, 30, 72, 132 1, 3, 5, 7, 8, 9 3

10, 30, 74, 124 3, 4, 5, 6, 8, 9 3

10, 31, 68, 135 1, 3, 6, 7, 8, 9 3

10, 31, 72, 121 2, 3, 4, 5, 6, 9 3

m S4, S5, S6, S7 Columns Strength

6 10, 33, 69, 122 1, 2, 5, 6, 7, 9 3

11, 21, 89, 115 1, 3, 4, 5, 6, 9 3

11, 25, 75, 135 1, 3, 4, 5, 8, 9 3

11, 25, 77, 135 1, 4, 6, 7, 8, 9 3

11, 25, 77, 137 1, 3, 4, 6, 8, 9 3

11, 25, 79, 127 1, 2, 3, 5, 6, 7 3

11, 25, 81, 119 1, 2, 3, 4, 5, 8 3

11, 25, 82, 120 1, 4, 5, 6, 7, 9 3

11, 25, 84, 112 1, 2, 3, 5, 7, 8 3

11, 26, 73, 142 1, 2, 3, 5, 7, 9 3

11, 27, 81, 115 2, 3, 4, 5, 6, 7 3

11, 28, 67, 134 2, 4, 5, 7, 8, 9 3

11, 28, 75, 120 1, 3, 5, 6, 7, 8 3

11, 29, 65, 143 2, 3, 4, 5, 7, 9 3

11, 29, 65, 135 1, 2, 3, 6, 7, 9 3

11, 29, 65, 139 2, 4, 6, 7, 8, 9 3

11, 29, 69, 133 2, 3, 4, 5, 6, 8 3

11, 29, 73, 127 1, 5, 6, 7, 8, 9 3

11, 30, 71, 122 1, 2, 4, 5, 6, 7 3

11, 30, 72, 119 2, 3, 4, 7, 8, 9 3

11, 30, 74, 115 1, 2, 3, 4, 8, 9 3

11, 31, 67, 127 2, 3, 4, 6, 7, 9 3

11, 32, 64, 131 2, 3, 4, 5, 8, 9 3

11, 32, 66, 119 1, 2, 4, 6, 7, 9 3

11, 34, 63, 126 2, 3, 4, 6, 8, 9 3
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Table 2.10: Continued.
m S4, S5, S6, S7 Columns Strength

6 12, 23, 79, 132 1, 2, 3, 4, 5, 6 3

12, 25, 70, 137 1, 2, 3, 4, 5, 9 3

12, 25, 74, 127 1, 4, 5, 7, 8, 9 3

12, 25, 75, 128 1, 2, 5, 7, 8, 9 3

12, 26, 68, 134 1, 3, 4, 5, 7, 9 3

12, 26, 76, 122 1, 4, 5, 6, 7, 8 3

12, 26, 77, 123 1, 2, 3, 4, 6, 8 3

12, 26, 80, 114 1, 3, 4, 5, 6, 7 3

12, 27, 73, 122 1, 3, 5, 6, 7, 9 3

12, 27, 75, 118 1, 3, 4, 5, 7, 8 3

12, 28, 68, 132 2, 3, 4, 6, 7, 8 3

12, 28, 69, 133 1, 3, 4, 6, 7, 8 3

12, 28, 70, 118 1, 2, 3, 4, 6, 9 3

12, 28, 71, 119 1, 2, 5, 6, 7, 8 3

12, 29, 62, 135 1, 2, 6, 7, 8, 9 3

12, 29, 70, 123 1, 2, 4, 5, 7, 9 3

12, 31, 63, 122 1, 2, 4, 6, 7, 8 3

13, 27, 72, 118 1, 2, 3, 4, 7, 9 3

13, 27, 77, 99 1, 2, 3, 4, 7, 8 3

13, 28, 70, 113 1, 2, 4, 7, 8, 9 3

13, 29, 73, 103 1, 2, 4, 5, 7, 8 3

13, 30, 72, 107 1, 2, 3, 4, 6, 7 3

14, 26, 69, 121 1, 2, 3, 4, 5, 7 3

7 15, 52, 145, 278 1, 2, 4, 5, 6, 8, 9 3

16, 48, 152, 274 2, 3, 5, 6, 7, 8, 9 3

m S4, S5, S6, S7 Columns Strength

7 16, 50, 140, 292 1, 2, 3, 5, 6, 8, 9 3

17, 45, 154, 275 1, 3, 4, 5, 6, 8, 9 3

17, 48, 145, 284 1, 2, 3, 5, 7, 8, 9 3

17, 50, 134, 292 2, 4, 5, 6, 7, 8, 9 3

17, 50, 139, 282 5, 4, 5, 6, 7, 8, 9 3

17, 51, 135, 283 1, 2, 3, 6, 7, 8, 9 3

17, 51, 140, 277 2, 3, 4, 5, 6, 7, 9 3

17, 52, 141, 268 1, 3, 5, 6, 7, 8, 9 3

17, 52, 135, 280 2, 3, 4, 5, 7, 8, 9 3

17, 54, 133, 276 2, 3, 4, 5, 6, 8, 9 3

17, 54, 137, 260 1, 2, 4, 5, 6, 7, 9 3

18, 45, 148, 279 1, 2, 3, 4, 5, 6, 8 3

18, 45, 150, 265 1, 2, 3, 5, 6, 7, 8 3

18, 46, 146, 278 1, 4, 5, 6, 7, 8, 9 3

18, 47, 142, 273 1, 2, 3, 4, 5, 6, 9 3

18, 47, 142, 279 2, 3, 4, 5, 6, 7, 8 3

18, 48, 138, 286 1, 2, 3, 4, 5, 8, 9 3

18, 48, 140, 286 1, 3, 4, 6, 7, 8, 9 3

18, 49, 138, 277 1, 3, 4, 5, 7, 8, 9 3

18, 50, 134, 284 1, 2, 5, 6, 7, 8, 9 3

18, 51, 135, 277 1, 2, 3, 4, 6, 8, 9 3

18, 52, 130, 282 2, 3, 4, 6, 7, 8, 9 3

19, 45, 146, 267 1, 3, 4, 5, 6, 7, 9 3

19, 46, 143, 274 1, 3, 4, 5, 6, 7, 8 3

19, 50, 135, 266 1, 2, 4, 5, 6, 7, 8 3
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Table 2.10: Continued.
m S4, S5, S6, S7 Columns Strength

7 19, 50, 141, 248 1, 2, 3, 4, 7, 8, 9 3

19, 51, 126, 281 1, 2, 4, 6, 7, 8, 9 3

20, 47, 142, 261 1, 2, 3, 4, 5, 6, 7 3

20, 47, 144, 247 1, 2, 3, 4, 5, 7, 8 3

20, 48, 134, 268 1, 2, 4, 5, 7, 8, 9 3

20, 48, 128, 288 1, 2, 3, 4, 5, 7, 9 3

20, 49, 136, 261 1, 2, 3, 4, 6, 7, 8 3

20, 50, 130, 266 1, 2, 3, 4, 6, 7, 9 3

8 27, 80, 248, 546 1, 2, 3, 5, 6, 7, 8, 9 3

27, 82, 242, 548 2, 3, 4, 5, 6, 7, 8, 9 3

28, 78, 250, 540 1, 3, 4, 5, 6, 7, 8, 9 3

28, 82, 238, 540 1, 2, 4, 5, 6, 7, 8, 9 3

29, 80, 240, 534 1, 2, 3, 4, 5, 6, 7, 9 3

29, 82, 234, 536 1, 2, 3, 4, 6, 7, 8, 9 3

30, 76, 248, 524 1, 2, 3, 4, 5, 6, 7, 8 3

9 42, 124, 400, 976 1, 2, 3, 4, 5, 6, 7, 8, 9 3
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CHAPTER 3

A Stratified L2-Discrepancy for Uniform Designs

In this chapter, we propose a new discrepancy, the stratified L2-discrepancy to measure the unifor-

mity of designs. The new discrepancy evaluates design stratification properties on various kinds

of grids. The idea of stratification comes from the stratified orthogonality of strong orthogonal

arrays and is implemented on a continuous space. The stratified L2-discrepancy is applicable

to all designs on the unit hypercube. Using the framework of reproducing kernel, the proposed

discrepancy inherits most of the advantages of the generalized L2-discrepancy. The nature of strat-

ification avoids design points gathering around certain locations for a high-dimensional design

space. Designs with small stratified L2-discrepancy are space-filling and have good projection

properties. The stratified L2-discrepancy is general and flexible in measuring projection properties

with associated stratification schemes and importance levels. In particular, the space-filling crite-

rion proposed by Tian and Xu (2021) is a special case of the stratified L2-discrepancy when the

space-filling hierarchy principle is assumed.

3.1 Notation and Backgrounds

The generalized L2-discrepancy was proposed by Hickernell (1998) to overcome the shortcomings

of the star Lp-discrepancy. Let P be a design with n runs and m factors on the unit hypercube

Cm = [0, 1)m = [0, 1) × · · · × [0, 1). Let {1 : m} = {1, . . . ,m} and let u ⊆ {1 : m} be the set

used to index the factors of interest. For each x ∈ Cm, let Ru(x) ⊆ [0, 1)u be a neighboring region

of x in Cm in the coordinates indexed by u. Define the local projection discrepancy for the factors
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indexed by u as

discRu (x) = Vol(Ru(x))− |P ∩Ru(x)|
n

, (3.1)

where |P ∩ Ru(x)| is the number of design points in P that lie inside the region Ru(x) in the

coordinates indexed by u and Vol(Ru(x)) is the volume ofRu(x). The local projection discrepancy

is a function of x and u that measures the difference between the volume of the region Ru(x) and

the proportion of design points that fall into the region.

A generalized L2-discrepancy is defined in terms of all local projection discrepancies as fol-

lows:

DR
2 (P) =


∫
[0,1]m

∑
u⊆{1:m}

|discRu (xu)|2dx


1
2

.

The generalizedL2-discrepancy considers local projection discrepancies for all uwith equal weights.

Projection properties of the design are evaluated for each set of sub-dimensions. The definition of

Ru(x) for the generalized L2-discrepancy makes it possible to design the neighboring region. The

centered L2-discrepancy defines Ru(x) to be the hyperrectangle between x and the nearest vertex

and the wrap-around L2-discrepancy defines the region Ru(x, y) to be the hyperrectangle region

between x and y wrapping the unit cube. If the volume of the region is relevant to x, it may cause

undesirable problems. For example, because the region Ru(x) for the centered L2-discrepancy in-

volves vertexes of the design region, designs selected by the centered L2-discrepancy favor design

points around the center point in a high-dimensional input space. To overcome these issues, we

define the stratified L2-discrepancy with a stratified region Ru(x) so that projection properties are

evaluated based on design stratifications on various grids flexibly.
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3.2 A stratified L2-Discrepancy

3.2.1 A stratified region Ru(x)

For any x in [0, 1) and given integers s and p, we define a series of mapping functions fk(x) for

k ≥ 1 as follows:

fk(x) = bbspxc/sp−kc mod s,

where bxc denotes the largest integer not exceeding x. The functions fk(x) gives out the kth digit

of x after the radix point in base s numeral system, that is, x =
∑∞

k=1 fk(x)s−k. For convenience,

we express x as (0.f1f2 . . . fp . . . )s in base s numeral system. For example, when s = 2, we can

write 3/8 as (0.011)2, 7/8 as (0.111)2, and 7/16 as (0.0111)2. The first p digits after the radix

point are sufficient to determine the position of x when [0, 1) is evenly divided into sp intervals.

