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ABSTRACT OF THE THESIS

Small Data Big Insights : Investigating the

performance of a Small Language Model in its

ability to generate English text

by

Tanya Sharma

Master of Science in Statistics

University of California, Los Angeles, 2024

Professor Ying Nian Wu, Chair

It is widely held that larger language models, trained on vast quantities of text, excel at

generating coherent and fluent text. But at the same time, Small Language Models still

struggle to produce meaningful text beyond a few words. The specific scale at which these

abilities emerge is still not well-defined. Consequently, the lingering question remains: must

a model be large-scale to generate coherent text?

In this paper we have have trained a small language model on Tiny Stories, a synthetic

dataset of short stories. The objective is to study the small language models in their ability

to generate coherent and consistent English text. We have performed a comparative study

where we have analyzed the convergence of loss and investigated how adjustments to the

number of heads, layers, and embedding size affect the generation of English text in Small

Language Models.
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CHAPTER 1

Introduction

Language is a mode of communication for humans. It is an ability that allow humans to

express themselves. Within the realm of language, each linguistic system is governed by

a unique set of grammatical rules, symbols and vocabulary. While the rules define the

structure of the sentence, it is the amalgamation of vocabulary knowledge and contextual

comprehension infused with an understanding of background, situation, and environment,

that empowers humans to interpret meaning and reason cogently.

However, machines lack the innate cognitive capacities possessed by humans, thus pre-

senting a significant challenge in enabling them to comprehend, interpret, and generate

language proficiently and how to bridge this gap has been a longstanding research question

for researchers. This is where Language Modeling comes into the picture. Technically Lan-

guage Modeling aims to model the generative likelihood of word sequences, so as to predict

the probabilities of future or missing tokens[2].

In the pursuit to better understand and generate language, Language Modeling has un-

dergone a remarkable evolution, transitioning from traditional Statistical Language Models

to contemporary Neural Language Models. Notably, recent advancements have introduced

the concept of pre-trained Language Models, which involves pre-training Transformer mod-

els on vast corpora. These models are extremely large in size with millions or even billions

of parameters. A model attains the classification of a ’Large Language Model’ when it en-

compasses at least one billion parameters. With the strides made in this domain, Language

models have achieved proficiency in executing a diverse array of functionalities, including

1



but not limited to generation, summarization, translation, and reasoning. The scope of this

paper will be centered specifically on the study of coherent English text generation.

Large Language Models have shown a significant improvement in their capabilities of

generating coherent English text and Small Language Models like GPT Neo and GPT-2

often falter in producing meaningful text even when they are trained on large corpus of text.

This raises the question of whether the ability to generate meaningful and logical text occurs

only at large scale? If not, then the next obvious question is why Small Language Models

like GPT-2 or GPT Neo struggle to generate coherent English text beyond a few words?

The paper ”TinyStories: How Small Can Language Models Be and Still Speak Coherent

English?”[1] delved into this inquiry and unveiled compelling findings. It demonstrated that

even small language models, with as few as 10 million parameters and simpler architectures,

possess the remarkable ability to generate fluent and cohesive text. Beyond mere coherence,

these models showcase proficiency in crafting diverse sentences with nearly perfect grammar

and also exhibit reasoning capabilities. They propose that the limitation hindering Small

Language Models from generating coherent English text may not stem from their inability to

deconstruct and comprehend the intricacies of language. Instead, it could be attributed to

they being overwhelmed by the sheer volume and diversity of information they must process

and store which hinders their ability to learn the core mechanisms and principles of language.

Inspired by the aforementioned paper, my thesis aims to construct a Small Language

Model from scratch. Trained on the Tiny Stories dataset, my objective is to expand upon

the notion that even small language models have the ability to generate English text that

is not only coherent and consistent but also meaningful. Moreover, in this study, we have

taken an additional step by conducting a comparative analysis. We varied combinations

of parameters, such as the number of heads, layers, and embedding size, and analyzed the

convergence of loss. Additionally, we investigated how adjustments to these parameters

affect the generation of English text.
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CHAPTER 2

Language Models Overview

Language models have achieved proficiency in executing a diverse array of functionalities

like generation, summarization, translation, and reasoning. However, the effectiveness of

these functions relies heavily on the model’s understanding of language syntax, grammar

rules, vocabulary, and contextual nuances. For instance, consider the task of completing the

sentence, “It was raining outside, so I took...” In order to logically complete this sentence,

the language model must grasp the context surrounding it. An illogical completion, such

as “took a pencil,” would indicate a failure to generate relevant output in line with the

given context. Conversely, a suitable completion, such as ”took an umbrella,” reflects the

model’s ability to generate output that aligns with the contextual cues provided. Likewise,

when prompted, a language model should be capable of completing the following sentence:

“The temperature dropped below freezing overnight, so I packed...” The model’s ability

to reason correctly would involve understanding that a drop in temperature below freezing

implies chilly weather conditions, prompting the need for warm clothing such as a jacket

and gloves. These instances illustrate the intricate nature of language tasks. Despite their

complexity, we have observed a substantial advancement in the abilities and capabilities of

language models over time. This evolution can be broadly categorized into four major stages

of development[2].
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2.1 Statistical Language Models

Statistical language models represent an approach to understand and predict language based

on statistical principles. At the core of statistical language models lies the Markov assump-

tion which is a fundamental concept in probability theory. This assumption proposes that

the prediction of the next word depends only on a fixed, limited context, usually the pre-

ceding words in the sequence. In other words, the likelihood of a word occurring next is

determined by the words that came before it.

The famous n-gram language model falls under this category. In n-gram, “n” represents

the chunk of n consecutive words. So, in the context of an n-gram model, the prediction

of the nth word depends on the preceding n-1 words. For instance, in a bi-gram language

model, the prediction of the next word depends on the preceding word and similarly in the

tri-gram language model, the prediction of the next word depends on the last two words .

