
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Hybrid Methods for Optimization with High Performance and Robustness

Permalink
https://escholarship.org/uc/item/767788hs

Author
Hustig-Schultz, Dawn

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/767788hs
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

HYBRID METHODS FOR OPTIMIZATION WITH HIGH
PERFORMANCE AND ROBUSTNESS
A dissertation submitted in partial satisfaction

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Dawn M. Hustig-Schultz

September 2022

The Dissertation of Dawn M. Hustig-
Schultz
is approved:

Professor Ricardo G. Sanfelice, Chair

Professor Matthew Hale

Professor Dejan Milutinovic

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Dawn M. Hustig-Schultz

2022

Table of Contents

List of Figures vii

List of Tables xv

List of Symbols xvii

Abstract xix

Dedication xxii

Acknowledgments xxiii

1 Introduction and Motivation 1
1.1 Overview of the Work . 1
1.2 Uniting Heavy Ball Algorithms for Performance Improvement . . 3

1.2.1 Related Work . 4
1.2.2 Motivation . 5
1.2.3 Contributions . 5

1.3 Uniting Nesterov’s Method and the Heavy Ball Method for Perfor-
mance Improvement . 8
1.3.1 Related Work . 8
1.3.2 Motivation . 11
1.3.3 Contributions For Strongly Convex L 14
1.3.4 Contributions For Nonstrongly Convex L 15

1.4 A Uniting Framework for Performance Improvement 19
1.4.1 Related Work . 19
1.4.2 Motivation . 20
1.4.3 Contributions . 20

1.5 Hybrid Optimization for Nonconvex Problems 21
1.5.1 Related Work . 22
1.5.2 Motivation . 24
1.5.3 Contributions . 27

iii

1.6 A Totally Asynchronous, Block-Based Heavy Ball Algorithm for
Convex Optimization . 29
1.6.1 Related Work . 30
1.6.2 Motivation . 32
1.6.3 Contributions . 33

1.7 Organization . 34

2 Preliminaries 37
2.1 Hybrid Systems . 37
2.2 Optimization . 39
2.3 Morse Theory . 41
2.4 Nonsmooth Lyapunov Functions 42
2.5 Mean Value Theorem . 44
2.6 Properties of Sets . 44
2.7 Difference Inclusions . 45

3 Accelerated Gradient Algorithms Modeled as Dynamical Sys-
tems 47
3.1 Nesterov’s Accelerated Gradient Descent

Modeled as a Dynamical System 47
3.1.1 Strongly Convex L . 48
3.1.2 Nonstrongly Convex L . 58
3.1.3 Extensions of the Results for Nonstrongly Convex L 72

3.2 The Heavy Ball Method Modeled as a Dynamical System 73
3.2.1 Strongly Convex L . 73
3.2.2 Nonstrongly Convex L . 75
3.2.3 Extensions of the Results for Nonstrongly Convex L 84
3.2.4 Nonconvex L . 85

4 Uniting Heavy Ball Algorithms 92
4.1 Problem Statement . 92
4.2 Modeling . 93
4.3 Uniting Heavy Ball Methods Using Measurements of L and ∇L . 96

4.3.1 Design of the Sets U0 and T1,0 97
4.3.2 Design of the Parameter λq 98
4.3.3 Well-posedness of the Hybrid Closed-Loop System H . . . 99
4.3.4 Existence of solutions to H 100
4.3.5 Main Result . 102
4.3.6 Numerical Example . 107

4.4 Uniting Heavy Ball Methods Using Measurements of ∇L 109
4.4.1 Design of U0 . 111
4.4.2 Design of T1,0 . 113
4.4.3 Design of T0,1 . 114

iv

4.4.4 Well-posedness of the Hybrid Closed-Loop System H . . . 116
4.4.5 Existence of solutions to H 117
4.4.6 Main Result . 119
4.4.7 Numerical Examples . 122

4.5 Extensions . 129

5 Uniting Nesterov’s Method and the Heavy Ball Method 131
5.1 Strongly Convex L . 131

5.1.1 Problem Statement . 132
5.1.2 Modeling . 132
5.1.3 Design of U0 . 135
5.1.4 Design of T1,0 . 136
5.1.5 Design of T0,1 . 138
5.1.6 Design of the Parameter λ 139
5.1.7 Well-posedness of the Hybrid Closed-Loop System H . . . 139
5.1.8 Existence of Solutions to H 140
5.1.9 Main Result . 142
5.1.10 Numerical Examples . 146

5.2 Nonstrongly Convex L . 153
5.2.1 Problem Statement . 154
5.2.2 Modeling . 155
5.2.3 Design of the Set U0 . 159
5.2.4 Design of the Set T1,0 . 160
5.2.5 Design of the Set T0,1 . 161
5.2.6 Well-posedness of the Hybrid Closed-Loop System H . . . 162
5.2.7 Existence of Solutions to H 163
5.2.8 Main Result . 165
5.2.9 Numerical Examples . 170
5.2.10 Extensions . 181

6 Uniting Framework for Accelerated Optimization 183
6.1 Problem Statement . 184
6.2 Hybrid Uniting Framework for Accelerated Gradient Methods . . 185

6.2.1 Modeling . 185
6.2.2 Design . 188
6.2.3 Basic Properties of H . 190

6.3 Examples for Applying the framework 199
6.3.1 Uniting Heavy Ball Algorithms 199
6.3.2 Uniting Nesterov’s Method and the Heavy Ball Method for

Strongly Convex L . 202
6.3.3 Uniting Nesterov’s Method and the Heavy Ball Method for

Nonstrongly Convex L . 205

v

6.4 Uniting Other Gradient Algorithms 207

7 Hybrid Accelerated Optimization for Nonconvexity 210
7.1 Problem Statement . 210
7.2 Design . 211
7.3 Hybrid System Model of the Proposed Algorithm 213
7.4 Main Result . 215
7.5 Numerical Example . 226

8 Accelerated Multiagent Optimizaton 232
8.1 Problem Statement . 232
8.2 Synchronous Heavy Ball . 233

8.2.1 Modeling . 233
8.2.2 Results for Algorithm 6 238

8.3 Synchronous, Double-Update Heavy Ball 248
8.3.1 Modeling . 249
8.3.2 Results for Algorithm 7 251

8.4 Asynchronous, Double-Update Heavy Ball 257
8.4.1 Modeling . 257
8.4.2 Forward Invariance of (X ×X)N for Algorithm 8 261
8.4.3 Convergence rate of Algorithm 8 263

8.5 Numerical Example . 268

9 Conclusion 272
9.1 Summary . 272
9.2 Future Directions . 274

A General Results on Hybrid Systems 277
A.1 Existence of Solutions, Stability, and Invariance 277

B General Results on Totally Asynchronous Multiagent Algorithms283
B.1 Totally Asynchronous Convergence 283

C General Results on Optimality and Projection 288
C.1 Optimality Conditions and Projection Theorem 288

D Code for Numerical Examples 290

Bibliography 292

vi

List of Figures

1.1 Comparison of the performance of the heavy ball method, with
large and small values of λ, with the proposed logic-based algorithm
for L(ξ1) = 1

4ξ
2. Top: when λ is large, heavy ball converges very

slowly. Middle: when λ is small, heavy ball converges quickly, but
with wild oscillations. Bottom: our proposed logic-based strategy
yields fast convergence, with no oscillations. 6

1.2 Comparison of the performance of the heavy ball method, with
large λ, Nesterov’s accelerated gradient descent, and the proposed
logic-based algorithm, for strongly convex L. The objective func-
tion is L(ξ) = ξ2. Top left: the heavy ball algorithm, with large
λ, converges very slowly. Top inset: zoomed out view of heavy
ball. Middle left: Nesterov’s accelerated gradient descent con-
verges quickly, but with oscillations. Bottom left: our proposed
logic-based algorithm yields fast convergence, with no oscillations.
Right: comparison of the value of L(ξ) − L∗ (in log scale) versus
time for each algorithm. Different tunings of the logic-based algo-
rithm’s parameters leads to modifications of the solution’s profile. 12

vii

1.3 Comparison of the performance of the heavy ball method, with
large λ, Nesterov’s accelerated gradient descent, and the proposed
logic-based algorithm, for nonstrongly convex L. The objective
function is L(ξ) = ξ2. Top left: the heavy ball algorithm, with
large λ, converges very slowly. Top inset: zoomed out view of
heavy ball. Middle left: Nesterov’s accelerated gradient descent
converges quickly, but with oscillations. Bottom left: our proposed
logic-based algorithm yields fast convergence, with no oscillations.
Right: comparison of the value of L(ξ)−L∗ (in log scale) versus time
for each algorithm. Different tunings of the logic-based algorithm’s
parameters leads to modifications of the solution’s profile. 12

1.4 A comparison of the evolution of L over time for Nesterov’s method
in (1.5), heavy ball, HAND-1, and our proposed uniting algorithm,
for a function L(ξ) := ξ2, with a single minimizer at ξ∗ = 0. Nes-
terov’s method, shown in purple, settles to within 1% of ξ∗ in about
8.8 seconds. The heavy ball algorithm, shown in green, settles to
within 1% of ξ∗ in about 138.1 seconds. HAND-1, shown in or-
ange, settles to within 1% of ξ∗ in about 14.3 seconds. The hybrid
closed-loop system H, shown in blue, settles to within 1% of z∗

1 in
about 2.4 seconds. As opposed to Figure 1.3, which uses ζ = 2 for
H1, this example uses ζ = 1, which results in slower convergence of
solutions to H and H1 than in Figure 1.3. 18

viii

1.5 Comparing performance of the proposed hybrid algorithm to other
optimization methods, with small noise in measurements of the gra-
dient, when the system starts near a local maximum, at ξ0 ≈ 15.
For classic gradient descent (top left), a gradient-based optimiza-
tion algorithm with discontinuous map f (top right), and simu-
lated annealing, via Langevin diffusion (bottom left) the state ξ

get pushed to the local maximum at ξ = 15, and stays there.
All trajectories in the bottom left plot have the noise signal ϑ :=(
− τ(log(τ))2

BSA

)
(∇L(ξ) + Ωsign(∇L(ξ))(10−12)), where τ > 0 is time,

BSA > 0 is large, and Ω is a normally distributed random number.
The trajectory with red dotted line converging to the minimizer
has an added constant of Bϑ = 5 × 10−13, such that ϑ+ Bϑ, while
the other three trajectories represented by dashed lines have added
constants Bϑ equal to 3×10−13, 10−13, and 10−14, respectively. The
last trajectory, represented by the solid blue line, has no constant
added to the noise signal ϑ. The hybrid algorithm (bottom right),
with noise of the form

(
− τ(log(τ))2

BSA

)
(∇L(ξ) + Ωsign(∇L(ξ))(10−12))

added to the gradient of L, where Ω is a normally distributed ran-
dom number, is still able to escape the local maximum at ξ = 15
and converge to a local minimum at ξ = 10. 25

1.6 A comparison of the performance of our proposed double heavy ball
algorithm with the asynchronous primal-dual algorithm for con-
strained gradient descent, with the dual variables fixed at zero.
Convergence is twice as fast for double heavy ball (6 iterations) as
it is for the gradient descent-based algorithm (12 iterations). . . . 32

4.1 Feedback diagram of the hybrid closed-loop system H, in (4.3),
uniting global and local optimization algorithms. 94

ix

4.2 A comparison of the evolution of L over time for H0, H1, and H,
for a function L = 1

4z
⊤
1 Pz1, where z1 ∈ R100 and P = I100×100,

which has a single minimizer at z∗
1 = (0, 0, . . . , 0). The heavy ball

algorithm H1 uses λ1 = 1
2 (shown in purple) and settles to within

1% of z∗
1 in about 16.3 seconds. The heavy ball algorithm H0 uses

λ0 = 10.5 (shown in green) and settles to within 1% of z∗
1 in about

96.4 seconds. The hybrid closed-loop system H (shown in blue)
settles to within 1% of z∗

1 in about 2.9 seconds. 107
4.3 An illustration of hysteresis in the design of the sets U0, T0, and T0,1

on R2n, via the constants c̃1,0 ∈ (0, c̃0), d1,0 ∈ (0, d0), and c0 > 0.
Left: due to the design of U0 in (4.20), every z ∈ U0 belongs to the
c0-sublevel set of the Lyapunov function V0, where V0 is defined via
(4.2). Hence, the same value of c0 > 0 is also used to define T0,1

as the closed complement of a sublevel set of V0 with level equal
to c0. Right: the constants c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0), defined
via (4.22), are chosen such that the set T1,0 in (4.25) is contained
in the interior of U0. 115

4.4 Top: The evolution over time of z1, for the nominal hybrid closed-
loop algorithm H in (4.3), with C and D defined in (4.14), for a
function L(z1) := 1

2z
2
1 with a single minimizer at z∗

1 = 0. The time
at which the solution settles to within 1% of z∗

1 is marked with a
dot and labeled in seconds. The jump is labeled with an asterisk.
Bottom: Simulation results for perturbed solutions using zero mean
Gaussian noise, with each simulation using a different value of the
standard deviation σ. Results listed are for a large value of t+ j. 123

x

4.5 Simulation results for hybrid closed-loop algorithm H in (4.3), with
C and D defined in (4.14), for a function L(z1) := 1

2z
2
1 with a

single minimizer at z∗
1 = 0, with zero-mean Gaussian noise added

to measurements of the gradient. Each subplot is labeled with the
standard deviation used. Left subplots: the value of z1 over time
for each perturbed solution, with the jump in each solution labeled
by an asterisk. Right subplots: the corresponding value of L over
time for each perturbed solution. 125

4.6 A comparison of the evolution of L over time for H0, H1, and H in
(4.3), with C and D defined in (4.14), for a function L = 1

4z
⊤
1 Pz1,

where z1 ∈ R100 and P = I100×100, which has a single minimizer at
z∗

1 = (0, 0, . . . , 0). The heavy ball algorithm H1 uses λ1 = 1
2 (shown

in purple) and settles to within 1% of z∗
1 in about 16.3 seconds. The

heavy ball algorithm H0 uses λ0 = 10.5 (shown in green) and settles
to within 1% of z∗

1 in about 96.4 seconds. The hybrid closed-loop
system H (shown in blue) settles to within 1% of z∗

1 in about 2.9
seconds. 127

5.1 Top: The evolution over time of z1, for the nominal hybrid closed-
loop algorithm H in Sections 5.1.2-5.1.5, for a function L(z1) := z2

1

with a single minimizer at z∗
1 = 0. The time at which the solution

settles to within 1% of z∗
1 is marked with a dot and labeled in

seconds. The jump is labeled with an asterisk. Bottom: Simulation
results for perturbed solutions using zero mean Gaussian noise, with
each simulation using a different value of the standard deviation σ.
Results listed are for a large value of t+ j. 147

xi

5.2 Simulation results for hybrid closed-loop algorithm H in Sections
5.1.2-5.1.5, for a function L(z1) := z2

1 with a single minimizer at
z∗

1 = 0, with zero-mean Gaussian noise added to measurements of
the gradient. Each subplot is labeled with the standard deviation
used. Left subplots: the value of z1 over time for each perturbed
solution, with the jump in each solution labeled by an asterisk.
Right subplots: the corresponding value of L over time for each
perturbed solution. 149

5.3 A comparison of the evolution of L over time for H0, H1 (both in
(5.4)), HAND-2, and H in (5.3) – with U in (4.20), T1,0 in (5.12),
and T0,1 in (5.15) – for a function L(z1) := z2

1 , with a single min-
imizer at z∗

1 = 0. Nesterov’s method, shown in purple, settles to
within 1% of z∗

1 in about 8.8 seconds. The heavy ball algorithm,
shown in green, settles to within 1% of z∗

1 in about 138.1 seconds.
HAND-2, shown in orange, settles to within 1% of z∗ in about 2.1
seconds. The hybrid closed-loop system H, shown in blue, settles
to within 1% of z∗

1 in about 2.4 seconds. 152
5.4 Feedback diagram of the hybrid closed-loop system H (on the right),

in (5.22), uniting global and local optimization algorithms. An ex-
ample optimization problem to solve is shown on the left and, for
this example optimization problem, measurements of the gradient
are used for the input of κq. 158

5.5 Top: The evolution over time of z1, for the nominal hybrid closed-
loop algorithm H, for a function L(z1) := z2

1 with a single minimizer
at z∗

1 = 0. The time at which the solution settles to within 1%
of z∗

1 is marked with a dot and labeled in seconds. The jump is
labeled with an asterisk. Bottom: Simulation results for perturbed
solutions using zero mean Gaussian noise, with each simulation
using a different value of the standard deviation σ. Results listed
are for a large value of t+ j. 172

xii

5.6 Simulation results for hybrid closed-loop algorithm H, for a func-
tion L(z1) := z2

1 with a single minimizer at z∗
1 = 0, with zero-mean

Gaussian noise added to measurements of the gradient. Each sub-
plot is labeled with the standard deviation used. Left subplots: the
value of z1 over time for each perturbed solution, with the jump
in each solution labeled by an asterisk. Right subplots: the corre-
sponding value of L over time for each perturbed solution. 173

5.7 The evolution of L over time, from different initial conditions, for
H (left) and HAND-1 (right). All solutions are for the objective
function L(z1) := z2

1 , and the parameters used for HAND-1 and H
are listed in Table 5.3, with different values of c0 and c1,0 for each
solution of H, leading to different values of d0 calculated via (5.5)
and d1,0 calculated via (5.26), and different values of r and δmed for
each solution of HAND-1, leading to different values of Tmed and
Tmax. 178

7.1 The evolution of z1 over time for the hybrid system H, for the
objective function L(z1) = z2

1(z1−10)2(z1−20)2(z1−30)2

10,000 , with A1min =
{0, 10, 20, 30}, A1max = {5(3 −

√
5), 15, 5(3 +

√
5)}, and ε1 = 0.05,

ε2 = 0.06, ρ1 = 0.05, ρ2 = 0.06, ς = 1, λ = 145, and γ = 3
4 . This

plot shows different solutions, starting from different initial condi-
tions. Solutions start at local maxima at z1(0, 0) = 15, z1(0, 0) =
5(3 −

√
5), and z1(0, 0) = 5(3 +

√
5), as well as at the points

z1(0, 0) = 6, z1(0, 0) = 24.5, z1(0, 0) = −1, and z1(0, 0) = 31,
which are neither maxima nor minima. All solutions start with
z2(0, 0) = 0 and q(0, 0) = 0. Times when each solution converges
to within 0.01 of A1min are marked with black dots and labeled in
seconds. Jumps are labeled with asterisks. 230

xiii

8.1 Comparing the effect of different computation rates on solutions,
for the objective function in (8.81) with the constraint set Xi =
[1, 10]. Top: A comparison of the evolution over time of |z1 − x∗|,
with (Dasync, Gasync) on the left and the asynchronous primal-dual
algorithm in (8.80) on the right. Bottom: A comparison of the
evolution over time of |z1(k) − z1(k − 1)|, with (Dasync, Gasync) on
the left and the asynchronous primal-dual algorithm in (8.80) on
the right. 270

xiv

List of Tables

4.1 Average times for which H, H0, and H1 settle to within 1% of
z∗

1 , and the average percent improvement of H over each algo-
rithm. Percent improvement is calculated via (4.13). The objective
function used for this table is L = 1

4z
⊤
1 Pz1, where z1 ∈ R100 and

P = I100×100, which has a single minimizer at z∗
1 = (0, 0, . . . , 0). . . 108

4.2 Average times for which H in (4.3), with C and D defined in (4.14),
H0, and H1 settle to within 1% of z∗

1 , and the average percent
improvement of H over each algorithm. Percent improvement is
calculated via (4.13). The objective function used for this table is
L = 1

4z
⊤
1 Pz1, where z1 ∈ R100 and P = I100×100, which has a single

minimizer at z∗
1 = (0, 0, . . . , 0). 128

5.1 Average times for which H, H0, and H1 settle to within 1% of z∗
1 ,

and the average percent improvement of H over each algorithm.
Percent improvement is calculated via (4.13). The objective func-
tion used for this table is L(z1) := z2

1 153
5.2 Average times for which H, H0, H1, and HAND-1 settle to within

1% of z∗
1 , and the average percent improvement of H over each algo-

rithm. Percent improvement is calculated via (5.39). The objective
function used for this table is L(z1) := z2

1 177

xv

5.3 Times for which H and HAND-1 settle to within 1% of z∗
1 , and per-

cent improvement of H over HAND-1, for solutions from different
initial conditions, shown in Figure 5.7. The objective function used
for this table is L(z1) := z2

1 . 178
5.4 Times for which H, H0, H1, and HAND-1 settle to within 1% of

z∗
1 , and percent improvement of H over each algorithm, as shown

in Figure 1.4. Percent improvement is calculated via (5.39). The
objective function used for this table is L(z1) := z2

1 180

7.1 Times in which different solutions converge to within 0.01 of A1. . 229

xvi

List of Symbols

R The set of all real numbers

R>0 The set of all positive real numbers

N The set of all positive integers including zero, i.e., {0, 1, 2, . . .}

B The closed unit ball, of appropriate dimension, in the Euclidean norm

Cn The set representing the family of n-th continuously differentiable func-

tions

(v, w) Given vectors v ∈ Rm and w ∈ Rm,
[
v⊤, w⊤

]⊤
is equivalent to (v, w)

⟨v, w⟩ The inner product of vectors v ∈ Rm and w ∈ Rm, namely, u⊤v

|v| The Euclidean vector norm |v| = ∥v∥2 =
√
v⊤v

|v|∞ the max vector norm |v|∞ = maxi |vi|, which is the maximum of the

absolute value of its components

ΠX [v] The orthogonal projection, with respect to the Euclidean norm, of a vector

v onto the convex set X, namely, ΠX [v] = arg minw∈X |w − v|

Π(S) The projection of S onto Rm, i.e.,

Π(S) := {x ∈ Rm : ∃y such that (x, y) ∈ S}

S The closure of a set S

|x|S The distance of a point x ∈ Rm to a set S ∈ Rm, i.e., |x|S = infy∈S |y − x|

x◦ The initial condition of a state x

dom M The domain of M : Rm ⇒ Rn, i.e., dom M = {x ∈ Rm : M(x) ̸= ∅}

xvii

rge M The range of M : Rm ⇒ Rn, i.e.,

rge M = {y ∈ Rn : ∃x ∈ Rm such that y ∈ M(x)}

K A function α : R≥0 → R≥0 is a class-K function, also written α ∈ K, if α

is zero at zero, continuous, and strictly increasing

K∞ A function α : R≥0 → R≥0 is a class-K∞ function, also written α ∈ K∞,

if α is zero at zero, continuous, strictly increasing, and unbounded

KL A function β : R≥0 ×R≥0 → R≥0 is a class-KL function, also written β ∈

KL, if it is nondecreasing in its first argument, nonincreasing in its second

argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0, and lims→∞ β(r, s) = 0

for each r ∈ R≥0.

xviii

Abstract

Hybrid Methods for Optimization with High Performance and Robustness

by

Dawn M. Hustig-Schultz

Optimization has valuable applications in many areas of technology, including

smart grids, transportation systems, multiagent systems, wireless sensor and com-

munications networks, and deep learning. This dissertation focuses on developing

hybrid algorithms for accelerated gradient descent, both for convex and nonconvex

objective functions, with fast convergence, stability, and robustness.

The first two algorithms, developed using hybrid system tools, feature a uniting

control strategy, in which two standard heavy ball algorithms, one used globally

and another used locally, with properly designed gravity and friction parameters,

are employed. The proposed hybrid control strategy switches the parameters to

converge quickly to the minimizer of the nonstrongly convex objective function

without oscillations. A hybrid control algorithm implementing a switching strat-

egy that measures the objective function and its gradient, and another algorithm

that only measures its gradient, are designed. Key properties of the resulting

closed-loop systems, including existence of solutions, asymptotic stability, and

convergence rate, are analyzed.

The second two algorithms – one for strongly convex objective functions and

the other for nonstrongly convex objective functions – also employ a uniting con-

trol strategy, in which Nesterov’s accelerated gradient descent is used “globally”

and the heavy ball method is used “locally,” relative to the minimizer. The pro-

posed hybrid control strategy switches between these accelerated methods to en-

sure convergence to the set of minimizers without oscillations, with a (hybrid)

xix

convergence rate that preserves the convergence rates of the individual optimiza-

tion algorithms. We analyze key properties of the resulting closed-loop system

including existence of solutions, uniform global asymptotic stability, and conver-

gence rate.

Based on the uniting algorithms above, a uniting framework is designed, which

allows the use of any accelerated gradient method for the global and local algo-

rithms. Sufficient conditions are determined, which lead to general results on

well-posedness, existence of solutions, and uniform global asymptotic stability for

the hybrid closed-loop framework.

Then, we propose a hybrid algorithm for optimization, to ensure convergence to

a local minimimzer of a nonconvex Morse objective function L with a single, scalar

argument. Developed using hybrid system tools, and based on the heavy ball

method, the algorithm features switching strategies to detect whether the state is

near a critical point and enable escape from local maximizer, using measurements

of the gradient of L. Key properties of the resulting closed-loop system, including

existence of solutions and practical global attractivity, are revealed.

In addition, we propose a totally asynchronous multiagent algorithm, based

on the heavy ball method, that guarantees fast convergence to the minimizer of

a C2, convex objective function. The algorithm is parallelized in the sense that

the decision variable is partitioned into blocks, each of which is updated only by

a single agent. We consider two types of asynchrony: in agents’ computations

and in communication between agents. We show that, for certain parameter val-

ues, the heavy ball algorithm monotonically converges to a minimizer, even under

asynchrony. Key properties of the algorithm, including existence of solutions, con-

vergence rate, and asymptotic stability, are analyzed. Numerical results validate

the findings.

xx

xxi

Dedicated to my husband, Kevin L. Schultz.

xxii

Acknowledgments

I am deeply appreciative of my advisor, mentor, and friend, Dr. Ricardo Sanfelice,

for his guidance, kindness, and patience in helping me to grow into an independent

and creative thinker, and in helping me strive to finish my PhD. Although I

embarked upon this journey with much apprehension and self-doubt, you believed

in me and have helped me to grow in my belief of myself.

I would like to thank my other committee members, Dr. Dejan Milutinovic and

Dr. Matthew Hale. I appreciate your wisdom, the input you have offered on my

dissertation at various times, and for your challenging questions and encouraging

words.

I am thankful for my family and friends who helped support me during my

graduate studies. I am thankful for my dad, Charles Hustig, for instilling a love

and sense of wonder for the sciences in me when I was still very young. I owe a huge

debt of gratitude to my husband and the love of my life, Kevin Schultz. Thank

you for loving me and always believing in my potential, and for reminding me to

have compassion for and to take care of myself during difficult times. I would also

like to thank my cats Yuki and Yoshi for offering additional emotional support

during my studies. Thank you to my friend Dr. Mynga Futrell, for encouraging

me to persevere. Samira Zare, thank you for all the friendship, conversations,

soccer, and movie watching.

I would like to thank my collaborators, Katherine Hendrickson and Paul Wintz,

for all your help, insight, support, and kindness. May our collaborations continue

to be fruitful and rewarding.

Thank you to my friends in the Hybrid Systems Laboratory the University of

California, Santa Cruz: Jun Chai, Sean Phillips, Berk Altin, Hyejin Han, Mal-

ladi BharaniPrabha, Nathalie Risso, Yegeta Zeleke, Marcello Guarro, Mohamed

xxiii

Maghenem, Nan Wang, Haoyue Gao, Roger Berman, David Kooi, Parmita Ojaghi,

Santiago Jiminez Leudo, Ryan Johnson, Masoumeh Ghanbarpour, Adam Ames,

and Harsh Bhakta. You not only encouraged and supported me intellectually, but

helped to make the lab feel like a second home. I hope that our friendships will

continue into the future.

xxiv

Chapter 1

Introduction and Motivation

1.1 Overview of the Work

Accelerated gradient methods have many applications in automation, such as

controlling a single autonomous agent, multiagent systems [1], [2], wireless sensor

or communication networks [2], [3], smart grids [4], [5], [6] transportation systems

[4], [7], [8] and machine learning [2], [9] [10], to name a few examples. In the con-

text of such applications, there has been growing interest in analyzing accelerated

gradient methods from a dynamical systems perspective [11], [12]. A dynami-

cal systems perspective permits the use of well established analysis tools, such

as Lyapunov theory, to study convergence and stability properties of accelerated

algorithms [13], [14], [15], [16], [17], [18], [19].

In this dissertation, we develop algorithms for global optimization with fast

convergence, reduced oscillations, and robustness, using hybrid system tools, as

described in [20], [21], [22]. In particular, as in [20], [21], [22], a hybrid dynam-

ical system is a dynamical system which exhibits behavior characteristic of both

continuous-time and discrete-time systems. It consists of a flow map, which is a

set-valued map that governs the continuous change of state variables, a flow set,

1

which is a subset of the state space on which solutions can evolve continuously, a

jump map, which is another set-valued map which governs the discrete change of

state variables, and a jump set, which is a subset of the state space where jumps

can occur.

Our approach to optimization incorporates both hybridity for performance

and hybridity for nonconvexity. A class of optimization algorithms, referred to as

accelerated gradient methods, involve a “velocity” term in addition to a gradient

term, to speed up optimization. For certain parameter values of the coefficient of

the gradient term, however, these types of algorithms can elicit solutions with os-

cillatory behavior as the system gets closer to a minimum of an objective function,

L. Hybridity for performance for such algorithms can ensure fast convergence to

the global minimum, without oscillations, by enabling the system to switch be-

tween two algorithms with different coefficient values: one which is more effective

when the system is still far from the minimum, and one which is more effective

when the system is close to the minimum. We extend hybridity for performance

to a general framework for hybrid optimization, which can switch between two of

any kind of gradient method.

One potential problem which can arise in optimization, when the objective

function L has multiple isolated local minima and maxima (for example, L is a

Morse function), is the possibility that the system starts at a local maximum

ξ∗, when the velocity term equals zero. When this occurs, the system cannot

converge to a minimum, since ∇L(ξ∗) = 0. Hybridity for nonconvexity, in this

case, can enable the system to detect that it is at a maximum, using hysteresis,

and then push the system state term away from this maximum while still avoiding

oscillations at the local minimum.

In the last part of this dissertation, we pivot from the hybrid system approach

2

to develop a totally asynchronous, block-based multiagent algorithm, based on

the discrete-time version of the heavy ball method. We show that, for certain

parameter values, the heavy ball algorithm monotonically converges to a mini-

mizer, even under asynchrony. It is established that such an algorithm has an

exponential convergence rate.

1.2 Uniting Heavy Ball Algorithms for Perfor-

mance Improvement

The heavy ball method is an accelerated gradient method that guarantees con-

vergence to the minimizer of a nonstrongly convex function L [23], and that

achieves a faster convergence rate than classical gradient descent by adding a

“velocity” term to the gradient. The dynamical system characterization for this

method is

ξ̈ + λξ̇ + γ∇L(ξ) = 0 (1.1)

where λ and γ are positive tunable parameters that represent friction and gravity,

respectively; see [14], [13]. This system resembles the dynamics of a particle

sliding on a profile defined by L, with friction. In such a setting, the parameter

λ represents the ratio between the viscous friction coefficient and the mass of the

particle, and γ represents the gravity constant. The performance of the heavy

ball method is highly dependent on λ and γ. Specifically, when λ is large, heavy

ball converges very slowly, and when λ is small, heavy ball converges quickly, but

with oscillations near the minimum [14].

3

1.2.1 Related Work

In [14], convergence is established for the continuous-time heavy ball method,

both when L is convex and when L is a Morse function, but global asymptotic

stability is not established. For the case when L is strongly convex, and inspired

by the heavy ball algorithm, two algorithms with a resettable velocity term are

proposed in [24] and shown to guarantee exponential convergence. In [25], how-

ever, it was demonstrated that the heavy ball algorithm converges exponentially

for nonstrongly convex L when such an objective function also has the property

of quadratic growth away from its minimizer.

Global asymptotic stability of the minimizer, which is the property that all

solutions that start close to the minimizer stay close, and solutions from all initial

conditions converge to the minimizer, is demonstrated in [1], [26], when L is

nonstrongly convex and smooth. The work in [13] provides several Lyapunov

functions to establish global asymptotic stability of the minimizer and convergence

rates for the heavy ball method, both when L is strongly convex and when L is

nonstrongly convex.

Contrary to classical gradient descent, accelerated gradient methods suffer

from error accumulation. In [27], [28], and [29], it is suggested that the heavy

ball method is sensitive to perturbations, due to its acceleration component. In

[29], the effect of white noise on the discrete-time heavy-ball method is analyzed,

and robustness to such noise is attained through the use of varying step-sizes. In

[1], a perturbed continuous-time heavy ball system is analyzed and shown to be

robust, but at the expense of the system measuring the Hessian of L. In [26], a

continuous-time heavy ball with perturbations is also formulated and analyzed,

where the system employs an observer to measure these perturbations.

4

1.2.2 Motivation

The performance of the heavy ball method, defined by the dynamical system

in (1.1), depends highly on the choice of λ and γ. In particular, for a fixed value

of γ, the choice of the “friction parameter” λ significantly affects the asymptotic

behavior of the solutions to (1.1). For rather simple choices of the function L,

the literature on this method indicates that large values of λ are seen to give rise

to slowly converging solutions resembling solutions yielded by steepest descent

while smaller values give rise to fast solutions with oscillations getting wilder as λ

decreases [14]. The top and middle plots of Figure 1.1 demonstrates the behaviors

of solutions with large values of λ and small values of λ, respectively1. Such a

compromise between damping the oscillations and converging fast motivates the

logic-based algorithms proposed in this paper. Both algorithms select heavy ball

with small λ to converge quickly to nearby the minimizer and, once solutions reach

a neighborhood of the minimizer, switch to the heavy ball method with large λ

to avoid oscillations. The first such algorithm uses measurements of L and ∇L

and requires knowledge of L∗, while the second algorithm uses measurements of

∇L and does not require any knowledge of the minimizer. An example solution

to our proposed logic-based algorithm, shown in the third plot from the top in

Fig. 1.1, demonstrates the improvement obtained by using small λ globally and

large λ locally, under relatively mild assumptions on the objective function L.

The proposed algorithm guarantees UGAS and a (hybrid) convergence rate that

holds for all hybrid time.

1.2.3 Contributions

The main contributions of the forthcoming Chapter 4 are as follows.
1Code at github.com/HybridSystemsLab/UnitingMotivationHBF.

5

0 10 20 30 40 50 60 70

-10

0

10

0
1
5
0

3
0
0

-10

1

0 10 20 30 40 50 60 70

-10

0

10

0 10 20 30 40 50 60 70

-10

0

10

ξ

ξ

ξ

t

slow convergence without oscillations

large oscillations

fast convergence

no oscillations

fast convergence

Figure 1.1: Comparison of the performance of the heavy ball method, with large
and small values of λ, with the proposed logic-based algorithm for L(ξ1) = 1

4ξ
2.

Top: when λ is large, heavy ball converges very slowly. Middle: when λ is small,
heavy ball converges quickly, but with wild oscillations. Bottom: our proposed
logic-based strategy yields fast convergence, with no oscillations.

6

1) A uniting algorithm for fast convergence and UGAS of the minimizer: In Sec-

tion 4.2 we propose heavy ball control algorithms for optimization of a convex

objective function L, with fast convergence and reduced oscillations. The algo-

rithms utilize a uniting control strategy, developed using hybrid system tools

(see Section 2.1), which switches between two standard heavy ball algorithms

with different gravity and friction parameters. We design a hybrid control

algorithm implementing a switching strategy that measures both L and its

gradient (see Section 4.3), and then extend it to the case where it measures

only the gradient of L (see Section 4.4). The algorithm in Section 4.3 requires

no knowledge of ξ∗, but requires knowledge of L∗ := L(ξ∗). The algorithm

in Section 4.4 requires no knowledge of L∗ or ξ∗. Both algorithms require no

measurements of the Hessian of L. UGAS of the minimizer ξ∗ is guaranteed

for both algorithms; see Sections 4.3.5 and 4.4.5.

2) Well-posedness and existence of solutions: In Sections 4.3.3 and 4.4.4 we prove

well-posedness and in Sections 4.3.4 and 4.4.5 we prove existence of solutions for

the proposed hybrid closed-loop algorithm. Hybrid systems that are well-posed

are defined to be those hybrid systems, vaguely speaking, for which graphical

limits of graphically convergent sequences of solutions, with no perturbations

and with vanishing perturbations, respectively, are still solutions [21, Chap-

ter 6]. It is important for our algorithm to be well-posed as we want to ensure

robustness to small noise in measurements of the gradient of L.

3) Robustness to small perturbations: Due to the well-posedness of the proposed

hybrid uniting algorithms, we show that the established UGAS property is

robust to small perturbations in measurements of the gradient of L [21, The-

orem 7.21]. We illustrate this robustness for the second algorithm in Section

4.4.7 via numerical simulations that include small noise in measurements of

7

the gradient.

4) A (hybrid) convergence rate preserving the rate of the heavy ball method: The

algorithms proposed in Sections 4.3 and 4.4 have a (hybrid) convergence rate

that preserves the rates of the individual optimization algorithms for all (hy-

brid) time. Specifically, we show that our algorithms attain a (hybrid) expo-

nential convergence rate, both globally and locally.

1.3 Uniting Nesterov’s Method and the Heavy

Ball Method for Performance Improvement

Another powerful accelerated gradient method is Nesterov’s accelerated gradi-

ent descent. Nesterov’s method is an accelerated method that guarantees conver-

gence to the set of minimizers of a convex function L [30]. Nesterov’s algorithm

achieves a faster convergence rate than classical gradient descent by adding a

velocity term to the gradient.

1.3.1 Related Work

One characterization of the dynamical system for Nesterov’s algorithm for

strongly convex L, proposed in [12], is

ξ̈ + 2dξ̇ + 1
Mζ2 ∇L(ξ + βξ̇) = 0, (1.2)

where M > 0 is the Lipschitz constant for ∇L and where the constant ζ > 0

rescales time in solutions to (1.2). The dynamical system in (1.3) resembles the

model of a mass-spring-damper, with a curvature-dependent damping term where

the total damping is a linear combination of d and β, which are time-invariant and

8

defined in a later section. In [12], the convergence rate for (1.2) is characterized

as exponential when ζ = 1 and when L is strongly convex.

Another characterization of the dynamical system for Nesterov’s method, for

nonstrongly convex L, proposed in [12], is

ξ̈ + 2d̄(t)ξ̇ + 1
Mζ2 ∇L(ξ + β̄(t)ξ̇) = 0, (1.3)

where M > 0 is the Lipschitz constant of the gradient of L and where the constant

ζ > 0 rescales time in solutions to (1.3). The dynamical system in (1.3) also re-

sembles the model of a mass-spring-damper, with a curvature-dependent damping

term where the total damping is a linear combination of d̄(t) and β̄(t), which are

defined in a later section. In [12], the convergence rate of Nesterov’s method is

characterized as 1
(t+2)2 for (1.3) (for t ≥ 1), when ζ = 1, and when the minimizer

is the origin, at which L is zero. In this dissertation, for both the strongly convex

ODE in (1.2) and the nonstrongly convex ODE in (1.3), we relax such a constant

to ζ > 0. The work in [12] assumes that the set of interest for (1.2) and (1.3) is

the origin, at which L is zero. The stability properties of (1.2) and (1.3) are not

studied in [12].

Whereas [12] started with the ODEs in (1.2) and (1.3), and subsequently

showed that the discrete-time analog of Nesterov’s method arises from discretizing

(1.3) with a semi-implicit Euler integration scheme, one of the earliest analyses of

a dynamical system characterization for Nesterov’s method, in [15], started with

the discrete-time analog of Nesterov’s method and showed that for a vanishing

step size the trajectories of such an accelerated gradient scheme approach the

solutions of the ODE

ξ̈ + 3
t
ξ̇ + ∇L(ξ) = 0 (1.4)

9

for all t > 0. Such an ODE does not have a local curvature dependent damping

term, as (1.2) and (1.3) do, and which [12] argues is instrumental to the intuition

behind the acceleration phenomenon. The development in [15] includes the anal-

ysis of a variation of the dynamical system in (1.4) for higher friction, and show

that their dynamical system characterizations have a convergence rate of 1
t2 . In

[16], the analysis of the dynamical system in [15] is extended to include optimiza-

tion of objective functions L with non-Euclidean geometries, using a Bregman

divergence to characterize the distance of the state ξ from the minimizer. The

work in [16] combines this dynamical system with mirror descent to design an

accelerated mirror descent ODE, with a convergence rate of 1
t2 . In [17], a dynam-

ical system, consisting of an Euler-Lagrange equation, is derived for Nesterov’s

algorithm via a Bregman Lagrangian. In [17] an exponential rate of convergence

for such a system under ideal scaling is provided, and, for a polynomial class of

dynamical systems, a convergence rate of 1
tp with p ≥ 2 is shown.

In [31] and [19], two hybrid algorithms based on the ODE in (1.4) are pre-

sented: one with a state-dependent, time-invariant damping input and another

with an input that controls the magnitude of the gradient term. The algorithms

require the objective function to satisfy the Polyak-Łojasiewicz inequality, which

includes a subclass of nonconvex functions in which all stationary points are global

minimizers. The authors in [32] propose two hybrid reset algorithms based on the

ODE in (1.4), HAND-1 and HAND-2, which yield an exponential convergence

rate for strongly convex L and a rate of 1
t2 for nonstrongly convex L, with the

latter rate only assured until the first reset.

While the results in [12], [15], [16], [17], [31], and [19] characterize the conver-

gence properties of Nesterov’s method (or a variation of), the stability properties

of the method are not revealed. While stability properties for such methods were

10

studied in [13], a particularly useful property for optimization algorithms, called

uniform global asymptotic stability (UGAS), requires that solutions reach a neig-

borhood of the minimizer in time that is uniform on the set of initial conditions.

After finite time, the error of such solutions becomes smaller than a given threshold

[22]. Due to such a guarantee for solutions, UGAS is typically useful for certifying

robustness to small perturbations in time-varying dynamical and hybrid systems

[21], [22]. Remarkably, the algorithms with resets in the velocity term proposed in

[24] and [33] can be shown to induce UGAS of the minimizer (with zero velocity

term) and reduced oscillations, for the particular case when L is strongly convex.

Unfortunately, as shown in [32], via a counterexample, Nesterov-like algorithms

do not necessarily assure UGAS of the minimizer when L is nonstrongly convex.

In response to this, [32] proposes the HAND-1 and HAND-2 reset algorithms, and

prove UGAS of the minimizer for both algorithms. The exponential convergence

rate of HAND-2, however, only applies to strongly convex L, and the convergence

rate of 1
t2 for HAND-1, for nonstrongly convex L, only holds up until the first

reset.

1.3.2 Motivation

The work in this dissertation is motivated by the lack of an accelerated gradient

algorithm assuring UGAS, with a convergence rate that holds for all time and

that resembles that of Nesterov’s method (at least far from the minimizer), when

the objective function is nonstrongly convex. However, attaining such a rate is

expected to lead to oscillations, which are typically seen in accelerated gradient

methods. As described in Section 1.2.2, the performance of the heavy ball method,

for instance, depends highly on the choice of λ when γ is fixed, with large values of

λ resulting in slowly converging solutions resembling solutions yielded by steepest

11

0 2 4 6 8 10

-20

0

20

40

60

0
2
0
0

4
0
0

-20

20

60

0 2 4 6 8 10

-20

0

20

40

60

0 2 4 6 8 10

-20

0

20

40

60

0 2 4 6 8 10
10

-20

10
-10

10
0

Hybrid, tuning 1

Hybrid, tuning 2

Heavy ball

Nesterov

Nesterov, average

ξ

ξ

ξ

t[s] t[s]

L
(ξ

)−
L

∗

slow convergence
without oscillations

oscillations
fast convergence

no oscillations
fast convergence

Figure 1.2: Comparison of the performance of the heavy ball method, with
large λ, Nesterov’s accelerated gradient descent, and the proposed logic-based al-
gorithm, for strongly convex L. The objective function is L(ξ) = ξ2. Top left: the
heavy ball algorithm, with large λ, converges very slowly. Top inset: zoomed out
view of heavy ball. Middle left: Nesterov’s accelerated gradient descent converges
quickly, but with oscillations. Bottom left: our proposed logic-based algorithm
yields fast convergence, with no oscillations. Right: comparison of the value of
L(ξ) − L∗ (in log scale) versus time for each algorithm. Different tunings of the
logic-based algorithm’s parameters leads to modifications of the solution’s profile.

0 1 2 3 4 5 6

-50

0

50

0

2
5

0

5
0

0

7
5

0

-50

0

50

0 1 2 3 4 5 6

-50

0

50

0 1 2 3 4 5 6

-50

0

50

0 1 2 3 4 5 6
10

-20

10
-10

10
0

Hybrid, tuning 1

Hybrid, tuning 2

Heavy ball

Nesterov

Nesterov, averageξ

ξ

ξ

t[s] t[s]

L
(ξ

)−
L

∗

slow convergence
without oscillations

oscillations

fast convergence

no oscillations

fast convergence

Figure 1.3: Comparison of the performance of the heavy ball method, with
large λ, Nesterov’s accelerated gradient descent, and the proposed logic-based al-
gorithm, for nonstrongly convex L. The objective function is L(ξ) = ξ2. Top left:
the heavy ball algorithm, with large λ, converges very slowly. Top inset: zoomed
out view of heavy ball. Middle left: Nesterov’s accelerated gradient descent con-
verges quickly, but with oscillations. Bottom left: our proposed logic-based al-
gorithm yields fast convergence, with no oscillations. Right: comparison of the
value of L(ξ) −L∗ (in log scale) versus time for each algorithm. Different tunings
of the logic-based algorithm’s parameters leads to modifications of the solution’s
profile.

12

descent [14], as in the top plot2 on the left in Figure 1.2 and the top plot3 on

the left in Figure 1.3, and with smaller values of λ resulting in fast solutions with

oscillations [14], as shown in the middle plot on the left in Figures 1.2 and 1.3.

Nesterov’s method converges quickly but also suffers from oscillations [15]. The

oscillatory behavior of Nesterov’s method for strongly convex L in (1.2), with

ζ = 1, is shown in the middle plot on the left in Figure 1.2. The oscillatory

behavior of Nesterov’s method for nonstrongly convex L, with ζ = 2, is shown in

the middle plot on the left in Figure 1.3.

Due to its implications on robustness, we are particularly interested in an algo-

rithm that assures uniform global asymptotic stability of the minimizer of L with a

rate of convergence that holds for all time, and without the undesired oscillations.

As pointed out in Section 1.3.1, these properties are not guaranteed by Nesterov’s

method. The behavior shown in the top and middle plots in Figure 1.3 motivates

the logic-based algorithm proposed in this dissertation. The proposed algorithm

exploits the main features of heavy ball and Nesterov’s method to achieve fast

convergence and UGAS of the minimizer. More precisely, without knowledge of

the location of the minimizer, it selects Nesterov’s method to converge quickly to

nearby the minimizer and, once solutions reach a neighborhood of the minimizer,

switches to the heavy ball method with large λ to avoid oscillations. An example

solution to our proposed logic-based algorithm for strongly convex L, shown in

the bottom plot on the left of Figure 1.2, demonstrates the improvement obtained

by using Nesterov’s method globally and the heavy ball method locally, under

relatively mild assumptions on the strongly convex objective function L. The

proposed algorithm guarantees UGAS and a (hybrid) convergence rate that holds

for all hybrid time. An example solution to our proposed logic-based algorithm for
2Code at github.com/HybridSystemsLab/UnitingMotivationSC.
3Code at gitHub.com/HybridSystemsLab/UnitingMotivation.

13

nonstrongly convex L, shown in the bottom plot on the left of Figure 1.3, demon-

strates the improvement obtained by using Nesterov’s method globally and the

heavy ball method locally, under relatively mild assumptions on the nonstrongly

convex objective function L. The proposed algorithm guarantees UGAS and a

(hybrid) convergence rate that holds for all t ≥ 0.

1.3.3 Contributions For Strongly Convex L

The main contributions of Section 5.1 are as follows.

1) A uniting algorithm for fast convergence and UGAS of the minimizer: In Sec-

tion 5.1.2, we propose a uniting algorithm, designed using hybrid system tools

(see Section 2.1), that uses Nesterov’s algorithm globally and the heavy ball

method with large λ locally to guarantee fast convergence with uniform global

asymptotic stability of the minimizer of L, without knowledge of L∗ := L(ξ∗)

or ξ∗; see Section 5.1.9. The proposed algorithm uses a switching strategy

that measures the gradient of L, which is typically done via the method of

finite differences, using measurements of L. Our algorithm, however, does not

require measurements of the Hessian of L.

2) Well-posedness and existence of solutions: In Section 5.1.7 we prove well-

posedness and in Section 5.1.8 we prove existence of solutions for the proposed

hybrid closed-loop algorithm. Hybrid systems that are well-posed are defined

to be those hybrid systems, vaguely speaking, for which graphical limits of

graphically convergent sequences of solutions, with no perturbations and with

vanishing perturbations, respectively, are still solutions [21, Chapter 6]. It is

important for our algorithm to be well-posed as we want to ensure robustness

to small noise in measurements of the gradient of L.

14

3) Robustness to small perturbations: Due to the well-posedness of the proposed

hybrid uniting algorithm, we show that the established UGAS property is

robust to small perturbations in measurements of the gradient of L [21, The-

orem 7.21]. We illustrate this robustness in Section 5.1.10 via numerical sim-

ulations that include small noise in measurements of the gradient.

4) A (hybrid) convergence rate preserving the rates of Nesterov’s method and heavy

ball: The algorithm proposed in Section 5.1 has a (hybrid) convergence rate

that preserves the rates of the individual optimization algorithms for all (hy-

brid) time. Specifically, we show that our algorithm attains a (hybrid) expo-

nential convergence rate, both globally and locally, when L is strongly convex.

5) Extension of the results on Nesterov’s method in [12]: In the process, in Section

3.1.1, we extend the properties and convergence results for Nesterov’s method

in [12]. In particular, while the convergence rate results in [12] assume that

L(ξ∗
1) = 0 at ξ∗ = 0 for (1.2), here we prove uniform global asymptotic stability

(UGAS) of the minimizer, with an exponential convergence rate, for cost func-

tions with a minimum value that is not necessarily zero. As in [12], however,

we set ζ = 1 in (1.2) for simplicity of analysis.

1.3.4 Contributions For Nonstrongly Convex L

The main contributions for Section 5.2 are as follows.

1) A uniting algorithm for fast convergence and UGAS of the minimizer: In Sec-

tion 5.2 we propose a uniting algorithm that solves optimization problems of

the form minξ∈Rn L(ξ) with accelerated gradient methods. Designed using hy-

brid system tools (see Section 2.1), the algorithm unites Nesterov’s method in

(1.5) globally and the heavy ball method in (1.1) with large λ locally to guar-

15

antee fast convergence with UGAS of the minimizer ξ∗ of a nonstrongly convex

objective function L; see Sections 5.2.2 and 5.2.8. The establishment of UGAS

solves the difficult problem of achieving such a property for Nesterov-like algo-

rithms [32], [35]. The algorithm we propose exploits measurements of ∇L and

requires no knowledge of L∗ := L(ξ∗) or ξ∗. In practice, such measurements

of ∇L are typically approximated from measurements of L. The algorithm,

however, does not require measurements of the Hessian of L.

2) Well-posedness and existence of solutions: In Section 5.2.6 we prove well-

posedness and in Section 5.2.7 we prove existence of solutions for the proposed

hybrid closed-loop algorithm. Hybrid systems that are well-posed are defined

to be those hybrid systems, vaguely speaking, for which graphical limits of

graphically convergent sequences of solutions, with no perturbations and with

vanishing perturbations, respectively, are still solutions [21, Chapter 6]. It is

important for our algorithm to be well-posed as we want to ensure robustness

to small noise in measurements of the gradient of L.

3) Robustness to small perturbations: Due to the well-posedness of the proposed

hybrid uniting algorithm, we show that the established UGAS property is

robust to small perturbations in measurements of the gradient of L [21, The-

orem 7.21]. We illustrate this robustness in Section 5.2.9 via numerical simu-

lations that include small noise in measurements of the gradient.

4) A (hybrid) convergence rate preserving the rates of Nesterov’s method and heavy

ball: In Section 5.2.8 we show that our uniting algorithm attains a rate of 1
(t+2)2

for the global algorithm and exp (−(1 −m)ψt), where m ∈ (0, 1) and α > 0 are

such that ψ := mαγ
λ

> 0 and ν := ψ(ψ − λ) < 0, for the local algorithm. The

latter rate holds under the mild assumption on L of quadratic growth away

16

from the minimizer. As mentioned in Section 1.3.1, Nesterov-like algorithms

do not necessarily assure UGAS of the minimizer. The HAND-1 algorithm for

nonstrongly convex L, proposed in [32], provides UGAS via a hybrid restarting

mechanism that yields a convergence rate 1
t2 . However, this convergence rate

holds only until the first reset. The algorithm we propose not only renders the

minimizer UGAS, but also has a (hybrid) convergence rate that preserves the

rates of the individual optimization algorithms for all (hybrid) time such that

t ≥ 0. Moreover, the global rate of our algorithm is commensurate with that

of HAND-1. In Figure 1.4 and Section 5.2.9, our uniting algorithm is shown

via numerical simulations4 to have improved performance over the HAND-1

algorithm in [32].

5) Extension of the results on Nesterov’s method in [12]: In the process, in Section

3.1.2, we extend the properties and convergence results for Nesterov’s method

in [12]. In particular, while the convergence rate results in [12] assume that

L(ξ∗
1) = 0 at ξ∗ = 0, and ζ = 1 for (1.3), here we prove uniform global

asymptotic stability of the minimizer, with a convergence rate of 1
(t+2)2 for all

t ≥ 0, for cost functions with a minimum value that is not necessarily zero,

which holds for a generic parameter ζ > 0. We achieve the relaxation on ζ

by moving it into the numerator of the coefficient of the gradient, effectively

decoupling ζ and M . This leads to the ODE

ξ̈ + 2d̄(t)ξ̇ + ζ2

M
∇L

(
ξ + β̄(t)ξ̇

)
= 0. (1.5)

Such a modification leads to faster convergence as ζ increases, and slower

convergence as ζ → 0.
4Code at gitHub.com/HybridSystemsLab/UnitingTradeoff.

17

0 2 4 6 8 10 12 14 16 18 20

10
-20

10
-10

10
0 14.3424s

2.3861s 8.7811s

Hybrid

Heavy ball

Nesterov

Nesterov, average

HAND-1

HAND-1, average 0 100 200
10

-2

10
2

10
6

138.0673s

L
(ξ

)−
L

∗

t[s]

Figure 1.4: A comparison of the evolution of L over time for Nesterov’s method
in (1.5), heavy ball, HAND-1, and our proposed uniting algorithm, for a function
L(ξ) := ξ2, with a single minimizer at ξ∗ = 0. Nesterov’s method, shown in purple,
settles to within 1% of ξ∗ in about 8.8 seconds. The heavy ball algorithm, shown
in green, settles to within 1% of ξ∗ in about 138.1 seconds. HAND-1, shown in
orange, settles to within 1% of ξ∗ in about 14.3 seconds. The hybrid closed-loop
system H, shown in blue, settles to within 1% of z∗

1 in about 2.4 seconds. As
opposed to Figure 1.3, which uses ζ = 2 for H1, this example uses ζ = 1, which
results in slower convergence of solutions to H and H1 than in Figure 1.3.

18

1.4 A Uniting Framework for Performance Im-

provement

We propose a general framework for algorithms that solve optimization prob-

lems of the form

min
ξ∈Rn

L(ξ) (1.6)

with gradient methods. The proposed framework, designed using hybrid system

tools, utilizes a more general version of the uniting strategy discussed in Sections

1.2 and 1.3.

1.4.1 Related Work

Frameworks for the analysis and design of algorithms have been proposed in

the past. In [19] the two hybrid algorithms based on the ODE in (1.4), discussed

in Section 1.3.1, are presented as a framework, involving a hybrid system model

with similar flow and jump maps for each algorithm. An exponential conver-

gence rate is established for this framework. In [18], an analysis framework is

proposed for a family of Euler-Lagrange ODEs for accelerated optimization, and

exponential rates of convergence are established within this framework. In [36]

a Hamiltonian-based framework is proposed, to generalize Nesterov’s accelerated

gradient descent and Polyak’s heavy ball method to a broad class of momentum

methods in the setting of (possibly) constrained minimization in Euclidean and

non-Euclidean normed vector spaces. Convergence of the continuous-time dynam-

ics is established, and the resulting discretized class of methods converges at a rate

of 1
k2 for the Nesterov-like algorithms and at a rate of 1

k
for the heavy ball-like

algorithms.

While the results for the frameworks in [19], [18], [36] characterize the con-

19

vergence properties of accelerated gradient methods, the stability properties of

such methods are not revealed. In [37] a framework allowing for four gradient-free

accelerated optimization algorithms is proposed, for optimization problems of the

following types: unconstrained nonstrongly convex, unconstrained strongly con-

vex, strongly convex with linear equality constraints, and strongly convex with

inequality constraints. The resulting nonstrongly convex algorithm has the set of

interest semiglobally practically asymptotically stable, and the resulting strongly

convex algorithms have the set of interest semiglobally practically exponentially

stable.

1.4.2 Motivation

Sections 1.2.2 and 1.3.2 discussed the motivation for designing logic-based algo-

rithms that assure UGAS of the minimizer of L with a hybrid rate of convergence

that holds for all time, without the undesired oscillations. Figure 1.1 illustrates

the benefit of a logic-based algorithm uniting two heavy ball algorithms with prop-

erly designed λ and γ. Figure 1.2 illustrates the benefit of a logic-based algorithm,

for strongly convex L, uniting Nesterov’s algorithm globally and the heavy ball

algorithm with large λ locally. Figure 1.3 illustrates the benefit of a logic-based

algorithm, for nonstrongly convex L, uniting Nesterov’s algorithm globally and

the heavy ball algorithm with large λ locally. Such a pattern suggests the poten-

tial to design a general framework for uniting local and global accelerated gradient

methods.

1.4.3 Contributions

1) A general uniting framework for gradient methods: In Section 6.2.1, we propose

a general framework, designed using hybrid system tools (see Section 2.1),

20

for uniting local and global optimization algorithms, which allows either the

local or global algorithms to be any gradient method, including Nesterov’s

algorithm, the heavy ball algorithm, classic gradient descent, or the triple

momentum method [38] [39].

2) Sufficient conditions for UGAS: In Section 6.2.3, we determine sufficient con-

ditions leading to general results on well-posedness, existence of solutions, and

uniform global asymptotic stability for the hybrid closed-loop framework.

3) Robustness to small perturbations: Due to the well-posedness of the proposed

hybrid uniting framework, we can show that the uniform global asymptotic

stability that we guarantee is robust to small perturbations [21, Theorem 7.21].

Such a property is illustrated for special cases in Sections 4.4.7, 5.1.10, and

5.2.9.

4) Examples of applying the framework: In Section 6.3, we show show special

cases of uniting algorithms in Sections 1.2 and 1.3 satisfy the basic properties

of the uniting framework.

1.5 Hybrid Optimization for Nonconvex Prob-

lems

In the forthcoming Chapter 7, we consider the problem of finding a local min-

imizer of a scalar, continuously differentiable objective function L with a single,

scalar argument, which is not necessarily convex, and may have multiple local

minimizers. In particular, we are interested in algorithms capable of solving opti-

mization problems of the form

min
ξ∈R

L(ξ), (1.7)

21

with a guarantee of global attractivity of the set of minimizers. By global, we mean

“from any initial condition (or guess).” This is different from the typical use of

the term global in the optimization literature, which corresponds to the guarantee

that an optimization algorithm converges to the global minimizer rather than to

a local minimizer. In fact, the objective functions considered in this section may

have multiple isolated critical points, which are known to impose challenges to

optimization algorithms.

For the type of nonconvex optimization problem in which we are interested,

and approaching the problem from a control theory viewpoint, it is infeasible to

design an algorithm of the form

ξ̇ = f(ξ,∇L(ξ)), (1.8)

that solves the problem with attractivity and robustness when small measurement

noise exists in measurements of the gradient. This infeasibility suggests the need

of an algorithm that is robust to measurement noise. Such an algorithm would

detect when the state ξ is close to a local maximum, and then implement a

strategy that moves the state away from that maximum. Instead of algorithms

of the form ξ̇ = f(ξ,∇L(ξ)), we propose an algorithm conveniently modeled and

designed using hybrid system tools, based on the heavy ball method in (1.1), for

convergence to a local minimum of a nonconvex Morse objective function L.

1.5.1 Related Work

To the best of our knowledge, we propose the first algorithm based on the heavy

ball method for which the set of minimizers of a nonconvex objective function L,

with a single, scalar argument, is practically globally attractive, and for which we

observe robustness to small noise in simulation. In contrast, the previous literature

22

establishes only the convergence rate for the heavy ball method. In particular,

the heavy ball method was first analyzed in a nonconvex setting in [40]. In [14],

the convergence bounds for the heavy ball method, when L is a Morse function,

are derived. In [41], almost sure convergence on nonconvex objective functions is

proved for a stochastic heavy ball algorithm, but the properties of stability and

robustness to arbitrarily small noise were not addressed.

Many inertial forward-backward (FB) optimization methods incorporate the

heavy ball method, and are commonly used to solve nonconvex optimization prob-

lems. Examples of FB algorithms, including [42], [43], and [44], have established

convergence rates of these algorithms to a local minimum, but have not demon-

strated whether these algorithm render the set of minimizers globally asymptoti-

cally stable, or whether these algorithms are robust to small noise in measurements

of the gradient.

There has been a surge of interest in utilizing hybrid systems tools for gradient-

based optimization. In [45], a hybrid gradient descent algorithm using an ad-

justable diffeomorphism is proposed, to ensure global asymptotic stability to the

minimum of a compact manifold that is a circle. This result is then extended to

manifolds with an equal number of maxima and minima, and then a model-free

version of the algorithm is proposed. In [46], a class of hybrid stochastic gradi-

ent descent algorithms is proposed, to solve nonconvex optimization problems on

smooth manifolds. Uniform global asymptotic stability in probability is estab-

lished, and then such results are extended to a partially multiagent setting. In

[31] and [19], two hybrid algorithms based on Nesterov’ s accelerated gradient de-

scent are proposed: one with a state-dependent, time-invariant damping input and

another with an input that controls the magnitude of the gradient term. The algo-

rithms require the objective function to satisfy the Polyak-Łojasiewicz inequality,

23

which includes a subclass of nonconvex functions in which all stationary points

are global minimizers. Although an exponential convergence rate is established

in [19] for these two algorithms, the attractivity properties of such algorithms are

not explored.

1.5.2 Motivation

As mentioned in Section 1.5, it is infeasible to design an algorithm of the

form (1.8) that solves nonconvex optimization problems of the form (1.7) with

attractivity and robustness. To illustrate this point, consider the function L given

by L(ξ) = ξ2(ξ−10)2(ξ−20)2(ξ−30)2

10,000 for each ξ ∈ R, for which each ξ ∈ {0, 10, 20, 30}

is a local minimizer and each ξ ∈ {5(3 −
√

5), 15, 5(3 +
√

5)} is a local maximizer.

Classic gradient descent, which corresponds to f(ξ,∇L(ξ)) = −∇L(ξ), does not

render the set of minimizers of this function globally attractive, since when the

state ξ starts at a local maximizer an the initial value of ξ̇ is zero, we have that

∇L is zero and the algorithm remains stuck at such a local maximizer. Moreover,

when the state ξ starts close to the local maximizer and there is small noise added

to the measurements of the gradient, then the algorithm cannot always push ξ

away from the maximizer, even when the noise signal is arbitrarily small. This

can be seen in the top left plot of Figure 1.5, where arbitrarily small noise in the

gradient keeps the state close to the local maximizer of L at ξ = 15.5

Algorithms of the form (1.8) with a static, discontinuous map f , for which

the nominal system has the set of minimizers of L globally asymptotically sta-

ble, are not robust to arbitrarily small measurement noise. Such a system is not

well-posed6, due to discontinuities in the map f , at local maximizers. In fact,
5Code at github.com/HybridSystemsLab/RobustnessHeavyBall.
6For a purely continuous-time algorithm, well-posed means that solutions depend “continu-

ously” with respect to initial conditions.