Let Zp+1 = {0, 1, · · · , p} be a set of integers. For u = (u1, · · · , um) ∈ Zmp+1 and x =

(x1, . . . , xm) ∈ [0, 1)m, the stratified region Ru(x) is defined by

Ru(x) =
m⊗
j=1

Ruj(xj), (3.2)

where
⊗

is the Kronecker product, Ruj(xj) =
[∑uj

k=1 fk(xj)s
−k,
∑uj

k=1 fk(xj)s
−k + s−uj

)
for

uj = 1, · · · , p and R0(xj) = [0, 1). The interval Ruj(xj) contains xj and has length s−uj ; it is

uniquely determined by the first uj digits of xj after the radix point in base s numeral system.

The regionRu(x) is a hyperrectangle based on u and x. The value of u decides how many grids

are drawn in the design region and x decides on which gridRu(x) represents. In the jth dimension,

the design region is divided to suj grids. Because the length of the grid on the jth dimension is

s−uj , the volume of Ru(x) is Πm
j=1s

−uj . For any x and a fixed u, there is one and only one region

Ru(x) that contains x.

Here we present a simple example to illustrate the region Ru(x). Consider a two-dimensional

design space and s = 2, p = 3. We randomly draw points x in [0, 1)2 and represent points as

triangles. In Figure 3.1, the boxes are the regions Ru(x) containing randomly drawn points x with
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u specified on the top of the plot. For instance, in the first plot in the first row, the box shows the

region Ru(x) when u = (0, 1) and x = (9/16, 11/16). Here u1 = 0, u2 = 1 means that the design

region will be divided into 20 part and 21 parts in the first and second dimension, respectively. The

box Ru(x) shows a rectangle that contains x where the horizontal and vertical axes represent the

first and second dimensions. When u1 = u2 = 1 in the third plot in the first row, the design region

in both dimensions are divided into 2 parts and Ru(x) is the square box that contains x. The finest

grids we can draw are 23× 23 grids when u = (3, 3). For plots with the same u1 +u2, the volumes

of the boxes are the same.

The stratified region Ru(x) defines multiple kinds of neighboring grids around x based on u.

The index set u determines the shape and the volume of the grid. Projection properties can be

assessed based on all u ∈ Zmp+1 in a flexible way. The volume of Ru(x) is the same for different

x as long as u is fixed; consequently points are treated equally important regardless of its location.

In addition, the values of s and p provide flexibility in the definition of the stratified region.

3.2.2 A stratified L2-discrepancy

Let P be a design with n runs and m factors on Cm. The stratified L2-discrepancy is defined with

the local projection discrepancy in (3.1) given the stratified region Ru(x) in (3.2). The projection

property is considered by summing over all local projection discrepancies for u ∈ Zmp+1. We

further introduce weights related to u in the formulation of the stratified L2-discrepancy to allocate

different importance level for various stratifications. The definition of the stratified L2-discrepancy

is

SDR
2 (P) =


∫
[0,1]m

∑
u∈Zmp+1

w(u)|discRu (x)|2dx


1
2

, (3.3)

where weight w(u) =
∏m

i=1w(ui) > 0 is the product of individual weights of each ui. When

w(u) = 1, ∀u ∈ Zmp+1, the projection uniformities of all stratifications are treated equally impor-

tant. If we believe in the space-filling hierarchy principle, the weight w(u) should be defined in

terms of the size of the grids in the stratifications. The stratified L2-discrepancy can be tuned to
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Figure 3.1: Illustration of the stratified region Ru(x).

emphasize projection properties flexibly. Note that Ru(x) in (3.2) is only defined for x ∈ [0, 1)m

whereas the integration in (3.3) is over x ∈ [0, 1]m. This does not cause a problem because the

integration leads to the same value whether it is over [0, 1)m or [0, 1]m.

To derive an analytical expression for the stratified L2-discrepancy, we need to introduce the

concept of a reproducing kernel Hilbert space. Let X be a design space. A kernel function K(t, z)

on X 2 = X × X is symmetric and nonnegative definite. LetW be the real-valued function space
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on X with the kernel function K as follows (Fang et al., 2018):

W =
{
F (x) :

∫
X 2

K(t, z)dF (t)dF (z) <∞
}
.

The inner product between two functions F,G ∈ W is defined as

〈F,G〉W =

∫
X 2

K(t, z)dF (t)dG(z).

The norm of the function F ∈ W is ‖F‖W = [〈F, F 〉W ]
1
2 . ThenW is a Hilbert space of real-valued

functions on X . If the kernel function is a reproducing kernel, then W is called a reproducing

kernel Hilbert space.

Now we define the kernel function K(t, z) based on the stratified region Ru(x) in (3.2) on

X 2 = Cm × Cm as follows:

KR(t, z) =
∑

u∈Zmp+1

KRu (t, z), (3.4)

where

KRu (t, z) =

∫
Cm

w(u)1Ru(x)(t)1Ru(x)(z)dx

and 1Ru(x)(t) = 1 if t ∈ Ru(x) and 0 otherwise. The next theorem establishes the connection

between the stratified L2-discrepancy and the reproducing Hilbert spaceW .

Theorem 3.1. Let F be the cumulative distribution function for the uniform distribution on Cm

and let FP be the empirical distribution function for design P on Cm. Then the stratified L2-

discrepancy of design P can be defined in the form of a norm in a reproducing Hilbert spaceW

with kernel KR(t, z) as

SDR
2 (P) = ‖F − FP‖W . (3.5)

With Theorem 3.1, the calculation of the stratified L2-discrepancy becomes the integral of the

kernel function with respect to distribution functions, from which simple analytical expression can

be derived.
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The kernel function KR(t, z) in (3.4) is the sum of KRu (t, z) over all possible u. For t =

(t1, . . . , tm) and z = (z1, . . . , zm) in [0, 1)m, each KRu (t, z) is a separable kernel function and

equals to the product of kernel functions in each dimension: KRu (t, z) =
∏m

j=1 K̃Ruj(tj, zj). In the

jth dimension, K̃Ruj(tj, zj) can be simplified as

K̃Ruj(tj, zj) =

∫ 1

0

w(uj)1Ruj (xj)(tj)1Ruj (xj)(zj)dxj = w(uj)s
−ujδuj(tj, zj)

where

δi(tj, zj) =
i∏

k=1

1fk(tj)=fk(zj) (3.6)

for i = 1, · · · , p are the indicator functions revealing whether tj and zj are in the same grid when

[0, 1) is stratified to si parts. We define w(0) = 1 and δ0(tj, zj) = 1 to make the formula consistent.

In the jth dimension, the kernel function K̃Ruj(tj, zj) takes value w(uj)Vol(Ruj(x)) or 0 depending

on the relative locations of tj and zj . When tj and zj lie in the same grid, the kernel function takes

the larger value as a penalty.

By the binomial theorem, the kernel KR(t, z) can be expressed in a product form:

KR(t, z) =
m∏
j=1

[
1 +

p∑
i=1

K̃Ri (tj, zj)

]
.

Thus, tedious summation over all possible u ∈ Zmp+1 is avoided. In the jth dimension, all possible

stratifications are considered in the form of
∑p

i=1 K̃Ri (tj, zj). The kernel function of the stratified

L2-discrepancy consists of terms reflecting the uniformity of all possible stratifications of the de-

sign without adding too much complexity to the computation. As a result, we can derive simple

and fast analytical expressions that can efficiently compute the stratified L2-discrepancy.

Example 3.1. When s = 2, p = 3, the kernel function of the stratified L2-discrepancy is

KR(t, z) =
m∏
j=1

[1 +
w(1)

2
δ1(tj, zj) +

w(2)

4
δ2(tj, zj) +

w(3)

8
δ3(tj, zj)].

Suppose that m = 1 and all weights are equal to 1. The values of KR(t, z) are displayed in Table

3.1 for t, z in each of the grids when [0, 1) is stratified to 8 parts equally. If t and z are not in the
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Table 3.1: The kernel function KR(t, z) for m = 1, s = 2 and p = 3.

Region of z

Region of t [0, 1/8) [1/8, 1/4) [1/4, 3/8) [3/8, 1/2) [1/2, 5/8) [5/8, 3/4) [3/4, 7/8) [7/8, 1)

[0, 1/8) 1.875 1.75 1.5 1.5 1 1 1 1

[1/8, 1/4) 1.75 1.875 1.5 1.5 1 1 1 1

[1/4, 3/8) 1.5 1.5 1.875 1.75 1 1 1 1

[3/8, 1/2) 1.5 1.5 1.75 1.875 1 1 1 1

[1/2, 5/8) 1 1 1 1 1.875 1.75 1.5 1.5

[5/8, 3/4) 1 1 1 1 1.75 1.875 1.5 1.5

[3/4, 7/8) 1 1 1 1 1.5 1.5 1.875 1.75

[7/8, 1) 1 1 1 1 1.5 1.5 1.75 1.875

same half,KR(t, z) = 1. If t and z are in the same half but not in the same quarter,KR(t, z) = 1.5.

If t and z are in the same quarter but not in the same one eighth, KR(t, z) = 1.75. If t and z are

in the same one eighth, KR(t, z) = 1.875. Large kernel values lead to large discrepancies. The

stratified L2-discrepancy discourages designs with points close to each other with p+ 1 stair-wise

penalties based on the value of s.

Example 3.2. When s = 3, p = 2, the kernel function of the stratified L2-discrepancy is

KR(t, z) =
m∏
j=1

[1 +
w(1)

3
δ1(tj, zj) +

w(2)

9
δ2(tj, zj)].

We present the values of KR(t, z) in Table 3.2 for t, z in each of the grids when [0, 1) is stratified

to 9 parts equally. The kernel function takes three possible values: 1, 1.33, 1.44 depending on

the relative locations of t and z. If t and z are not in the same one third of the design region,

KR(t, z) = 1. If t and z are in the same one third but not in the same one ninth, KR(t, z) = 1.33.

If t and z are in the same one ninth, KR(t, z) = 1.44.

In the above examples, we utilize equal weights for all projections. The choice of s, p and

weights provides flexibility to the stratified L2-discrepancy and enables a deeper investigation to
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Table 3.2: The kernel function KR(t, z) for m = 1, s = 3 and p = 2.