More generally speaking,

P (word(i)|word(i−1), ..., word(i−n+1)) =
P (word(i),word(i−1),...,word(i−n+1))

P (word(i−1),...,word(i−n+1))

While the n-gram model is widely used and effective approach in natural language pro-

cessing, it comes with its own limitations. One of the major drawback of the n-gram model is

that its predictions are constrained by a fixed length context window. Since the model only

considers a fixed number of preceding words to predict the next word, it may fail to capture

long-range dependencies and contextual differences present in the text. For instance, in the

sentence “Stella was not hungry so she decided to not have dinner”, a bi or a tri-gram lan-

guage model may fail to associate “she” with “Stella”. This limitation becomes particularly

more serious when dealing with complex language structures or ambiguous word sequences

because the meaning of the word can change based on distant words. For instance, based

on the context and usage the word ’bank’ can refer to either a financial institution or the

sloping land alongside a river. Additionally, the n-gram model suffers from the problem of

sparsity, especially with higher-order n-grams. The occurrence of certain word combinations
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may be rare or nonexistent in the training data which can result in inaccurate predictions.

Moreover, the model struggles with out-of-vocabulary words. It cannot generate predictions

for unseen or infrequently occurring words not present in the training data. Overall, while

the n-gram model offers a simple and efficient approach to language modeling, its drawbacks

highlight the need for more sophisticated techniques to address the challenges.

2.2 Neural Language Models

The Neural Language Models utilize the neural network architecture to get the probability

distribution over the vocabulary to predict the next word in the sequence. Consider a scenario

where the first n words in a text document are denoted as x1, x2, ...xn and the objective is to

predict the (n+1)th word. The context window is of length 5. Then in this case, input to the

model is the sequence of words xn−4, xn−3, xn−2, xn−1, xn which serves as the context for the

model to make predictions. So, instead of looking at all the words from the beginning, we

only look at the words that lie in the context window. The length of the input sequence can

vary depending on the model’s architecture and requirements that we define. The output of

the model is the probability distribution P (xn+1|xn, xn−1, ..., x1). The fundamental difference

between the Statistical Language Models and the Neural Language Models emerges in the

methodology of prediction of the next word. While the traditional statistical language models

rely on the concept of conditional probability. The neural language models, rather than

relying on statistical principles, these models pivot towards a neural network architecture.

Here, the word embeddings serve as input to a neural network which finally outputs a

probability distribution over the vocabulary.

It is important to note that, the neural language models have not only helped us un-

derstand and better implement the word sequence modeling task but they also introduced

distributed word representation. Distributed representation are nothing but vector repre-

sentation of words or in simple terms turning words into vectors. The idea is that words
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used in similar contexts usually have similar meanings. These vectors, also known as word

embeddings, help us represent words in a way that captures these relationships.

Language Models, relying on the architectural foundations of the Feed Forward Neural

Network, Recurrent Neural Network (RNN), or Long Short-Term Memory Network (LSTM),

collectively fall under the domain of Neural Language Models. Each architecture has its own

strengths and limitations.

The Fixed window Neural Language Model based on the feed-forward neural network

architecture marks as a good entry point into neural language modeling because of its less

complex and simple architecture. However, the fixed window constraints the model’s ability

to capture sequences of varying lengths. Additionally, the model may also fail to capture

long-range dependencies and contextual differences present in the text due to the fixed con-

text window. Conversely, Language Models based on Recurrent Neural Network architecture

go beyond the fixed window limitations and are capable of processing sequences of arbitrary

length. Moreover, the inherent ability of RNNs to leverage information from multiple steps

in a sequence facilitates the modeling of long-term dependencies, enhancing the model’s pre-

dictive capabilities. However, RNNs have their own set of challenges as they suffer from the

problem of vanishing gradients. The Long Short-Term Memory Network (LSTM) architec-

ture emerges as a refinement of the RNN and it was proposed as a solution to vanishing

gradients problem. However, LSTM presents a promising solution to this challenge, there is

still no evidence that it can successfully mitigate it. Central to the LSTM architecture is the

introduction of gating mechanisms. The gates selectively retain or discard information at

each time step. This solves the context management problem in textual data by removing

information no longer needed and adding information likely to be need later in the context

using gates.

In summary, Neural Language Models have completely transformed Natural Language

Processing. They’ve made word sequence modeling much better and also introduced dis-

tributed representations, which have been a game-changer.
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2.3 Pre-Trained Language Models

Pre-trained language models serve as a subset within the broader domain of Neural Language

Models. They undergo training on extensive text corpora, such as entire Wikipedia articles

or vast collections of online text. Pre-training a model exposes it to vast amounts of textual

material, which helps it to understand even the smallest linguistic distinctions. The model

picks up a lot of knowledge about the linguistic components of the language during this

phase, such as syntactic structures, grammar rules, and semantic associations. This gives

the model a thorough grasp of the nuances of the language, enabling it to identify minute

patterns and connections in the data.

After completing the pre-training phase, the model can be optimised for a particular

purpose/task. This is called fine-tuning a model. During fine-tuning, the pre-trained model is

exposed to task-specific data, which is often smaller in size, to adjust and specialise its learnt

representations to the specifics of the given task. The difference between using an experienced

team member’s skills and on boarding a new person for a project can be compared to the

process of training a model from scratch versus fine-tuning a pre-trained model. Starting

from beginning when training a model is like taking a new employee and teaching them every

task from the bottom up. On the other hand, fine-tuning a pre-trained model is like using

the expertise of a seasoned worker who already has a thorough understanding of processes

involved.

ElMo[14] was one of the earliest attempts in the realm of pre-trained models. It in-

troduced the concept of context aware word representations and suggested that instead of

using static word embeddings to represent a word, we can construct context aware word

embeddings for which it pre-trained a bi-directional LSTM network. A lot of research is

being conducted in this area and several pre-trained models have been released each with its

own architecture and pre training strategies. Some of the pre-trained models include BERT

(Bidirectional Encoder Representations from Transformers)[12], GPT-2 (Generative Pre-
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trained Transformer 2)[11], BART (Bidirectional and Auto-Regressive Transformers)[10],

among others.