24

0 0.05 0.1 0.15 0.2

9

10

11

12

13

14

15

16

0 0.05 0.1 0.15 0.2

9

10

11

12

13

14

15

16

0 0.05 0.1 0.15 0.2

9

10

11

12

13

14

15

16

0 0.05 0.1 0.15 0.2

9

10

11

12

13

14

15

16

Gradient Descent Discontinous Feedback

Simulated Annealing Hybrid Algorithm

ξ

ξ

t[s] t[s]

Figure 1.5: Comparing performance of the proposed hybrid algorithm to
other optimization methods, with small noise in measurements of the gradi-
ent, when the system starts near a local maximum, at ξ0 ≈ 15. For clas-
sic gradient descent (top left), a gradient-based optimization algorithm with
discontinuous map f (top right), and simulated annealing, via Langevin diffu-
sion (bottom left) the state ξ get pushed to the local maximum at ξ = 15,
and stays there. All trajectories in the bottom left plot have the noise signal
ϑ :=

(
− τ(log(τ))2

BSA

)
(∇L(ξ) + Ωsign(∇L(ξ))(10−12)), where τ > 0 is time, BSA > 0

is large, and Ω is a normally distributed random number. The trajectory with red
dotted line converging to the minimizer has an added constant of Bϑ = 5 × 10−13,
such that ϑ + Bϑ, while the other three trajectories represented by dashed lines
have added constants Bϑ equal to 3 × 10−13, 10−13, and 10−14, respectively. The
last trajectory, represented by the solid blue line, has no constant added to the
noise signal ϑ. The hybrid algorithm (bottom right), with noise of the form(
− τ(log(τ))2

BSA

)
(∇L(ξ) + Ωsign(∇L(ξ))(10−12)) added to the gradient of L, where Ω

is a normally distributed random number, is still able to escape the local maxi-
mum at ξ = 15 and converge to a local minimum at ξ = 10.

25

when the state ξ starts close to one of the points of discontinuity, and when small

noise is added to the measurements of the gradient, there will exist a solution that

remains nearby such a point, even when the noise is arbitrarily small. The limit of

such a solution as the noise goes to zero is a solution to the differential inclusion

ξ̇ ∈ F (ξ,∇L(ξ)), where F is the Krasovskii regularization of ξ 7→ f(ξ,∇L(ξ)).

Such a solution, when the right-hand side is bounded, is also a Hermes solution

[21, Theorem 4.3], and represents an equilibrium point of ξ̇ ∈ F (ξ,∇L(ξ)), from

which the state ξ cannot converge to a local minimizer. Therefore, the Krasovskii

regularization does not have the set of minimizers of L globally attractive. Ac-

cording to [21], the attractivity of the original system ξ̇ = f(ξ,∇L(ξ)) with f

discontinuous is not robust. This behavior can be seen in the top right plot of

Figure 1.5, where arbitrarily small noise induces an equilibrium point at the max-

imizer located at ξ = 15, at which f(ξ,∇L(ξ)) is discontinuous.

Simulated annealing [47], via Langevin diffusion, is a popular alternative used

to find the global minimizer of a nonconvex function. Langevin diffusion, which

corresponds to ξ̇ = −∇L(ξ) + B(t)ϑ(t) combines classic gradient descent with a

noise signal ϑ, such as Brownian motion, for which the magnitude is controlled by

the “temperature” function B. Although such a noise signal is used to help the

state find the global minimum, it can also be detrimental to performance. It can

be shown that when the state ξ starts close to a local maximizer the algorithm

cannot always push ξ away from the maximizer, due to this noise signal, no matter

how large the initial annealing temperature is. This is even the case when the

noise is arbitrarily small. This behavior is shown by the solid line in the bottom

left plot of Figure 1.5, where noise keeps the state ξ close to the local maximizer at

ξ ≈ 15. The dashed lines show the effect of adding a small constant to the noise,

which causes the state ξ to drift away from the local maximum, and eventually

26

converge to a local minimum. Essentially, as the size of such a small constant

decreases, the more likely simulated annealing is to be stuck at a local maximizer.

The issues depicted in the top left, top right, and bottom left of Figure 1.5

show that nonconvex optimization problems cannot be efficiently solved with ex-

isting line search algorithms or stochastic algorithms. On the contrary, Figure

1.5 demonstrates the need of an algorithm, modeled and designed using hybrid

system tools, that in simulation demonstrates robustness to measurement noise.

Its performance is shown in the bottom right of Figure 1.5, starting at ξ ≈ 15

with zero velocity, and converging despite the presence of noise in measurements

of the gradient, as is present for the other algorithms in Figure 1.5.

1.5.3 Contributions

The main contributions of the forthcoming Chapter 7 are as follows.

1) A hybrid algorithm for nonconvex optimization: In Section 7.2, we develop

an optimization algorithm, based on the heavy ball method, for convergence

to a local minimum of a nonconvex Morse objective function L with a single,

scalar argument. We emphasize that our proposed algorithm is not designed

to find all the local minimizers, but rather to converge to an element in the set

of local minimizers. The algorithm employs a switching strategy, developed

using hybrid system tools (see Section 2.1), to detect whether the state ξ is

near a critical point and ensure escape from a local maximizer, depicted in

Figure 1.5. Such a switching strategy employs measurements of the gradient

of L – which in practice are typically approximated from measurements of L

– and hysteresis to determine whether the state ξ needs to be pushed away

from a nearby critical point, or whether the state ξ is far enough away from

a critical point to resume use of the heavy ball method. The algorithm does

27

not need to distinguish between local maximizers and local minimizers, and

therefore does not need information about the Hessian.

2) Well-posedness and existence of solutions: In Section 7.4 we prove well-posedness

and existence of solutions for the proposed hybrid closed-loop algorithm. Hy-

brid systems that are well-posed are defined to be those hybrid systems, vaguely

speaking, for which graphical limits of graphically convergent sequences of so-

lutions, with no perturbations and with vanishing perturbations, respectively,

are still solutions [21, Chapter 6]. It is important for our algorithm to be well-

posed as we want to ensure robustness to small noise in measurements of the

gradient of L.

3) Practical global attractivity of the set of minimizers of L: In Section 7.4, we

establish practical global attractivity of the set of minimizers of L for the

closed-loop system.

4) Robustness to small perturbations: Due to the well-posedness of the proposed

hybrid uniting algorithm, we show that the established practical global at-

tractivity property is robust to small perturbations in measurements of the

gradient of L [21, Theorem 7.21]. We illustrate this robustness in Figure 1.5

via numerical simulations that include small noise in measurements of the gra-

dient.

28

1.6 A Totally Asynchronous, Block-Based Heavy

Ball Algorithm for Convex Optimization

We are interested in asynchronously solving problems of the form

minimize f(ξ) (1.9)

subject to ξ ∈ X

using the discrete-time version of the heavy ball method. Given f : Rn → R and

X ⊂ Rn, the constrained heavy ball algorithm is defined as follows:

ξ(k + 1) = ΠX [ξ(k) − γ∇f(ξ(k)) + λ(ξ(k) − ξ(k − 1))] (1.10)

for each k ∈ {1, 2, 3, . . .} ⊂ N≥0, where ξ(k) ∈ Rn is the state of the algorithm

at discrete time k, ΠX [v] = arg minw∈X |w − v| is the orthogonal projection of a

vector v onto the convex set X with respect to the Euclidean norm, and λ > 0 and

γ > 0 are tunable parameters representing friction and gravity, respectively; see

[23]. We interpret (1.10) as a control system consisting of a plant and a control

algorithm. Let z1 := ξ(k), z2 := ξ(k − 1), and z := (z1, z2). Then, the plant

associated with (1.10) is given by

z+
1

z+
2

 =

u
z1

 =: GP (z, u) (z, u) ∈ X ×X × Rn =: DP (1.11)

with output y = z. The control algorithm leading to (1.10) is given by

u = κ(z) := ΠX [z1 − γ∇f(z1) + λ(z1 − z2)] . (1.12)

29

1.6.1 Related Work

In [9], it is shown that the unconstrained heavy ball method converges exponen-

tially when f is strongly convex and converges with rate 1
k

when f is nonstrongly

convex. A convergence rate of 1
(k+1)2 for the constrained heavy ball method is

shown in [48] for convex, Lipschitz continuous functions, with some additional

assumptions on the parameters λ and γ. In [49], it is shown that the constrained

heavy ball method converges exponentially for nonsmooth, strongly convex func-

tions.

Since we are interested in asynchronously solving large-scale convex problems

– such as problems found in machine learning or consisting of coordinating large

numbers of autonomous agents – one challenge involves reducing potential dis-

agreements between agents, resulting from generating and communicating differ-

ent information at different times [50]. One approach to reducing disagreements,

dating back several decades, consists of repeated averaging of the agents’ iterates

[51]. Examples of multiagent algorithms with an averaging-based approach and

utilizing accelerated gradient methods – such as the heavy ball method and Nes-

terov’s accelerated gradient descent (see [30], [52]), can be found in [53], [54], [55],

[56], [57], [58]. A synchronous, unconstrained multiagent algorithm based on the

heavy ball method is proposed in [53], for strongly convex f with a Lipschitz con-

tinuous gradient and an undirected, connected graph. A convergence rate of k
−2s
s+1

is established for the algorithm. In [54], Nesterov’s method and the heavy ball

method are combined in a double accelerated, unconstrained, asynchronous algo-

rithm for strongly convex f with a Lipschitz continuous gradient and a directed

graph. Convergence for such an algorithm is exponential, under the condition

that the largest step size and momentum parameters are positive and less than

an explicitly stated upper bound. A constrained, synchronous, Nesterov-like sub-

30

gradient algorithm for convex f is proposed in [55], with a convergence rate of
1
k
, where k is the number of communication rounds, and there are multiple com-

munication steps per iteration. In [56], a hybrid, unconstrained, asynchronous,

algorithm motivated by Nesterov’s method and with a distributed reset mecha-

nism is proposed for strongly convex f . The algorithm features a complete dual

approach with Laplacian dependent restarting. Uniform global asymptotic stabil-

ity of the minimizer is established, and the hybrid convergence rate is exponential

when ∇f is Lipschitz continuous and 1
t

otherwise.

The drawback to averaging-based methods, such as the the methods described

above, is that such methods require bounded delays, due to the requirement

of connectedness of the agents’ communication graph over intervals of specified

length [59, Chapter 7]. In some applications, such delay bounds cannot be reli-

ably checked. Moreover, averaging-based methods can be prohibitive in large-scale

problems. Due to such drawbacks, in this paper we design a totally asynchronous,

parallelized algorithm, based on the heavy ball method, for solving large con-

strained convex optimization problems. The term “totally asynchronous” was

first used by Bertsekas [59] and includes both computations and communications

being performed asynchronously and without need for a uniform upper bound on

the length of communication delays. The term “parallelized” means that the de-

cision vector is partitioned into blocks, each of which is updated only by a single

agent. Block-based algorithms date back several decades [60], [51], and have been

shown to tolerate arbitrarily long delays in some unconstrained problems [60],

[61], [62]. For constrained problems, block-based methods have been utilized for

primal-dual algorithms with centralized updates [63], [64], for synchronous primal

updates [65], and for convex problems solved by totally asynchronous primal-dual

algorithms based on classic gradient descent [50].

31

1.6.2 Motivation

0 2 4 6 8 10 12 14
10−8

10−6

10−4

10−2

100

102

Gradient Descent
Double HBF

|z
1

−
x

∗ |

k

Figure 1.6: A comparison of the performance of our proposed double heavy ball
algorithm with the asynchronous primal-dual algorithm for constrained gradient
descent, with the dual variables fixed at zero. Convergence is twice as fast for
double heavy ball (6 iterations) as it is for the gradient descent-based algorithm
(12 iterations).

Our work is motivated by the lack of a totally asynchronous, block-based algo-

rithm based on the heavy ball method. We wish to achieve fast performance with

such an algorithm, without oscillations. An essential property that any update law

must have, for totally asynchronous convergence, is to be contractive with respect

to a block-maximum norm [59]. Since the heavy ball typically converges quickly

but exhibits oscillations as λ > 0 gets smaller, as discussed in Sections 1.2.2 and

1.3.2, we design an update law consisting of computing (1.12) twice, which in

the forthcoming Chapter 8 is contractive. Figure 1.6 compares the performance

32

of such an algorithm7, in comparison to totally asynchronous, block-based algo-

rithm based on classic gradient descent, namely, the asynchronous primal-dual

algorithm in [50, Theorem 2], with the dual variables fixed to zero. As can be

seen in Figure 1.6, our proposed algorithm is twice as fast.

1.6.3 Contributions

The main contributions of the forthcoming Chapter 8 are as follows.

1) A totally asynchronous heavy ball algorithm: In Section 8.4.1, we propose a

totally asynchronous, block-based optimization algorithm, utilizing two con-

strained heavy ball computations per agent update. The proposed algorithm

guarantees fast convergence to the unique minimizer of f , without knowledge

of f ∗ := f(ξ∗) or ξ∗.

2) Existence of solutions and forward invariance of the constraint set: In Section

8.4.2, we prove existence of solutions and forward invariance of the constraint

set. It is important for the constraint set to be forward invariant, as such

a property ensures that convergence guarantees hold even when the initial

conditions are outside of the constraint set.

3) An exponential convergence rate: In Section 8.4.3, we show that our algorithm

has an exponential convergence rate under the assumption that f is C2, convex,

and the Hessian of f is diagonally dominant. Although such an exponential

convergence rate is theoretically no better than the primal convergence rate,

with a fixed dual variable, in [50, Theorem 2] for the asynchronous primal-dual

algorithm8 in [50], we demonstrate in simulation that our algorithm is twice
7Code at github.com/HybridSystemsLab/MultiagentHBF.
8Such a comparison is fair, as the dual variables in [50] can be fixed to zero, leading to a

primal-only convergence rate and algorithm.

33

as fast; see Section 8.5.

1.7 Organization

The contents of this dissertation are organized into the following chapters.

Chapter 2: Preliminaries In this chapter, we present the hybrid framework

and its basic properties. Additionally, we include definitions of properties of ob-

jective functions for optimization. We also present Morse theory, as well as some

of its basic properties. We also include preliminary information on nonsmooth

Lyapunov functions and Clarke’s generalized derivative for hybrid systems, the

Mean Value Theorem, and properties of sets. Finally, we present information on

difference inclusions and their basic properties.

Chapter 3: Accelerated Gradient Algorithms Modeled as Dynamical

Systems In this chapter, we interpret the ODEs in (1.1), (1.2), and (1.5) as control

systems consisting of a plant and a control algorithm, and then we analyze key

properties of the ODEs in (1.1), (1.2), and (1.5). In Section 3.1.1, we establish

UGAS of the minimizer for (1.2) and an exponential convergence rate. In Section

3.1.2, we establish UGAS of the minimizer and a convergence rate of 1
(t+2)2 for

(1.5). In Section 3.2.2, we establish UGAS of the minimizer for nonstrongly convex

objective functions L for (1.1), and we establish exponential convergence rates for

both strongly and nonstrongly convex L for (1.1) in Sections 3.2.1 and 3.2.2,

respectively. In Section 3.2.4, we also establish almost global asymptotic stability

of a local minimizer for nonconvex Morse functions L, for (1.1).

Chapter 4: Uniting Heavy Ball Algorithms In this chapter, we propose

two logic-based algorithms uniting two heavy ball algorithms with properly de-

signed parameters λ > 0 and γ > 0. The first such algorithm, in Section 4.3,

utilizes measurements of L and ∇L, and the second algorithm, in Section 4.4,

34

uses measurements of ∇L. Key properties of both algorithms, including UGAS

of the minimizer and an exponential (hybrid) convergence rate, are analyzed.

Chapter 5: Uniting Nesterov’s Method and the Heavy Ball Method

In this chapter, we propose two logic-based algorithms uniting Nesterov’s method

globally and the heavy ball method locally, with large λ > 0 . The first such

algorithm, in Section 5.1, allows for L to be strongly convex and restricts ζ = 1,

and the second such algorithm, in Section 5.2, relaxes these conditions such that L

is nonstrongly convex and ζ > 0. Key properties – such as UGAS of the minimizer

and a hybrid exponential convergence rate when L is strongly convex, and UGAS

of the minimizer with a hybrid convergence rate consisting of 1
(t+2)2 globally and

exponential locally when L is nonstrongly convex – are established.

Chapter 6: Uniting Framework for Accelerated Optimization In this

chapter, we propose a hybrid framework for uniting any type of accelerated gra-

dient method. We determine sufficient conditions leading to general results on

well-posedness, existence of solutions, and uniform global asymptotic stability for

the hybrid closed-loop framework. We show that the algorithms in Chapters 4 and

5 hold for this framework, and discuss the potential for other gradient methods

to be used within the proposed framework.

Chapter 7: Hybrid Accelerated Optimization for Nonconvexity In

this chapter, we propose a hybrid algorithm for nonconvex Morse objective func-

tions L. The algorithm is based on the heavy ball algorithm in (1.1). Key prop-

erties, such as practical global attractivity of the set of minimizers, are analyzed.

Chapter 8: Accelerated Multiagent Optimization In this chapter, Sec-

tion 8.2 introduces a completely synchronous algorithm which employs one con-

strained heavy ball update per agent update, and presents the nominal properties

of the algorithm. Section 8.3 introduces a completely synchronous algorithm which

35

employs two constrained heavy ball updates per agent update, and presents nomi-

nal properties of the algorithm. Section 8.4 introduces the asynchronous algorithm

which employs two constrained heavy ball computations per agent update, and

we establish the algorithm’s nominal properties.

Chapter 9: Conclusion In this chapter, we summarize the results in this

dissertation and discuss potential future directions.

36

Chapter 2

Preliminaries

2.1 Hybrid Systems

In this dissertation, we use the hybrid systems framework to design many

of our proposed algorithms since such a framework allows for the combination

of continuous-time behavior with discrete-time. A hybrid system H has data

(C,F,D,G) and is defined as [21, Definition 2.2]

H =

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D

(2.1)

where x ∈ Rn is the system state, F : Rn ⇒ Rn is the flow map, C ⊂ Rn is

the flow set, G : Rn ⇒ Rn is the jump map, and D ⊂ Rn is the jump set.

The notation ⇒ indicates that F and G are set-valued maps. A solution x to

H is parameterized by (t, j) ∈ R≥0 × N, where t is the amount of time that

has passed and j is the number of jumps that have occurred. The domain of

x, namely, domx ⊂ R≥0 × N, is a hybrid time domain, which is a set such that

for each (T, J) ∈ domx, domx ∩ ([0, T] × {0, 1, . . . , J}) = ∪J
j=0([tj, tj+1], j) for a

37

finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ+1. A hybrid arc x is a

function on a hybrid time domain that, for each j ∈ N, t 7→ x(t, j) is locally

absolutely continuous on the interval Ij := {t : (t, j) ∈ dom x}. A solution x to

H is called maximal if it cannot be extended further. The set SH contains all

maximal solutions to H. A solution is called complete if its domain is unbounded.

The following definitions, from [21] and [22], will be used in the analysis of the

hybrid closed-loop system, obtained with the proposed hybrid control algorithms.

Definition 2.1.1 (Hybrid basic conditions). A hybrid system H is said to satisfy

the hybrid basic conditions if its data (C,F,D,G) is such that

(A1) C and D are closed subsets of Rn;

(A2) F : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to C,

C ⊂ dom F , and F (x) is convex for every x ∈ C;

(A3) G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D, and

D ⊂ dom G.

The notions of stability, uniform global stability, pre-attractivity, uniform

global pre-attractivity, and uniform global pre-asymptotic stability (UGpAS) are

listed in the following definition, from [22] and [21].

Definition 2.1.2 (Stability and attractivity notions). Given a hybrid

closed-loop system H as in (2.1), a nonempty set A ⊂ Rn is said to be

• Stable for H if for each ε > 0 there exists δ > 0 such that each solution x

to H with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε for all (t, j) ∈ dom x;

• Uniformly globally stable for H if there exists a class-K∞ function α such

that any solution x to H satisfies |x(t, j)|A ≤ α (|x(0, 0)|A) for all (t, j) ∈

dom x;

38

• Pre-attractive for H if there exists µ > 0 such that every solution x to H

with |x(0, 0)|A ≤ µ is such that (t, j) 7→ |x(t, j)|A is bounded and if x is

complete then lim
(t,j)∈dom x, t+j→∞

|x(t, j)|A = 0;

• Uniformly globally pre-attractive for H if for each ε > 0 and δ > 0 there

exists T > 0 such that, for any solution x to H with |x(0, 0)|A ≤ δ, (t, j) ∈

dom x and t+ j ≤ T imply |x(t, j)|A ≤ ε;

• Uniformly globally pre-asymptotically stable (UGpAS) for H if it is both

uniformly globally stable and uniformly globally pre-attractive.

In the notions involving convergence in Definition 2.1.2, when every maximal

solution is complete, then the prefix “pre” is dropped to obtain attractivity, uni-

form global attractivity (UGA), and uniform global asymptotic stability (UGAS).

The prefix “pre” is in the notions involving convergence in Definition 2.1.2 to al-

low for maximal solutions that are not complete. When every maximal solution

is complete, such a property guarantees that nontrivial solutions exist from each

initial point in C ∪ D to the hybrid system resulting from using our proposed

uniting algorithms.

As was mentioned in Section 1.3.1, establishing UGAS for Nesterov’s algorithm

is a difficult problem to solve, due to its time-varying nature, as some solutions

converge in a non-uniform way. We show in Section 5.1.9 5.2.8 that our proposed

uniting algorithm overcomes such a difficulty.

2.2 Optimization

Some of the algorithms proposed in this dissertation allow the cost function L

to be strongly convex, as defined in [66].

39

Definition 2.2.1 (Strongly convex functions). A C2 function L : Rn → R is

strongly convex if the following hold: there exists µ > 0, such that for all u1, w1 ∈

Rn,

(SC1) ∇2L(w1) ≥ µI;

(SC2) L(u1) ≥ L(w1) + ⟨∇L(z1), u1 − w1⟩ + µ
2 |u1 − w1|2.

Other algorithms proposed in this dissertation allow the cost function L to be

convex (also referred to by some as “nonstrong convexity”), as defined in [66].

Definition 2.2.2 (Convex functions). A C1 function L :Rn → R is (nonstrongly)

convex if L(u1) ≥ L(w1) + ⟨∇L(z1), u1 − w1⟩ for all u1, w1 ∈ Rn.

Additionally, some of the results in this dissertation employ the property of

quadratic growth, which is a weaker condition than strong convexity [67], [19],

[68], [69], [70].

Definition 2.2.3 (Quadratic growth). A function L : Rn → R has quadratic

growth away from its minimizer z∗
1 if there exists α > 0 such that L(z1) − L∗ ≥

α |z1 − z∗
1 |2 for all z1 ∈ Rn, where L∗ := L(z∗

1).

The following condition, from [68], will be used in some of the results in this

dissertation.

Definition 2.2.4. A function L : Rn → R satisfies the Polyak-Łojasiewicz condi-

tion if there exists θ > 0 such that, for all z1 ∈ Rn,

|∇L(z1)|2 ≥ 2µ |L(z1) − L∗| . (2.2)

Definition 2.2.4 means that the gradient grows faster than a quadratic function

as we move away from the minimizer of L. Note that this inequality implies

40

that every stationary point is a global minimum [68]. The Polyak-Łojasiewicz

inequality is a weaker condition than strong convexity [68] [71].

2.3 Morse Theory

In Chapter 7, we will restrict the objective function L to the class of Morse

functions [72].

Definition 2.3.1 (Morse function). The function L : Rn → R is a Morse function

if none of its critical points is degenerate.

For functions L : Rn → R, a critical point is degenerate if its Hessian is

singular. The following lemma, from [72, Theorem 1.3.1], describes the behavior

near a critical point of a Morse function.

Lemma 2.3.2. (The Morse Lemma) Let the function L : Rn → R be defined on

a compact manifold and let z∗
1 be a nondegenerate critical point of L. There exists

an open neighborhood U of z∗
1 and a diffeomorphism φ : (U, z∗

1) → (Rn, 0) such

that

L ◦ φ−1(x1, . . . xn) = L(z∗
1) −

i∑
j=1

x2
j +

n∑
j=i+1

x2
j . (2.3)

The Morse Lemma shows how a real-valued function L : Rn → R behaves on a

manifold near a nondegenerate critical point, facilitating classification of an area

around that critical point according to the index of L. For instance, the indices of

minima, saddle points, and maxima are 0, 1, and 2, respectively. An immediate

corollary of the Morse Lemma [72, Corollary 1.3.2] is as follows.

Corollary 2.3.3. The nondegenerate critical points of a Morse function are iso-

lated.

41

The critical points of a Morse function are isolated, which means that crit-

ical points are single points, i.e., a Morse function cannot have a continuum of

critical points. Note that although Definition 2.3.1 and Lemma 2.3.2 refer more

generally to manifolds, we will restrict our analysis to Morse functions on the

one-dimensional manifold R, namely, we consider Morse functions with a single,

scalar argument. For C2 functions with a single argument in R, a saddle point

is a stationary point that is also an inflection point. For such inflection points,

the determinant of the Hessian is always singular [73, Theorem 4.8], and therefore

degenerate. Therefore, saddle points never occur in C2 for Morse functions on the

one-dimensional manifold R. See Section 9.2 for more details on possible exten-

sions to higher dimensions, where saddle points can occur, i.e., for L : Rn → R

where n > 1.

2.4 Nonsmooth Lyapunov Functions

For the analysis of the ODE in (1.1) for nonconvex objective functions L in

Chapter 3, and for the analysis of the proposed hybrid algorithm for nonconvex

morse functions in Chapter 7, we will use Clarke’s generalized directional deriva-

tive.

Given a hybrid system H with data (C,F,D,G), let V : dom V 7→ R be

piecewise continuous on dom V and locally Lipschitz on an open neighborhood

of (C ∩ U). Following [74], the generalized gradient in the sense of Clarke of V

at a point z ∈ (C ∩ U), denoted by ∂V (z), is a closed, convex, and nonempty

set equal to the convex hull of all limits of the sequence ∇V (zi), where zi is any

sequence converging to z that avoids any set with zero Lebesgue measure that

contains points at which V is nondifferentiable – since V is locally Lipschitz, then

∇V exists almost everywhere. Then, Clarke’s generalized directional derivative

42

of V at a point z in the direction of χ is given by

V ◦(z, χ) = max
ζ∈∂V (z)

⟨ζ, χ⟩ . (2.4)

Then, for any solution t 7→ z(t) to ż ∈ F (z),

d

dt
V (z(t)) ≤ V ◦(z(t), ż(t)) (2.5)

for almost all t in the domain of the definition of the function z, where the deriva-

tive d
dt
V (z(t)) is understood in the standard sense since V is locally Lipschitz. The

reader is referred to [74] for more details on the generalized gradient and Clarke’s

generalized directional derivative.

Following [75], a bound on the increase of the function V along solutions to

the hybrid system H is obtained by defining the function uC : domV → [−∞,∞)

as

uC(z) :=

max

χ∈F (z)
max

ζ∈∂V (z)
⟨ζ, χ⟩ z ∈ C ∩ U

−∞ otherwise
(2.6)

Then, for each solution ϕ to H and each t at which d
dt
V (ϕ(t, j)) exists, the following

bound holds:
d

dt
V (ϕ(t, j)) ≤ uC(ϕ(t, j)). (2.7)

Similarly, to obtain a bound on the change in V at jumps, the following quantity

is defined:

uD(z) :=

max

χ∈G(z)
V (χ) − V (z) z ∈ D ∩ U

−∞ otherwise
(2.8)

Then, for any solution ϕ to H and for any (tj+1, j), (tj+1, j+1) ∈ domϕ, it follows

43

that

V (ϕ(tj+1, j + 1)) − V (ϕ(tj+1, j)) ≤ uD(ϕ(tj+1, j)). (2.9)

Note that when F is a single-valued map, uC(z) = V ◦(z, F (z)) for each z ∈ C∩U .

When G is a single-valued map, uD(z) = V (G(z)) − V (z) for each z ∈ D ∩ U .

2.5 Mean Value Theorem

For the analysis of the proposed multiagent heavy ball algorithm in Chapter

8, we use the following version of the Mean Value Theorem (MVT), from [59,

Proposition A.30].

Proposition 2.5.1. (Mean value theorem): If L : Rm → R is continuously dif-

ferentiable, then for every x, y ∈ Rm, there exists some c ∈ [0, 1] such that

L(y) − L(x) = ∇L (cx+ (1 − c)y)⊤ (y − x). (2.10)

2.6 Properties of Sets

In this section, we give some basic definitions and properties that we use to

characterize sets, in the analysis of the proposed multiagent heavy ball algorithm

in Chapter 8.

Definition 2.6.1 (Inner and outer limit). For a sequence of sets {Ti}∞
i=0 in Rn

• The inner limit of the sequence {Ti}∞
i=0, denoted lim infi→∞ Ti, is the set of

all x ∈ Rn for which there exist points xi ∈ Ti, i ∈ N, such that limi→∞ xi =

x.

44

• The outer limit of the sequence {Ti}∞
i=0, denoted lim supi→∞ Ti is the set

of all x ∈ Rn for which there exists a subsequence {Tik
}∞

k=0 of {Ti}∞
i=0 and

points xk ∈ Tik
, k ∈ N, such that limk→∞ xk = x.

The limit of the sequence exists if the outer and inner limit sets are equal,

namely,

lim
i→∞

Ti = lim inf
i→∞

Ti = lim sup
i→∞

Ti.

The inner and outer limit of a sequence always exist and are closed, although the

limit itself might not exist.

The following definition of convergence of a sequence of sets comes from [76].

Definition 2.6.2 (Convergence of a sequence of sets). When the limit of the

sequence {Ti}∞
i=0 in Rm exists in the sense of Definition 2.6.1 and is equal to T ,

the sequence of sets is said to converge to the set T .

2.7 Difference Inclusions

In Chapter 8, we consider discrete-time systems with data (D,G) and defined

as

z+ ∈ G(z) z ∈ D (2.11)

where z ∈ Rm is the system state, G : Rm ⇒ Rm is the right-hand side, and

D ⊂ Rm is the constraint set. The notation ⇒ indicates that G is a set-valued

map.

The following definitions, from [22] [21], will be used in the analysis of the

closed-loop system, obtained with the proposed control algorithm.

Definition 2.7.1 (Basic conditions). System (2.11) is said to satisfy the basic

conditions if its data (D,G) is such that

45

(A1) D is a closed subset of Rm;

(A2) G : Rm ⇒ Rm is outer semicontinuous and locally bounded relative to D,

and D ⊂ dom G.

The following definition of forward invariance, from [22, Definition 3.13], will

be used in the forthcoming result on asymptotic stability in Chapter 8.

Definition 2.7.2 (Forward invariance). Given a system with data (D,G), defined

in (2.11), a nonempty set Z ⊂ Rm is said to be forward invariant for (D,G) if

each maximal solution z to (D,G) starting from z◦ ∈ Z is complete and satisfies

z(k) ∈ Z for all k ∈ dom z.

46

Chapter 3

Accelerated Gradient Algorithms

Modeled as Dynamical Systems

3.1 Nesterov’s Accelerated Gradient Descent

Modeled as a Dynamical System

We interpret the ODEs in (1.1), (1.2), and (1.5) as control systems consisting

of a plant and a control algorithm [34] [22]. Defining z1 as ξ and z2 as ξ̇, the plant

associated with such ODEs is given by the double integrator

ż1

ż2

 =

z2

u

 =: FP (z, u) (z, u) ∈ R2n × Rn (3.1)

with an output given by a function of the state, as defined below. With this

model, the optimization algorithms that we consider assign u to a function of the

state that involves the cost function, and such a function of the state may be time

dependent. The control algorithm u, leading to each of the ODEs, will be defined

in the subsequent sections.

47

3.1.1 Strongly Convex L

For the analysis in this section, we impose the following Assumption on L.

Assumption 3.1.1. The function L is C2 and strongly convex.

Remark 3.1.2. Assumption 3.1.1, which is a common assumption used in the

analysis of optimization algorithms [66] [52], ensures that the objective function is

continuously differentiable, which is necessary for well-posedness of the proposed

uniting algorithms. Additionally, the strongly convex property in Assumption 3.1.1

restricts the objective function to having a unique minimizer, and rules out the

possibility of the objective function having a continuum of minimizers or multiple

isolated minimizers.

The control algorithm leading to (1.2) is

u = κ(h(z)) = −2dz2 − 1
M

∇L(z1 + βz2) (3.2)

where M > 0 is the Lipschitz constant for ∇L and d and β are defined as

d := 1(√
κc + 1

) > 0, β :=

(√
κc − 1

)
(√

κc + 1
) ≥ 0. (3.3)

where

κc := M

µ
≥ 1 (3.4)

is the condition number associated with L; see [66] [52]. We define h as

h(z) :=

 z2

∇L(z1 + βz2)

 . (3.5)

48

Using the plant in (3.1), we denote the closed-loop system resulting from κ in

(3.2) as

ż =

 z2

κ(h(z))

 z ∈ R2n. (3.6)

For some of the results to follow, we impose the following assumption on ∇L.

Assumption 3.1.3 (Lipschitz Continuity of ∇L). The function ∇L is Lipschitz

continuous with constant M > 0, namely, for all w1, u1 ∈ Rn,

|∇L(w1) − ∇L(u1)| ≤ M |w1 − u1| . (3.7)

Remark 3.1.4. Assumption 3.1.3 is commonly used in nonlinear analysis to en-

sure that the differential equations of the individual optimization algorithms, for

example, the ODE in (1.2), does not have solutions that escape in finite time,

which is used to guarantee existence and completeness of maximal solutions to

(3.6) [77, Theorem 3.2].

Each maximal solution to (3.6) is complete and bounded, when L satisfies

Assumptions 3.1.1 and 3.1.3, as shown in the following lemma.

Proposition 3.1.5. (Existence of solutions to (3.6)) Let L satisfy Assumptions

3.1.1 and 3.1.3. Let the functions d and β be defined as in (3.3). Let κ be defined

via (3.2). Then, each maximal solution t 7→ z(t) to the closed-loop algorithm (3.6),

is bounded, complete, and unique.

Proof. Since d and β, defined via (3.3), are constants, and since by Assumption

3.1.1 L is C2, then h in (3.5) and κ in (3.2) are also continuous. Furthermore, since

by Assumption 3.1.3 ∇L is Lipschitz continuous, then h in (3.5) and κ in (3.2) are

also Lipschitz continuous which, in turn, means the map z 7→ FP (z, κ(h(z))) is

49

Lipschitz continuous. Consequently, since the map z 7→ FP (z, κ(h(z))) is Lipschitz

continuous, then by [77, Theorem 3.2], ż = FP (z, κ(h(z))) has no finite escape

time1 from R2n and each maximal solution is complete and unique.

To show that each maximal solution is bounded, we first define the Lyapunov

function

V1(z) := 1
2 |a(z1 − z∗

1) + z2|2 + 1
M

(L(z1) − L∗) (3.8)

where the constant a > 0 is defined as

a := d+ β

2κc

= 1
κc

− 1
2κc

> 0. (3.9)

Then, we will show that solutions to ż = FP (z, κ(h(z))) starting from any cV -

sublevel set

W :=
{
z ∈ R2n : V1(z) ≤ cV

}
(3.10)

with cV > 0, remain in such a set for all time, and then we will show that V1 is

radially unbounded.

To that end, note that V1 is positive definite with respect to {z∗
1} × {0} since,

by Assumption 3.1.1, L is C2 and strongly convex. Then, letting

v1(z) := z1 + βz2 (3.11)

and since ∇V1(z) =
[
a (a (z1 − z∗

1) + z2) + 1
M

∇L(z1) (a (z1 − z∗
1) + z2)

]
, we eval-

uate the derivative of V1, using the map z 7→ FP (z, κ(h(z))), where FP is defined

in (3.1), κ is defined in (3.2), and h is defined in (3.5), to yield

V̇1(z) = ⟨∇V1(z), FP (z, κ(h(z)))⟩

1Finite escape time describes when there exists a solution t 7→ x(t) to a continuous-time
nonlinear system that satisfies lim

t↗te

|x(t)| = ∞ for some finite time te.

50

=
〈

∇V1(z),

 z2

−2dz2 − 1
M

∇L(z1 + βz2)

〉

= a2 ⟨z1 − z∗
1 , z2⟩ + a |z2|2 + 1

M
⟨z2,∇L(z1)⟩ − 2d |z2|2 − 2da ⟨z1 − z∗

1 , z2⟩

− a

M
⟨z1 − z∗

1 ,∇L(v1(z))⟩ − 1
M

⟨z2,∇L(v1(z))⟩

= − a

M
⟨z1 − z∗

1 ,∇L(v1(z))⟩ + a (a− 2d) ⟨z1 − z∗
1 , z2⟩

+ (a− 2d) |z2|2 − 1
M

⟨z2,∇L (v1(z)) − ∇L(z1)⟩ (3.12)

for all z ∈ R2n.

Since L is C2, strongly convex by Assumption 3.1.1, and ∇L is Lipschitz con-

tinuous with constant M > 0 by Assumption 3.1.3, then using κc in (3.4) and the

definition of strong convexity in item (SC2) of Definition 2.2.1 with u1 = z∗
1 and

w1 = v1(z), where v1 is defined via (3.11), we get

−⟨v1(z) − z∗
1 ,∇L(v1(z))⟩ ≤ −(L(v1(z)) − L∗) − M

2κc

|v1(z) − z∗
1 |2 (3.13)

for each z ∈ R2n. Using κ in (3.4) and the definition of strong convexity in item

(SC2) of Definition 2.2.1 with u1 = v1(z), where v1 is defined via (3.11), and

w1 = z1 yields

L(v1(z)) ≥ L(z1) + ⟨∇L(z1), βz2⟩ + M

2κc

β2 |z2|2 (3.14)

for each z ∈ R2n. Combining (3.13) and (3.14) yields

− ⟨v1(z) − z∗
1 ,∇L(v1(z))⟩ ≤ − (L(z1) − L∗) − ⟨∇L(z1), βz2⟩

− M

2κc

(
|v1(z) − z∗

1 |2 + β2 |z2|2
)

51

Then, rearranging terms gives, for all z ∈ R2n,

−⟨z1 − z∗
1 ,∇L(v1)⟩ ≤ − (L(z1) − L∗) − M

2κc

(
|v1(z) − z∗

1 |2 + β2 |z2|2
)

− ⟨βz2,∇L(v1(z)) − ∇L(z1)⟩ . (3.15)

In addition, note that

|v1(z) − z∗
1 |2 = |z1|2 − 2 ⟨z1, z

∗
1⟩ + |z∗

1 |2 + 2β ⟨z1 − z∗
1 , z2⟩ + β2 |z2|2

= |z1 − z∗
1 |2 + 2β ⟨z1 − z∗

1 , z2⟩ + β2 |z2|2 (3.16)

Substituting the expression for |v1(z) − z∗
1 |2 in (3.16) into the bound in (3.15),

then subsequently substituting the bound in (3.15) into (3.12) yields

V̇1(z) ≤ − a

M
(L(z1) − L∗) − a

2κc

|z1 − z∗
1 |2 − aβ

κc

⟨z1 − z∗
1 , z2⟩ − aβ2

κc

|z2|2

+ a (a− 2d) ⟨z1 − z∗
1 , z2⟩ + (a− 2d) |z2|2

− 1
M

(1 − βa) ⟨z2,∇L (v1(z)) − ∇L(z1)⟩ . (3.17)

for each z ∈ R2n. Then, noticing that a
2 |a (z1 − z∗

1) + z2|2 = a3

2 |z1 − z∗
1 |2 +

a2 ⟨z1 − z∗
1 , z2⟩ + a

2 |z2|2, adding it to and subtracting it from (3.17), and rear-

ranging terms, yields

V̇1(z) ≤ − aV1(z) − a

2κc

|z1 − z∗
1 |2 − aβ

κc

⟨z1 − z∗
1 , z2⟩ − aβ2

κc

|z2|2

+ a (a− 2d) ⟨z1 − z∗
1 , z2⟩ + (a− 2d) |z2|2 + a3

2 |z1 − z∗
1 |2

+ a2 ⟨z1 − z∗
1 , z2⟩ + a

2 |z2|2 − 1
M

(1 − βa) ⟨z2,∇L (v1(z)) − ∇L(z1)⟩

≤ − aV1(z) + a

2

(
a2 − 1

κc

)
|z1 − z∗

1 |2 +
(

3a
2 − 2d− aβ2

κc

)
|z2|2

52

+ a

(
2a− 2d− β

κc

)
⟨z1 − z∗

1 , z2⟩

− 1
M

(1 − βa) ⟨z2,∇L(v1) − ∇L(z1)⟩ . (3.18)

for each z ∈ R2n. Due to the definition of a in (3.9), the cross term ⟨z1 − z∗
1 , z2⟩

vanishes since
(
2
(
d+ β

2κc

)
− 2d− β

κc

)
=
(
2d+ β

κc
− 2d− β

κc

)
= 0.

By Assumption 3.1.1, L is C2 and strongly convex with constant µ > 0. An

equivalent characterization of the strong convexity of L, from [52, Theorem 2.1.9],

for all w1, u1 ∈ Rn, is ⟨∇L(w1) − ∇L(u1), w1 − u1⟩ ≥ µ |w1 − u1|2. Then, using

such a bound with w1 = v1(z), where v1 is defined via (3.11), and u1 = z1, we get,

for all z ∈ R2n,

− ⟨∇L(v1(z)) − ∇L(z1), βz2⟩ = − ⟨∇L(v1(z)) − ∇L(z1), v1(z) − z1⟩

≤ −µβ2 |z2|2 . (3.19)

Therefore, we use − ⟨z2,∇L(v1(z)) − ∇L(z1)⟩ ≤ −µβ |z2|2, the definition of κc in

(3.4), and the fact that 1 − βa ≥ 0 and β ≥ 0, to upper bound the last term in

(3.18) as follows:

− 1
M

(1 − βa) ⟨z2,∇L(v1) − ∇L(z1)⟩ ≤ − (1 − βa) β
κc

|z2|2 ,

which implies

V̇1(z) ≤ − aV1(z) + a

2

(
a2 − 1

κc

)
|z1 − z∗

1 |2 +
(

3a
2 − 2d− β

κc

)
|z2|2 . (3.20)

Using the definitions of a in (3.9), d, and β in (3.3), we show that a2 − 1
κc

≤ 0 for

53

all κc ≥ 1, as follows.

a2 − 1
κc

≤ 0

1
κc

− 1
4κ2

c

− 1
κc

≤ 0

− 1
4κ2

c

≤ 0. (3.21)

Therefore, since κc ≥ 1, as defined in (3.4), then − 1
4κ2

c
≤ 0. We can also show,

using the definition of a in (3.9), that
(

3a
2 − 2d− β

κc

)
≤ 0 for all κc ≥ 1. Namely,

since d > 0, β ≥ 0, and κc ≥ 1, then 3
2

(
d+ β

2κc

)
− 2d − β

κc
= −d

2 − β
4κc

≤ 0.

Therefore, since a2 − 1
κc

≤ 0 and
(

3a
2 − 2d− β

κc

)
≤ 0 for all κc ≥ 1, then (3.20) is

upper bounded by

V̇1(z) ≤ −aV1(z) (3.22)

for all z ∈ R2n.

Then, to show that V1 is radially unbounded, we show that there exist α1 and

α2 such that, for all z ∈ R2n, with z∗ := (z∗
1 , 0),

α1 |z − z∗|2 ≤
[
(z1 − z∗

1)⊤ z⊤
2

]
B

z1 − z∗
1

z2

 ≤ V1(z) ≤ α2 |z − z∗|2 (3.23)

where α2 :=
(
a2 + 1 − 1

2κc

)
and B is defined as

B :=

(

a2

2 + α
M

)
a
2

a
2

1
2

 (3.24)

where M > 0 comes from Assumption 3.1.3 and where, since L is strongly con-

vex by Assumption 3.1.1, then this implies that L also satisfies2 Definition 2.2.3,
2This is true since quadratic growth is a weaker property than strong convexity; see [67],

[19], [68], [69], [70].

54

namely, L has quadratic growth away from z∗
1 with constant α > 0. Then, we

lower bound V1 as follows:

V1(z) =1
2 |a (z1 − z∗

1) + z2|2 + 1
M

(L(z1) − L∗) (3.25)

≥1
2 |a (z1 − z∗

1) + z2|2 + α

M
|z1 − z∗

1 |2

≥a2

2 |z1 − z∗
1 |2 + a ⟨z1 − z∗

1 , z2⟩ + 1
2 |z2|2 + α

M
|z1 − z∗

1 |2

≥
(
a2

2 + α

M

)
|z1 − z∗

1 |2 + a

2 ⟨z1 − z∗
1 , z2⟩ + a

2 ⟨z1 − z∗
1 , z2⟩ + 1

2 |z2|2

≥
[
(z1 − z∗

1)⊤ z⊤
2

]
B

z1 − z∗
1

z2

for each z ∈ R2n, where B is defined via (3.24). Next, we show that B is positive

definite, such that there exists α1 such that the first two inequalities in (3.23) hold

for each z ∈ R2n. To that end, we show that the leading principal minors of B

are strictly positive, as follows. Since a > 0, α > 0, and M > 0, we have

(
a2

2 + α

M

)
> 0 (3.26a)

det(B) =
(1

2

)(
a2

2 + α

M

)
−
(
a

2

)2
= α

2M > 0. (3.26b)

Therefore, since the leading principal minors of B are strictly positive, then B

is positive definite. Hence, there exists α1 such that the first two inequalities in

(3.23) hold for each z ∈ R2n. The choice of α2 comes from the following. The first

term of V1 is upper bounded by

1
2 |a(z1 − z∗

1) + z2|2 ≤ a2 |z1 − z∗
1 |2 + |z2|2 ≤ a2 |z − z∗| (3.27)

for each z ∈ R2n. Then, the second term of V1 can be bounded as follows. First,

55

∇L is Lipschitz continuous with constant M > 0 due to Assumption 3.1.3. Then,

since by Assumption 3.1.1, L is strongly convex with constant µ > 0, then using

item (SC2) of Definition 2.2.1 with u1 = z∗
1 , w1 = z1, and ∇L∗ = 0 we have

L∗ ≥L(z1) + ⟨∇L(z1), z∗
1 − z1⟩ + µ

2 |z∗
1 − z1|2

|⟨∇L(z1), z∗
1 − z1⟩| ≥L(z1) − L∗ + µ

2 |z∗
1 − z1|2

|∇L(z1)| |z∗
1 − z1| ≥L(z1) − L∗ + µ

2 |z∗
1 − z1|2

M |z∗
1 − z1| |z∗

1 − z1| ≥L(z1) − L∗ + µ

2 |z∗
1 − z1|2

M |z∗
1 − z1|2 ≥L(z1) − L∗ + µ

2 |z∗
1 − z1|2(

M − µ

2

)
|z∗

1 − z1|2 ≥L(z1) − L∗. (3.28)

for each z1 ∈ Rn. Hence, the second term of V1 can be upper bounded as follows:

1
M

(L(z1) − L∗) ≤
(
M − µ

2
M

)
|z1 − z∗

1 |2 =
(

1 − 1
2κc

)
|z1 − z∗

1 |2

≤
(

1 − 1
2κc

)
|z − z∗| . (3.29)

for each z ∈ R2n. Therefore, V1 is upper bounded as follows:

V1(z) =1
2 |a (z1 − z∗

1) + z2|2 + 1
M

(L(z1) − L∗)

≤
(
a2 + 1 − 1

κc

)
|z − z∗| = α2 |z − z∗| (3.30)

for each z ∈ R2n.

Therefore, since (3.23) is satisfied for V1 in (3.8) for all z ∈ R2n, where B is

defined via (3.24) and α2 is defined below (3.23), then V1 is radially unbounded

(in z, relative to {z∗
1} × {0}). Since L is C2 and strongly convex by Assumption

3.1.1, then L is positive definite with respect to z∗
1 and, consequently, V1 is positive

56

definite with respect to {z∗
1}×{0}. Therefore, since a > 0 by (3.9) and V1 satisfies

(3.22) for all z ∈ R2n, then solutions to ż = FP (z, κ(h(z))) starting from any cV -

sublevel set W := {z ∈ R2n : V1(z) ≤ cV }, cV > 0, remain in such a set for all

time. Therefore, W in (3.10) is compact and, due to (3.22), forward invariant for

(3.6), that is, any nontrivial solution starting in the subset W is complete and

stays in W . Therefore, each maximal solution to (3.6) is bounded.

When L satisfies Assumptions 3.1.3 and 3.1.1, the rate of convergence for (3.6)

is exponential, as extended from [12, Proposition 3.1] to a generic L∗ at a generic

z∗
1 . It is as follows.

Proposition 3.1.6. (Convergence rate for (3.6)) Let L satisfy Assumptions 3.1.3

and 3.1.1. Let the functions d and β be defined as in (3.3). Let κ be defined via

(3.2). Then, each maximal solution t 7→ (z(t)) to (3.6) satisfies

L(z1(t)) − L∗ ≤ (L(z1(0)) − L∗) exp (−at) (3.31)

for all t ≥ 0, where a > 0 is defined via (3.9).

Proof. By Proposition 3.1.5, V1 in (3.8) satisfies (3.22) for all z ∈ R2n. Apply-

ing Grönwall’s inequality, shows that each maximal solution t 7→ (z(t)) to (3.6)

satisfies

V1(z(t)) ≤ V1(z(0)) exp (−at) (3.32)

for all t ≥ 0. This, in turn, implies that each maximal solution t 7→ (z(t)) to (3.6)

satisfies (3.31) for all t ≥ 0.

The following theorem shows that (3.6), when L satisfies Assumptions 3.1.1

and 3.1.3, has the set

A :=
{
z ∈ R2n : ∇L(z1) = z2 = 0

}
= {z∗

1} × {0}, (3.33)

57

uniformly globally asymptotically stable.

Theorem 3.1.7. (Uniform global asymptotic stability of A for (3.6)) Let L satisfy

Assumption 3.1.3 and Assumption 3.1.1. Let the functions d and β be defined as in

(3.3). Let κ be defined via (3.2). Then, the set A, defined via (3.33), is uniformly

globally asymptotically stable for (3.6).

Proof. By Proposition 3.1.5, each maximal solution to (3.6), is bounded, com-

plete, and unique. In addition, by Proposition 3.1.5, V1 is positive definite and

radially unbounded (in z, relative to A in (3.33)). Then, since a > 0 by (3.9)

and V1 satisfies (3.22) for each z ∈ R2n, ρ (|z|A) := aV1(z) is positive definite with

respect to A. Therefore, by an application of [21, Theorem 3.18], every complete

solution to (3.6) converges to {z∗
1}×{0}. The arguments above involving the Lya-

punov theorem in Theorem A.1.3 yields uniform global pre-asymptotic stability

of A in (3.33) for (3.6). Since by Proposition 3.1.5, each maximal solution to (3.6)

is complete, then A is globally asymptotically stable for (3.6).

In Proposition 3.1.6, not only do we recover the convergence rate (3.31) from

[12, Proposition 3.1], which assumes L∗ = 0 and z∗
1 = 0, but we extend this

proof to show that the rate (3.31) also applies for general L∗ ∈ R and z∗
1 ∈ Rn.

Additionally, in Theorem 3.1.7, we establish uniform global asymptotic stability

of the set A in (3.33) for (3.6), which was not established in [12].

3.1.2 Nonstrongly Convex L

For the analysis in this section, we impose Assumption 3.1.3 and the following

Assumption on L.

Assumption 3.1.8. The function L is C1, (nonstrongly) convex, and has a single

minimizer z∗
1.

58

Remark 3.1.9. Assumption 3.1.8, which is a common assumption used in the

analysis of optimization algorithms [66] [52], ensures that the objective function

is continuously differentiable, which is necessary for well-posedness of H, as was

explained in Section 1.3.4. Additionally, the nonstrongly convex property and the

restriction that L has a single minimizer z∗
1 in Assumption 3.1.8 rules out the

possibility of the objective function having a continuum of minimizers or multiple

isolated minimizers.

The control algorithm leading to (1.5) is

u = κ(h(z, t), t) = −2d̄(t)z2 − ζ2

M
∇L(z1 + β̄(t)z2) (3.34)

where M > 0 is the Lipschitz constant for ∇L, d̄ and β̄ are defined, for all t ≥ 0,

as

d̄(t) := 3
2(t+ 2) , β̄(t) := t− 1

t+ 2 , (3.35)

and h is defined as

h(z, t) :=

 z2

∇L(z1 + β̄(t)z2)

 . (3.36)

Since the ODE in (1.5) is time varying, and since solutions to hybrid systems are

parameterized by (t, j) ∈ R≥0 × N, we employ the state τ to capture ordinary

time as a state variable, in this way, leading to a time-invariant system. To this

end, using the plant in (3.1), we denote the closed-loop system resulting from κ

in (3.34) as

ż =

 z2

κ(h(z, τ), τ)

 , τ̇ = 1 (z, τ) ∈ R2n × R≥0. (3.37)

Under Assumptions 3.1.8 and 3.1.3, each maximal solution to (3.37) is com-

59

plete and unique. Such a property is useful since it guarantees that nontrivial

solutions to (3.37) exist from each initial point in R2n × R≥0, and that such so-

lutions do not escape R2n × R≥0. When each maximal solution is complete, then

uniform global pre-asymptotic stability of {z∗
1} × {0} × R≥0 becomes uniform

global asymptotic stability.

Proposition 3.1.10. (Existence of solutions to (3.37)) Let L satisfy Assumptions

3.1.8 and 3.1.3. Let the functions d̄ and β̄ be defined in (3.35). Let κ be defined

via (3.34). Then, each maximal solution t 7→ (z(t), τ(t)) to (3.37) is complete and

unique.

Proof. Since d̄ and β̄, defined via (3.35), are continuous, and since by As-

sumption 3.1.8, L is C1, then h in (3.36) and κ in (3.34) are also continuous.

Furthermore, since by Assumption 3.1.3 ∇L is Lipschitz continuous, then h in

(3.36) and κ in (3.34) are Lipschitz continuous which, in turn, means the map

z 7→ FP (z, κ(h(z, τ), τ)) is Lipschitz continuous. Consequently, since the map

z 7→ FP (z, κ(h(z, τ), τ)) is Lipschitz continuous and since the solution component

τ of (3.37) increases linearly, then by [77, Theorem 3.2], (3.37) has no finite escape

time from R2n ×R≥0 and each maximal solution to H0 is unique. Therefore, each

maximal solution to (3.37), is complete and unique.

To analyze the convergence and stability properties of (3.37), we use the Lya-

punov function

V1(z, τ) := 1
2 |ā(τ) (z1 − z∗

1) + z2|2 + ζ2

M
(L(z1) − L∗) (3.38)

defined for each z ∈ R2n and each τ ≥ 0, where ζ > 0, M > 0 is the Lipschitz

60

constant of ∇L, and the function ā is defined as

ā(τ) := 2
τ + 2 . (3.39)

When L satisfies Assumptions 3.1.8 and 3.1.3, then we can derive an upper

bound, for all t ≥ 0, on the Lyapunov function in (3.38) along solutions to (3.37).

To derive such a bound, we extend [12, Proposition 3.2], which assumes L∗ = 0

and z∗
1 = 0, to the general case of L∗ ∈ R and a single minimizer z∗

1 ∈ Rn, in the

following proposition.

Proposition 3.1.11. Let L satisfy Assumptions 3.1.8 and 3.1.3. Then, each

maximal solution t 7→ (z(t), τ(t)) to the closed-loop algorithm (3.37) with τ(0) = 0

satisfies

V1(z(t), t) ≤ 4
(t+ 2)2V1(z(0), 0) (3.40)

for all t ≥ 0, where V1 is defined via (3.38).

Proof. The Lyapunov function V1, defined via (3.38), is positive definite with

respect to A1, defined via (3.64), since, by Assumption 3.1.8, L is C1, nonstrongly

convex, and has a unique minimizer z∗
1 . Then, letting

v̄1(z, τ) := z1 + β̄(τ)z2, (3.41)

letting φ(z, τ) := ā(τ) (ā(τ) (z1 − z∗
1) + z2) + ζ2

M
∇L(z1), and since ∇V1(z, τ)

=
[
φ(z, τ) (ā(τ) (z1 − z∗

1) + z2)
dā(τ)

dτ ⟨z1 − z∗
1 , (ā(τ) (z1 − z∗

1) + z2)⟩
]
, we eval-

uate the derivative of V1, using the map z 7→ FP (z, κ1(h(z, τ), τ)), where FP is

61

defined in (3.1), κ is defined via (3.34), and h is defined in (3.36), to yield

V̇1(z, τ) =
〈

∇V1(z, τ),

FP (z, κ1(h(z, τ), τ))

1

〉

=
〈

∇V1(z, τ),

 z2

−2d̄(τ)z2 − ζ2

M
∇L(v̄1(z, τ))

1

〉

=ā(τ) ⟨ā(τ) (z1 − z∗
1) + z2, z2⟩ + ζ2

M
⟨z2,∇L(z1)⟩ − 2d̄(τ) |z2|2

− 2d̄(τ)ā(τ) ⟨z1 − z∗
1 , z2⟩ − ā(τ)ζ2

M
⟨z1 − z∗

1 ,∇L(v̄1(z, τ))⟩

− ζ2

M
⟨z2,∇L(v̄1(z, τ))⟩ + ā(τ)dā(τ)

dτ |z1 − z∗
1 |2 + dā(τ)

dτ ⟨z1 − z∗
1 , z2⟩

= − ā(τ)ζ2

M
⟨z1 − z∗

1 ,∇L(v̄1(z, τ))⟩ + ā(τ)dā(τ)
dτ |z1 − z∗

1 |2

+
(
ā(τ) − 2d̄(τ)

)
|z2|2 +

(
ā2(τ) − 2d̄(τ)ā(τ) + dā(τ)

dτ

)
⟨z1 − z∗

1 , z2⟩

− ζ2

M
⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩ (3.42)

for all (z, τ) ∈ R2n × R≥0. Since L is C1, nonstrongly convex, and has a unique

minimizer by Assumption 3.1.8, then using the definition of nonstrong convexity

in Definition 2.2.2 with u1 = z∗
1 and w1 = v̄1(z, τ), where v̄1 is defined via (3.41),

we get

− ⟨v̄1(z, τ) − z∗
1 ,∇L(v̄1(z, τ))⟩ ≤ − (L(v̄1(z, τ)) − L∗) (3.43)

for each z ∈ R2n and τ ∈ R≥0. Using the definition of nonstrong convexity in

Definition 2.2.2 with u1 = v̄1(z, τ), where v̄1 is defined via (3.41), and w1 = z1

62

yields

〈
∇L(z1), β̄(τ)z2

〉
≤ L(v̄1(z, τ)) − L(z1) (3.44)

for each z ∈ R2n and τ ∈ R≥0. Combining (3.43) and (3.44) yields

− ⟨v̄1(z, τ) − z∗
1 ,∇L(v̄1(z, τ))⟩ +

〈
∇L(z1), β̄(τ)z2

〉
≤−L(v̄1(z, τ)) + L(v̄1(z, τ)) −

L(z1) + L∗. Then, rearranging terms gives, for all z ∈ R2n and τ ∈ R≥0,

− ⟨z1 − z∗
1 ,∇L(v̄1(z, τ))⟩ (3.45)

≤ − (L(z1) − L∗) +
〈
β̄(τ)z2,∇L(v̄1(z, τ)) − ∇L(z1)

〉
.

Substituting the bound in (3.45) into (3.42) yields

V̇1(z, τ) ≤ − ā(τ)ζ2

M

(
(L(z1) − L∗) −

〈
β̄(τ)z2,∇L(v̄1(z, τ)) − ∇L(z1)

〉)
+ ā(τ)dā(τ)

dτ |z1 − z∗
1 |2 +

(
ā(τ) − 2d̄(τ)

)
|z2|2

+
(
ā2(τ) − 2d̄(τ)ā(τ) + dā(τ)

dτ

)
⟨z1 − z∗

1 , z2⟩

− ζ2

M
⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩ (3.46)

for all (z, τ) ∈ R2n × R≥0. Then, noticing that ā(τ)
2 |ā(τ) (z1 − z∗

1) + z2|2 =
ā3(τ)

2 |z1 − z∗
1 |2+ā2(τ) ⟨z1 − z∗

1 , z2⟩ + ā(τ)
2 |z2|2, adding it to and subtracting it from

(3.46), and rearranging terms, yields

V̇1(z, τ) ≤ − ā(τ)V1(z, τ) + ā(τ)dā(τ)
dτ |z1 − z∗

1 |2 +
(
ā(τ) − 2d̄(τ)

)
|z2|2

+
(
ā2(τ) − 2d̄(τ)ā(τ) + dā(τ)

dτ

)
⟨z1 − z∗

1 , z2⟩ + ā3(τ)
2 |z1 − z∗

1 |2

+ ā(τ)
2 |z2|2 + ā2(τ) ⟨z1 − z∗

1 , z2⟩

63

− ζ2

M

(
1 − β̄(τ)ā(τ)

)
⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩

≤ − ā(τ)V1(z, τ) +
(
ā3(τ)

2 + ā(τ)dā(τ)
dτ

)
|z1 − z∗

1 |2

+
(

3ā(τ)
2 − 2d̄(τ)

)
|z2|2

+
(

2ā2(τ) − 2d̄(τ)ā(τ) + dā(τ)
dτ

)
⟨z1 − z∗

1 , z2⟩

− ζ2

M

(
1 − β̄(τ)ā(τ)

)
⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩ (3.47)

for all (z, τ) ∈ R2n × R≥0. Due to the definitions of the functions ā and d̄, in

(3.39) and (3.35), respectively, the cross term ⟨z1 − z∗
1 , z2⟩ vanishes since 2ā2(τ) −

2d̄(τ)ā(τ) + dā(τ)
dτ = 2

(2
τ + 2

)2
− 2

(
3

2(τ + 2)

)(2
τ + 2

)
− 2

(τ + 2)2 = 0. More-

over, the definitions of the functions d̄ and ā lead to the |z1 − z∗
1 |2 and |z2|2 terms

in (3.47) vanishing due to ā3(τ)
2 +ā(τ)dā(τ)

dτ =

(
2

τ+2

)3

2 +
(2
τ + 2

)(
− 2

(τ + 2)2

)
= 0

and 3ā(τ)
2 − 2d̄(τ) = 3(2

τ+2)
2 − 2

(
3

2(τ+2)

)
= 0. The bound in (3.47) reduces to

V̇1(z, τ) ≤ −ā(τ)V1(z, τ) − ζ2

M

(
1 − β̄(τ)ā(τ)

)
⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩

(3.48)

for all (z, τ) ∈ R2n × R≥0. By Assumption 3.1.8, L is C1 and nonstrongly convex.

