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RESEARCH PAPER

Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice
Myoung Seok Koa*, Ji Young Yuna,b*, In-Jeoung Baek a, Jung Eun Janga,b, Jung Jin Hwang c, Seung Eun Lee a,b,
Seung-Ho Heod, David A. Bader e, Chul-Ho Lee f, Jaeseok Hang, Jong-Seok Moong, Jae Man Leeh, Eun-
Gyoung Hong i, In-Kyu Leej, Seong Who Kimk, Joong Yeol Parka,b, Sean M. Hartige, Un Jung Kang l,
David D. Moorem, Eun Hee Koha,b, and Ki-up Leea,b

aBiomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea;
bDepartment of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; cInstitute for Innovative Cancer
Research, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; dConvergence Medicine Research Center, Asan Medical
Center, University of Ulsan College of Medicine, Seoul, Korea; eMolecular and Cellular Biology and Medicine, Division of Diabetes, Endocrinology,
and Metabolism, Baylor College of Medicine, Houston, Texas, USA; fLaboratory Animal Resource Center, Korea Research Institute of Bioscience and
Biotechnology, Daejeon, Korea; gSoonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Korea; hDepartment of
Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea; iDivision of Endocrinology and Metabolism,
Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea;
jDepartment of Internal Medicine and Biochemistry, Kyungpook National University School of Medicine, Daegu, Korea; kDepartment of Biochemistry
and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea; lDepartment of Neurology, Neuroscience and Physiology, Marlene and
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ABSTRACT
Although macroautophagy/autophagy deficiency causes degenerative diseases, the deletion of essential
autophagy genes in adipocytes paradoxically reduces body weight. Brown adipose tissue (BAT) plays an
important role in body weight regulation and metabolic control. However, the key cellular mechanisms
that maintain BAT function remain poorly understood. in this study, we showed that global or brown
adipocyte-specific deletion of pink1, a Parkinson disease-related gene involved in selective mitochon-
drial autophagy (mitophagy), induced BAT dysfunction, and obesity-prone type in mice. Defective
mitochondrial function is among the upstream signals that activate the NLRP3 inflammasome. NLRP3
was induced in brown adipocyte precursors (BAPs) from pink1 knockout (KO) mice. Unexpectedly, NLRP3
induction did not induce canonical inflammasome activity. Instead, NLRP3 induction led to the differ-
entiation of pink1 KO BAPs into white-like adipocytes by increasing the expression of white adipocyte-
specific genes and repressing the expression of brown adipocyte-specific genes. nlrp3 deletion in pink1
knockout mice reversed BAT dysfunction. Conversely, adipose tissue-specific atg7 KO mice showed
significantly lower expression of Nlrp3 in their BAT. Overall, our data suggest that the role of mitophagy
is different from general autophagy in regulating adipose tissue and whole-body energy metabolism.
Our results uncovered a new mitochondria-NLRP3 pathway that induces BAT dysfunction. The ability of
the nlrp3 knockouts to rescue BAT dysfunction suggests the transcriptional function of NLRP3 as an
unexpected, but a quite specific therapeutic target for obesity-related metabolic diseases.

Abbreviations: ACTB: actin, beta; BAPs: brown adipocyte precursors; BAT: brown adipose tissue;
BMDMs: bone marrow-derived macrophages; CASP1: caspase 1; CEBPA: CCAAT/enhancer binding pro-
tein (C/EBP), alpha; ChIP: chromatin immunoprecipitation; EE: energy expenditure; HFD: high-fat diet;
IL1B: interleukin 1 beta; ITT: insulin tolerance test; KO: knockout; LPS: lipopolysaccharide; NLRP3: NLR
family, pyrin domain containing 3; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin
protein ligase; RD: regular diet; ROS: reactive oxygen species; RT: room temperature; UCP1: uncoupling
protein 1 (mitochondrial, proton carrier); WT: wild-type.
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Introduction

Metabolically active brown adipose tissue (BAT) is present in
humans [1], and plays an important role in body weight
regulation and metabolic control [2,3]. In particular, anato-
mically defined neck fat isolated from adult human volunteers
shares many similarities with classical BAT in rodents [4].
Brown adipocytes are distinct from white adipocytes in that

their abundant mitochondria are enriched with UCP1
(uncoupling protein 1), which generates heat from the dis-
sipation of the mitochondrial proton gradient [2]. In addition
to brown adipocytes constitutively expressing high levels of
UCP1, UCP1-expressing beige adipocytes with thermogenic
capacity also develop in white adipose tissue in response to
various stimuli [5]. The origin and the transcriptional
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regulation of brown and beige adipocyte development are well
characterized [2,5,6]. However, the key cellular mechanisms
that maintain BAT mass and function remain poorly
understood.