2.4 Large Language Models

When we scale the pre-trained models, increasing both in terms of model size and amount of

data that they’re trained on to the point where they have over a billion parameters, we enter

into the domain of Large Language Models. Some of the common Large Language Models

include GPT-3 (Generative Pre-trained Transformer 3)[9] with 175 billion parameters, PaLM

(Pathways Language Model)[6] with 540 billion parameters, LLaMA-2 (Large Language

Model Meta AI))[3] with 70 billion parameters, among others.

Despite sharing similar architectural blueprints and pre-training methodologies with their

smaller counterparts, Large Language Models (LLMs) exhibit marked differences in terms

of their capabilities. With the strides made in this domain, Large Language Models have

achieved proficiency in executing a diverse array of functionalities, including but not lim-

ited to generation, summarization, translation, and reasoning. Additionally, the launch of

ChatGPT, for the first time, offered users firsthand experience of AI’s potential. In-fact,

since then, research in this field has expanded significantly, fueling further advancements

and innovation. There is growing interest in integrating Large Language Models (LLMs)

into various real-world applications. From enhancing traditional search engines to creating

personalized chatbots, the spotlight is on harnessing the potential of LLMs to build practical

and impactful solutions.

Despite the increasing interest in this field, a plethora of questions regarding Large Lan-

guage Models still remain unanswered. Why superior capabilities emerge at large scale is still

a mystery. Similarly, when and how they emerge is an open research question. Additionally,

the large amount of training data from the internet used in the training of LLMs, poses chal-

lenges in mitigating biases and aligning model outputs with human values. Hallucinations
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is another big issue with LLMs.

In this study, our focus is to dive deeper into the question of scale unlocking superior

capabilities in LLMs. One might argue that enlarging model size and amount of training

data allows LLMs to become adept at handling more complex language tasks because given

that they are exposed to larger amount of data they are able to learn broader range of

context and associations which then results in enhanced performance. However, whether

scale is inducing these abilities in LLMs is still an open research question. Infact, in the

later sections, we will try to break this belief and particularly in the context of English test

generation demonstrate that even small language models possess the capability to generate

English text that is both coherent and consistent, and at the same time meaningful.

Research is on-going in these and several other facets pertaining to LLMs. However, the

research community itself is faced by certain limitations. For instance, given the computa-

tional power required to train them, it becomes difficult for the research community to train

capable LLMs. Major tech giants have the resources to train large models but they end up

not releasing the training details to the public. Research institutions in collaboration with

the industry leaders are moving towards building AI infrastructure. There is still a long way

ahead but we are moving forward.

Most of the LLMs currently are being developed on the Transformer architecture. In the

next section we will go into the details of this architecture.
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CHAPTER 3

All about Transformer Architecture

Up until now, we’ve delved into the journey of Language Modeling, exploring various ad-

vancements and weighing the strengths and weaknesses of different architectures at a broader

level. Now, let’s shift our attention to Transformer, another groundbreaking architecture

within Language Modeling. This architecture has sparked a paradigm shift in the way we

approach Language Modeling tasks, leading to a new era of innovation.

The Transformer architecture was introduced for the first time in the paper ’Attention

is All You Need’ in 2017 [16]. This paper was written by the researchers at Google Brain.

The highlight of the paper was the ’Attention Mechanism’. The paper proposed a new and

simple neural network architecture which was solely based on the Attention Mechanism and

no longer required recurrent and convolutional layers which were widely used in sequence-

to-sequence modeling up until then. Furthermore, what set the Transformer apart from

other architectures was its ability to process input data in parallel, a departure from the

sequential processing employed by recurrent neural networks (RNNs) and Long Short-Term

Memory (LSTM) networks. It also provided a much more efficient way of capturing long-

term dependencies within data.

In this section, we’re going to take a deep dive into the architecture of the model. After

we’ve got a good grasp of the overall architecture, we’ll zoom into the details of the attention

mechanism. Finally, we’ll take a closer look at how this Transformer architecture can be used

in language modeling.
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3.1 Model Architecture

Figure 3.1: Transformer model architecture. Adapted from [16]

The transformer architecture, as outlined in the ’Attention is all you need’ paper, intro-

duces a revolutionary framework featuring an encoder-decoder structure. At its core, the

encoder component processes an input sequence (x1, x2, x3...xn) and transforms it into a se-

quence of continuous representations (z1, z2, z3...zn). Subsequently, the decoder utilizes these

representations (z1, z2, z3...zn) to generate an output sequence (y1, y2, y3...ym) sequentially.

To achieve this sophisticated task, the Transformer architecture implements a series of

layers within both the encoder and decoder. Specifically, each component comprises a stack

of self-attention layers alongside fully connected neural networks. This stacking mechanism
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allows for multiple iterations of self-attention and neural network operations, facilitating

intricate information processing and context modeling within the model.

3.1.1 Encoder

When examining figure 3.1, we observe that the encoder block is structured with a repetition

of Nx identical layers, stacked one over the other. Each of these layers is composed of two

distinct parts. Firstly, there’s the multi-head self-attention layer, where the input flows

through the self attention mechanism which allows every word to better comprehend the

context. Following this, the resulting output transitions into a fully connected feed-forward

neural network. However, the flow id not direct. Before reaching the neural network, the

output takes a detour through what’s called a residual connection. This means it merges with

the original input. Additionally, there’s a layer normalization step applied to the output,

which ensures that the data remains standardized and stable throughout the process.

3.1.2 Decoder

Even in the decoder block, we find a structured composition of Nx identical layers, systemat-

ically arranged atop each other. However, what distinguishes the decoder from the encoder is

a slight difference in the architecture. While the encoder employs two sublayers, the decoder

expands this concept by incorporating three distinct sublayers.