By [52, Theorem 2.1.3], a function L is C1 and nonstrongly convex if and only if,

for each w1, u1 ∈ Rn,

⟨∇L(w1) − ∇L(u1), w1 − u1⟩ ≥ 0. (3.49)

Then, since β̄(τ) ≥ 0 for all t ≥ 0, using the bound in (3.49) with w1 = v̄1(z, τ),

64

where v̄1 is defined in (3.41), and u1 = z1, we get, for all z ∈ R2n and τ ∈ R≥0,

⟨v̄1(z, τ) − z1,∇L(v̄1(z, τ)) − ∇L(z1)⟩ =

β̄(τ) ⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩ ≥ 0

−β̄(τ) ⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩ ≤ 0

− ⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩ ≤ 0 (3.50)

Therefore, since 1− β̄(τ)ā(τ) ≥ 0, due to ā, defined via (3.39), equaling 1 at τ = 0

and monotonically decreasing toward zero (but being always positive) as τ tends

to ∞, and due to β̄, defined via (3.35), equaling 0 at τ = 0 and monotonically

increasing to 1 as τ tends to ∞, we use (3.50) to upper bound the last term of

(3.48) as follows:

− ζ2

M

(
1 − β̄(τ)ā(τ)

)
⟨z2,∇L(v̄1(z, τ)) − ∇L(z1)⟩ ≤ 0 (3.51)

This leads to, z ∈ R2n and τ ∈ R≥0,

V̇1(z, τ) ≤ −ā(τ)V1(z(τ), τ). (3.52)

Applying Grönwall’s Inequality to (3.52), namely,

V1(z(t), t) ≤ V1(z(0), 0) exp
(

−
∫ t

0
ā(τ)dτ

)
= V1(z(0), 0) exp (−2 ln (t+ 2) − 2 ln (2))

= V1(z(0), 0) exp
(

− ln
(
t+ 2

2

)2)

= V1(z(0), 0)

 1

exp
(

ln
(

t+2
2

)2
)

65

= 4
(t+ 2)2V1(z(0), 0)

shows that each maximal solution t 7→ (z(t), τ(t)) to the closed-loop algorithm

H1, such that τ(0) = 0, satisfies (3.40), for all t ≥ 0.

The following proposition establishes that the closed-loop algorithm (3.37) has

a convergence rate 1
(t+2)2 for all t ≥ 0. To prove it, we use Proposition 3.1.11. This

theorem is a new result, which was not analyzed in [12].

Proposition 3.1.12. (Convergence rate for (3.37)) Let L satisfy Assumptions

3.1.8 and 3.1.3. Let ζ > 0 and M > 0 come from Assumption 3.1.3. Then, for

each maximal solution t 7→ (z(t), τ(t)) to the closed-loop algorithm (3.37) with

τ(0) = 0, the following holds:

ζ2

M
(L(z1(t)) − L∗) (3.53)

≤ V1(z(t), t) ≤ 4c
(t+ 2)2

(
|z1(0) − z∗

1 |2 + |z2(0)|2
)

for all t ≥ 0, where c := (1 + ζ2) exp
(√

13
4 + ζ4

M

)
.

Proof. The proof consists of the following steps.

1) First, we use the definition of nonstrong convexity in Definition 2.2.2 and the

Lipschitz continuity of ∇L in Assumption 3.1.3, to show that V1 satisfies

V1(z, τ) ≤ α2 |z|2A2
:= (1 + ζ2) |z|2A2

(3.54)

where 1 + ζ2 > 0;

2) Then, we use the Lipschitz continuity of ∇L in Assumption 3.1.3 and the

comparison principle to show that the bound in step 1) along t 7→ z(t) satisfies

66

V1(z(t), t) ≤ (1 + ζ2) exp
(

2
(√

13
4 + ζ4

M

)
t
) (

|z1(0) − z∗
1 |2 + |z2(0)|2

)
for all t ≥

0;

3) Next, we show that at t = 0, V1(z(0), 0) is upper bounded by

c
(
|z1(0) − z∗

1 |2 + |z2(0)|2
)
, where c = (1 + ζ2) exp

(√
13
4 + ζ4

M

)
;

4) Finally, we combine the bound in 3) with (3.40) to get (3.53) for all t ≥ 0.

Proceeding with step 1), the Lyapunov function V1, defined via (3.38), can be

upper bounded by a class-K∞ function, namely, defining the set

A2 := {z∗
1} × {0} (3.55)

then, V1 satisfies

V1(z, τ) ≤ α2 |z|2A2
(3.56)

for all (z, τ) ∈ R2n × R≥0, and with α2 derived as follows. Since ā, defined via

(3.39), equals 1 at τ = 0 and ā is monotonically decreasing toward zero (but being

always positive) as τ tends to ∞, then ā is upper bounded by 1, and, consequently,

the first term of V1 can be upper bounded, for all (z, τ) ∈ R2n × R≥0, as follows:

1
2

∣∣∣∣∣ 2
(τ + 2) (z1 − z∗

1) + z2

∣∣∣∣∣
2

≤ |z1 − z∗
1 |2 + |z2|2 . (3.57)

The second term of V1 can be bounded as follows. Since by Assumption 3.1.8, L is

C1, (nonstrongly) convex, and has a single minimizer z∗
1 , then, since ∇L(z∗

1) = 0,

we can upper bound L(z1) − L∗ in the following manner, using the definition of

nonstrong convexity in Definition 2.2.2 and the Lipschitz continuity of ∇L in As-

sumption 3.1.3, using u1 = z∗
1 and w1 = z1: |L(z1) − L∗| ≤ |⟨∇L(z1), z∗

1 − z1⟩| ≤

|∇L(z1)| |z1 − z∗
1 | ≤ M |z1 − z∗

1 |2, for each z1 ∈ Rn and each τ ∈ R≥0. Therefore,

67

since L(z1) ≥ L∗, we can upper bound the second term of V1 as follows:

ζ2

M
(L(z1) − L∗) ≤ ζ2 |z1 − z∗

1 |2 ≤ ζ2
(
|z1 − z∗

1 |2 + |z2|2
)

(3.58)

for all z ∈ R2n. Using (3.57) and (3.58), V1(z, τ) is upper bounded as in (3.54) for

each z ∈ R2n and each τ ∈ R≥0.

Next, for step 2), in order to apply the comparison principle, we define the

system

ż1

ż2

 =

 z2

−2d̄(t)z2 − ζ2

M
∇L(z1 + β̄(t)z2)

 =: f(z, t) z ∈ R2n. (3.59)

Since ∇L is Lipschitz continuous with constant M > 0 by Assumption 3.1.3,

then using Assumption 3.1.3 with w1 = z1 + β̄(t)z2 and u1 = z∗
1 yields, for each

z1, z2 ∈ Rn and each t ∈ R≥0,

∣∣∣∇L(z1 + β̄(t)z2)
∣∣∣ ≤ M

∣∣∣z1 − z∗
1 + β̄(t)z2

∣∣∣ . (3.60)

Then, since
∣∣∣d̄(t)∣∣∣ ≤ 3

4 and
∣∣∣β̄(t)

∣∣∣ ≤ 1 for all t ≥ 0, we have

|f(z, t)|2 = |z2|2 +
∣∣∣∣∣−2d̄(t)z2 − ζ2

M
∇L(z1 + β̄(t)z2)

∣∣∣∣∣
2

≤ |z2|2 + 9
4 |z2|2 + ζ4

M2

∣∣∣∇L(z1 + β̄(t)z2)
∣∣∣2

≤ 13
4 |z2|2 + ζ4

M

(
|z1 − z∗

1 |2 + |z2|2
)

= ζ4

M
|z1 − z∗

1 |2 +
(

13
4 + ζ4

M

)
|z2|2

≤
(

13
4 + ζ4

M

)
|z|2A2

(3.61)

for all z ∈ R2n and all t ∈ R≥0, where A2 is defined via (3.55). The second

68

inequality in (3.61) comes from applying (3.60). The comparison principle [77,

Lemma 3.4], leads to the following bound of the norm of the solution to (3.59):

|z(t)|A2
≤ exp

1
2

√
13
4 + ζ4

M
t

 |z(0)|A2
(3.62)

for all t ≥ 0. Then, (3.56) along t 7→ (z(t)) reduces to, for all t ≥ 0

V1(z(t), t) ≤
(
1 + ζ2

)
|z(t)|2A2

≤
(
1 + ζ2

)
exp

√13
4 + ζ4

M
t

(|z1(0) − z∗
1 |2 + |z2(0)|2

)
. (3.63)

In step 3), we evaluate this bound at t = 0. Finally, for step 4), taking c =

(1 + ζ2) exp
(√

13
4 + ζ4

M

)
, combining (3.40) with 3) at t = 0 yields (3.53) for all

t ≥ 0.

The following proposition establishes that the closed-loop system (3.37) has

the set

A1 := {z∗
1} × {0} × R≥0 (3.64)

uniformly globally asymptotically stable. To prove it, we use Proposition 3.1.12

and [21, Theorem 3.18]. This proposition is a new result, which was not analyzed

in [12].

Proposition 3.1.13. (UGAS of A1 in (3.64) for (3.37)) Let L satisfy Assump-

tions 3.1.8 and 3.1.3. Let ζ > 0 and let M > 0 come from Assumption 3.1.3.

Then, the set A1 in (3.64) is uniformly globally asymptotically stable for (3.37).

Proof. By Proposition 3.1.10, each maximal solution to H1 in (3.37) is complete

and unique. Next, since L is C1, nonstrongly convex, and has a unique minimizer

by Assumption 3.1.8, then A1 ⊂ R2n × R≥0, defined via (3.64), is closed by

69

construction, satisfying the first assumption of [21, Theorem 3.18]. Then, since

by Assumption 3.1.8, L is C1, then V1 in (3.38) is continuously differentiable and

therefore, since R2n × R≥0 ⊂ dom V1, V1 is a Lyapunov function candidate for H1

by [21, Definition 3.16], satisfying the second assumption of [21, Theorem 3.18].

Next, since the distance of the state τ to R≥0 is always zero, then we show

that V1 in (3.38) is radially unbounded in z, relative to A2, defined via (3.55).

Since L has quadratic growth away from z∗
1 with constant α > 0, by Assumption

3.2.4, and due to ā, defined via (3.39), equaling 1 at τ = 0 and monotonically

decreasing toward zero (but being always positive) as τ tends to ∞, then we lower

bound V1 as follows:

V1(z, τ) =1
2 |ā(τ) (z1 − z∗

1) + z2|2 + ζ2

M
(L(z1) − L∗) (3.65)

≥1
2 |ā(τ) (z1 − z∗

1) + z2|2 + αζ2

M
|z1 − z∗

1 |2

≥ ā2(τ)
2 |z1 − z∗

1 |2 + ā(τ) ⟨z1 − z∗
1 , z2⟩ + 1

2 |z2|2 + αζ2

M
|z1 − z∗

1 |2

≥
(
ā2(τ)

2 + αζ2

M

)
|z1 − z∗

1 |2 + ā(τ)
2 ⟨z1 − z∗

1 , z2⟩

+ ā(τ)
2 ⟨z1 − z∗

1 , z2⟩ + 1
2 |z2|2

≥
[
(z1 − z∗

1)⊤ z⊤
2

]
B

z1 − z∗
1

z2

for each z ∈ R2n and each τ ∈ R≥0, where

B :=

(

ā2(τ)
2 + αζ2

M

)
ā(τ)

2
ā(τ)

2
1
2

 . (3.66)

Next, we show that B in (3.66) is positive definite, so that there exists α1 such

70

that3

α1 |z|2A2
≤
[
(z1 − z∗

1)⊤ z⊤
2

]
B

z1 − z∗
1

z2

 ≤ V1(z, τ) (3.67)

for each z ∈ R2n and each τ ∈ R≥0. To that end, we show that the leading principal

minors of B in (3.66) are strictly positive, as follows. Since ā(τ) ∈ (0, 1] for each

τ ∈ R≥0, α > 0 from Assumption 3.2.4, ζ > 0, and M > 0 from Assumption 3.1.3,

we have:

(
ā2(τ)

2 + αζ2

M

)
> 0 (3.68a)

det(B) =
(1

2

)(
ā2(τ)

2 + αζ2

M

)
−
(
ā(τ)

2

)2

= αζ2

2M > 0. (3.68b)

Therefore, since the leading principal minors of B are strictly positive, then B is

positive definite. Hence, there exists α1 such that (3.67) is true, and V1 is radially

unbounded in z, relative to A2.

By Proposition 3.1.11, V1 satisfies (3.52) for each z ∈ R2n and τ ∈ R≥0. Since L

is C1, nonstrongly convex, and has a unique minimizer by Assumption 3.1.8, then

L is positive definite with respect to z∗
1 and, consequently, V1 is positive definite

with respect to A1 in (3.64). Then, since ā(τ) ∈ (0, 1] for each τ ≥ 0, ρ
(
|x|A1

)
:=

ā(τ)V1(z, τ) is positive definite with respect to A1. Therefore, by an application

of [21, Theorem 3.18], every complete solution to (3.37) converges to A1 in (3.64).

The arguments above involving the Lyapunov theorem in [21, Theorem 3.18] yield

UGpAS of A1 for (3.37). Since by Proposition 3.1.10, each maximal solution to

(3.37) is complete, then A1 is uniformly globally asymptotically stable for for

(3.37).
3It was already shown that there exists α2 such that the upper bound on V1 in (3.54) holds.

71

3.1.3 Extensions of the Results for Nonstrongly Convex L

Some possible extensions to the results in Section 3.1.2 are as follows.

It is possible to extend the results in Section 3.1.2 to include C1, nonstrongly

convex objective functions L with a compact and connected set of minimizers.

With such an assumption, it would be straightforward to extend Proposition

3.1.10. Propositions 3.1.11, 3.1.12, and 3.1.13 could be extended via the as-

sumption of a compact and connected set of minimizers and the use of Clarke’s

generalized derivative in (2.4) with the Lyapunov function

V1(z, τ) := 1
2
∣∣∣ā(τ)∇z1 |z1|A1

+ z2

∣∣∣2 + ζ2

M
(L(z1) − L∗) (3.69)

where the compact and connected set A3 is defined as

A3 := {z1 ∈ Rn : ∇L(z1) = 0 } (3.70)

and4 L∗ := L(A3). Such an extension would lead to UGAS of the set A1 in (3.64)

for (3.37) when τ(0) = 0, for all t ≥ 0, as well as an exponential convergence rate

for all t ≥ 0, when A3 is a compact and connected set of minimizers.

It would be possible to further extend the results in Propositions 3.1.10, 3.1.11,

3.1.12, and 3.1.13 to include C1, nonstrongly convex objective functions L that

are also nonsmooth, through the use of Clarke’s generalized derivative.
4Since the value of L is the same for all z∗

1 ∈ A3, L(A3) is a singleton.

72

3.2 The Heavy Ball Method Modeled as a Dy-

namical System

The control algorithm leading to (1.1) is

u = κ(h(z)) = −λz2 − γ∇L(z1) (3.71)

where λ > 0 and γ > 0. The function h is defined differently, based on the

different algorithms proposed in this dissertation. For some such algorithms, h is

defined as

h(z) :=

 z2

∇L(z1)

 (3.72)

while for others, h is defined as

h(z) :=

z2

∇L(z1)

L(z1)

 . (3.73)

Using the plant in (3.1), we denote the closed-loop system resulting from κ in

(3.71) as

ż =

 z2

κ(h(z))

 z ∈ R2n. (3.74)

3.2.1 Strongly Convex L

For the analysis in this section, we impose Assumptions 3.1.1 and 3.1.3 on L.

The following lemma, from [13], summarizes some of the results of Lyapunov

theory from an optimization perspective, for strongly convex L. It employs the

73

following Lyapunov function, proposed in [13]

V (z) := L(z1) − L∗. (3.75)

Lemma 3.2.1. Let L satisfy Assumption 3.1.3 and assume L is bounded below,

namely, L(z1) ≥ L∗. Let the function W be such that −V̇ (z(t)) ≥ W(z(t)) ≥ 0

for all t ≥ 0. Let W(z(t)) ≥ ηV (z(0)) for all t ≥ 0, where η > 0. Then, each

maximal solution t 7→ z(t) to (3.74) satisfies

V (z(t)) ≤ V (z(0)) exp(−ηt) (3.76)

for all t ≥ 0.

Proof. Since W(z(t)) ≥ ηV (z(0)) for all t ≥ 0, and since −V̇ (z(t)) ≥ W(z(t)),

this means that V̇ (z(t)) ≤ ηV (z(0)). Applying Grönwall’s inequality to V̇ (z(t)) ≤

ηV (z(0)), we arrive at (3.76).

The following proposition, from [13], gives an exponential convergence rate for

functions that satisfy the Polyak-Łojasiewicz condition in Definition 2.2.4, which

is a weaker condition than strong convexity [68] [71]. To prove it, we use Lemma

3.2.1.

Proposition 3.2.2. Let L satisfy the Polyak-Łojasiewicz condition in Definition

2.2.4. Let the function W be such that −V̇ (z(t)) ≥ W(z(t)) ≥ 0 for all t ≥ 0.

Let W(z(t)) ≥ ηV (z(0)) for all t ≥ 0, where η > 0. Then, each maximal solution

t 7→ (z1(t), z2(t)) to (3.74) satisfies

L(z1(t)) − L∗ ≤ (L(z1(0)) − L∗) exp (−2µt) (3.77)

for all t ≥ 0, where µ > 0 comes from Definitions 2.2.4 and 2.2.1.

74

Proof. By assumption, L satisfies the Polyak-Łojasiewicz condition in Definition

2.2.4. Then, since V is defined via (3.75), we have V̇ (z(t)) = ∇L(z1(t)). Letting

W(z) := |∇L(z1)|2 and η := 2µ, by Lemma 3.2.1 we have

−V̇ (z(t)) ≥W(z(t))

V̇ (z(t)) ≤ − W(z(t))

V̇ (z(t)) ≤ − ηV (z(0)) (3.78)

Applying Grönwall’s inequality to (3.78), we get that each solution t 7→ (z(t)) of

(3.74) also satisfies (3.77) for all t ≥ 0.

When L satisfies Assumption 3.1.1, the following theorem gives an exponential

convergence rate for the closed-loop algorithm in (3.74). To prove it, we use

Proposition 3.2.2.

Proposition 3.2.3. (Convergence rate of (3.74)) Let L satisfy Assumption 3.1.1.

Then, each maximal solution t 7→ z(t) to (3.74) satisfies (3.77) for all t ≥ 0.

Proof. Since L is strongly convex with µ > 0 by Assumption 3.1.1, then this

implies that L also satisfies the Polyak-Łojasiewicz condition in Definition 2.2.4

with µ > 0; see [68, Appendix B]. Therefore, by Proposition 3.2.2, each maximal

solution t 7→ z(t) to (3.74) satisfies (3.77) for all t ≥ 0.

3.2.2 Nonstrongly Convex L

For the analysis in this section, we impose Assumptions 3.1.8 and 3.1.3 on L.

We also impose the following assumption on L for the results in this section.

Assumption 3.2.4 (Quadratic growth of L). The function L has quadratic growth

75

away from its minimizer z∗
1; i.e., there exists α > 0 such that

L(z1) − L∗ ≥ α |z1 − z∗
1 |2 ∀z1 ∈ Rn. (3.79)

Remark 3.2.5. Assumption 3.2.4 is commonly used in the analysis of convex

optimization algorithms; see, e.g., [67], [68]. Such an assumption is employed to

establish the convergence rate for (3.74), when L is nonstrongly convex. Addition-

ally, Assumption 3.2.4 will be employed in some of our proposed hybrid algorithms

to as a means of determining when the state z is near the minimizer of L, via

measurements of ∇L.

When L satisfies Assumptions 3.1.8 and 3.1.3, the closed-loop system in (3.74)

satisfies the hybrid basic conditions, listed in Definition 2.1.1, as demonstrated in

the following lemma. A closed-loop system that satisfies the hybrid basic condi-

tions is said to be well-posed in the sense that the limit of a graphically convergent

sequence of solutions to (3.74) having a mild boundedness property is also a so-

lution to (3.74) [21].

Lemma 3.2.6. (Well-posedness of (3.74)) Let the function L satisfy Assumptions

3.1.8 and 3.1.3. Let κ be defined via (3.71). Then, the closed-loop system in (3.74)

satisfies the hybrid basic conditions.

Proof. The set C := R2n is closed, and the set D := ∅.

The objective function L is C1, nonstrongly convex, and has a single minimizer

by Assumption 3.1.8. Therefore, since ∇L is continuous, then h in both (3.72)

and (3.73) and κ in (3.71) are continuous.

In turn, the map z 7→ FP (z, κ(h(z))) is also continuous since FP in (3.1) is a

C1 function of κ in (3.71) and h in either (3.72) or (3.73). The map G(z) := ∅.

76

Under Assumptions 3.1.8, 3.1.3, and 3.2.4, each maximal solution to (3.74)

is bounded, complete, and unique. Such a property is useful since it guarantees

that nontrivial solutions to (3.74) exist from each initial point in R2n, and that

such solutions do not escape R2n. When each maximal solution is complete, then

uniform global pre-asymptotic stability of {z∗
1} × {0} becomes uniform global

asymptotic stability.

Proposition 3.2.7. (Existence of solutions to (3.74)) Let the function L satisfy

Assumptions 3.1.8, 3.1.3, and 3.2.4. Let κ be defined via (3.71). Then, each

maximal solution t 7→ z(t) to (3.74) is bounded, complete, and unique.

Proof. Since L is C1 by Assumption 3.1.8, and ∇L is Lipschitz continuous by

Assumption 3.1.3, then h in (3.72) and (3.73) and κ in (3.71) are Lipschitz continu-

ous, which, since FP is a C1 function of h and κ, means the map z 7→ FP (z, κ(h(z)))

is also Lipschitz continuous. Therefore, by [77, Theorem 3.2], ż = FP (z, κ(h(z)))

has no finite time escape and each maximal solution to (3.74) is complete and

unique. To show that each maximal solution to (3.74) is bounded, we use the

Lyapunov function

V0(z) := γ (L(z1) − L∗) + 1
2 |z2|2 (3.80)

defined for each z ∈ R2n, where γ > 0. Then, solutions to ż = FP (z, κ(h(z)))

starting from any cV -sublevel set W := {z ∈ R2n : V0(z) ≤ cV }, cV ≥ 0, remains

in such a set for all time since V0 in (3.80) satisfies

V̇0(z)=⟨∇V (z), FP (z, κ(h(z)))⟩=−λ |z2|2 ≤ 0 (3.81)

for each z ∈ R2n, since λ is positive. Then, to show that V0 in (3.81) is radially

unbounded, we derive class-K∞ functions α1 and α2 such that, for all z ∈ R2n,

77

with z∗ := (z∗
1 , 0),

α1(|z − z∗|) := min
{
αγ,

1
2

}
|z − z∗|2 ≤ V0(z) (3.82)

≤ α2(|z − z∗|) :=
(
Mγ + 1

2

)
|z − z∗|2 .

Since L has quadratic growth away from z∗
1 with constant α > 0 by Assumption

3.2.4, then the choice of α1 comes from lower bounding V0 in (3.80) as follows

V0(z) = γ (L(z1) − L∗) + 1
2 |z2|2 ≥ αγ |z1 − z∗

1 |2 + 1
2 |z2|2

≥ min
{
αγ,

1
2

}
|z − z∗|2 = α1(|z − z∗|) (3.83)

for each z ∈ R2n. The choice of α2 comes from the following. Since L is C1,

nonstrongly convex, has a single minimizer by Assumption 3.1.8, and since ∇L

is Lipschitz continuous with constant M > 0 by Assumption 3.1.3, we first upper

bound V0 in (3.80) by using the definition of nonstrong convexity in Definition

2.2.2 to get, for each z ∈ R2n,

V0(z) = γ (L(z1) − L∗) + 1
2 |z2|2 ≤ γ |∇L(z1)| |z1 − z∗

1 | + 1
2 |z2|2 . (3.84)

Then, using the Lipschitz bound in Assumption 3.1.3 with u1 = z∗
1 and w1 = z1,

we upper bound (3.84), yielding

V0(z) = γ (L(z1) − L∗) + 1
2 |z2|2 ≤ γ |∇L(z1)| |z1 − z∗

1 | + 1
2 |z2|2

≤ Mγ |z1 − z∗
1 |2 + 1

2 |z2|2

≤
(
Mγ + 1

2

)
|z − z∗|2 = α2(|z1 − z∗

1 |) (3.85)

for each z ∈ R2n. Since (3.82) is satisfied for V0 in (3.80) for each z ∈ R2n, then

78

V0 is radially unbounded (in z, relative to {z∗
1} × {0}). Therefore, W is compact

and, due to (3.81), forward invariant for (3.74), that is, any nontrivial solution

starting in the subset W is complete and stays in W . Therefore, each maximal

solution to (3.74), is bounded.

The following result establishes that the closed-loop algorithm (3.74) has the

set {z∗
1} × {0} uniformly globally asymptotically stable. To prove it, we use an

invariance principle.

Proposition 3.2.8. (Uniform global asymptotic stability of {z∗
1}×{0} for (3.74))

Let L satisfy Assumptions 3.1.8, 3.2.4, and 3.1.3. For each λ > 0 and γ > 0,

the set {z∗
1} × {0} is uniformly globally asymptotically stable for the closed-loop

algorithm (3.74).

Proof. By Proposition 3.2.7, each maximal solution to the closed-loop algorithm

in (3.74) is bounded, complete, and unique. Recall that, in the proof of Proposition

3.2.7, it was shown that V0 in (3.80) satisfies (3.81) for all z ∈ R2n, since λ is

positive. Therefore, by an application of Theorem A.1.3, since γ > 0 and λ > 0,

the set {z∗
1}×{0} is stable for the closed-loop algorithm in (3.74). Since by Lemma

3.2.6 the closed-loop algorithm in (3.74) satisfies the hybrid basic conditions, then,

using the invariance principle in Theorem A.1.6, each maximal solution that is

complete and bounded approaches the largest weakly invariant set for the closed-

loop algorithm in (3.74) that is contained in

{
z ∈ R2n : V̇0(z) = 0

}
∩
{
z ∈ R2n : V0(z) = r

}
, r ≥ 0. (3.86)

Such a set is nonempty only when r = 0 and, precisely, is equal to {z∗
1}×{0}. This

property can be seen by noticing that
{
z ∈ R2n : V̇0(z) = 0

}
= {z ∈ R2n : z2 = 0},

79

and that after setting z2 to zero in (3.74) we obtain

ż1

0

 =

 0

−γ∇L(z1)

. For

any solution to this system, its z1 component satisfies 0 = γ∇L(z1), which, since

γ > 0 and since ∇L(z1) = 0 only when z1 is the minimizer of L, leads to z1 = z∗
1 .

Then, the only maximal solution that starts and stays in (3.86) is the solution

from {z∗
1} × {0}, for which r = 0. Then, every bounded and complete solution to

the closed-loop algorithm in (3.74) converges to {z∗
1}×{0}. The arguments above

involving the Lyapunov theorem in Theorem A.1.3 and the invariance principle in

Theorem A.1.6 yield global pre-asymptotic stability of {z∗
1} × {0} for H0. Since

by Proposition 3.2.7, each maximal solution to (3.74) is complete, then {z∗
1}×{0}

is globally asymptotically stable for the closed-loop algorithm in (3.74). Since

(3.74) satisfies the hybrid basic conditions by Lemma 3.2.6, then, by Theorem

A.1.4, {z∗
1} × {0} is uniformly globally asymptotically stable for (3.74).

Next, we establish the convergence rate of the closed-loop algorithm in (3.74).

To do so, we use the following Lyapunov function, proposed in [25, Lemma 4.2],

for (3.74):

V (z) := γ (L(z1) − L∗) + 1
2 |ψ(z1 − z∗

1) + z2|2 + ν

2 |z1 − z∗
1 |2 (3.87)

where, given λ > 0, ψ > 0 is chosen such that ν := ψ (ψ − λ) < 0. When L satis-

fies Assumption 3.1.8, the following lemma, which is a version of [25, Lemma 4.2]

tailored for the unperturbed heavy ball algorithm in (3.74), gives an upper bound

on the change of the Lyapunov function in (3.87).

Lemma 3.2.9. Let L satisfy Assumption 3.1.8, and let λ > 0 and γ > 0, which

come from (3.74), be given. For each ψ > 0 such that ν := ψ(ψ − λ) < 0, the

80

following bound is satisfied for each z ∈ R2n:

V̇ (z) ≤ −ψ (a(z1) + 2νc(z1)) + 2(ψ − λ)b(z) (3.88)

where V is defined in (3.87), a(z1) := γ (L(z1) − L∗), b(z) := 1
2 |ψ(z1 − z∗

1) + z2|2,

and c(z1) := 1
2 |z1 − z∗

1 |2.

Proof. Since L is C1, nonstrongly convex, and has a single minimizer z∗
1 , and since

∇V (z) =[γ∇L(z1) + ψ (ψ (z1 − z∗
1) + z2) + ν (z1 − z∗

1) ψ (z1 − z∗
1) + z2], then we

evaluate the derivative of V , defined via (3.87), using the map z 7→ FP (κ(h(z))),

where FP is defined via (3.1), κ is defined in (3.71), and h is defined via either

(3.72) or (3.73). For each z ∈ R2n, we obtain

V̇ (z) = ⟨∇V (z), FP (κ(h(z)))⟩ =
〈

∇V (z),

 z2

κ(h(z))

〉 (3.89)

=γ ⟨∇L(z1), z2⟩ + ψ ⟨z2, ψ (z1 − z∗
1) + z2⟩ + ν ⟨z2, z1 − z∗

1⟩

− λ ⟨z2, ψ (z1 − z∗
1) + z2⟩ − γ ⟨∇L(z1), ψ (z1 − z∗

1) + z2⟩

= − γψ ⟨∇L(z1), z1 − z∗
1⟩ + (ν + ψ(ψ − λ)) ⟨z2, z1 − z∗

1⟩ + (ψ − λ) |z2|2 .

Note that |ψ (z1 − z∗
1) + z2|2 = |z2|2 + 2ψ ⟨z2, z1 − z∗

1⟩ + ψ2 |z1 − z∗
1 |2, from where

we obtain |z2|2 = |ψ (z1 − z∗
1) + z2|2 −2ψ ⟨z2, z1 − z∗

1⟩−ψ2 |z1 − z∗
1 |2. Substituting

the expression for |z2|2 into (3.89), we arrive at, for all z ∈ R2n,

V̇ (z) = − γψ ⟨∇L(z1), z1 − z∗
1⟩ + (ψ − λ) |ψ (z1 − z∗

1) + z2|2

+ (ν − ψ(ψ − λ)) ⟨z2, z1 − z∗
1⟩ − ψ2(ψ − λ) |z1 − z∗

1 |2

= − γψ ⟨∇L(z1), z1 − z∗
1⟩ + 2(ψ − λ)b(z) − 2ψνc(z1) (3.90)

since ν = ψ(ψ − λ), where b(z) = 1
2 |ψ (z1 − z∗

1) + z2|2 and c(z1) = 1
2 |z1 − z∗

1 |2.

81

Since L is C1, nonstrongly convex, and has a unique minimizer by Assumption

3.1.8, then using the definition of nonstrong convexity in Definition 2.2.2 with

u1 = z∗
1 and w1 = z1, we get − (L(z1) − L∗) ≥ − ⟨∇L(z1), z1 − z∗

1⟩. Substituting

it into (3.90) yields, for all z ∈ R2n, V̇ (z) ≤ −ψa(z1) + 2(ψ − λ)b(z) − 2ψνc(z1),

where a(z1) = γ (L(z) − L∗), and (3.88) is satisfied.

We employ Lemma 5.2 to show that when L satisfies Assumptions 3.1.8 and

3.2.4, the convergence rate of the closed-loop algorithm in (3.74) is exponential.

This is supported by the following proposition, which is a version of [25, Theo-

rem 3.2] tailored for the unperturbed heavy ball algorithm in (3.74).

Proposition 3.2.10. (Convergence rate for (3.74)) Let L satisfy Assumptions

3.1.8 and 3.2.4, let α > 0 come from (3.79), and let λ > 0 and γ > 0 come from

(3.74). For each m ∈ (0, 1) such that ψ := mαγ
λ

> 0 and ν := ψ(ψ − λ) < 0, each

maximal solution t 7→ z(t) to the closed-loop algorithm in (3.74) satisfies

L(z1(t)) − L∗ = O (exp (−(1 −m)ψt)) ∀t ∈ dom z (= R≥0). (3.91)

Proof. By Lemma 3.2.9, the bound in (3.88) is satisfied for V in (3.87) for each

z ∈ R2n since, by Assumption 3.1.8, L is C1, nonstrongly convex, and has a single

minimizer z∗
1 . Then, since ψ = mαγ

λ
> 0 is such that ν = ψ(ψ − λ) < 0 and c is

nonnegative, this leads to

V (z) = a(z1) + b(z) + νc(z1) ≤ a(z1) + b(z) ∀z ∈ R2n (3.92)

where a, b, and c are defined below (3.88). By Assumption 3.2.4, L has quadratic

growth away from z∗
1 . Therefore, we have, for all z ∈ R2n,

a(z1) + 2νc(z1) =a(z1) − 2 |ν| c(z1) = γ (L(z1) − L∗) − |ν| |z1 − z∗
1 |2 (3.93)

82

≥γ (L(z1) − L∗) − |ν| (L(z1) − L∗)
α

=
(

1 − |ν|
αγ

)
a(z1).

Observe that, for each m ∈ (0, 1) such that ψ = mαγ
λ

> 0 and ν = ψ(ψ − λ) < 0,

we have

|ν| = ψ (λ− ψ) ≤ λψ = mαγ (3.94)

It follows from (3.93) and (3.94) that

a(z1) + 2νc(z1) ≥ (1 −m)a(z1) (3.95)

for all z ∈ R2n. Noticing that from (3.92) we have a(z1) + 1
(1−m)b(z) ≥ a(z1) +

b(z) ≥ V (z), substituting (3.95) into (3.88) we have

V̇ (z) ≤ −(1 −m)ψa(z1) + 2(ψ − λ)b(z)

≤ −(1 −m)ψa(z1) + ψb(z) + (ψ − 2λ)b(z)

≤ −(1 −m)ψa(z1) + ψb(z)

≤ −(1 −m)ψ
(
a(z1) + 1

(1 −m)b(z)
)

≤ −(1 −m)ψV (z) (3.96)

for all z ∈ R2n. The third inequality comes from the fact that we choose ψ =
mαγ

λ
> 0 such that ψ−λ < 0 and, consequently, ψ− 2λ < 0. Applying Grönwall’s

inequality to (3.96) shows that every maximal solution t 7→ z(t) to (1.1) satisfies

V (z(t)) ≤ V (z(0)) exp (−(1 −m)ψt) for all t ∈ dom z (= R≥0). Therefore, each

maximal solution t 7→ z(t) to the closed-loop algorithm in (3.74) satisfies (3.91)

for all t ∈ dom z (= R≥0).

83

3.2.3 Extensions of the Results for Nonstrongly Convex L

Some possible extensions to the results in Section 3.2.2 are as follows.

It is possible to extend the results in Section 3.2.2 to include C1, nonstrongly

convex objective functions L with a compact and connected set of minimizers.

With such an assumption, it would be straightforward to extend Lemma 3.2.6

and Propositions 3.2.7 and Proposition 3.2.8. Lemma 3.2.9 and Proposition 3.2.10

could be extended via the assumption of a compact and connected set of mini-

mizers and the use of Clarke’s generalized derivative in (2.4) with the Lyapunov

function

V (z) := γ (L(z1) − L∗) + 1
2
∣∣∣ψ∇z1 |z1|A3

+ z2

∣∣∣2 + ν

2 |z1 − z∗
1 |2 (3.97)

where A3 is defined in (3.70) and L∗ := L(A3). Namely, when L is C1, nonstrongly

convex, and has a compact and connected set of minimizers, and given λ > 0 and

γ > 0, it can be shown that, for each ψ > 0 such that ν := ψ(ψ − λ) < 0, the

following bound is satisfied for each z ∈ R2n:

V ◦(z, FP (z, κ(h(z)))) ≤ −ψ (a(z) + 2νc(z)) + 2(ψ − λ)b(z) (3.98)

where V is defined via (3.97), FP is defined in (3.1), κ is defined via (3.71), h is

defined by either (3.72) or (3.73), and a, b, and c are defined under (3.88). When,

in addition, L satisfies Assumption 3.2.4, then it can be shown that each maximal

solution t 7→ z(t) to the closed-loop algorithm in (3.74) satisfies (3.91), for all

t ∈ dom z (= R≥0).

It would be possible to further extend the results in Lemmas 3.2.6 and 3.2.9 and

Propositions 3.2.7, 3.2.8, and 3.2.10 to include C1, nonstrongly convex objective

functions L that are also nonsmooth, through the use of Clarke’s generalized

84

derivative.

3.2.4 Nonconvex L

The set of all local minimizers of L is denoted as

A1min =
{
z1 ∈ R : ∇L(z1) = 0,∇2L(z1) > 0

}
. (3.99)

Conversely, the set of all local maximizers of L is denoted as

A1max =
{
z1 ∈ R : ∇L(z1) = 0,∇2L(z1) < 0

}
. (3.100)

Then, the set of all critical points of L : R → R is given as

A1 = A1min ∪ A1max . (3.101)

The following assumptions are required by some of the forthcoming results in

this section.

Assumption 3.2.11. (Properties of the objective function L)

(M1) L is a Morse function;

(M2) L is C2;

(M3) There exists d0 > 0 such that each z∗ = (z∗
1 , 0) ∈ A1 × {0} satisfies

(z∗ + d0B) ∩ ((A1 × {0}) \ {z∗}) = ∅ (3.102)

(M4) L is radially unbounded;

85

(M5) There exists α ∈ K such that for each ε > 0 sufficiently small, there exists

δ ∈ (0, α(ε)) such that if |∇L(z1)| ≤ ε then |z1|A1
≤ δ.

Remark 3.2.12. The finite separation d0 > 0 between critical points from (M3)

ensures that critical points do not accumulate, which is required for our algorithm

to solve (1.7). A similar finite separation assumption can be found in [78]. Addi-

tionally, we do not expect that a solution to (1.7) exists without (M3). Item (M4)

ensures radial unboundedness of the Lyapunov function used in the attractivity

analysis of the proposed algorithm. Item (M5) of Assumption 3.2.11 means that

z1 is suboptimal [66]. Item (M5) is used to ensure that the algorithm can detect

when the state z is near a critical point, using only measurements of ∇L.

In this section, we will analyze the properties of the heavy ball algorithm de-

fined in (3.74), when the objective function L is Morse, as described in Definition

2.3.1, Lemma 2.3.2, and Corollary 2.3.3. When L is a Morse function, the heavy

ball algorithm cannot converge to a local minimum when z1(0) is at a local maxi-

mum, while z2(0) = 0, as will be shown in Theorem 3.2.14 below. Thus, we define

the set of interest (namely, the set of local minimizers, when z2 = 0) as

Aamin := A1min × {0}. (3.103)

We also define the set of local maximizers, when z2 = 0, as

Aamax := A1max × {0}. (3.104)

When item (M2) of Assumption 3.2.11 is satisfied, then each maximal solution

to (3.74), is complete and bounded, as stated in the following lemma.

Lemma 3.2.13. (Existence of solutions to (3.74) when L is nonconvex and Morse)

86

Let L satisfy items (M1)-(M4) of Assumption 3.2.11. Let λ > 0 and γ > 0 be

given. Let κ and h be defined via (3.71) and (3.72), respectively. Then, each max-

imal solution t 7→ (z(t)) to (3.74) starting from z(0) ∈ U = R2 \ Aamax is bounded

and complete.

Proof. To show that there is no finite time escape from R2, for each solution

to (3.74) starting from z(0) ∈ U = R2 \ Aamax , we show that each solution to

(3.74) starting from z(0) ∈ U = R2 \ Aamax lies entirely in a compact subset

W ⊂ R2 \ Aamax , as stated in [77, Theorem 3.3]. Since L is C2, by item (M2) of

Assumption 3.2.11, then ∇L exists and is C1. This means that h in (3.72) and

κ in (3.71) are C1 and, in turn, the map z 7→ FP (z, κ(h(z))) is C1. Therefore, by

[77, Lemma 3.2], the map z 7→ FP (z, κ(h(z))) is locally Lipschitz. Next, due to L

being Morse and having isolated critical points by (M1), radially unbounded by

(M4), and due to the critical points having a minimum separation d0 > 0 by (M3),

L has n minimizers, indexed over i ∈ {1, 2, . . . , n} and n− 1 maximizers, indexed

over k ∈ {1, 2, . . . , n − 1}. Then, we define the Lyapunov function V piecewise,

as follows.

V (z) :=

γ
(
L(z1) − L(z∗

1i
)
)

+ 1
2z

2
2 , if z1 < z∗

1k
, i = k = 1

γ
(
L(z1) − L(z∗

1i
)
)

+ 1
2z

2
2 , if z1 ≥ z∗

1k−1
and z1 < z∗

1k
,

i = k, 1 < i ≤ n− 1, 1 < k ≤ n− 1

γ
(
L(z1) − L(z∗

1n
)
)

+ 1
2z

2
2 , if z1 ≥ z∗

1k
, i = n, k = n− 1

(3.105)

where γ > 0, z∗
1i
, z∗

1n
∈ A1min , and z∗

1k−1
, z∗

1k
∈ A1max , where A1min and A1max

are defined via (3.99) and (3.100), respectively. Since L is Morse by item (M1),

L has isolated critical points with a minimum separation d0 > 0, by item (M3).

Moreover, L is radially unbounded by item (M4) of Assumption 3.2.11. Therefore,

87

there exists a region of each minimizer z∗
1i

∈ A1min where L is positive definite with

respect to such a minimizer. Namely:

1) L is positive definite with respect to z∗
11 ∈ A1min on the domain (−∞, z∗

1k
),

where k = 1 and z∗
1k

∈ A1max ;

2) L is positive definite with respect to each z∗
1i

, 1 < i ≤ n− 1 on each respective

domain [z∗
1k−1

, z∗
1k

), where 1 < k ≤ n− 1 and z∗
1k−1

, z∗
1k

∈ A1max ;

3) L is positive definite with respect to z∗
1n

∈ A1min on the domain [z∗
1k

∞), where

k = n− 1 and z∗
1k

∈ A1max .

Consequently, a region of each minimizer, z∗ ∈ Aamin , where Aamin is defined in

(3.103), of V is positive definite with respect to each such minimizer. Namely:

1) V is positive definite with respect to (z∗
1i

× {0}) ∈ Aamin , i = 1, where Aamin is

defined in (3.103), on

U1 := (−∞, z∗
1k

) × R z∗
1k

∈ A1max , k = 1 (3.106)

2) V is positive definite with respect to each (z∗
1i

× {0}) ∈ Aamin on

Ui := [z∗
1k−1

, z∗
1k

) × R z∗
1k−1

, z∗
1k

∈ A1max , i = k, 1 < k ≤ n− 1, 1 < i ≤ n− 1

(3.107)

3) V is positive definite with respect to (z∗
1n

× {0}) ∈ Aamin , where i = n, on

Un := [z∗
1k

∞) × R z∗
1k

∈ A1max , k = n− 1 (3.108)

Furthermore, since L is radially unbounded by item (M4) of Assumption 3.2.11,

Then V is also radially unbounded on R2 \ Aamax .

88

Although L is C2 by item (M2), V , defined via (3.105), is only piecewise

continuous. Namely, V is C2 on R2 \ Aamax , where Aamax is defined via (3.104),

but V is not continuous at each z1 = z∗
1k

∈ A1max . Therefore, since for (3.74)

z1 ∈ R and z2 ∈ R, and since ∇V (z) = [γ∇L(z1) z2] exists everywhere except

at z1 = z∗
1k

∈ A1max , for each k ∈ {1, 2, . . . , n − 1}, then we evaluate Clarke’s

generalized derivative of V in (3.105), using the map z 7→ FP (z, κ(h(z)), where

FP is defined via (3.1), κ is defined in (3.71), and h is defined via (3.72). For each

z ∈ U := R2 \ Aamax , we obtain

V ◦(z, FP (z, κ(h(z)))) = max
∇V (z)∈∂V (z)

〈
∇V (z),

 z2

κ(h(z))

〉 (3.109)

=
〈

[γ∇L(z1) z2]

 z2

−λz2 − γ∇L(z1)

〉

= −λz2
2 ≤ 0

due to λ > 0. Therefore, each solution to ż = FP (z, κ(h(z))) starting from any

cV -sublevel set

W :=
{
z ∈ R2 \ Aamax : V (z) ≤ cV

}
(3.110)

remains in such a set for all time. Since V is C2 and radially unbounded on

R2 \ Aamax , due to L being C2 by item (M2) of Assumption 3.2.11 and radially

unbounded by item (M4) of Assumption 3.2.11, and due to ż = FP (z, κ(h(z)))

in (3.74) being locally Lipschitz on R2 \ Aamax by [77, Lemma 3.2], since L is C2

by item (M2) of Assumption 3.2.11, then W in (3.110) is compact and, due to

(3.109), forward invariant for (3.74), that is, by [77, Theorem 3.3], any nontrivial

solution starting in the subset W is complete and stays in W . Therefore, each

maximal solution to (3.74) is completed and bounded.

89

The following result shows that, when Assumption 3.2.11 holds, then (3.74)

has the set Aamin , defined via (3.103), that is attractive from all points such that

z(0) ∈ R2 \ Aamax . To establish this result, we use an invariance principle.

Theorem 3.2.14. (Almost global asymptotic stability of Aamin for (3.74)) Let L

satisfy Assumption 3.2.11. Let λ > 0 and γ > 0 be given. Let κ and h be defined

via (3.71) and (3.72), respectively. Then, the set Aamin in (3.103) is almost globally

asymptotically stable with basin of attraction given by R2 \Aamax, for (3.74), where

Aamax is defined via (3.104).

Proof. By Lemma 3.2.13, each maximal solution is bounded and complete for

(3.74). Recall that, in the proof of Lemma 3.2.13, it was shown that V in (3.105)

satisfies (3.109) for each z ∈ U = R2 \ Aamax . Therefore, by an application of

Theorem A.1.3, since γ > 0 and λ > 0, then Aamin is stable for each z ∈ U :=

R2\Aamax , for the closed-loop algorithm (3.74). Using an invariance principle, each

maximal solution that is complete and bounded approaches the largest weakly

invariant set for (3.74) that is contained in

{
z ∈ R2 \ Aamax : V ◦(z, FP (z, κ(h(z)))) = 0

}
∩
{
z ∈ R2 \ Aamax : V (z) = r

}
.

(3.111)

Such a set is nonempty only when r = 0 and, precisely, is equal to Aamin . This

property can be seen by noticing that

{z ∈ R2 \ Aamax : V ◦(z, FP (z, κ(h(z)))) = 0} = {z ∈ R2 \ Aamax : z2 = 0}, and that

after setting z2 to zero in (3.74) we obtain

ż1

0

 =

 0

−γ∇L(z1)

. For any solution

to this system, the z1 component satisfies 0 = γ∇L(z1), which since γ > 0 and

the minimizers of L belong to the set A1min , leads to z1 ∈ A1min . Then, every

complete and bounded solution starting from z(0, 0) ∈ U := R2 \ Aamax to the

closed-loop algorithm in (3.74) converges to Aamin .

90

Although V is not continuous on A1max , note that each z1 ∈ A1max satisfies

∇L(z1) = 0, since L is C2 by item (M2). Hence, since the points z ∈ Aamax are

not in U := R2 \ Aamax , then such points are simply equilibria, and if the state

z starts at such a point, it will be stuck at such a point for all time. Therefore,

Aamin is not attractive from all z(0, 0) ∈ R2, but instead Aamin is attractive from

all initial points such that z(0, 0) ∈ R2 \ Aamax .

The arguments above involving the Lyapunov theorem in Theorem A.1.3 and

an invariance principle yield almost global pre-asymptotic stability of Aamin , with

basin of attraction given by R2 \ (A1max × {0}), for (3.74). Since by Lemma

3.2.13, each maximal solution to (3.74) is complete, then Aamin is almost globally

asymptotically stable, with basin of attraction given by R2 \ (A1max × {0}), for

(3.74).

91

Chapter 4

Uniting Heavy Ball Algorithms

The uniting algorithms proposed in this chapter impose Assumptions 3.1.8,

3.1.3, and 3.2.4 on the objective function L. Namely, L is C1, nonstrongly convex,

and has a unique minimizer by Assumption 3.1.8, has a Lipschitz continuous

gradient by Assumption 3.1.3, and has quadratic growth away from its minimizer

z∗
1 by assumption 3.2.4.

4.1 Problem Statement

In Section 1.2.2, the performance of the heavy ball method for finding the

minimizer of an objective function is highly dependent on the choice of γ and λ,

and the need for a logic-based algorithm to determine which set of parameters to

use far from the minimizer and which one to use near the minimizer, was discussed.

The problem to solve is stated as follows:

Problem 4.1.1. Given a scalar, real-valued, continuously differentiable, and non-

strongly convex objective function L with a unique minimizer, design an optimiza-

tion algorithm that, without knowing the function L or the location of its mini-

mizer, has the minimizer uniformly globally asymptotically stable, with robustness

92

to arbitrarily small noise in measurements of ∇L.

4.2 Modeling

In this chapter, we propose an algorithm that solves Problem 4.1.1. As de-

scribed in Section 3.2, defining z1 as ξ and z2 as ξ̇, we interpret the heavy ball

ODE in (1.1) as a closed-loop system consisting of the plant in (3.1) and control

algorithm assigning u to κ in (3.71), where γ > 0 and λ > 0.

To cope with the trade-off between damping oscillations and converging fast,

we propose a logic-based algorithm that unites two control algorithms, one with

small λ used far from the minimizer to quickly get close to the critical point, and

one with large λ used near the minimizer to avoid oscillations. The proposed

logic-based algorithm “unites” the two optimization algorithms modeled by κq,

where the logic variable q ∈ Q := {0, 1} indicates which algorithm is currently

being used. Such optimization algorithms are designed as static state-feedback

laws of the form

κq(h(z)) := −λqz2 − γq∇L(z1) (4.1)

for each z ∈ R2n, where the output h will adopt different forms in the upcoming

sections. The parameters λq > 0 and γq > 0 should be designed for each q ∈ Q,

so as to achieve fast convergence without oscillations nearby the minimizer. The

algorithm for q = 1 will be designed to achieve fast convergence and is referred to

as global. The algorithm for q = 0 will be designed to achieve stable convergence

near the minimizer and is referred to as local; see, e.g., [22, Chapter 4]. Due to

q jumping between 0 and 1 with hysteresis, we refer to the proposed logic-based

algorithms as hybrid algorithms.

The design of the switching rules for uniting algorithm is done using the Lya-

93

punov function

Vq(z) := γq (L(z1) − L∗) + 1
2 |z2|2 (4.2)

defined for each q ∈ Q and each z ∈ R2n, where L∗ := L(z∗
1).

Supervisor

q̇ = 0 (z, q) ∈ C := C0 ∪ C1

q+ = 1 − q (z, q) ∈ D := D0 ∪D1

ż1 = z2

ż2 = u

κ1(h(z))

global (q = 1)

κ0(h(z))

local (q = 0)

q

u yy

Figure 4.1: Feedback diagram of the hybrid closed-loop system H, in (4.3),
uniting global and local optimization algorithms.

The switch between κ0 and κ1 is governed by a supervisory algorithm gov-

erning switching logic; see Figure 4.1. The supervisor selects between these two

autonomous optimization algorithms, based on the plant’ s output and on the

optimization algorithm currently applied. In our simplest algorithm, which is in-

troduced first, the idea is to define sublevel sets of Vq and use hysteresis to switch

between the global heavy ball algorithm and the local one. More precisely, when

the supervisor is using the global optimization algorithm κ1 and V1(z) ≤ c1,0 with

c1,0 small, then z1 is close to the minimum and a switch to the local algorithm is

performed to converge without oscillations. When the supervisor is using the local

algorithm κ0 and V0(z) ≥ c0 with c0 > c1,0, then z1 is too far from its minimum

94

and the supervisor switches to the global algorithm to converge quickly to the

neighborhood of the minimum. These switching events constitute the jumps in

the hybrid closed-loop system, and the c0- and c1,0-sublevel sets need to be prop-

erly tuned to solve Problem 4.1.1. At times other than when these events occur,

the hybrid algorithm executes the individual optimization algorithm associated

with the current value of q, namely, it applies (4.1) to (3.1).

To capture the mechanism outlined above, encapsulating the plant in (3.1)

and static state-feedback laws in (4.1), we define a hybrid closed-loop system H

with state x := (z, q) ∈ R2n ×Q as:

ż =

 z2

κq(h(z))

q̇ = 0

=: F (x) x ∈ C := C0 ∪ C1 (4.3a)

z+ =

z1

z2

q+ = 1 − q

=: G(x) x ∈ D := D0 ∪D1 (4.3b)

where C0, D0, C1, and D1 are defined differently in the subsequent sections of this

chapter.

Figure 4.1 shows the feedback diagram of this hybrid closed-loop system H.

We denote the closed-loop systems resulting from using the individual heavy ball

algorithms (κq) as Hq, which is given by

ż =

 z2

κq(h(z))

 z ∈ R2n. (4.4)

for each q ∈ Q = {0, 1}; i.e., H0 denotes the local heavy ball algorithm that uses

95

λ0 and γ0, and H1 denotes the global heavy ball algorithm that uses λ1 and γ1.

The reader may wonder whether a (nonhybrid) discontinuous algorithm would

solve Problem 4.1.1 robustly. Unfortunately, that is not the case since solutions

without hysteresis switching may exhibit chatter at the switching surface induced

by a discontinuous algorithm. The proposed hybrid systems approach solves the

problem with robustness by virtue of hysteresis switching.

4.3 Uniting Heavy Ball Methods Using Measure-

ments of L and ∇L

In this section, we present a uniting optimization algorithm with switching

rules derived from sublevel sets of V0 and V1, where Vq is defined via (4.2). This

algorithm measures L and ∇L at the current value of z1. That is, the output h

is defined via (3.73). Although the algorithm requires no knowledge of L, it still

requires knowledge of L∗.

For the hybrid closed-loop algorithm H in (4.3), the sets C0, D0, C1, and D1

are defined as

C0 :=
{
z ∈ R2n : U0

}
× {0}, C1 :=

{
z ∈ R2n : R2n \ T1,0

}
× {1} (4.5a)

D0 :=
{
z ∈ R2n : R2n \ U0

}
× {0}, D1 :=

{
z ∈ R2n : T1,0

}
× {1} (4.5b)

The sets U0 and T1,0 are precisely designed in section 4.3.1, but the idea behind

their construction is as follows. When z ∈ U0 and q = 0 (i.e., x ∈ C0), due to

the design of U0 in Section 4.3.1, then the state z is near the minimizer, which is

denoted z∗
1 , and the supervisor allows flows of (4.3) using κ0, with large λ0 > 0, to

avoid oscillations. Conversely, when z ∈ R2n \ T1,0 and q = 1 (i.e., x ∈ C1), due to

96

the design of T1,0 in Section 4.3.1, then the state z is far from the minimizer and

the supervisor allows flows of (4.3) using κ1, with large λ1 > 0, to converge quickly

to the neighborhood of the minimizer. When z ∈ T1,0 and q = 1 (i.e., x ∈ D1),

then this indicates that the state z is near the minimizer, and the supervisor

assigns u to κ0 and resets q to 0. Conversely, when z ∈ R2n \ U0 and q = 0 (i.e.,

x ∈ D0), then this indicates that the state z is far from the minimizer and the

supervisor assigns u to κ1 and resets q to 1. The complete algorithm, defined in

(4.3) and (4.5), is summarized in Algorithm 1.

Algorithm 1 Uniting algorithm
1: Set q(0, 0) to 0 and set z(0, 0) as an initial condition with an arbitrary value.
2: while true do
3: if z ∈ R2n \ U0 and q = 0 then
4: Reset q to 1.
5: else if z ∈ T1,0 and q = 1 then
6: Reset q to 0.
7: else if z ∈ U0 and q = 0 then
8: Assign u to κ0(h(z)), where κ0 is defined via (4.1) and h is defined in

(3.73), and update z and q according to (4.3a).
9: else if z ∈ R2n \ T1,0 and q = 1 then

10: Assign u to κ1(h(z)), where κ1 is defined via (4.1) and h is defined in
(3.73), and update z and q according to (4.3a).

11: end if
12: end while

4.3.1 Design of the Sets U0 and T1,0

Based on the outline provided in Section 4.2, the supervisor selects κ0 or κ1

in (4.1) using sublevel sets of Vq in (4.2). When the system measures L and ∇L,

these sets are defined as follows. Let the set U0 be defined by the c0-sublevel set

of V0, namely,

U0 :=
{
z ∈ R2n : V0(z) ≤ c0

}
. (4.6)

97

The parameter c0 > 0, along with λ0 and γ0, are designed so that U0 is in the

region where κ0 is to be used. In this design, λ0 is large to avoid oscillations when

converging to the minimum. Since κ0 in (4.1) is such that the set {z∗
1} × {0} is

globally asymptotically stable for the closed-loop system resulting from controlling

(3.1) by κ0, as shown in Proposition 3.2.8, then U0 is contained in the basin of

attraction induced by κ0. Then, roughly speaking, when q = 0 and V0(z) ≤ c0,

the hybrid closed-loop system will switch to the global algorithm defined by κ1.

Otherwise, the local algorithm κ0 is used.

The set T1,0 is defined by a c1,0-sublevel of V1 with c1,0 ∈ (0, c0) chosen so that

T1,0 is contained in the interior of U0

T1,0 :=
{
z ∈ R2n : V1(z) ≤ c1,0

}
(4.7)

This choice of T1,0 is possible since U0 and the sublevel sets of V1 are compact for

small enough constants c0 and c1,0. Then, due to the global attractivity guaranteed

by κ0 in Proposition 3.2.8, once z is in T1,0, the boundary of U0 will never be

reached. When q = 1 and V1(z) ≤ c1,0, the supervisor will switch from the global

algorithm κ1 to the local algorithm κ0. The constants c0 and c1,0 comprise the

hysteresis necessary to avoid chattering at the switching boundary. Note that,

due to c0 > c1,0, R2n \ U0 ∩ T1,0 = ∅.

4.3.2 Design of the Parameter λq

The heavy ball parameter λ0 > 0 should be made large enough to avoid oscil-

lations near the minimizer and λ1 > 0 should be made small enough to enable fast

convergence to the neighborhood of the minimizer, as stated in Section 4.2. To

gain some intuition on how to tune λq, consider the quadratic objective function

L(z1) = 1
2a1z

2
1 , a1 > 0, which was analyzed in detail in [14]. For such a case,

98

solutions to the heavy ball algorithm are overdamped (i.e., converge slowly with

no oscillations) when λ > 2√
a1, critically damped (i.e., the fastest convergence

possible with no oscillations) when λ = 2√
a1, and underdamped (fast conver-

gence with oscillations) when λ < 2√
a1. Therefore, setting λ0 ≥ 2√

a1 gives the

desired behavior of solutions to H0 and setting λ < 2√
a1 gives the desired be-

havior of solutions to H1, for such an objective function. More generally, setting

λ0 sufficiently large to avoid oscillations and setting λ1 sufficiently small for fast

convergence suffices, in practice. Numerically, λ0 can be tuned as follows. Choose

an arbitrarily large value of λ0. If there is still oscillations or overshoot locally,

despite the switch from κ1 to κ0 being made near the minimizer, then gradually

increase λ0 until the oscillations and overshoot disappear. See Examples 5.2.5,

5.2.6, and 5.2.7 where λ0 was tuned in such a way. Numerically, λ1 can be tuned

as follows. Choose an arbitrarily small value of λ1 (generally, less than 1, to begin

with). If the state component z1 does not get to the desired neighborhood of z∗
1

before the switch to κ0, then gradually decrease λ1 until the algorithm switches

after z1 reaches the desired neighborhood of z∗
1 . See Examples 4.3.4, 4.4.5, and

4.4.6, where λ1 was tuned in such a way.

4.3.3 Well-posedness of the Hybrid Closed-Loop System

H

Under Assumption 3.1.8, the hybrid closed-loop system H in (4.3), with C and

D defined via (4.5), is well-posed as it satisfies the hybrid basic conditions.

Lemma 4.3.1. (well-posedness of H) Let L satisfy Assumption 3.1.8. Let the

sets U0 and T1,0 be defined via (4.6) and (4.7), respectively. Let κq be defined via

(4.1) and h be defined in (3.73). Then, the hybrid closed-loop system H in (4.3),

with C and D as defined in (4.5), satisfies the hybrid basic conditions, as listed in

99

Definition 2.1.1.

Proof. Since by Assumption 3.1.8 L is C1, then for each q ∈ Q, Vq in (4.2), is

continuous. Therefore, since Vq is continuous, then the following hold: the set U0,

defined via (4.6), is closed since it is a sublevel set of the continuous function V0;

the set T1,0, defined in (4.7), is closed since it is a sublevel set of the continuous

function V1. Therefore, since the sets U0 and T1,0 are closed, then the sets C0, D0,

C1, and D1 are closed. Since C and D are both finite unions of finite and closed

sets, then C and D are also closed.

Also, by construction, the map x 7→ F (x) in (4.3a) is continuous, due to the

fact that L is C1, since this means that ∇L exists and is continuous, which in turn

makes h in (3.73) and κq in (4.1) continuous. Similarly, the map G(x) in (4.3b)

is continuous by construction, satisfying item (A3) of Definition 2.1.1.

In the forthcoming Theorem 4.3.3 we show that H has a compact

pre-asymptotically stable set. In light of this property, Lemma 4.3.1 is key as it

leads to pre-asymptotic stability that is robust to small perturbations [21, Theo-

rem 7.21]. In the case of gradient-based algorithms, for instance, such perturba-

tions can take the form of small noise in measurements of the gradient.

4.3.4 Existence of solutions to H

When, in addition, Assumptions 3.1.3 and 3.2.4 hold, each maximal solution

to the hybrid closed-loop system H is complete and bounded, as shown in the

following proposition. Such a property is useful since it guarantees that nontrivial

solutions to H exist from each initial point in C ∪ D, and that such solutions

do not escape C ∪ D. When every maximal solution is complete, then uniform

100

global pre-asymptotic stability1 of the set A becomes uniform global asymptotic

stability.

Proposition 4.3.2. (Existence of solutions to H) Let L satisfy Assumptions

3.1.3, 3.1.8, and 3.2.4. Let λq > 0, γq > 0, and c1,0 ∈ (0, c0). Let κq be

defined via (4.1) and h be defined in (3.73). Then, Π(C0) ∪ Π(D0) = R2n,

Π(C1)∪Π(D1) = R2n, and each maximal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j))

to the hybrid closed-loop system H in (4.3), with C and D as defined in (4.5), is

bounded and complete.

Proof. Since L is C1 by Assumption 3.1.8, then by Lemma 4.3.1 H in (4.3), with

C and D as defined in (4.5), is well-posed.

By construction, every z ∈ U0 belongs to the c0-sublevel set of V0; recall that

U0 is defined in (4.6) and V0 is defined in (4.2). Additionally, by construction,

every z ∈ T1,0 belongs to the c1,0-sublevel set of V1; recall that T1,0 is defined in

(4.7) and V1 is defined in (4.2). Therefore, since U0 is defined in (4.6), and since

by the definitions of D0 and C0 in (4.5), D0 is the closed complement of C0, then

Π(C0) ∪ Π(D0) = R2n. Furthermore, since T1,0 is defined in (4.7), and since by

the definitions of D1 and C1 in (4.5), C1 is the closed complement of D1, then

Π(C1) ∪ Π(D1) = R2n.

Due to the definitions of C0, D0, C1, and D1 in (4.5), U0 in (4.6), and T1,0 in

(4.7), then C \D is equal to int(C). Hence, for each point x ∈ C \D, the tangent

cone to C at x is

TC(x) :=

R2n × {0} if x ∈ C0 \D0,

R2n × {1} if x ∈ C1 \D1.

(4.8)

1Uniform global pre-asymptotic stability indicates the possibility of a maximal solution that
is not complete, even though it may be bounded.

101

Therefore, F (x) ∩ TC(x) ̸= ∅, satisfying (VC) of Proposition A.1.1 for each point

x ∈ C \ D, and nontrivial solutions exist for every initial point in (C0 ∪ C1) ∪

(D0 ∪D1). To prove that item (c) of Proposition A.1.1 does not hold, we show

that G(D) ⊂ C ∪D, as follows. For D as defined in (4.5), G(D) is:

G(D) :=
(
R2n \ U0 × {1}

)
∪ (T1,0 × {0}) .