As an important cellular pathway that is activated when
nutrients are limited, macroautophagy/autophagy could be
expected to counteract the primary energy storage function
of white adipocytes. However, targeted deletion of the essen-
tial autophagy gene Atg7 in adipose tissue has been shown to
paradoxically result in a lean phenotype in mice [7,8].
A recent study also found that adipocyte-specific atg5 or
atg12 KO mice are resistant to diet-induced obesity [9]. In
that study, autophagy was found to eliminate mitochondria in
beige adipocytes during exposure to ADRB3 (adrenergic
receptor, beta 3) stimuli or withdrawal from cold exposure.

Deficient mitochondrial quality control results in inflam-
mation and the death of cell populations [10]. Selective auto-
phagy of mitochondria, known as mitophagy, is an important
mitochondrial quality control mechanism that eliminates
damaged mitochondria [11,12]. Mitophagy selectively
removes mitochondria, whereas general autophagy also
degrades a range of cytosolic proteins and many types of
organelles other than the mitochondria [11,12]. A central
mediator of mitophagy is PINK1 (PTEN induced putative
kinase 1), a serine-threonine kinase associated with
a recessive form of familial Parkinson disease. In the best-
characterized pathway to initiate mitophagy, PINK1 activates
the E3 ubiquitin ligase PRKN/Parkin to mark depolarized
mitochondria for degradation. Interestingly, PINK1 expres-
sion is increased in the muscle and adipose tissues of obese
individuals or type 2 diabetes patients [13].

NLRP3 (NLR family, pyrin domain containing 3) inflamma-
some is an intracellular multiprotein complex that links sensing
of microbial products and intracellular danger signals to the
proteolytic activation of proinflammatory cytokines [14,15].
Chronic inflammation has been linked to many immune and
metabolic diseases, including arthritis, atherosclerosis, diabetes,
and aging, and important roles have been described for the
NLRP3 inflammasome in all of these pathologies [14–17].

Autophagy/mitophagy blockade activates NLRP3 inflam-
masomes in macrophages [18,19], and we also found that
NLRP3 expression was increased in BAPs from pink1 knock-
out mice. Surprisingly, this induction was not associated with
the expected activation of the inflammasome function. Rather,
previous studies have suggested a quite different function of
NLRP3 as a transcriptional regulator [20]. To assess the role
of NLRP3 as a mediator of the deleterious effects of loss of
PINK1, we generated double pink1 and nlrp3 knockouts. The
striking reversal of BAT dysfunction in these double knock-
outs reveals a new mitochondria-NLRP3 pathway that can
induce BAT dysregulation.

Results

Pink1 KO mice manifest BAT dysfunction

We initially investigated the function of PINK1 in control-
ling energy balance through monitoring weight gain among
pink1 KO and wild-type (WT) male mice. Eight-week-old

male mice were fed a regular diet (RD) or a high-fat diet
(HFD) for 8 weeks. The body weight and fat mass of RD-
fed mice were not significantly different between the two
groups, but we observed a marked increase in weight gain
driven by fat mass in HFD-fed pink1 KO mice (Figure 1A
and S1). Interestingly, HFD-fed pink1 KO mice consumed
significantly less food than HFD-fed WT mice (Figure 1B),
suggesting that the decrease in energy expenditure (EE) led
to the increased weight gain in pink1 KO mice. RD-fed
pink1 KO mice also consumed significantly less food than
RD-fed WT mice (Figure 1B), which may be due to
reduced energy demand in response to a decrease in EE.
Accordingly, the rates of oxygen consumption (VO2), CO2

production (VCO2), and EE in pink1 KO mice were sig-
nificantly lower than those of WT controls (Figure 1C-E,
S2A, and S2B). In contrast, locomotor activity was not
significantly different between pink1 KO and WT mice
(Figure 1F and S2C), consistent with the findings that
dopaminergic neurodegeneration is not found in pink1
KO mice at 3 to 4 months of age [21]. Interestingly, both
RD-fed and HFD-fed pink1 KO mice showed insulin resis-
tance, even though the body weight was not significantly
higher in RD-fed pink1 KO mice. (Figure 2).