Similar to the encoder’s design, the decoder features a multi-head attention layer and

a fully connected neural network layer. Additionally, it introduces a crucial step: applying

another multi-head attention layer to the output of the encoder block. This layer facilitates

the decoder in comprehending and aligning with the context established by the encoder.

Much like in the encoder, the decoder employs residual connections and layer normaliza-

tion to maintain stability and facilitate information flow. However, an important difference

lies in the handling of self-attention weights, a topic we’ll dive in the next section.

12



3.2 Self Attention Mechanism

Figure 3.2: Word Embeddings

In our exploration of model architecture, we delved into the Transformer, recognizing it

as a series of interconnected self-attention and fully connected layers. This begs the question:

what sets it apart and makes it exceptionally efficient? The answer lies in the revolutionary

self-attention layer. In the upcoming section, we’ll embark on a comprehensive exploration of

the inner workings of the self-attention layer to uncover its transformative impact. Lets take

an example to understand the mechanics of the self attention layer : ’I like reading’. In this

case the input to the model will be three words ’I’,’like’, and ’reading’. Each word will have

its own word embedding. Lets assume that the word embeddings are of dimension (1 ∗ 512)

where nembed = 512. So in this case each word will be represented by a word embedding ,

which is nothing but a vector of dimension (1 ∗ 512) as can be seen in the figure below and

this will mark as the starting point.

3.2.1 Step 1: Creation of key, query, value vectors

The first step in the process involves the creation of three distinct vectors for each word,

known as the key, query, and value vectors. This is achieved by multiplying the word

embeddings by three weight matrices: the key weight matrix (Wkey), the query weight matrix

(Wquery), and the value weight matrix (Wvalue), respectively. Each of these weight matrices

has dimensions of (n embed * head size). For instance, when considering the word ’like’, the

13



Figure 3.3: Creation of Key, Query and Value

resulting key vector is computed as follows:

Klike = Elike ∗Wkey

(1 ∗ 64) = (1 ∗ 512) ∗ (512 ∗ 64) → Dimensions

Here, head size = 64

Klike = Key vector for the word ’Like’; dim: (1 ∗ 64)

Elike = Word embedding vector for the word ’Like’; dim: (1 ∗ 512)

Wkey = key weight matrix; dim: (512 ∗ 64)

It is worth noting that the choice of head size is arbitrary and serves as a design decision

in the architecture. Furthermore, the three weight matrices are trained during the training

process.
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Figure 3.4: Attention Scores

3.2.2 Step 2: Score Calculation

In this step, we take the dot product of each word’s key vector with query vector of all the

other words in order to calculate the score. These scores are then used to calculate weights.

Imagine each word has a unique ”key” that represents its meaning. We compare the key of

one word with the ”query” of all the other words. It’s like trying to find the best match for

a puzzle piece – not every match will be perfect, but we give each match a score based on

how well it fits. This score tells us how related each word is to all the others.It is this score

in self attention mechanism that allows us to calculate weights and thereby weigh different

input tokens in the sequence of words with respect to each word and hence help us quantify

the association between words and capture long term dependencies. For instance, we take

the dot product of (1*64) dimensional key vector of word ’like’ with the (1*64) dimensional

query vectors of all the words(’I’,’Like’,’Reading’). We take the transpose of the Key matrix

to comply with the rules of matrix multiplication.

Q.KT = ScoreMatrix

(3 ∗ 64).(64 ∗ 3) = (3 ∗ 3) → Dimensions
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3.2.3 Step 2: Weight Calculation

Figure 3.5: Attention Weights for Encoder

To calculate the weights, we start by dividing the computed scores by the
√
dk where dk

represents the dimension of the key vector. In our example dk = 64. After obtaining the

scores, we apply the softmax function to them. This function normalizes all scores, ensuring

they are positive and sum up to 1. For instance, w11 = softmax( q1.k1√
dk

).

These weights play a crucial role in deciding how much attention we give to each word. At

any given position, the word itself naturally receives the highest attention score. However, we

also need to consider words in the surrounding context that are important for understanding

the current word. These weights enable us to precisely determine how much attention we

allocate to each word in the context. So, for every word, we obtain specific weights that

guide our attention to the relevant words in its context. The weights w11, w12, w13 represent

the softmax scores for the first word in our sequence, which is ’I’. These scores measure how

much attention ’I’ pays to the other words in the sequence. Specifically, w11 measures how

much ’I’ attends to itself, and it’s naturally the highest. Similarly, w12 how much ’I’ attends

to the next word, ’Like’, and so on for subsequent words in the sequence.

It’s crucial to understand the distinct approach used for calculating weights in the encoder

and decoder blocks. This difference is formulated mathematically while feeding the calculated
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scores into the softmax function (we will look at it later). This disparity stems from the

differing functionalities of these two blocks. Lets try to comprehend the difference.

Encoder Block: In this block, each word can attend to both past and future words. This

means that when considering a particular word, it can gather information from all words

that come before and after it in the sequence. For instance, in sentiment analysis, we can

look at and attend to all the words in the sequence and get contextualised representations.

Decoder Block: Unlike the encoder, the decoder block has a unique constraint. It must

ensure that it only attends to words from the past, not the future. This restriction is

crucial for tasks like text generation, where we are predicting future words based on present

information. Each word only attends to the words in the past or appearing before and never

see the words in the future.

This difference is mathematically achieved by setting the scores for all the words appear-

ing after the given word to negative infinity and the softmax(−∞) = 0, so that makes the

attention weights for all the words appearing in the future to zero ensuring that we don’t

attend to the future and only look at the past.(Fig - 3.6)

Figure 3.6: Attention Weights for Decoder
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3.2.4 Step 3: Output of the Self Attention Layer

Once we have computed the attention weights, which essentially allow us to quantify the

importance we give to words in the sequence. The next step in the process is to do a weighted

sum of the value vectors where the weights are the attention weights.