Then compare G(D) to the flow set C, defined in (4.5): since c1,0 < c0, then(
R2n \ U0 × {1}

)
is a subset of C1, and (T1,0 × {0}) is a subset of C0. Since this

means that G(D) ⊂ C and, consequently, G(D) ⊂ C ∪ D, then item (c) of

Proposition A.1.1 does not hold. The only thing left to prove is that item (b) of

Proposition A.1.1 does not hold.

We show that there is no finite time escape from C for H as follows. First, since

L is C1, nonstrongly convex, and has a single minimizer z∗
1 by Assumption 3.1.8,

since ∇L is Lipschitz continuous by Assumption 3.1.3, and since L has quadratic

growth away from z∗
1 by Assumption 3.2.4, then each maximal solution to ż =

FP (z, κq(h(z))), defined via (4.4) is bounded, complete, and unique by Proposition

3.2.7. Next, for the hybrid closed-loop system H, since ż = FP (z, κq(h(z))) has

no finite time escape from R2n, this also means that ẋ = F (x) has no finite time

escape from C, as q does not change in C. Therefore, there is no finite time

escape from C ∪D, for solutions x to H in (4.3), with C and D defined via (4.5).

Therefore, item (b) from Proposition A.1.1 does not hold.

4.3.5 Main Result

In this section, we present a result that establishes UGAS of the set

A :=
{
z ∈ R2n : ∇L(z1) = z2 = 0

}
× {0} = {z∗

1} × {0} × {0} (4.9)

102

and a hybrid convergence rate that is exponential both globally and locally, for

the hybrid closed-loop algorithm H in (4.3), with C and D as defined in (4.5).

Recall that the state x := (z, q). In light of this, the first component of A, namely,

z∗
1 , is the minimizer of L. The second component of A, namely, {0}, reflects the

fact that we need the velocity state z2 to equal zero in A so that solutions are not

pushed out of such a set. The third component in A, namely, {0}, is due to the

logic state ending with the value q = 0, namely using κ0 as the state z reaches

the minimizer of L.

Theorem 4.3.3. (Uniform global asymptotic stability of A for H) Let L satisfy

Assumptions 3.1.8, 3.1.3, and 3.2.4. Let α > 0 be generated by Assumption

3.2.4, and let M > 0 be generated by Assumption 3.1.3. Let λq > 0, γq > 0,

and c1,0 ∈ (0, c0) be given. Let κq be defined via (4.1) and let h be defined in

(3.73). Then, the set A in (4.9) is uniformly globally asymptotically stable for H

in (4.3), with C and D as defined in (4.5). Furthermore, each maximal solution

(t, j) 7→ x(t, j) = (z(t), q(t)) to the closed-loop algorithm H in (4.3) starting from

C1 satisfies the following:

1) The domain dom x of the solution x is of the form ∪1
j=0(Ij × {j}), with I0 of

the form [t0, t1] and with I1 of the form [t1,∞) for some t1 ≥ 0 defining the

time of the first jump;

2) For each2 t ∈ I0

L(z1(t, 0)) − L∗ = O (exp (−(1 −m)ψ1t)) (4.10)

where m ∈ (0, 1) is such that ψ1 := mαγ1
λ1

> 0 and ν1 := ψ1(ψ1 − λ1) < 0.

2Note that at each t ∈ I0, q(t, 0) = 1, and at each t ∈ I1, q(t, 1) = 0.

103

3) For each t ∈ I1

L(z1(t, 1)) − L∗ = O (exp (−(1 −m)ψ0t)) (4.11)

where m ∈ (0, 1) is such that ψ0 := mαγ0
λ0

> 0 and ν0 := ψ0(ψ0 − λ0) < 0.

Proof. The hybrid closed-loop algorithm H in (4.3) and (4.5) satisfies the hybrid

basic conditions, by Lemma 4.3.1, satisfying the first assumption of Theorem

A.1.3. Furthermore, each maximal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to H

is complete and bounded by Proposition 4.3.2. Since by Assumption 3.1.8, L has

a unique minimizer, then A in (4.9) is compact by construction, and U = R2n ×Q

contains a nonzero open neighborhood of A, satisfying the second assumption of

Theorem A.1.3.

To prove attractivity of A, we proceed by contradiction. Suppose there exists

a complete solution x to H such that lim
t+j→∞

|x(t, j)|A ̸= 0. Since Proposition 4.3.2

guarantees completeness of maximal solutions, we have the following cases:

a) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C1\D1 for all (t, j) ∈ dom x, t+

j ≥ t′ + j′;

b) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C0 \ (A ∪ D0) for all (t, j) ∈

dom x, t+ j ≥ t′ + j′;

c) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ D for all (t, j) ∈ dom x, t+j ≥

t′ + j′.

Case a) contradicts the fact that, by Proposition 3.2.8, the set {z∗
1}×{0}, is uni-

formly globally asymptotically stable H1 in (4.4). Such uniform asymptotic stabil-

ity of {z∗
1}×{0}, guaranteed by Proposition 3.2.8, implies there exist c̃1 ∈ (0, c̃1,0)

and d1 ∈ (0, d1,0) such that the state z reaches ({z∗
1} + c̃1B) × ({0} + d1B) ⊂ T1,0

104

as t → ∞. In turn, due to the construction of C1 and D1 in (4.5), with T1,0 defined

via (4.7), the solution x must reach D1 at some (t, j) ∈ dom x, t + j ≥ t′ + j′.

Therefore, case a) does not happen.

Case b) contradicts the fact that, by Proposition 3.2.8, {z∗
1}×{0} is uniformly

globally asymptotically stable for H0 in (4.4). In fact, lim
t+j→∞

|x(t, j)|A = 0, and

since A ⊂ C0, case b) does not happen.

Case c) contradicts the fact that, due to the construction of T1,0 in (4.7) and

U0 in (4.6), we have

G(D) ∩D :=
((
R2n \ U0 × {1}

)
∪ (T1,0 × {0})

)
∩
((
R2n \ U0 × {0}

)
∪ (T1,0 × {1})

)
=∅ (4.12)

where G(D) is defined via (4.9) and D is defined in (4.5). Such an equality holds

since R2n \ U0 ∩ T1,0 = ∅; see the end of Section 4.3.1. Therefore, case c) does not

happen.

Therefore, cases a)-c) do not happen, and each maximal and complete solution

x = (z, q) to H in (4.3) converges to {z∗
1}×{0}. Consequently, by the construction

of C and D in (4.5), the uniform global asymptotic stability of {z∗
1} × {0} for

Hq in (4.4) established in Proposition 3.2.8, and since each maximal solution

to H is complete by Proposition 4.3.2, the set {z∗
1} × {0} is uniformly globally

asymptotically stable for H.

To show that each maximal and complete solution x to H jumps no more than

twice, we proceed by contradiction. Without loss of generality, suppose there

exists a maximal and complete solution that jumps three times. We have the

following possible cases:

105

i) The solution first jumps at a point in D0, then jumps at a point in D1, and

then jumps at a point in D0; or

ii) The solution first jumps at a point in D1, then jumps at a point in D0, and

then jumps at a point in D1.

Case i) does not hold since, once the jump in D1 occurs, the solution x is in

(T1,0 × {0}) ⊂ C0. Due to the construction of T1,0 in (4.25) and U0 in (4.6) such

that T0,1 in (4.30) such that R2n \ U0∩T1,0 = ∅, as described in the contradiction of

case c) above, and due to the uniform global asymptotic stability of {z∗
1}×{0} for

Hq in (4.4) by Proposition 3.2.8, the solution x will never return to D0. Therefore,

case i) does not happen. Case ii) leads to a contradiction for the same reason, and

in this case, once the first jumps in D1 occurs, no more jumps happen. Therefore,

since cases i)-ii) do not happen, each maximal and complete solution x to H in

(4.3), with C and D defined via (4.5), has no more than two jumps.

Finally, we prove the hybrid convergence rate of H. By Proposition 3.2.10,

since L satisfies Assumptions 3.1.8 and 3.2.4, then, given γq > 0 and λq > 0, for

each m ∈ (0, 1) such that ψq := mαγq

λq
> 0 and νq := ψq(ψq −λ) < 0, each maximal

solution t 7→ z(t) to the closed-loop algorithm Hq in (4.4) satisfies (3.91) for all

t ∈ dom z (= R≥0). Since maximal solutions (t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to

H starting from C1 are guaranteed to jump no more than once, as implied by the

contradiction in cases i)-ii) above, then the domain of each maximal solution x to

H starting from C1 is ∪1
j=0(Ij, j), with I0 of the form [t0, t1] and with I1 of the form

[t1,∞). Therefore, given λq > 0, γq > 0, c1,0 ∈ (0, c0), ε1,0 ∈ (0, ε0), α > 0 from

Assumption 3.2.4, and M > 0 from Assumption 3.1.3, due to the construction

of U0 in (4.6) and T1,0 in (4.7) with c1,0 ∈ (0, c0), and due to the individual

convergence rates of Hq, each maximal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j))

to the hybrid closed-loop algorithm H in (4.3) that starts in C1 satisfies (4.10) for

106

each t ∈ I0 at which q(t, 0) is equal to 1, and satisfies (4.11) for each t ∈ I1 at

which q(t, 1) is equal to 0.

4.3.6 Numerical Example

0 5 10 15 20 25 30 35 40 45 50

10
-15

10
-10

10
-5

10
0

10
5

2.9418 s

16.3106 s

hybrid

lambda = 10.5

lambda = 0.5

lambda = 0.5, average

0 50 100
10

-2

10
2

10
5

96.3773 s

L
(z

1)
−

L
∗

t[s]

Figure 4.2: A comparison of the evolution of L over time for H0, H1, and H,
for a function L = 1

4z
⊤
1 Pz1, where z1 ∈ R100 and P = I100×100, which has a single

minimizer at z∗
1 = (0, 0, . . . , 0). The heavy ball algorithm H1 uses λ1 = 1

2 (shown
in purple) and settles to within 1% of z∗

1 in about 16.3 seconds. The heavy ball
algorithm H0 uses λ0 = 10.5 (shown in green) and settles to within 1% of z∗

1 in
about 96.4 seconds. The hybrid closed-loop system H (shown in blue) settles to
within 1% of z∗

1 in about 2.9 seconds.

Example 4.3.4. To show the effectiveness of the hybrid algorithm H in (4.3),

with C and D defined in (4.5), we compared it in simulation with the individual

optimization algorithms H0 and H1. The local algorithm, H0, uses a large λ value

to produce slow convergence with no oscillations. The global algorithm, H1, uses a

107

small λ value to produce fast convergence with oscillations. The hybrid closed-loop

system H switches between the two lambda values, to ensure fast convergence with

no oscillations.

The choice of objective function, parameter values, and initial conditions are

as follows. We use the objective function L = 1
4z

⊤
1 Pz1, where z1 ∈ R100 and

P = I100×100, which has a single minimizer at z∗
1 = (0, 0, . . . , 0). The Lipschitz

constant of ∇L is M = 1
2 . The choice of the objective function is made both to

show how the algorithm performs with arguments z1 ∈ Rn, with n > 1, and was

also chosen so that we can easily tune λq, as described in Section 5.1.6. Namely,

we tuned λ0 to 10.5 by choosing a value arbitrarily larger than 2√
a1, where a1

comes from Section 5.1.6, and gradually increasing it until there is no overshoot

in the hybrid algorithm. We also tuned λ1 to 1
2 by choosing a value arbitrarily

smaller than 2√
a1 and gradually decreasing until the switch to H0 occurs once z1

reaches the desired neighborhood of z∗
1. We arbitrarily chose γ0 = γ1 = 1

2 . The

parameter values for the uniting algorithm are c0 = 1200 and c1,0 ≈ 638.370, which

are chosen for proper tuning of the algorithm, in order to get nice performance,

and the value of c1,0 is chosen to exploit the properties of H1 for a longer time,

so that the nominal solution gets closer to the minimizer faster. Initial conditions

for H, H0, and H1 are z1(0, 0) = −10, z2(0, 0) = 0, and q(0, 0) = 0.

Algorithm Time to converge (s) % improvement of H
H 2.942 –
H0 96.377 96.9
H1 16.311 82.0

Table 4.1: Average times for which H, H0, and H1 settle to within 1% of z∗
1 ,

and the average percent improvement of H over each algorithm. Percent im-
provement is calculated via (4.13). The objective function used for this table is
L = 1

4z
⊤
1 Pz1, where z1 ∈ R100 and P = I100×100, which has a single minimizer at

z∗
1 = (0, 0, . . . , 0).

108

Table 4.1 shows the time that each algorithm takes to settle within3 1% of z∗
1,

and the percent improvement of H over H0, H1, and HAND-1, which is calculated

using the following formula

(
Time of H0 or H1 − Time of H

Time of H0 or H1

)
× 100%. (4.13)

As can be seen in Figure 4.2 and Table 4.1, H converges faster than the other

algorithms, and the percent improvement of H over each of the other algorithms

in Table 4.1 is 96.9% over H0 and 82.0% over H1.

4.4 Uniting Heavy Ball Methods Using Measure-

ments of ∇L

In this section, we propose a switching rule for the uniting algorithm that

exploits measurements of ∇L, which in practice are typically approximated using

measurements of L. Namely, the algorithm in this section has output h defined

in (3.72). Unlike the switching rule in Section 4.3, the switching rule proposed in

this section does not require prior knowledge of L or of its minimizer.

For the hybrid closed-loop algorithm H in (4.3), the sets C0, C1, D0, and D1

in this section are defined as

C0 := U0 × {0}, C1 := R2n \ T1,0 × {1} (4.14a)

D0 := T0,1 × {0}, D1 := T1,0 × {1}. (4.14b)

The sets U0, T1,0, and T0,1 are precisely defined in Sections 4.4.1-4.4.3, but the

idea behind their construction is as follows. As in Section 4.2, the switch between
3Code at github.com/HybridSystemsLab/UnitingLevelSetsHBF.

109

κ0 and κ1 is governed by a supervisory algorithm implementing switching logic;

see Figure 4.1. When z ∈ U0 and q = 0 (i.e., x ∈ C0), due to the design of

U0 in Section 4.4.1, then the state z is near the minimizer, which is denoted z∗
1 ,

and the supervisor allows flows of (4.3) using κ0, with large λ0 > 0, to avoid

oscillations. Conversely, when z ∈ R2n \ T1,0 and q = 1 (i.e., x ∈ C1), due to the

design of T1,0 in Section 4.4.2, then the state z is far from the minimizer and the

supervisor allows flows of (4.3) using κ1, with large λ1 > 0, to converge quickly to

the neighborhood of the minimizer. When z ∈ T1,0 and q = 1 (i.e., x ∈ D1), then

this indicates that the state z is near the minimizer, and the supervisor assigns u

to κ0 and resets q to 0. Conversely, when z ∈ T0,1 and q = 0 (i.e., x ∈ D0), due to

the design of T0,1 in Section 4.4.3, then this indicates that the state z is far from

the minimizer and the supervisor assigns u to κ1 and resets q to 1. The complete

algorithm, defined in (4.3) and (4.14), is summarized in Algorithm 2.

Algorithm 2 Uniting algorithm
1: Set q(0, 0) to 0, τ(0, 0) to 0, and set z(0, 0) as an initial condition with an

arbitrary value.
2: while true do
3: if z ∈ T0,1 and q = 0 then
4: Reset q to 1.
5: else if z ∈ T1,0 and q = 1 then
6: Reset q to 0.
7: else if z ∈ U0 and q = 0 then
8: Assign u to κ0(h(z)), where κ0 is defined via (4.1) and h is defined in

(3.72), and update z and q according to (4.3a).
9: else if z ∈ R2n \ T1,0 and q = 1 then

10: Assign u to κ1(h(z)), where κ1 is defined via (4.1) and h is defined in
(3.72), and update z and q according to (4.3a).

11: end if
12: end while

110

4.4.1 Design of U0

In order for the supervisor to determine when the state component z1 is close

to the minimizer of L, denoted z∗
1 , without knowledge of z∗

1 or L∗ := L(z1), we will

use Assumptions 3.1.8 and 3.2.4. Under such assumptions, the following lemma,

used in some of the results to follow, relates the size of the gradient at a point to

the distance from the point to z∗
1 .

Lemma 4.4.1. (Suboptimality) Let L satisfy Assumptions 3.1.8 and 3.2.4, and

let α > 0 come from Assumption 3.2.4. For some ε > 0, if z1 ∈ Rn is such that

|∇L(z1)| ≤ εα, then |z1 − z∗
1 | ≤ ε.

Proof. Combining Assumption 3.1.8 and (3.79) from Assumption 3.2.4 with

u1 = z∗
1 and w1 = z1 yields

α |z1 − z∗
1 |2 ≤ |L(z1) − L∗| ≤ |⟨∇L(z1), z∗

1 − z1⟩| ≤ |∇L(z1)| |z1 − z∗
1 | (4.15)

where the first inequality holds since L(z1) ≥ L∗. Then,

|z1 − z∗
1 | ≤ 1

α
|∇L(z1)| . (4.16)

From (4.16), we can deduce that |∇L(z1)| ≤ εα implies |z1 − z∗
1 | ≤ 1

α
(εα) = ε.

The suboptimality condition from Lemma 4.4.1 is typically used as a stopping

condition for optimization, as it indicates that the argument of L is close enough

to the minimizer z∗
1 [66]. We exploit Lemma 4.4.1 to determine when the state

component z1 of the hybrid closed-loop system H is close enough to the minimizer

z∗
1 so as to switch to the local optimization algorithm, κ0, in this way activating

H0; see Figure 4.1.

Recall from lines 7-8 of Algorithm 2 that the objective is to design U0 such

111

that when z ∈ U0 and q = 0, the state component z1 is near z∗
1 and the uniting

algorithm allows flows of (4.3) with κ0 in (4.1) and q = 0. For such a design, we

use Assumptions 3.1.8 and 3.2.4 and the Lyapunov function V0 in (4.2). Given

ε0 > 0, c0 > 0, and γ0 > 0 from κ0 in (4.1), let α > 0 come from Assumption

3.2.4 such that

c̃0 := ε0α > 0, d0 := c0 − γ0

(
c̃2

0
α

)
> 0. (4.17)

Then, V0 in (4.2) can be upper bounded, using Assumption 3.1.8 as done to arrive

to (4.15), as follows: for each z ∈ R2n

V0(z) = γ0 (L(z1) − L∗) + 1
2 |z2|2 ≤ γ0 |∇L(z1)| |z1 − z∗

1 | + 1
2 |z2|2 . (4.18)

Then, due to L being C1, nonstrongly convex, and having a single minimizer z∗
1

by Assumption 3.1.8, and due to L having quadratic growth away from z∗
1 by

Assumption 3.2.4, when |∇L(z1)| ≤ c̃0, the suboptimality condition in Lemma

4.4.1 implies |z1 − z∗
1 | ≤ c̃0

α
, from where we get

V0(z) ≤ γ0

(
c̃2

0
α

)
+ 1

2 |z2|2 (4.19)

Then, by defining the set U0 as

U0 :=
{
z ∈ R2n : |∇L(z1)| ≤ c̃0,

1
2 |z2|2 ≤ d0

}
, (4.20)

every z ∈ U0 belongs to the c0-sublevel set of V0. In fact, using the conditions in

(4.17) and (4.19), we have that for each z ∈ U0,

V0(z) ≤ γ0

(
c̃2

0
α

)
+ 1

2 |z2|2 ≤ c0. (4.21)

112

Since κ0 in (4.1) is such that the set {z∗
1} × {0} is globally asymptotically stable

for the closed-loop system resulting from controlling (3.1) by κ0, as was shown in

the Proposition 3.2.8, the set U0 is contained in the basin of attraction induced

by κ0.

4.4.2 Design of T1,0

Recall from lines 5-6 of Algorithm 2 that the objective is to design T1,0 such

that when z ∈ T1,0 and q = 1, the state component z1 is near z∗
1 and the supervisor

resets q to 0 and assigns u to κ0(h0(z)), where κ0 is defined via (4.1) and h is

defined in (3.72). For such a design, we use Assumptions 3.1.8 and 3.2.4 and the

Lyapunov function V1 in (4.2). Given c1,0 ∈ (0, c0) and ε1,0 ∈ (0, ε0), where c0 > 0

and ε0 > 0 come from Section 4.4.1, let c̃0 and d0 be given in (4.17), and let α > 0

come from Assumption 3.2.4 such that

c̃1,0 := ε1,0α ∈ (0, c̃0) (4.22a)

d1,0 := c1,0 − γ1

(
c̃2

1,0

α

)
∈ (0, d0) (4.22b)

Then, with V1 given in (4.2) and using Assumption 3.1.8 with u1 = z∗
1 and w1 = z1,

V1(z) ≤ γ1 |∇L(z1)| |z1 − z∗
1 | + 1

2 |z2|2 . (4.23)

Then, due to L being C1, nonstrongly convex, and having a single minimizer z∗
1

by Assumption 3.1.8, and due to L having quadratic growth away from z∗
1 by

Assumption 3.2.4, when |∇L(z1)| ≤ c̃1,0, the suboptimality condition in Lemma

4.4.1 implies |z1 − z∗
1 | ≤ c̃1,0

α
, from where we get

V1(z) ≤ γ1

(
c̃1,0

α

)2
+ 1

2 |z2|2 . (4.24)

113

Then, by defining T1,0 as

T1,0 :=
{
z ∈ R2n : |∇L(z1)| ≤ c̃1,0,

1
2 |z2|2 ≤ d1,0

}
(4.25)

which, by construction, is contained in the interior of U0 defined in (4.20), every

z ∈ T1,0 belongs to the c1,0-sublevel set of V1. In fact, using the conditions in

(4.22) and (4.24), we have for each z ∈ T1,0,

V1(z) ≤ γ1

(
c̃1,0

α

)2
+ 1

2 |z2|2 ≤ c1,0. (4.26)

The constants c̃0, c̃1,0, d0, and d1,0 in (4.17) and (4.22) comprise the hysteresis

necessary to avoid chattering at the switching boundary. The idea behind these

hysteresis boundaries is as follows. When z ∈ U0 and q = 1, we have that

z ∈ R2n \ T1,0, and it is not yet time to switch to κ0 but to continue to flow using

κ1. But once z ∈ T1,0 then z is close enough to {z∗
1} × {0}, and the supervisor

switches to κ0. Figure 4.3 illustrates the hysteresis mechanism in the design of U0

and T1,0.

4.4.3 Design of T0,1

To make the switch back to κ1 in (4.1), we utilize Assumption 3.1.3. Recall

from lines 3-4 of Algorithm 2 that the objective is to design T0,1 such that when

z ∈ T0,1 and q = 0, the state component z1 is far from z∗
1 and the supervisor resets

q to 1 and assigns u to κ1(h(z)), h is defined in (3.72), so that κ1 steers z1 back to

nearby z∗
1 . Given c0 > 0, let α > 0 come from Assumption 3.2.4, and let M > 0

come from Assumption 3.1.3. Then, using Assumption 3.1.3 with u1 = z∗
1 and

w1 = z1 yields

|∇L(z1)| ≤ M |z1 − z∗
1 | (4.27)

114

q = 0

q = 1

γ0
(

α
M2

)
|∇L(z1)|2 + 1

2 |z2|2 = c0

|∇L(z1)| = c̃1,0,
1
2 |z2|2 = d1,0

U0

T0,1

T1,0

R2n \ T1,0

{z∗
1} × {0}

{z∗
1} × {0}

Figure 4.3: An illustration of hysteresis in the design of the sets U0, T0, and T0,1
on R2n, via the constants c̃1,0 ∈ (0, c̃0), d1,0 ∈ (0, d0), and c0 > 0. Left: due to the
design of U0 in (4.20), every z ∈ U0 belongs to the c0-sublevel set of the Lyapunov
function V0, where V0 is defined via (4.2). Hence, the same value of c0 > 0 is also
used to define T0,1 as the closed complement of a sublevel set of V0 with level equal
to c0. Right: the constants c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0), defined via (4.22), are
chosen such that the set T1,0 in (4.25) is contained in the interior of U0.

for all z1 ∈ Rn. Since L has quadratic growth away from z∗
1 by Assumption 3.2.4,

then dividing both sides of (4.27) by M and substituting into (3.79) leads to

L(z1) − L∗ ≥ α

M2 |∇L(z1)|2 (4.28)

where α > 0 comes from Assumption 3.2.4. Then, V0 in (4.2) is lower bounded as

follows: for each z ∈ R2n,

V0(z) = γ0 (L(z1) − L∗) + 1
2 |z2|2 ≥ γ0

(
α

M2

)
|∇L(z1)|2 + 1

2 |z2|2 . (4.29)

Using the right-hand side of (4.29) and the same c0 > 0 as in Section 4.4.1, we

define the set

T0,1 :=
{
z ∈ R2n : γ0

(
α

M2

)
|∇L(z1)|2 + 1

2 |z2|2 ≥ c0

}
. (4.30)

115

The set in (4.30) defines the (closed) complement of a sublevel set of the Lyapunov

function V0 in (4.2) with level equal to c0. The constant c0 is also a part of the

hysteresis mechanism, as shown in Figure 4.3. When z ∈ U0 and q = 0, then

the supervisor does not need to switch to κ1, as the state component z is close

enough to the minimizer to keep using κ0. But if z ∈ T0,1 while q = 0, then z is

far enough from the minimizer, and the supervisor then switches to κ1. Note that

T0,1 ∩ T1,0 = ∅.

4.4.4 Well-posedness of the Hybrid Closed-Loop System

H

When L satisfies Assumptions 3.1.3, 3.1.8, and 3.2.4, the hybrid closed-loop

system H in (4.3) satisfies the hybrid basic conditions, listed in Definition 2.1.1,

as demonstrated in the following lemma.

Lemma 4.4.2. (Well-posedness of H) Let the function L satisfy Assumptions

3.1.3, 3.1.8, and 3.2.4. Let the sets U0, T1,0, and T0,1 be defined via (4.20) (4.25),

and (4.30), respectively. Let κq be defined via (4.1) and let h be defined in (3.72).

Let λq > 0 and γq > 0. Then, the hybrid closed-loop system H in (4.3), with C

and D defined via (4.14), satisfies the hybrid basic conditions.

Proof. The objective function L is C1, nonstrongly convex, and has a single

minimizer by Assumption 3.1.8. Therefore, since ∇L is continuous, the following

hold: the set U0, defined via (4.20), is closed since it is a sublevel set of the

continuous function V0 in (4.2); the set T1,0, defined via (4.25), is closed since it

is a sublevel set of the continuous function V1 in (4.2); the set T0,1, defined via

(4.30), is closed since it is the closed complement of a set. Therefore, since the

sets U0, T1,0, and T0,1 are closed, then the sets D0, D1, C0, and C1 are closed.

116

Since C and D are both finite unions of finite and closed sets, then C and D are

also closed.

Since by Assumption 3.1.8, L is C1, then h in (3.72) and κq in (4.1) are contin-

uous. In turn, the map z 7→ FP (z, κq(h(z))) is also continuous since FP in (3.1) is

a C1 function of κq and h. Therefore, x 7→ F (x) in (4.3a) is continuous. The map

G in (4.3b) satisfies (A3) by construction since it is continuous.

4.4.5 Existence of solutions to H

Under Assumptions 3.1.3, 3.1.8, and 3.2.4, each maximal solution to H is

complete and bounded, as stated in the following lemma. The following lemma

also states that Π(C0) ∪ Π(D0) = R2n and Π(C1) ∪ Π(D1) = R2n. Such a property

ensures that nontrivial solutions to H in (4.3), which exist from each initial point

in C ∪D, also exist from any initial point in R2n ×Q.

Proposition 4.4.3. (Existence of solutions to H) Let the function L satisfy As-

sumptions 3.1.3, 3.1.8, and 3.2.4. Let the sets U0, T1,0, and T0,1 be defined via

(4.20), (4.25), and (4.30), respectively. Let κq be defined via (4.1) and let h

be defined in (3.72). Let λq > 0 and γq > 0. Then, Π(C0) ∪ Π(D0) = R2n,

Π(C1)∪Π(D1) = R2n, and each maximal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j))

to H in (4.3), with C and D defined via (4.14), is bounded and complete.

Proof. Since Assumptions 3.1.3, 3.1.8, and 3.2.4 hold, then H satisfies the hybrid

basic conditions by Lemma 4.4.2. With c̃0 > 0 and d0 > 0 defined via (4.17), since

L is C1, nonstrongly convex, has a single minimizer by Assumption 3.1.8, and has

quadratic growth away from z∗
1 by Assumption 3.2.4, from the arguments below

(4.18), every z ∈ U0 belongs to the c0-sublevel set of V0; recall that U0 is defined

in (4.20) and that V0 is defined via (4.2). Additionally, since by Assumption 3.2.4

117

L has quadratic growth away from z∗
1 and since ∇L is Lipschitz continuous by

Assumption 3.1.3, then T0,1 in (4.30) defines the closed complement of a sublevel

set of V0 with level equal to c0. Therefore, due to the definitions of U0 in (4.20) and

T0,1 in (4.30), Π(C0) ∪ Π(D0) = R2n. Furthermore, since T1,0 is defined via (4.25),

and since by the definitions of C1 and D1 in (4.14), C1 is the closed complement

of D1, then Π(C1) ∪ Π(D1) = R2n.

Due to the definitions of C0, D0, C1, and D1 in (4.14), U0 in (4.20), T1,0

in (4.25), and T0,1 in (4.30), then C \ D is equal to int(C). Hence, for each

point x ∈ C \ D, the tangent cone to C at x is defined in (4.8). Therefore,

F (x) ∩ TC(x) ̸= ∅, satisfying (VC) of Proposition A.1.1 for each point x ∈ C \D,

and nontrivial solutions exist for every initial point in (C0 ∪ C1) ∪ (D0 ∪D1),

where Π(C0) ∪ Π(D0) = R2n and Π(C1) ∪ Π(D1) = R2n. To prove that item (c) of

Proposition A.1.1 does not hold, we need to show that G(D) ⊂ C ∪ D. With D

defined in (4.14),

G(D) = (T0,1 × {1}) ∪ (T1,0 × {0}) . (4.31)

Notice that T1,0 × {0} ⊂ C0 and T0,1 × {1} ⊂ C1. Therefore, G(D) ⊂ C; hence

G(D) ⊂ C ∪ D. Therefore, item (c) of Proposition A.1.1 does not hold. Then it

remains to prove that item (b) does not happen.

We show that there is no finite time escape from C for H as follows. First,

since L is C1, nonstrongly convex, and has a single minimizer z∗
1 by Assumption

3.1.8, since ∇L is Lipschitz continuous by Assumption 3.1.3, and since L has

quadratic growth away from z∗
1 by Assumption 3.2.4, then each maximal solution

to ż = FP (z, κq(h(z))), defined via (4.4) with κq in (4.1) and h in (3.72), is

bounded, complete, and unique by Proposition 3.2.7. Next, for the hybrid closed-

loop system H in (4.3), with C and D defined via (4.14), since Hq has no finite

time escape from R2n, then this means ẋ = F (x) has no finite time escape from

118

C for H, as q does not change in C. Therefore, there is no finite time escape from

C ∪ D, for solutions x to H in (4.3), with C and D defined via (4.14) and κq

defined in (4.1). Therefore, item (b) from Proposition A.1.1 does not hold.

4.4.6 Main Result

In this section, we present a result that establishes UGAS of the set A in (4.9),

and a hybrid convergence rate that is exponential both globally and locally, for

the hybrid closed-loop algorithm H in (4.3), with C and D as defined in (4.14).

Theorem 4.4.4. (Uniform global asymptotic stability of A in (4.9) for H) Let

the function L satisfy Assumptions 3.1.3, 3.1.8, and 3.2.4. Let α > 0 be generated

by Assumption 3.2.4 and let M > 0 be generated by Assumption 3.1.3. Let λq > 0,

γq > 0, c1,0 ∈ (0, c0), ε1,0 ∈ (0, ε0), be given. Let the sets U0, T1,0, and T0,1 be

defined via (4.20), (4.25), and (4.30), respectively. Let κq be defined via (4.1)

and let h be defined in (3.72). Then, the set A, defined via (4.9), is uniformly

globally asymptotically stable for H given in (4.3), with C and D defined via

(4.14). Furthermore, each maximal solution (t, j) 7→ x(t, j) = (z(t), q(t)) to the

closed-loop algorithm H in (4.3) starting from C1 satisfies items 1)-3) in Theorem

4.3.3

Proof. The hybrid closed-loop algorithm H in (4.3) – with U0, T1,0, and T0,1

defined via (4.20), (4.25), and (4.30), respectively – satisfies the hybrid basic con-

ditions by Lemma 4.4.2, satisfying the first assumption of Theorem A.1.3. Fur-

thermore, Π(C0)∪Π(D0) = R2n, Π(C1)∪Π(D1) = R2n, and each maximal solution

(t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to H is complete and bounded by Proposition

4.4.3. Since by Assumption 3.1.8, L has a unique minimizer z∗
1 , then A, defined

via (4.9), is compact by construction, and U = R2n ×Q contains a nonzero open

neighborhood of A, satisfying the second assumption of Theorem A.1.3.

119

To prove attractivity of A, we proceed by contradiction. Suppose there exists

a complete solution x to H such that lim
t+j→∞

|x(t, j)|A ̸= 0. Since Proposition 4.4.3

guarantees completeness of maximal solutions, we have the following cases:

a) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C1\D1 for all (t, j) ∈ dom x, t+

j ≥ t′ + j′;

b) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C0 \ (A ∪ D0) for all (t, j) ∈

dom x, t+ j ≥ t′ + j′;

c) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ D for all (t, j) ∈ dom x, t+j ≥

t′ + j′.

Case a) contradicts the fact that, by Proposition 3.2.8, the set {z∗
1} × {0}

is uniformly globally asymptotically stable for H1 in (4.4). Such uniform global

asymptotic stability of {z∗
1} × {0}, guaranteed by Proposition 3.2.8, implies there

exist c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that the state z reaches ({z∗
1} + c̃1B) ×

({0} + d1B) ⊂ T1,0 as t → ∞. In turn, due to the construction of C1 and D1

in (4.14), with T1,0 defined via (4.25), the solution x must reach D1 at some

(t, j) ∈ dom x, t+ j ≥ t′ + j′. Therefore, case a) does not happen.

Case b) contradicts the fact that, by Proposition 3.2.8, {z∗
1}×{0} is uniformly

globally asymptotically stable for H0 in (4.4). In fact, lim
t+j→∞

|x(t, j)|A = 0, and

since A ⊂ C0, case b) does not happen.

Case c) contradicts the fact that, due to the construction of T1,0 in (4.25) and

T0,1 in (4.30), we have

G(D) ∩D := ((T0,1 × {1}) ∪ (T1,0 × {0})) ∩ ((T0,1 × {0}) ∪ (T1,0 × {1})) = ∅

(4.32)

where G(D) is defined via (4.31) and D is defined in (4.14). Such an equality

120

holds since T1,0 ∩ T0,1 = ∅; see the end of Section 4.4.3. Therefore, case c) does

not happen.

Therefore, cases a)-c) do not happen, and each maximal and complete solution

x = (z, q) to H converges to A. Consequently, by the construction of C and D in

(4.14), the uniform global asymptotic stability of {z∗
1} × {0} for Hq established in

Proposition 3.2.8, and since each maximal solution to H is complete by Proposition

4.4.3, the set A in (4.9) is uniformly globally asymptotically stable for H in (4.3),

with C and D defined via (4.14).

To show that each maximal and complete solution x to H jumps no more than

twice, we proceed by contradiction. Without loss of generality, suppose there

exists a maximal and complete solution that jumps three times. We have the

following possible cases:

i) The solution first jumps at a point in D0, then jumps at a point in D1, and

then jumps at a point in D0; or

ii) The solution first jumps at a point in D1, then jumps at a point in D0, and

then jumps at a point in D1.

Case i) does not hold since, once the jump in D1 occurs, the solution x is in

(T1,0 × {0}) ⊂ C0. Due to the construction of T1,0 in (4.25) and T0,1 in (4.30)

such that T1,0 ∩ T0,1 = ∅, as described in the contradiction of case c) above, and

due to the uniform global asymptotic stability of {z∗
1} × {0} for Hq in (4.4) by

Proposition 3.2.8, the solution x will never return to D0. Therefore, case i) does

not happen. Case ii) leads to a contradiction for the same reason, and in this

case, once the first jumps in D1 occurs, no more jumps happen. Therefore, since

cases i)-ii) do not happen, each maximal and complete solution x to H in (4.3),

with C and D defined via (4.14), has no more than two jumps.

121

Finally, we prove the hybrid convergence rate of H. By Proposition 3.2.10,

since L satisfies Assumptions 3.1.8 and 3.2.4, then, given γq > 0 and λq > 0, for

each m ∈ (0, 1) such that ψq := mαγq

λq
> 0 and νq := ψq(ψq −λq) < 0, each maximal

solution t 7→ z(t) to the closed-loop algorithm Hq in (4.4) satisfies (3.91) for all

t ∈ dom z (= R≥0). Since maximal solutions (t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to

H starting from C1 are guaranteed to jump no more than once, as implied by the

contradiction in cases i)-ii) above, then the domain of each maximal solution x to

H starting from C1 is ∪1
j=0(Ij, j), with I0 of the form [t0, t1] and with I1 of the form

[t1,∞). Therefore, given λq > 0, γq > 0, c1,0 ∈ (0, c0), ε1,0 ∈ (0, ε0), α > 0 from

Assumption 3.2.4, and M > 0 from Assumption 3.1.3, due to the construction of

U0, T1,0, and T0,1 in (4.20), (4.25), and (4.30), with c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0)

defined via (4.17) and (4.22), and due to the individual convergence rates of Hq,

each maximal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to the hybrid closed-loop

algorithm H in (4.3) that starts in C1 satisfies (4.10) for each t ∈ I0 at which

q(t, 0) is equal to 1, and satisfies (4.11) for each t ∈ I1 at which q(t, 1) is equal to

0.

4.4.7 Numerical Examples

In this section, we present multiple numerical examples to illustrate the hybrid

closed-loop algorithm H in (4.3), with C and D defined in (4.14). Example

4.4.5 first illustrates the operation of the nominal hybrid closed-loop algorithm

H, and then demonstrates the robustness of H to different amounts of noise in

measurements of ∇L. Example 4.4.6 compares solutions to the hybrid closed-loop

algorithm with solutions to H0 and H1.

Example 4.4.5. In this example, we simulate a solution to the nominal hybrid

closed-loop system H to illustrate how the uniting algorithm works. Then, we

122

0 0.5 1 1.5 2 2.5 3 3.5 4

-20

0

20

40

60

2.4307sz1

t

σ lim
t+j→∞

sup |z1(t, j) − z∗
1 | lim

t+j→∞
sup |L(z1(t, j)) − L∗|

0.01 1.621 × 10−4 1.314 × 10−8

0.1 3.048 × 10−3 4.645 × 10−6

0.5 8.400 × 10−3 3.528 × 10−5

1 1.748 × 10−3 1.528 × 10−6

5 3.387 × 10−2 5.736 × 10−4

10 6.666 × 10−2 2.222 × 10−3

15 1.332 × 10−1 8.871 × 10−3

20 1.114 × 10−1 6.209 × 10−3

25 5.588 × 10−1 1.931 × 10−3

Figure 4.4: Top: The evolution over time of z1, for the nominal hybrid closed-
loop algorithm H in (4.3), with C and D defined in (4.14), for a function L(z1) :=
1
2z

2
1 with a single minimizer at z∗

1 = 0. The time at which the solution settles to
within 1% of z∗

1 is marked with a dot and labeled in seconds. The jump is labeled
with an asterisk. Bottom: Simulation results for perturbed solutions using zero
mean Gaussian noise, with each simulation using a different value of the standard
deviation σ. Results listed are for a large value of t+ j.

123

compare that same solution to solutions with different amounts of noise in mea-

surements of ∇L. For both the nominal system and the perturbed system, the

choice of objective function, parameter values, and initial conditions are as fol-

lows. We use the objective function L(z1) := 1
2z

2
1, which is nonstrongly convex

with a Lipschitz continuous gradient, with constant M = 1, and which has a sin-

gle minimizer at z∗
1 = 0. This choice of objective function is made so that we can

easily tune λ, as described in Section 5.1.6. We arbitrarily chose the heavy ball

parameter values γ0 = 2
3 and γ1 = 1

2 . We tuned λ0 to 10.5 by choosing a value

arbitrarily larger than 2√
a1, where a1 comes from Section 5.1.6, and gradually

increasing it until there is no overshoot in the hybrid algorithm. We tuned λ1 to 1
5

by choosing a value arbitrarily smaller than 2√
a1 and gradually decreasing until

the switch to H0 occurs once z1 reaches the desired neighborhood of z∗
1.

The parameter values for the uniting algorithm are c0 = 9000, c1,0 ≈ 499.38,

ε0 = 20, ε1,0 = 15, and α = 1
2 , which yield the values c̃0 = 20, c̃1,0 = 15, d0 ≈

8733.3, and d1,0 ≈ 386.88, which are calculated via (4.17) and (4.22). These values

are chosen for proper tuning of the algorithm, in order to get nice performance,

and the value of c1,0 is chosen to exploit the properties of H1 for a longer time, so

that the nominal solution gets closer to the minimizer faster. Initial conditions for

H are z1(0, 0) = 50, z2(0, 0) = 0, and q(0, 0) = 1. The plot on the top in Figure

4.4 shows the solution to the nominal hybrid closed-loop algorithm H, namely, the

value of z1 over time, with the time it takes for the solution to settle to within

1% of z∗
1 marked with a black dot and labeled in seconds. The jump at which the

switch from H1 to H0 occurs is labeled with an asterisk. The solution converges

quickly, without oscillations near the minimizer.

To show that the uniform global asymptotic stability of A, established in The-

orem 4.4.4, is robust to small perturbations, due to the hybrid closed-loop system

124

0 1 2 3 4

-20

0

20

40

60

0 1 2 3 4

-20

0

20

40

60

0 1 2 3 4

-20

0

20

40

60

0 1 2 3 4

-20

0

20

40

60

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

z1

z1

z1

z1

t[s] t[s]

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

σ = 20 σ = 20

σ = 15 σ = 15

σ = 5 σ = 5

σ = 1 σ = 1

Figure 4.5: Simulation results for hybrid closed-loop algorithm H in (4.3), with
C and D defined in (4.14), for a function L(z1) := 1

2z
2
1 with a single minimizer at

z∗
1 = 0, with zero-mean Gaussian noise added to measurements of the gradient.

Each subplot is labeled with the standard deviation used. Left subplots: the value
of z1 over time for each perturbed solution, with the jump in each solution labeled
by an asterisk. Right subplots: the corresponding value of L over time for each
perturbed solution.

125

H satisfying the hybrid basic conditions by Lemma 4.4.2. we simulate the hybrid

algorithm, using the objective function, parameter values, and initial conditions

listed in the first paragraph of this example, with zero-mean Gaussian noise added

to measurements of the gradient. Separate simulations were run for each of the

following standard deviations: σ ∈ {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 25}. Figure 4.5

shows some of these perturbed solutions4, with each subplot labeled with the corre-

sponding standard deviation used. The subplots on the left side of Figure 5.2 show

the value of z1 over time for different standard deviations, and the subplots on

the right side of Figure 4.5 show the corresponding value of L over time for such

standard deviations. Note that, while most perturbed solutions shown in Figure

4.5 get close to the minimizer quickly, the solution with σ = 15 does not, as the

random noise causes the solution to jump too early. However, the solution with

σ = 15 still gets close to the minimizer eventually, as seen in Figure 4.5 and the

table in the bottom of Figure 4.4. Overall, the perturbed solutions in Figure 4.5 do

not get as close to the minimizer as the solution to the nominal algorithm does;

see the plot on the top in Figure 4.4. Also note that, in general, as the standard

deviation gets larger, the corresponding perturbed solution stays slightly farther

away from the minimizer. The results for all standard deviations are listed in the

table in Figure 4.4, showing the neighborhood of z∗
1 that each solution settles to,

for a large value of t+ j, along with the corresponding value of L.

Example 4.4.6. As was done in Example 4.3.4, in this example we show the

effectiveness of the hybrid algorithm H in (4.3), with C and D defined via (4.14),

by comparing it in simulation with the individual optimization algorithms H0 and

H1 in (4.4). We use the same objective function as in Example 4.3.4, namely,

L = 1
4z

⊤
1 Pz1, where z1 ∈ R100 and P = I100×100, which has a single minimizer

4Code at github.com/HybridSystemsLab/UnitingRobustnessHBF.

126

0 5 10 15 20 25 30 35 40 45 50

10
-15

10
-10

10
-5

10
0

10
5

2.9418 s

16.3106 s

hybrid

lambda = 10.5

lambda = 0.5

lambda = 0.5, average

0 50 100
10

-2

10
2

10
5

96.3773 s

L
(z

1)
−

L
∗

t[s]

Figure 4.6: A comparison of the evolution of L over time for H0, H1, and H in
(4.3), with C and D defined in (4.14), for a function L = 1

4z
⊤
1 Pz1, where z1 ∈ R100

and P = I100×100, which has a single minimizer at z∗
1 = (0, 0, . . . , 0). The heavy

ball algorithm H1 uses λ1 = 1
2 (shown in purple) and settles to within 1% of z∗

1 in
about 16.3 seconds. The heavy ball algorithm H0 uses λ0 = 10.5 (shown in green)
and settles to within 1% of z∗

1 in about 96.4 seconds. The hybrid closed-loop
system H (shown in blue) settles to within 1% of z∗

1 in about 2.9 seconds.

127

at z∗
1 = (0, 0, . . . , 0). The Lipschitz constant of L is M = 1

2 . We use the same

approach, described in Example 4.3.4, to tuning λq, which leads to λ0 = 10.5 and

λ1 = 1
2 . Additionally, we use the same arbitrarily chosen γ0 = γ1 = 1

2 as in

Example 4.3.4. The parameter values for the uniting algorithm are c0 = 2000,

c1,0 ≈ 1351.95, ε0 = 35, ε1,0 = 25, and α = 1
4 , which yield the values c̃0 = 8.75,

c̃1,0 = 6.25, d0 ≈ 1846.9, and d1,0 ≈ 1273.8, which are calculated via (4.17) and

(4.22). These values are chosen for proper tuning of the algorithm, in order to get

nice performance, and the value of c1,0 is chosen to exploit the properties of H1

for a longer time, so that the solution gets closer to the minimizer faster. Initial

conditions for H, H0, and H1 are z1(0, 0) = −10, z2(0, 0) = 0, and q(0, 0) = 0.

Algorithm Time to converge (s) % improvement of H
H 2.942 –
H0 96.377 96.9
H1 16.311 82.0

Table 4.2: Average times for which H in (4.3), with C and D defined in (4.14),
H0, and H1 settle to within 1% of z∗

1 , and the average percent improvement of H
over each algorithm. Percent improvement is calculated via (4.13). The objective
function used for this table is L = 1

4z
⊤
1 Pz1, where z1 ∈ R100 and P = I100×100,

which has a single minimizer at z∗
1 = (0, 0, . . . , 0).

Table 4.2 shows the time that each algorithm takes to settle within5 1% of z∗
1,

and the percent improvement of H over H0, H1, and HAND-1, which is calculated

using the formula in (4.13). As can be seen in Figure 4.6 and Table 4.2, H

converges faster than the other algorithms, and the average percent improvement

of H over each of the other algorithms in Table 5.2 is 96.9% over H0 and 82.0%

over H1.

5Code at github.com/HybridSystemsLab/UnitingGradientsHBF.

128

4.5 Extensions

Some possible extensions to the results in Section 4.3 are as follows.

It is possible to extend the results in Section 4.3 to include C1, nonstrongly con-

vex objective functions L with a compact and connected set of minimizers. With

such an assumption, it would be straightforward to extend Lemma 4.3.1, Propo-

sition 4.3.2, and the UGAS result in Theorem 4.3.3. The exponential convergence

rate result in Theorem 4.3.3 can be extended via the assumption of a compact and

connected set of minimizers and the use of Clarke’s generalized derivative in (2.4)

with the Lyapunov function in (3.97), as described in Section 3.2.3. In particular,

with the assumption that L has a compact and connected set of minimizers, it can

be shown that A in (4.9) is UGAS for H in (4.3), with C and D defined via (4.5),

and it can be shown that each maximal solution to H that starts in C1 satisfies

(4.10) for each t ∈ I0 at which q(t, 0) is equal to 1 and t ≥ 1, and satisfies (4.11)

for each t ∈ I1 at which q(t, 1) is equal to 0.

It would be possible to further extend the results in Lemma 4.3.1, Proposition

4.3.2, and Theorem 4.3.3 to nonstrongly convex objective functions L that are

also nonsmooth, through the use of Clarke’s generalized derivative.

It would be possible to extend the results in Section 4.4 in the following ways.

With the extra assumption that the C1, nonstrongly convex objective functions

L has a compact and connected set of minimizers, it would be straightforward

to extend Lemmas 4.4.1 and 4.4.2, Proposition 4.4.3, and the UGAS result in

Theorem 4.3.3. The exponential convergence rate result in Theorem 4.4.4 can be

extended via the assumption of a compact and connected set of minimizers and

the use of Clarke’s generalized derivative in (2.4) with the Lyapunov function in

(3.97), as described in Section 3.2.3. In particular, with the assumption that L

has a compact and connected set of minimizers, it can be shown that A in (4.9) is

129

UGAS for H in (4.3), with C and D defined via (4.14), and it can be shown that

each maximal solution to H that starts in C1 satisfies (4.10) for each t ∈ I0 at

which q(t, 0) is equal to 1 and t ≥ 1, and satisfies (4.11) for each t ∈ I1 at which

q(t, 1) is equal to 0.

It would be possible to further extend the results in Lemmas 4.4.1 and 4.4.2,

Proposition 4.4.3, and Theorem 4.4.4 to include C1, nonstrongly convex objective

functions L that are also nonsmooth, through the use of Clarke’s generalized

derivative.

130

Chapter 5

Uniting Nesterov’s Method and

the Heavy Ball Method

In this chapter, we propose algorithms uniting Nesterov’s algorithm globally

and the heavy ball algorithm locally, in order to achieve UGAS of the unique

minimizer of L, while taking advantage of the convergence rates of Nesterov’s

algorithm and heavy ball in order to achieve a fast (hybrid) convergence rate. We

first present such an algorithm for strongly convex L, and then we present an

algorithm nonstrongly convex L.

5.1 Strongly Convex L

For the algorithm we present in this section, we impose Assumption 3.1.1

on L and 3.1.3 on ∇L. Namely, L is C2, strongly convex, and ∇L is Lipschitz

continuous with constant M > 0.

131

5.1.1 Problem Statement

As illustrated in Figure 1.2, the performance of Nesterov’s accelerated gradient

descent commonly suffers from oscillations near the minimizer. This is also the

case for the heavy ball method when λ > 0 is small. However, when λ is large, the

heavy ball method converges slowly, albeit without oscillations. In Section 1.3 we

discussed how Nesterov’s algorithm guarantees an exponential convergence rate

for strongly convex L. We also discussed how the heavy ball algorithm guarantees

an exponential convergence rate for strongly convex L. We desire to attain such

rates globally and locally, while avoiding oscillations via the heavy ball algorithm

with large λ. We state the problem to solve as follows:

Problem 5.1.1. Given a scalar, real-valued, continuously differentiable, and

strongly convex objective function L, design an optimization algorithm that, with-

out knowing the function L or the location of its minimizer, has the minimizer

uniformly globally asymptotically stable, with an exponential convergence rate glob-

ally and locally, and with robustness to arbitrarily small noise in measurements

of ∇L.

5.1.2 Modeling

In this section, we present an algorithm that solves Problem 5.1.1. As in

Chapter 4, defining z1 as ξ and z2 as ξ̇, we interpret the heavy ball ODE in (1.1)

as a closed-loop system consisting of the plant in (3.1) and a control algorithm

assigning u to κ in (3.71). We interpret the Nesterov ODE in (1.2) as a closed-loop

system consisting of the plant in (3.1) and a control algorithm assigning u to κ in

(3.2).

The proposed logic-based algorithm “unites” the two optimization algorithms

modeled by κq, where the logic variable q ∈ Q := {0, 1} indicates which algorithm

132

is currently being used. The local and global algorithms, respectively, are defined

as

κ0(h0(z)) = −λz2 − γ∇L(z1) (5.1a)

κ1(h1(z)) = −2dz2 − 1
M

∇L(z1 + βz2) (5.1b)

where γ > 0, λ > 0, M > 0 is the Lipschitz constant for ∇L, and d and β are

defined in (3.3). Note that, as in [12], we have set ζ = 1 in (1.2) and, consequently,

in (5.1b), for simplicity of analysis. The algorithm defined by κ1 plays the role

of the global algorithm in uniting control (see, e.g., [22, Chapter 4]), while the

algorithm defined by κ0 plays the role of the local algorithm. The outputs hq are

defined as

h0(z) :=

 z2

∇L(z1)

 , h1(z) :=

 z2

∇L(z1 + βz2)

 . (5.2a)

where β is defined via (3.3). Namely, the algorithm exploits measurements of

∇L, which in practice are typically approximated using measurements of L. The

parameters λ > 0 and γ > 0 should be designed to achieve convergence without

oscillations nearby the minimizer.

To encapsulate the plant and static state-feedback laws, the hybrid closed-loop

system H with state x := (z, q) ∈ R2n ×Q is defined as

ż =

 z2

κq(hq(z))

q̇ = 0

=: F (x) x ∈ C := C0 ∪ C1 (5.3a)

133

z+ =

z1

z2

q+ = 1 − q

=: G(x) x ∈ D := D0 ∪D1 (5.3b)

with the sets C0, C1, D0, and D1 defined in (4.14). We denote, for each q ∈

Q := {0, 1}, the closed-loop systems resulting from the individual optimization

algorithms as Hq, which is defined as

ż =

 z2

κq(hq(z))

 z ∈ R2n. (5.4)

Namely, the closed-loop resulting from using κ1 (Nesterov’s algorithm) is denoted

as H1, and the closed-loop resulting from using κ0 (heavy ball) is denoted as H0.

The sets U0, T1,0, and T0,1 are precisely defined in Sections 5.1.3-5.1.5, but

the idea behind their construction is as follows. The switch between κ0 and κ1

is governed by a supervisory algorithm implementing switching logic; see Figure

4.1. The supervisor selects between these two optimization algorithms, based on

the output of the plant and the optimization algorithm currently applied. When

z ∈ U0 and q = 0 (i.e., x ∈ C0), due to the design of U0 in Section 5.1.3, then

the state z is near the minimizer, which is denoted z∗
1 , and the supervisor allows

flows of (5.3) using κ0 in (5.1a) (heavy ball, with large λ) to avoid oscillations.

Conversely, when z ∈ R2n \ T1,0 and q = 1 (i.e., x ∈ C1), due to the design of T1,0 in

Section 5.1.4, then the state z is far from the minimizer and the supervisor allows

flows of (5.3) using κ1 in (5.1b) (Nesterov’s algorithm) to converge quickly to the

neighborhood of the minimizer. When z ∈ T1,0 and q = 1 (i.e., x ∈ D1), then this

indicates that the state z is near the minimizer, and the supervisor assigns u to

κ0 in (5.1a) and resets q to 0. Conversely, when z ∈ T0,1 and q = 0 (i.e., x ∈ D0),

due to the design of T0,1 in Section 4.4.3, then this indicates that the state z is far

134

from the minimizer and the supervisor assigns u to κ1 in (5.1b) and resets q to 1.

The complete algorithm, defined in (5.3) and (4.14), is summarized in Algorithm

2.

5.1.3 Design of U0

Recall from lines 7-8 of Algorithm 2 that the objective is to design U0 such

that when z ∈ U0 and q = 0, the state component z1 is near z∗
1 and the uniting

algorithm allows flows of (5.3) with κ0 in (5.1a) and q = 0. For such a design,

we use Definition 2.2.2 and1 2.2.3 and the Lyapunov function V0 in (3.80), where

γ > 0. Given ε0 > 0, c0 > 0, and γ > 0 from κ0 in (5.1a), let α > 0 come from

Definition 2.2.3 such that

c̃0 := ε0α > 0, d0 := c0 − γ

(
c̃2

0
α

)
> 0. (5.5)

Since the strong convexity of L in Assumption 3.1.1 implies that L also satisfies

Definition 2.2.2, then V0 in (3.80) can be upper bounded, using Definition 2.2.2

as done to arrive to (4.15), as follows: for each z ∈ R2n

V0(z) = γ (L(z1) − L∗) + 1
2 |z2|2 ≤ γ |∇L(z1)| |z1 − z∗

1 | + 1
2 |z2|2 . (5.6)

Then, due to L being C2, strongly convex, and having a single minimizer z∗
1 by

Assumption 3.1.1 – which implies that L also satisfies Definition 2.2.2 and has

quadratic growth away from z∗
1 as in Definition 2.2.3, when |∇L(z1)| ≤ c̃0, the

1The strong convexity of L in Assumption 3.1.1 implies that L also satisfies Definition 2.2.2;
see [66]. The strong convexity of L in Assumption 3.1.1 also implies quadratic growth of L in
Definition 2.2.3, as quadratic growth is a weaker property than strong convexity; see [67], [19],
[68], [69], [70].

135

suboptimality condition in Lemma 4.4.1 implies |z1 − z∗
1 | ≤ c̃0

α
, from where we get

V0(z) ≤ γ

(
c̃2

0
α

)
+ 1

2 |z2|2 (5.7)

Then, by defining the set U0 as in (4.20), every z ∈ U0 belongs to the c0-sublevel

set of V0, with V0 defined via (3.80). In fact, using the conditions in (5.5) and

(5.7), we have that for each z ∈ U0,

V0(z) ≤ γ

(
c̃2

0
α

)
+ 1

2 |z2|2 ≤ c0. (5.8)

Since κ0 in (5.1a) is such that the set {z∗
1} × {0} is globally asymptotically stable

for the closed-loop system resulting from controlling (3.1) by κ0, as was shown in

the Proposition 3.2.8, the set U0 is contained in the basin of attraction induced

by κ0.

5.1.4 Design of T1,0

Recall from lines 5-6 of Algorithm 2 that the objective is to design T1,0 such

that when z ∈ T1,0 and q = 1, the state component z1 is near z∗
1 and the supervisor

resets q to 0, resets τ to 0, and assigns u to κ0(h0(z)), where κ0 is defined in (5.1a)

and h0 is defined via (5.2). For such a design, we use Assumption 3.1.1 – which

implies that L also satisfies Definitions 2.2.2 and 2.2.3, the suboptimality condition

from Lemma 4.4.1, and the Lyapunov function in (3.8), defined for each z ∈ R2n,

where M > 0 is the Lipschitz constant of ∇L, the constants d and β are defined

via (3.3), and the constant a is defined in (3.9).

Given c1,0 ∈ (0, c0) and ε1,0 ∈ (0, ε0), where c0 > 0 and ε0 > 0 come from

Section 5.1.3, let c̃0 and d0 be given in (5.5), and let α > 0 come from Definition

136

2.2.3 such that

c̃1,0 := ε1,0α ∈ (0, c̃0) (5.9a)

d1,0 := c1,0 − a2
(
c̃1,0

α

)2
− 1
M

(
c̃2

1,0

α

)
∈ (0, d0) (5.9b)

Then, with V1 given in (3.8) and using Definition 2.2.2 with u1 = z∗
1 and w1 = z1,

V1(z) ≤ a2 |z1 − z∗
1 |2 + |z2|2 + 1

M
|∇L(z1)| |z1 − z∗

1 | (5.10)

Then, due to L being C2, strongly convex, and having a single minimizer z∗
1 by

Assumption 3.1.1 – which implies that L also satisfies Definition 2.2.2 and has

quadratic growth away from z∗
1 as in Definition 2.2.3, when |∇L(z1)| ≤ c̃1,0, the

suboptimality condition in Lemma 4.4.1 implies |z1 − z∗
1 | ≤ c̃1,0

α
, from where we

get

V1(z) ≤ a2
(
c̃1,0

α

)2
+ |z2|2 + 1

M

(
c̃2

1,0

α

)
. (5.11)

Then, by defining T1,0 as

T1,0 :=
{
z ∈ R2n : |∇L(z1)| ≤ c̃1,0, |z2|2 ≤ d1,0

}
(5.12)

which, by construction, is contained in the interior of U0 defined in (4.20), every

z ∈ T1,0 belongs to the c1,0-sublevel set of V1. In fact, using the conditions in (5.9)

and (5.11), we have for each z ∈ T1,0,

V1(z) ≤ a2
(
c̃1,0

α

)2
+ |z2|2 + 1

M

(
c̃2

1,0

α

)
≤ c1,0. (5.13)

As was described below (4.26), the constants c̃0, c̃1,0, d0, and d1,0 in (5.5) and (5.9)

comprise the hysteresis necessary to avoid chattering at the switching boundary;

137

see Figure 4.3.

5.1.5 Design of T0,1

To make the switch back to κ1, we utilize Assumption 3.1.3. Recall from lines

3-4 of Algorithm 2 that the objective is to design T0,1 such that when z ∈ T0,1 and

q = 0, the state component z1 is far from z∗
1 and the supervisor resets q to 1 and

assigns u to κ1(h(z)), where κ1 is defined via (5.1b) and h1 is defined in (5.2), so

that κ1 steers z1 back to nearby z∗
1 . Given c0 > 0, let α > 0 come from Definition

2.2.3, and let M > 0 come from Assumption 3.1.3. Then, using Assumption 3.1.3

with u1 = z∗
1 and w1 = z1 yields (4.27) for all z1 ∈ Rn. Since L is C2, strongly

convex, and has a single minimizer z∗
1 by Assumption 3.1.1 – which implies that L

also has quadratic growth away from z∗
1 as in Definition 2.2.3, then dividing both

sides of (4.27) by M and substituting into (3.79) leads to (4.28), where α > 0

comes from Definition 2.2.3.

Then, V0 in (3.80) is lower bounded as follows: for each z ∈ R2n,

V0(z) = γ (L(z1) − L∗) + 1
2 |z2|2 ≥ γ

(
α

M2

)
|∇L(z1)|2 + 1

2 |z2|2 . (5.14)

Using the right-hand side of (5.14) and the same c0 > 0 as in Section 4.4.1, we

define the set

T0,1 :=
{
z ∈ R2n : γ

(
α

M2

)
|∇L(z1)|2 + 1

2 |z2|2 ≥ c0

}
. (5.15)

The set in (5.15) defines the (closed) complement of a sublevel set of the Lyapunov

function V0 in (3.80) with level equal to c0. The constant c0 is also a part of the

hysteresis mechanism, as shown in Figure 4.3 and as described below (4.30). Note

that, as in Section 4.4.3, T0,1 ∩ T1,0 = ∅.

138

5.1.6 Design of the Parameter λ

The heavy ball parameter λ > 0 should be made large enough to avoid os-

cillations near the minimizer, as stated in Sections 1.3.1, 1.3.3, and 5.1.1. The

intuition on how to tune λ is the same as the intuition behind how to tune λ0 for

the the uniting algorithms in Chapter 4, which was described in detail in Section

4.3.2. See Examples 5.2.5, 5.2.6, and 5.2.7 where λ was tuned in such a way.

5.1.7 Well-posedness of the Hybrid Closed-Loop System

H

When L satisfies Assumptions 3.1.1 and 3.1.3, the hybrid closed-loop system H

in (5.3), with U0, T1,0, and T0,1 defined via (4.20), (5.12), and (5.15), satisfies the

hybrid basic conditions, listed in Definition 2.1.1, as demonstrated in the following

lemma.

Lemma 5.1.2. (Well-posedness of H) Let the function L satisfy Assumptions

3.1.1 and 3.1.3. Let the sets U0, T1,0, and T0,1 be defined via (4.20) (5.12), and

(5.15), respectively. Let the functions d and β be defined in (3.3). Let κ0 and κ1

be defined via (5.1). Then, the hybrid closed-loop system H in (5.3), with C and

D defined via (4.14), satisfies the hybrid basic conditions.

Proof. The objective function L is C2 and strongly convex by Assumption 3.1.1.