Region of z

Region of t [0, 1/9) [1/9, 2/9) [2/9, 1/3) [1/3, 4/9) [4/9, 5/9) [5/9, 2/3) [2/3, 7/9) [7/9, 8/9) [8/9, 1)

[0, 1/9) 1.44 1.33 1.33 1 1 1 1 1 1

[1/9, 2/9) 1.33 1.44 1.33 1 1 1 1 1 1

[2/9, 1/3) 1.33 1.33 1.44 1 1 1 1 1 1

[1/3, 4/9) 1 1 1 1.44 1.33 1.33 1 1 1

[4/9, 5/9) 1 1 1 1.33 1.44 1.33 1 1 1

[5/9, 2/3) 1 1 1 1.33 1.33 1.44 1 1 1

[2/3, 7/9) 1 1 1 1 1 1 1.44 1.33 1.33

[7/9, 8/9) 1 1 1 1 1 1 1.33 1.44 1.33

[8/9, 1) 1 1 1 1 1 1 1.33 1.33 1.44

the projection properties of the designs. The choice of these parameters also allows implementation

of prior knowledge and preference to the criterion. We will address this in Section 3.4.2.

In the rest of this section, we provide the analytic expression for the stratified L2-discrepancy.

For design P = {x1, · · · , xn} ⊂ Cm, the L2-discrepancy in (3.5) has the following computational

formula according to (2.4.5) of Fang et al. (2018) :

SDR
2 (P)2 =

∫
C2m

KR(t, z)d(F − FP)(t)d(F − FP)(z)

=

∫
C2m

KR(t, z)dF (t)dF (z)− 2

n

n∑
a=1

∫
Cm
KR(t, xa)dF (t) +

1

n2

n∑
a,b=1

KR(xa, xb).

This provides us an analytical expression for the stratified L2-discrepancy.

Theorem 3.2. For design P = {x1, · · · , xn} ⊂ Cm, xi = (xi1, · · · , xim), i = 1, · · · , n, the strati-

fied L2-discrepancy has the following expression:

SDR
2 (P)2 = −

(
1 +

p∑
i=1

w(i)s−2i

)m

+
1

n2

n∑
a,b=1

m∏
j=1

[
1 +

p∑
i=1

w(i)s−iδi(xaj, xbj)

]
, (3.7)

where δi(·, ·) is an indicator function defined in (3.6).
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Given a design with n runs and m columns over Cm, the stratified L2-discrepancy depends

on the choices of s, p and w(i), i = 1, . . . , p. Here are some rules of thumb. Constant weights

w(i) = 1 work well enough in most of the situations when m is not too large. We use constant

weights in the stratified L2-discrepancy unless specially mentioned for the rest of the chapter. A

good choice for s is a small number such as 2 or 3. We choose p to be the largest p such that

sp ≤ n.

3.3 Applications

The implementation of the stratified L2-discrepancy is straightforward. We present some examples

to demonstrate our newly proposed discrepancy. For a q-level design D = (dij) with entries

from Zq, its stratified L2-discrepancy SDR
2 (D) is defined to be SDR

2 (P) where P = (xij) with

xij = (dij + 0.5)/q.

Example 3.3. Consider four 19×18 Latin hypercube designs studied by Sun et al. (2019). The four

designs consist of a uniform design under the centered L2-discrepancy, a maximin distance design,

a maximum projection design and a uniform projection design. The uniform projection design has

good projection properties and is robust under various criteria (Sun et al., 2019). We calculate

the stratified L2-discrepancy (SD) with s = 2, 3 and other discrepancies for the four designs. The

results are in Table 3.3. The stratified L2-discrepancy prefers the uniform projection design. The

centered L2-discrepancy (CD) and the mixture L2-discrepancy (MD) choose the uniform design,

while the warp-around L2-discrepancy (WD) chooses the maximum projection design. The strati-

fied L2-discrepancy confirms that the uniform projection design has good projection properties.

Example 3.4. We randomly generate four types of designs: orthogonal array-based samples

(OAS), orthogonal array-based Latin hypercube samples (OALHS), Latin hypercube samples (LHS)

and maximin Latin hypercube samples (mLHS) and evaluate them with different discrepancies. The

designs have 49 runs and 8 columns. Each type of designs are generated for 20 times using the

R package lhs. Figure 3.2 shows the values of the discrepancies. The stratified L2-discrepancy
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Table 3.3: Discrepancies for four 19× 18 Latin hypercube designs.

Design CD WD MD SD (s = 2) SD (s = 3)

Maximin 1.2889 7.0488 25.2549 87.7170 6.0710

MaxPro 1.3090 6.8823 24.8515 87.6938 6.0468

Uniform 1.2643 6.9414 24.8049 87.6903 6.0496

UniformPro 1.2655 6.9352 24.8554 87.6342 6.0365

picks the same top two designs as the centered L2-discrepancy and the mixture L2-discrepancy.

The orthogonal array-based Latin hypercube samples are the most space-filling followed by the

maximin Latin hypercube samples. For the rest two types of designs, the stratified L2-discrepancy

prefers the orthogonal array-based samples than the Latin hypercube samples based on the pro-

jection properties on multi-dimensions.
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Figure 3.2: Discrepancies for four types of designs.

Example 3.5. Consider four 25 × 3 Latin hypercube designs studied by Sun et al. (2019). The

four designs consist of the same type of the designs as mentioned in Example 3.3. The projection

plots in Sun et al. (2019) show that all four designs are quite space-filling. The uniform projection

design achieves stratifications on 5 × 5 grids for any two-dimensional projection. We calculate

the stratified L2-discrepancy with s = 2, 3, 5 and other discrepancies for the four designs. All

discrepancies except for the stratified L2-discrepancy with s = 5 choose the uniform design as the

best design. The stratified L2-discrepancy with s = 5 and p = 2 evaluates the 5× 5 stratification

properties and the uniform projection design is picked out as the best design. For s = 2 and 3, the
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Table 3.4: Discrepancies for four 25× 3 Latin hypercube designs.

Design CD WD MD SD (s = 2) SD (s = 3) SD (s = 5)

Maximin 0.0457 0.0685 0.0681 0.2197 0.1042 0.0717

MaxPro 0.0429 0.0622 0.0621 0.2027 0.1040 0.0611

Uniform 0.0377 0.0620 0.0597 0.1904 0.0963 0.0568

UniformPro 0.0392 0.0621 0.0597 0.1969 0.1027 0.0469

stratified L2-discrepancy could not detect 5× 5 stratifications.

3.4 Connection and comparisons with other criteria

3.4.1 A space-filling pattern enumerator

A minimum aberration type space-filling criterion was introduced by Tian and Xu (2021) to assess

the space-filling properties of designs based on stratification properties on various grids. The

space-filling criterion is based on the space-filling hierarchy principle and can systematically rank

and select designs such as strong orthogonal arrays and Latin hypercubes.

For x ∈ Zsp , let ρ(x) be the number of digits needed to represent x in base s numeral system.

We take ρ(0) = 0. Let D = (dij) be a design with n runs, m columns and all entries in Zsp , the

space-filling pattern (S1(D), . . . , Smp(D)) is defined as

Sk(D) = n−2
∑

ρ(u)=k,
u∈Zm

sp

∣∣∣∣∣
n∑
i=1

m∏
j=1

χuj(dij)

∣∣∣∣∣
2

, (3.8)

where the summation is over all u = (u1, · · · , um) ∈ Zmsp with ρ(u) =
∑m

j=1 ρ(uj) = k and

χui(dij) is the character defined in Tian and Xu (2021). The space-filling criterion is to select the

designs that sequentially minimize the space-filling pattern.

Both the stratified L2-discrepancy and the space-filling criterion evaluate designs based on var-

ious stratifications properties. The space-filling pattern considers the stratification properties via
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evaluating orthogonal properties of all possible column combinations, which results in consider-

able computational complexity especially in a high-dimensional space. Here we present a new way

to calculate the space-filling pattern via row-wise calculations and establish a connection between

these two criteria. For design D = (dij), define the weighted similarity between u, v ∈ Zsp as

R(u, v; y) =
sp−1∑
i=0

χi(u)χi(v)yρ(i),

where y is a parameter used to set weights and χi(v) is the complex conjugate of χi(v). The

weighted similarity between the ath row da = (da1, ..., dam) and the bth row db = (db1, ..., dbm) of

D is

R(da, db; y) =
m∏
j=1

R(daj, dbj; y) =
m∏
j=1

(
sp−1∑
i=0

χi(daj)χi(dbj)y
ρ(i)

)
.

Define the space-filling pattern enumerator for design D as

E(D; y) =

mp∑
k=0

Sk(D)yk,

where S0(D) = 1.

Lemma 3.1. The space-filling pattern enumeratorE(D; y) can be computed as the average weighted

similarity among all pairs of rows of D as

E(D; y) = n−2
n∑
a=1

n∑
b=1

R(da, db; y) = n−2
n∑
a=1

n∑
b=1

m∏
j=1

R(daj, dbj; y).

The space-filling pattern enumerator is a polynomial function of y with the space-filling pattern

as coefficients. The space-filling pattern can be calculated by evaluating E(D; y) with different y

for mp times and solving a system of linear equations. Let y1, . . . , ymp be the distinct ys chosen to

compute the E(D; y). A system of linear equations is
y1 y21 . . . ymp1

y2 y22 . . . ymp2

...
... . . . ...

ymp y2mp . . . ympmp




S1(D)

S2(D)
...

Smp(D)

 =


E(D; y1)− 1

E(D; y2)− 1
...

E(D; ymp)− 1

 , (3.9)
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which can be represented by Y S = E in a matrix form. Then the space-filling pattern can be

easily solved by S = Y −1E. Specifically, we can set yj = e2πj
√
−1/(mp) so that ympj = 1. Our

choice of yj, j = 1, · · · ,mp, leads to a simple inverse of the matrix Y −1 = Y
T

(mp)−1 where Y
T

is the complex conjugate of Y .

Theorem 3.3. Let yj = e2πj
√
−1/(mp). The space-filling pattern can be computed as

Sk(D) =
1

mp

mp∑
j=1

y−kj (E(D; yj)− 1)

for k = 1, . . . ,mp.

3.4.2 Connection with the space-filling criterion

The space-filling pattern enumerator makes it possible to connect the stratified L2-discrepancy

and the space-filling criterion computationally because both the space-filling pattern enumerator

and the stratified L2-discrepancy have summation terms over all paired rows in the design. The

following theorem reveals the relationship between the space-filling pattern and the stratified L2-

discrepancy.

Theorem 3.4. For a design D with n runs, m columns and entries from Zsp , the stratified L2-

discrepancy connects with the space-filling pattern in the following equation:

SDR
2 (D)2 = (E(D; y)− 1)(1− y)−m =

(
mp∑
i=1

yiSi(D)

)
(1− y)−m,

when the weights of the stratified L2-discrepancy are set to w(i) = (s2y)i if i < p and w(p) =

(s2y)p/(1− y) with y ∈ (0, 1).