Going back to our example, w11, w12, w13 are the attention weights for the first word i.e.

w11 represents the attention first word gives to itself, w12 is the attention first word ’I’ gives

to the second word and so forth. In an encoder block the following operations will happen :

W ∗ V = Z

(3 ∗ 3).(3 ∗ 64) = (3 ∗ 64) → Dimensions

here, W = (3*3) attention weights matrix,

V = (3*64) values matrix,

Z = (3*64) output of the self attention layer.

If we delve deeper into the details, let’s consider a vector z1 = (z(1,1), z(1,2), ...., z(1,64)).

This vector has a dimension of (1*64), meaning that it has 64 elements. Now lets focus on

z(1,1) which is the first element of the vector and can be written as following weighted sum

z(1,1) = w11 ∗v11+w12 ∗v21+w13 ∗v31. Similarly we can write the other elements of the vector

z1. So, if we really think about it, z1, z2 and z3 are contextualised representations of the

original words. The attention mechanism is like giving each word in a sentence the ability

to focus on the words that matter most to it, while tuning out the rest. We achieve this by

assigning attention weights, which determine how much importance each word places on its

neighbors.

Think of it like human relationships. Each person decides how much attention they

want to give to others. Some relationships are strong, so we pay more attention to those

individuals, while others are more distant, so we give them less attention. Similarly, the

attention mechanism empowers words to prioritize their connections within a sentence.
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This concept might seem simple, but it’s incredibly powerful. By allowing words to

selectively focus on relevant information, the attention mechanism enhances our ability to

understand the relationships between words and capture the context of a sentence and even

language more effectively.

Figure 3.7: Output of the Self Attention Layer in an Encoder block

3.3 Multi-Head Attention

In our previous discussion, we delved into the intricacies of the self-attention layer’s structure.

Now, let’s shift our focus to another critical component: multi-head attention.

To put it plainly, imagine if we could clone the self-attention architecture not just once,

but N times. Each of these clones, or ’heads’ that would independently attend to different

parts of the input sequence. This ensemble of heads that work in parallel forms what we call

multi-head attention mechanism. Essentially, it’s like having N sets of eyes, each focusing

on a different aspect of the input, allowing for a more comprehensive understanding of the

context. However, each head will produce an output and we will have to figure out a way to

consolidate the outputs of all the heads into one and feed it to the next layer.

Consider our example where we utilize 4 heads in the multi-head attention mechanism.

Each of these heads independently processes the input and generates a matrix with dimen-

sions of (3*64). Now, rather than treating these outputs separately, we consolidate them

into a single matrix of dimensions (3*256) by stacking them vertically, one after the other.
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Next, we take this consolidated matrix and perform a crucial step: we multiply it by

another weight matrix, which has dimensions of (256*64). This multiplication operation

essentially blends the information from all the heads together, transforming the (3*256)

matrix into the final output of the multi-head attention layer with dimensions (3*64).

In simpler terms, it’s like having different groups of eyes (the heads) looking at different

aspects of the input, then combining their insights into a single coherent understanding

through a weighted process.

Figure 3.8: Multi-Head Attention
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CHAPTER 4

Experiment Design

In this section, we will delve into the experiment design, providing comprehensive insights

into its setup, methodology, and the data used for the analysis. To conduct our analysis, we

trained a small language model similar to GPT, drawing inspiration from Andrej Kaparthy’s

GPT code. Once we finalized the model architecture, we embarked on a series of experiments,

exploring various combinations of hyper-parameters such as the number of heads, layers,

and embedding size. For each combination, we monitored both training and validation loss.

Furthermore, we evaluated the model’s ability to generate English text using stories from

the test set.

4.1 Data Description

The data used for this comparative analysis is TinyStories dataset. The dataset was in-

troduced in the paper ’TinyStories: How Small Can Language Models Be and Still Speak

Coherent English?’. As implied by its name, this dataset comprises short stories. What

makes it interesting is that these stories were generated by GPT-3.5. The authors of the

paper while designing prompts ensured that it was for short story generation that featured

basic vocabulary, akin to what a 3-4 year old could easily understand. While the stories

are short with limited vocabulary, the corpus is rich in terms of having all the elements of

language like vocabulary, grammar, reasoning etc.

Here is a sample story from the dataset -
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One day, a little girl named Lily found a needle in her room. She knew it was difficult to play

with it because it was sharp. Lily wanted to share the needle with her mom, so she could sew

a button on her shirt. Lily went to her mom and said, “Mom, I found this needle. Can you

share it with me and sew my shirt?” Her mom smiled and said, “Yes, Lily, we can share the

needle and fix your shirt.” Together, they shared the needle and sewed the button on Lily’s

shirt. It was not difficult for them because they were sharing and helping each other. After

they finished, Lily thanked her mom for sharing the needle and fixing her shirt. They both

felt happy because they had shared and worked together.

The dataset is loaded from the dataset repository maintained by Ronen Eldan. It contains

2,119,719 stories in the train set and 21,990 in the test set.

4.2 Experiment Set Up

For the analysis we loaded the data from the dataset repository maintained by Ronen Eldan.

It contains 2,119,719 stories in the train set and 21,990 in the test set. Then, we take all the

stories in the train set and make one single corpus of text. Following that, we use the GPT-2

tokenizer provided by the Hugging Face library to tokenize the text data. Specifically, we

use the pre-trained tokenizer for the GPT-Neo model with a size of 1.3 billion parameters,

which was developed by EleutherAI.

In our experiment, we’ve trained multiple small language models with different setups.

We have experimented with various parameters like the number of heads, layers, and em-

bedding size. Table 4.1 shows the specific setups for all 8 models we’ve worked with. Our

aim is to understand how these different factors influence the generation of English text.

For instance, the number of heads in our models can be 1, 4, or 8. Similarly, we’ve

experimented with different numbers of layers, choosing from 4, 6, or 8. Additionally, we’ve

varied the embedding size, trying out three options: 64, 256, and 512.