Therefore, since ∇L is continuous, the following hold: the set U0, defined via

(4.20), is closed since it is a sublevel set of the continuous function V0; due to

the definition of a in (3.9), the set T1,0, defined via (5.12), is closed since it is a

sublevel set of the continuous function V1; the set T0,1, defined via (5.15), is closed

since it is the closed complement of a set. Therefore, since the sets U0, T1,0, and

T0,1 are closed, then the sets D0, D1, C0, and C1 are closed. Since C and D are

139

both finite unions of finite and closed sets, then C and D are also closed.

Due to the definition of d and β in (3.3), and since by Assumption 3.1.1, L

is C2, then hq in (5.2) and κq in (5.1) are continuous. In turn, the map z 7→

FP (z, κq(hq(z))) is also continuous since FP in (3.1) is a C2 function of κq and hq.

Therefore, x 7→ F (x) is continuous. The map G satisfies (A3) by construction

since it is continuous.

5.1.8 Existence of Solutions to H

Under Assumptions 3.1.1 and 3.1.3, Π(C0)∪Π(D0) = R2n and Π(C1)∪Π(D1) =

R2n and each maximal solution to H in (5.3), with U0, T1,0, and T0,1 defined via

(4.20), (5.12), and (5.15), is complete and bounded, as stated in the following

lemma.

Proposition 5.1.3. (Existence of solutions to H) Let the function L satisfy As-

sumptions 3.1.1 and 3.1.3. Let M > 0 come from 3.1.3. Let the sets U0, T1,0,

and T0,1 be defined via (4.20), (5.12), and (5.15), respectively. Let κq be defined

via (5.1). Let λ > 0 and γ > 0. Let the functions d and β be defined in (3.3).

Then, Π(C0) ∪ Π(D0) = R2n, Π(C1) ∪ Π(D1) = R2n, and each maximal solution

(t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to H in (5.3), with C and D defined via (4.14),

is bounded and complete.

Proof. Since Assumptions 3.1.8 and 3.1.3 hold, then H satisfies the hybrid basic

conditions by Lemma 5.1.2. With c̃0 > 0 and d0 > 0 defined via (5.5), since L is

C2 and strongly convex by Assumption 3.1.8 – which implies that L also satisfies

Definition 2.2.2 and has quadratic growth away from z∗
1 as in Definition 2.2.3 –

from the arguments below (5.6), every z ∈ U0 belongs to the c0-sublevel set of V0;

recall that U0 is defined in (4.20) and that V0 is defined via (3.80). Additionally,

140

since by Definition 2.2.3 L has quadratic growth away from z∗
1 and since ∇L is

Lipschitz continuous by Assumption 3.1.3, then T0,1 in (5.15) defines the closed

complement of a sublevel set of V0 with level equal to c0. Therefore, due to the

definitions of U0 in (4.20) and T0,1 in (5.15), Π(C0) ∪ Π(D0) = R2n. Furthermore,

since T1,0 is defined via (5.12), and since by the definitions of C1 and D1 in (4.14),

C1 is the closed complement of D1, then Π(C1) ∪ Π(D1) = R2n.

Due to the definitions of C0, D0, C1, and D1 in (4.14), U0 in (4.20), T1,0

in (5.12), and T0,1 in (5.15), then C \ D is equal to int(C). Hence, for each

point x ∈ C \ D, the tangent cone to C at x is defined in (4.8). Therefore,

F (x) ∩ TC(x) ̸= ∅, satisfying (VC) of Proposition A.1.1 for each point x ∈ C \D,

and nontrivial solutions exist for every initial point in (C0 ∪ C1) ∪ (D0 ∪D1),

where Π(C0) ∪ Π(D0) = R2n and Π(C1) ∪ Π(D1) = R2n. To prove that item (c)

of Proposition A.1.1 does not hold, we need to show that G(D) ⊂ C ∪ D. With

D defined in (4.14), G(D) is as shown in (4.31). Notice that T1,0 × {0} ⊂ C0 and

T0,1 × {1} ⊂ C1. Therefore, G(D) ⊂ C; hence G(D) ⊂ C ∪D. Therefore, item (c)

of Proposition A.1.1 does not hold. Then it remains to prove that item (b) does

not happen.

We show that there is no finite time escape from C for H as follows. First, since

∇L is Lipschitz continuous by Assumption 3.1.3 and since L is C2 and strongly

convex by Assumption 3.1.1 – which implies that L also satisfies Definition 2.2.2

and has quadratic growth away from z∗
1 as in Definition 2.2.3, then each maximal

solution to ż = FP (z, κ0(h0(z))), defined via (5.4) – with κ0 in (5.1a) and h0 in

(5.2) – is bounded, complete, and unique by Proposition 3.2.7. Next, since ∇L is

Lipschitz continuous by Assumption 3.1.3 and since L is C2 and strongly convex

by Assumption 3.1.1 – which implies that L also satisfies Definition 2.2.2 and has

quadratic growth away from z∗
1 as in Definition 2.2.3, then ż = FP (z, κ1(h1(z))) –

141

with κ1 in (5.1b) and h1 in (5.2) – is bounded, complete, and unique by Proposition

3.1.5. Finally, for the hybrid closed-loop system H in (5.3), with C and D defined

via (4.14) and κq defined in (5.1), since Hq in (5.4) has no finite time escape from

R2n, then this means ẋ = F (x) has no finite time escape from C for H, as q

does not change in C. Therefore, there is no finite time escape from C ∪ D, for

solutions x to H in (5.3), with C and D defined via (4.14) and κq defined in (5.1).

Therefore, item (b) from Proposition A.1.1 does not hold.

5.1.9 Main Result

In this section, we present a result that establishes UGAS of the set A in (4.9),

and a hybrid convergence rate that is exponential both globally and locally, for

the hybrid closed-loop algorithm H in (5.3), with C and D defined in (4.14) and

with the sets U0, T1,0, and T0,1 defined via (4.20), (5.12), and (5.15), respectively.

Theorem 5.1.4. (Global asymptotic stability of A and convergence rate for H)

Let L satisfy Assumptions 3.1.1 and 3.1.3, and let M > 0 come from Assumption

3.1.3. Additionally, let λ > 0, γ > 0, ε1,0 ∈ (0, ε0), c1,0 ∈ (0, c0), c0 > 0,

c̃1,0 ∈ (0, c̃0) come from (5.5) and (5.9a), d1,0 ∈ (0, d0) come from (5.5) and

(5.9b). Let the sets U0, T1,0, and T0,1 be defined via (4.20), (5.12), and (5.15),

respectively. Let the constants d and β be defined in (3.3). Let κq be defined via

(5.1). Then, the set A, defined in (4.9), is globally asymptotically stable for H

in (5.3), with C and D defined via (4.14). Furthermore, each maximal solution

(t, j) 7→ x(t, j) = (z(t, j), q(t, j)) of the hybrid closed-loop algorithm H starting

from C1 satisfies the following:

1) The domain dom x of the solution x is of the form ∪1
j=0(Ij × {j}), with I0 of

the form [t0, t1] and with I1 of the form [t1,∞) for some t1 ≥ 0 defining the

time of the first jump;

142

2) For each2 t ∈ I0

L(z1(t, 0)) − L∗ ≤ (L(z1(0, 0)) − L∗) exp(−at) (5.16)

3) For each t ∈ I1

L(z1(t, 1)) − L∗ ≤ (L(z1(t1, 1)) − L∗) exp(−2µt) (5.17)

where µ > 0 comes from Definition 2.2.1 and where a > 0 is defined in (3.9),

with κc defined via (3.4).

Proof. The hybrid closed-loop algorithm H in (5.3) – with U0, T1,0, and T0,1

defined via (4.20), (5.12), and (5.15), respectively – satisfies the hybrid basic

conditions by Lemma 5.1.2, satisfying the first assumption of Theorem A.1.3.

Furthermore, Π(C0) ∪ Π(D0) = R2n, Π(C1) ∪ Π(D1) = R2n, and each maxi-

mal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to H is complete and bounded by

Proposition 5.1.3. Since by Assumption 3.1.1, L is strongly convex, then L has a

unique minimizer z∗
1 . Hence, A, defined via (4.9), is compact by construction, and

U = R2n × Q contains a nonzero open neighborhood of A, satisfying the second

assumption of Theorem A.1.3.

To prove attractivity of A in (4.9), we proceed by contradiction. Suppose there

exists a complete solution x to H such that lim
t+j→∞

|x(t, j)|A ̸= 0. Since Proposition

5.1.3 guarantees completeness of maximal solutions, we have the following cases:

a) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C1\D1 for all (t, j) ∈ dom x, t+

j ≥ t′ + j′;

b) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C0 \ (A ∪ D0) for all (t, j) ∈
2Note that at each t ∈ I0, q(t, 0) = 1, and at each t ∈ I1, q(t, 1) = 0.

143

dom x, t+ j ≥ t′ + j′;

c) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ D for all (t, j) ∈ dom x, t+j ≥

t′ + j′.

Case a) contradicts the fact that, by Theorem 3.1.7, the set {z∗
1} × {0} is

uniformly globally asymptotically stable for H1 in (5.4). Such uniform global

asymptotic stability of {z∗
1} × {0}, guaranteed by Theorem 3.1.7, implies there

exist c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that the state z reaches ({z∗
1} + c̃1B) ×

({0} + d1B) ⊂ T1,0 as t → ∞. In turn, due to the construction of C1 and D1

in (4.14), with T1,0 defined via (5.12), the solution x must reach D1 at some

(t, j) ∈ dom x, t+ j ≥ t′ + j′. Therefore, case a) does not happen.

Case b) contradicts the fact that, by Proposition 3.2.8, {z∗
1}×{0} is uniformly

globally asymptotically stable for H0 in (5.4). In fact, lim
t+j→∞

|x(t, j)|A = 0, and

since A ⊂ C0, case b) does not happen.

Case c) contradicts the fact that, due to the construction of T1,0 in (5.12) and

T0,1 in (5.15), we have G(D) ∩ D as defined in (4.32), where G(D) is defined via

(4.31) and D is defined in (4.14). Such an equality holds since T0,1 ∩ T1,0 = ∅; see

the end of Section 5.1.5. Therefore, case c) does not happen.

Therefore, cases a)-c) do not happen, and each maximal and complete solution

x = (z, q) to H converges to A in (4.9). Consequently, by the construction of C

and D in (4.14), the definition of the sets U0 in (4.20), T1,0 in (5.12), and T0,1

(5.15), the uniform global asymptotic stability of {z∗
1} × {0} for H0 established

in Proposition 3.2.8, the uniform global asymptotic stability of {z∗
1} × {0} for H1

established in Theorem 3.1.7, and since each maximal solution to H is complete

by Proposition 5.1.3, the set A in (4.9) is uniformly globally asymptotically stable

for H in (5.3), with C and D defined via (4.14) and with U0, T1,0, and T0,1 defined

via (4.20), (5.12), and (5.15).

144

To show that each maximal and complete solution x to H jumps no more than

twice, we proceed by contradiction. Without loss of generality, suppose there

exists a maximal and complete solution that jumps three times. We have the

following possible cases:

i) The solution first jumps at a point in D0, then jumps at a point in D1, and

then jumps at a point in D0; or

ii) The solution first jumps at a point in D1, then jumps at a point in D0, and

then jumps at a point in D1.

Case i) does not hold since, once the jump in D1 occurs, the solution x is in

(T1,0 × {0}) ⊂ C0. Due to the construction of T1,0 in (5.12) and T0,1 in (5.15)

such that T1,0 ∩ T0,1 = ∅, as described in the contradiction of case c) above, and

due to the uniform global asymptotic stability of {z∗
1} × {0} for H0 in (5.4) by

Proposition 3.2.8, the solution x will never return to D0. Therefore, case i) does

not happen. Case ii) leads to a contradiction for the same reason, and in this

case, once the first jump in D1 occurs, no more jumps happen. Therefore, since

cases i)-ii) do not happen, each maximal and complete solution x to H in (5.3),

with C and D defined via (4.14) and with U0, T1,0, and T0,1 defined via (4.20),

(5.12), and (5.15), has no more than two jumps.

Finally, we prove the hybrid convergence rate of H. By Proposition 3.2.3,

since L is C2 and strongly convex by Assumption 3.1.1, then, given µ > 0 from

Definition 2.2.1, each maximal solution t 7→ z(t) to the closed-loop algorithm

H0 in (5.4) satisfies (3.77) for all t ∈ dom z (= R≥0). By Proposition 3.1.6, L

is C2 and strongly convex by Assumption 3.1.1, and ∇L is Lipschitz continuous

with constant M > 0 by 3.1.1, then, given µ > 0 from Definition 2.2.1 and

a > 0 from (3.9), each maximal solution t 7→ z(t) to the closed-loop algorithm

H1 in (5.4) satisfies (3.31) for all t ∈ dom z (= R≥0). Since maximal solutions

145

(t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to H starting from C1 are guaranteed to jump

no more than once, as implied by the contradiction in cases i)-ii) above, then the

domain of each maximal solution x to H starting from C1 is ∪1
j=0(Ij, j), with

I0 of the form [t0, t1] and with I1 of the form [t1,∞). Therefore, given λ > 0,

γ > 0, c1,0 ∈ (0, c0), ε1,0 ∈ (0, ε0), α > 0 from Definition 2.2.3, and M > 0

from Assumption 3.1.3, due to the construction of U0, T1,0, and T0,1 in (4.20),

(5.12), and (5.15), with c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0) defined via (5.5) and

(5.9), and due to the individual convergence rates of Hq, each maximal solution

(t, j) 7→ x(t, j) = (z(t, j), q(t, j)) to the hybrid closed-loop algorithm H in (5.3)

that starts in C1 satisfies (5.16) for each t ∈ I0 at which q(t, 0) is equal to 1, and

satisfies (5.17) for each t ∈ I1 at which q(t, 1) is equal to 0.

5.1.10 Numerical Examples

In this section, we present multiple numerical examples to illustrate the hybrid

closed-loop algorithm H in Sections 5.1.2-5.1.5. Example 5.1.5 first illustrates the

operation of the nominal hybrid closed-loop system H, and then demonstrates the

robustness of H to different amounts of noise in measurements of ∇L. Example

5.1.6 compares solutions to the hybrid closed-loop algorithm in (5.22) and (4.14)

– with U0, T1,0, and T0,1 defined via (4.20), (5.12), and (5.15), respectively, – with

solutions to H0, H1, and HAND-2 from [32], with parameters chosen such that

HAND-2 and H are compared on equal footing.

Example 5.1.5. In this example, we simulate a solution to the nominal hybrid

closed-loop system H to illustrate how the uniting algorithm works. Then, we

compare that same solution to solutions with different amounts of noise in mea-

surements of ∇L. For both the nominal system and the perturbed system, the

choice of objective function, parameter values, and initial conditions are as fol-

146

0 0.5 1 1.5 2 2.5 3 3.5 4

0

20

40

60

2.3861s

z1

t

σ lim
t+j→∞

sup |z1(t, j) − z∗
1 | lim

t+j→∞
sup |L(z1(t, j)) − L∗|

0.01 5.480 × 10−5 3.003 × 10−9

0.1 1.855 × 10−4 3.441 × 10−8

0.5 1.119 × 10−2 1.252 × 10−4

1 3.406 × 10−2 1.160 × 10−3

5 2.069 × 10−2 4.281 × 10−4

10 1.434 × 10−2 2.056 × 10−4

15 4.693 × 10−2 2.202 × 10−3

20 2.494 × 10−1 6.220 × 10−2

25 5.100 × 10−2 2.601 × 10−3

Figure 5.1: Top: The evolution over time of z1, for the nominal hybrid closed-
loop algorithm H in Sections 5.1.2-5.1.5, for a function L(z1) := z2

1 with a single
minimizer at z∗

1 = 0. The time at which the solution settles to within 1% of z∗
1 is

marked with a dot and labeled in seconds. The jump is labeled with an asterisk.
Bottom: Simulation results for perturbed solutions using zero mean Gaussian
noise, with each simulation using a different value of the standard deviation σ.
Results listed are for a large value of t+ j.

147

lows. We use the objective function L(z1) := z2
1, which is strongly convex with

µ = 2, the gradient of which is Lipschitz continuous with M = 2, which has a

single minimizer at z∗
1 = 0. This choice of objective function is made so that

we can easily tune λ, as described in Section 5.1.6. Since κc = M
µ

= 2
2 = 1 for

such an objective function, then d = 1
2 and β = 0, as calculated via (3.3). We

arbitrarily chose the heavy ball parameter value γ = 2
3 and we tuned λ to 40 by

choosing a value arbitrarily larger than 2√
a1, where a1 comes from Section 5.1.6,

and gradually increasing it until there is no overshoot in the hybrid algorithm. The

parameter values for the uniting algorithm are c0 = 3000, c1,0 ≈ 402.83, ε0 = 20,

ε1,0 = 15, and α = 1, which yield the values c̃0 = 20, c̃1,0 = 15, d0 ≈ 2733.3, and

d1,0 ≈ 234.08, which are calculated via (5.5) and (5.9). These values are chosen

for proper tuning of the algorithm, in order to get nice performance, and the value

of c1,0 is chosen to exploit the properties of Nesterov’s method for a longer time,

so that the nominal solution gets closer to the minimizer faster. Initial conditions

for H are z1(0, 0) = 50, z2(0, 0) = 0, and q(0, 0) = 1. The plot on the top in Fig-

ure 5.1 shows the solution to the nominal hybrid closed-loop algorithm H, namely,

the value of z1 over time, with the time it takes for the solution to settle to within

1% of z∗
1 marked with a black dot and labeled in seconds3. The jump at which the

switch from H1 to H0 occurs is labeled with an asterisk. The solution converges

quickly, without oscillations near the minimizer.

To show that the uniform global asymptotic stability of A, established in The-

orem 5.1.4, is robust to small perturbations, due to the hybrid closed-loop system

H satisfying the hybrid basic conditions by Lemma 5.1.2. we simulate the hybrid

algorithm, using the objective function, parameter values, and initial conditions

listed in the first paragraph of this example, with zero-mean Gaussian noise added

to measurements of the gradient. Separate simulations were run for each of the
3Code at github.com/HybridSystemsLab/UnitingRobustnessSC.

148

0 1 2 3 4

-50

0

50

0 1 2 3 4

-50

0

50

0 1 2 3 4

-50

0

50

0 1 2 3 4

-50

0

50

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

z1

z1

z1

z1

t[s] t[s]

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

σ = 25 σ = 25

σ = 20 σ = 20

σ = 10 σ = 10

σ = 5 σ = 5

Figure 5.2: Simulation results for hybrid closed-loop algorithm H in Sections
5.1.2-5.1.5, for a function L(z1) := z2

1 with a single minimizer at z∗
1 = 0, with

zero-mean Gaussian noise added to measurements of the gradient. Each subplot
is labeled with the standard deviation used. Left subplots: the value of z1 over
time for each perturbed solution, with the jump in each solution labeled by an
asterisk. Right subplots: the corresponding value of L over time for each perturbed
solution.

149

following standard deviations: σ ∈ {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 25}. Figure 5.2

shows some of these perturbed solutions, with each subplot labeled with the cor-

responding standard deviation used. The subplots on the left side of Figure 5.2

show the value of z1 over time for different standard deviations, and the subplots

on the right side of Figure 5.2 show the corresponding value of L over time for

such standard deviations. Note that, while all perturbed solutions shown in Figure

5.2 get close to the minimizer quickly, such perturbed solutions do not get as close

to the minimizer as the solution to the nominal algorithm does; see the plot on

the top in Figure 5.1. Also note that, in general, as the standard deviation gets

larger, the corresponding perturbed solution stays slightly farther away from the

minimizer. The results for all standard deviations are listed in the table in Figure

5.1, showing the neighborhood of z∗
1 that each solution settles to, for a large value

of t+ j, along with the corresponding value of L.

Example 5.1.6. In this example, to show the effectiveness of the uniting algo-

rithm, we compare the hybrid closed-loop algorithm H, defined via (5.3) and (4.14)

– with U defined in (4.20), T1,0 defined via (5.12), and T0,1 defined in (5.15) – with

the individual closed-loop optimization algorithms H0 and H1 and with the HAND-

2 algorithm from [32] which, in [32], is designed and analyzed for strongly convex

functions L satisfying Assumptions 3.1.1 and 3.1.3. Using an alternate state space

representation, namely, z1 := ξ and z2 := ξ+ τ
2 ξ̇, the HAND-2 algorithm has state

(z, τ) ∈ R2n+1 and data (C,F,D,G)

F (z, τ) :=

2
τ
(z2 − z1)

−2c1τ∇L(z1)

1

 (z, τ) ∈ C (5.18a)

150

G(z, τ) :=

z1

z1

Tmin

 (z, τ) ∈ D (5.18b)

where c1 > 0 and the flow and jump sets are C := {(z, τ) ∈ R2n+1 : τ ∈ [Tmin, Tmax]},

and D := {(z, τ) ∈ R2n+1 : τ ≥ Tmax}. It is shown in [32] that, letting 0 < Tmin <

Tmax < ∞ and 1
c1µ

< T 2
max − T 2

min, each maximal solution (t, j) 7→ (z(t, j), τ(t, j))

to the HAND-2 algorithm satisfies

L(z1(t, j)) − L∗ ≤ ka |z̃1(0, 0)|2 exp
(
−k̃bα̃ (t+ j)

)
(5.19)

for all (t, j) ∈ dom(z, τ) such that z1(0, 0) = z2(0, 0) and τ(0, 0) = Tmin, where

ka := 0.5k1M , M > 0, k1 := (c1µ)−1+T 2
min

∆T 2 , ∆T := Tmax − Tmin, k̃b := 1 − k0,

k0 := (c1µ)−1+T 2
min

T 2
max

, j≥ α̃(t+ j) := max{t+j−∆T,0}
∆T +1 , and |z̃1(0, 0)| := |z1(0, 0) − z∗

1 |.

To compare H0, H1, H, and HAND-2 in simulation, we use the objective

function L(z1) := z2
1, which is strongly convex with µ = 2, and the gradient of

which is Lipschitz continuous with M = 2, leading to κ = M
µ

= 1. Therefore,

d = 1
2 and β = 0, calculated via (3.3). Such an L has a single minimizer at

z∗
1 = 0. This choice of objective function is made so that we can easily tune

λ, as described in Section 5.1.6. Namely, we tuned λ to 40 by choosing a value

arbitrarily larger than 2√
a1, where a1 comes from Section 5.1.6, and gradually

increasing it until there is no overshoot in the hybrid algorithm. We arbitrarily

chose the heavy ball parameter value γ = 2
3 .

The HAND-2 parameters c1 = 1
8 and Tmin = 3 are chosen such that the re-

sulting gain coefficients for z1 and z2 are the same for both H and HAND-2, so

that these algorithms are compared on equal footing. The remaining HAND-2

parameter, Tmax = 5.1, is chosen to satisfy 1
c1µ

< T 2
max − T 2

min and to get nice

151

0 1 2 3 4 5 6 7 8 9 10

10
-30

10
-20

10
-10

10
0

2.0875s
2.3861s 8.7811s

Hybrid

Heavy ball

Nesterov

Nesterov, average

HAND-2

HAND-2, average 0 100 200
10

-2

10
2

10
6

138.0673s

L
(z

1)
−

L
∗

t[s]

Figure 5.3: A comparison of the evolution of L over time for H0, H1 (both in
(5.4)), HAND-2, and H in (5.3) – with U in (4.20), T1,0 in (5.12), and T0,1 in (5.15)
– for a function L(z1) := z2

1 , with a single minimizer at z∗
1 = 0. Nesterov’s method,

shown in purple, settles to within 1% of z∗
1 in about 8.8 seconds. The heavy ball

algorithm, shown in green, settles to within 1% of z∗
1 in about 138.1 seconds.

HAND-2, shown in orange, settles to within 1% of z∗ in about 2.1 seconds. The
hybrid closed-loop system H, shown in blue, settles to within 1% of z∗

1 in about
2.4 seconds.

152

performance. The parameter values for the uniting algorithm are c0 = 3000,

c1,0 ≈ 402.83, ε0 = 20, ε1,0 = 15, and α = 1, which yield the values c̃0 = 20,

c̃1,0 = 15, d0 ≈ 2733.3, and d1,0 ≈ 234.08, which are calculated via (5.5) and

(5.9). These values are chosen for proper tuning of the algorithm, in order to

get nice performance, and the value of c1,0 is chosen to exploit the properties of

Nesterov’s method for a longer time, so that the nominal solution gets closer to

the minimizer faster. The initial conditions for H0 and H1 are z1(0, 0) = 50 and

z2(0, 0) = 0. Initial conditions for H are z1(0, 0) = 50, z2(0, 0) = 0, and q = 1.

Initial conditions for HAND-2 are z1(0, 0) = z2(0, 0) = 50 and τ(0, 0) = Tmin.

Figure 5.3 compares the evolution of L over time4, for H0, H1, H, and HAND-

2. Table 5.1 shows the time that each algorithm takes to settle within 1% of z∗
1,

and the percent improvement of H over H0 and H1, which is calculated via the

formula in (4.13). Note that HAND-2 settles within 1% of z∗
1 slightly faster than

H does, but HAND-2 and H have similarly good performance.

Algorithm Time to converge (s) % improvement of H
H 2.386 –
H0 138.067 98.3
H1 8.781 72.8

HAND-2 2.088 –

Table 5.1: Average times for which H, H0, and H1 settle to within 1% of z∗
1 , and

the average percent improvement of H over each algorithm. Percent improvement
is calculated via (4.13). The objective function used for this table is L(z1) := z2

1 .

5.2 Nonstrongly Convex L

The uniting algorithm proposed in this section imposes Assumptions 3.1.8,

3.1.3, and 3.2.4 on the objective function L. Namely, L is C1, nonstrongly convex,
4Code at github.com/HybridSystemsLab/UnitingSC.

153

and has a unique minimizer by Assumption 3.1.8, has a Lipschitz continuous

gradient by Assumption 3.1.3, and has quadratic growth away from its minimizer

z∗
1 by assumption 3.2.4.

5.2.1 Problem Statement

In Section 5.1.1, we discussed how we desired to design a uniting algorithm

which attains an exponential rate of convergence both globally (via Nesterov’s al-

gorithm) and locally (via the heavy ball algorithm, with large λ > 0), for strongly

convex L. In this section, we desire to relax the algorithm’s requirement to allow

L to be nonstrongly convex. In Section 1.3 we discussed how Nesterov’s algorithm

guarantees a rate of 1
(t+2)2 for nonstrongly convex L. We also discussed how the

heavy ball algorithm guarantees a rate of 1
t

for nonstrongly convex L, although it

was demonstrated in [25] that the heavy ball algorithm converges exponentially

for nonstrongly convex L when such an objective function also has the property

of quadratic growth away from its minimizer. We desire to attain the rate 1
(t+2)2

globally and an exponential rate locally, while avoiding oscillations via the heavy

ball algorithm with large λ. We state the problem to solve as follows:

Problem 5.2.1. Given a scalar, real-valued, continuously differentiable, and non-

strongly convex objective function L with a unique minimizer, design an optimiza-

tion algorithm that, without knowing the function L or the location of its mini-

mizer, has the minimizer uniformly globally asymptotically stable, with a conver-

gence rate of 1
(t+2)2 globally and an exponential convergence rate locally, and with

robustness to arbitrarily small noise in measurements of ∇L.

154

5.2.2 Modeling

In this section, we present an algorithm that solves Problem 5.2.1. As described

in Section 3.2, defining z1 as ξ and z2 as ξ̇, we interpret We interpret the heavy

ball ODE in (1.1) and the Nesterov ODE in (1.5) as as a closed-loop system

consisting of the plant in (3.1). With this model, the optimization algorithms

that we consider assign u to a function of the state that involves the cost function,

and such a function of the state may be time dependent. The control algorithm

leading to (1.1) assigns u to κ in (3.71), where γ > 0 and λ > 0, and the control

algorithm leading to (1.5) assigns u to κ in (3.34), where ζ > 0, M > 0 is the

Lipschitz constant for ∇L, and where d̄ and β̄ are defined, for all t ≥ 0, in (3.35).

The proposed logic-based algorithm “unites” the two optimization algorithms

modeled by κq, where the logic variable q ∈ Q := {0, 1} indicates which algorithm

is currently being used. The local algorithm κ0 is defined in (5.1a) and the global

algorithm is defined as

κ1(h1(z, t), t) = −2d̄(t)z2 − ζ2

M
∇L(z1 + β̄(t)z2) (5.20)

where the algorithm defined by κ1 plays the role of the global algorithm in uniting

control (see, e.g., [22, Chapter 4]), while the algorithm defined by κ0 plays the

role of the local algorithm. The outputs h0 corresponding to the output for the

heavy ball algorithm and h1 corresponding to the output for Nesterov’s algorithm

are defined as

h0(z) :=

 z2

∇L(z1)

, h1(z, t) :=

 z2

∇L(z1 + β̄(t)z2)

 . (5.21)

Namely, the algorithm exploits measurements of ∇L, which in practice are typi-

155

cally approximated using measurements of L. The parameters λ > 0 and γ > 0

should be designed to achieve convergence without oscillations nearby the mini-

mizer.

Since the ODE in (1.5) is time varying, and since solutions to hybrid systems

are parameterized by (t, j) ∈ R≥0 ×N, we employ the state τ to capture ordinary

time as a state variable, in this way, leading to a time-invariant hybrid system.

To encapsulate the plant, static state-feedback laws, and the time-varying nature

of the ODE in (1.5), we define a hybrid closed-loop system H with state x :=

(z, q, τ) ∈ R2n ×Q× R≥0 as

ż =

 z2

κq(hq(z, τ), τ)

q̇ = 0

τ̇ = q

=: F (x) x ∈ C := C0 ∪ C1 (5.22a)

z+ =

z1

z2

q+ = 1 − q

τ+ = 0

=: G(x) x ∈ D := D0 ∪D1 (5.22b)

The sets C0, C1, D0, and D1 are defined as

C0 := U0 × {0} × {0}, C1 := R2n \ T1,0 × {1} × R≥0 (5.23a)

D0 := T0,1 × {0} × {0}, D1 := T1,0 × {1} × R≥0. (5.23b)

The sets U0, T1,0, and T0,1 are precisely defined in Sections 5.2.3-5.2.5, but the

idea behind their construction is as follows. The switch between κ0 and κ1 is

156

governed by a supervisory algorithm implementing switching logic; see Figure 5.4.

The supervisor selects between these two optimization algorithms, based on the

output of the plant and the optimization algorithm currently applied. When

z ∈ U0, q = 0, and τ = 0 (i.e., x ∈ C0), due to the design of U0 in Section 5.2.3,

then the state z is near the minimizer, which is denoted z∗
1 , and the supervisor

allows flows of (5.22) using κ0 and τ̇ = q = 0 to avoid oscillations. Conversely,

when z ∈ R2n \ T1,0 and q = 1 (i.e., x ∈ C1), due to the design of T1,0 in Section

5.2.4, then the state z is far from the minimizer and the supervisor allows flows

of (5.22) using κ1 and τ̇ = q = 1 to converge quickly to the neighborhood of the

minimizer. When z ∈ T1,0 and q = 1 (i.e., x ∈ D1), then this indicates that the

state z is near the minimizer, and the supervisor assigns u to κ0, resets q to 0, and

resets τ to 0. Conversely, when z ∈ T0,1, q = 0, and τ = 0 (i.e., x ∈ D0), due to

the design of T0,1 in Section 5.2.5, then this indicates that the state z is far from

the minimizer and the supervisor assigns u to κ1 and resets q to 1. The complete

algorithm, defined in (5.22)-(5.23), is summarized in Algorithm 3.

Algorithm 3 Uniting algorithm
1: Set q(0, 0) to 0, τ(0, 0) to 0, and set z(0, 0) as an initial condition with an

arbitrary value.
2: while true do
3: if z ∈ T0,1, q = 0, and τ = 0 then
4: Reset q to 1.
5: else if z ∈ T1,0 and q = 1 then
6: Reset q to 0 and τ to 0.
7: else if z ∈ U0, q = 0, and τ = 0 then
8: Assign u to κ0(h0(z)) and update z, q, and τ according to (5.22a).
9: else if z ∈ R2n \ T1,0 and q = 1 then

10: Assign u to κ1(h1(z, τ), τ) and update z, q, and τ according to (5.22a).
11: end if
12: end while

The reason that the state τ in (5.22) changes at the rate q during flows and

is reset to 0 at jumps is that when the state x is in C1, then τ̇ = q = 1, which

157

implies that τ behaves as ordinary time, so it is used to represent time in the

time-varying algorithm κ1. On the other hand, when the state x is in C0, then

τ̇ = q = 0 causes the state τ to stay at zero, which is an appropriate value for τ as

it is not required by the time-invariant algorithm κ0. Such an evolution ensures

that the set to asymptotically stabilize is compact.

Figure 5.4 shows the feedback diagram of this hybrid closed-loop system H.

We denote the closed-loop system resulting from κ0 as H0, which is given by

ż =

 z2

κ0(h0(z))

 z ∈ R2n (5.24)

and we denote the closed-loop system resulting from κ1 as H1, which is given by

ż =

 z2

κ1(h1(z, τ), τ)

 , τ̇ = 1 (z, τ) ∈ R2n × R≥0. (5.25)

Supervisor
q̇ = 0 τ̇ = q (z, q, τ) ∈ C := C0 ∪ C1

q+ = 1 − q τ+ = 0 (z, q, τ) ∈ D := D0 ∪ D1

plant

ż1 = z2
ż2 = u

κ1(h1(z, τ), τ)
τ̇ = 1, τ+ = 0
global (q = 1)

κ0(h0(z))

local (q = 0)
q

u hqhq

∇L(z1)

z∗
1 z1

z1◦

Figure 5.4: Feedback diagram of the hybrid closed-loop system H (on the right),
in (5.22), uniting global and local optimization algorithms. An example optimiza-
tion problem to solve is shown on the left and, for this example optimization
problem, measurements of the gradient are used for the input of κq.

158

5.2.3 Design of the Set U0

In order for the supervisor to determine when the state component z1 is close

to the minimizer of L, denoted z∗
1 , without knowledge of z∗

1 or L∗ := L(z1), we will

use Assumptions 3.1.8 and 3.2.4, and the suboptimality condition from Lemma

4.4.1.

Recall from lines 7-8 of Algorithm 3 that the objective is to design U0 such

that when z ∈ U0, q = 0, and τ = 0, the state component z1 is near z∗
1 and the

uniting algorithm allows flows of (5.22) with κ0 and q = 0. For such a design, we

use Assumptions 3.1.8 and 3.2.4 and the Lyapunov function V0 in (3.80), defined

for each z ∈ R2n, where γ > 0. Given ε0 > 0, c0 > 0, and γ > 0 from κ0 in (5.1a),

let α > 0 come from Assumption 3.2.4 such that c̃0 > 0 and d0 > 0 are defined in

(5.5). Then, V0 in (3.80) can be upper bounded, using Assumption 3.1.8 as done

to arrive to (4.15), as follows: for each z ∈ R2n, V0 in (3.80) is upper bounded as in

(5.6). Then, due to L being C1, nonstrongly convex, and having a single minimizer

z∗
1 by Assumption 3.1.8, and due to L having quadratic growth away from z∗

1 by

Assumption 3.2.4, when |∇L(z1)| ≤ c̃0, the suboptimality condition in Lemma

4.4.1 implies |z1 − z∗
1 | ≤ c̃0

α
, from where we get the bound on V0 shown in (5.7),

where V0 is defined via (3.80). Then, by defining the set U0 as in (4.20), every

z ∈ U0 belongs to the c0-sublevel set of V0, where V0 is defined in (3.80). In fact,

using the conditions in (5.5) and (5.7), we have that for each z ∈ U0, the bound

in (5.8) is satisfied. Since κ0 in (5.1a) is such that the set {z∗
1} × {0} is globally

asymptotically stable for the closed-loop system resulting from controlling (3.1)

by κ0 in (5.1a), as was shown in the Proposition 3.2.8, the set U0 in (4.20) is

contained in the basin of attraction induced by κ0.

159

5.2.4 Design of the Set T1,0

Recall from lines 5-6 of Algorithm 3 that the objective is to design T1,0 such

that when z ∈ T1,0 and q = 1, the state component z1 is near z∗
1 and the supervisor

resets q to 0, resets τ to 0, and assigns u to κ0(h0(z)), where κ0 is defined via

(5.1a) . For such a design, we use Assumptions 3.1.8 and 3.2.4 and the Lyapunov

function in (3.38), defined for each z ∈ R2n and each τ ≥ 0, where ζ > 0, M > 0

is the Lipschitz constant of ∇L, and the function ā is defined in (3.39). Given

c1,0 ∈ (0, c0) and ε1,0 ∈ (0, ε0), where c0 > 0 and ε0 > 0 come from Section 5.2.3,

let c̃0 and d0 be given in (5.5), and let α > 0 come from Assumption 3.2.4 such

that

c̃1,0 := ε1,0α ∈ (0, c̃0) (5.26a)

d1,0 := c1,0 −
(
c̃1,0

α

)2
− ζ2

M

(
c̃2

1,0

α

)
∈ (0, d0) (5.26b)

where ζ > 0 comes from (1.5). Note that ā, defined via (3.39), which is in V1,

equals 1 when τ = 0 and monotonically decreases toward zero (but being always

positive) as τ tends to ∞. Namely, ā is upper bounded by 1. Then, with V1 given

in (3.38) and using Assumption 3.1.8 with u1 = z∗
1 and w1 = z1,

V1(z, τ) ≤ |z1 − z∗
1 |2 + |z2|2 + ζ2

M
|∇L(z1)| |z1 − z∗

1 | . (5.27)

Then, due to L being C1, nonstrongly convex, and having a single minimizer z∗
1

by Assumption 3.1.8, and due to L having quadratic growth away from z∗
1 by

Assumption 3.2.4, when |∇L(z1)| ≤ c̃1,0, the suboptimality condition in Lemma

160

4.4.1 implies |z1 − z∗
1 | ≤ c̃1,0

α
, from where we get

V1(z, τ) ≤
(
c̃1,0

α

)2
+ |z2|2 + ζ2

M

(
c̃2

1,0

α

)
. (5.28)

Then, by defining T1,0 as in (5.12) which, by construction, is contained in the

interior of U0 defined in (4.20), every z ∈ T1,0 belongs to the c1,0-sublevel set of

V1. In fact, using the conditions in (5.26) and (5.28), we have for each z ∈ T1,0,

V1(z, τ) ≤
(
c̃1,0

α

)2
+ |z2|2 + ζ2

M

(
c̃2

1,0

α

)
≤ c1,0. (5.29)

As was described below (4.26), the constants c̃0, c̃1,0, d0, and d1,0 in (5.5) and (5.9)

comprise the hysteresis necessary to avoid chattering at the switching boundary;

see Figure 4.3.

5.2.5 Design of the Set T0,1

Recall from lines 3-4 of Algorithm 3 that the objective is to design T0,1 such

that when z ∈ T0,1, q = 0, and τ = 0, the state component z1 is far from z∗
1 and

the supervisor resets q to 1 and assigns u to κ1(h1(z, τ), τ) so that κ1 steers z1

back to nearby z∗
1 . Given c0 > 0, let α > 0 come from Assumption 3.2.4, and let

M > 0 come from Assumption 3.1.3. Then, using Assumption 3.1.3 with u1 = z∗
1

and w1 = z1 yields (4.27) for all z1 ∈ Rn. Since L has quadratic growth away from

z∗
1 by Assumption 3.2.4, then dividing both sides of (4.27) by M and substituting

into (3.79) leads to (4.28), where α > 0 comes from Assumption 3.2.4. Then, V0

in (3.80) satisfies the bound in (5.14) for each z ∈ R2n. Using the right-hand side

of (5.14) and the same c0 > 0 as in Section 5.2.3, the set T0,1 is defined as in

(5.15). The set in (5.15) defines the (closed) complement of a sublevel set of the

Lyapunov function V0 in (3.80) with level equal to c0. The constant c0 is also a

161

part of the hysteresis mechanism, as shown in Figure 4.3. When z ∈ U0 – where

U0 is defined in (4.20), q = 0, and τ = 0, then the supervisor does not need to

switch to κ1, as the state component z is close enough to the minimizer to keep

using κ0 in (5.1a). But if z ∈ T0,1 while q = 0 and τ = 0, then z is far enough

from the minimizer, and the supervisor then switches to κ1 in (5.20). Note that

T0,1 ∩ T1,0 = ∅.

5.2.6 Well-posedness of the Hybrid Closed-Loop System

H

When L satisfies Assumptions 3.1.8, 3.2.4, and 3.1.3, the hybrid closed-loop

system H in (5.22), with the sets U0, T1,0, and T0,1 defined via (4.20) (5.12), and

(5.15), respectively, satisfies the hybrid basic conditions, listed in Definition 2.1.1,

as demonstrated in the following lemma. A hybrid closed-loop system H that

satisfies the hybrid basic conditions is said to be well-posed in the sense that

the limit of a graphically convergent sequence of solutions to H having a mild

boundedness property is also a solution to H [21].

Lemma 5.2.2. (Well-posedness of H) Let the function L satisfy Assumptions

3.1.8, 3.2.4, and 3.1.3. Let the sets U0, T1,0, and T0,1 be defined via (4.20), (5.12),

and (5.15), respectively. Let the functions d̄ and β̄ be defined as in (3.35). Let κ0

and κ1 be defined via (5.1a) and (5.20), respectively. Then, the hybrid closed-loop

system H in (5.22) satisfies the hybrid basic conditions.

Proof. The objective function L is C1, nonstrongly convex, and has a single

minimizer by Assumption 3.1.8. Therefore, since ∇L is continuous, the following

hold: the set U0, defined via (4.20), is closed since it is a sublevel set of the

continuous function V0; due to ā in (3.39) being continuous, the set T1,0, defined

162

via (5.12), is closed since it is a sublevel set of the continuous function V1; the

set T0,1, defined via (5.15), is closed since it is the closed complement of a set.

Therefore, since the sets U0, T1,0, and T0,1 are closed, then the sets D0, D1, C0,

and C1 are closed. Since C and D are both finite unions of finite and closed sets,

then C and D are also closed.

Since d̄ and β̄, defined via (3.35), are continuous, and since by Assumption

3.1.8, L is C1, then hq in (5.21), κ0 in (5.1a), and κ1 in (5.20) are continuous. In

turn, the map z 7→ FP (z, κq(hq(z, τ), τ)) is also continuous since FP in (3.1) is a

C1 function of κq and hq. Therefore, x 7→ F (x) is continuous. The map G satisfies

(A3) by construction since it is continuous.

5.2.7 Existence of Solutions to H

Under Assumptions 3.1.8, 3.2.4, and 3.1.3, each maximal solution to H is

complete and bounded, as stated in the following lemma. Such a property is

useful since it guarantees that nontrivial solutions to H exist from each initial

point in C ∪ D, and that such solutions do not escape C ∪ D. When every

maximal solution is complete, then uniform global pre-asymptotic stability5 of

the set A becomes uniform global asymptotic stability. The following lemma also

states that Π(C0) ∪ Π(D0) = R2n and Π(C1) ∪ Π(D1) = R2n. Such a property

ensures that nontrivial solutions to H, which exist from each initial point in C∪D,

also exist from any initial point in R2n ×Q× R≥0.

Proposition 5.2.3. (Existence of solutions to H) Let the function L satisfy

Assumptions 3.1.8, 3.2.4, and 3.1.3. Let the sets U0, T1,0, and T0,1 be defined

via (4.20), (5.12), and (5.15), respectively. Let the functions d̄ and β̄ be de-

fined as in (3.35). Let κ0 and κ1 be defined via (5.1a) and (5.20), respectively.
5Uniform global pre-asymptotic stability indicates the possibility of a maximal solution that

is not complete, even though it may be bounded.

163

Then, Π(C0) ∪ Π(D0) = R2n, Π(C1) ∪ Π(D1) = R2n, and each maximal solution

(t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to H in (5.22) is bounded and complete.

Proof. Since Assumptions 3.1.8, 3.2.4, and 3.1.3 hold, then H satisfies the hybrid

basic conditions by Lemma 5.2.2. With c̃0 > 0 and d0 > 0 defined via (5.5), since

L is C1, nonstrongly convex, has a single minimizer by Assumption 3.1.8, and has

quadratic growth away from z∗
1 by Assumption 3.2.4, from the arguments below

(3.84), every z ∈ U0 belongs to the c0-sublevel set of V0; recall that U0 is defined in

(4.20) and that V0 is defined via (3.80). Additionally, since by Assumption 3.2.4

L has quadratic growth away from z∗
1 and since ∇L is Lipschitz continuous by

Assumption 3.1.3, then T0,1 in (5.15), defines the closed complement of a sublevel

set of V0 with level equal to c0. Therefore, due to the definitions of U0 in (4.20) and

T0,1 in (5.15), Π(C0) ∪ Π(D0) = R2n. Furthermore, since T1,0 is defined via (5.12),

and since by the definitions of C1 and D1 in (5.23), C1 is the closed complement

of D1, then Π(C1) ∪ Π(D1) = R2n.

Due to the definitions of C0, D0, C1, and D1 in (5.23), U0 in (4.20), T1,0 in

(5.12), and T0,1 in (5.15), then C \ D is equal to int(C). Hence, for each point

x ∈ C \D, the tangent cone to C at x is

TC(x) :=

R2n × {0} × {0} if x ∈ C0 \D0,

R2n × {1} × R≥0 if x ∈ C1 \D1.

(5.30)

Therefore, F (x) ∩ TC(x) ̸= ∅, satisfying (VC) of Proposition A.1.1 for each point

x ∈ C \ D, and nontrivial solutions exist for every initial point in (C0 ∪ C1) ∪

(D0 ∪D1), where Π(C0) ∪ Π(D0) = R2n and Π(C1) ∪ Π(D1) = R2n. To prove that

item (c) of Proposition A.1.1 does not hold, we need to show that G(D) ⊂ C ∪D.

164

With D defined in (5.23),

G(D) = (T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}) . (5.31)

Notice that T1,0×{0}×{0} ⊂ C0 and T0,1×{1}×{0} ⊂ C1. Therefore, G(D) ⊂ C;

hence G(D) ⊂ C ∪ D. Therefore, item (c) of Proposition A.1.1 does not hold.

Then it remains to prove that item (b) does not happen.

To this end, since L is C1, nonstrongly convex, and has a single minimizer

z∗
1 by Assumption 3.1.8, since ∇L is Lipschitz continuous by Assumption 3.1.3,

and since L has quadratic growth away from z∗
1 by Assumption 3.2.4, then each

maximal solution to H0 in (5.24), with κ1 defined via (5.1a) and h0 defined via

(5.21), is bounded, complete, and unique by Proposition 3.2.7. Furthermore, since

d̄ and β̄, defined via (3.35), are continuous, since by Assumption 3.1.8, L is C1,

and since by Assumption 3.1.3 ∇L is Lipschitz continuous, then each maximal

solution to H1, defined via (5.25), is complete and unique by Proposition 3.1.10.

Since H0 has no finite time escape from R2n and H1 has no finite time escape

from R2n ×R≥0, then this means ẋ = F (x) has no finite time escape from C for H,

as q does not change in C and as the state component τ is bounded in C, namely,

the state component τ – which is always reset to 0 in D – increases linearly in C1

and remains at 0 in C0. Therefore, there is no finite time escape from C ∪D, for

solutions x to H. Therefore, item (b) from Proposition A.1.1 does not hold.

5.2.8 Main Result

In this section, we present a result that establishes UGAS of the set

A :=
{
z ∈ R2n :∇L(z1) = z2 = 0

}
× {0} × {0} = {z∗

1} × {0} × {0} × {0} (5.32)

165

and a hybrid convergence rate that, globally, is equal to 1
(t+2)2 while locally, is

exponential, for the hybrid closed loop algorithm H in (5.22) and (5.23). Recall

that the state x := (z, q, τ) ∈ R2n ×Q×R≥0. In light of this, the first component

of A, namely, {z∗
1}, is the minimizer of L. The second component of A, namely,

{0}, reflects the fact that we need the velocity state z2 to equal zero in A so that

solutions are not pushed out of such a set. The third component in A, namely,

{0}, is due to the logic state ending with the value q = 0, namely using κ0 as the

state z reaches the set of minimizers of L. The last component in A is due to τ

being set to, and then staying at, zero when the supervisor switches to κ0.

Theorem 5.2.4. (Uniform global asymptotic stability of A for H) Let the function

L satisfy Assumptions 3.1.8, 3.2.4, and 3.1.3. Let ζ > 0, λ > 0, γ > 0, c1,0 ∈

(0, c0), and ε1,0 ∈ (0, ε0) be given. Let α > 0 be generated by Assumption 3.2.4, and

let M > 0 be generated by Assumption 3.1.3. Let c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0)

be defined via (5.5) and (5.26). Let the sets U0, T1,0, and T0,1 be defined via

(4.20) (5.12), and (5.15), respectively. Let the functions d̄ and β̄ be defined as

in (3.35), and let κ0 and κ1 be defined via (5.1a) and (5.20), respectively. Then,

the set A, defined via (5.32), is uniformly globally asymptotically stable for H

given in (5.22)-(5.23). Furthermore, each maximal solution (t, j) 7→ x(t, j) =

(z(t, j), q(t, j), τ(t, j)) of the hybrid closed-loop algorithm H starting from C1 with

τ(0, 0) = 0 satisfies the following:

1) The domain dom x of the solution x is of the form ∪1
j=0(Ij × {j}), with I0 of

the form [t0, t1] and with I1 of the form [t1,∞) for some t1 ≥ 0 defining the

time of the first jump;

166

2) For each t ∈ I0 such that6 t ≥ 0

L(z1(t, 0)) − L∗ ≤ 4cM
ζ2(t+ 2)2

(
|z1(0, 0) − z∗

1 |2 + |z2(0, 0)|2
)

(5.33)

where c := (1 + ζ2) exp
(√

13
4 + ζ4

M

)
. Namely, L(z1(t, 0)) − L∗ is O

(
4cM

ζ2(t+2)2

)
;

3) For each t ∈ I1

L(z1(t, 1)) − L∗ = O (exp (−(1 −m)ψt)) (5.34)

where m ∈ (0, 1) is such that ψ := mαγ
λ

> 0 and ν := ψ(ψ − λ) < 0.

Proof. The hybrid closed-loop algorithm H satisfies the hybrid basic conditions

by Lemma 5.2.2, satisfying the first assumption of Theorem A.1.3. Furthermore,

Π(C0) ∪ Π(D0) = R2n, Π(C1) ∪ Π(D1) = R2n, and each maximal solution (t, j) 7→

x(t, j) = (z(t, j), q(t, j), τ(t, j)) to H in (5.22)-(5.23) is complete and bounded by

Proposition 5.2.3. Since by Assumption 3.1.8, L has a unique minimizer z∗
1 , then

A, defined via (5.32), is compact by construction, and U = R2n ×Q×R≥0 contains

a nonzero open neighborhood of A, satisfying the second assumption of Theorem

A.1.3.

To prove attractivity of A in (5.32), we proceed by contradiction. Suppose

there exists a complete solution x to H such that lim
t+j→∞

|x(t, j)|A ̸= 0. Since

Proposition 5.2.3 guarantees completeness of maximal solutions, we have the fol-

lowing cases:

a) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C1\D1 for all (t, j) ∈ dom x, t+

j ≥ t′ + j′;
6Note that at each t ∈ I0, q(t, 0) = 1, and at each t ∈ I1, q(t, 1) = 0.

167

b) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C0 \ (A ∪ D0) for all (t, j) ∈

dom x, t+ j ≥ t′ + j′;

c) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ D for all (t, j) ∈ dom x, t+j ≥

t′ + j′.

Case a) contradicts the fact that, by Proposition 3.1.13, the set A1, defined

via (3.64), is uniformly globally asymptotically stable for H1 in (5.25). Such

uniform global attractivity of A, guaranteed by Proposition 3.1.13, implies there

exist c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that the state z reaches ({z∗
1} + c̃1B) ×

({0} + d1B) ⊂ T1,0 at some finite flow time t ≥ 0 or as t → ∞. In turn, due to

the construction of C1 and D1 in (5.23), with T1,0 defined via (5.12), the solution

x must reach D1 at some (t, j) ∈ dom x, t + j ≥ t′ + j′. Therefore, case a) does

not happen.

Case b) contradicts the fact that, by Proposition 3.2.8, {z∗
1}×{0} is uniformly

globally asymptotically stable for H0 in (5.24). In fact, lim
t+j→∞

|x(t, j)|A = 0, and

since A ⊂ C0, case b) does not happen.

Case c) contradicts the fact that, due to the construction of T1,0 in (5.12) and

T0,1 in (5.15), we have

G(D) ∩D := ((T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}))

∩ ((T0,1 × {0} × {0}) ∪ (T1,0 × {1} × R≥0))

=∅ (5.35)

where G(D) is defined via (5.31) and D is defined in (5.23). Such an equality

holds since T1,0 ∩ T0,1 = ∅; see the end of Section 5.2.5. Therefore, case c) does

not happen.

Therefore, cases a)-c) do not happen, and each maximal and complete solution

168

x = (z, q, τ) to H with τ(0, 0) = 0 converges to A. Consequently, by the construc-

tion of C and D in (5.23), the uniform global asymptotic stability of A1 (defined

via (3.64)) for H1 in (5.25) established in Proposition 3.1.13, the uniform global

asymptotic stability of {z∗
1}×{0} for H0 in (5.24) established in Proposition 3.2.8,

and since each maximal solution to H is complete by Proposition 5.2.3, the set A

in (5.32) is uniformly globally asymptotically stable for H.

To show that each maximal and complete solution x to H jumps no more than

twice, we proceed by contradiction. Without loss of generality, suppose there

exists a maximal and complete solution that jumps three times. We have the

following possible cases:

i) The solution first jumps at a point in D0, then jumps at a point in D1, and

then jumps at a point in D0; or

ii) The solution first jumps at a point in D1, then jumps at a point in D0, and

then jumps at a point in D1.

Case i) does not hold since, once the jump in D1 occurs, the solution x is in

(T1,0 ×{0}×{0}) ⊂ C0. Due to the construction of T1,0 in (5.12) and T0,1 in (5.15)

such that T1,0 ∩ T0,1 = ∅, as described in the contradiction of case c) above, and

due to the uniform global asymptotic stability of {z∗
1}×{0} for H0 by Proposition

3.2.8, the solution x will never return to D0. Therefore, case i) does not happen.

Case ii) leads to a contradiction for the same reason, and in this case, once the

first jumps in D1 occurs, no more jumps happen. Therefore, since cases i)-ii) do

not happen, each maximal and complete solution x to H with τ(0, 0) = 0 has no

more than two jumps.

Finally, we prove the hybrid convergence rate of H. Letting ζ > 0 and letting

M > 0 come from Assumption 3.1.3, then by Proposition 3.1.12, since L satisfies

169

Assumptions 3.1.8 and 3.1.3, each maximal solution t 7→ (z(t), τ(t)) to the closed-

loop algorithm H1 with τ(0, 0) = 0 satisfies (3.53), for all t ≥ 0, where c :=

(1 + ζ2) exp
(√

13
4 + ζ4

M

)
. By Proposition 3.2.10, since L satisfies Assumptions

3.1.8 and 3.2.4, then, given γ > 0 and λ > 0, for each m ∈ (0, 1) such that

ψ := mαγ
λ

> 0 and ν := ψ(ψ − λ) < 0, each maximal solution t 7→ z(t) to

the closed-loop algorithm H0 satisfies (3.91) for all t ∈ dom z (= R≥0). Since

maximal solutions (t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to H starting from

C1 are guaranteed to jump no more than once, as implied by the contradiction

in cases i)-ii) above, then the domain of each maximal solution x to H starting

from C1 is ∪1
j=0(Ij, j), with I0 of the form [t0, t1] and with I1 of the form [t1,∞).

Therefore, given ζ > 0, λ > 0, γ > 0, c1,0 ∈ (0, c0), ε1,0 ∈ (0, ε0), α > 0 from

Assumption 3.2.4, and M > 0 from Assumption 3.1.3, due to the construction of

U0, T1,0, and T0,1 in (4.20), (5.12), and (5.15), with c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0)

defined via (5.5) and (5.26), and due to the individual convergence rates of H1

and H0, each maximal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to the

hybrid closed-loop algorithm H that starts in C1, such that τ(0, 0) = 0, satisfies

(5.33) for each t ∈ I0 at which q(t, 0) is equal to 1 and t ≥ 0, and satisfies (5.34)

for each t ∈ I1 at which q(t, 1) is equal to 0.

5.2.9 Numerical Examples

In this section, we present multiple numerical examples to illustrate the hybrid

closed-loop algorithm in (5.22) and (5.23). Example 5.2.5 first illustrates the

operation of the nominal hybrid closed-loop system H, and then demonstrates the

robustness of H to different amounts of noise in measurements of ∇L. Example

5.2.6 compares solutions to the hybrid closed-loop algorithm in (5.22) and (5.23)

with solutions to H0, H1, and HAND-1 from [32], with parameters chosen such

170

that HAND-1 and H are compared on equal footing. Example 5.2.6 then compares

multiple solutions of H, starting from different initial values of z1, to multiple

solutions of HAND-1 from such initial values of z1, to show that H has a consistent

percentage of improvement over HAND-1 for different solutions. Example 5.2.7

Illustrates the trade-off between speed of convergence and the resulting values

of parameters for the uniting algorithm H, for different tunings of ζ > 0. As

in Example 5.2.6, the parameter values for Example 5.2.7 are chosen such that

HAND-1 and H are compared on equal footing.

Example 5.2.5. In this example, we simulate a solution to the nominal hybrid

closed-loop system H to illustrate how the uniting algorithm works. Then, we

compare that same solution to solutions with different amounts of noise in mea-

surements of ∇L. For both the nominal system and the perturbed system, the

choice of objective function, parameter values, and initial conditions are as fol-

lows. We use the objective function L(z1) := z2
1, the gradient of which is Lipschitz

continuous with M = 2, and which has a single minimizer at z∗
1 = 0. This choice

of objective function is made so that we can easily tune λ, as described in Section

5.1.6. We arbitrarily chose the heavy ball parameter value γ = 2
3 and we tuned

λ to 200 by choosing a value arbitrarily larger than 2√
a1, where a1 comes from

Section 5.1.6, and gradually increasing it until there is no overshoot in the hy-

brid algorithm. The parameter values for the uniting algorithm are c0 = 7000,

c1,0 ≈ 6819.68, ε0 = 10, ε1,0 = 5, and α = 1, which yield the values c̃0 = 10,

c̃1,0 = 5, d0 = 6933, and d1,0 = 6744, which are calculated via (5.5) and (5.26).

These values are chosen for proper tuning of the algorithm, in order to get nice

performance, and the value of c1,0 is chosen to exploit the properties of Nesterov’s

method for a longer time, so that the nominal solution gets closer to the minimizer

faster. Initial conditions for H are z1(0, 0) = 50, z2(0, 0) = 0, q(0, 0) = 1, and

171

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

20

40

60

0.81046s

z1

t
σ lim

t+j→∞
sup |z1(t, j) − z∗

1 | lim
t+j→∞

sup |L(z1(t, j)) − L∗|

0.01 8.857 × 10−6 7.844 × 10−11

0.1 8.011 × 10−4 6.418 × 10−7

0.5 9.039 × 10−4 8.171 × 10−7

1 6.982 × 10−3 4.875 × 10−5

5 9.459 × 10−3 8.947 × 10−5

10 1.450 × 10−2 2.103 × 10−4

15 4.938 × 10−2 2.438 × 10−3

20 5.992 × 10−2 3.591 × 10−3

25 6.663 × 10−2 4.439 × 10−3

Figure 5.5: Top: The evolution over time of z1, for the nominal hybrid closed-
loop algorithm H, for a function L(z1) := z2

1 with a single minimizer at z∗
1 =

0. The time at which the solution settles to within 1% of z∗
1 is marked with

a dot and labeled in seconds. The jump is labeled with an asterisk. Bottom:
Simulation results for perturbed solutions using zero mean Gaussian noise, with
each simulation using a different value of the standard deviation σ. Results listed
are for a large value of t+ j.

τ(0, 0) = 0. The plot on the top in Figure 5.5 shows the solution to the nominal

hybrid closed-loop algorithm7 H, namely, the value of z1 over time, with the time

it takes for the solution to settle to within 1% of z∗
1 marked with a black dot and

labeled in seconds. The jump at which the switch from H1 to H0 occurs is labeled

with an asterisk. The solution converges quickly, without oscillations near the

minimizer.

To show that the uniform global asymptotic stability of A, established in The-

orem 5.2.4, is robust to small perturbations, due to the hybrid closed-loop system

H satisfying the hybrid basic conditions by Lemma 5.2.2. we simulate the hybrid

algorithm, using the objective function, parameter values, and initial conditions
7Code at gitHub.com/HybridSystemsLab/UnitingRobustness.

172

0 0.5 1 1.5 2 2.5 3

-50

0

50

0 0.5 1 1.5 2 2.5 3

-50

0

50

0 0.5 1 1.5 2 2.5 3

-50

0

50

0 0.5 1 1.5 2 2.5 3

-50

0

50

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

0 500 1000 1500 2000
10

-20

10
-10

10
0

z1

z1

z1

z1

t[s] t[s]

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

L
(z

1)
−

L
∗

σ = 25 σ = 25

σ = 20 σ = 20

σ = 10 σ = 10

σ = 5 σ = 5

Figure 5.6: Simulation results for hybrid closed-loop algorithm H, for a func-
tion L(z1) := z2

1 with a single minimizer at z∗
1 = 0, with zero-mean Gaussian noise

added to measurements of the gradient. Each subplot is labeled with the stan-
dard deviation used. Left subplots: the value of z1 over time for each perturbed
solution, with the jump in each solution labeled by an asterisk. Right subplots:
the corresponding value of L over time for each perturbed solution.

173

listed in the first paragraph of this example, with zero-mean Gaussian noise added

to measurements of the gradient. Separate simulations were run for each of the

following standard deviations: σ ∈ {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 25}. Figure 5.6

shows some of these perturbed solutions, with each subplot labeled with the cor-

responding standard deviation used8. The subplots on the left side of Figure 5.6

show the value of z1 over time for different standard deviations, and the subplots

on the right side of Figure 5.6 show the corresponding value of L over time for

such standard deviations. Note that, while all perturbed solutions shown in Figure

5.6 get close to the minimizer quickly, such perturbed solutions do not get as close

to the minimizer as the solution to the nominal algorithm does; see the plot on

the top in Figure 5.5. Also note that as the standard deviation gets larger, the

corresponding perturbed solution stays slightly farther away from the minimizer.

The results for all standard deviations are listed in the table in Figure 5.5, showing

the neighborhood of z∗
1 that each solution settles to, for a large value of t+j, along

with the corresponding value of L.

Example 5.2.6. In this example, to show the effectiveness of the uniting algo-

rithm, we compare the hybrid closed-loop algorithm H, defined via (5.22) and

(5.23), with the individual closed-loop optimization algorithms H0 and H1 and

with the HAND-1 algorithm from [32] which, in [32], is designed and analyzed for

nonstrongly convex functions L satisfying Assumptions 3.1.8 and 3.1.3. First, we

compare the convergence rates of H and HAND-1 analytically. Using an alter-

nate state space representation, namely, z1 := ξ and z2 := ξ + τ
2 ξ̇, the HAND-1

8Code found at same link as in Footnote 7.

174

algorithm has state (z, τ) ∈ R2n+1 and data (C,F,D,G)

F (z, τ) :=

2
τ
(z2 − z1)

−2c1τ∇L(z1)

1

 (z, τ) ∈ C, G(z, τ) :=

 z

Tmin

 (z, τ) ∈ D (5.36)

where c1 > 0 and the flow and jump sets are C := {(z, τ) ∈ R2n+1 : τ ∈ [Tmin, Tmax]}

and D := {(z, τ) ∈ R2n+1 : τ ∈ [Tmed, Tmax]}, with 0 < Tmin < Tmed < Tmax < ∞,

and Tmed ≥
√

B
δmed

+ Tmin > 0, δmed > 0. It is shown in [32] that each maximal

solution (t, j) 7→ (z(t, j), τ(t, j)) to the HAND-1 algorithm satisfies

L(z1(t, 0)) − L∗ ≤ B

t2
(5.37)

for all (t, j) ∈ dom(z, τ) such that j = 0, z1(0, 0) = z2(0, 0), τ(0, 0) = Tmin,

z1(0, 0) ∈ K0 := {z∗
1}+rB, where B := r2

2c1
+T 2

min (L(z1(0, 0)) − L∗) > 0, r ∈ R>0,

c1 > 0.