Theorem 3.4 shows that the squared stratified L2-discrepancy is a linear combination of the

space-filling pattern under the proposed weight scheme; therefore, the squared stratifiedL2-discrepancy

is more flexible and general than the space-filling criterion.

The proposed weight scheme in Theorem 3.4 leverages the relative importance of the local

discrepancies related to the volume of region Ru(x). For u = (u1, . . . , um) ∈ Zmp+1, Ru(x) has
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Table 3.5: Space-filling pattern and the stratified L2-discrepancy.

Design S4 S5 S6 S7 SDR
2 (D) SDR

2 (D)(y = 0.1)

1 27 80 248 546 2.1705 0.1074

2 27 82 242 548 2.1729 0.1076

3 28 78 250 540 2.1771 0.1084

4 28 82 238 540 2.1813 0.1087

5 29 80 240 534 2.1878 0.1097

6 29 82 234 536 2.1902 0.1098

7 30 76 248 524 2.1918 0.1105

volume Πm
j=1s

−uj and weight w(u) = Πm
j=1w(uj). When y = s−2, w(i) = 1 for 1 ≤ i < p and

w(p) = 1/(1 − s−2), which leads to the constant weight w(u) = 1 for all u with maxmj=1 uj < p.

When y < s−2, larger grids receive larger weights, which agrees with the space-filling hierarchy

principle. So we recommend the choice of y < s−2 if unequal weights are preferred.

Example 3.6. In Table 4 of Tian and Xu (2021), the authors listed the total number of distinct

space-filling patterns for all subarrays of design SOA(32, 9, 8, 3) from Shi and Tang (2020). There

are 7 distinct space-filling patterns from all 8-column subarrays of SOA(32, 9, 8, 3). The space-

filling criterion is able to rank those 7 designs with different geometric structures. We calculate the

stratified L2-discrepancy with s = 2, p = 5 for the 7 designs and present the results in Table 3.5,

where SDR
2 (D) is the stratified L2-discrepancy with constant weightsw(u) = 1 and SDR

2 (D)(y =

0.1) is the stratified L2-discrepancy with a weight scheme in Theorem 3.4 and y = 0.1. The

ranking of the designs are the same for the two sets of weights. The stratified L2-discrepancy

prefers designs that achieve various stratifications when projected onto a low-dimensional space.

Theorem 3.5. For two designs D1 and D2 with n runs and m factors and entries from Zsp , if D1

is more space-filling than D2 based on the space-filling criterion, there must exist an ε > 0 such

that for any y ∈ (0, ε),

SDR
2 (D1)− SDR

2 (D2) < 0,
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when the stratified L2-discrepancy takes s, p and the weight scheme in Theorem 3.4.

Based on Theorem 3.5, the space-filling criterion is a special case of the stratifiedL2-discrepancy.

Using the weight scheme in Theorem 3.4 and a small enough y, the stratified L2-discrepancy se-

lects designs in the spirit of the space-filling hierarchy principle. Stratification properties of the

designs are preferred from larger grids to smaller grids and stratifications on the same volume

grids are treated equally important. The space-filling criterion is equivalent to the minimum G2-

aberration criterion proposed by Tang and Deng (1999) for two-level designs. The generalized

minimum aberration criterion proposed by Xu and Wu (2001) for general s-level designs is also

a special case of the space-filling criterion with p = 1. Thus, the stratified L2-discrepancy has a

deep connection with the aforementioned criteria.

Tian and Xu (2021) showed that general strong orthogonal arrays of maximum strength are

space-filling under the space-filling criterion. By the connection established in Theorems 3.4 and

3.5, general strong orthogonal arrays of maximum strength tend to be uniform and have small

stratified L2-discrepancy values. This explains why the orthogonal array-based Latin hypercube

samples in Example 3.4 are more uniform than other designs because they are general strong

orthogonal arrays of strength two.

Despite the equivalence with the space-filling criterion as a special case, the stratified L2-

discrepancy can be applied to a much broader range of designs as long as the designs are trans-

formed to the unit hypercube. It can serve equivalently as the space-filling criterion for design with

any number of levels. The parameters s and p, as well as the weights w(u), can be tuned flexibly

based on the needs of the users. The stratified L2-discrepancy provides a simple and elegant way

to connect the aliasing and orthogonal properties in factorial designs with the discrepancy from the

uniform designs.
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3.4.3 Comparison with other discrepancies

The curse of dimensionality has been a pain for many discrepancies. The effect of dimensionality

is reflected in the analytic formula. We list the expressions for the star L2-discrepancy, centered

L2-discrepancy, wrap-around L2-discrepancy and mixture L2-discrepancy in the following:

D∗2(P)2 =

(
1

3

)m
− 2

n

n∑
a=1

m∏
j=1

(1− x2aj)
2

+
1

n2

n∑
a,b=1

m∏
j=1

[1−max(xaj, xbj)],

CD2(P)2 =

(
13

12

)m
− 2

n

n∑
a=1

m∏
j=1

(
1 +

1

2
|xaj − 0.5| − 1

2
|xaj − 0.5|2

)

+
1

n2

n∑
a,b=1

m∏
j=1

(
1 +

1

2
|xaj − 0.5|+ 1

2
|xbj − 0.5| − 1

2
|xaj − xbj|

)
,

WD2(P)2 = −
(

4

3

)m
+

1

n2

n∑
a,b=1

m∏
j=1

(
2

3
− |xaj − xbj|+ |xaj − xbj|2

)
,

MD2(P)2 =

(
19

12

)m
− 2

n

n∑
a=1

m∏
j=1

(
5

3
− 1

4
|xaj − 0.5| − 1

4
|xaj − 0.5|2

)

+
1

n2

n∑
a,b=1

m∏
j=1

(
15

8
− 1

4
|xaj − 0.5| − 1

4
|xbj − 0.5| − 3

4
|xaj − xbj|+

1

2
|xaj − xbj|2

)
.

In the above expressions, some terms are related to the center point (0.5) or the end point (1).

Other terms are related to the distance between two design points. In a high-dimensional space,

the product of some individual terms dominates the discrepancy value, which causes the curse of

dimensionality. If the terms related to special points dominate, the discrepancy will prefer points

around some locations. In contrast, the expression of the stratified L2-discrepancy in (3.7) does not

include any special points; therefore, the dimension effect is not accumulated around any special

point and the effect of dimensionality is eliminated.

We present an example to illustrate the dimension effect. We generate a random Latin hyper-

cube design D1 with 64 runs and 63 columns using R package lhs. Then we create two designs

D2 = 1 − 0.25D1 and D3 = 0.25(D1 − 0.5) + 0.5 by relocating and scaling D1. We further

generate D4 by D2 + 0.125 and subtracting 1 from those entries larger than 1. Figure 3.3 shows

the projection plots of the four designs in the first 2 dimensions. Other projection plots are similar.
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Table 3.6: Logarithmic discrepancies for 4 designs.

Design D∗2 CD WD MD SD∗(s = 2) SD∗(s = 3).

D1 -28.4425 4.9888 10.6903 15.5512 -2.4238 -1.6092

D2 -34.6063 9.0910 11.3280 15.4849 0.2613 0.7740

D3 -23.8610 2.4959 11.3280 18.3055 -1.9591 0.7718

D4 -34.6042 9.3556 11.3280 14.5693 -1.9591 -0.1387

It is obvious that the first design is more space-filling than the rest of three designs. Table 3.6 lists

the logarithmic values of the discrepancies. The stratified L2-discrepancy with star uses the weight

scheme in Theorem 3.4 with y = 0.01.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D2

D
2[

, 2
]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D3

D
3[

, 2
]

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D4

D
4[

, 2
]

Figure 3.3: Projection plots of 4 designs in the first 2 dimensions.

The starL2-discrepancyD∗2 choosesD2 as the best design; the centeredL2-discrepancy chooses

D3 as the best design and the mixture L2-discrepancy favors design D4. When dimension gets

large, these discrepancies become nonsense due to accumulated product terms. The wrap-around

L2-discrepancy and the stratified L2-discrepancy choose D1 as the best design. When s = 2, de-

signs D3 and D4 have the second smallest stratified L2-discrepancy because design points achieve

basic stratification when the design region is cut to half in each dimension. When s = 3, D4 has

the second smallest discrepancy because not all of the design points are inside the same one third

of the design region. The warp-around L2-discrepancy has a weakness that it is invariant under

location shift; therefore, it cannot distinguish D2, D3, D4 even though they are quite different.
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3.5 Concluding Remarks

This chapter proposes a new type of generalized L2-discrepancy, the stratified L2-discrepancy. The

new discrepancy inherits most of the advantages of the generalized L2-discrepancy. The curse of

dimensionality faced by some of the generalized L2-discrepancies is eliminated in our criterion.

Projection properties of the designs are assessed by evaluating stratification properties on various

grids with flexible weights. Users can define how the design region is stratified and what principle

to follow when selecting space-filling designs. The space-filling criterion is connected with the

stratified L2-discrepancy via the space-filling pattern enumerator. As a result, the stratified L2-

discrepancy extends the usage of the space-filling criterion to a broader range of designs as long as

the designs are transformed to the unit hypercube. The stratified L2-discrepancy provides a more

general and flexible way to evaluate space-filling designs based on stratification.

The stratification of the design region opens a new topic in assessing space-filling properties.

Connections can be seen between digital nets, (t, s)-sequence and the stratified L2-discrepancy.

The asymptotic property of the stratified L2-discrepancy is an interesting topic to discover. So far,

we list one possible weight scheme depending on the volume of the grids. New weight awaits

exploring to consider both the size of the grids and the number of dimensions due to the fact

that there is often only limited number of active factors in most experiments. The rules of thumb

for choosing s and p could be further investigated by conducting more experiments to firm up a

robust suggestion for their choices. The construction of uniform designs remains challenging. A

possible approach is to search for designs with good stratified L2-discrepancy in an algorithmic

way. However, the update formula needs to be derived to accelerate the existing algorithms.

3.6 Appendix: Proofs

Proof of Theorem 3.1. Let F be the cumulative distribution function for the uniform distribution

and let FP be the empirical distribution function for design P , the local projection discrepancy
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(3.1) can be expanded as

discRu (x) = Vol(Ru(x))− |P ∩Ru(x)|
n

=

∫
Cm

1Ru(x)(t)dF (t)−
∫
Cm

1Ru(x)(t)dFP(t)

=

∫
Cm

1Ru(x)(t)d(F − FP)(t).