Given the considerable influence of BAT on overall energy
balance [2], we investigated morphological differences in tis-
sue architecture between pink1 KO and WT controls. BAT
from control mice showed prototypically small and multi-
locular lipid droplets at 8 and 16 weeks of age (Figure 3A
and B). pink1 KO mice exhibited a “whitening” of BAT (i.e.,
the transformation of brown fat cells to cells having large and
unilocular lipid droplets). HFD feeding in pink1 KO mice
further increased BAT whitening [22] (Figure 3A and B).
Electron microscopy examination showed ballooning of the
mitochondrial matrix and disorganized cristae in pink1 KO
brown adipocytes (Figure 3C and D).

The UCP1 in BAT dissociates respiration fromATP formation
and generates heat to regulate whole-body EE [23]. In pink1 KO
mice,UCP1 expression in BATwas significantly lower than inWT
mice (Figure 3E and S3). To examine the effect of PINK1 deletion
on thermogenesis, we monitored the body temperatures of the
mice after cold exposure. Body temperatures of pink1 KO mice
were not significantly different from those of WT mice at room
temperature (RT). However, after cold exposure at 4°C for 6 h,
pink1 KO mice had significantly lower body temperatures than
WT mice (Figure 3F). Mitochondrial biogenesis and mitophagy
represent two opposing but coordinated processes that regulate
mitochondrial content, structure, and function [24]. The expres-
sion of Ppargc1a (peroxisome proliferative activated receptor,
gamma, coactivator 1 alpha), the master regulator of mitochon-
drial biogenesis [24], was significantly lower in the BAT of pink1
KOmice, and this was associated with lower expressions of brown
adipocyte-specific markers (Figure 3G).

To establish how PINK1 ablation impacts beige fat thermogen-
esis, we injectedWT and pink1 KOmice with the ADRB3 agonist
(CL-316243). The inguinal adipose tissue of WT and pink1 KO
mice showed similarly increased expression of UCP1, suggesting
that the changes in pink1 KO mice are limited to classical brown
adipocytes (Figure 4).
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Pink1 KO BAPs differentiate into white-like adipocytes

We then examined the mechanism of BAT dysfunction in
pink1 KO mice using brown adipocyte precursors (BAPs)
isolated from the stromal vascular fraction of the

interscapular BAT [25]. Tissue-specific precursor/stem
cells are required for the maintenance of physiological
and regenerative responses [26], and deterioration in their
function underlies aging-related BAT dysfunction [27]. We
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noted that differentiation of BAPs derived from pink1 KO
mice was defective, as grossly reflected by larger lipid dro-
plets (Figure 5A-C) and significantly decreased levels of
Ucp1 and brown adipocyte-specific marker genes (Figure
5D). On the other hand, the expression levels of white
adipocyte-specific genes were significantly increased in
pink1 KO BAPs (Figure 5E).

Mitophagy can be estimated by several methods, such as
the recruitment of PRKN (parkin RBR E3 ubiquitin protein

ligase) to chemically depolarized mitochondria, or using
MitoTimer, a fluorescent probe that investigates mitochon-
drial turnover on the subcellular level [28]. Recently, a pH-
sensitive, dual-excitation, ratiometric, mitochondrial-targeted,
fluorescent protein – mt-Keima – was described that also
exhibits resistance to lysosomal proteases [29]. At the physio-
logical pH of the mitochondria (pH 8.0), shorter-wavelength
excitation predominates. Within the acidic lysosome (pH 4.5)
after mitophagy, mt-Keima undergoes a gradual shift to
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longer-wavelength excitation [29]. As expected, pink1 KO
BAPs showed defective mitophagy (Figure 5F and S4), and
this was associated with increased mitochondrial ROS genera-
tion (Figure 5G).

Increased NLRP3 expression in pink1 KO BAPs is not
associated with inflammasome activation

Inflammasomes are multiprotein complexes that activate
CASP1 (caspase 1), which induces the maturation of the
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proinflammatory cytokines, IL1B (interleukin 1 beta) and
IL18 (interleukin 18). Autophagy/mitophagy blockade acti-
vates NLRP3 inflammasomes in macrophages [18,19].
However, NLRP3 protein and inflammasome activity are
also present in non-myeloid cells [30–32]. We observed
NLRP3 expression was significantly higher in the BAPs of
pink1 KO mice (Figure 6A, 6B, and S5A). Interestingly, how-
ever, the increased NLRP3 expression in the BAPs isolated
from pink1 KO mice did not correlate with the canonical
measures of inflammasome activity. Thus, CASP1 cleavage
or IL1B secretion (Figure 6C, 6D, 6F, S5B, and S5D) was
not observed in BAPs incubated with lipopolysaccharide
(LPS) and ATP. In contrast, bone marrow-derived macro-
phages (BMDMs) stimulated with LPS and ATP showed
CASP1 cleavage and IL1B secretion into the supernatant,
and this was significantly higher in the BMDMs of pink1
KO mice than of WT mice (Figure 6C, 6E, 6F, S5C, and
S5E). These findings indicate that while inflammasome-
dependent NLRP3 activation occurs in pink1 KO BMDMs,
this response does not occur in BAPs.