When we look at the first 6 models in the table, we see that they all have similar number
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Model Number of Heads Number of Layers Embedding Size Total Parameters

Model 1 1 4 64 6.69M

Model 2 1 8 64 6.89M

Model 3 4 4 64 6.69M

Model 4 4 8 64 6.89M

Model 5 8 4 64 6.69M

Model 6 8 8 64 6.89M

Model 7 1 4 256 29M

Model 8 8 6 512 70M

Table 4.1: Combinations of hyperparameters

of parameters, ranging from 6.6 million to 6.9 million. In these models, we’ve kept the em-

bedding size constant at 64 while adjusting the number of heads and layers. We intentionally

kept the embedding size at 64 for a specific reason. Increasing the embedding size would

lead to a big increase in the number of parameters in the model. As we can see in the table

below, increasing the embedding size from 64 to 256 (which is four times bigger) leads to an

approximate five times increase in the number of parameters from around 7 million to 29

million. However, a similar four times increase in number of heads or layers does not increase

the number of parameters by the same factor. So, by keeping embedding size the same, we

could focus on understanding how changing the number of heads and layers affects models

of similar size. Once we’ve understood that, we then take a step further and experimented

with larger embedding sizes to see how they impact text generation.

For this analysis, we conducted our model training over a span of 20,000 epochs, moni-

toring both the training and validation loss at intervals of every 500 epochs. It’s crucial to

highlight that due to the relatively small scale of these models, achieving optimal results ne-

cessitates longer training duration. However, it’s important to mention that, for the current

study, our training is constrained to a maximum of 20,000 epochs.
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In order to test how well our models perform, we use stories from the test set. for each

story in the test set, we randomly pick a spot to split the story into two parts. The first

part acts as the prompt and the second part is the original completion. Then we feed the

prompt to our trained models and generate next 10 or 20 tokens. For instance, if we have

the following story from the dataset -

Jane was a persistent girl. She loved to watch the Earth from her bedroom window. Ev-

ery day, she thought about the Earth and all of its mysteries. She wanted to find out more

about it.One day, Jane had a plan. She asked her mom if she could go outside and explore the

Earth even more. Her mom said “yes” and helped her get dressed.Jane walked and walked

until she came to a meadow. She found a pond and noticed some ducks swimming in it. She

sat down and watched them for a while.Jane stared up at the sky and noticed some clouds in

the sky. She was so amazed by the shapes that they made. She explored the Earth all day and

when it was time to go home, she was sad. But she had a plan to come back soon. Jane was

excited and full of energy as she walked back home. She knew she could explore the wonders

of Earth with her persistent spirit.

We randomly select a point to split the story into two parts.

Prompt : Jane was a persistent girl. She loved to watch the Earth from her bedroom

window. Every day, she thought about the Earth and all of its mysteries. She wanted to find

out more about it. One day, Jane had a plan. She asked her mom if she could go outside

and explore the

Original Completion : Earth even more. Her mom said “yes” and helped her get dressed.Jane

walked and walked until she came to a meadow. She found a pond and noticed some ducks

swimming in it. She sat down and watched them for awhile.Jane stared up at the sky and
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noticed some clouds in the sky. She was so amazed by the shapes that they made. She ex-

plored the Earth all day and when it was time to go home, she was sad. But she had a plan

to come back soon. Jane was excited and full of energy as she walked back home. She knew

she could explore the wonders of Earth with her persistent spirit.

Model Completion (first 20 tokens) : planet. Her mom said yes, so they set off on

a journey. They walked and

Lastly, we analyse the outputs of different models to see if they’re forming the right words,

using correct grammar, forming sentences correctly, and making sense based on the context.

We’re basically checking if they’re generating text that fits well with what we expect. In the

next chapter we will closely analyse the results.
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CHAPTER 5

Analysis

This section is dedicated to the analysis of the output generated by the language models.

As previously mentioned, we’ve already experimented with various configurations for our

models. Now, in this section, we delve deeper into our findings. Using multiple examples

we aim to compare the performance of these models. Our objective is to establish an under-

standing and rationale regarding how adjusting certain parameters, such as the number of

heads, layers, or embedding size, affects the generation of English text.

5.1 Convergence of Validation Loss

During the training process of our models, we recorded both the training and validation

loss at intervals of every 500 epochs. This approach allowed us to closely examine the

convergence behavior of the validation loss over the course of training. In Figure 5.1, we

present the validation loss exclusively for Models 6, 7, and 8. This selective focus was chosen

because the validation loss trends for Models 1 through 5 closely mirrored that of Model

6. By narrowing our analysis to these specific models, we aim to provide a clearer and

more concise illustration of the validation loss convergence patterns observed during our

experiments.

For the same 20,000 epochs we observe a faster convergence of validation loss for Model

8 followed by Model 7 and then Model 6. Model 8 is the biggest model with 70 million pa-

rameters. It’s Important to highlight that our analysis entails training all models exclusively
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for 20,000 epochs. However, extending the training duration would likely result in further

reductions in validation loss. Ideally, training iterations should continue until the validation

loss either plateaus or shows signs of degradation. But in this case we stopped the training

at 20,000 step.

Upon examining the plot, we notice something interesting. It seems like if we have a

language model with fewer number of parameters, we might need to train it for a longer

time. This means running more rounds of training, or epochs. On the other hand, if the

model has more number of parameters, it can reach similar performance levels in fewer

training rounds.

So, what does this mean? It suggests there’s a sort of balancing act between how long

we train a model and how complex it is. Models with fewer number of parameters might

need extra time to learn, while those with more parameters can learn faster. It suggests a

trade-off between training time and model complexity.

Figure 5.1: Convergence of Validation Loss
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5.2 Impact of increasing the number of heads or layers on English

text generation

Prompt Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Once there was a bunny and

a bear. The bunny was en-

vious of the bear’s new red

glove. The bunny complained

that she wanted a

good haircut. He was

happy and didn’t want

one idea, before acting it

would stay up.

ant, so it didn’t give up.