For the hybrid closed-loop algorithm H, the coefficient of the bound on H1 from

(5.33), namely,

L(z1(t, 0)) − L∗ ≤ 4cM
ζ2(t+ 2)2

(
|z1(0, 0) − z∗

1 |2 + |z2(0, 0)|2
)

(5.38)

for each t ∈ I0, t ≥ 0, at which q(t, 0) = 1, and for each ζ > 0, and M > 0,

is 4cM
ζ2

(
|z1(0, 0) − z∗

1 |2 + |z2(0, 0)|2
)
, where c := (1 + ζ2) exp

(√
13
4 + ζ4

M

)
. The

coefficient of the bound in HAND-1 is B := r2

2c1
+ T 2

min (L(z1(0, 0)) − L∗). Since,

as t → ∞, 1
(t+2)2 → 1

t2 , then, comparing the coefficients of the bounds, the bound in

(5.38) is slightly better than (5.37) since r2

2c1
is very large for small t. Neglecting

the r2

2c1
term, however, the bound on H1 (5.38) matches (5.37). The rate for

HAND-1, nevertheless, is only guaranteed until the first jump. After this, there

175

is no characterized bound for HAND-1. In contrast, H has a characterized bound

for the domain of every solution such that t ≥ 0. Namely, it has rate 1
(t+2)2 until

the state z is within a small neighborhood of the minimizer – where the rate then

switches to exp (−(1 −m)ψt), where, given γ > 0 and λ > 0, m ∈ (0, 1) is such

that ψ = mαγ
λ

> 0 and ν = ψ(ψ − λ) < 0.

Next, we compare H0, H1, H, and HAND-1 in simulation. To compare these

algorithms, we use the same objective function L, heavy ball parameter values

λ and γ, Lipschitz parameter M , Nesterov parameter ζ, and uniting algorithm

parameter values c0, c1,0, ε0, ε1,0, α, c̃0, c̃1,0, d0, and d1,0 as in Example 5.2.5.

Given ζ = 2, the HAND-1 parameters c1 = 0.5 and Tmin = 1+
√

7
2 are chosen

such that the resulting gain coefficients for z1 and z2 are the same for both H and

HAND-1, so that these algorithms are compared on equal footing9. The remaining

HAND-1 parameters, r and δmed, have different values depending on the initial

conditions z1(0, 0) = z2(0, 0), listed in Table 5.3, which leads to different values

of Tmed and Tmax, for each solution. Such values are chosen such that Tmed ≥√
B

δmed
+ Tmin > 0. Additionally, we choose Tmax = Tmed + 1. The parameter

values for the uniting algorithm are ε0 = 10, ε1,0 = 5, and α = 1. The remaining

parameter values c0 and c1,0 are different depending on the initial condition z1(0, 0)

and are listed in Table 5.3, which leads to different values of which leads to different

values of d0, calculated via (5.5), and d1,0 calculated via (5.26). These values are

chosen for proper tuning of the algorithm, in order to get nice performance, and

for exploiting the properties of Nesterov’s method as long as we want. Initial

conditions for all solutions to H are z2(0, 0) = 0, q(0, 0) = 1, and τ(0, 0) = 0,

with values of z1(0, 0) listed in Table 5.3. Initial conditions for all solutions to

HAND-1 are τ(0, 0) = Tmin, with values of z1(0, 0) = z2(0, 0) listed in Table 5.3.
9Although there exist parameter values for which HAND-1 has faster, oscillation-free per-

formance, due to the way H and HAND-1 relate to each other, they are compared fairly for a
particular set of parameters.

176

Table 5.2 shows the time that each algorithm takes to settle within10 1% of z∗
1,

Average time Average %
Algorithm to converge (s) improvement of H

H 0.811 –
H0 690.759 99.9
H1 4.409 81.6

HAND-1 8.649 90.6

Table 5.2: Average times for which H, H0, H1, and HAND-1 settle to within 1%
of z∗

1 , and the average percent improvement of H over each algorithm. Percent
improvement is calculated via (5.39). The objective function used for this table
is L(z1) := z2

1 .

averaged over solutions starting from ten different values11 of z1(0, 0) (listed in

the first column of Table 5.3), and the average percent improvement of H over

H0, H1, and HAND-1, which is calculated using the following formula

(
Time of H0,H1, or HAND-1 − Time of H

Time of H0,H1, or HAND-1

)
× 100%. (5.39)

As can be seen in Table 5.2, H converges faster than the other algorithms, and

the average percent improvement of H over each of the other algorithms in Table

5.2 is 99.9% over H0, 81.6% over H1, and 90.6% over HAND-1.

Figure 5.7 compares different solutions for H and HAND-1, from different

values of z1(0, 0), for the objective function12 L(z1) := z2
1. Table 5.3 lists the

times for which each solution settles to within 1% of z∗
1 for both H and HAND-1,

and shows the percent improvement of H over HAND-1. As can be seen in Figure

5.7 and in Table 5.3, the percent improvement of H over HAND-1 for all solutions

is 90.6%, which shows consistency in the performance of H versus HAND-1.
10Code at gitHub.com/HybridSystemsLab/UnitingNSC.
11Code at gitHub.com/HybridSystemsLab/UnitingDifferentICs
12Code found at same link as in Footnote 11.

177

0 1 2 3
10

-20

10
-15

10
-10

10
-5

10
0

10
5

z
1
(0,0)=110

z
1
(0,0)=100

z
1
(0,0)=90

z
1
(0,0)=80

z
1
(0,0)=70

z
1
(0,0)=60

z
1
(0,0)=50

z
1
(0,0)=40

z
1
(0,0)=30

z
1
(0,0)=20

0 1 2 3
10

-20

10
-15

10
-10

10
-5

10
0

10
5

z
1
(0,0)=110

z
1
(0,0)=100

z
1
(0,0)=90

z
1
(0,0)=80

z
1
(0,0)=70

z
1
(0,0)=60

z
1
(0,0)=50

z
1
(0,0)=40

z
1
(0,0)=30

z
1
(0,0)=20

L
(z

1)
−

L
∗

t[s] t[s]

Figure 5.7: The evolution of L over time, from different initial conditions, for H
(left) and HAND-1 (right). All solutions are for the objective function L(z1) :=
z2

1 , and the parameters used for HAND-1 and H are listed in Table 5.3, with
different values of c0 and c1,0 for each solution of H, leading to different values of
d0 calculated via (5.5) and d1,0 calculated via (5.26), and different values of r and
δmed for each solution of HAND-1, leading to different values of Tmed and Tmax.

Time to converge (s) % Improve-
z1(0, 0) c0 c1,0 r δmed H HAND-1 ment

110 34000 32719.231 111 240700 0.811 8.649 90.6
100 28000 27053.704 101 199000 0.811 8.65 90.6
90 23000 21927.75 91 161300 0.811 8.648 90.6
80 18000 17341.37 81 127550 0.811 8.65 90.6
70 14000 13294.565 71 97700 0.811 8.649 90.6
60 10500 9787.333 61 71875 0.811 8.648 90.6
50 7000 6819.676 51 50000 0.810 8.65 90.6
40 5000 4391.593 41 32075 0.811 8.65 90.6
30 3000 2503.083 31 18110 0.811 8.648 90.6
20 2000 1154.148 21 8112 0.811 8.648 90.6

Table 5.3: Times for which H and HAND-1 settle to within 1% of z∗
1 , and percent

improvement of H over HAND-1, for solutions from different initial conditions,
shown in Figure 5.7. The objective function used for this table is L(z1) := z2

1 .

178

The bound for HAND-1, shown in (5.37) and which holds only until the first

reset, is only guaranteed when z1(0, 0) = z2(0, 0). This leads to a required nonzero

velocity for HAND-1 in most scenarios, which leads to overshoot. In contrast, H

has no such constraint on z2(0, 0), which can be set to zero in all scenarios. The

lack of such a constraint on the initial condition z2(0, 0) for the hybrid closed-

loop algorithm H is essential to its improved performance over HAND-1, as the

overshoot in solutions to HAND-1 due to z1(0, 0) = z2(0, 0) leads to a slower

convergence time than for H, as seen in Table 5.2. Moreover, as described previ-

ously in this example, no bound for HAND-1 is characterized after the first reset,

whereas the (hybrid) convergence bound characterized for H holds for the domain

of every solution such that t ≥ 1.

Example 5.2.7. This example explores the trade-off that results from using dif-

ferent values of ζ > 0 for the uniting algorithm. Particularly, for ζ = 1, we

first compare the uniting algorithm in simulation with the individual optimization

algorithms H0, H1, and the HAND-1 algorithm from [32], using the same objec-

tive function as in Example 5.2.6, and next we compare the resulting solutions

with those in Table 5.2. Recall that the objective function in Example 5.2.6 is

L(z1) := z2
1, the gradient of which is Lipschitz continuous with M = 2, and which

has a single minimizer at z∗
1 = 0. Since the gain coefficient of ∇L is proportional

to ζ2, we choose different parameters for the HAND-1 algorithm for the simulation

depicted in13 Figure 1.4, so that the gain coefficients of z1 and z2 are the same

for HAND-1 and H in this simulation. Namely, given ζ = 1, for HAND-1 we

choose Tmin = 3 and c1 = 0.25. For the other HAND-1 parameters, we choose

r = 51 and δmed = 4010 such that Tmed ≥
√

B
δmed

+ Tmin > 0, and we again choose

Tmax = Tmed +1 to ensure resets happen at the proper times. We arbitrarily choose
13Code found at same link as in Footnote 4

179

γ = 2
3 , and we tuned λ to 40 by choosing a value arbitrarily larger than 2√

a1 and

gradually increasing until there was no overshoot in the hybrid algorithm. The

uniting algorithm parameters are c0 = 320, c1,0 ≈ 271.584, ε0 = 10, ε1,0 = 5, and

α = 1, which yield the values c̃0 = 10, c̃1,0 = 5, d0 ≈ 253.333, and d1,0 ≈ 234.084,

which are calculated via (5.5) and (5.26). These values are chosen for proper

tuning of the algorithm, in order to get nice performance, and for exploiting the

properties of Nesterov’s method as long as we want. Initial conditions for H are

z1(0, 0) = 50, z2(0, 0) = 0, q(0, 0) = 1, and τ(0, 0) = 0, and for HAND-1 are

z1(0, 0) = z2(0, 0) = 50 and τ(0, 0) = Tmin.

First, we compare solutions to each algorithm within Figure 1.4 itself. Table 5.4

shows the time that each algorithm takes to settle within 1% of z∗
1, averaged over

solutions starting from ten different values of z1(0, 0) (listed in the first column of

Table 5.3), and the percent improvement of H over H0, H1, and HAND-1, which

is calculated using (5.39). While the closed-loop algorithm H still converges faster

than all the other algorithms in Figure 1.4 and Table 5.4, the improvement over

H0, H1, and HAND-1 is smaller than it is in Table 5.2.

Algorithm Average time to converge (s) Average % improvement
H 2.387 –
H0 138.066 98.3
H1 8.782 72.8

HAND-1 14.343 83.4

Table 5.4: Times for which H, H0, H1, and HAND-1 settle to within 1% of
z∗

1 , and percent improvement of H over each algorithm, as shown in Figure 1.4.
Percent improvement is calculated via (5.39). The objective function used for this
table is L(z1) := z2

1 .

Next, we compare solutions using ζ = 1, in Figure 1.4, with solutions using

ζ = 2, in Table 5.2. Since ζ > 0 scales time in solutions to (1.5), Then smaller

values of ζ result in slower settling to within 1% of z∗
1 for H1 with less frequent

180

oscillations, as seen in Figure 1.4 with ζ = 1 (about 8.8 seconds), while larger

values of ζ result in settling to within 1% of z∗
1 for H1 faster, with more frequent

oscillations, as seen in Figure 1.3 and Table 5.2 with ζ = 2 (about 4.5 seconds).

For the uniting algorithm, this translates to faster settling to within 1% of z∗
1 with

ζ = 2 (about 0.8 seconds), in Figure 1.3 and Table 5.2, compared with slower

settling to within 1% of z∗
1 with ζ = 1 (about 2.4 seconds), in Figure 1.4, but

with no oscillations, in both cases, due to the switch to H0. In both Figure 1.4,

and Table 5.2, the uniting algorithm converges more quickly than the HAND-1

algorithm, when both algorithms are tuned to have the same gain coefficients for

the z1 and z2 terms. Although larger ζ results in faster convergence, the trade-off

is that even though the z2 (velocity) term generally reduces quickly as it approaches

the neighborhood of the minimizer for any size of ζ, the z2 still ends up relatively

larger near the minimizer than it is when ζ is smaller. The consequence is that,

when ζ is larger, d1,0 needs to be set much larger so that the uniting algorithm can

still make the switch to H0 at the proper time. This also means that c1,0 needs

to be set much larger, due to the definition of d1,0 in (5.26). Additionally, c0 and

d0, also need to be set larger to ensure the algorithm still has adequate hysteresis.

Recall that, in Example 5.2.6, for ζ = 2, we have the parameter values c0 = 7000,

c1,0 ≈ 6819.676, d0 = 6933, and d1,0 = 6744, which are quite large, while for the

simulation shown in Figure 1.4 these same parameters have much smaller values,

as listed in the second paragraph of this example.

5.2.10 Extensions

Some possible extensions to the results in Section 5.2 are as follows.

It is possible to extend the results in Section 5.2 to include C1, nonstrongly

convex objective functions L with a compact and connected set of minimizers.

181

With such an assumption, it would be straightforward to extend Lemma 5.2.2

and Proposition 5.2.3. Theorem 5.2.4 can be extended via the assumption of

a compact and connected set of minimizers and the use of Clarke’s generalized

derivative in (2.4), with the Lyapunov function V in (3.97), as described in Section

3.2.3, and with the Lyapunov function V1 in (3.69), as described in Section 3.2.3.

With such an extension, it can be shown that A in (5.32) is UGAS for H in

(5.22)-(5.23) with τ(0, 0) = 0, and that each maximal solution (t, j) 7→ x(t, j) =

(z(t, j), q(t, j), τ(t, j)) to the hybrid closed-loop algorithm H that starts in C1,

such that τ(0, 0) = 0, satisfies (5.33) for each t ∈ I0 at which q(t, 0) is equal to 1

and t ≥ 1, and satisfies (5.34) for each t ∈ I1 at which q(t, 1) is equal to 0.

It would be possible to further extend the results in Lemma 5.2.2, Proposition

5.2.3, and Theorem 5.2.4 to nonstrongly convex objective functions L that are

also nonsmooth, through the use of Clarke’s generalized derivative.

182

Chapter 6

Uniting Framework for

Accelerated Optimization

In this chapter, we propose a framework for logic-based algorithms, which

unite any two continuous-time, gradient-based optimization algorithms κ0 and κ1

to solve Problem 6.1.1. The central idea is that the global optimization algorithm

κ1 provides fast convergence to the neighborhood of the set of minimizers and the

local optimization algorithm κ0 provides stable convergence in the neighborhood

of the set of minimizers, without oscillations. A logic variable is used to indicate

which algorithm – either κ0 or κ1 – is currently in use, and the switch between

local and global algorithms is based on sublevel sets of the Lyapunov functions

of κ0 and κ1. One difficulty in designing such a uniting framework is that the

objective function L and the set of minimizers are unknown, so the algorithm

must be able to detect when to switch, and do so in a way that avoids chattering.

183

6.1 Problem Statement

As illustrated in Figure 1.3, the performance of Nesterov’s accelerated gradient

descent commonly suffers from oscillations near the minimizer. This is also the

case for the heavy ball method when λ > 0 is small. However, when λ is large,

the heavy ball method converges slowly, albeit without oscillations. In Section

1.3 we discussed how the heavy ball algorithm guarantees an exponential rate

for strongly convex L and a rate of 1
t

for nonstrongly convex L, although it was

demonstrated in [79] that the heavy ball algorithm converges exponentially for

nonstrongly convex L when such an objective function also has the property of

quadratic growth away from its minimizer. We also discussed how Nesterov’s

algorithm guarantees an exponential convergence rate for strongly convex L and

a rate of 1
(t+2)2 for nonstrongly convex L. We desire to attain such rates, while

avoiding oscillations via the heavy ball algorithm with large λ. We state the

following general problem to solve as follows:

Problem 6.1.1. Given a scalar, real-valued, continuously differentiable objective

function L with a unique minimizer, design a uniting optimization framework that,

without knowing the function L or the location of its minimizer, has the minimizer

uniformly globally asymptotically stable, with a convergence rate that preserves

the convergence rates of the local and global algorithms, and with robustness to

arbitrarily small noise in measurements of ∇L.

184

6.2 Hybrid Uniting Framework for Accelerated

Gradient Methods

6.2.1 Modeling

We interpret the ODEs in (1.1), (1.2), and (1.5) as control systems consisting

of a plant and a control algorithm [34] [22]. Then, defining z1 as ξ and z2 as ξ̇, the

plant for these ODEs is given by the double integrator in (3.1). With this model,

the class of optimization algorithms that we consider assign u to a function of the

state that involves the cost function, and such a function of the state may be time

dependent. For instance, if the ODE in (1.1) is used, then the algorithm assigns

u to −λqz2 − γq∇L(z1), with tunable parameters λ > 0 and γ > 0. If the ODE in

(1.2) is used, then the algorithm assigns u to −2dz2− 1
M

∇L(z1+βz2), where M > 0

is the Lipschitz constant of ∇L and where d and β are defined via (3.3). If the

ODE in (1.5) is used, then the algorithm assigns u to −2d̄(t)z2− ζ2

M
∇L(z1+β̄(t)z2),

where ζ > 0 and where d̄ and β̄ are defined via (3.35).

For the framework presented in this Chapter, we cope with the trade-off be-

tween damping oscillations and converging fast by uniting two control algorithms

κq, where the logic variable q ∈ Q := {0, 1} indicates which algorithm is currently

being used. As was discussed in Chapters 4 and 5, the algorithm defined by κ1,

which plays the role of the global algorithm in uniting control (see, e.g., [22]), is

used far from the minimizer and is designed to quickly get close to the critical

point. The algorithm defined by κ0, which plays the role of the local algorithm,

is used near the minimizer and is designed to avoid oscillations. The switch be-

tween κ0 and κ1 is governed by a supervisory algorithm implementing switching

logic. The supervisor selects between these two optimization algorithms, based on

the plant’s output and the optimization algorithm currently applied. The design

185

of the logic and parameters of the individual algorithms is done using Lyapunov

functions Vq, which take different forms depending on the specific optimization

methods used for κ0 and κ1. Since the ODE in (1.5) is time varying, and since

solutions to hybrid systems are parameterized by (t, j) ∈ R≥0 × N, we employ

the state τ to capture ordinary time as a state variable, in this way, leading to a

time-invariant hybrid system.

To encapsulate the plant, static state-feedback laws, and the time-varying

nature of the ODE in (1.5), we define a hybrid closed-loop system H with state

x := (z, q, τ) ∈ R2n ×Q× R≥0 as follows:

ż =

 z2

κq(hq(z, τ), τ)

q̇ = 0

τ̇ = q

=: F (x) x ∈ C := C0 ∪ C1 (6.1a)

z+ =

z1

z2

q+ = 1 − q

τ+ = 0

=: G(x) x ∈ D := D0 ∪D1 (6.1b)

The outputs hq are defined differently, based on the specific optimization methods

used. The sets C0, C1, D0, and D1 are defined as

C0 := U0 × {0} × {0}, C1 := R2n \ T1,0 × {1} × R≥0 (6.2a)

D0 := T0,1 × {0} × {0}, D1 := T1,0 × {1} × R≥0, (6.2b)

and where U0, T1,0, and T0,1 are defined differently, depending on the specific

186

optimization algorithms employed for κ0 and κ1 However, the idea behind their

construction is as follows. The switch between κ0 and κ1 is governed by a su-

pervisory algorithm implementing switching logic; see Figure 5.4. The supervisor

selects between these two optimization algorithms, based on the output of the

plant and the optimization algorithm currently applied. When z ∈ U0, q = 0, and

τ = 0 (i.e., x ∈ C0), due to the design of U0, then the state z is near the mini-

mizer, which is denoted z∗
1 , and the supervisor allows flows of (6.1) using κ0 and

τ̇ = q = 0 to avoid oscillations. Conversely, when z ∈ R2n \ T1,0 and q = 1 (i.e.,

x ∈ C1), due to the design of T1,0, then the state z is far from the minimizer and

the supervisor allows flows of (6.1) using κ1 and τ̇ = q = 1 to converge quickly to

the neighborhood of the minimizer. When z ∈ T1,0 and q = 1 (i.e., x ∈ D1), then

this indicates that the state z is near the minimizer, and the supervisor assigns

u to κ0, resets q to 0, and resets τ to 0. Conversely, when z ∈ T0,1, q = 0, and

τ = 0 (i.e., x ∈ D0), due to the design of T0,1, then this indicates that the state

z is far from the minimizer and the supervisor assigns u to κ1 and resets q to 1.

The complete algorithm, defined in (6.1)-(6.2), is summarized in Algorithm 4.

Algorithm 4 Uniting algorithm
1: Set q(0, 0) to 0, τ(0, 0) to 0, and set z(0, 0) as an initial condition with an

arbitrary value.
2:
3: while true do
4: if z ∈ T0,1, q = 0, and τ = 0 then
5: Reset q to 1.
6: else if z ∈ T1,0 and q = 1 then
7: Reset q to 0 and τ to 0.
8: else if z ∈ U0, q = 0, and τ = 0 then
9: Assign u to κ0(h0(z, τ), τ) and update z, q, and τ according to (6.1a).

10: else if z ∈ R2n \ T1,0 and q = 1 then
11: Assign u to κ1(h1(z, τ), τ) and update z, q, and τ according to (6.1a).
12: end if
13: end while

187

The reason that the state τ in (6.1) changes at the rate q during flows and is

reset to 0 at jumps is that when the state x is in C1, then τ̇ = q = 1, which implies

that τ behaves as ordinary time, so it is used to represent time in the potentially

time-varying algorithm κ1. On the other hand, when the state x is in C0, then

τ̇ = q = 0 causes the state τ to stay at zero. Such an evolution ensures that the

set to asymptotically stabilize is compact.

Figure 5.4 shows the feedback diagram of this hybrid closed-loop system H.

We denote, for each q ∈ Q = {0, 1}, the closed-loop systems resulting from the

individual optimization algorithms as Hq with state (z, τ), which are given by

ż =

 z2

κq(hq(z, τ), τ)

τ̇ = 1

(z, τ) ∈ R2n × R≥0. (6.3)

6.2.2 Design

The sets U0 and T1,0 need to be designed such that the supervisor can determine

when the state component z1 is close to the set of minimizers of L, denoted z∗
1 ,

without knowledge of z∗
1 or L∗. To facilitate such a design, for this chapter, we

impose1 Assumptions 3.1.8 and 3.2.4 on the objective function L. Namely, L is

C1, nonstrongly convex, and has a unique minimizer by Assumption 3.1.8, has

a Lipschitz continuous gradient by Assumption 3.1.3, and has quadratic growth

away from its minimizer z∗
1 by Assumption 3.2.4.

The set U0 is defined, via Definition 2.2.2, and Lemma 4.4.1, as follows:

U0 :=
{
z ∈ R2n : |∇L(z1)| ≤ c̃0,

1
2 |z2|2 ≤ d0

}
(6.4)

1When L is strongly convex, then L also satisfies the definition of nonstrong convexity (Def-
inition 2.2.2) and quadratic growth in Definition 2.2.3, since these are weaker properties than
strong convexity; see [67], [69], [19], [68], [70].

188

where the parameters c̃0 > 0 and d0 > 0 are designed so that U0 is in the region

where κ0 is used.

The set T1,0 is defined, via Definition 2.2.2, and Lemma 4.4.1, as follows:

T1,0 :=
{
z ∈ R2n : |∇L(z1)| ≤ c̃1,0, |z2|2 ≤ d1,0

}
(6.5)

where the parameters c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0) are designed such that T1,0

is contained in the interior of U0. When q = 1, |∇L(z1)| ≤ c̃1,0, and |z2|2 ≤ d1,0,

the supervisor will switch from the global algorithm κ1 to the local algorithm

κ0. The constants c̃0, c̃1,0, d0, and d1,0 comprise the hysteresis necessary to avoid

chattering at the switching boundary; see Figure 4.3. Examples illustrating the

design of U0 and T1,0 for specific cases of κ0 and κ1 were presented in Chapters 4

and 5.

The set T0,1 should be designed such that the supervisor can determine that

the state z is far from the minimizer, when z ∈ T0,1 and q = 0, and make the

switch back to κ1 to ensure that the state z reaches the neighborhood of the

minimizer in finite time. Additionally, the set T0,1 should be designed such that,

when used in combination with U0 and T1,0 to define (6.2), each solution x to the

hybrid closed-loop algorithm H jumps no more than twice, and the set of interest

is guaranteed to be at least weakly forward invariant.

To ensure that the hybrid closed-loop system H in (6.1), with C and D defined

via (6.2), is well-posed, and to ensure that every maximal solution to the hybrid

closed-loop system H is complete, we impose the following assumptions on the set

T0,1 and the static state-feedback laws κq(hq(z, τ)).

Assumption 6.2.1 (Closed sets and continuous static state-feedback laws).

189

(C1) The set T0,1 is the closed complement of U0, namely,

T0,1 := R2n \ U0; (6.6)

(C2) The map z 7→ FP (z, κq(hq(z, τ))), in (3.1) with u = κ(h(z, τ), τ), is Lipschitz

continuous with constant Mκ > 0, namely,

|FP (z, κq(hq(z, τ), τ)) − FP (v, κq(hq(v, τ), τ))| ≤ Mκ |z − v| (6.7)

for all z, v ∈ R2n and all τ ∈ R≥0.

Remark 6.2.2. Whereas C is closed by construction, item (C1) is needed to

ensure that the set D is closed. Additionally, (6.6) item (C1) is needed to ensure

that nontrivial solutions to H in (6.1) exist from any initial point in R2n × Q ×

R≥0. Item (C2) is used to ensure that the map x 7→ F (x) is continuous. The

closure of C and D and the continuity of F and G are required for H to be well-

posed which, in turn, leads to robustness of the asymptotic stability our framework

guarantees, as stated in results to follow. Additionally, item (C2) is an assumption

commonly used in nonlinear analysis to ensure that the closed-loop systems Hq in

(6.3) resulting from the individual optimization algorithms do not have solutions

that escape in finite time, which is used to guarantee the existence of solutions to

Hq [77, Theorem 3.2].

6.2.3 Basic Properties of H

Under Assumptions 3.1.8, 3.2.4, and 6.2.1, the hybrid closed-loop system H

in (6.1), satisfies the hybrid basic conditions, listed in Definition 2.1.1, as demon-

strated in the following lemma.

190

Lemma 6.2.3. (Well-posedness of H) Let L satisfy Assumptions 3.1.8 and 3.2.4.

Let the set T0,1 satisfy item (C1) of Assumption 6.2.1, and let the map z 7→

FP (z, κq(hq(z, τ)), τ) satisfy item (C2) of Assumption 6.2.1. Let the sets U0 and

T1,0 be defined via (6.4) and (6.5), respectively. Then, the hybrid closed-loop system

H in (6.1) satisfies the hybrid basic conditions, as listed in Definition 2.1.1.

Proof. The sets U0 and T1,0 are closed by construction via Assumptions 3.1.8 and

3.2.4, and T0,1 is closed by item (C1) of Assumption 6.2.1. Therefore, the sets D0,

D1, C0, and C1 are closed. Since D and C are finite unions of finite and closed

sets, then D and C are closed.

By construction the map x 7→ F (x) is continuous since, by item (C2), z 7→

FP (z, κq(hq(z, τ), τ)) is Lipschitz continuous. The map G satisfies item (A3) by

construction.

In Theorem 6.2.9 we show that H has a compact pre-asymptotically stable

set. In light of this property, Lemma 6.2.3 is key as it leads to pre-asymptotic

stability that is robust to small perturbations [21, Theorem 7.21]. In the case of

gradient-based algorithms, for instance, such perturbations can take the form of

small noise in measurements of the gradient.

To ensure that each maximal solution to the hybrid closed-loop system H is

bounded, we make the following assumption.

Assumption 6.2.4 (Bounded local algorithm). Each maximal solution (t, j) 7→

(z(t, j), τ(t, j)) to H0 is bounded.

Remark 6.2.5. For specific optimization algorithms, some examples of assump-

tions under which H0 is bounded are as follows. When H0 is the heavy ball algo-

rithm in (1.1), then boundedness is established when L is C1, nonstrongly convex,

191

has a unique minimizer by Assumption 3.1.8, has quadratic growth away from z∗
1

by Assumption 3.2.4, and ∇L is Lipschitz continuous by Assumption 3.1.3; see

Proposition 3.1.10. When H0 is Nesterov’s algorithm in (1.2), then boundedness

is established when L is C2 and strongly convex by Assumption 3.1.1 and ∇L is

Lipschitz continuous by Assumption 3.1.3; see Proposition 3.1.5. Boundedness

can not be established for Nesterov’s algorithm in (1.5), however, since the set A1

in (3.64) for such an algorithm is not compact.

When Assumptions 3.1.8, 3.2.4, 6.2.1, and 6.2.4 hold, then each maximal so-

lution to H is complete and bounded, as stated in the following lemma. Such

a property is useful since it guarantees that nontrivial solutions to H exist from

each initial point in C ∪D, and that such solutions do not escape C ∪D. When

every maximal solution is complete, then uniform global pre-asymptotic stability2

of the set A becomes uniform global asymptotic stability. The following lemma

also states that Π(C0) ∪ Π(D0) = R2n and Π(C1) ∪ Π(D1) = R2n. Such a property

ensures that nontrivial solutions to H, which exist from each initial point in C∪D,

also exist from any initial point in R2n ×Q× R≥0.

Proposition 6.2.6. (Existence of solutions to H) Let L satisfy Assumptions

3.1.8, 3.2.4, and 6.2.1. Let H0 satisfy Assumption 6.2.4. Let the set T0,1 sat-

isfy item (C1) of Assumption 6.2.1 and let the map z 7→ FP (z, κq(hq(z, τ), τ)),

for each q ∈ Q and each τ ∈ R, satisfy item (C2) of Assumption 6.2.1. Fur-

thermore, let U0 and T1,0 be defined via (6.4) and (6.5), respectively. Then,

Π(C0) ∪ Π(D0) = R2n, Π(C1) ∪ Π(D1) = R2n, and each maximal solution (t, j) 7→

x(t, j) = (z(t, j), q(t, j), τ(t, j)) to H in (6.1) is bounded and complete.

Proof. Since Assumptions 3.1.8 and 6.2.1 hold, then H satisfies the hybrid basic
2Uniform global pre-asymptotic stability indicates the possibility of a maximal solution that

is not complete, even though it may be bounded.

192

conditions by Lemma 6.2.3. Since L is C1, nonstrongly convex, has a single mini-

mizer by Assumption 3.1.8, and has quadratic growth away from z∗
1 by Assumption

3.2.4, since U0 is defined via (6.4), and since T0,1 is the closed complement of U0

by item (C1) of Assumption 6.2.1, then Π(C0) ∪ Π(D0) = R2n. (5.12), and since

by the definitions of C1 and D1 in (6.2), C1 is the closed complement of D1, then

Π(C1) ∪ Π(D1) = R2n.

Due to the definitions of C0, D0, C1, and D1 in (6.2), U0 in (6.4), and T1,0

in (6.5), and due to T0,1 being the closed complement of U0 by item (C1) of

Assumption 6.2.1, then C \D is equal to int(C). Hence, for each point x ∈ C \D,

the tangent cone to C at x is

TC(x) :=

R2n × {0} × {0} if x ∈ C0 \D0,

R2n × {1} × R≥0 if x ∈ C1 \D1.

(6.8)

Therefore, F (x) ∩ TC(x) ̸= ∅, satisfying (VC) of Proposition A.1.1 for each point

x ∈ C \ D, and nontrivial solutions exist for every initial point in (C0 ∪ C1) ∪

(D0 ∪D1), where Π(C0) ∪ Π(D0) = R2n and Π(C1) ∪ Π(D1) = R2n. To prove that

item (c) of Proposition A.1.1 does not hold, we need to show that G(D) ⊂ C ∪D.

With D defined in (6.2),

G(D) = (T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}) (6.9)

Notice that T1,0×{0}×{0} ⊂ C0 and T0,1×{1}×{0} ⊂ C1. Therefore, G(D) ⊂ C;

hence G(D) ⊂ C ∪ D. Therefore, item (c) of Proposition A.1.1 does not hold.

Then it remains to prove that item (b) does happen.

Since by item (C2), z 7→ FP (z, κq(hq(z, τ), τ)) is Lipschitz continuous, and

since the solution component τ increases linearly, then by [77, Theorem 3.2], Hq,

193

defined via (6.3), has no finite time escape from R2n ×R≥0. Therefore, each max-

imal solution to Hq is complete and unique. Therefore, this means ẋ = F (x) has

no finite time escape from C for H, as q does not change in C and as τ is bounded

in C, namely, τ – which is always reset to 0 in D – increases linearly in C1 and

remains at 0 in C0. Moreover, since each maximal solution (t, j) 7→ (z(t, j), τ(t, j))

to H0 is bounded, by Assumption 6.2.4, then each maximal solution x to H is also

bounded. Therefore, there is no finite time escape from C ∪D, for solutions x to

H. Therefore, item (b) from Proposition A.1.1 does not hold. This means only

item (a) is true, and every maximal solution x to H is bounded and complete.

To establish uniform global asymptotic stability of the set of interest for the hy-

brid closed-loop algorithm H, we impose the following assumptions on the closed-

loop algorithms Hq in (6.3). We also make assumptions about the sets U0, T1,0,

and T0,1, to ensure that each solution x to the hybrid closed-loop algorithm H

jumps no more than twice, and ensure that the set of interest is guaranteed to be

at least weakly forward invariant for H.

Assumption 6.2.7 (Assumptions on asymptotic stability and attractivity). Given

the set

A1 := {z∗
1} × {0} × R≥0 ∈ R2n × R≥0, (6.10)

given a plant defined via (3.1) with y = hq(z), given c̃0 > 0 and d0 > 0 defining the

closed set U0 ∈ R2n via (6.4), the interior of which contains an open neighborhood

of A1 in (6.10), and given c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0) defining the closed set

T1,0 ⊂ U0 via (6.5), the following conditions hold:

(UC1) The closed-loop algorithm H1, resulting from κ1, has the set A1 uniformly

globally attractive, namely, each maximal solution χ := (z, τ) to H1, given

by (6.3) with u = κ1(h1(z, τ), τ), is complete and for each ε > 0 and r > 0

194

there exists T > 0 such that, for any solution χ to H1 with |χ(0)|A1
≤ r,

t ∈ domχ and t ≥ T imply |χ(t)|A1
≤ ε;

(UC2) There exist positive constants c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that the

closed set T1,0 satisfies

(z∗
1 + c̃1B) × ({0} + d1B) ⊂ T1,0 (6.11)

and each solution to H0 in (6.3) with initial condition in T1,0 × R≥0, re-

sulting from applying κ0, remains in U0;

(UC3) The closed-loop algorithm H0, resulting from κ0, has a set A1 uniformly

globally asymptotically stable, namely, each maximal solution χ to H0,

given by (3.1) with u = κ0(h0(z, τ), τ), is complete, A1 is uniformly globally

attractive for H0, and there exists a class-K∞ function α such that any

solution χ to H0 satisfies |χ(t)|A1
≤ α

(
|χ(0)|A1

)
for all t ∈ domχ.

(UC4) When z ∈ T0,1, where T0,1 comes from item (C1) of Assumption 6.2.1,

and κ0 is currently being used (q = 0), the hybrid closed-loop algorithm H

assigns u to κ1.

Remark 6.2.8. Items (UC1) and (UC3) of Assumption 6.2.7 ensure that H1 and

H0 have the desired attractivity and stability properties, respectively, to establish

the stability of the hybrid closed-loop algorithm H. Such assumptions are reason-

able in light of the numerous results in the literature for gradient-based optimiza-

tion algorithms, cited in Sections 1.2.1 and 1.3.1. Furthermore, the conditions

in Assumption 6.2.7 are similar to conditions imposed in [22] for general uniting

control algorithms. Item (UC1) ensures that solutions (z, τ) starting with z in U0,

with q = 0 and τ ∈ R≥0, stay in U0 and converge to A1 in (6.10) under the affect

195

of κ0. Item (UC4) guarantees that solutions starting with the state z ∈ T0,1 and

with q = 0 triggers a jump resetting q to 1. Item (UC3) guarantees that, after

such a jump, z reaches T1,0 in finite time with κ1 applied. Item (UC2) ensures

that solutions from T1,0 under the effect of κ0 cannot reach the boundary of U0.

The following theorem establishes that the hybrid closed-loop system H in

(6.1)-(6.2) has the set

A :=
{
z ∈ R2n : ∇L(z1) = z2 = 0

}
×{0}×{0} = {z∗

1}×{0}×{0}×{0} (6.12)

uniformly globally asymptotically stable. Recall that the state x := (z, q, τ) ∈

R2n × Q × R≥0. In light of this, the first component of A, namely, {z∗
1}, is the

minimizer of L. The second component of A, namely, {0}, reflects the fact that

we need the velocity state z2 to equal zero in A so that solutions are not pushed

out of such a set. The third component in A, namely, {0}, is due to the logic

state ending with the value q = 0, namely using κ0 as the state z reaches the set

of minimizers of L. The last component in A is due to τ being set to, and then

staying at, zero when the supervisor switches to κ0.

Theorem 6.2.9. (Uniform global asymptotic stability of A for H) Let L satisfy

Assumptions 3.1.8 3.2.4. Let the map z 7→ FP (z, κq(hq(z, τ), τ)), for each q ∈ Q

and each τ ∈ R, in (3.1) satisfy item (C2) of Assumption 6.2.1. Let the set T0,1

satisfy item (C1) of Assumption 6.2.1. Let H0 satisfy Assumption 6.2.4. Let

the closed-loop optimization algorithms Hq in (6.3) and the sets U0, T1,0, and

T0,1 satisfy Assumption 6.2.7. Additionally, let c̃1,0 ∈ (0, c̃0), d1,0 ∈ (0, d0), c̃1 ∈

(0, c̃1,0), and d1 ∈ (0, d1,0). Then, the set A, defined via (6.12), is uniformly

globally asymptotically stable for H given in (6.1)-(6.2).

Proof. The hybrid closed-loop algorithm H satisfies the hybrid basic conditions

196

by Lemma 6.2.3, satisfying the first assumption of Theorem A.1.3. Furthermore,

each maximal solution (t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to H for (6.1)-(6.2)

is complete and bounded by Proposition 6.2.6. Since by Assumption 3.1.8, L has

a unique minimizer z∗
1 , then A, defined via (6.12), is compact by construction,

and U = R2n × Q × R≥0 contains a nonzero open neighborhood of A, satisfying

the second assumption of Theorem A.1.3.

To prove attractivity of A, we proceed by contradiction. Suppose there exists

a complete solution x to H such that lim
t+j→∞

|x(t, j)|A ̸= 0. Since Proposition 6.2.6

guarantees completeness of maximal solutions, we have the following cases:

a) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C1\D1 for all (t, j) ∈ dom x, t+

j ≥ t′ + j′;

b) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C0 \ (A ∪ D0) for all (t, j) ∈

dom x, t+ j ≥ t′ + j′;

c) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ D for all (t, j) ∈ dom x, t+j ≥

t′ + j′.

Case a) contradicts the fact that, by item (UC1) of Assumption 6.2.7, the

set A1, defined via (6.10), is uniformly globally attractive for H1. Such uniform

global attractivity of A, guaranteed by item (UC1) of Assumption 6.2.7, implies

that the state z reaches ({z∗
1} + c̃1B) × ({0} + d1B) ⊂ T1,0 in item (UC2) at some

finite flow time t ≥ T or as t approaches ∞. In turn, due to the construction of

C1 and D1 in (6.2), with T1,0 defined via (5.12), c̃1,0 ∈ (0, c̃0), and d1,0 ∈ (0, d0),

the solution x must reach D1 at some (t, j) ∈ dom x, t + j ≥ t′ + j′. Therefore,

case a) does not happen.

Case b) contradicts the fact that, by item (UC3) of Assumption 6.2.7, A1 is

uniformly globally asymptotically stable for H0. In fact, lim
t+j→∞

|x(t, j)|A = 0, and

197

since A ⊂ C0, case b) does not happen.

Case c) contradicts the fact that, due to c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0), due

to the construction of T1,0 in (5.12), and due to T0,1 = R2n \ U0 by item (C1) of

Assumption 6.2.1, T1,0 ∩ T0,1 = ∅ and hence we have

G(D) ∩D := ((T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}))

∩ ((T0,1 × {0} × {0}) ∪ (T1,0 × {1} × R≥0))

=∅

where G(D) is defined via 6.9 and D is defined in 6.2. Therefore, case c) does not

happen.

Therefore, cases a)-c) do not happen, and each maximal and complete solution

x = (z, q, τ) to H with τ(0, 0) = 0 converges to A. As a consequence, by the

construction of C and D in (6.2), the uniform global attractivity of A1 (defined via

(6.10)) for H1 in item (UC1) of Assumption 6.2.7, the uniform global asymptotic

stability of A1 for H0 in item (UC3) of Assumption 6.2.7, and since each maximal

solution to H is complete by Proposition 6.2.6, the set A is uniformly globally

asymptotically stable for H.

To show that each maximal and complete solution x to H jumps no more than

twice, we proceed by contradiction. Without loss of generality, suppose there

exists a maximal and complete solution that jumps three times. We have the

following possible cases:

i) The solution first jumps at a point in D0, then jumps at a point in D1, and

then jumps at a point in D0; or

ii) The solution first jumps at a point in D1, then jumps at a point in D0, and

then jumps at a point in D1.

198

Case i) does not hold since, once the jump in D1 occurs, the solution x is in

(T1,0 × {0} × {0}) ⊂ C0. Due to the construction of T1,0 in (5.12) and due to

T0,1 = R2n \ U0 by item (C1) of Assumption 6.2.1 such that T1,0 ∩ T0,1 = ∅,

as described in the contradiction of case c) above, and due to the uniform global

asymptotic stability of A1 for H0 by item (UC3) of Assumption 6.2.7, the solution

x will never return to D0. Therefore, case i) does not happen. Case ii) leads to

a contradiction for the same reason, and in this case, once the first jump in D1

occurs, no more jumps happen. Therefore, since cases i)-ii) do not happen, each

maximal and complete solution x to H with τ(0, 0) = 0 has no more than two

jumps.

The framework defined in (6.1)-(6.2) allows for combinations of different meth-

ods, including Nesterov’s algorithm, the heavy ball method, and the triple mo-

mentum method [38] [39], to name a few examples.

6.3 Examples for Applying the framework

In this section, we show how the framework in Section 6.2.1 applies to some

of the algorithms proposed in Chapters 4 and 5.

6.3.1 Uniting Heavy Ball Algorithms

In Section 4.4, we proposed an algorithm uniting two heavy ball algorithms in

(1.1) with properly designed parameters λq and γq, which uses measurements of

∇L. Namely, the hybrid closed-loop system H is defined in (4.3) with C and D

defined via (4.14), U0 defined in (4.20) (and is defined the same way in (6.4)), T1,0

defined via (4.25), and T0,1 defined in (4.30). Note that T1,0 in (4.25) is defined

slightly differently than T1,0 in (6.5). To modify T1,0 in (4.25) to fit the design in

199

Section 6.2.2, use the same arguments and assumptions as in Section 4.4.2, but

with d1,0 defined as

d1,0 := 2c1,0 − 2γ1

(
c̃2

1,0

α

)
∈ (0, d0) (6.13)

to yield the definition of T1,0 in (6.5). Note also that the state τ is omitted

from the framework in this special case, since the heavy ball algorithm in (1.1) is

time-invariant.

We can apply our results from section 6.2.3 to the hybrid closed-loop algorithm

H in Section 4.4, with d1,0 defined via (6.13), as follows. Lemma 6.2.3 holds since

1. Due to L being C1, nonstrongly convex, and having a single minimizer by

Assumption 3.1.8, ∇L being Lipschitz continuous by 3.1.3, and L having

quadratic growth away from z∗
1 by 3.2.4, and with d1,0 in (6.13), the sets U0

in (6.4), T1,0 in (6.5), and T0,1 in (4.30) are closed by construction and by

the arguments in Sections 4.4.1, 4.4.2, and 4.4.3. Moreover, every z ∈ U0 is

also in the V0 sublevel set with level c0 = 0, for which T0,1 in (4.30) is the

closed complement, by the arguments in Sections 4.4.1 and 4.4.3; recall that

V0 is defined in (4.2). This means that T0,1 satisfies item (C1) of Assumption

6.2.1;

2. Due to L being C1 by Assumption 3.1.8 and due to ∇L being Lipschitz con-

tinuous by Assumption 3.1.3, the map z 7→ FP (z, κq(h(z))), for Hq in (4.4),

is also Lipschitz continuous since FP in (3.1) is a C1, Lipschitz continuous

function of κq in (4.1) and h in (3.72). Therefore, item (C2) of Assumption

6.2.1 also holds.

In addition, Proposition 6.2.6 holds for the hybrid closed-loop algorithm H in

Section 4.4, with d1,0 defined via (6.13), since

200

1. Due to L being C1, nonstrongly convex, and having a single minimizer by

Assumption 3.1.8, ∇L being Lipschitz continuous by 3.1.3, and L having

quadratic growth away from z∗
1 by 3.2.4, then with d1,0 in (6.13), by the

arguments in Sections 4.4.1 and 4.4.2, the sets U0 and T1,0 are defined in

(6.4) and (6.5), respectively;

2. Moreover, due to L being C1, nonstrongly convex, having a single minimizer

by Assumptions 3.1.8, and having a Lipschitz continuous gradient by 3.1.3,

then by the arguments in Sections 4.4.1 and 4.4.3, T0,1 in (4.30) satisfies

item (C1) of Assumption 6.2.1;

3. Due to L being C1, nonstrongly convex, having a single minimizer by As-

sumptions 3.1.8, and having a Lipschitz continuous gradient by 3.1.3, the

map z 7→ FP (z, κq(h(z))), for Hq in (4.4), is also Lipschitz continuous since

FP in (3.1) is a C1 function of κq and h. Therefore, item (C2) of Assumption

6.2.1 also holds;

4. Since by Proposition 3.2.7, each maximal solution to H0 in (4.4) is bounded,

then Assumption 6.2.4 holds.

Finally, Theorem 6.2.9 holds for the hybrid closed-loop algorithm H in Section

4.4, with d1,0 defined via (6.13), since

1. By Lemma 6.2.3, H is well-posed;

2. By Proposition 6.2.6, each maximal solution to H is complete and bounded;

3. By Proposition 3.2.8, {z∗
1} × {0} is uniformly globally asymptotically stable

for H1 in (4.4), resulting from κ1 in (4.1). This is a stronger assumption

than item (UC1) of Assumption 6.2.7;

201

4. By Proposition 3.2.8, {z∗
1} × {0} is uniformly globally asymptotically sta-

ble for H0 in (4.4), resulting from κ0 in (4.1). Therefore, item (UC3) of

Assumption 6.2.7 is satisfied;

5. By the arguments in Section 4.4.2, with d1,0 in (6.13), every z ∈ T1,0 is in

a c1,0-sublevel set of V1, which is contained in the interior of U0; recall that

T1,0 is defined in (6.5), U0 is defined in (6.4), and V1 is defined in (4.2). This

implies that there exist c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that (6.11) holds.

Moreover, since item (UC3) holds, then each solution z to H0 with initial

condition in T1,0 in (6.5), resulting from applying κ0 in (4.1), remains in U0.

Therefore, item (UC2) holds.

6. Due to the construction of D0 in (6.2) and the jump map G in (6.1b), item

(UC4) of Assumption 6.2.7 is satisfied.

6.3.2 Uniting Nesterov’s Method and the Heavy Ball Method

for Strongly Convex L

In Section 5.1, we proposed an algorithm for strongly convex L uniting Nes-

terov’s method in (1.2) globally and the heavy ball algorithm in (1.1) with large

λ > 0 locally, which uses measurements of ∇L. Namely, the hybrid closed-loop

system H is defined in (4.3) with C and D defined via (4.14), U0 defined in (4.20)

(and is defined the same way in (6.4)), T1,0 defined via (5.12) (and defined the

same way in (6.5)), and T0,1 defined in (5.15). Note that the state τ is omitted

from the framework in this special case, since Nesterov’s algorithm in (1.2) is

time-invariant.

We can apply our results from section 6.2.3 to the hybrid closed-loop algorithm

H in Section 5.1 as follows. Lemma 6.2.3 holds since

202

1. Due to L being C2 and strongly convex by Assumption3 3.1.1 and ∇L being

Lipschitz continuous by 3.1.3, the sets U0 in (6.4), T1,0 in (6.5), and T0,1 in

(5.15) are closed by construction and by the arguments in Sections 5.1.3,

5.1.4, and 5.1.5. Moreover, every z ∈ U0 is also in the V0 sublevel set

with level c0 = 0, for which T0,1 in (5.15) is the closed complement, by the

arguments in Sections 5.1.3 and 5.1.5; recall that V0 is defined in (3.80).

This means that T0,1 satisfies item (C1) of Assumption 6.2.1;

2. Due to L being C2 by Assumption 3.1.1, due to ∇L being Lipschitz con-

tinuous by Assumption 3.1.3, and due to d and β being defined via (3.3),

the map z 7→ FP (z, κq(h(z))), for Hq in (4.4), is also Lipschitz continuous

since FP in (3.1) is a C2, Lipschitz continuous function of κq in (5.1) and h

in (5.2). Therefore, item (C2) of Assumption 6.2.1 also holds.

In addition, Proposition 6.2.6 holds for the hybrid closed-loop algorithm H in

Section 5.1 since

1. Due to L being C2 and strongly convex by Assumption 3.1.1 – which implies

L satisfies Definition 2.2.3 – and ∇L being Lipschitz continuous by 3.1.3,

then by the arguments in Sections 5.1.3 and 5.1.4, the sets U0 and T1,0 are

defined in (6.4) and (6.5), respectively;

2. Moreover, due to L being C2, strongly convex by Assumption 3.1.1, and

having a Lipschitz continuous gradient by 3.1.3, then by the arguments in

Sections 5.1.3 and 5.1.5, T0,1 in (5.15) satisfies item (C1) of Assumption

6.2.1;

3. Due to L being C2 and strongly convex, by Assumption 3.1.1, and having

a Lipschitz continuous gradient by 3.1.3, the map z 7→ FP (z, κq(h(z))), for
3This implies that L also satisfies Definition 2.2.3.

203

Hq in (5.4), is also Lipschitz continuous since FP in (3.1) is a C2, Lipschitz

continuous function of κq in (5.1) and h in (5.2). Therefore, item (C2) of

Assumption 6.2.1 also holds;

4. Since by Proposition 3.2.7, each maximal solution to H0 in (5.4) is bounded,

then Assumption 6.2.4 holds.

Finally, Theorem 6.2.9 holds for the hybrid closed-loop algorithm H in Section

5.1 since

1. By Lemma 6.2.3, H is well-posed;

2. By Proposition 6.2.6, each maximal solution to H is complete and bounded;

3. By Theorem 3.1.7, {z∗
1} × {0} is uniformly globally asymptotically stable

for H1 in (5.4), resulting from κ1 in (5.1b). This is a stronger assumption

than item (UC1) of Assumption 6.2.7;

4. By Proposition 3.2.8, {z∗
1} × {0} is uniformly globally asymptotically sta-

ble for H0 in (5.4), resulting from κ0 in (5.1a). Therefore, item (UC3) of

Assumption 6.2.7 is satisfied;

5. By the arguments in Section 5.1.4, every z ∈ T1,0 is in a c1,0-sublevel set

of V1, which is contained in the interior of U0; recall that T1,0 is defined in

(6.5), U0 is defined in (6.4), and V1 is defined in (3.8). This implies that

there exist c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that (6.11) holds. Moreover,

since item (UC3) holds, then each solution z to H0 with initial condition in

T1,0 in (6.5), resulting from applying κ0 in (4.1), remains in U0. Therefore,

item (UC2) holds.

6. Due to the construction of D0 in (6.2) and the jump map G in (6.1b), item

(UC4) of Assumption 6.2.7 is satisfied.

204

6.3.3 Uniting Nesterov’s Method and the Heavy Ball Method

for Nonstrongly Convex L

In Section 5.1, we proposed an algorithm for nonstrongly convex L uniting

Nesterov’s method in (1.5) globally and the heavy ball algorithm in (1.1) with

large λ > 0 locally, which uses measurements of ∇L. Namely, the hybrid closed-

loop system H is defined in (4.3) with C and D defined via (5.23) (defined the

same way in (6.2)), U0 defined in (4.20) (and defined the same way in (6.4)), T1,0

defined via (5.12) (and defined the same way in (6.5)), and T0,1 defined in (5.15).

We can apply our results from section 6.2.3 to the hybrid closed-loop algorithm

H in Section 5.2 as follows. Lemma 6.2.3 holds since

1. Due to L being C1, nonstrongly convex, and having a single minimizer by

Assumption 3.1.8, ∇L being Lipschitz continuous by 3.1.3, and L having

quadratic growth away from z∗
1 by 3.2.4 the sets U0 in (6.4), T1,0 in (6.5),

and T0,1 in (5.15) are closed by construction and by the arguments in Sections

5.2.3, 5.2.4, and 5.2.5. Moreover, every z ∈ U0 is also in the V0 sublevel set

with level c0 = 0, for which T0,1 in (5.15) is the closed complement, by the

arguments in Sections 4.4.1 and 4.4.3; recall that V0 is defined in (3.80).

This means that T0,1 satisfies item (C1) of Assumption 6.2.1;

2. Since d̄ and β̄, defined via (3.35), are continuous, since L is C1 by Assumption

3.1.8, and since ∇L is Lipschitz continuous by Assumption 3.1.3, then hq in

(5.21), κ0 in (5.1a), and κ1 in (5.20) are continuous. In turn, the map z 7→

FP (z, κq(hq(z, τ), τ)) is also continuous since FP in (3.1) is a C1, Lipschitz

continuous function of κq and hq. Therefore, item (C2) of Assumption 6.2.1

also holds.

In addition, Proposition 6.2.6 holds for the hybrid closed-loop algorithm H in

205

Section 5.2, since

1. Due to L being C1, nonstrongly convex, and having a single minimizer by

Assumption 3.1.8, ∇L being Lipschitz continuous by 3.1.3, and L having

quadratic growth away from z∗
1 by 3.2.4, then by the arguments in Sections

5.2.3 and 5.2.4, the sets U0 and T1,0 are defined in (6.4) and (6.5), respec-

tively;

2. Moreover, due to L being C1, nonstrongly convex, having a single minimizer

by Assumptions 3.1.8, and having a Lipschitz continuous gradient by 3.1.3,

then by the arguments in Sections 5.2.3 and 5.2.5, T0,1 in (5.15) satisfies

item (C1) of Assumption 6.2.1;

3. Since d̄ and β̄, defined via (3.35), are continuous, since L is C1 by Assumption

3.1.8, and since ∇L is Lipschitz continuous by Assumption 3.1.3, then hq in

(5.21), κ0 in (5.1a), and κ1 in (5.20) are continuous. In turn, the map z 7→

FP (z, κq(hq(z, τ), τ)) is also continuous since FP in (3.1) is a C1, Lipschitz

continuous function of κq and hq. Therefore, item (C2) of Assumption 6.2.1

also holds;

4. Since by Proposition 3.2.7, each maximal solution to H0 in (4.4) is bounded,

then Assumption 6.2.4 holds.

Finally, Theorem 6.2.9 holds for the hybrid closed-loop algorithm H in Section

5.1 since

1. By Lemma 6.2.3, H is well-posed;

2. By Proposition 6.2.6, each maximal solution to H is complete and bounded;

3. By Proposition 3.1.13, A1 in (6.10) is uniformly globally asymptotically sta-

ble for H1 in (5.25), resulting from κ1 in (5.20). This is a stronger assumption

206

than item (UC1) of Assumption 6.2.7;

4. By Proposition 3.2.8, {z∗
1} × {0} is uniformly globally asymptotically stable

for H0 in (5.24), resulting from κ0 in (5.1a). Therefore, item (UC3) of

Assumption 6.2.7 is satisfied;

5. By the arguments in Section 5.2.4, every z ∈ T1,0 is in a c1,0-sublevel set

of V1, which is contained in the interior of U0; recall that T1,0 is defined in

(6.5), U0 is defined in (6.4), and V1 is defined in (3.38). This implies that

there exist c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that (6.11) holds. Moreover,

since item (UC3) holds, then each solution z to H0 with initial condition in

T1,0 in (6.5), resulting from applying κ0 in (5.1a), remains in U0. Therefore,

item (UC2) holds.

6. Due to the construction of D0 in (6.2) and the jump map G in (6.1b), item

(UC4) of Assumption 6.2.7 is satisfied.

6.4 Uniting Other Gradient Algorithms

In Section 6.3, we illustrated the framework in Section 6.2.1 by applying it

to specific cases involving different combinations of the heavy ball algorithm and

Nesterov’s algorithm, for κ0 and κ1. Other gradient-based algorithms, however,

could be used as κ0 and κ1 for the general framework.

One example includes the triple momentum method. The triple momentum

method was first proposed in [38] as a discrete-time accelerated gradient method.

A characterization of the continuous-time, high-resolution dynamical system, de-

rived in [39], is

ξ̈ + 2
√
η (γ, λ)ξ̇ +

(
1 +

√
η (γ, λ) γ

)
∇L(w) = 0 (6.14a)

207

w := ξ + √
γσξ̇ (6.14b)

y := ξ + √
γδξ̇ (6.14c)

where y ∈ Rn is the output, where the gradient is applied to w ∈ Rn, where γ > 0,

λ > 0, σ > 0, and δ > 0 are tunable parameters, and where η(γ, λ) is

η(γ, λ) :=
(

1 − λ
√
γ (1 + λ)

)2

∈ (0,M]. (6.15)

where M > 0 is the Lipschitz constant of ∇L. The authors in [38] and [39] also

give an ideal tuning of of the parameters as follows:

(γ, λ, σ, δ) :=
(

1 + ρ

M
,
ρ2

2 − ρ
,

ρ2

(1 + ρ) (2 − ρ) ,
ρ2

1 − ρ2

)
(6.16)

where

ρ := 1 − 1
κ

(6.17)

where κ := M
µ

, µ > 0, is the condition number of L. The authors in [39] char-

acterize the convergence rate for (6.14) to be exponential, both for the general

parameters and for the optimal tuning in (6.16), and numerically found (6.14) to

converge more quickly than Nesterov’s algorithm, for given values of the condition

number κ. Since (6.14) has an exponential convergence rate, it would be ideal for

use as the global optimization algorithm κ1 in the general framework, defined in

Section 6.2.1, with heavy ball with large λ as κ0.

Another example includes classic gradient descent, which has the ODE

ξ̇ + γ∇L(ξ) = 0 (6.18)

where γ > 0 is tunable, and which is commonly known to have a convergence rate

208

of 1
t
. As gradient descent does not have a “velocity” term, it tends to converge

slowly, without oscillations near the minimizer. Such behavior is similar to the

behavior of heavy ball with large λ. Due to such behavior, gradient descent could

be used as the local algorithm κ0 in the general framework in 6.2.1, with either

heavy ball with small λ, Nesterov’s algorithm, or the triple momentum method

as κ1.

209

Chapter 7

Hybrid Accelerated Optimization

for Nonconvexity

In this Chapter, we present a logic-based algorithm for Morse functions that

uses the heavy ball algorithm when the state z is far from a critical point and

that uses linear feedback when the state z is near a critical point, to push z away

from such a critical point. For the algorithm in this chapter, impose Assumption

3.2.11 on the objective function L.

7.1 Problem Statement

The problem addressed in this Chapter is as follows.

Problem 7.1.1. Given a continuously differentiable Morse objective function L :

R → R, which may have multiple isolated minimizers and maximizers, design an

optimization algorithm that guarantees practical convergence to a local minimizer

from all initial conditions – including local maximizers – using measurements of

∇L.

210

We emphasize that, to solve Problem 7.1.1, the algorithm has no knowledge

of the particular objective function L or of its critical points.

7.2 Design

In this section, we present a logic-based algorithm for Morse functions that

uses the heavy ball algorithm when the state z is far from a critical point and

that uses linear feedback when the state z is near a critical point, to push z away

from such a critical point.

Our proposed algorithm has a state z := (z1, z2) ∈ R2, where z1 represents

the argument of L and z2 represents the “velocity” variable. The state z remains

unchanged at jumps, but updates during flows according to

ż1 = z2, ż2 = u (7.1)

where u takes different forms depending on whether the state z is close to or far

from a critical point. Our algorithm uses a logic variable, q ∈ Q := {0, 1}, to

indicate when to push the state z1 away from a critical point. The logic value

q = 0 leads to the algorithm using the heavy ball method to converge to the neigh-

borhood of a critical point, and q = 1 leads to the algorithm using linear feedback

to push z1 away from a critical point. In addition, our algorithm has a state σ to

determine the magnitude and direction to push the state z1 when close to a critical

point. To trigger jumps, hysteresis parameters 0 < ε1 < ε2 and 0 < ρ1 < ρ2 are

used. These parameters are small enough to ensure convergence to a neighbor-

hood of a local minimum without overshooting to a neighboring maximum. The

algorithm uses a parameter ς > 0, to tune the speed of convergence.

A high-level description of the proposed algorithm is as follows. When the state

211

z is near a critical point with small velocity, as determined by |∇L(z1)| ≤ ε1 and

|z2| ≤ ρ1, the algorithm resets the logic variable q to 1 and assigns u to σ. Then,

z moves away from the critical point according to u = σ, where σ := ςsign(z2).

The feedback ςsign(z2) causes the state z2 to change linearly and z1 to change

quadratically, thus eventually pushing the state z away from a critical point.

When the state z is far away from the critical point and the velocity is larger, as

determined by |∇L(z1)| ≥ ε2 and |z2| ≥ ρ2, the algorithm resets the logic variable

q to 0 and assigns u to

κ(h(z)) := −λz2 − γ∇L(z1), (7.2)

which is defined for all z ∈ R2, where λ > 0 represents friction, γ > 0 represents

gravity, and h is given by

h(z) :=

 z2

∇L(z1)

 . (7.3)

The function h characterizes the measurements used by the algorithm. With

the proposed logic, the state z converges a nearby local minimizer, contained

in D0, with zero velocity via u = κ(h(z)). From such a point, although the

state z is pushed to D1, the state z will again converge to nearby the same local

minimizer as before, via u = κ(h(z)), and this process repeats for all time. The

positive parameters (ε1, ε2, ρ1, ρ2) need to be properly tuned to keep z in a small

neighborhood of a local minimizer. The complete algorithm is summarized in

Algorithm 1.

The rest of this section is organized as follows. Section 7.3 introduces the

hybrid system model for the proposed algorithm. Finally, Section 7.4 contains the

main results, which reveal the nominal properties of the proposed algorithm.