NLRP3 induces white-like adipocytes in pink1 KO BAPs

in addition to acting as an intracellular complex for cytokine
maturation, NLRP3 can act as a transcription factor [20]. The
sequence 5ʹ-nGRRGGnRGAG-3ʹ (where ‘n’ is any nucleotide
and ‘R’ is any purine) has been suggested as the consensus
motif for NLRP3 binding [20]. The transcription factor CEBPA
(CCAAT/enhancer binding protein [C/EBP], alpha) plays an
essential role in the differentiation and maintenance of WAT
[33-35]. We found that Cebpa contains the NLRP3 consensus
motif in its promoter regions (Figure 7A), and the chromatin
immunoprecipitation (ChIP) assay revealed that NLRP3 binding
near the Cebpa was higher in both undifferentiated and differ-
entiated BAPs from pink1 KO mice (Figure 7B). To examine
whether NLRP3 can induce white-like adipocytes, we introduced
Nlrp3 into WT BAPs using lentiviral vectors. As expected,
NLRP3 induced the expression of Cebpa, and Pparg (peroxisome
proliferator activated receptor gamma) and Adipoq (adiponectin,
C1Q and collagen domain containing), white adipocyte-specific
genes that are regulated by Cebpa [36-38]. NLRP3 also repressed
the expression of brown adipocyte-specific genes (Figure 7C and
D). Conversely, Pink1 overexpression in pink1 KO BAPs
reversed defective mitophagy (Figure 7E) and decreased the
expression of Nlrp3 (Figure 7F), which was associated with the
reversal of the aforementioned changes in white and brown fat-
specific markers (Figure 7G and H). Based on these results, we
suggest that NLRP3 transcriptionally regulates BAPs in pink1
KO mice.

BAT changes in pink1 KO mice are reversed in pink1
nlrp3 double-KO mice

To test whether the induction of NLRP3 is an important
mediator of BAT dysfunction in pink1 KO mice, we generated
mice deficient for both pink1 and nlrp3. Changes in VO2 and
VCO2 in pink1 KO mice were almost completely reversed in
pink1 nlrp3 double-KO mice (Figure 8A). BAT changes in
pink1 KO mice were also reversed in pink1 nlrp3 double-KO
mice (Figure 8B-D, S6A, and S6B), whereas pink1 casp1 dou-
ble-KO mice did not show such reversal (Figure 8E and S6C).

Likewise, BAPs isolated from pink1 nlrp3 double-KO mice
exhibited normal differentiation into mature brown adipo-
cytes (Figure 8F, 8G, and S6D), indicating that NLRP3 hin-
ders BAT development in pink1 KO mice.

Pink1 deficiency in brown adipocytes induces brown fat
dysfunction but not insulin resistance

To test whether defective mitophagy in brown adipocytes
per se or that in macrophages is responsible for BAT dysfunc-
tion, we produced brown adipocyte-specific (pink1 f/f-Ucp1-
Cre) and myeloid-specific pink1 KO mice (pink1 f/f-Lyz2-Cre).
Brown adipocyte-specific pink1 KO mice (but not myeloid
cell-specific pink1 KO mice) showed VO2, VCO2, EE, mor-
phologic features, and gene expression profiles of BAT similar
to those of pink1 global KO mice (Figure 9A-D). Brown
adipocyte-specific pink1 KO mice also had significantly
lower body temperatures than did WT mice after cold expo-
sure at 4°C for 6 h (Figure 9E).

We then performed an insulin tolerance test (ITT) in
brown adipocyte-specific pink1 KO mice to test whether
brown adipocyte mitophagy contributes to insulin sensitivity.
We found that brown adipocyte-specific pink1 KO mice did
not show alterations in INS (insulin) sensitivity (Figure 9F
and G), indicating that brown adipocyte mitophagy contri-
butes to the maintenance of energy expenditure but not of
INS sensitivity.

Discussion

When dysfunctional mitochondria are not cleared adequately
by mitophagy/autophagy, this leads to aging-associated dis-
eases, including obesity [10]. PINK1 was originally linked to
Parkinson disease, but no substantial Parkinson disease-
relevant phenotypes are observed in pink1 KO mice [21].
However, a recent study found that vigorous exercise and
mitochondrial DNA mutations lead to inflammation through
the CGAS (cyclic GMP-AMP synthase)-STING1 (stimulator
of interferon response cGAMP interactor 1) pathway in these
mice [39]. Our study newly shows that PINK1-mediated
mitophagy is essential for maintaining the function of BAT,
in which mitochondria are abundant.