Integrating the squared local projection discrepancy over the design region with weight w(u), we

have∫
Cm

w(u)|discRu (x)|2dx =

∫
Cm

w(u)

∫
C2m

1Ru(x)(t)1Ru(x)(z)d(F − FP)(t)d(F − FP)(z)dx

=

∫
C2m

∫
Cm

w(u)1Ru(x)(t)1Ru(x)(z)dxd(F − FP)(t)d(F − FP)(z)

=

∫
C2m

KRu (t, z)d(F − FP)(t)d(F − FP)(z).

Then the stratified L2-discrepancy (3.3) can be written as follows:

SDR
2 (P) =


∫
Cm

∑
u∈Zmp+1

w(u)|discRu (x)|2dx


1
2

=

 ∑
u∈Zmp+1

∫
C2m

KRu (t, z)d(F − FP)(t)d(F − FP)(z)


1
2

=


∫
C2m

∑
u∈Zmp+1

KRu (t, z)d(F − FP)(t)d(F − FP)(z)


1
2

=

{∫
C2m

KR(t, z)d(F − FP)(t)d(F − FP)(z)

} 1
2

= ‖F − FP‖W .

Theorem 3.1 is proved. The stratified L2-discrepancy can be treated as a member of the generalized

L2-discrepancy family with modified summation of local projection discrepancy and weights.

Proof of Theorem 3.2. The analytic expression of the stratified L2-discrepancy is obtained through
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integration over the simplified kernel functions for each dimension. The kernel function is

KR(t, z) =
m∏
j=1

[1 +

p∑
i=1

K̃Ri (tj, zj)] =
m∏
j=1

[1 +

p∑
i=1

w(i)

si
δi(tj, zj)].

The integration of KR(t, z) over Cm × Cm for the uniform distribution is∫
C2m

KR(t, z)dF (t)dF (z) =

∫
C2m

KR(t, z)dtdz

=

∫
C2m

m∏
j=1

[1 +

p∑
i=1

w(i)

si
δi(tj, zj)]dtdz

=

∫
Cm

m∏
j=1

(∫
Cm

[1 +

p∑
i=1

w(i)

si
δi(tj, zj)]dt

)
dz.

By the definition of δi(tj, zj) in (3.6), we have
∫
Cm

δi(tj, zj)dt = s−i and so∫
C2m

KR(t, z)dF (t)dF (z) =

∫
Cm

m∏
j=1

[1 +

p∑
i=1

w(i)

s2i
]dz

=
m∏
j=1

[1 +

p∑
i=1

w(i)

s2i
].

For a fixed row xa ∈ Cm of design P , the integration of KR(t, xa) over Cm is∫
Cm
KR(t, xa)dF (t) =

∫
Cm
KR(t, xa)dt =

m∏
j=1

[1 +

p∑
i=1

w(i)

s2i
].

The expansion of the integral of SDR
2 (P)2 consists of three terms we computed above.

SDR
2 (P)2 =

∫
C2m

KR(t, z)d(F − FP)(t)d(F − FP)(z)

=

∫
C2m

KR(t, z)dF (t)dF (z)− 2

n

n∑
a=1

∫
Cm
KR(t, xa)dF (t) +

1

n2

n∑
a,b=1

KR(xa, xb)

Thus, the analytical expression of the stratified L2-discrepancy is straightforward.

Proof of Lemma 3.1. Based on the definition of ρ(i), i ∈ Zsp , the weighted similarity between

the ath row da = (da1, ..., dam) and the bth row db = (db1, ..., dbm) of design D is a polynomial
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function of y of order pm. Thus, it follows that

m∏
j=1

R(daj, dbj) =
m∏
j=1

(
sp−1∑
i=0

χi(daj)χi(dbj)y
ρ(i)

)

=

mp∑
k=0

 ∑
ρ(i1)+...+ρ(ij)=k

m∏
j=1

χij(daj)χij(dbj)

 yk,

where the second summation is over all integer combinations (i1, ..., ij) ∈ Zmsp that achieve ρ(i1) +

...+ρ(ij) = k. The summation of the weighted similarity over all pairs of rows inD can be derived

as

n−2
n∑
a=1

n∑
b=1

m∏
j=1

R(daj, dbj) = n−2
n∑
a=1

n∑
b=1

mp∑
k=0

 ∑
ρ(i1)+...+ρ(ij)=k

m∏
j=1

χij(daj)χij(dbj)

 yk

= n−2
mp∑
k=0

 ∑
ρ(i1)+...+ρ(ij)=k

n∑
a=1

n∑
b=1

m∏
j=1

χij(daj)χij(dbj)

 yk

= n−2
mp∑
k=0

∑
ρ(i1)+...+ρ(ij)=k

∣∣∣∣∣
n∑
a=1

m∏
j=1

χij(daj)

∣∣∣∣∣
2

yk

=

mp∑
k=0

Sk(D)yk.

Thus, the space-filling pattern enumerator can be computed as the average weighted similarity

among all pairs of rows.

Proof of Theorem 3.4. By Theorem 3.2, there are two terms in the analytic expression of SDR
2 (P)2.

Using the weight scheme stated in Theorem 3.4, the first term multiplied by (1− y)m is

−

(
1 +

p∑
i=1

w(i)s−2i

)m

(1− y)m = −

(
1− y + (1− y)

p−1∑
i=1

yi + yp

)m

= −1.
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The second term multiplied by (1− y)m is

1

n2

n∑
a,b=1

m∏
j=1

(
1 +

p∑
i=1

w(i)

si
δi(xaj, xbj)

)
(1− y)m

=
1

n2

n∑
a,b=1

m∏
j=1

(
1− y +

p−1∑
i=1

siyi(1− y)δi(xaj, xbj) + spypδp(xaj, xbj)

)

=
1

n2

n∑
a,b=1

m∏
j=1

(
1 +

p∑
i=1

yisi−1δi−1(xaj, xbj)(sδi(xaj, xbj)− 1)

)
. (3.10)

Based on Lemma 3.1, the space-filling pattern enumerator can be computed as

E(D; y) =
1

n2

n∑
a,b=1

m∏
j=1

R(xaj, xbj) =
1

n2

n∑
a,b=1

m∏
j=1

(
sp−1∑
i=0

χi(xaj)χi(xbj)y
ρ(i)

)
. (3.11)

In order to prove

SDR
2 (D)2(1− y)m = E(D; y)− 1,

we only need to prove (3.10) = (3.11). Both equations have double summations and products over

all pairs of rows and all columns. Thus, we need to prove

1 +

p∑
i=1

yisi−1δi−1(xaj, xbj)(sδi(xaj, xbj)− 1) =
sp−1∑
i=0

χi(xaj)χi(xbj)y
ρ(i). (3.12)

According to Tian and Xu (2021), the character χu(x) is orthonormal and symmetric such that∑
x∈Zsp

χu(x)χv(x) =
∑
x∈Zsp

χx(u)χx(v)

=
∑
x∈Zsp

p∏
i=1

ξ(fi(u)−fi(v))fp+1−i(x)

=

p∏
i=1

∑
fp+1−i(x)∈Zs

ξ(fi(u)−fi(v))fp+1−i(x) (3.13)

=


|Zsp| u = v

0 u 6= v

, u, v ∈ Zsp ,

where ξ = e2π
√
−1/s and fi(x) = bx/sp−ic (mod s) as defined in Tian and Xu (2021) for i =

1, . . . , p and x ∈ Zsp . Equation (3.13) holds because when x loops through Zsp , fi(x), i = 1, · · · , p
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also loops through each value in Zs. We can express the right side of Equation (3.12) as
∑p

k=0 cky
k,

where the coefficient ck is

∑
ρ(u)=k
u∈Zsp

χu(xaj)χu(xbj) =
∑
ρ(u)=k
u∈Zsp

p∏
i=1

ξ(fi(xaj)−fi(xbj))fp+1−i(u)

=
∑
ρ(u)=k
u∈Zsp

k∏
i=1

ξ(fi(xaj)−fi(xbj))fp+1−i(u). (3.14)

Equation (3.14) is based on the definition of ρ(u) = p + 1 − min{i|fi(u) 6= 0, i = 1, . . . , p} for

u ∈ Zsp . The set of u with ρ(u) = k is

{u ∈ Zsp |fi(u) = 0, i ≤ p− k;

fi(u) = {1, · · · , s− 1}, i = p+ 1− k;

fi(u) = {0, · · · , s− 1}, i > p+ 1− k}.

Equation (3.14) can be written as a product:

(3.14) =

k−1∏
i=1

∑
fp+1−i(u)∈Zs

ξ(fi(xaj)−fi(xbj))fp+1−i(u)

 (3.15)

×

 s−1∑
fp+1−k(u)=1

ξ(fk(xaj)−fk(xbj))fp+1−k(u)

 (3.16)

= sk−1δk−1(xaj, xbj)(sδk(xaj, xbj)− 1). (3.17)

In Equation (3.15, 3.16), we split the summation of the product in Equation (3.14) to product

of summation in the similar way we did in Equation (3.13). Comparing (3.15) with (3.13), we

get the term in (3.15) equal to sk−1δk−1(xaj, xbj). The term in Equation (3.16) is a summation

over fp+1−k(u) = 1, · · · , s − 1 which takes values s − 1 when fk(xaj) − fk(xbj) = 0. When

fk(xaj) 6= fk(xbj), we know that

s−1∑
fp+1−k(u)=0

ξ(fk(xaj)−fk(xbj))fp+1−k(u) =
s−1∑

fp+1−k(u)=1

ξ(fk(xaj)−fk(xbj))fp+1−k(u) + 1 = 0
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because the character is orthonormal when p = 1. Thus, the term in Equation (3.16) is sδk(xaj, xbj)−

1. Finally, Equation (3.17) is the coefficient before yk on the left side of Equation (3.12). The proof

is complete.
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CHAPTER 4

Construction of Optimal Space-Filling Designs based on

Stratification

The space-filling criterion and the stratified L2-discrepancy have been proposed to measure the

space-filling properties of designs based on stratification properties. Both criteria show effective-

ness in selecting space-filling designs. However, the construction of optimal designs is not yet

discussed. In this chapter, we develop a lower bound for the stratified L2-discrepancy and the

space-filling pattern enumerator. We define a metric space to characterize the distance between

points in a stratification view so that the stratified L2-discrepancy becomes a criterion based on

distance. The space-filling pattern enumerator is a special case of the stratified L2-discrepancy,

thus we obtain another lower bound. We consider the construction of optimal designs based on the

conditions of which the lower bounds hold. The optimal designs are space-filling under other cri-

teria and are constructed a lot faster than algorithmic search especially in high-dimensional spaces.

Examples of the optimal designs are given.

4.1 Notation and Backgrounds

The stratification properties of a general strong orthogonal array D are characterized in the space-

filling criterion proposed by Tian and Xu (2021). The space-filling pattern (S1(D), . . . , Smp(D))

is defined to be a vector, each element of which reveals how space-filling the design points are on

stratifications with certain volume grids. We rank and select designs that sequentially minimize the

elements of the space-filling pattern. For example, a general strong orthogonal array of strength t
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has Si(D) = 0, i = 1, · · · , t. General strong orthogonal arrays of maximum strength are preferred

by the space-filling criterion.