212

Algorithm 5 Hybrid Algorithm for Morse Functions
1: Set q(0, 0) to 0, and set z(0, 0) and σ(0, 0) as initial conditions with arbitrary

values.
2: while true do
3: if |∇L(z1)| ≤ ε1 and |z2| ≤ ρ1 and q = 0 then
4: Update q to 1;
5: Update σ to ςsign(z2) and assign u to σ;
6: else if |∇L(z1)| ≥ ε2 and |z2| ≥ ρ2 and q = 1 then
7: Update q to 0;
8: Assign u to κ(h(z)), defined via (7.2).
9: else

10: Allow flows of (7.1) with u = κ(h(z)) if q = 0 and with u = σ if q = 1.
11: end if
12: end while

7.3 Hybrid System Model of the Proposed Al-

gorithm

The proposed algorithm is modeled as a hybrid system H with parameter

ς > 0, state x := (z, q, σ) ∈ R2 × Q × {−ς, ς}, and data (C,F,D,G) defined as

follows:

F (x) :=

z2

κ̃(x)

0

0

x ∈ C := (R2 ×Q× {−ς, ς}) \D (7.4a)

G(x) :=

z1

z2

1 − q

ςsign(z2)

x ∈ D := D0 ∪D1 (7.4b)

213

where ς > 0 is properly tuned, sign(z2) is defined as the set-valued map

sign(z2) =

1 if z2 > 0

{−1, 1} if z2 = 0

− 1 if z2 < 0

(7.5)

and κ̃ is defined as

κ̃(x) =

κ(h(z)) if q = 0

σ if q = 1
(7.6)

where κ(h(z)) is defined via (7.2). The sets D0, and D1 are defined below. As

was outlined above and in Algorithm 1, the algorithm jumps when the state z

is near a critical point with small velocity, as determined by |∇L(z1)| ≤ ε1 and

|z2| ≤ ρ1, when q = 0. The algorithm also jumps when the state z is far from a

critical point with larger velocity, as determined by |∇L(z1)| ≥ ε2 and |z2| ≥ ρ2,

when q = 1, and when σ ∈ {−ς, ς}. To this end, the sets D0 and D1 are defined

as

D0 :=
{
z∈R2 : |∇L(z1)| ≤ ε1, |z2| ≤ ρ1

}
× {0} × {−ς, ς} (7.7a)

D1 :=
{
z∈R2 : |∇L(z1)| ≥ ε2, |z2| ≥ ρ2

}
× {1} × {−ς, ς} (7.7b)

where ε2 > ε1 > 0 and ρ2 > ρ1 > 0 are the inner and outer hysteresis bounds,

used to determine whether the system is near a critical point – and needs to be

pushed away from such a point using the feedback σ – or far enough away from a

critical point to use the feedback κ(h(z)).

Remark 7.3.1. Our approach to tuning ε2 and ε1 uses the minimum separation

d0 > 0 between critical points, from item (M3) of Assumption 3.2.11. If for a

given z1, |∇L(z1)| ≥ ε2, then the following relation can be derived: 0 < ε1 < ε2 <

214

min {∇L(z1) :z1 ∈ {z′
1 ∈ R :∇2L(z′

1) = 0}}. Since ∇2L(z′
1) = 0 occurs midway be-

tween critical points1, then such a tuning ensures that when the state z is near a

local maximizer, it converges to the nearest local minimizer without overshooting

to the next local maximizer. Such a tuning also ensures that if the state z is near

a local minimizer, it stays near that same local minimizer. The function L, how-

ever, is not always known, and the hybrid closed-loop system in (7.4) assumes no

knowledge of L. In practice, choosing 0 < ε1 < ε2 small enough is sufficient.

7.4 Main Result

In this section, we show that the hybrid closed-loop system H with data

(C,F,D,G) defined in (7.4) has the set

A := A1min × {0} ×Q× {−ς, ς} (7.8)

practically globally attractive in the positive parameters (ε1, ε2, ρ1, ρ2), with basin

of attraction that has a z1 component equal to R. Practical global attractivity

of A means that, for each ζ > 0 and for every solution x to H, there exists

(t′, j′) ∈ dom x such that |x(t, j)|A ≤ ζ for all (t, j) ∈ dom x such that it is

satisfying t+ j ≥ t′ + j′.

Under item (M2) of Assumption 3.2.11, the hybrid closed-loop system H,

described in (7.4), is well-posed, as it meets the hybrid basic conditions.

Lemma 7.4.1. (Well posedness of H) Let L satisfy item (M2) of Assumption

3.2.11. Then, the hybrid closed-loop system H in (7.4) satisfies the hybrid basic

conditions in Definition 2.1.1.
1Note that such a point is not itself a critical point, as it is not a stationary point, since L is

a Morse function.

215

Proof. Since |∇L(z1)| is continuous, due to L being C2, by (M2), then the sets

D0 and D1 are closed. Consequently, D is closed since it is composed of the union

of closed sets. Since C is the closed complement of D, then C is also closed.

By construction, the single-valued map x 7→ F (x) is continuous, since L is C2,

which makes κ̃ in (7.6) continuous as a function of x – this follows since, for each

q ∈ Q, (z, a) 7→ κ̃(z, q, a) is continuous on R2 × {−ς, ς}. The map G satisfies (A3)

by construction.

When Assumption 3.2.11 holds, every maximal solution to the hybrid closed-

loop system H is complete and bounded, as stated in the following lemma.

Lemma 7.4.2. (Existence of solutions for H) Let L satisfy items (M1)-(M4) of

Assumption 3.2.11. Let λ > 0, γ > 0, and ς > 0. Let κ̃ and sign be defined

via (7.6) and (7.5), respectively. Then, each maximal solution (t, j) 7→ x(t, j) =

(z(t, j), q(t, j), σ(t, j)) to the closed-loop system H in (7.4) is bounded and com-

plete.

Proof. Since item (M2) holds, then H is well-posed by Lemma 7.4.1. Due to the

definitions of C in (7.4) and D in (7.7), then C \ D is equal to
∫
(C). Hence, for

each point x ∈ C \ D, the tangent cone to C at x is TC(z) is R2 × Q × {−ς, ς}.

Therefore, F (x) ∩ TC(z) ̸= ∅, satisfying (VC) of Proposition A.1.1 for each point

x ∈ C \ D, and nontrivial solutions exist for every initial point in C ∪ D. To

prove that item (c) of Proposition A.1.1 does not hold, we need to show that

G(D) ⊂ C ∪D. Note that G(D) is defined, for D via (7.7), as

G(D) :=
({
z∈ R2 : |∇L(z1)| ≤ ε1, |z2| ≤ ρ1

}
× {1} × {−ς, ς}

)
∪
({
z∈ R2 : |∇L(z1)| ≥ ε2, |z2| ≥ ρ2

}
× {0} × {−ς, ς}

)
.

Notice that, since C, as defined in (7.4), is the closed complement of D, then

216

G(D) ⊂ C and this means also that G(D) ⊂ C∪D. Therefore, item (c) of Propo-

sition A.1.1 does not hold. It remains to be proved that item (b) of Proposition

A.1.1 does not hold.

By Lemma 3.2.13, (3.74) has no finite time escape from R2 \ Aamax , where

Aamax is defined via (3.104). Moreover, since κ̃(h(z)) = σ is linear, then ẋ = F (x)

has no finite time escape from C for H in (7.4), as q and σ do not change in

C. Therefore, there is no finite time escape from C ∪ D for solutions x to H.

Therefore, item (b) from Proposition A.1.1 does not hold.

The following lemma describes the behavior of solutions with u = σ, when

the system state is in the set {z ∈ R2 : |∇L(z1)| ≤ ε1, |z2| ≤ ρ1}. For this lemma,

consider the continuous-time system

ż1 = z2, ż2 ∈ ςsign(z2) (7.9)

with ς > 0 and sign(z2) defined via (7.5), and consider the sets

S1 :=
{
z ∈ R2 : |∇L(z1)| ≤ ε1, |z2| ≤ ρ1

}
(7.10a)

S2 :=
{
z ∈ R2 : |∇L(z1)| ≥ ε2, |z2| ≥ ρ2

}
(7.10b)

where ε1 ∈ (0, ε2) and ρ1 ∈ (0, ρ2).

Lemma 7.4.3. Let L satisfy items (M1), (M3) and (M5) of Assumption 3.2.11.

Given the system in (7.9), the sets in (7.10), ε > 0, ε2 > 0, and ρ2 > 0, where

(ε2, ρ2) is sufficiently small defining S2, there exists δ ∈
(
0,min

{
d0
2 , ε

})
, where

d0 > 0 comes from (M3), such that, for each ε1 ∈ (0, ε2) and ρ1 ∈ (0, ρ2) suffi-

ciently small defining S1, there exists T > 0 such that, for all z◦ ∈ S1, each solu-

tion t 7→ z(t) to (7.9) from z◦ satisfies z(T) ∈ S2 and max
{
|z1(t)|A1

, |z2(t)|
}

≤ δ

for all t ∈ [0, T].

217

Proof. By (M1) and (M3), L is a Morse function with a finite number of isolated

critical points, and there exists a minimum distance d0 > 0 between any two

critical points.

Let δ1 ∈ (0, d0
16], δ2 ∈ (δ1,

d0
8]. Then, given ε > 0 and ε2 > 0, let δ ∈

(0,min
{

d0
2 , ε

}
). Given ε2 > 0 sufficiently small, we invoke (M5) to get that,

for each ε1 ∈ (0, ε2), |∇L(z1◦)| ≤ ε1 implies that |z1◦|A1
≤ δ1. Then, we pick a

solution t 7→ (z1(t), z2(t)) to (7.9) such that z◦ ∈ S1. Since z2 changes linearly

and z1 changes quadratically, then at some time T > 0 the state z arrives at S2.

Such a time T > 0 must satisfy the property

δ2 + 2δ1 ≥ |z1(T) − z1◦| > δ2 + δ1. (7.11)

To find T > 0, we solve the following equation using the solutions to the

differential equations in (7.9):

|z1(T) − z1◦| =
∣∣∣∣12T 2 + z2◦T

∣∣∣∣ = δ2 + 4
3δ1. (7.12)

Hence, since for all z◦ ∈ S1, z2◦ = 0, we obtain

T =
√

2δ2 + 8
3δ1. (7.13)

Then, given ε2 > 0 and since previously we defined δ2 ∈ (δ1,
d0
8], we invoke (M5)

to get that |∇L(z1(T))| ≤ ε2 implies that |z1(T)|A1
≤ δ2.

Since z2 changes linearly and z1 changes quadratically with respect to time,

and since δ1 and δ2 are made small by definition, we conclude that T in (7.12) is

always finite.

Now, T in (7.13) implies |z1(T) − z1◦| ∈ (δ2 + δ1, δ2 + 2δ1) which, in turn, by

218

(M5), implies that |∇L(z1(T))| > ε2. Furthermore, given ρ2 > 0 sufficiently small,

for any t ∈ [0, T],

|z1(t) − z1◦ | ≤ δ2 + 4
3δ1 + ρ2

√
2δ2 + 8

3δ1

=⇒ |z1|A1
≤ δ2 + 4

3δ1 + ρ2

√
2δ2 + 8

3δ1 =: δ∗
1. (7.14)

Next, given ρ2 > 0 sufficiently small, it is easy to show, via (7.9), that |z2(T)| ≥ ρ2

and, for all t ∈ [0, T],

|z2(t)| ≤ T + z2◦ ≤
√

2δ2 + 8
3δ1 + ρ2 =: δ∗

2. (7.15)

Then, substituting (7.14) and (7.15) into max
{
|z1(t)|A1

, |z2(t)|
}

≤ δ yields

δ := max{δ∗
1, δ

∗
2}. (7.16)

As mentioned previously, δ1 and δ2 are made small by definition. Therefore, given

ε2 > 0 and ρ2 > 0 sufficiently small, δ∗
1 and δ∗

2 are made sufficiently small. Hence,

given ε > 0, we have δ ≤ ε which finishes the proof.

The following result shows that the hybrid closed-loop system H has the set

A in (7.8) practically globally attractive. To establish it, we employ the results

from Theorem 3.2.14 and Lemma 7.4.3.

Theorem 7.4.4. (Practical global attractivity of A in (7.8) for H) Let L satisfy

Assumption 3.2.11. Let λ > 0, γ > 0, and ς > 0. Consider the hybrid closed-

loop system H with data (C,F,D,G) defined in (7.4), with the functions κ̃ in

(7.6) and sign in (7.5), and consider the positive parameters (ε1, ε2, ρ1, ρ2). Then,

the set A in (7.8) is practically globally attractive for H in the sufficiently small

parameters (ε1, ε2, ρ1, ρ2); that is, for each εmin > 0 sufficiently small, there exist

219

parameters (ε1, ε2, ρ1, ρ2) with ε1 ∈ (0, ε2) and ρ1 ∈ (0, ρ2) such that, for each

maximal solution x to H, there exists (t′, j′) ∈ dom x such that

|x(t, j)|A ≤ εmin ∀(t, j) ∈ dom x : t+ j ≥ t′ + j′ (7.17)

Remark 7.4.5. The size of εmin > 0 needs to be sufficiently small to keep the state

z1 in a small neighborhood of a local minimizer. To give some insight into its size,

letting δ ∈ (0,max{d0
2 , ε}), where d0 > 0 and where ε > 0 is sufficiently small as in

(M5), then we need z such that max{|z1|A1
, |z2|} ≤ δ. Moreover, since q ∈ {0, 1}

and σ ∈ {−ς, ς} always holds, then we need εmin ≤
√

2δ2 + 12 + ς2 for practical

global attractivity. Furthermore, we observe in simulation that solutions z to H

converge to a neighborhood of A in the presence of small noise in measurements

of the gradient.

Proof. An outline of the proof is as follows:

1. We show that the hybrid closed-loop system H is well posed and that each

maximal solution to H is bounded and complete;

2. We use a trajectory-based approach to show that each solution to the hybrid

closed-loop system H does the following:

• Converges to D0, which contains a local minimizer, in finite time, due

to Lemma 7.4.3;

• Then, is pushed to D1 in finite time by Lemma 7.4.3;

• Then, converges to D0, in finite time, containing the same local mini-

mizer.

This process repeats for all time, for all solutions;

220

3. Since the process in 3) happens for all solutions, then to establish practi-

cal global attractivity, we derive the smallest sublevel set of each basin of

attraction Ui, defined via (3.106)-(3.108), of V in (3.105) that contains

Û0 :=
{
z ∈ R2 : |∇L(z1)| ≤ ε2, |z2| ≤ ρ2

}
(7.18)

Such a sublevel set – containing A – of each basin of attraction Ui of V

represents the smallest sublevel set to which each solution converges and in

which each solution remains for all time, giving practical attractivity.

For Step 1, By Lemma 7.4.1, the hybrid closed-loop system H meets the hybrid

basic conditions. In addition, by Lemma 7.4.2, each maximal solution of the

hybrid closed-loop system H is bounded and complete.

Next, for Step 2, We employ a trajectory-based approach, using the properties

of the heavy ball algorithm and the properties of κ̃(x) = σ, to show practical

global attractivity of the set A in (7.8). The types of solutions possible for the

hybrid closed-loop system, defined via (7.4), are as follows.

1. Solutions that start in the interior of C0;

2. Solutions that start in the interior of C1;

3. Solutions that start in the interior of D0;

4. Solutions that start in the interior of D1;

5. Solutions that start on the boundary of D0, namely, |∇L(z1(0, 0))| = ε1,

|z2(0, 0)| = ρ1, q(0, 0) = 0, and σ ∈ {−ς, ς};

6. Solutions that start on the boundary of D1, namely, |∇L(z1(0, 0))| = ε2,

|z2(0, 0)| = ρ2, q(0, 0) = 1, and σ ∈ {−ς, ς}.

221

We start by picking a solution of type 1). For such a solution, q(0, 0) = 0. Due

to the construction of F and C, defined via (7.4a), respectively, such a solution

will flow, using u = κ̃(x) = κ(h(z)), where κ is defined via (7.2) and h is defined

in (7.3). By Theorem 3.2.14, where it was proved that Aamin in (3.103) is almost

globally asymptotically stable with basin of attraction given by R2 \ Aamax , where

Aamax is defined in (3.104), for the heavy ball algorithm, defined via (3.74), the

solution flows until |∇L(z1)| < ε1 and |z2| < ρ1. Note that when the state z

arrives at the boundary of D0 – namely, when |∇L(z1| = ε2, |z2| = ρ2, q = 1,

and σ ∈ {−ς, ς} – the algorithm can either flow or jump, due to the fact that V ,

defined via (3.105), satisfies V ◦(z, FP (z, κ(h(z)))) ≤ 0 for all z ∈ U := R2 \ Aamax ,

as shown in (3.109). But due to the construction of D0, there exists some time

(t1, 0) in the domain of the solution at which flow is no longer possible. To prove

this, we show that f(z) ∩ TC(z) = ∅, where f is the heavy ball algorithm and

TC(z) is R2, is eventually empty, along solutions. At the boundary of D0, since

V ◦(z, FP (z, κ(h(z)))) ≤ 0, we can still have flow of u = κ(h(z)), so we have

f(z) ∩ TC(z) ̸= ∅. We denote the start of this time as (0, 0) Furthermore, either

when |∇L(z1)| = ε1 and |z2| < ρ1 or when |∇L(z1)| < ε1 and |z2| = ρ1, then we

can still have flow, due to V ◦(z, FP (z, κ(h(z)))) ≤ 0, so f(z) ∩ TC(z) ̸= ∅. This

happens during time (t, 0), where t < t1. Finally, when both |∇L(z1)| < ε1 and

|z2| < ρ1, we can no longer flow, but can only jump, and we have f(z)∩TC(z) = ∅,

which happens at time (t1, 0). Therefore, the solution will eventually jump when

the state z is in D0 which, due to V satisfying (3.109) for all z ∈ U := R2 \ Aamax ,

must contain a local minimizer instead of a local maximizer. When this jump

occurs, the logic variable q is reset to 1, and u is assigned to ςsign(z2), where

sign is defined via (7.5), while z remains the same. Hence, the solution is in C1.

Since, by Lemma 7.4.3, solutions to (7.9) flow from the set S1 to S2 in (7.10),

222

with (ε1, ε2, ρ1, ρ2) sufficiently small, in finite time T =
√

2δ2 + 8
3δ1 > 0, then due

to the construction of D0 and D1 in (7.7), with (ε1, ε2, ρ1, ρ2) sufficiently small,

solutions to the hybrid closed-loop system H flow from D0 to D1 via C1 using

u = ςsign(z2) in finite time T =
√

2δ2 + 8
3δ1 > 0. As a consequence of Lemma

7.4.3 and due to items (M3) and (M5), the state z will not overshoot to the

nearest local maximizer. When the state reaches the boundary of D1 – namely,

when |∇L(z1)| = ε2, |z2| = ρ2, q = 1, and σ ∈ {−ς, ς} – then such a solution can

no longer flow, since doing so would cause the state z to leave the set C ∪D, due

to u = ςsign(z2) which causes both |∇L(z1)| and |z2| to increase. Therefore, the

solution only jumps when the state z is on the boundary of D1, and the algorithm

resets the logic variable q to 0 and assigns u to κ(h(z)) while z remains the same.

Consequently, the solution is once again in C0 and, by Theorem 3.2.14, must flow

using u = κ(h(z)) until the state z reaches D0, which is a local minimizer due to

the fact that V satisfies (3.109) for all z ∈ U := R2 \ (A1max × {0}). This process

repeats for all time.

Next, we look at a solution of type 2), namely, a solution that starts in the

interior of C1. Due to the construction of F and C, such a solution flows, using

u = ςsign(z2), to push z away from a critical point, which could be either a local

maximizer or a local minimizer. Due to Lemma 7.4.3, and the construction of D0

and D1, with (ε1, ε2, ρ1, ρ2) sufficiently small, the solution arrives at D1 in finite

time less than or equal to T =
√

2δ2 + 8
3δ1 > 0. Once the state z reaches D1, the

logic variable q is reset to 0 and u is assigned to κ(h(z)), and the state z remains

the same. Hence, the solution is in C0, and from here follows the trajectory of

type 1) solutions, described above.

Then, we pick a solution of type 3), namely, a solution that starts in the interior

of D0. Due to the construction of D0, in (7.9), and since both local maximizers and

223

local minimizers both satisfy ∇L(z1) = 0, then such a solution could start near

either a local maximizer or a local minimizer. Such a solution jumps, resetting

the logic variable q to 1 and assigning u to ςsign(z2). Consequently, the state z

is in C1, and from here the solution follows the trajectory of type 2) solutions,

described above.

Then, we pick a solution of type 4), which starts in the interior of D1. Due

to the construction of D1, in (7.9), such a solution will always start far from any

local minimizer or local maximizer. In D1, the logic variable q is reset to 0 and u

is assigned to κ(h(z)) while z does not change. Hence, the state z is in C0, and

from here follows the trajectory of type 1) solutions, described above.

Next, we pick a solution of type 5), which starts on the boundary of D0. Since

V̇ (z) ≤ 0 for all z ∈ U := R2 \ (A1max × {0}) by Theorem 3.2.14, then the solution

could either flow or jump first. However, since by the construction of D0, there

exists some time (t1, 0) in the domain of the solution at which flow is no longer

possible, as described for solutions for type 1), then the solution eventually jumps,

and the algorithm resets q to 1 and assigns u to ςsign(z2) while z does not change.

Consequently, the state z is in C1, from which the solution follows the trajectory

of type 2) solutions, described above.

Then, we pick a solution of type 6), which starts on the boundary of D1. Such

a solution could not flow, since doing so would cause the state z to leave the set

C ∪ D, due to u = ςsign(z2), which causes both |∇L(z1)| and |z2| to increase.

Therefore, the solution always jumps, and the algorithm resets q to 0 and assigns

u to κ(h(z)), while z remains unchanged. Hence, the state z is in C0, from which

the solution follows the trajectory of type 1) solutions, described above.

Finally, for Step 3, to establish practical global attractivity of A (7.8) for

solutions of types 1)-6) above, we derive the smallest sublevel set of each basin of

224

attraction Ui, defined via (3.106)-(3.108), of V , defined via (3.105), that contains

{z ∈ R2 : |∇L(z1)| = ε2, |z2| = ρ2 } which, when q = 1, occurs on the boundary

of D1. Namely, given ρ2 > 0, ε2 > 0, and α ∈ K from (M5) such that δ2 ∈

(0, α(ε2)) and such that if |∇L(z1)| ≤ ε2 then |z1|A1
≤ δ2, and defining Û0 as in

(7.18), then there exists some ĉ0 > 0 such that V (z) ≤ ĉ0 contains Û0.

As shown in the proof of Theorem 3.2.14, V is positive definite on each basin

of attraction Ui in (3.106)-(3.108) with respect to (z∗
1i

× {0}) ∈ (A1min × R),

where i ∈ {1, 2, . . . , n}. Furthermore, V is radially unbounded since L is radially

unbounded by item (M4) of Assumption 3.2.11. This implies that each piece

of V is convex on its respective Ui, for i ∈ {1, 2, . . . , n}, with respect to each

(z∗
1i

× {0}) ∈ (A1min × R), which, in turn, means that

V (z∗
1i

) ≥ V (z1) +
〈
∇V (z1), z∗

1i
− z1

〉
(7.19)

for all z1, z
∗
1i

∈ Ui. Then, each piece of V can be upper bounded on its respective

basin of attraction Ui as follows.

V (z) = γ
(
L(z1) − L(z∗

1i
)
)

+ 1
2z

2
2

≤ γ |∇L(z1)| |z1|A1min
+ 1

2 |z2|2 . (7.20)

Then, given ε2 > 0 and given α ∈ K from item (M5) such that δ2 ∈ (0, α(ε2)) and

such that |∇L(z1)| ≤ ε2 implies |z1|A1min
≤ δ2, we have, for each piece of V on its

respective basin of attraction Ui

V (z) ≤ γ(ε2δ2) + 1
2 |z2|2 (7.21)

Then, given ρ2 > 0 and since we define Û0 via (7.18), then we can further upper

225

bound V by

V (z) ≤ γ(ε2δ2) + 1
2ρ

2
2 =: c0. (7.22)

Therefore, every z ∈ Û0 belongs to the c0-sublevel set of V in (7.22). Then, taking

ĉ0 > c0, the smallest sublevel set of V that contains Û0 is

V (z) ≤ ĉ0. (7.23)

Therefore, the set A is practically globally attractive for H in the parameters

(ε1, ε2, ρ1, ρ2).

7.5 Numerical Example

Example 7.5.1. This example compares multiple solutions to demonstrate the

effectiveness of the hybrid algorithm H, both when escaping from local maxima,

and when converging from initial points that are not maxima. The algorithm has

no knowledge of L, or the location of its critical points, but it uses measurements

of ∇L at the current value of z1. The values of the heavy ball parameters are

λ = 145, and γ = 3
4 , and the hybrid algorithm parameter values are ε1 = 0.05,

ε2 = 0.06, ρ1 = 0.05, ρ2 = 0.06, and ς = 1. The objective function is L(z1) =
z2

1(z1−10)2(z1−20)2(z1−30)2

10,000 , which has local minima at A1min = {0, 10, 20, 30} and local

maxima at A1max = {5(3 −
√

5), 15, 5(3 +
√

5)}.

We show that the objective function L in this example satisfies Assumption

3.2.11 as follows. To show it satisfies item (M2), we take the gradient, namely,

∇L(z1) = 0.0002z1(z1 − 10)2(z1 − 20)2(z1 − 30)2

226

+ 0.0002z2
1(z1 − 10)(z1 − 20)2(z1 − 30)2

+ 0.0002z2
1(z1 − 10)2(z1 − 20)(z1 − 30)2

+ 0.0002z2
1(z1 − 10)2(z1 − 20)2(z1 − 30). (7.24)

By inspection, (7.24) is continuous. Now we take the Hessian:

∇2L(z1) = 0.0002z2
1(z1 − 10)2(z1 − 20)2 + 0.0002z2

1(z1 − 10)2(z1 − 30)2

+ 0.0002z2
1(z1 − 20)2(z1 − 30)2

+ 0.0002(z1 − 10)2(z1 − 20)2(z1 − 30)2

+ 0.0008z1(z1 − 10)(z1 − 20)2(z1 − 30)2

+ 0.0008z1(z1 − 10)2(z1 − 20)(z1 − 30)2

+ 0.0008z1(z1 − 10)2(z1 − 20)2(z1 − 30)

+ 0.0008z2
1(z1 − 10)(z1 − 20)(z1 − 30)2

+ 0.0008z2
1(z1 − 10)(z1 − 20)2(z1 − 30)

+ 0.0008z2
1(z1 − 10)2(z1 − 20)(z1 − 30) (7.25)

By inspection, (7.25) is also continuous. Therefore, L is C2, satisfying (M2). To

show L satisfies (M1), we evaluate L at all of the critical points, as follows:

∇2L(0) = 7200

∇2L(10) = 800

∇2L(20) = 800

∇2L(30) = 7200

∇2L(5(3 −
√

5)) ≈ −2000

227

∇2L(15) ≈ −562.5

∇2L(5(3 +
√

5)) ≈ −2000 (7.26)

Since the Hessian of L does not equal zero at any of the critical points, then none

of these critical points are degenerate, and therefore L is Morse, satisfying (M1).

L satisfies (M3) because there exists a separation of at least d0 = 5(3−
√

5) ≈ 3.28

between all critical points. Furthermore, it is easy to see that L satisfies (M4).

That is, L(z1) → ∞ as |z1| → ∞. Finally, L satisfies (M5) when choosing

α(ε) = |ε|.

The hand-tuning of the parameters (ε1, ε2, ρ1, ρ2) can be approached as follows:

1. Start with small values, e.g., for the function in this example, we started

with ε1 = 0.1, ε2 = 0.11, and ρ1 = 0.1, ρ2 = 0.11.

2. Then, to speed up the convergence times, gradually reduce these four param-

eter values. For this example, we decreased by about 0.01 at a time.

3. Eventually, a point is reached where decreasing the parameter values results

in convergence times starting to increase again. At this point, increase the

parameters by at most the last decrement (in our case, 0.01) and stop.

Initial conditions for the simulations are z1(0, 0) =

{−1, 5(3 −
√

5), 6, 15, 24.5, 5(3 +
√

5), 31}, z2(0, 0) = 0, and q(0, 0) = 0. Note

that the function L and parameter values are the same as those used in Figure

1.5, with the exception of ς = 107, ε2 = 10, and ρ2 = 10 in Figure 1.5. The

reason ς, ε2, and ρ2 are set differently in Figure 7.1 is that this example includes

no noise in measurements of the gradient. Such noise can cause jump times to

be different, and so such parameters needed to be tuned accordingly in Figure 1.5.

Recall that Figure 1.5 shows that the state z1 converges with our algorithm under

228

arbitrarily small noise in the gradient measurements, when starting close to a local

maximum at z1 = 15, whereas for simulated annealing the state z1 remains stuck

at this same local maximum. Although noise in the gradient measurements is not

present in Figure 7.1, it would be easy to see that simulated annealing – which

still contains a noise signal – would get stuck when starting at the local maxima at

A1max = {5(3 −
√

5), 15, 5(3 +
√

5)}. In contrast, Figure 7.1 shows that the hybrid

algorithm H converges to a local minimum from such initial conditions.

Figure 7.1 shows the evolution of z1 and z2 over time for multiple solutions

with different initial conditions. Black dots with times labeled in seconds denote

when each simulation converges to within 0.01 of A1
2. Conversely, the solutions

which start in a small neighborhood of local maxima begin with a jump, followed by

a switch to u = σ, then jump again, switching to the heavy ball algorithm, before

such solutions converge to a neighborhood of a local minimum. The solutions

which do not start at critical points start with the heavy ball algorithm. Although

there are jumps near the local minimum to which such solutions converge, these

solutions also do not leave the neighborhood of a local minimum, determined by

the values chosen for (ε1, ε2, ρ1, ρ2). The times it takes for different solutions to

converge to within 0.01 of A1 are listed in Table 7.1.

z1(0, 0) Time to converge
−1 0.0369

5(3 −
√

5) 0.862
6 0.829
15 3.51

24.5 0.868
5(3 +

√
5) 0.862

31 0.0373

Table 7.1: Times in which different solutions converge to within 0.01 of A1.

2Code at github.com/HybridSystemsLab/PGASHeavyBall

229

z1

t[s]

Figure 7.1: The evolution of z1 over time for the hybrid system H, for the
objective function L(z1) = z2

1(z1−10)2(z1−20)2(z1−30)2

10,000 , with A1min = {0, 10, 20, 30},
A1max = {5(3−

√
5), 15, 5(3+

√
5)}, and ε1 = 0.05, ε2 = 0.06, ρ1 = 0.05, ρ2 = 0.06,

ς = 1, λ = 145, and γ = 3
4 . This plot shows different solutions, starting from

different initial conditions. Solutions start at local maxima at z1(0, 0) = 15,
z1(0, 0) = 5(3−

√
5), and z1(0, 0) = 5(3+

√
5), as well as at the points z1(0, 0) = 6,

z1(0, 0) = 24.5, z1(0, 0) = −1, and z1(0, 0) = 31, which are neither maxima nor
minima. All solutions start with z2(0, 0) = 0 and q(0, 0) = 0. Times when each
solution converges to within 0.01 of A1min are marked with black dots and labeled
in seconds. Jumps are labeled with asterisks.

230

The particular values chosen for (ε1, ε2, ρ1, ρ2) keeps solutions within a neigh-

borhood of size 0.01 around A1min. We conjecture that different tunings of (ε1, ε2, ρ1, ρ2)

would change the size of such a neighborhood, with larger (ε1, ε2, ρ1, ρ2) yielding

a larger neighborhood of A1min, and smaller (ε1, ε2, ρ1, ρ2) resulting in a smaller

neighborhood of A1min.

231

Chapter 8

Accelerated Multiagent

Optimizaton

8.1 Problem Statement

We propose an algorithm that solves the following optimization problem.

Problem 8.1.1. Given f : Rn → R and X ⊂ Rn, design an optimization algo-

rithm using accelerated methods that asynchronously solves (1.9). Such an algo-

rithm must have the minimizer exponentially stable, an exponential convergence

rate, robustness, and show improvement over gradient descent in simulation.

Our approach to solving Problem 8.1.1 is as follows:

1) In Section 8.2, we design a synchronous algorithm that computes a single

constrained heavy ball update and communicates with its neighbors once every

iteration. Then, we establish that the agents’ updates over two iterations are

equivalent to a contractive mapping applied to their decision variables;

2) In Section 8.3, we design a synchronous algorithm that, during each iteration,

232

computes two constrained heavy ball updates and communicates once with its

neighbors. Then, we establish an exponential convergence rate for the agents’

decision variables based on the contractive property established in Section 8.2,

and we show that it satisfies the Synchronous Convergence and Box Conditions

in [59];

3) In Section 8.4, we design a totally asynchronous version of the algorithm in

Section 8.3 and use the forthcoming Proposition B.1.2 to establish that, since

the synchronous algorithm has exponential convergence and satisfies the Syn-

chronous Convergence and Box Conditions, then the totally asynchronous al-

gorithm also has an exponential convergence rate.

8.2 Synchronous Heavy Ball

In this section, we present Step 1) in our approach to solving Problem 8.1.1.

Namely, as an intermediary step in developing an asynchronous multiagent algo-

rithm, we first design a synchronous algorithm that computes a single constrained

heavy ball update and communicates with its neighbors once every iteration.

Then, we establish that the agents’ updates over two iterations are equivalent

to a contractive mapping applied to their decision variables.

8.2.1 Modeling

To extend (1.11)-(1.12) to a multiagent setting, allowing arbitrary asynchrony

for the agents, we start by extending techniques used in [50], for parallelized,

multiagent gradient descent. The term “parallelized” means that each decision

variable is updated only by a single agent, with each decision variable assigned to

each agent referred to as a “block.” Such block-based algorithms scale better with

233

large learning problems, and have been shown in some cases to tolerate arbitrarily

long delays in both communication and computation of unconstrained problems,

which eliminates the need to enforce and verify delay boundedness assumptions

[60], [61], [62].

We consider N ∈ N>0 agents indexed over i ∈ V := {1, 2, . . . , N} that ex-

change information over an undirected graph Γ = (V , E), where edges are pairs

in the set E ⊂ V × V which directly link two different nodes that are essential

neighbors. We use Ni ⊂ V to denote the set of essential neighbors of i, namely,

Ni is the set of indices of agents ℓ ̸= i whose decision variables are needed for

agent i’s computations. More formally, agent ℓ ∈ Ni is an essential neighbor of

agent i if ∇if explicitly depends upon agent ℓ’s decision variable. Only the es-

sential neighbors ℓ ∈ Ni need to communicate with agent i to ensure it has the

information necessary to compute gradients. In particular, an edge from agent ℓ

to agent i, denoted (ℓ, i), implies that ℓ and i are essential neighbors and agent

ℓ can send information to agent i. Since the graph Γ is undirected, agent i is

an essential neighbor of agent ℓ if and only if agent ℓ is an essential neighbor of

agent i. Conversely, the lack of an edge from agent ℓ to agent i (and, hence, i to

ℓ) implies that ℓ and i are not essential neighbors and do not communicate with

each other.

We use superscripts to denote ownership by an agent, and use subscripts for

indexing. For instance, we denote the vector containing agent i’s local copy of all

decision variables as zi, and we denote the constraint set corresponding to agent

i’s decision variable (denoted
(
zi

1,i, z
i
2,i

)
) as Xi × Xi; see definitions below. With

this in mind, we impose the following assumption on the constraint set X.

Assumption 8.2.1 (Properties of the constraint set). The constraint set X ⊂ RN

234

is nonempty, compact, and convex. The constraint set can be decomposed as

X = X1 ×X2 × . . .×XN (8.1)

where, for each i ∈ V, Xi ⊂ R.

Remark 8.2.2. Assumption 8.2.1 permits the use of box constraints, which often

arise in multiagent optimization.

For each i ∈ V , agent i stores its own decision variable and a local copy of the

decision variables of all other agents for use in local computations. We denote

agent i’s value for its own decision variable as

(
zi

1,i, z
i
2,i

)
∈ Xi ×Xi. (8.2)

We denote agent i’s local copy of the decision variable for agent ℓ as

(
zi

1,ℓ, z
i
2,ℓ

)
∈ Xℓ ×Xℓ. (8.3)

Thus, the full state of agent i is

zi :=
(
zi

1, z
i
2

)
∈ X ×X (8.4)

where

zi
1 := (zi

1,1, z
i
1,2, ..., z

i
1,i, ..., z

i
1,N) (8.5a)

zi
2 := (zi

2,1, z
i
2,2, ..., z

i
2,i, ..., z

i
2,N). (8.5b)

The synchronous algorithm for the constrained heavy ball method is given in

235

Algorithm 6. In this algorithm, at each discrete time instant k ∈ N, each agent

i ∈ V computes the new value of
(
zi

1,i, z
i
2,i

)
. In particular, zi

1,i is updated to κi(zi)

and zi
2,i is updated to zi

1,i, where

κi(zi) := ΠXi

[
zi

1,i − γ∇if(zi
1) + λ(zi

1,i − zi
2,i)
]

(8.6)

where λ > 0 and γ > 0 come from (1.10); see lines 3-5 of Algorithm 6. Then,

starting at line 6 of Algorithm 6, each agent i ∈ V receives information from

its neighbors and updates the entries
(
zi

1,ℓ, z
i
2,ℓ

)
of its state zi, where ℓ ∈ Ni, in

the following manner. For each of agent i’s essential neighbors, namely, for each

ℓ ∈ Ni,
(
zi

1,ℓ, z
i
2,ℓ

)
is updated to

(
zℓ

1,ℓ, z
ℓ
2,ℓ

)
; see lines 7-9 of Algorithm 6. For each

ℓ which is not an essential neighbor of i,
(
zi

1,ℓ, z
i
2,ℓ

)
is left unchanged; see lines

10-12 of Algorithm 6.

Algorithm 6 Constrained, Synchronous, Multiagent Heavy Ball
1: For each i ∈ V , set the initial state zi

◦ to an arbitrary value in X ×X.
2: for each k ∈ N do
3: for each i ∈ V do
4: Update

(
zi

1,i, z
i
2,i

)
in (8.2) to

(
κi(zi), zi

1,i

)
, with κi defined via (8.6).

5: end for
6: for each i ∈ V do
7: for each ℓ ∈ Ni do
8: Update

(
zi

1,ℓ, z
i
2,ℓ

)
in (8.3) to

(
zℓ

1,ℓ, z
ℓ
2,ℓ

)
.

9: end for
10: for each ℓ /∈ Ni do
11: Keep

(
zi

1,ℓ, z
i
2,ℓ

)
constant.

12: end for
13: end for
14: end for

Now, we model Algorithm 6 mathematically. From Algorithm 6, for each i ∈ V

236

agent i has its state zi in (8.4) updated via the following difference equation:

(
zi
)+

= Gi
sync

(
z1, z2, . . . , zN

)
zi ∈ Di

sync := X ×X, (8.7)

where we define Gi
sync as

Gi
sync

(
z1, z2, . . . , zN

)
:=
(
gi

1

(
z1, z2, . . . , zN

)
, gi

2

(
z1, z2, . . . , zN

))
(8.8)

where, for each p ∈ {1, 2}, gi
p is defined as

gi
p

(
z1, z2, . . . , zN

)
:= (8.9)(

gi
p,1

(
z1, z2, . . . , zN

)
, gi

p,2

(
z1, z2, . . . , zN

)
, . . . , gi

p,N

(
z1, z2, . . . , zN

))

and for each s ∈ V , gi
p,s is defined as

gi
1,s

(
z1, z2, . . . , zN

)
:=

κi(zi) if s = i

zs
1,s if s ∈ Ni

zi
1,s if s /∈ Ni

(8.10)

if p = 1 and as

gi
2,s

(
z1, z2, . . . , zN

)
:=

zi
1,i if s = i

zs
2,s if s ∈ Ni

zi
2,s if s /∈ Ni

(8.11)

if p = 2. The choice of keeping
(
zi

1,s, z
i
2,s

)
constant for the case of s /∈ Ni in

(8.10)-(8.11) – see line 11 in Algorithm 6 – is arbitrary, since the neighbors s /∈ Ni

are not essential and, hence, the values of their decision variables do not enter

agent i’s computations.

237

Then, the full multiagent system is denoted as

(
z1, z2, . . . , zN

)+
= Gsync(z1, z2, . . . , zN) (8.12)(

z1, z2, . . . , zN
)

∈ Dsync := (X ×X)N

where Gsync is defined as

Gsync(z1, z2, . . . , zN) := (8.13)(
G1

sync

(
z1, z2, . . . , zN

)
, G2

sync

(
z1, z2, . . . , zN

)
, . . . , GN

sync

(
z1, z2, . . . , zN

))
.

8.2.2 Results for Algorithm 6

In the results to follow, we impose the following assumption on the objective

function f .

Assumption 8.2.3. The function f is C2 and convex.

Remark 8.2.4. Assumption 8.2.3, which is a common assumption used in the

analysis of optimization algorithms [66], ensures that the Hessian matrix exists.

Additionally, the convex property ensures that every diagonal entry of the Hessian

is positive [66, Section 3.1.4].

Additionally, we impose the following diagonal dominance assumption on the

objective function f .

Assumption 8.2.5 (Diagonal dominance). The N ×N Hessian matrix d 7→

H(d) = ∇2f(d) is µ-diagonally dominant on X ⊂ Rn for some µ > 0. That is,

for each i ∈ {1, 2, . . . , N},

|Hii(d)| − µ ≥
N∑

j=1, j ̸=i

|Hij(d)| ∀d ∈ X. (8.14)

238

Remark 8.2.6. Assumption 8.2.5, which is used to show that, for (Dsync, Gsync)

in (8.12), the agents’ updates over two iterations are equivalent to a contractive

mapping applied to their decision variables – which is the first step in solving Prob-

lem 8.1.1 – and is used for showing that [59, Chapter 6, Assumption 2.1(b)] holds,

is commonly used in the analysis of totally asynchronous multiagent optimization

algorithms; see, e.g., [59]. In particular, in [59, Section 6.3.2], it is observed that

some form of diagonal dominance is typically required to ensure convergence of

totally asynchronous algorithms. Diagonal dominance implies µ-strong convexity1

of f ; see [80, Lemma 1]. Consequently, when f is µ-diagonally dominant, then f

has a unique minimizer x∗.

We denote the minimizer of f over X as x∗ ∈ X. Note that under Assumption

8.2.1 the i-th entry of x∗, namely, x∗
i , belongs to Xi.

Under Assumptions 8.2.1, 8.2.3, and 8.2.5, the following lemma, used in some

of the results to follow, shows that x∗
i ∈ Xi is a fixed point of κi in (8.6).

Lemma 8.2.7. (Fixed point of (8.6)) Let f satisfy Assumption 8.2.3, let X ⊂ RN

in (8.1) satisfy Assumption 8.2.1, and let H satisfy Assumption 8.2.5 with µ > 0.

Then, for each i ∈ V, x∗
i ∈ Xi is a fixed point of κi in (8.6).

Proof. By Assumption 8.2.1, the set X ⊂ RN is nonempty, compact, convex, and

can be decomposed as in (8.1). Furthermore, by Assumption 8.2.5, the Hessian of

f is diagonally dominant with µ > 0. As discussed in Remark 8.2.6, Assumption

8.2.5 implies µ-strong convexity of f and, consequently, when H is µ-diagonally

dominant, then f has a unique2 minimizer x∗ ∈ X.
1To illustrate that diagonal dominance is a strictly stronger condition than µ-strong convexity

of f , consider f(d) := d⊤Qd + p⊤d, where Q :=
[

1 −2
−1 3

]
. The resulting H(d) has positive

eigenvalues, so f is strongly convex, but H(d) fails to be diagonally dominant.
2Whereas convexity of f under Assumption 8.2.3 without the µ-diagonal dominance imposed

by Assumption 8.2.5 could allow f to have a continuum of minimizers.

239

Then, since f is convex by Assumption 8.2.3, and since x∗ minimizes f over

X, we have, by item (O1), of Proposition C.1.1, that, for each yi
1,i ∈ Xi,

〈
yi

1,i − x∗
i ,−∇if(x∗)

〉
≤ 0. (8.15)

As a consequence of the property in (8.15), we have, for each yi
1,i ∈ Xi, that

〈
yi

1,i − x∗
i , x

∗
i − γ∇if(x∗) + λ (x∗

i − x∗
i) − x∗

i

〉
≤ 0 (8.16)

where γ > 0 and λ > 0 come from (1.10). Next, since f is convex by Assumption

8.2.3 and since the set X is nonempty, compact, and convex by Assumption 8.2.1,

then by item (P1) of Proposition C.1.2, given vi
1,i ∈ Xi, ui

1,i ∈ Xi is equal to

ΠXi

[
vi

1,i

]
if and only if

〈
yi

1,i − ui
1,i, v

i
1,i − ui

1,i

〉
≤ 0 for all yi

1,i ∈ Xi. Now, let

ui
1,i = x∗

i and vi
1,i = x∗

i − γ∇if(x∗) + λ (x∗
i − x∗

i). Then, for each i ∈ V , x∗
i =

ΠXi
[x∗

i − γ∇if(x∗) + λ(x∗
i − x∗

i)] by (8.16). Therefore, for each i ∈ V , x∗
i ∈ Xi is

a fixed point of κi in (8.6).

For the results to follow, given X in (8.1), we denote by

z := (z1, z2) ∈ X ×X (8.17)

the “true value,” in the sense that z in (8.17) contains the current values of the

decision variables of all agents. We define z1 and z2 as

z1 :=
(
z1

1,1, z
2
1,2, . . . , z

N
1,N

)
(8.18a)

z2 :=
(
z1

2,1, z
2
2,2, . . . , z

N
2,N

)
. (8.18b)

Namely, z1 collects the zi
1,i components and z2 collects the zi

2,i components, for each

240

i ∈ V . Then, under Assumptions 8.2.1, 8.2.3, and 8.2.5 the following proposition

establishes that, for each maximal solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the

synchronous algorithm (Dsync, Gsync) in (8.12) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N ,

the associated true value trajectory k 7→ z(k) is contractive over two steps. To

prove it, we use Lemma 8.2.7.

Proposition 8.2.8. Suppose X ⊂ RN satisfies Assumption 8.2.1, f satisfies

Assumption 8.2.3, and H satisfies Assumption 8.2.5 with µ > 0. For each

γ ∈
(

0, 1
max
i∈V

max
η∈X

|Hii(η)|

)
, λ ∈

(
0, γµ

2

)
, and each maximal solution k 7→(

z1(k), z2(k), . . . , zN(k)
)

to the synchronous algorithm (Dsync, Gsync) in (8.12)

from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated true value trajectory k 7→ z(k)

satisfies

∥z(k + 1) − z∗∥∞ ≤ a∥z(k − 1) − z∗∥∞ (8.19)

for all k ∈ N\{0}, where a := max{a1, a2}, a1 := (1 − γµ+ λ)2+λ+λ (1 − γµ+ λ)

∈ [0, 1), a2 := 1 − γµ+ 2λ ∈ [0, 1), and z∗ is defined as

z∗ := (x∗, x∗) . (8.20)

Proof. To establish the result, we proceed as follows.

1) Show that each maximal solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to

(Dsync, Gsync) is complete;

2) Show that each true value trajectory k 7→ z(k), where z is defined via (8.17), as-

sociated to each maximal solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to (Dsync, Gsync)

from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , is such that ∥z1(k + 1) − x∗∥∞ =

maxi∈V

∣∣∣zi
1,i(k + 1) − x∗

i

∣∣∣ is upper bounded by3

3It will be shown in this step that such an upper bound comes via the non-expansiveness of

241

max
i∈V

|κ̂i(z(k)) − κ̂i(z∗)| for each k ∈ N, where κ̂i is defined as

κ̂i(z) := zi
1,i − γ∇if(z1) + λ(zi

1,i − zi
2,i); (8.21)

3) Given c, c ∈ RN ×RN , there exists c ∈ RN ×RN , such that ci
1,i ∈

(
ci

1,i, c
i
1,i

)
for

each i ∈ V and ci
2,i ∈

(
ci

2,i, c
i
2,i

)
for each i ∈ V , and such that we can use the

MVT to upper bound |κ̂i(c) − κ̂i(c)| by

(1 − γµ+ λ) ∥c1 − c1∥∞ + λ ∥c2 − c2∥∞;

4) Upper bound both ∥z1(k+ 1) −x∗∥∞ and ∥z2(k+ 1) −x∗∥∞ using steps 2) and

3) with c = z(k), c = z∗, c1 = z1(k), c2 = z2(k), and c1 = c2 = x∗. Then, use

such bounds to yield (8.19) for all k ∈ N \ {0};

5) Show that a1 and a2, defined below (8.19), are both in [0, 1).

Proceeding with step 1), we must show that the map Gi
sync in (8.7) is defined

on Dsync and that Gi
sync(Dsync) ⊂ Dsync. By construction, κi in (8.6) is defined

for each zi ∈ X × X. In addition, by Assumption 8.2.1, the constraint set X

is nonempty. Furthermore, by construction, Gi
sync

(
z1, z2, . . . , zN

)
̸= ∅ for each(

z1, z2, . . . , zN
)

∈ (X ×X)N . Therefore, by [21, Definition 2.1], domGi
sync =

(X ×X)N , which implies that Dsync ⊂ domGi
sync, and each maximal solution to(

Di
sync, G

i
sync

)
in (8.7)-(8.11) is complete. Since, by construction,

Gsync
(
z1, z2, . . . , zN

)
̸= ∅ for each

(
z1, z2, . . . , zN

)
∈ (X ×X)N , and since

Gi
sync

(
z1, z2, . . . , zN

)
∈ X × X for each i ∈ V , due to κi in (8.6), then, by

construction, Gsync
(
z1, z2, . . . , zN

)
∈ (X ×X)N . Moreover, by Assumption 8.2.1,

ΠXi
[·], with respect to the Euclidean norm, which is listed in item (P2) of Proposition C.1.2.

Namely, for all v, y ∈ Rn, |ΠXi
[v] − ΠXi

[y]| ≤ |v − y|.

242

X is nonempty. Therefore, by [21, Definition 2.1],

domGsync
(
z1, z2, . . . , zN

)
= (X ×X)N (8.22)

which implies that Dsync ⊂ domGsync, and each maximal solution to

(Dsync, Gsync) in (8.12) is complete.

Next, for step 2), note that x∗
i ∈ Xi is a fixed point of κi in (8.6) by Lemma

8.2.7, namely, x∗
i = κi(z∗). Then, picking a solution k 7→(

z1(k), z2(k), . . . , zN(k)
)

to (Dsync, Gsync) with the associated true value trajectory

k 7→ z(k), the norm ∥z1(k+1)−x∗∥∞, where z1 is defined in (8.18a) and x∗ comes

from (8.20), satisfies

∥z1(k + 1) − x∗∥∞ = max
i∈V

∣∣∣zi
1,i(k + 1) − x∗

i

∣∣∣ (8.23)

= max
i∈V

∣∣∣ΠXi

[
zi

1,i(k) − γ∇if(z1(k)) + λ
(
zi

1,i(k) − zi
2,i(k)

)]
−ΠXi

[x∗
i − γ∇if(x∗) + λ(x∗

i − x∗
i)]|

≤ max
i∈V

∣∣∣zi
1,i(k) − γ∇if(z1(k)) + λ

(
zi

1,i(k) − zi
2,i(k)

)
− (x∗

i − γ∇if(x∗) + λ(x∗
i − x∗

i))|

for each k ∈ N \ {0} where the last inequality follows from the

non-expansiveness of ΠXi
[·] with respect to the Euclidean norm, precisely, by

item (P2) of Proposition C.1.2, since f is convex by Assumption 8.2.3 and X is

nonempty, compact, and convex by Assumption 8.2.1. Note also that, in the last

inequality, x∗ and x∗
i still denote constrained minimizers. The inequality in (8.23)

can be rewritten in terms of the function κ̂i in (8.21), as follows:

∥z1(k + 1) − x∗∥∞ ≤ max
i∈V

∣∣∣κ̂i(z(k)) − κ̂i(z∗)
∣∣∣ , (8.24)

243

for each k ∈ N, where z∗ is defined in (8.20).

Then, for step 3), given c, c ∈ RN × RN and using κ̂i in (8.21) and the MVT

in Proposition 2.5.1, there exists c ∈ RN × RN such that ci
1,i ∈

(
ci

1,i, c
i
1,i

)
for each

i ∈ V and ci
2,i ∈

(
ci

2,i, c
i
2,i

)
for each i ∈ V , and such that

κ̂i(c) − κ̂i(c) =
N∑

j=1

∂κ̂i(c)
∂cj

1,j

(
cj

1,j − cj
1,j

)
+

N∑
j=1

∂κ̂i(c)
∂cj

2,j

(
cj

2,j − cj
2,j

)
. (8.25)

For each j ̸= i, the partial derivatives are given by

∂κ̂i(c)
∂ci

1,i

= 1 − γ∇2
i f(c1) + λ (8.26a)

∂κ̂i(c)
∂cj

1,j

= −γ∇j∇if(c1) (8.26b)

∂κ̂i(c)
∂ci

2,i

= −λ (8.26c)

∂κ̂i(c)
∂cj

2,j

= 0. (8.26d)

This allows (8.25) to be rewritten as

κ̂i(c) − κ̂i(c) =
(
1 − γ∇2

i f(c1) + λ
) (
ci

1,i − ci
1,i

)
(8.27)

+
N∑

j=1, j ̸=i

(−γ∇j∇if(c1))
(
cj

1,j − cj
1,j

)
− λ

(
ci

2,i − ci
2,i

)
.

Taking the norm of both sides of (8.27) and applying the triangle inequality gives

∣∣∣κ̂i(c) − κ̂i(c)
∣∣∣ ≤

∣∣∣1 − γ∇2
i f(c1) + λ

∣∣∣ ∣∣∣ci
1,i − ci

1,i

∣∣∣ (8.28)

+ γ
N∑

j=1, j ̸=i

|∇j∇if(c1)|
∣∣∣cj

1,j − cj
1,j

∣∣∣+ λ
∣∣∣ci

2,i − ci
2,i

∣∣∣ .
Then, denoting ∇2

i f as Hii and ∇j∇if as Hij, where H comes from Assumption

244

8.2.5, we rewrite (8.28) as

∣∣∣κ̂i(c) − κ̂i(c)
∣∣∣ ≤ |1 − γHii(c1) + λ|

∣∣∣ci
1,i − ci

1,i

∣∣∣ (8.29)

+ γ
N∑

j=1, j ̸=i

|Hij(c1)|
∣∣∣cj

1,j − cj
1,j

∣∣∣+ λ
∣∣∣ci

2,i − ci
2,i

∣∣∣ .
From Assumption 8.2.3, f is convex and thus every diagonal entry of the Hessian

matrix is positive; see Remark 8.2.4. Using such a property and noting that, for

the unconstrained update law κ̂i in (8.21),

γ ∈

0, 1
max
i∈V

max
η∈RN

|Hii(η)|

 , (8.30)

then with η = z1, 1 − γHii(c1) > 1 − Hii(c1)
max
i∈V

max
z1∈RN

|Hii(z1)| ≥ 0. Thus, (8.29) may be

rewritten as

∣∣∣κ̂i(c) − κ̂i(c)
∣∣∣ ≤ (1 − γHii(c1) + λ)

∣∣∣ci
1,i − ci

1,i

∣∣∣ (8.31)

+ γ
N∑

j=1, j ̸=i

|Hij(c1)|
∣∣∣cj

1,j − cj
1,j

∣∣∣+ λ
∣∣∣ci

2,i − ci
2,i

∣∣∣ .
≤

1 − γHii(c1) + λ+ γ
N∑

j=1, j ̸=i

|Hij(c1)|
 ∥c1 − c1∥∞

+ λ ∥c2 − c2∥∞ ,

where the last inequality uses the ∞-norm to group the first and second terms.

Using Assumptions 8.2.3 and 8.2.5, we write the inequality

Hii(c1) = |Hii(c1)| ≥
N∑

j=1, j ̸=i

|Hij(c1)| + µ. (8.32)

This implies that −γHii(c1)+γ∑N
j=1, j ̸=i |Hij(c1)| ≤ −γµ. Substituting (8.32) into

245

(8.31) yields

∣∣∣κ̂i(c) − κ̂i(c)
∣∣∣ ≤ (1 − γµ+ λ) ∥c1 − c1∥∞ + λ ∥c2 − c2∥∞ . (8.33)

In step 4), applying (8.33) to (8.24) with c = z(k), c = z∗, c1 = z1(k),

c2 = z2(k), and c1 = c2 = x∗ yields

∥z1(k + 1) − x∗∥∞ ≤ (1 − γµ+ λ) ∥z1(k) − x∗∥∞ + λ∥z2(k) − x∗∥∞, (8.34)

for each k ∈ N, which is no longer dependent on i. Applying (8.33) to ∥z1(k) −

x∗∥∞ ≤ maxi∈V |κ̂i(z(k − 1)) − κ̂i(z∗)|, which holds due to (8.24), leads to

∥z1(k + 1) − x∗∥∞

≤ (1 − γµ+ λ)
(

(1 − γµ+ λ) ∥z1(k − 1) − x∗∥∞ + λ∥z2(k − 1) − x∗∥∞
)

+ λ∥z2(k) − x∗∥∞ (8.35)

for each k ∈ N \ {0}. Recall that, by the definition of (1.11), z2(k) = z1(k − 1).

Substituting such an expression for z2(k) into (8.35) and rearranging terms gives

∥z1(k + 1) − x∗∥∞ ≤
(

(1 − γµ+ λ)2 + λ
)
∥z1(k − 1) − x∗∥∞

+ λ (1 − γµ+ λ) ∥z2(k − 1) − x∗∥∞ (8.36)

for each k ∈ N \ {0}. Similarly, we use (8.33) to upper bound ∥z2(k + 1) − x∗∥∞.

Using (8.34), we obtain

∥z2(k + 1) − x∗∥∞ =∥z1(k) − x∗∥∞

≤ (1 − γµ+ λ) ∥z1(k − 1) − x∗∥∞

246

+ λ∥z2(k − 1) − x∗∥∞ (8.37)

for each k ∈ N \ {0}. Noting that

∥z1(k − 1) − x∗∥∞ ≤ ∥z(k − 1) − z∗∥∞ (8.38a)

∥z2(k − 1) − x∗∥∞ ≤ ∥z(k − 1) − z∗∥∞ (8.38b)

we further simplify (8.36) and (8.37) to

∥z1(k + 1) − x∗∥∞

≤
(

(1 − γµ+ λ)2 + λ+ λ (1 − γµ+ λ)
)
∥z(k − 1) − z∗∥∞ (8.39a)

∥z2(k + 1) − x∗∥∞ ≤ (1 − γµ+ 2λ) ∥z(k − 1) − z∗∥∞ (8.39b)

for each k ∈ N \ {0}. Using the bounds in (8.39) yields (8.19), where a =

max{a1, a2}, a1 = (1 − γµ+ λ)2 + λ+ λ (1 − γµ+ λ) and a2 = 1 − γµ+ 2λ.

All that remains is step 5), in which we show that a1, a2 ∈ [0, 1). To this end,

we first show that γµ ∈ (0, 1). Using (8.30) with η = z1 and Assumption 8.2.5,

which implies that max
i∈V

max
z1∈RN

|Hii(z1)| ≥ µ, we have

0 < γµ <
µ

max
i∈V

max
z1∈RN

|Hii(z1)|
≤ µ

µ
= 1. (8.40)

Then, since by definition a1 ≥ 0 and a2 ≥ 0, using (8.40) and λ ∈
(
0, γµ

2

)
, we

obtain

0 ≤ a1 = (1 − γµ+ λ)2 + λ+ λ (1 − γµ+ λ)

<
(

1 − γµ+ γµ

2

)2
+ γµ

2 + γµ

2

(
1 − γµ+ γµ

2

)
(8.41)

247

This upper bound is equal to one since

(
1 − γµ

2

)2
+ γµ

2 + γµ

2

(
1 − γµ

2

)
= 1 − γµ+ γ2µ2

4 + γµ− γ2µ2

4 = 1. (8.42)

Moreover, we have

0 ≤ a2 = 1 − γµ+ 2λ < 1 − γµ+ γµ = 1. (8.43)

Therefore, for each maximal solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the syn-

chronous algorithm (Dsync, Gsync) in (8.12) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈

(X ×X)N , the associated true value trajectory k 7→ z(k) satisfies (8.19), for each

k ∈ N \ {0}.

Although in Proposition 8.2.8 we establish that, for each maximal solution k 7→(
z1(k), z2(k), . . . , zN(k)

)
to the synchronous algorithm (Dsync, Gsync) in (8.12)

from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated true value trajectory is con-

tractive over two steps, contraction at each discrete time k ∈ N does not seem

possible. We exploit the property in Proposition 8.2.8 in our forthcoming syn-

chronous and asynchronous double-update heavy ball algorithms.

8.3 Synchronous, Double-Update Heavy Ball

In this section, we present Step 2) in our approach to solving Problem 8.1.1.

Namely, we propose a synchronous algorithm that updates each agent’s value(
zi

1,i, z
i
2,i

)
twice for each discrete time k ∈ N. Then, we establish an exponen-

tial convergence rate for the agents’ decision variables based on the contractive

property established in Section 8.2, and we show that it satisfies the Synchronous

Convergence and Box Conditions in [59, Chapter 6, Assumption 2.1].

248

8.3.1 Modeling

The synchronous, double-update algorithm for the constrained heavy ball al-

gorithm is given in Algorithm 7. In this algorithm, at each discrete time instant

k ∈ N, each agent i ∈ V computes the new value of
(
zi

1,i, z
i
2,i

)
; see lines 3-5 of

Algorithm 7. In particular, zi
1,i is updated to κ̃i(zi) and zi

2,i is updated to κi(zi),

where

κ̃i(zi) := ΠXi

[
κi(zi) − γ∇if(wi

1(zi
1)) + λ(κi(zi) − zi

1,i)
]

(8.44)

where λ > 0 and γ > 0 come from (1.10), Xi comes from Assumption 8.2.1, zi is

defined in (8.4), zi
1 is defined via (8.5a), κi is defined in (8.6), and wi

1 is defined as

wi
1(zi

1) :=
(
zi

1,1, z
i
1,2, . . . , κ

i(zi) . . . , zi
1,N

)
∈ X (8.45)

where X is defined in (8.1). The function wi
1 collects the first update to the zi

1,i

component of agent i’s decision variable and collects each of the zi
1,ℓ components

of the local copies of the decision variables of all other agents, for use in the

computation of ∇if in (8.44). Then, starting at line 6 of Algorithm 7, each agent

i ∈ V receives information from its neighbors and updates the entries
(
zi

1,ℓ, z
i
2,ℓ

)
of

its state zi, where ℓ ∈ Ni, in the following manner. For each of agent i’s essential

neighbors, namely, for each ℓ ∈ Ni,
(
zi

1,ℓ, z
i
2,ℓ

)
is updated to

(
zℓ

1,ℓ, z
ℓ
2,ℓ

)
; see lines

7-9 of Algorithm 7. For each ℓ which is not an essential neighbor of i,
(
zi

1,ℓ, z
i
2,ℓ

)
is left unchanged; see lines 10-12 of Algorithm 7.

Now we model Algorithm 7 mathematically. From Algorithm 7, for each i ∈ V ,

agent i has its state zi in (8.4) updated via the following difference equation:

(
zi
)+

= G̃i
sync

(
z1, z2, . . . , zN

)
zi ∈ D̃i

sync := X ×X, (8.46)

249

Algorithm 7 Constrained, Synchronous, Double-Update Heavy Ball
1: For each i ∈ V , set the initial state zi

◦ to an arbitrary value in X ×X.
2: for each k ∈ N do
3: for each i ∈ V do
4: Update

(
zi

1,i, z
i
2,i

)
in (8.2) to (κ̃i(zi), κi(zi)), with κ̃i defined via (8.44)

and κi defined in (8.6).
5: end for
6: for each i ∈ V do
7: for each ℓ ∈ Ni do
8: Update

(
zi

1,ℓ, z
i
2,ℓ

)
in (8.3) to

(
zℓ

1,ℓ, z
ℓ
2,ℓ

)
.

9: end for
10: for each ℓ /∈ Ni do
11: Keep

(
zi

1,ℓ, z
i
2,ℓ

)
constant.