The cater pillar and the

bunny felt better

back and she loved it.

Suddenly, the bunny

stopped and went to his

burrow and

robot to make it. The

rabbit started to feel bet-

ter. He knew everyone

was very special

snack. But when she

arrived, she was very

scared and knew she did

not be gone.

veterinarian to help but

suddenly he stayed high

up. The rabbit couldn’t

believe which anna was

Once upon a time there was a

little girl. She was three years

old and she loved to stretch.

She stretched her arms and

legs and fingers and toes. Ev-

ery morning she would stretch

her body in the sunshine.One

day when she was stretching,

she noticed something shiny

under her feet. She bent down

and picked it up. It was a lit-

tle ashtray. She thought it was

really pretty so she decided to

keep it as a special

picture. When she got

there, she did not find

him. She started to find

a magnet around

treat for her. She mea-

sured the magic purse,

but she was persistent.

From that day on her

day. What a jar rum

across her best way home

carrying a long fast in her

pocket.

place. She measured a

piece of pretty pieces

and smelled the bright.

There were different

kinds of beautiful

texture. Everybody and

read and her friends

would have such a spe-

cial squirrel who could go

very creative without

The girl started to un-

step, so she grew le no

reach it. How

Once upon a time, there was a

naughty toy. The toy wanted

to have some fun all by it-

self. So it decided to go explor-

ing.The toy went all around

the house, looking for some-

thing interesting. Soon, it

found a yummy cookie. But

before it could eat it, a big

hand caught the toy. It was

Mama!Mama said, ”Naughty

toy, you need to stay in your

room!” The toy was very sad

and tried to explain it just

wanted to have some fun. But

Mama was not happy.Finally,

Mama said, ”Okay.

But if I can hear that the

toy?” The toy just liked

the toy and the toy

Let ’s play,” said, ”Sure,

that, I should go. Let’s

play with you

Then I will give it some

milk just big respect the

toy car. ”Papa and

Grand

Let’s look back tomor-

row, Mummy just play

with the ball. You could

not stand so much

Stay back.” Soon finally

arrived, Maggie played

with the toys. She made

lots of dolls

It can be fun to enjoy, an-

imals will keep. ”Mama

smiled and said,

Table 5.1: Impact of increasing the number of heads and layers : Story Completions (20

tokens)

In order to compare the impact of increasing the number of heads on English text gen-

eration, we will compare models that share identical numbers of layers and embedding size

but differ in the number of heads. By maintaining consistency in layers and embedding

size while only altering the number of heads, we aim to isolate and scrutinize the precise
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influence of this particular parameter adjustment. This is done to ensure that we compare

apples with apples and not apples with oranges. Since Model 1, 3 and 5, each have 4 layers

and an embedding size of 64, we will compare their outputs. Similarly, we will compare the

outputs of Models 2, 4, 6 because all of them have 8 layers and an embedding size of 64.

Similar approach is adopted to study the impact of increase layers on text generation. We

ensure that the models we use for comparison have similar number of heads and embedding

size. Since Model 1 and 2, both have 1 head and an embedding size of 64, we will compare

their outputs. Similarly, we will compare the outputs of Models 3 and 4 because both of

them have 4 heads and an embedding size of 64 and Models 4 and 6 because both of them

have 8 heads and an embedding size of 64.

In Table 5.1, we present three examples along with the prompts used for each of the

six models and the corresponding output generated by each model. Each of our models

demonstrates the ability to generate English words coherently and is not producing gibberish.

Furthermore, the models demonstrate a rudimentary understanding of language rules, such

as correctly punctuating sentences with full stops and capitalizing the first letter after a full

stop. However, it’s evident that there are some drawbacks in terms of grammar and sentence

structure.

One potential explanation for these limitations is that our models were trained for a

fixed number of epochs, specifically 20,000 epochs. Ideally, training should persist until the

validation loss either reaches a plateau or starts to deteriorate. Additionally, we observe

that the generated output often fails to consistently incorporate the context provided in the

prompts, indicating a need for further refinement.

Nevertheless, it is important to note that while the generations might not be in line with

the context, but the first few words generated make some sense given the last few words

in the prompt. For example, given “The bunny complained that she wanted a”, Model 1’s

output is “good haircut”, which seems sensible. Interestingly, Model 1, which comprises

1 head and 4 layers, appears to exhibit slightly superior performance compared to other
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models, despite the fact that other models possess a greater number of layers and heads.

One would expect that increasing the number of heads and layers should lead to improved

performance, as these adjustments theoretically enable the model to capture more complex

patterns and relationships within the data. However, in our experiments, we do not observe

the expected improvement in performance.

One potential explanation for this unexpected outcome could be attributed to the fixed

embedding size utilized in our experiments. Specifically, our models maintain a constant

embedding size of 64 throughout. As we increase the number of heads from 1 to 4, the

head size is proportionally reduced. Consequently, this reduction in head size may impose

limitations on each head’s capacity to effectively look at different aspects of the input data.

Moreover, word embeddings serve as vectorized representations of words, capturing both

their semantic meaning and emotional connotations. When the embedding size is small,

there’s a risk wherein only the most crucial aspects of words are retained, while less sig-

nificant nuances are overlooked. Consequently, adding layers and attention heads atop a

small embedding size may yield diminished opportunities for meaningful learning. This con-

strained environment could restrict the model’s capacity to capture the intricate subtleties

inherent in language, thereby resulting in no significant improvement in the model’s perfor-

mance. This brings us to a question: does increasing the embedding size result in enhanced

performance?