The space-filling criterion is restricted to designs with a fixed number of levels. Attempts to

gather stratification information have been made to uniform designs as well. The stratified L2-

discrepancy has been proposed to evaluate uniform designs based on the stratification properties

flexibly. The discrepancy is general and powerful in the following aspects: (i) it is applicable to

all designs as long as their entries are transformed to C = [0, 1]; (ii) stratification scheme and

the importance level assigned to each type of stratification could be tuned freely. The stratified

L2-discrepancy is a generalization of the space-filling pattern. The space-filling criterion follows

the space-filling hierarchy principle, while the stratified L2-discrepancy could have different pref-

erences by assigning weights to each type of stratifications.

Connection between the stratified L2-discrepancy and the space-filling pattern is established

via the space-filling pattern enumerator E(D; y), which is a polynomial with coefficients being the

space-filling pattern as follows:

E(D; y) =

mp∑
k=0

Sk(D)yk. (4.1)

The space-filling pattern enumerator E(D; y) has a fast computational formula so it makes the

computation of the space-filling pattern much easier. When y is small enough, using the space-

filling pattern to rank designs is equivalent to using the value ofE(D; y). E(D; y) and the stratified

L2-discrepancy with special weights uniquely determine each other. We show a lower bound for the

stratified L2-discrepancy is helpful in finding optimal space-filling designs based on stratification

properties.
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4.2 A Lower Bound for the Stratified L2-discrepancy

4.2.1 The NRT-distance

General strong orthogonal arrays are closely related to (t,m, s)-nets proposed by Niederreiter

(1987a) for quasi-Monte Carlo methods of numerical integration based on work from Schmid

(1995); Mullen and Schmid (1996) and Martin and Stinson (1999). The common factorial de-

signs have fruitful theoretical results based on coding theory and Hamming space. Yet no strat-

ification information is obtained. Bierbrauer et al. (2002) proposed the NRT-space to generalize

the Hamming space. The NRT-space is named after the work in Niederreiter (1986, 1987b) and

Rosenbloom and Tsfasman (1997).

We generalize the setting of the NRT-space in this chapter in design language. Given positive

integers s and p, we first define a series of helper functions fi(x), i = 1, · · · , p:

fi(x) =


bx/sp−ic mod s x ∈ Zsp

bbspxc/sp−ic mod s x ∈ [0, 1)

.

Suppose the stratification parameters are s and p, the series of functions give out p digits of x in

base s numeral system. The base s representation of x is expressed as (f1f2 · · · fp)s if x ∈ Zsp

or (0.f1f2 · · · fp · · · )s if x ∈ [0, 1). To transform back, x =
∑p

k=1 fk(x)sp−k if x ∈ Zsp or

x =
∑∞

k=1 fk(x)s−k if x ∈ [0, 1). For instance, suppose s = 2, p = 3, the base 2 representation

of x = 2 is (010)2 with f1(2) = f3(2) = 0, f2(2) = 1. The base 2 representation of x = 3/8

is (0.011)2 with f1(3/8) = 0, f2(3/8) = f3(3/8) = 1. Although the definition of the fi(x) is

different for x ∈ Zsp or x ∈ [0, 1), the information they provide is the same. They both reveal the

location of x when the design region is stratified to s0, s1, s2, · · · , sp parts.

Definition 4.1. A metric space over Zsp or [0, 1) is called an NRT-space if it is endowed with the

NRT-distance ρ(x, y) defined by

ρ(x, y) = p+ 1−min{i|fi(x)− fi(y) 6= 0, i = 1, . . . , p} x 6= y

and ρ(x, x) = 0.
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It is obvious that the NRT-distance is non-negative and symmetric. The triangle inequality

holds ρ(x, y) ≤ ρ(x, z) + ρ(y, z). We can prove this by the fact that min{i|fi(x)− fi(y) 6= 0} ≥

min (min{i|fi(x)− fi(z) 6= 0},min{i|fi(y)− fi(z) 6= 0}) when x 6= y 6= z. If x = y or x = z,

the triangle inequality holds. For stratification purpose, the identity of indiscernibles is valid.

The NRT-distance reveals the level of closeness between two points based on stratification.

An NRT-distance of d indicates that the two points will fall into the same grid when the design

region is stratified to sp−d parts and will not stay in the same grid for any stratification thinner

than it among stratifying the design region to s0, s1, s2, · · · , sp parts. The NRT-distance provides

a measure to numerically characterize the distance based on the stratifications. There are p + 1

possible NRT-distances. We present some examples to illustrate the idea.

Example 4.1. Suppose that the NRT-space is over Z23 , x = 4, y = 6 and the NRT-distance between

x, y is

ρ(x, y) = 4−min{i|fi(x)− fi(y) 6= 0, i = 1, . . . , 3}.

The base 2 representation of x, y are (100)2 and (110)2 respectively. The first i such that fi(x) −

fi(y) 6= 0 is 2. Thus, the NRT-distance ρ(4, 6) = 4−2 = 2. The design region Z23 can be stratified

to 1, 2, 4 and 8 parts. The numbers x = 4 and y = 6 are in the same grid when Z23 is divided to 2

parts but will not when Z23 is divided to 4 parts. The left plot in Figure 4.1 shows the NRT-distance

between x, y ∈ Z23 on horizontal and vertical axes.

Example 4.2. Suppose that the NRT-space is over [0, 1) with stratification parameters s = 3, p = 2

so that there are 3 possible NRT-distances: 0, 1, 2. For any x ∈ [0, 1/9), the NRT-distance

ρ(x, y) = 0 if y ∈ [0, 1/9) as both points are in the same one ninth grid. If y ∈ [1/9, 1/3), the

NRT-distance ρ(x, y) = 1 because the two points are in the same one third grid but not in the same

one ninth grid. If y ∈ [1/3, 1), the NRT-distance ρ(x, y) = 2. The right plot in Figure 4.1 shows the

NRT-distance between x, y ∈ [0, 1) on horizontal and vertical axes. Each coordinate is stratified

to 9 grids. It is interesting that there are more grids but fewer possible distances compared with

the plot on the left. The choice of s and p impacts the distance and analyses.
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Figure 4.1: NRT-distance for s = 2, p = 3 (left) and s = 3, p = 2 (right).

4.2.2 A Lower Bound for the Stratified L2-discrepancy

For design P = (xij)n×m with entries from C = [0, 1)m, or a q-level design D = (dij) with entries

from Zq transformed to P = (xij) with xij = (dij + 0.5)/q, the stratified L2-discrepancy with

parameter s, p and weights w(i), i = 1, · · · , p, has the following expression:

SDR
2 (P)2 = −

(
1 +

p∑
i=1

w(i)s−2i

)m

+
1

n2

n∑
a,b=1

m∏
j=1

p∑
i=0

w(i)s−iδi(xaj, xbj)

= −

(
1 +

p∑
i=1

w(i)s−2i

)m

+
1

n2

n∑
a,b=1

m∏
j=1

Kj(P ; a, b), (4.2)

where

δi(xaj, xbj) =
i∏

k=1

1fk(xaj)=fk(xbj)

for i = 1, · · · , p are the indicator functions revealing whether xaj and xbj are in the same grid

when [0, 1) is stratified to si parts. We define w(0) = 1 and δ0(xaj, xbj) = 1 to make the formula

consistent. If δi(x, y) = 1, we have δk(x, y) = 1 for 1 ≤ k ≤ i. We illustrate the connection

between the values of δi(x, y) and ρ(x, y) in the following lemma.
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Lemma 4.1. The NRT-distance ρ(x, y) and indicator function δi(x, y) uniquely determine each

other as follows:

ρ(x, y) = p−max
i
{δi(x, y) = 1}.

The NRT-distance between x, y and values of δi(x, y) both present the relative position of x, y

based on stratification. They are equivalent by simple algebraic derivation.

TheKj(P ; a, b) in the second part of Equation (4.2) is determined by the values of δi(xaj, xbj), i =

1, · · · , p, and so it is determined by the NRT-distance between xaj, xbj . For design P , denote

nk(a, b) = #{l : ρ(xal, xbl) = k, l = 1, · · · ,m}, 1 ≤ a 6= b ≤ n, k = 0, · · · , p

σk = Kj(P ; a, b) if ρ(xaj, xbj) = k

=

p−k∑
i=0

w(i)s−i, k = 0, · · · , p.

The stratified L2-discrepancy in (4.2) can be represented by nk(a, b) and σk as

SDR
2 (P)2 = −

(
1 +

p∑
i=1

w(i)s−2i

)m

+
1

n
σm0 +

1

n2

n∑
a=1

n∑
b 6=a

p∏
k=0

σ
nk(a,b)
k . (4.3)

Theorem 4.1. For design P = (xij)n×m with entries from C, if the elements of each column

of P spread evenly when C is stratified to sp grids, the stratified L2-discrepancy SDR
2 (P) with

parameter s, p satisfies

SDR
2 (P)2 ≥ −

(
1 +

p∑
i=1

w(i)s−2i

)m

+
1

n

[
σm0 + (n− 1)

(
σ

nm
sp(n−1)

− m
n−1

0

p∏
k=1

σ
sk−1(s−1)nm

sp(n−1)

k

)]
.

The equality holds if and only if n0(a, b) = nm
sp(n−1) −

m
n−1 and nk(a, b) = sk−1(s−1)nm

sp(n−1) for k =

1, · · · , p and any pair of a and b.

The lower bound of the stratified L2-discrepancy with parameter s, p is developed for designs

each column of which has entries uniformly distributed over sp equally divided grids on C. We

call these designs balanced designs analogue to balanced designs with a fixed number of levels.

Balanced designs achieve uniformity in any one-dimensional projection. Latin hypercube designs
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and orthogonal arrays with strength as least 1 are balanced designs. It is natural to move the notion

to designs on the unit hypercube.

The lower bound of the stratified L2-discrepancy is achieved when n0(a, b), · · · , np(a, b) take

certain values for any pair of rows a, b. We have n0(a, b) + · · ·+ np(a, b) = m. Suppose n = λsp,

the conditions to achieve the lower bound of the stratified L2-discrepancy are

n0(a, b) =
(λ− 1)m

(n− 1)
, nk(a, b) =

λsk−1(s− 1)m

(n− 1)
, k = 1, · · · , p. (4.4)

The conditions are not related to the weights of the stratified L2-discrepancy. In other words, the

designs that achieve the lower bound of the stratified L2-discrepancy are optimal regardless of the

weights.

4.2.3 A Lower Bound for the Space-Filling Pattern Enumerator for Design with sp Levels

The space-filling pattern enumerator E(D; y) is proposed to connect the space-filling criterion

(Tian and Xu, 2021) and the stratified L2-discrepancy. The stratified L2-discrepancy SDR
2 (P)

with special weights and E(D; y) uniquely determine each other shown in the following lemma.