The effects of mitophagy that we observed corroborate
the recent results that showed cold-induced induction of
mitophagy in BAT [40]. Our study is also consistent with
recent research demonstrating defective mitophagy, BAT
dysfunction, and insulin resistance in mice with adipocyte-
specific deletion of AMP-activated protein kinase [41].
However, in adipocytes, the ablation of mitophagy (Pink1)
yielded contrasting effects to the ablation of autophagy
(Atg7) on diet-induced obesity; the latter results in the
lean phenotype after HFD feeding [7,8]. To explain the
lean phenotype of adipose-atg7 KO mice, it was proposed
that Atg7 plays important roles in normal adipogenesis and
that inhibition of autophagy affects white adipocyte differ-
entiation, thereby leading to the lean phenotype [7,8]. In
addition, atg7 KO mice showed increased BAT mass [8].
Such seemingly discrepant results may be explained by the
fact that adipocyte-specific atg7 KO mice showed
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significantly lower expression of Nlrp3 in their BATs com-
pared with those of control mice (Figure S7). The cause of
this decrease in Nlrp3 is unclear.

A recent study found that autophagy eliminates mito-
chondria in beige adipocytes during withdrawal from cold
exposure or ADRB3 stimuli [9]. By using adipocyte-
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specific atg5 or atg12 KO mice, the authors showed that
autophagy deficiency leads to the resistance to diet-
induced obesity. In another study, the same group showed

that PRKN-dependent mitophagy is upstream of autopha-
gy-induced mitochondrial clearance [42]. The cause of this
discrepancy is unclear, but the role of mitophagy may be
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different between the lineages of brown and beige adipo-
cytes, considering that the two cell types arise from diver-
gent precursor cells [2,43].

in this study, we show that NLRP3 expression was
increased in the BAPs of pink1 KO mice and that this led to
BAT dysfunction. In addition to its role as an intracellular
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sensor that detects microbial products and endogenous dan-
ger signals to activate NLRP3 inflammasome, NLRP3 can
induce the differentiation of white-like adipocytes from
BAPs. While targeting of NLRP3 as a therapeutic for multiple
diseases is rapidly progressing, current treatment focuses on
inhibition of the inflammasome-derived cytokine IL1B [44].
However, it was pointed out that directly targeting NLRP3 by
small molecules is specific, cost-effective, and less invasive
than the cytokine blockade [44]. In this regard, our study
showing the transcriptional function of NLRP3 provides an
additional rationale for directly targeting NLRP3 for obesity-
related metabolic diseases.

BAT possesses a large capacity for glucose uptake and meta-
bolism, and an ability to regulate insulin sensitivity [45]; how-
ever, RD-fed brown adipocyte-specific pink1 KO mice showed
normal results in ITT, whereas RD-fed global pink1 KO mice
showed insulin resistance. This discrepancy suggests that brown
adipocyte mitophagy contributes to the maintenance of energy
expenditure but not of insulin sensitivity, and that other tissues
or organs might contribute to the insulin resistance in global
pink1 KO mice. Further studies are warranted to examine the
possible role of mitophagy in other INS target tissues (i.e.,
skeletal muscle, liver, and white adipose tissue) in the generation
of insulin resistance [46].

in summary, our data suggest that the role of mitophagy is
different from general autophagy in regulating adipose tissue
and whole-body energy metabolism. Our data show that
mitophagy plays a crucial role in maintaining the BAT func-
tion and energy metabolism of the whole body. pink1 defi-
ciency increased NLRP3 to induce white-like adipocytes from
BAPs, and this led to brown fat dysfunction. Therefore, in
addition to its role in Parkinson disease, PINK1 may act as
a target for managing metabolic diseases associated with obe-
sity. In particular, the transcriptional function of NLRP3 may
be an unexpected, but quite specific therapeutic target for
metabolic diseases.

Materials and methods

Mice

All mice were housed in ambient RT (22 ± 1°C) with 12/12 h
light-dark cycles and free access to water and food. Eight-
week-old male mice in each group were given RD or HFD
(Research Diets, Inc, D12492) and were sacrificed after feed-
ing for 8 weeks. All animal experiment protocols were
approved by the Institutional Animal Care and Use
Committee of the Asan Institute for Life Sciences, Seoul,
Korea.