5.3 Impact of increasing the embedding size

In order to examine the influence of increasing the embedding size on English text generation,

we will compare three models with embedding sizes of 64, 256, and 512, respectively. Notably,

increasing the embedding size results in a considerable increase in the total number of model

parameters. Specifically, the model with an embedding size of 64 encompasses approximately

7 million parameters, where those with embedding sizes of 256 and 512 harbor approximately
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Prompt Model 8 Model 7 Model 6

Once there was a bunny and a

bear. The bunny was envious

of the bear’s new red glove.The

bunny

wanted to help. He found

a patch of the ground and

happily ran back to help.

lived in a big castle. It

was glad of the bear was

special so high he could

go!

and the bear were cu-

rious. The rabbit bear

asked the rabbit the bear

if he could grab some-

thing special

Once upon a time, there was a

naughty

monkey. He lived in a

big hole in the ground.

He liked to play in the

ground .

little boy named Timmy.

Timmy loved to sleep,

but he had never slept

well on his

boy who lived too busy.

He looked everywhere,

though he was probably

a big party. One day

Mum and Dad were getting

ready for the day. They had

been busy, packing and clean-

ing the house. Billy watched

them and sighed. It was diffi-

cult for him to

finish breakfast just like

before. His mummy and

Daddy got into the car

and drove to the

remain quiet. Even in

the day, Billy ’s pile with

a hammer heard his mom

my coming to

make a flame go. Johnny

cried for an operation

and there were sisters.

So, he

Table 5.2: Impact of increasing embedding size : Story Completions (20 tokens)

29 million and 70 million parameters, respectively. The Table 5.2 provides a display of the

outputs generated by each of these three models, facilitating a detailed comparison of their

text generation capabilities.

In Table 5.2, we can distinctly observe the positive impact of increasing the embedding

size on the quality of output generation. Notably, Model 1, having 70 million parameters,

exhibits significant improvement in generating text characterized by proper word usage,

grammatical correctness, and correct sentence structure. Although the outputs still fall

short of fully capturing the contextual nuances provided in the prompts, the overall quality

of English text generation has notably advanced.

Consider the example prompt: “Mum and Dad were getting ready for the day. They

had been busy, packing and cleaning the house. Billy watched them and sighed. It was

difficult for him to”. In response, Model 8 generates the response: “finish breakfast just like
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before. His mummy and Daddy got into the car and drove to the”. While the output doesn’t

precisely encapsulate the entire context with perfect accuracy, it does reflect elements such

as “getting ready for the day” and “packing” suggesting that the model is gradually learning

to contextualize its output.

In contrast, Model 7 produces the response, “remain quiet. Even in the day, Billy ’s pile

with a hammer heard his mom my coming to”. Although the sentence structure appears

grammatically correct, the completion does not relate to the given context. This observation

implies a promising trajectory towards enhancing the model’s ability to grasp and reflect

nuanced contextual cues in its generated text when we increase the embedding size and it

further answers the question with which we started i.e. increasing the embedding size helps

in enhancing model’s performance.
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CHAPTER 6

Conclusion

In this study, we aimed to investigate English text generation using a Small Language Model.

To train our model, we utilized the TinyStories dataset. This dataset offers the advantage of

having a limited vocabulary, while simultaneously being rich in linguistic elements such as

grammar and reasoning. During the training process, we experimented with various model

configurations.

This experiment has provided us with a deeper understanding of the fundamental work-

ings of Small Language Models. We analyzed these models from two main perspectives:

model training and English text generation. During the model training phase, we tracked

the validation loss and compared its convergence across different model configurations. For

the English text generation phase, we evaluated the performance of models with various

configurations to determine how factors such as the number of attention heads, the number

of layers, and the embedding size influence the quality of the generated text.

Our observations revealed that models with fewer parameters may require more time to

learn effectively, while those with a larger number of parameters tend to learn more quickly.

This indicates that to achieve comparable results, smaller models need to be trained for

longer periods on more number of epochs. Consequently, we concluded that there is a trade-

off between training time and model complexity.

Furthermore, our findings indicated that merely increasing the number of attention heads

or layers does not necessarily lead to improved performance when the embedding size is kept

constant. One plausible explanation is that increasing the number of heads while maintaining
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a fixed embedding size reduces the size of each individual head. This reduction in head size

may limit each head’s ability to effectively learn and represent different aspects of the input

data. Similarly, adding more layers without increasing the embedding size does not enhance

model performance, likely because a limited embedding size restricts the model’s ability to

capture and represent the intricate nuances and complexities of the language data.

In conclusion, our study suggests that there must be a delicate balance between the

number of attention heads, layers, and embedding size to optimize the performance of Small

Language Models. Achieving this balance is crucial for enhancing the quality of text gener-

ation while maintaining efficient training times.

34



CHAPTER 7

Future Scope

There are several areas that require further investigation to build upon and further solidify

this analysis.

First, exploring alternative methods of feeding input data. For this analysis, we combined

all the stories in the TinyStories dataset into a single corpus of text, which we then used for

training our model. Currently, our approach involves randomly selecting an index within the

combined corpus and creating a block of a predefined size. The limitation of this method

is that it might not allow the model to process entire stories. This could explain why our

model performs better at sentence formation and adhering to grammar rules but struggles

to maintain context. I propose that the model’s performance could improve if we treat each

story as a distinct block, meaning that each batch should consist of multiple complete stories.

Given that the lengths of these stories vary, padding will be necessary. By feeding entire

stories into the model, we could potentially resolve this issue and enhance the model’s ability

to capture and retain contextual information.

Second, evaluating the model’s performance through a comprehensive analysis of its

outputs using quantitative metrics, such as perplexity, is essential. Currently, we limited our

training to a fixed number of epochs. Extending the training over a larger number of epochs

and then comparing the perplexity scores could provide deeper insights into the model’s

performance in terms of English text generation.

Finally, in the previous section, we concluded that optimizing the performance of Small

Language Models requires a delicate balance between the number of attention heads, layers,
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and embedding size. It would be valuable to investigate when and how this balance can be

achieved to maximize model performance and ensure the highest quality text generation.

In conclusion, these areas of investigation, alternative data input methods, comprehen-

sive performance evaluation methods, and optimization of model architecture, are critical

for advancing our understanding and capabilities in English text generation using Small

Language Models.
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