Lemma 4.2. For a design D with n runs, m columns and entries from Zsp , the stratified L2-

discrepancy connects with the space-filling pattern in the following equation:

SDR
2 (D)2 = (E(D; y)− 1)(1− y)−m =

(
mp∑
i=1

yiSi(D)

)
(1− y)−m,

when the weights of the stratified L2-discrepancy are set to w(i) = (s2y)i if i < p and w(p) =

(s2y)p/(1− y) with y ∈ (0, 1).

The space-filling pattern enumerator forms a bridge between the space-filling criterion and the

stratified L2-discrepancy. On one hand, the space-filling pattern enumerator defined in Equation

(4.1) could be used to rank designs equivalently to the space-filling criterion with a small enough

y. On the other hand, the space-filling pattern enumerator is monotonically related to the stratified

L2-discrepancy with special weights. A lower bound of the space-filling pattern enumerator can be
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derived based on Theorem 4.1 and Lemma 4.2. The definition of nk(a, b) holds for design D using

the NRT-distance defined over Zsp . However, we need to redefine σk with the weights in Lemma

4.2 and a multiplier 1− y.

σk =


∑p−1

i=0 s
iyi(1− y) + spyp k = 0∑p−k

i=0 s
iyi(1− y) k = 1, · · · , p

.

Theorem 4.2. For a balanced design D with n runs, m factors and entries from Zsp , the space-

filling pattern enumerator E(D; y) satisfies

E(D; y) ≥ 1

n

[
σm0 + (n− 1)

(
σ

nm
sp(n−1)

− m
n−1

0

p∏
k=1

σ
sk−1(s−1)nm

sp(n−1)

k

)]
. (4.5)

The equality holds if and only if n0(a, b) = nm
sp(n−1) −

m
n−1 and nk(a, b) = sk−1(s−1)nm

sp(n−1) for k =

1, · · · , p and any pair of a and b.

The optimal designs for the stratifiedL2-discrepancy are optimal designs under the space-filling

criterion. We list some concrete examples on the values of σs.

Example 4.3. When s = 2 and p = 2, there are 3 possible NRT-distances: ρ(x, y) ∈ {0, 1, 2}, x, y ∈

Z22 . The values of σs are

σ0 = 1 + y + 2y2, σ1 = 1 + y − 2y2, σ2 = 1− y.

When s = 2 and p = 3, there are 4 possible NRT-distances: ρ(x, y) ∈ {0, 1, 2, 3} for x, y ∈ Z23 .

The values of σs are

σ0 = 1 + y + 2y2 + 4y3, σ1 = 1 + y + 2y2 − 4y3, σ2 = 1 + y − 2y2, σ3 = 1− y.

When s = 3 and p = 2, there are 3 possible NRT-distances: ρ(x, y) ∈ {0, 1, 2}, x, y ∈ Z32 . The

values of σs are

σ0 = 1 + 2y + 6y2, σ1 = 1 + 2y − 3y2, σ2 = 1− y.
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The lower bound of the space-filling pattern enumerator provides hints on the lower bound of

S2(D) in the space-filling pattern as S1(D) = 0 for balanced designs. E(D; y) is a polynomial

function of y with space-filling pattern as coefficients. The lower bound of E(D; y) is also a

polynomial function of y. Comparing the coefficients, we present the following result:

Theorem 4.3. For a balanced design D with n runs, m factors and entries from Zsp . When s = 2,

we can simplify the lower bound of E(D; y) to

E(D; y) ≥ 1 +
m(m+ 1− n)

2(n− 1)
y2 + · · ·+ (sp−1(s− 1))

m

n
ypm.

When s = 3, similarly, we have

E(D; y) ≥ 1 +
m(2m+ 1− n)

(n− 1)
y2 + · · ·+ (sp−1(s− 1))

m

n
ypm.

As y goes to 0, Theorem 4.3 provides lower bounds for S2(D) to be m(m+1−n)
2(n−1) for designs with

entries from Z2p and m(2m+1−n)
(n−1) for designs with entries from Z3p . Optimal designs that achieve

the lower bound in Theorem 4.2 have S2(D) that reach above lower bounds.

4.3 Construction of Optimal Designs

4.3.1 Generalized Hadamard Matrices

We consider finding optimal designs with a fixed number of levels. Specially, we consider designs

with entries from Galois field GF (sp) with operations of multiplication, addition, subtraction and

division properly defined where s is a prime. The NRT-distance is valid on GF (sp). The subtrac-

tion operation is implicitly used in the definition of the NRT-distance.

Lemma 4.3. For any x, y ∈ GF (sp), the NRT-distance between x and y is the same as the NRT-

distance between x− y and 0.

ρ(x, y) = ρ(x− y, 0).

We call ρ(x, 0) = ρ(x) as the weight of x over GF (sp)
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Elements of GF (sp) can be represented by polynomials of x with degree strictly less than p.

For y ∈ GF (sp), the polynomial representation of y is
∑p

k=1 fi(y)xk−1. Addition and subtraction

on GF (sp) are the usual addition and subtraction on the polynomials modulo s. Here is a simple

example. Suppose y1 = 4 and y2 = 6 over GF (23), the base-2 representation of y1 and y2 are

(100)2 and (110)2 respectively. The polynomial representations of y1 and y2 are y1 = x2 and

y2 = x2 + x; so y2 − y1 = x, which is (010)2.

Lemma 4.4. The weight distribution of elements in GF (sp) is

nk = #{x ∈ GF (sp)|ρ(x) = k} = sk−1(s− 1), k = 1, · · · , p

and n0 = 1.

Combining the result in Lemmas 4.3 and 4.4, we present one class of optimal designs that

achieve the lower bound of E(D; y) in Theorem 4.2.

Theorem 4.4. Suppose a design D = (dij) has n rows, m columns and entries from GF (sp),

E(D; y) reaches the lower bound in (4.5) if it is balanced and has the properties that for any

a, b ∈ {1, · · · , n}, a 6= b, the set {daj − dbj|1 ≤ j ≤ m} contains every elements of GF (sp) the

same number of times.

A class of optimal designs can be constructed from generalized Hadamard matrices. A gener-

alized Hadamard matrix H = (hij) over an additive group G is an n × n square matrix such that

for any 1 ≤ i < j < n, the set {hik − hjk|1 ≤ k ≤ n} contains every element in G for the same

number of times. The normalized Hadamard matrix has its first column and first row to be vectors

of zeroes. Deleting the first column of the normalized generalized Hadamard matrix yields an

optimal design. The next theorem shows how generalized Hadamard matrices can be constructed

over GF (sp).

Theorem 4.5. The multiplication table M over GF (sp) is a generalized Hadamard matrix. Fur-

thermore, for x ∈ GF (sp), M + x is also a generalized Hadamard matrix.
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We give some examples to illustrate the construction.

Example 4.4. Table 4.1 contains multiplication tables over GF (23) based on two irreducible

polynomials y = x3 + x + 1 and y = x3 + x2 + 1, respectively. Both designs achieve the lower

bound of the space-filling pattern enumerator after deleting the first column of zeroes. Based on

Theorem 4.3, S2(D) = 0 and S21(D) = 27/8 = 2048 for both designs.

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 2 4 6 3 1 7 5

0 3 6 5 7 4 1 2

0 4 3 7 6 2 5 1

0 5 1 4 2 7 3 6

0 6 7 1 5 3 2 4

0 7 5 2 1 6 4 3

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 2 4 6 5 7 1 3

0 3 6 5 1 2 7 4

0 4 5 1 7 3 2 6

0 5 7 2 3 6 4 1

0 6 1 7 2 4 3 5

0 7 3 4 6 1 5 2

Table 4.1: Multiplication tables over GF (23) based on y = x3 + x+ 1 (left) and y = x3 + x2 + 1

(right).

Example 4.5. Table 4.2 contains the multiplication table over GF (24) based on irreducible poly-

nomials y = x4 + x+ 1. We get an optimal design after deleting the first column of zeroes.

We can construct more generalized Hadamard matrices via collapsing levels. Let M be the

multiplication table over GF (sp). For any q < p, we can collapse M into sq levels. The collapse

is done by transforming elements x = (f1 · · · fp)s ∈ GF (sp) to x′ = (f1 · · · fq)s ∈ GF (sq) where

(f1 · · · fq) is the first q elements of (f1 · · · fp). Table 4.3 presents another optimal design over

GF (23) when Table 4.2 is collapsed to 8 levels.

Theorem 4.6. For q < p, when the multiplication table M over GF (sp) is collapsed into sq levels,

the collapsed table is a generalized Hadamard matrix over GF (sq).
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13

0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2

0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9

0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6

0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4

0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11

0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1

0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14

0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12

0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3

0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8

0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7

0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5

0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

Table 4.2: Multiplication table over GF (24) based on y = x4 + x+ 1.

Theorems 4.5 and 4.6 provides a class of optimal designs that achieve the lower bounds in

Theorems 4.1 and 4.2. These optimal designs have n = sp runs, m = sp − 1 columns and sp or sq

levels. In the next subsection, we compare these optimal designs with other types of space-filling

designs.

4.3.2 Comparisons with Other Space-filling Designs

In the first example, we compare various discrepancies of our optimal designs with other space-

filling designs.

Example 4.6. We randomly generate four types of 16×15 designs: uniform design samples (UD),
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

0 1 2 3 4 5 6 7 1 0 3 2 5 4 7 6

0 1 3 2 6 7 5 4 5 4 6 7 3 2 0 1

0 2 4 6 1 3 5 7 3 1 7 5 2 0 6 4

0 2 5 7 3 1 6 4 7 5 2 0 4 6 1 3

0 3 6 5 5 6 3 0 2 1 4 7 7 4 1 2

0 3 7 4 7 4 0 3 6 5 1 2 1 2 6 5

0 4 1 5 3 7 2 6 6 2 7 3 5 1 4 0

0 4 0 4 1 5 1 5 2 6 2 6 3 7 3 7

0 5 3 6 7 2 4 1 7 2 4 1 0 5 3 6

0 5 2 7 5 0 7 2 3 6 1 4 6 3 4 1

0 6 5 3 2 4 7 1 5 3 0 6 7 1 2 4

0 6 4 2 0 6 4 2 1 7 5 3 1 7 5 3

0 7 7 0 6 1 1 6 4 3 3 4 2 5 5 2

0 7 6 1 4 3 2 5 0 7 6 1 4 3 2 5

Table 4.3: Multiplication table over GF (24) collapsed to GF (23).