Generation of KO mouse lines

The pink1 KO mouse line has been described previously [47].
Breeding pairs were obtained from the Mary Lyon Centre at the
MRC Harwell Institute, Oxfordshire, UK. pink1 nlrp3 double-KO
mice were generated using the TALEN method, as described
elsewhere [48] (Table S1). The pink1 casp1 double-KO mice

strain was generated by crossing pink1 KO and casp1 KO mice
(Jackson Laboratory, 016621). Myeloid cell-specific and brown
fat-specific pink1 KO mice were generated by crossing floxed
pink1 mice (European Mouse Mutant Archive, EM:07320) with
Lyz2 (Jackson Laboratory, 004781) and Ucp1 Cre mice (Jackson
Laboratory, 024670), respectively. First, WT/del (F1) and WT/flox
(F1) mice were generated by cross-breeding WT/flox mice and
Cre mice. Then, del/del, flox/flox, and WT/WT mice were gener-
ated by cross-breeding within the F1 generation.

atg7 flox/flox mice of C57BL/6 background were kindly provided
by Dr. Komatsu at Niigata University, Japan. atg7 flox/flox mice
and Fabp4 Cre mice (Jackson Laboratory, 005069) were crossed to
produce adipose-atg7 KO mice [8].

Indirect calorimetry

VO2, VCO2, RER, and locomotor activity were assessed using
an eight-chamber Oxymax system (Columbus Instruments).
Mice were placed in the chambers at 23°C with free access to
food and water and acclimated for more than 50 min before
measurement. EE was calculated as (3.815 + 1.232 × RER) ×
VO2/lean mass.

Electron microscopy

BAT was cut into 1-mm3 fragments, washed in fresh 0.1 M
phosphate buffer (pH 7.4), and fixed in 2.5% glutaraldehyde
in the same buffer at RT for 4 h. After three times of wash in
fresh 0.1 M phosphate buffer (pH 7.4) for 10 min, tissues were
fixed in 1% OsO4 for 1 h at RT and washed three times in
0.1 M phosphate buffer for 10 min. Tissues were embedded in
Epon (Sigma-Aldrich, 45,345), according to standard techni-
ques, after dehydration with ethyl alcohol and propylene
oxide. Ultrathin sections (60 nM) were cut from the blocks.
The sections were collected and stained with uranyl acetate,
followed by lead citrate, and then observed using a JEM 1400
transmission electron microscope (JEOL Ltd).

Cold tolerance test

Solitary caged mice were kept at 4°C for 6 h, and a control
experiment was carried out at RT. Afterward, rectal tempera-
tures were measured using a microprobe thermometer
(Physitemp).

Western blot analysis

BAT and primary brown adipocytes were lysed using tissue
extraction reagent I (Invitrogen, FNN0071) or NP40 cell lysis
buffer (Invitrogen, FNN0021) containing protease/phospha-
tase inhibitor cocktail (Roche, 04693132001) and 1 mM phe-
nylmethylsulfonyl fluoride (Sigma-Aldrich, P7626). Soluble
proteins (10 μg per lane) were separated on a 12% SDS
polyacrylamide gel and blotted on a nitrocellulose membrane
(GE Healthcare, 1060004). Membranes were incubated with
primary antibody at 4°C overnight, and horseradish peroxi-
dase-conjugated secondary antibody at RT for 1 h in 5% skim
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milk (Carl Roth, T145.2) with TBST, visualized using an
chemiluminescence detection system (NLRP3: GeneDepot,
W3680-010; CASP1: Biomax, BWD0100; UCP1 and ACTB:
Biomax, BWP0200), and exposed to film (Agfa, CP-BU
NEW). To determine the available linear range of western
blots, the exposure time was collected in every experiment.

Anti-UCP1 (1:10,000 dilution) antibody was purchased
from Abcam (ab10983). Anti-NLRP3 (1:1,000 dilution) and
anti-CASP1 (1:2,000 dilution) antibodies were purchased
from Adipogen (AG-20B-0014-C100, AG-20B-0042-C100).
Anti-ACTB (1:20,000 dilution) antibody was purchased from
Sigma-Aldrich (A5441). The signal intensities of protein
bands were quantified with the ImageJ software (NIH) and
normalized using the intensity of the loading control ACTB.

Real-time polymerase chain reaction (PCR) analysis

Total RNA (2 µg) was reverse-transcribed using RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific, K1622).
Tbp was used as internal control. The primers were designed
on the basis of nucleotide sequences in the GenBank database
(Table S2). The relative amounts of the mRNAs were calcu-
lated using the relative Ct method (PerkinElmer Wallace).