Latin hypercube samples (LHS), maximin Latin hypercube samples (mLHS) and maximum projec-

tion Latin hypercube samples (mpLHS) from R packages UniDOE, lhs and MaxPro. For each

type of designs, we generate designs 100 times. We obtain an optimal design (OP) from Table 4.2

by deleting the first column. If we add x ∈ GF (24) to all the entries of the optimal design, it is

still optimal. Thus, we generate 16 optimal designs by adding each x ∈ GF (24) to the original

design. We calculate the centered L2-discrepancy (CD), the warp-around L2-discrepancy (WD),

the mixture L2-discrepancy (MD) and the stratified L2-discrepancy (SD2) with s = 2, p = 4 for

the five types of designs. The results are in Figure 4.2. Our designs are the best under the stratified

L2-discrepancy and are competitive under other discrepancies. Table 4.4 shows the best discrep-
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ancies each type of design samples can reach and the time for generating one design in R with

intel core i5 laptop. Uniform designs have the smallest centered L2-discrepancy and mixture L2-

discrepancy, while our designs have the smallest warp-around L2-discrepancy. The algorithmic

search of uniform designs takes considerable amount of time. Optimal designs, on the other hand,

are constructed instantly. When the dimension of the design region gets larger, uniform designs

suffer from the curse of dimensionality, while our designs are not affected by the curse of dimen-

sionality.

OP UD LHS mLHS mpLHS

0.
0

0.
1

0.
2

0.
3

CD

OP UD LHS mLHS mpLHS

1.
32

1.
33

1.
34

1.
35

1.
36

1.
37

1.
38

WD

OP UD LHS mLHS mpLHS

2.
36

2.
38

2.
40

2.
42

2.
44

2.
46

MD

OP UD LHS mLHS mpLHS

3.
55

6
3.

55
8

3.
56

0
3.

56
2

3.
56

4
3.

56
6

SD2

Figure 4.2: Logarithmic discrepancies for five types of designs.

Table 4.4: The best discrepancies for five types of designs and the time used.

Design CD WD MD SD2 Time (s)

OP 0.9337 3.7418 10.6674 35.0081 0

UD 0.9287 3.7518 10.5362 35.0473 19

LHS 1.0183 3.8726 11.1785 35.1597 0

mLHS 1.0234 3.8699 11.1785 35.1184 0

mpLHS 0.9396 3.7503 10.6011 35.0664 1

In the second example, we compare the projection properties of our optimal designs with other

space-filling designs. The maximum projection design Dn×m = (dij) proposed by Joseph et al.
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(2015) is constructed by minimizing ψ(D) defined in the following:

ψ(D) =

{
1(
n
2

) n−1∑
a=1

n∑
b=a+1

1∏m
j=1(daj − dbj)2

}1/m

.

The denominator of ψ(D) has products of squared distances from allm factors. In any projections,

no two points can get close to each other.

Example 4.7. We consider four 16×15 Latin hypercube designs and compare the maximum ψ(D)

and the minimum Euclidean distance of the designs when they are projected to 3 ≤ k ≤ 15 dimen-

sions. We choose the best uniform design, maximin Latin hypercube design and maximum projec-

tion Latin hypercube design among the 100 designs according to their respective criteria. From the

16 optimal designs in Example 4.6, we choose the one with the smallest centered L2-discrepancy.

Figure 4.3 shows the values of the maximum ψ(D) and minimum Euclidean distance from all pro-

jection designs onto 3 ≤ k ≤ 15 dimensions. As expected, for k = 15 (i.e., without projection), the

maximin Latin hypercube design is the best with the largest minimum Euclidean distance whereas

the maximum projection Latin hypercube design is the best with the smallest maximum ψ(D). For

3 ≤ k < 15, either the optimal design or the maximum projection Latin hypercube design is the

best. Particularly, the optimal design is the best for k =3–6 and 11–14 dimensions with the largest

minimum Euclidean distance and k =3–8 dimensions with the smallest maximum ψ(D). Over-

all, our design outperforms the rest of the space-filling designs in lower-dimensional projections,

which is a natural product of stratification. When the number of active factors is small, the lower-

dimensional projection properties are often preferred. From this perspective, our design shows

good potential in screening effective factors in computer experiments.

4.4 Concluding Remarks

This chapter develops lower bounds for the stratified L2-discrepancy and the space-filling pattern

enumerator via defining a metric space that reveals the distance between points based on strat-

ification. Both criteria evaluate the uniformity of the designs based on stratification properties.
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Figure 4.3: Plots of minimum Euclidean distance (the larger the better, on the left) and maximum

ψ(D) (the smaller the better, on the right) against k.

The conditions of which designs reach the lower bounds are the same for both criteria. Thus,

the optimal designs of the stratified L2-discrepancy are optimal under the space-filling criterion.

One class of designs that achieve the lower bounds are the generalized Hadamard matrices. We

present several simple methods for the construction of generalized Hadamard matrices based on

multiplication tables on the Galois field. The optimal design we constructed shows competitive

performance under other discrepancies. In addition, the optimal design performs best in lower-

dimensional projections.

This chapter opens some interesting topics. New construction methods of optimal designs

could be developed. One possible direction is to conduct transformation on columns and rows of

the generalized Hadamard matrices. The idea of stratification has deep connection with digital

nets proposed for quasi-Monte Carlo methods. There are good theoretical results on the variance

of Monte Carlo estimates from digital nets. It is interesting to study whether these results are valid

in computer experiments when designs that achieve the lower bounds are used. Another interesting
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topic is to explore the connection between the good lattice point designs and the digital nets.

4.5 Appendix: Proofs

Proof of Theorem 4.1. If x = (f1(x) · · · fp(x))s ∈ Zsp , there are sk−1(s− 1) possible y ∈ Zsp that

satisfy ρ(x, y) = k, k = 1, · · · , p. Those ys are in set

{y = (f1(y) · · · , fp(y))s|fi(y) = fi(x), i = 1, · · · , p− k,

fp−k+1(y) ∈ {1, · · · , s− 1},

fi(y) ∈ Zsp , i = p− k + 2, · · · , p}.

If x, y ∈ Zsp , ρ(x, y) = 0 if and only if x = y.

For design P = (xij)n×m with entries from C, if the elements of each column of P spread

evenly when C is stratified to sp grids, the elements of each column of designD = bspPc becomes

a multiset that includes the elements in Zsp for λ times. We have
n∑
a=1

∑
b6=a

n0(a, b) = (λ− 1)nm,
n∑
a=1

∑
b6=a

nk(a, b) = λsk−1(s− 1)nm.

By the arithmetic and geometric means inequality,

1

n(n− 1)

n∑
a=1

n∑
b 6=a

p∏
k=0

σ
nk(a,b)
k ≥

(
n∏
a=1

n∏
b6=a

p∏
k=0

σ
nk(a,b)
k

) 1
n(n−1)

= σ
(λ−1)m
(n−1)

0

p∏
k=1

σ
λsk−1(s−1)m

(n−1)

k .

Then the lower bound of the stratified L2-discrepancy follows from (4.3).

Proof of Theorem 4.2. Theorem 4.2 follows from Theorem 4.1 and Lemma 4.2.

Proof of Theorem 4.5. Denote the elements in GF (sp) by {α0, · · · , αsp−1}. If M is a multiplica-

tion table over GF (sp), the subtraction between any two rows of M is
βα0

...

βαsp−1

−


γα0

...

γαsp−1

 = (β − γ)


α0

...

αsp−1

 ,
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where β, γ ∈ GF (sp), β 6= γ. The elements (β − γ)αi, i = 0 · · · , sp − 1 include every element of

GF (sp) exactly once. Furthermore, adding any x ∈ GF (sp) to M will not change this property.

This completes the proof.

Proof of Theorem 4.6. Denote the collapse operation by g(·) and we have

g((f1 · · · fp)s) = (f1 · · · fq)s, q < p.

Using the polynomial representation, for y1 = f1(y1) + f2(y1)x + · · · + fp(y1)x
p−1 and y2 =

f1(y2) + f2(y2)x + · · · + fp(y2)x
p−1, we have g(y1) = f1(y1) + f2(y1)x + · · · + fq(y1)x

q−1 and

g(y2) = f1(y2) + f2(y2)x+ · · ·+ fq(y2)x
q−1. It is obvious that

g(y1)− g(y2) = g(y1 − y2).

The subtraction between any two rows of collapsed M is
g(βα0)

...

g(βαsp−1)

−


g(γα0)
...

g(γαsp−1)

 =


g((β − γ)α0)

...

g((β − γ)αsp−1)

 .

The elements g((β−γ)αi), i = 0 · · · , sp−1, β 6= γ include every element of GF (sq) exactly sp−q

times.
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CHAPTER 5

Conclusion

Computer models are computer codes used to simulate complicated, hard-to-solve systems. Com-

puter experiments aim to build statistical surrogate models efficiently based on the data from com-

puter models. Space-filling designs are widely used in computer experiments. Inspired by the

stratified orthogonality of the strong orthogonal arrays, we concentrate on creating criteria to fully

characterize the space-filling properties based on stratification.

A minimum aberration type criterion is proposed in Chapter 2 as a systematic way of classify-

ing and ranking space-filling designs including various types of strong orthogonal arrays and Latin

hypercube designs. Space-filling hierarchy principle is proposed as the basic assumption of the

space-filling criterion. The idea of the space-filling hierarchy principle generalizes the strength of

strong orthogonal arrays. The space-filling pattern, analogous to the wordlength pattern, reveals

various stratification properties of the design clustered by the volume of the grids. We select de-

signs that sequentially minimize the elements of the space-filling pattern. Strong orthogonal arrays

of maximum strength are favorable under the proposed criterion. Values of the space-filling pattern

can further rank strong orthogonal arrays with the same strength.

One of the drawbacks of the space-filling criterion is that it is restricted to designs with a fixed

number of levels. We propose the stratified L2-discrepancy for evaluating space-filling properties

of designs based on design stratification properties. The new discrepancy is suitable for evaluating

all kinds of designs with little curse of dimensionality. Using the framework of reproducing kernel,

the stratified L2-discrepancy inherits most of the advantages of the generalized L2-discrepancy.

The stratification scheme and the importance levels of each stratification can be tuned flexibly. The
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stratified L2-discrepancy is more general and easier to compute than the space-filling criterion.

The proposal of the space-filling criterion and the stratified L2-discrepancy calls for construc-

tion of optimal designs. We derive lower bounds for the stratified L2-discrepancy and the space-

filling pattern enumerator via defining a metric space that reveals the distance between points based

on stratification. The lower bounds are not related to the weights allocated to each stratification.

As a result, the optimal designs for the stratified L2-discrepancy are optimal for the space-filling

criterion. The generalized Hadamard matrices are proved to be a class of optimal designs that

achieve the lower bounds. Simple construction methods of the generalized Hadamard matrices

are proposed based on Galois fields. The algorithmic search of uniform designs sometimes takes

considerable amount of time. Our optimal designs for the stratified L2-discrepancy, on the other

hand, are constructed instantly. Comparisons between the optimal designs and other space-filling

designs show that optimal designs are space-filling in lower-dimensional projections.
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