Measurement of plasma metabolic parameters

Plasma glucose concentration was measured using a glucose
analyzer (Yellow Springs, YSI 2300). Plasma INS was deter-
mined via radioimmunoassay (Linco Research, EZRMI-13 K).
Plasma free fatty acid (FFA) concentration was assayed using
an enzymatic assay kit (Wako Chemical, C1057).

Measurement of INS (insulin) sensitivity

Following an overnight fast, a 2-h hyperinsulinemic-
euglycemic clamp study was carried out with a primed-
continuous infusion of human INS (Humulin, Eli Lilly) at
a rate of 5 mU/kg/min, with 150 mU/kg body weight priming.
Blood samples (20 µl) were collected at 20 min intervals for
immediate measurement of plasma glucose concentration,
and 20% glucose was infused at variable rates to maintain
plasma glucose at the basal concentration (~120 mg/dl) [49].
The ITT was performed in mice fasted for 5 h in the morning.
Mice were intraperitoneally injected with 0.75 mU/kg of reg-
ular human INS. Blood was collected before injection and at
15, 30, 60, 90, and 120 min after injection for the measure-
ment of blood glucose level. The glucose disappearance rate
for the ITT (kITT) was calculated using the formula kITT
(%/min) = 0.693/t½, where t½ is derived from the slope of the
plasma glucose concentration from 0 to 15 min after INS
injection [50].

Immunohistochemistry of UCP1

UCP1 immunostaining was calibrated on a Benchmark XT stain-
ing module (Ventana Medical Systems). The slides were warmed
to 60°C for 1 h and then processed with a fully automated
protocol. After the sections were dewaxed and rehydrated, CC1
(Ventana Medical Systems) pre-treatment was carried out for

60 min for antigen retrieval. Tissue sections were stained with
rabbit polyclonal anti-UCP1 antibody (1:500; Abcam, ab10983) at
37°C for 36 min, and then with secondary Discovery UltraMap
anti-rabbit horseradish peroxidase antibody (Ventana Medical
Systems) at 37°C for 36 min. Detection was performed using
the UltraView DAB (3,3ʹ-diaminobenzidine) detection kit
(Ventana Medical Systems). Counterstaining was conducted for
4 min using hematoxylin (Ventana Medical Systems). After com-
pletion of the automated staining protocol, the slides were dehy-
drated in 90% ethanol for 1 min, followed by 100% ethanol for
1 min. Before cover-slipping, the sections were cleared in xylene
for 1 min and mounted with a synthetic mountant (Thermo
Fisher Scientific). The samples were visualized using a BX53
upright microscope (Olympus) and CellSens software (Olympus).

Isolation of BAPs and culture

BAPs were isolated from interscapular BAT, as previously
described [25]. Cells were grown to 70%–80% confluence
before passaging every week.

Measurement of mitochondrial ROS generation

Mitochondria-specific ROS generation was monitored by
fluorescence-activated cell sorting analysis using the MitoSox
Red fluorescent dye (Molecular Probes, ENZ-51011).

Differentiation into brown adipocytes

Confluent cultures of BAPs were exposed to α-MEM
(Welgene; LM008-01) differentiation medium containing dex-
amethasone (1 µM; Sigma-Aldrich, D4902), INS/insulin
(850 nM; Sigma-Aldrich, I6634), isobutylmethylxanthine
(0.5 mM; Sigma-Aldrich, 5879), indomethacin (125 µM;
Sigma-Aldrich, I7378), rosiglitazone (1 µM; Cayman
Chemical, 71740), T3 (1 nM; Sigma-Aldrich, T2877), and
10% FBS (Gibco Life Technologies, 16000044). Three days
after differentiation, the cells were maintained in media con-
taining INS (850 nM), rosiglitazone (1 µM), T3 (1 nM), and
10% FBS until they were ready for collection.

Phase-contrast microscopy

Cell images were acquired using an image capture system,
consisting of an IX70 inverted microscope (Olympus).

Oil Red O staining

Differentiated brown adipocytes were fixed with 10% formal-
dehyde for 20 min. After washing with PBS, the cells were
stained with Oil Red O solution (Sigma-Aldrich, O1516) for
30 min. The slides were then washed several times with water,
and excess water was evaporated by heating the stained cul-
tures to approximately 32°C.

Dual-energy X-ray absorptiometry (DEXA)

Body composition was determined using the INSIGHT VET
DXA (Osteosys) at 16 weeks with or without HFD exposure.
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To ensure good immobilization, mice were anesthetized with
an intraperitoneal injection of 40 mg/kg ketamine and 0.8 mg/
kg medetomidine. The weights of lean tissue and fat tissue
were provided by the scanner, as previously reported [51].

Image analysis

The images of in vitro confocal imaging, in vivo H&E cross-
sections, and EM images were quantified using ImageJ (NIH).
Cell size was averaged from 10 representative images per
H&E-stained sections or EM images from four mice. For
measurement of in vitro lipid droplet area, 10 random images
were examined per sample with four samples per condition.

Detection of mitophagy using mt-Keima

For mitophagy evaluation [29], mt-Keima lentivirus-infected
BAPs were treated with 10 µM carbonyl
cyanide m-chlorophenylhydrazone (Sigma-Aldrich, C2759)
and 2 µM oligomycin (Sigma-Aldrich, O4876), or serum-
free media, and analyzed using a confocal microscope
(LSM780, Carl Zeiss). Images of fluorescent protein mt-
Keima (emission at 588–633 nm) were taken at excitation
wavelengths of 458 and 561 nm, and the GFP-fused protein
(emission at 510 nm) was imaged using a 488 nm excitation
filter.

Inflammasome activation

BAPs (1.0 × 106 cells per well) or BMDMs (1.0 × 106 cells per
well) from WT or pink1 KO mice were plated in 12-well plates
and then primed for 4 h with 100 ng/ml LPS (Sigma-Aldrich,
L6529) in RPMI 1640 medium (Welgene, LM011-01) contain-
ing 10% FBS and antibiotics. For the last 30 min, the medium
was replaced with RPMI 1640 medium supplemented with
5 mM ATP (Sigma-Aldrich, A6419). IL1B in the media was
quantified using an ELISA kit (R&D Systems, DY-401).

Isolation of BMDMs

Bone marrow cells were flushed from the femurs and tibias of
mice and then depleted of RBCs using RBC lysis buffer
(Sigma-Aldrich, R7757). The cells were then cultured in
Dulbecco’s modified Eagle’s medium (DMEM; Welgene,
LM001-05) supplemented with 10% FBS and 20 ng/ml murine
CSF1 (Peprotech, 315–02). Non-adherent cells were carefully
removed, and fresh medium was added every 2 d. On day 6,
the cells were collected for experiments [52].

Plasmids and lentiviruses

To produce GFP–Prkn, – Nlrp3, – Pink1, and mt-Keima lenti-
viruses, GFP–Prkn, – Nlrp3, – Pink1, and mt-Keima (Addgene,
72342, Richard Youle) were subcloned into the pCDH-MCS len-
tiviral vector (System Biosciences, CD513B-1), and the plasmids
were transfected in Lenti-X 293T cells (Clontech, 632180) along
with packaging plasmids pMDLg/pRRE (Addgene, 12251, Didier
Trono) and pRSV-Rev (Addgene, 12253, Didier Trono) and
envelope plasmid pCMV-VSV-G (Addgene, 8454, Bob
Weinberg) using Lipofectamine 3000 (Invitrogen, L30000015).

ChIP assay

The ChIP assay was performed with a ChIP-IT express kit
(Active Motif, 53014). Undifferentiated BAPs (1 × 107) or differ-
entiated BAPs (1 × 106) from WT or pink1 KO mice were fixed
with 1% formaldehyde at RT for 15 min to allow cross-linking of
DNA with proteins, and glycine solution (final concentration of
0.125 M) was added to stop the cross-linking reaction. The fixed
BAPs were lysed using a Dounce homogenizer to induce nuclei
release. After sonication, the chromatins were immunoprecipi-
tated overnight at 4°C with 2 µg anti-NLRP3 (AdipoGen Life
Sciences, AG-20B-0014) and protein G magnetic beads. The
chromatins were then washed and eluted from the protein
G magnetic beads using buffers supplied with the kit DNA was
purified using a ChIP DNA Clean and Concentration kit (Zymo
Research, D5201) and analyzed by quantitative PCR (Table S2).

Statistical analysis

Data are expressed as mean ± standard error of the mean
(SEM). Unpaired two-tailed Student’s t-tests were used to com-
pare variables between the two groups. One-way ANOVA was
used to compare multiple groups. For the comparison of multi-
ple measurements made at different time points, one-way
repeated-measures ANOVA was used. Bonferroni correction
was applied for post hoc analysis of the multiple comparisons.
All statistical tests were conducted according to two-sided sam-
ple sizes and were determined on the basis of previous experi-
ments using similar methods. For all experiments, all stated
replicates are biological replicates. Statistical analysis and graph-
ing were performed using IBM SPSS Statistics version 22.0
(IBM Corp.) or GraphPad Prism 7 (GraphPad Software).
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