12: end for
13: end for
14: end for

where G̃i
sync is defined as

G̃i
sync

(
z1, z2, . . . , zN

)
:=
(
gi

1

(
z1, z2, . . . , zN

)
, gi

2

(
z1, z2, . . . , zN

))
(8.47)

where, for each p ∈ {1, 2}, gi
p is defined in (8.9) and for each s ∈ V , gi

p,s is defined

as

gi
1,s

(
z1, z2, . . . , zN

)
:=

κ̃i(zi) if s = i

zs
1,s if s ∈ Ni

zi
1,s if s /∈ Ni

(8.48)

if p = 1, where κ̃i is defined in (8.44), and as

gi
2,s

(
z1, z2, . . . , zN

)
:=

κi(zi) if s = i

zs
2,s if s ∈ Ni

zi
2,s if s /∈ Ni

(8.49)

250

if p = 2, where κi is defined via (8.6). Then, the full multiagent system corre-

sponding to (8.46) is denoted as

(
z1, z2, . . . , zN

)+
= G̃sync

(
z1, z2, . . . , zN

)
(8.50)(

z1, z2, . . . , zN
)

∈ D̃sync := (X ×X)N

where G̃sync is defined as

G̃sync
(
z1, z2, . . . , zN

)
:= (8.51)(

G̃1
sync

(
z1, z2, . . . , zN

)
, G̃2

sync

(
z1, z2, . . . , zN

)
, . . . , G̃N

sync

(
z1, z2, . . . , zN

))
.

8.3.2 Results for Algorithm 7

Under Assumptions 8.2.1, 8.2.3, and 8.2.5, the following lemma, used in some

of the results to follow, shows that x∗
i ∈ Xi is a fixed point of κ̃i in (8.44). To

prove it, we use Lemma 8.2.7.

Lemma 8.3.1. (Fixed point of κ̃i in (8.44)) Let f satisfy Assumption 8.2.3, let

X ⊂ RN in (8.1) satisfy Assumption 8.2.1, and let H satisfy Assumption 8.2.5

with µ > 0. Then, for each i ∈ V, x∗
i ∈ Xi is a fixed point of κ̃i in (8.44).

Proof. By Assumption 8.2.1, the set X ⊂ RN is nonempty, compact, convex, and

can be decomposed as in (8.1). Furthermore, by Assumption 8.2.5, the Hessian of

f is diagonally dominant with µ > 0. As discussed in Remark 8.2.6,Assumption

8.2.5 implies µ-strong convexity of f and, consequently, when H is µ-diagonally

dominant, then f has a unique4 minimizer x∗ ∈ X. By Lemma 8.2.7, x∗
i ∈ Xi is a

fixed point of κi, namely, x∗
i = κi(z∗), where z∗ is defined via (8.20). Then, since

f is convex by Assumption 8.2.3, and since x∗ minimizes f over X, we have, by
4See Footnote 2.

251

item (O1), of Proposition C.1.1, that, for each yi
1,i ∈ Xi, (8.15) is satisfied. As a

consequence of the property in (8.15), we have, for each yi
1,i ∈ Xi, that

〈
yi

1,i − x∗
i , x

∗
i − γ∇if(x∗) + λ (x∗

i − x∗
i) − x∗

i

〉
≤ 0 (8.52)〈

yi
1,i − x∗

i , κ
i(z∗) − γ∇if(x∗) + λ

(
κi(z∗) − x∗

i

)
− x∗

i

〉
≤ 0

where γ > 0 and λ > 0 come from (1.10). Next, since f is convex by Assumption

8.2.3 and since the set X is nonempty, compact, and convex by Assumption 8.2.1,

then by item (P1) of Proposition C.1.2, given vi
1,i ∈ Xi, ui

1,i ∈ Xi is equal to

ΠXi

[
vi

1,i

]
if and only if

〈
yi

1,i − ui
1,i, v

i
1,i − ui

1,i

〉
≤ 0 for all yi

1,i ∈ Xi. Now, let

ui
1,i = x∗

i and vi
1,i = κi(z∗) − γ∇if(x∗) + λ (κi(z∗) − x∗

i). Then, for each i ∈ V ,

x∗
i = ΠXi

[κi(z∗) − γ∇if(x∗) +λ(κi(z∗) −x∗
i)] by (8.52). Therefore, for each i ∈ V ,

x∗
i ∈ Xi is a fixed point of κ̃i in (8.44).

For the result to follow, we denote the portion of the algorithm

(D̃sync, G̃sync) in (8.50) corresponding to the update of the true value z in (8.17)

as

z+ = g (z) z ∈ X ×X (8.53)

where g is defined as

g (z) :=
((
κ̃1(z1), κ̃2(z2), . . . , κ̃N(zN)

)
,
(
κ1(z1), κ2(z2), . . . , κN(zN)

))
(8.54)

where κ̃i is defined via (8.44) and κi is defined in (8.6). Then, under Assumptions

8.2.1, 8.2.3, and 8.2.5, the following lemma establishes that, for each maximal so-

lution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the synchronous algorithm (D̃sync, G̃sync)

in (8.50) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated true value trajectory

k 7→ z(k), solution to (8.53), has an exponential convergence rate. Additionally,

252

the following proposition shows that the ∞-norm contraction property of such a

convergence bound allows us to construct sets that satisfy both the Synchronous

Convergence Condition in [59, Chapter 6, Assumption 2.1(a)] and the Box Con-

dition in [59, Chapter 6, Assumption 2.1(b)]. To prove it, we use Lemma 8.2.7,

Proposition 8.2.8, and Lemma 8.3.1.

Proposition 8.3.2. Suppose X ⊂ RN , defined via (8.1), satisfies Assumption

8.2.1, f satisfies Assumption 8.2.3, H satisfies Assumption 8.2.5 with µ > 0,

and z◦ ∈ Z◦ := X × X denotes the initial state of z in (8.17). For each

γ ∈
(

0, 1
max
i∈V

max
η∈X

|Hii(η)|

)
, λ ∈

(
0, γµ

2

)
, and each maximal solution k 7→(

z1(k), z2(k), . . . , zN(k)
)

to the synchronous algorithm (D̃sync, G̃sync) in (8.50)

from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated true value trajectory k 7→ z(k)

starting from z◦ satisfies

∥z(k) − z∗∥∞ ≤ ak∥z◦ − z∗∥∞ (8.55)

for all k ∈ N, where a := max{a1, a2}, a1 := (1 − γµ+ λ)2 + λ+λ (1 − γµ+ λ)

∈ [0, 1), and a2 := 1 − γµ+ 2λ ∈ [0, 1), and z∗ is defined via (8.20). Furthermore,

for each maximal solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the synchronous al-

gorithm (D̃sync, G̃sync) in (8.50) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated

true value trajectory k 7→ z(k) starting from z◦ has sets defined as

Z(k) :=
{
z(k) ∈ X ×X : ∥z(k) − z∗∥∞ ≤ ak∥z◦ − z∗∥∞

}
(8.56)

where k ∈ N, for which the following properties hold:

1) For each k ∈ N

. . . ⊂ Z(k + 1) ⊂ Z(k) ⊂ . . . ⊂ Z◦; (8.57)

253

2) Synchronous Convergence Condition:

(a) For each k ∈ N and each b ∈ Z(k)

g (b) ∈ Z(k + 1) (8.58)

where g is defined via (8.54);

(b) For each sequence {bk}k∈N such that bk ∈ Z(k) for each k ∈ N, lim
k→∞

{bk}k∈N

= z∗ and z∗ is a fixed point of g;

3) Box Condition: For each k ∈ N, there exist sets Zi(k) ⊂ Xi ×Xi, i ∈ V, such

that

Z(k) = Z1(k) × Z2(k) × . . .× ZN(k). (8.59)

Proof. First, we must show that the map G̃i
sync in (8.47) is defined on D̃sync

and that G̃i
sync(D̃sync) ⊂ D̃sync. By construction, κi in (8.6) is defined for each

zi ∈ X × X and κ̃i in (8.44) is defined for each zi ∈ X × X. In addition, by

Assumption 8.2.1, the constraint set X is nonempty. Furthermore, by construc-

tion, G̃i
sync

(
z1, z2, . . . , zN

)
̸= ∅ for each

(
z1, z2, . . . , zN

)
∈ (X ×X)N . There-

fore, by [21, Definition 2.1], dom G̃i
sync = (X ×X)N , which implies that D̃sync ⊂

dom G̃i
sync, and each maximal solution to

(
D̃i

sync, G̃
i
sync

)
in (8.47)-(8.49) is com-

plete. Since, by construction, G̃sync
(
z1, z2, . . . , zN

)
̸= ∅ for each

(
z1, z2, . . . , zN

)
∈

(X ×X)N , and since G̃i
sync

(
z1, z2, . . . , zN

)
∈ X × X for each i ∈ V , due to κi in

(8.6) and κ̃i in (8.44), then, by construction, G̃sync
(
z1, z2, . . . , zN

)
∈ (X ×X)N .

Moreover, by Assumption 8.2.1, X is nonempty. Therefore, by [21, Definition 2.1],

dom G̃sync
(
z1, z2, . . . , zN

)
= (X ×X)N (8.60)

which implies that D̃sync ⊂ dom G̃i
sync, and each maximal solution to

254

(D̃sync, G̃
i
sync) in (8.50) is complete.

Next, to show that the associated true value trajectory k 7→ z(k), start-

ing from z◦ ∈ Z◦, of each maximal solution to (D̃sync, G̃sync) in (8.50) from(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , satisfies (8.55) for each k ∈ N, we use properties

of (Dsync, Gsync) in (8.12) and g in (8.54). First, f is C2 and convex by Assump-

tion 8.2.1, X is nonempty, compact, and convex by Assumption 8.2.3, and H is

µ-diagonally dominant by Assumption 8.2.5. Then, since for the algorithm in

(8.50),
(
zi

1,i, z
i
2,i

)
in (8.2) is updated to (κ̃i(zi), κi(zi)) for each i ∈ V , during each

iteration k – with κ̃i defined via (8.44) and κi defined in (8.6) – then one iteration

of the algorithm (D̃sync, G̃sync) in (8.50) is the same as two consecutive iterations

of the algorithm (Dsync, Gsync) in (8.12).

Therefore, since for each maximal solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the

synchronous algorithm (Dsync, Gsync) in (8.12) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N ,

the associated true value trajectory k 7→ z(k) satisfies (8.19) for each k ∈ N\{0} by

Proposition 8.2.8, then for each maximal solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the algorithm (D̃sync, G̃sync) in (8.50) from

(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the

associated true value trajectory k 7→ z(k) starting from z◦ satisfies

∥z(k) − z∗∥∞ ≤ a∥z(k − 1) − z∗∥∞ (8.61)

for each k ∈ N \ {0}, where a ∈ [0, 1) is defined below (8.55) and z∗ is defined via

(8.20). Taking the product of (8.61) over k iterations yields (8.55) for each k ∈ N.

Since, for each maximal solution to the algorithm (D̃sync, G̃sync) in (8.50) from(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated true value trajectory k 7→ z(k), start-

ing from z◦ satisfies (8.55) for each k ∈ N, and since (D̃sync, G̃sync) is synchronous,

then the sets defined in (8.56) for each k ∈ N are nonempty.

We first prove that item 1) holds. Since, for each maximal solution to the al-

255

gorithm (D̃sync, G̃sync) in (8.50) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated

true value trajectory k 7→ z(k), starting from z◦ ∈ Z◦ satisfies (8.55) for each

k ∈ N, where a ∈ [0, 1) is defined below (8.55) and z∗ is defined via (8.20), then

the property in (8.57) holds for each k ∈ N, for the sets in (8.56).

Furthermore, the property (8.58) in item 2)a holds for each k ∈ N and each

b ∈ Z(k). This is true since the associated true value trajectory k 7→ z(k), starting

from z◦ ∈ Z◦ satisfies (8.55) for all k ∈ N. Then, due to a ∈ [0, 1), ak+1 ≤ ak

implies

∥g (b) − z∗∥∞ ≤ ak+1 ∥z◦ − z∗∥∞ (8.62)

for each k ∈ N and each b ∈ Z(k), where g is defined via (8.54).

Next, we prove that item 2)b holds. Since the sets Z(k), defined via (8.56)

satisfy 8.57, then by [76, Exercise 4.3(b)], each sequence {bk}k∈N such that bk ∈

Z(k) for each k ∈ N has a limit, which is given by

lim
k→∞

{bk}k∈N = lim
k→∞

Z(k) =
⋂

k∈N
Z(k) = z∗. (8.63)

Such a limit is a fixed point of g in (8.50) since, by Lemma 8.2.7, κi(z∗) = x∗
i for

each i ∈ V and, by Lemma 8.3.1, κ̃i(z∗) = x∗
i for each i ∈ V . Hence,

g(z∗) = z∗. (8.64)

Finally, we prove that item 3) holds. Since, for each maximal solution to

(D̃sync, G̃sync) in (8.50) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated true

value trajectory k 7→ z(k) starting from z◦ has sets Z(k) ⊂ Z◦ satisfying (8.57)

for each k ∈ N, and since a key property of the ∞-norm is that its unit sphere

has the Box Condition (see [59, Chapter 6.3]), then the sets Z(k) in (8.56) also

satisfy (8.59), for each k ∈ N.

256

8.4 Asynchronous, Double-Update Heavy Ball

In this section, we design an asynchronous version of the algorithm in Sec-

tion 8.3 and use Proposition 8.3.2 to establish that, since for each maximal so-

lution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the synchronous algorithm (D̃sync, G̃sync)

in (8.50) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , the associated true value trajec-

tory k 7→ z(k) starting from z◦ ∈ Z◦ has exponential convergence and satisfies the

Synchronous Convergence and Box Conditions in [59, Chapter 6, Assumption 2.1],

then the forthcoming asynchronous algorithm also has an exponential convergence

rate.

8.4.1 Modeling

As has been done in [50], we want to distribute the discrete-time heavy ball

among multiple agents while allowing agents to compute and share information as

asynchronously as possible. There are two behaviors that could be asynchronous:

1) Computation of Updates to Agents’ Variables: Individual agents may perform

updates at different times. Namely, the subset of times at which distinct agents

i and ℓ compute updates need not have any relationship;

2) Communication of Updated Agents’ Variables: Communication of the agents’

variables is also totally asynchronous.

To allow these behaviors to be totally asynchronous, while still preserving con-

traction of the update law, we propose an algorithm that uses the update law κ̃i

in (8.44), but with each agent i ∈ V executing κ̃i and communicating to other

agents at potentially different times, with arbitrarily long delays between updates.

The asynchronous, double-update algorithm for constrained heavy ball is sum-

marized in Algorithm 8. Since computations are totally asynchronous, then we

257

denote the set of times at which agent i computes updates as the unbounded set

Ki ⊂ N. Note that each i ∈ V has its own Ki. At each discrete time instant

k ∈ N, if k ∈ Ki – which defines the time of a computation event – the corre-

sponding agent i computes the value of
(
zi

1,i, z
i
2,i

)
; see lines 4-5 of Algorithm 8. In

particular, if k ∈ Ki, then zi
1,i is updated to κ̃i(zi) in (8.44) and zi

2,i is updated

to κi(zi) in (8.6). Then, agent i sends
(
zi

1,i, z
i
2,i

)
to all agents ℓ ∈ Ni; see line 6

of Algorithm 8. Due to the possibility of communication delays, such information

might not be received for some time, and might be received at different times by

different essential neighbors.

Since communications are totally asynchronous, then we denote the set of

times at which agent i receives information from agent ℓ ∈ Ni as the unbounded

set Ri,ℓ ⊂ N. Note that each (i, ℓ) ∈ E has its own Ri,ℓ. Then, at each discrete time

instant k ∈ N, if k ∈ Ri,ℓ – which defines the time of the reception of information,

referred to as a communication event – agent i updates
(
zi

1,ℓ, z
i
2,ℓ

)
of its state zi

to (
zℓ

1,ℓ(τ i
ℓ(k)), zℓ

2,ℓ(τ i
ℓ(k))

)
∈ Xℓ ×Xℓ. (8.65)

where

τ i
ℓ(k) ∈ Kℓ ⊂ N (8.66)

denotes the time at which agent ℓ originally computed the value of its decision

variable onboard agent i at time k. Note that τ i
i (k) = k for all i ∈ V ; see lines

8-12 of Algorithm 8.

To explain how we model the delay between sending and receiving information,

and the role of τ i
ℓ in such delay, we use a simple two agent example, as follows.

Let i = 1 and ℓ = 2, let5 K1 = {1}, and let R2,1 = {3}. At k = 1, agent 1
5Although the sets Ki and Rℓ,i are unbounded, we do not consider unboundedness in this

example, for simplicity. This two agent example also holds for unbounded sets K1 and R2,1

such that 1 ∈ K1, 0, 2, 3, 4 /∈ K1, 3 ∈ R2,1, and 0, 1, 2, 4 /∈ R2,1.

258

updates
(
z1

1,1, z
1
2,1

)
to (κ̃1(z1), κ1(z1)), and sends such a value to agent 2. But

such a value does not arrive at agent 2 until k = 3. When agent 2 receives

agent 1’s decision variable at k = 3, agent 2 updates its value of
(
z2

1,1, z
2
2,1

)
to(

z1
1,1(τ 2

1 (3)), z1
2,1(τ 2

1 (3))
)
, where τ 2

1 (3) = 1 ∈ K1. In this way,
(
z2

1,1(4), z2
2,1(4)

)
=(

z1
1,1(2), z1

2,1(2)
)

= (κ̃1(z1(1)), κ1(z1(1))).

For each ℓ which is not an essential neighbor of i,
(
zi

1,ℓ, z
i
2,ℓ

)
is left unchanged;

see lines 13-15 of Algorithm 8.

Algorithm 8 Constrained, Asynchronous, Double-Update Heavy Ball
1: For each i ∈ V , set the initial state zi

◦ to an arbitrary value in X ×X.
2: for each k ∈ N do
3: for each i ∈ V do
4: if k ∈ Ki then
5: Update

(
zi

1,i, z
i
2,i

)
in (8.2) to (κ̃i(zi), κi(zi)), with κ̃i defined via

(8.44) and κi defined in (8.6);
6: Agent i sends

(
zi

1,i, z
i
2,i

)
to all agents ℓ ∈ Ni. Due to communication

delays, it may not be received for some time.
7: end if
8: for each ℓ ∈ Ni do
9: if k ∈ Ri,ℓ then

10: Update
(
zi

1,ℓ, z
i
2,ℓ

)
in (8.3) to

(
zℓ

1,ℓ(τ i
ℓ(k)), zℓ

2,ℓ(τ i
ℓ(k))

)
in (8.65).

11: end if
12: end for
13: for each ℓ /∈ Ni do
14: Keep

(
zi

1,ℓ, z
i
2,ℓ

)
constant.

15: end for
16: end for
17: end for

Now we model Algorithm 8 mathematically. From Algorithm 8, for each i ∈ V ,

agent i has its state zi in (8.4) updated via the following difference equation:

(
zi
)+

= Gi
async

(
z1, z2, . . . , zN

)
zi ∈ Di

async := X ×X, (8.67)

259

where Gi
async is defined as

Gi
async

(
z1, z2, . . . , zN

)
:=
(
gi

1

(
z1, z2, . . . , zN

)
, gi

2

(
z1, z2, . . . , zN

))
(8.68)

where, for each p ∈ {1, 2}, gi
p is defined in (8.9) and, for each s ∈ V , gi

p,s is defined

as

gi
1,s

(
z1, z2, . . . , zN

)
:=

κ̃i(zi) if s = i, at each computation event

zs
1,s if s ∈ Ni, at each communication event

zi
1,s otherwise

(8.69)

if p = 1, where κ̃i is defined in (8.44), and as

gi
2,s

(
z1, z2, . . . , zN

)
:=

κi(zi) if s = i, at each computation event

zs
2,s if s ∈ Ni, at each communication event

zi
2,s otherwise

(8.70)

if p = 2, where κi is defined via (8.6). In (8.69)-(8.70), a computation event by

agent i occurs when k ∈ Ki and a communication event occurs when agent i

receives information from agent s at k ∈ Ri,s. Due to this, the maps gi
1 and gi

2

depend on the current and past state values. Such a dependency is omitted in

(8.69)-(8.70), for simplicity of notation.

Then, the full multiagent system corresponding to (8.67) is denoted as

(
z1, z2, . . . , zN

)+
= Gasync

(
z1, z2, . . . , zN

)
(8.71)(

z1, z2, . . . , zN
)

∈ Dasync := (X ×X)N

260

where Gasync is defined as

Gasync
(
z1, z2, . . . , zN

)
:= (8.72)(

G1
async

(
z1, z2, . . . , zN

)
, G2

async

(
z1, z2, . . . , zN

)
, . . . , GN

async

(
z1, z2, . . . , zN

))

8.4.2 Forward Invariance of (X ×X)N for Algorithm 8

Under Assumptions 8.2.1 and 8.2.3, the set X ×X is forward invariant, as in

Definition 2.7.2, for (Di
async, G

i
async) in (8.67)-(8.70) and, consequently, (X ×X)N

is forward invariant for (Dasync, Gasync) in (8.71), as shown in the following lemma.

Lemma 8.4.1. (Forward invariance of (X ×X)N for (Dasync, Gasync) in (8.71))

Let X ⊂ RN satisfy Assumption 8.2.1, let f satisfy Assumption 8.2.3, and let zi
◦ ∈

X ×X for each i ∈ V. Then, (X ×X)N is forward invariant for (Dasync, Gasync)

in (8.71).

Proof. First, we show that each maximal solution to (Di
async, G

i
async) is com-

plete and, by extension, each maximal solution to (Dasync, Gasync) is complete.

To that end, we must show that the map Gi
async in (8.68) is defined on Dasync

and that Gi
async (Dasync) ⊂ Dasync. By construction, κi in (8.6) is defined for

each zi ∈ X × X and κ̃i in (8.44) is defined for each zi ∈ X × X. In addi-

tion, by Assumption 8.2.1, the constraint set X is nonempty. Furthermore, by

construction, Gi
async

(
z1, z2, . . . , zN

)
̸= ∅ for each

(
z1, z2, . . . , zN

)
∈ (X ×X)N .

Therefore, by [21, Definition 2.1], domGi
async = (X ×X)N , which implies that

Dasync ⊂ domGi
async, and each maximal solution to (Di

async, G
i
async) in (8.68)-

(8.70) is complete. Since, by construction, Gasync
(
z1, z2, . . . , zN

)
̸= ∅ for each(

z1, z2, . . . , zN
)

∈ (X ×X)N , and since Gi
async

(
z1, z2, . . . , zN

)
∈ X × X for each

i ∈ V , due to κi in (8.6) and κ̃i in (8.44), then, by construction,

Gasync
(
z1, z2, . . . , zN

)
∈ (X ×X)N . Moreover, by Assumption 8.2.1, X is

261

nonempty. Therefore, by [21, Definition 2.1],

domGasync
(
z1, z2, . . . , zN

)
= (X ×X)N (8.73)

which implies that Dasync ⊂ domGasync, and each maximal solution to

(Dasync, Gasync) in (8.71) is complete.

Then, to show forward invariance of (X ×X)N , we start first with a single

agent i. First, note that since f is C2 by Assumption 8.2.3, then ∇if exists for

each i ∈ V . Then, by definition, κi in (8.6) projects into the set Xi and κ̃i in (8.44)

projects into the set Xi. In addition, the communicated values
(
zs

1,s, z
s
2,s

)
in the

second cases of (8.69) and (8.70), for each s ∈ Ni, are in the set Xs ×Xs since κs

in (8.6) projects into the set Xs and κ̃s in (8.44) projects into the set Xs, for each

s ∈ Ni. Moreover, any values
(
zi

1,s, z
i
2,s

)
which remain unchanged – due to either

s /∈ Ni, s ∈ Ni with no communication event, or s = i with no communication

event – are already in the set Xs ×Xs since zi
◦ ∈ X×X for each i ∈ V . Therefore,

each update Gi
async

(
z1, z2, . . . , zN

)
∈ X × X, where X in (8.1) is a nonempty

set by Assumption 8.2.1, and, since each maximal solution to (Di
async, G

i
async) is

complete, X ×X is forward invariant for (Di
async, G

i
async), for each i ∈ V .

Since X ×X is forward invariant for (Di
async, G

i
async) in (8.67)-(8.70), for each

i ∈ V , then due to the definition of (Dasync, Gasync) in (8.71) and due to X in (8.1)

being a nonempty set by Assumption 8.2.1, Gasync (Dasync) ⊂ (X ×X)N and,

since each maximal solution to (Dasync, Gasync) is complete, (X ×X)N is forward

invariant for (Dasync, Gasync).

262

8.4.3 Convergence rate of Algorithm 8

For the forthcoming result for the asynchronous algorithm (Dasync, Gasync) in

(8.71), we impose the following assumption.

Assumption 8.4.2. (Computations and Communications): For each i ∈ V and

each ℓ ∈ Ni, the sets Ki ⊂ N and Ri,ℓ ⊂ N are unbounded. If {ks}s∈N is an

increasing sequence of times in Ki, then for each solution to the algorithm in

(8.71), lims → ∞τ ℓ
i (ks) = ∞ for each ℓ ∈ V such that i ∈ Nℓ, where τ ℓ

i is defined

via (8.66).

Remark 8.4.3. Assumption 8.4.2 ensures that no agent ever stops computing or

communicating, though delays can be arbitrarily large.

In the upcoming result, the convergence rate of (8.71) can be computed by

leveraging results in [64] and [50] in terms of the number of operations – namely,

ops(k) – the agents have completed (counted in the appropriate sequence). Namely,

we count operations as follows. Initially, we set ops(0) = 0. Then, after all agents

i ∈ V have updated
(
zi

1,i, z
i
2,i

)
to (κ̃i(zi), κi(zi)) and have sent such updates to

and had such updates received by all essential neighbors ℓ ∈ Ni – say, by time

k′ – we increment ops to ops(k′) = 1. Note that it is possible for any agent i to

compute and send – and essential neighbors ℓ ∈ Ni to receive – multiple updates

of
(
zi

1,i, z
i
2,i

)
, between ops(0) = 0 and ops(k′) = 1. In other words, different sub-

sequences of {ks}s ∈ N in Ki exist for each i ∈ V and different subsequences of

{ks}s ∈ N in Ri,ℓ exist for each (i, ℓ) ∈ E , between ops(0) = 0 and ops(k′) = 1.

After ops(k′) = 1, then we wait until all agents i ∈ V have subsequently computed

a new update of
(
zi

1,i, z
i
2,i

)
and such updates have been sent to and received by

all other essential neighbors. If this occurs at time k′′, then we set ops(k′′) = 2,

and this process continues.

263

For the result to follow, we denote the portion of the algorithm

(Dasync, Gasync) in (8.71) corresponding to the update of the true value z in (8.17)

as

z+ = g (z) z ∈ X ×X (8.74)

where g is defined as

g (z) :=
((
g̃1

1,1(z1), g̃2
1,2(z2), . . . , g̃N

1,N(zN)
)
,
(
g̃1

2,1(z1), g̃2
2,2(z2), . . . , g̃N

2,N(zN)
))
(8.75)

where, for each i ∈ V , g̃i
1,i and g̃i

2,i are defined as

g̃i
1,i

(
zi
)

:=

κ̃i(zi) at each computation event by agent i

zi
1,i otherwise

(8.76a)

g̃i
2,i

(
zi
)

:=

κi(zi) at each computation event by agent i

zi
2,i otherwise

(8.76b)

where κ̃i is defined via (8.44), κi is defined in (8.6), and where a computation

event by agent i occurs when k ∈ Ki. Since (8.74)-(8.76) represents only the

updates of the true values of the decision variables, and not the local copies

onboard each agent i, then communication events are not represented in (8.76).

The model in (8.74)-(8.76) is the asynchronous version of (8.53)-(8.54), which we

use in the forthcoming proof of Theorem 8.4.4 to show that, since the true value

trajectory k 7→ z(k) of each maximal solution to (D̃sync, G̃sync) satisfies items 1)-

?? of Proposition 8.3.2, then z∗ is a fixed point of g in (8.75) for the true value

trajectory k 7→ z(k) of each maximal solution to (Dasync, Gasync).

The following theorem establishes that each maximal solution

264

k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the algorithm (Dasync, Gasync), defined via (8.71)

from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ (X ×X)N , converges exponentially to

(z∗, z∗, . . . , z∗). To prove it, we use Propositions 8.3.2 and B.1.2.

Theorem 8.4.4. (Exponential convergence rate for (Dasync, Gasync) in (8.71))

Suppose X ⊂ RN satisfies Assumption 8.2.1, f satisfies Assumption 8.2.3, H sat-

isfies Assumption 8.2.5 with µ > 0, and z◦ ∈ Z◦ := X×X denotes the initial state

of z in (8.17). For each γ ∈
(

0, 1
max
i∈V

max
η∈X

|Hii(η)|

)
and λ ∈

(
0, γµ

2

)
, each maximal

solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the asynchronous, double-update heavy

ball algorithm (Dasync, Gasync) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ ZN

◦ , for which Assumption

8.4.2 holds, satisfies

max
i∈V

∥∥∥zi(k) − z∗
∥∥∥

∞
≤ aops(k) max

i∈V

∥∥∥zi
◦ − z∗

∥∥∥
∞

(8.77)

for all k ∈ N, where a := max{a1, a2}, a1 := (1 − γµ+ λ)2 + λ+ λ (1 − γµ+ λ)

∈ [0, 1), a2 := 1 − γµ+ 2λ ∈ [0, 1), and z∗ is defined via (8.20).

Proof. To establish the result, we proceed as follows.

1) We use Propositions 8.3.2 and B.1.2 to show that, for each maximal solution

k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to the algorithm (Dasync, Gasync) in (8.71) from(

z1
◦ , z

2
◦ , . . . , z

N
◦

)
∈ ZN

◦ , the associated true value trajectory k 7→ z(k) starting

from z◦ ∈ Z◦ has the property that, for each sequence
{
bops(k)

}
ops(k)∈N

such

that bops(k) ∈ Z(ops(k)) for each ops(k) ∈ N, lim
ops(k)→∞

{
bops(k)

}
ops(k)∈N

= z∗

and z∗ is a fixed point of g in (8.75). Note that the function ops, which was

described below Remark 8.4.3, is solution dependent.

2) We use Proposition 8.3.2, Lemma 8.4.1, and the function ops to compute

the desired convergence rate for the asynchronous, double-update algorithm

265

(Dasync, Gasync) in (8.71) by picking an arbitrary solution, analyzing its behav-

ior between ops(0) = 0 and ops(k′′) = 1:

(a) First, we analyze computation events between ops(0) = 0 and ops(k′)

= 1;

(b) Then, we analyze communication events between ops(0) = 0 and ops(k′′) =

1;

(c) Then, we complete the proof by iterating the process in 2)a-2)b above

over subsequent cycles of ops.

Proceeding with step 1), we pick a solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to

(Dasync, Gasync) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ ZN

◦ , which has the solution dependent

function ops. By Proposition B.1.2, for such a solution to (Dasync, Gasync), the

associated true value trajectory k 7→ z(k) starting from z◦ ∈ Z◦ is such that

each sequence
{
bops(k)

}
ops(k)∈N

such that bops(k) ∈ Z(ops(k)) for each ops(k) ∈ N

has a limit, which is given by lim
ops(k)→∞

{
bops(k)

}
ops(k)∈N

= z∗, and such a limit is a

fixed point of g (z) in (8.74), due to the following. By Proposition 8.3.2, for each

maximal solution to the algorithm (D̃sync, G̃sync) in (8.50) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈

(X ×X)N , the associated true value trajectory k 7→ z(k) starting from z◦ satisfies

the bound in (8.55) for all k ∈ N, where a is defined below (8.77) and z∗ is defined

via (8.20). Furthermore, by Proposition 8.3.2, the associated true value trajectory

k 7→ z(k) of such solutions, starting from z◦, has nonempty sets defined in (8.56)

for which (8.57) is satisfied, the Synchronous Convergence Condition in item 2)

of Proposition 8.3.2 holds, and the Box Condition in item 3) of Proposition 8.3.2

holds.

Next, for step 2), the solution k 7→
(
z1(k), z2(k), . . . , zN(k)

)
to

(Dasync, Gasync) from
(
z1

◦ , z
2
◦ , . . . , z

N
◦

)
∈ ZN

◦ that we picked in step 1) has the

266

solution-dependent sets of computation times Ki for each i ∈ V , the solution-

dependent sets of communication times Ri,ℓ for each (i, ℓ) ∈ E , and the solution-

dependent function τ i
ℓ defined via (8.66). Recall that for a single incrementation

of the solution-dependent function ops by 1, it is possible for any agent i to update(
zi

1,i, z
i
2,i

)
to (κ̃i(zi), κi(zi)) multiple times, where κ̃i is defined via (8.44) and κi is

defined in (8.6). However, each agent i ∈ V computes such an update, and such

an update is sent to and received by each essential neighbor ℓ ∈ Ni, at least once.

For step 2)a, the initial state of the solution is set to zi
◦ ∈ Z◦ for each i ∈ V .

Suppose that, for such a solution, at time ki ∈ Ki, agent i updates
(
zi

1,i, z
i
2,i

)
to (κ̃i(zi), κi(zi)). Then,

(
zi

1,i(ki + 1), zi
2,i(ki + 1)

)
∈ Zi(1) ⊂ Xi × Xi, where

Xi comes from Assumption 8.2.1. Then, by Proposition 8.3.2 and step 1), at

the discrete instant k′ = maxi∈V ki + 1, we find that
(
zi

1,i(k′), zi
2,i(k′)

)
∈ Zi(1)

for each i ∈ V . Note that, for each discrete time instant k ∈ {0, 1, . . . , ki},(
zi

1,i(k), zi
2,i(k)

)
∈ Zi◦ = Xi × Xi for each i ∈ V , whether or not an update of(

zi
1,i, z

i
2,i

)
to (κ̃i(zi), κi(zi)) has occurred for any agent i ∈ V . Such a property is

due to zi
◦ ∈ X×X, the forward invariance of X×X by Lemma 8.4.1, and – in the

case of a computation event – the contractivity of (κ̃i(zi), κi(zi)) by Proposition

8.3.2. Moreover, since Zi(1) ⊂ Zi◦ , then
(
zi

1,i(ki + 1), zi
2,i(ki + 1)

)
∈ Zi◦ is also

satisfied for each i ∈ V .

Then, for step 2)b, suppose that, after each agent i ∈ V has computed at

least one update (κ̃i(zi), κi(zi)) to its decision variable, each agent i sends such

information, which is received by each agent ℓ ∈ Ni after some time. Consequently,

each agent i ∈ V receives
(
zℓ

1,ℓ(τ i
ℓ(ki,ℓ)), zℓ

2,ℓ(τ i
ℓ(ki,ℓ))

)
from each agent ℓ ∈ Ni at

ki,ℓ ∈ Ri,ℓ. Then, by Proposition 8.3.2 and step 1), at the discrete instant k′′ =

maxi∈V maxℓ∈Ni
ki,ℓ, each agent i ∈ V has

(
zi

1,ℓ(k′′), zi
2,ℓ(k′′)

)
∈ Zℓ(1)⊂ Xℓ ×Xℓ for

each ℓ ∈ Ni. Note that, for each discrete time instant k ∈ {0, 1, . . . , ki,ℓ}, whether

267

or not any agent i receives information from any agent ℓ ∈ Ni,
(
zi

1,ℓ(k), zi
2,ℓ(k)

)
∈

Zℓ◦ = Xℓ ×Xℓ for each i ∈ V and each ℓ ∈ Ni, where Xℓ comes from Assumption

8.2.1. Such a property is due to zi
◦ ∈ X ×X, the forward invariance of X ×X by

Lemma 8.4.1, and the contractivity of
(
κ̃ℓ(zℓ), κℓ(zℓ)

)
by Proposition 8.3.2.

Finally, for step 2)c, z(k′′) ∈ Z(1) due to steps 2)a-2)b, and this is satisfied

precisely when a single cycle has completed, namely, when ops(k′′) = 1. Iterating

such a process for subsequent cycles of ops completes the proof.

8.5 Numerical Example

Example 8.5.1. To demonstrate the effectiveness of the asynchronous, double-

update heavy ball algorithm (Dasync, Gasync) in (8.71), we compare it in simulation

with a multiagent constrained gradient descent algorithm. In particular, we com-

pare (Dasync, Gasync) with a version of the asynchronous primal-dual algorithm for

constrained gradient descent, in [50], with the dual variables η(t) fixed to zero.

First, we compare the convergence rates of (Dasync, Gasync) and the algorithm [50]

analytically. For the asynchronous primal-dual algorithm in [50], when the dual

variables η(t) are fixed at zero, the constrained update law for block i simplifies to

κ̄i(zi
1) := ΠXi

[
zi

1,i − γ∇if(zi
1)
]

(8.78)

where

γ <
1

max
i∈V

max
η∈X

∑N
ℓ=1 |Hij(η)|

. (8.79)

In [50], the asynchronous primal-dual algorithm is designed and analyzed for con-

vex functions f which satisfies Assumption 8.2.3, H satisfies Assumption 8.2.5,

268

the constraint set X satisfies Assumption 8.2.1, and the algorithm itself satisfies

Assumption 8.4.2.

It is shown in [50, Theorem 2] that, for the dual variables fixed, each maximal

solution k 7→ z1(k) to the asynchronous primal-dual algorithm satisfies

max
i∈N

∥zi
1(k) − x∗∥∞ ≤ qops(k)

p max
ℓ∈N

∥zℓ
1◦ − x∗∥∞ (8.80)

where qp := (1−γµ) ∈ [0, 1) and x∗ ∈ X denotes the fixed point of the constrained

gradient descent update law, with the dual variables fixed. Comparing the constant

qp in (8.80) with the constant a, defined below (8.77), the primal convergence rate

of asynchronous primal-dual algorithm in [50] is faster than the convergence rate

of (Dasync, Gasync).

Next, we compare the algorithms in simulation6. For this simulation, we utilize

an example with N = 10 agents with the objective function

f(z1) := 3
10

N∑
i=1

(
zi

1,i

)2
+ 1

200

N∑
i=1

N∑
ℓ=1
ℓ̸=i

(
zi

1,i − zi
1,ℓ

)2
(8.81)

for which µ = 1
2 . We also require that zi

1,i ∈ Xi = [1, 10] and zi
2,i ∈ Xi = [1, 10] for

each i ∈ V. We use the parameter value γ = 0.3 for the step size of both algorithms,

which satisfies γ ∈
(

0, 1
max
i∈V

max
z1∈X

|Hii(z1)|

)
for (Dasync, Gasync) in (8.71) and the defi-

nition of γ in (8.79) for the asynchronous primal-dual algorithm in [50]. Addition-

ally, we use the value λ = 0.075 for (Dasync, Gasync), which satisfies λ ∈ (0, γµ
2). In

this example, both algorithms have a communication rate of 0.5 (i.e., each agent

has a 50% probability of communicating the latest update to another agent at each

iteration) and a computation rate of 1 (i.e., each decision variable has a 100%

probability of updating at each iteration). The initial conditions for (Dasync, Gasync)
6Code at github.com/HybridSystemsLab/MultiagentHBF.

269

−5 0 5 10 15 20 25 30 35 40
10−8

10−6

10−4

10−2

100

102 Error, HBF
100% Comp Rate
75% Comp Rate
65% Comp Rate
50% Comp Rate

−5 0 5 10 15 20 25 30 35 40
10−8

10−6

10−4

10−2

100

102 Error, GD

100% Comp Rate
75% Comp Rate
65% Comp Rate
50% Comp Rate

|z
1

−
x

∗ |

k k

−5 0 5 10 15 20 25 30 35 40
10−8

10−6

10−4

10−2

100

102

Convergence Between Iterations, HBF
100% Comp Rate
75% Comp Rate
65% Comp Rate
50% Comp Rate

−5 0 5 10 15 20 25 30 35 40
10−8

10−6

10−4

10−2

100

102

Convergence Between Iterations, GD
100% Comp Rate
75% Comp Rate
65% Comp Rate
50% Comp Rate

|z
1(

k
)−

z 1
(k

−
1)

|

k k

Figure 8.1: Comparing the effect of different computation rates on solutions,
for the objective function in (8.81) with the constraint set Xi = [1, 10]. Top: A
comparison of the evolution over time of |z1 − x∗|, with (Dasync, Gasync) on the left
and the asynchronous primal-dual algorithm in (8.80) on the right. Bottom: A
comparison of the evolution over time of |z1(k) − z1(k − 1)|, with (Dasync, Gasync)
on the left and the asynchronous primal-dual algorithm in (8.80) on the right.

270

are zi
◦ = ((10, 10, 10, 10, 10, 10, 10, 10, 10, 10) , (10, 10, 10, 10, 10, 10, 10, 10, 10, 10)),

for all i ∈ V, and for the asynchronous primal-dual algorithm in [50] initial con-

ditions are zi
1,◦ = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10), for all i ∈ V.

Figure 1.6 demonstrates marked performance improvement of (Dasync, Gasync)

over the asynchronous primal-dual algorithm, with (Dasync, Gasync) finishing in 6

iterations and the asynchronous primal-dual algorithm finishing in 12 iterations.

In other words, (Dasync, Gasync) converges twice as fast as the asynchronous primal-

dual algorithm. From this example, we see that although the theoretical conver-

gence bound of (Dasync, Gasync) in (8.77) is slower than the convergence bound of

the asynchronous primal-dual algorithm in (8.80), such a bound on (Dasync, Gasync)

is quite conservative compared to its numerical performance.

For both algorithms, we also compare the effect of different computation rates,

while the communication rate is set at 1. Figure 8.1 compares both the evolu-

tion over time of |z1 − x∗| and the distance between specific iterations, namely,

|z1(k) − z1(k − 1)|, for (Dasync, Gasync) and the asynchronous primal-dual algo-

rithm in (8.80), with computation rates of 1, .75, .65, and .5. The objective

function, constraint set, parameter values, and initial conditions are the same as

those listed above, for Figure 1.6.

271

Chapter 9

Conclusion

In this dissertation, we addressed several problems involving accelerated gra-

dient methods. The solutions to a subset of such problems were solved via the use

of hybrid system tools, while the solutions to athe remaining problem was solved

via discrete-time methods. In this chapter, we present a summary of the major

content and describe several potential future research directions.

9.1 Summary

In Chapter 3, we analyzed key properties of the ODEs in (1.1), (1.2), and

(1.5). First, for (1.2), we established UGAS of the minimizer and an exponential

convergence rate. Next, for (1.5), we established UGAS of the minimizer and a

convergence rate of 1
(t+2)2 . Then, for (1.1), we established UGAS of the minimizer

for nonstrongly convex objective functions L, and we established exponential con-

vergence rates for both strongly and nonstrongly convex L. Finally, for (1.1), we

established almost global asymptotic stability of a local minimizer for nonconvex

Morse functions L.

In Chapter 4, we developed a hybrid algorithm uniting two heavy ball al-

272

gorithms with properly designed λq > 0 and γq > 0, using hybrid system tools.

Designed for C1, nonstrongly convex objective functions L with a single minimizer,

the algorithm renders the minimizer uniformly globally asymptotically stable, with

a hybrid exponential convergence rate, and with robustness. Two different sets

of switching rules were derived: one which uses measurements of L and ∇L, and

one in which only measurements of ∇L are used. Whereas the first set of switch-

ing rules requires knowledge of L∗, the second set of switching rules requires no

knowledge of the minimizer.

In Chapter 5, we presented two algorithms, designed using hybrid system tools,

that properly unites Nesterov’s algorithm globally and the heavy ball algorithm

with large λ > 0 locally to ensure fast convergence and uniform global asymptotic

stability of the minimizer, with robustness. The first such algorithm, designed

for C2, strongly convex objective functions L, has a hybrid convergence rate that

is exponential. The second such algorithm, designed for C1, nonstrongly convex

objective functions L with a single minimizer, has a hybrid convergence rate of
1

(t+2)2 globally and exponential locally. Both algorithms use measurements of ∇L,

and neither algorithm requires knowledge of the minimizer.

In Chapter 6, we presented a general framework, designed using hybrid system

tools, for uniting local and global optimization algorithms, which allows either the

local and global controllers to be any accelerated gradient algorithm. We then

determined sufficient conditions for well-posedness, existence of solutions, and

uniform global asymptotic stability of the minimizer for the hybrid closed-loop

system. The framework allows for the optimization of objective functions that

are either C2 and strongly convex, or C1 and nonstrongly convex with a single

minimizer. We then outlined how some of the algorithms in Chapters 4 and 5

satisfy this framework.

273

In Chapter 7, we developed a hybrid optimization algorithm, based on the

heavy ball ODE in (1.1), to ensure practical global attractivity to a neighborhood

of a local minimizer of a nonconvex Morse objective function L, even when the

state z ∈ R2 starts at a local maximizer. Designed using hybrid system tools, this

algorithm utilizes a switching strategy that uses measurements of the gradient of

L to detect whether the state z is near a critical point. If z is near a critical

point, the supervisor selects linear feedback to push the state away from such a

critical point. If z is far from a critical point, the supervisor selects the heavy ball

method to converge to a small neighborhood of a local minimizer. In simulation

we demonstrated the robustness of the algorithm to small noise in measurements

of ∇L.

In Chapter 8, we developed a totally asynchronous, block-based optimization

algorithm, utilizing the constrained heavy ball method, which guarantees fast con-

vergence to the unique minimizer of f . Specifically, we show that our algorithm

has an exponential convergence rate under the assumption that f is C2, convex,

and the Hessian of f is diagonally dominant. Although such an exponential con-

vergence rate is no better than the primal convergence rate, with a fixed dual

variable, in [50, Theorem 2] for the asynchronous primal-dual algorithm in [50],

nevertheless we demonstrate in simulation that our algorithm is twice as fast.

9.2 Future Directions

The results for the uniting algorithms and uniting framework in Chapters 4, 5,

and 6 could be extended to allow for nonstrongly convex objective functions with

a compact, connected continuum of minimizers via the modifications described in

Sections 3.1.3, 3.2.3, 4.5, and 5.2.10, namely, via the use of the Lyapunov functions

in (3.69) and (3.97) and the use of Clarke’s generalized derivative. The results in

274

Chapters 4, 5, and 6 could also be further extended to allow for nonsmooth, non-

strongly convex objective functions L using such Lyapunov functions and Clarke’s

generalized derivative.

The uniting algorithms in Chapters 4 and 5 could be applied to machine learn-

ing problems, via backpropagation in a neural network. Another potential exten-

sion would be to make the uniting algorithms adaptive, i.e., learning parameters

such as λ, γ, or the Lipschitz parameter M online.

The results for the uniting framework in Chapter 6 could be extended to allow

for more types of optimization algorithms to be used as either the local or global

controller, including gradient-free accelerated optimization schemes.

The results for the hybrid algorithm for nonconvex Morse functions L, in

Chapter 7, could be extended to allow for Morse functions L : Rn → R. One

challenge in doing so would be to design a mechanism to detect when the state z1

is stuck in a saddle point, and then facilitate escape from such a saddle point. Some

possible mechanisms which could be utilized include the “gradient restart” scheme

in [81] or the “speed restart” scheme in [15], which restart when the momentum

is taking the state z in a bad direction (as determined by the momentum term

and the negative gradient making an obtuse angle).

Another possible method for extending the hybrid algorithm for nonconvex

Morse functions L, in Chapter 7, is as follows. In [82], it was shown that first

order methods1, such as the heavy ball method, almost always avoid strict saddle

points – namely, saddle points where the Hessian of the objective function admits

at least one direction of negative curvature; see [83]. Moreover, in [84], it was

shown that such an advantage could also be leveraged for non-strict saddle points

by regularizing the objective function when the state is in the vicinity of such a
1In [82], the term “first order method” refers to gradient-based methods, since such methods

involve a gradient term.

275

non-strict saddle point. To do so, a linear regularizer is chosen in [84], since it was

proved in [85] that such a regularizer also renders the objective function Morse.

Other extensions to the algorithm in Chapter 7 would be to investigate ways of

shrinking the parameters (ε1, ε2, ρ1, ρ2) in real time, in order to actually converge

to the set A, and to analyze the impact of different settings for such parameters

on the performance of the algorithm. Moreover, the addition of stopping criteria

for the algorithm could be explored.

The results for the totally asynchronous, multiagent algorithm in Chapter 8

can be extended to allow for each decision variable to be such that
(
zi

1,i, z
i
2,i

)
∈

Xi ×Xi ⊂ Rm × Rm.

276

Appendix A

General Results on Hybrid

Systems

A.1 Existence of Solutions, Stability, and Invari-

ance

The following proposition, from [21], is used to prove the existence of solutions

to many of the the hybrid closed-loop algorithms proposed in this dissertation.

Proposition A.1.1. (Basic existence of solutions) Let H = (C,F,D,G) satisfy

Definition 2.1.1. Take an arbitrary x◦ ∈ C ∪D. If x◦ ∈ D or

(VC) there exists a neighborhood U of x◦ such that for every x ∈ U ∩ C,

F (x) ∩ TC(x) ̸= ∅,

then there exists a nontrivial solution x to H with x(0, 0) = x◦. If (VC) holds for

every x◦ ∈ C \ D, then there exists a nontrivial solution to H from every initial

277

point in C ∪D, and every x ∈ SH satisfies exactly one of the following conditions:

(a) x is complete;

(b) dom x is bounded and the interval IJ , where J = supj dom x, has nonempty

interior and t 7→ x(t, J) is a maximal solution to ẋ ∈ F (x), in fact

limt7→T |x(t, J)| = ∞, where T = supt dom x;

(c) x(T, J) ̸∈ C ∪D, where (T, J) = sup dom x.

Furthermore, if G(D) ⊂ C ∪D, then (c) above does not occur.

The following definition, from [22, Definition 3.17], describes the basic prop-

erties that a function must satisfy to serve as a Lyapunov function for the hybrid

closed-loop algorithm H.

Definition A.1.2 (Lyapunov function candidate). The sets U , A ⊂ Rn, and the

function V : domV → R define a Lyapunov function candidate on U with respect

to A for the hybrid closed-loop system H = (C,F,D,G) if the following conditions

hold:

1.
(
C ∪D ∪G(D)

)
∪ U ⊂ dom V ;

2. U contains an open neighborhood of A ∩ (C ∪D ∪G(D));

3. V is continuous on U and locally Lipschitz on an open set containing C∩U ;

4. V is positive definite on C ∪D ∪G(D) with respect to A.

The following theorem is used to prove the uniform global asymptotic stabil-

ity of the hybrid closed-loop system, via Lyapunov stability and an invariance

principle.

278

Theorem A.1.3. (Hybrid Lyapunov theorem) Given sets U ,A ⊂ Rn and a func-

tion V : dom V → R defining a Lyapunov candidate on U with respect to A for

the closed-loop hybrid system H = (C,F,D,G), suppose

• H satisfies the hybrid basic conditions;

• A is compact and U contains a nonzero open neighborhood of A;

• V̇ and ∆V satisfy

V̇ (x) = max
ξ∈F (x)

⟨∇V (x), ξ⟩ ≤ 0 ∀x ∈ C ∩ U (A.1)

∆V (x) := max
ξ∈G(x)

V (ξ) − V (x) ≤ 0 ∀x ∈ D ∩ U (A.2)

Then A is stable. Furthermore, A is attractive and, hence, pre-asymptotically

stable if any of the following conditions hold:

1. Strict decrease during flows and jumps:

V̇ (x) < 0 ∀x ∈ (C ∩ U)\A (A.3)

∆V (x) < 0 ∀x ∈ (D ∩ U)\A (A.4)

2. Strict decrease during flows and no instantaneous Zeno:

(a) V̇ (x) < 0 for each x ∈ (C ∩ U)\A,

(b) any instantaneous Zeno solution x to H where rge x ⊂ U converges to

A;

3. Strict decrease during jumps and no complete continuous solution:

(a) ∆V (x) < 0 for each x ∈ (D ∩ U)\A,

279

(b) any complete continuous solution x to H where rge x ⊂ U converges to

A;

4. Weak decrease during flows and jumps: for each χ ∈ U with r := V (χ) > 0

there is no complete solution x to H, x(0, 0) = χ such that

rge x ⊂ {x : V (x) = r } ∩ U (A.5)

and the set U is the subset of the basin of pre-attraction.

Observe that, if the set A is pre-asymptotically stable via Theorem A.1.3 and

the Lyapunov function V also has compact sublevel sets, namely, for each cV > 0,

{x : V (x) ≤ cV } is compact, then the origin is globally pre-asymptotically stable.

The following result is used to show that, when a hybrid closed-loop algorithm

H has a set A globally asymptotically stable, then when H satisfies the hybrid

basic conditions, the set A is also uniformly globally asymptotically stable1 for

H.

Theorem A.1.4. (Pre-asymptotic stability implies KL pre-asymptotic stability)

Suppose that the hybrid closed-loop system H satisfies the hybrid basic conditions

and that a compact set A is pre-asymptotically stable with basin of pre-attraction

Bp
A. Then, Bp

A is open and A is KL pre-asymptotically stable on Bp
A for H;

namely, there exists a function β ∈ KL such that

|x(0, 0)|A ≤ β (|x(0, 0)|A , t+ j) ∀(t, j) ∈ dom x (A.6)

for each x ∈ SH(Bp
A).

1Uniform global asymptotic stability allows an equivalent characterization involving a class-
KL function [21].

280

For Proposition 3.2.8 and Theorem A.1.6 we use the following definition of

weak invariance, from [21].

Definition A.1.5 (Weak invariance). Given a hybrid system H, a set S ⊂ Rn is

said to be

• weakly forward invariant if for every x◦ ∈ S there exists at least one complete

x ∈ SH(x◦) with rge x ⊂ S;

• weakly backward invariant if for every x◦ ∈ S and every T > 0, there exists

at least one x ∈ SH(S) such that for some (t∗, j∗) ∈ dom x, t∗ + j∗ ≥ T ,

it is the case that x(t∗, j∗) = x◦ and x(t, j) ∈ S for all (t, j) ∈ dom x with

t+ j ≤ t∗ + j∗;

• weakly invariant if it is both weakly forward invariant and weakly backward

invariant.

The following hybrid invariance principle, from [22, Theorem 3.23], is used

to establish attractivity when only a “weak” Lyapunov function is available –

meaning that the function does not strictly decrease along both flows and jumps

of the hybrid system. It is also useful to check where particular solutions of interest

converge to.

Theorem A.1.6. (Hybrid Invariance Principle) Given a hybrid closed-loop sys-

tem H = (C,F,D,G) with state x ∈ Rn satisfying the hybrid basic conditions,

nonempty U ⊂ Rn, and a function V : domV → R, suppose that A.1.2 is satis-

fied, and that (A.1) and (A.2) hold. With X := C ∪ D ∪ G(D), we employ the

following definitions:

V −1(r) := {x ∈ X : V (x) = r} (A.7)

281

V̇ −1(0) :=
{
x ∈ C : V̇ (x) = 0

}
(A.8)

∆V −1(0) := {x ∈ D : ∆V (x) = 0} (A.9)

Let x be a precompact solution to H with rgex ⊂ U . Then, for some constant

r ∈ V (U ∩X), the following hold:

1. The solution x converges to the largest weakly invariant set in

V −1(r) ∩ U ∩
[
V̇ −1(0) ∪

(
∆V −1(0) ∩G

(
∆V −1(0)

))]
; (A.10)

2. The solution x converges to the largest weakly invariant set in

V −1(r) ∩ U ∩ ∆V −1(0) ∩G
(
∆V −1(0)

)
(A.11)

if in addition the solution x is Zeno;

3. The solution x converges to the largest weakly invariant set in

V −1(r) ∩ U ∩ V̇ −1(0) (A.12)

if, in addition, the solution x is such that, for some a > 0 and some J ∈ N,

tj+1 − tj > a for all j ≥ J ; i.e., the given solution x is such that the elapsed

time between consecutive jumps is eventually bounded below by a positive

constant a.

282

Appendix B

General Results on Totally

Asynchronous Multiagent

Algorithms

B.1 Totally Asynchronous Convergence

The general fixed point problem that pertains to Proposition B.1.2 below, and

which comes from [59], is described as follows. For i ∈ {1, 2, . . . , N} agents, let

X1, . . . XN be subsets of the Euclidean spaces Rm1 , . . . ,RmN , respectively. Let

m = m1 + . . .+mN , and let X ⊂ Rm be the Cartesian product

X = X1 × . . .×XN . (B.1)

Accordingly, elements in X are written as N -tuples of their components, i.e.,

for x ∈ X, we write

x :=
(
x1

1, . . . , x
N
N

)
(B.2)

283

where xi
i are the corresponding elements of Xi for agents i ∈ {1, 2, . . . , N}. We as-

sume there is a notion of sequence convergence defined onX. For i ∈ {1, 2, . . . , N},

let the function gi : X → Xi be a given convergence algorithm, and let g : X → X

be the synchronous function defined by

g(x) = (g1(x), . . . , gN(x)) (B.3)

for all x ∈ X. The problem is to find the fixed point of g, namely, an element

x∗ ∈ X such that x∗ := g(x∗).

Now, to describe a distributed asynchronous version of xi
i := gi(xi), i ∈

{1, 2, . . . , N}. Let xi
i(t) be the value of the i-th component at time t ∈ N. We

assume there is a set of times t ∈ N at which one or more components of x is

updated by some agent of a distributed system. We also assume there is a set of

times at which xi
i is updated. We assume that agent i might not have access to

the most recent value of the components of x. Therefore, we assume that

xi
i(t+ 1) := gi

(
xi

1(τ i
1(t)), . . . , xi

N(τ i
N(t))

)
, (B.4)

for all t in the set of update times for i, where τ i
ℓ(t) are times satisfying

0 ≤ τ i
ℓ(t) ≤ t

for all t ∈ N, and all ℓ ∈ N . At all times t not in the set of update times for i, xi
i

is left unchanged, namely

xi
i(t+ 1) = xi

i(t). (B.5)

The set of times t ∈ N should be viewed as the indices of the sequence of physical

times at which updates take place. The sequence of physical times at which agent

284

i updates does not need to be known to any one agent, since their knowledge is

not needed to execute (B.4)-(B.5), namely, there is no need for a global clock. The

difference t − τ i
ℓ(k) between the current time t and the time τ i

ℓ(t) corresponding

to the ℓ-th component available at the agent updating xi can be viewed as a form

of communication delay.

Assumption 8.4.2 is imposed on the general asynchronous multiagent algorithm

described in (B.4)-(B.5). The following assumptions are also imposed on the

asynchronous algorithm in (B.4)-(B.5):

Assumption B.1.1 (Synchronous and box conditions). There is a

sequence of nonempty sets X (k) ⊂ X, k ∈ N such that

. . . ⊂ X (k + 1) ⊂ X (k) ⊂ . . . ⊂ X◦ (B.6)

satisfying the following conditions:

(M1) (Synchronous Convergence Condition)

(i) We have g(x(k)) ∈ X (k + 1) for all k ∈ N and all x ∈ X (k).

(ii) Furthermore, if {xk}k∈N is a sequence such that xk ∈ X (k) for all

k ∈ N, then every limit point of {xk}k∈N is a fixed point of g.

(M2) (Box Condition) For every k ∈ N, there exist sets Xi(k) ⊂ Xi◦ such that

X (k) = X1(k) × X2(k) × . . .× XN(k). (B.7)

Note that the Synchronous Convergence Condition implies that the limit points

of sequences generated by the (synchronous) iteration x := g(x) are fixed points

of X (k), assuming the initial condition x◦ ∈ X◦.

285

The following proposition, which comes from [59], establishes that the totally

asynchronous algorithm in (B.4)-(B.5) converges to a fixed point of g.

Proposition B.1.2. (Asynchronous Convergence) [59, Proposition 2.1, Chap-

ter 6]: Let Assumption 8.4.2 hold for the synchronous algorithm in (B.3) and let

x◦ ∈ X◦ := X. Then, every limit point of the sequence {x(t)}t∈N generated by

(B.4)-(B.5) is a fixed point of g.

Proof. We show by induction that for each k ∈ N, there is a time tk ∈ N such

that:

(a) x ∈ X (k) for all t ≥ tk;

(b) For all t in the set of update times for agent i, with t ≥ tk and all i ∈ N , we

have xi(t) ∈ X (k), where

xi(t) =
(
x1

1(τ i
1(t)), . . . , xN

N(τ i
N(t))

)
. (B.8)

In words, after some time, all solution estimates will be in X (k) and all estimates

used in iteration B.4 will come from X (k).

The induction hypothesis in (a)-(b) is true for k = 0, since the initial estimate

is assumed to be in X◦. Assuming it is true for a given k, we will show that there

exists a time tk+1 with the required properties. For each i ∈ N , let ti be the first

element in the set of times at which agent i is updated, such that ti ≥ tk. Then,

by the Synchronous Convergence Condition in item (M1) of Assumption B.1.1,

we have g(xi(ti)) ∈ X (k + 1). This implies, in view of the Box Condition in item

(M2) of Assumption B.1.1, that

xi
i(ti + 1) = gi

i(xi(ti)) ∈ Xi(k + 1). (B.9)

286

Similarly, for every t in the set of update times for agent i such that t ≥ ti, we

have xi
i(t+1) ∈ Xi(k+1). Between elements t in the set of update times for agent

i, xi
i(t) does not change. Thus,

xi
i(t) ∈ Xi(k + 1)) (B.10)

for all t ≥ ti + 1.

Let t′k := maxi{ti} + 1. Then, using the Box Condition in item (M2) of

Assumption B.1.1, we have

xi(t) ∈ X (k + 1) (B.11)

for all t ≥ t′k.

Finally, since by Assumption 8.4.2, we have τ i
ℓ → ∞ as t → ∞, where t is in

the set of update times for agent i, then we can choose a time tk+1 ≥ t′k that is

sufficiently large so that τ i
ℓ ≥ t′k for all i, ℓ ∈ N and all t in the set of update times

for agent i with t ≥ tk+1. We then have xℓ
ℓ(τ i

ℓ(t)) ∈ Xℓ(k+ 1) for all t in the set of

update times for agent i with t ≥ tk+1 and all ℓ ∈ N , which by the Box Condition

in item (M2) of Assumption B.1.1 implies that, at time t,

xi(t) =
(
xi

1(τ i
1(t)), . . . , xi

N(τ i
N(t))

)
∈ X (k + 1) (B.12)

and the induction is complete.

287

Appendix C

General Results on Optimality

and Projection

C.1 Optimality Conditions and Projection The-

orem

In [59, Chapter 3, Proposition 3.1], necessary and sufficient conditions for a

vector x ∈ X to be optimal are listed. They are as follows

Proposition C.1.1. (Optimality conditions): Let f satisfy Assumption 8.2.3 and

let X be nonempty, compact, and convex. Then, the following hold:

(O1) If a vector ξ ∈ X minimizes f over X, then ⟨y − ξ,∇f(ξ)⟩ ≥ 0 for all

y ∈ X;

(O2) If f is also convex on the set X, then the condition of part (O1) is also

sufficient for ξ to minimize f over X.

A useful property of projection is also stated in [59, Chapter 3, Proposi-

tion 3.2(b)-(c)], which is as follows.

288

Proposition C.1.2. (Projection theorem, parts (b) and (c)): Let f satisfy As-

sumption 8.2.3 and let X be nonempty, compact, and convex. Then,

(P1) Given some v ∈ Rn, a vector u ∈ X is equal to ΠX [v] if and only if

⟨y − u, v − u⟩ ≤ 0 for all y ∈ X;

(P2) ΠX [v] is continuous and nonexpansive, that is, for all v, y ∈ Rn,

|ΠX [v] − ΠX [y]| ≤ |v − y|.

289

Appendix D

Code for Numerical Examples

Most of the numerical examples in this dissertation were simulated in MAT-

LAB, using the the Hybrid Equation (HyEQ) Toolbox version 2.0.4. The Hybrid

Equation (HyEQ) Toolbox can be downloaded for free from

https://www.mathworks.com/matlabcentral/fileexchange/

41372-hybrid-equations-toolbox-v2-04.

Code for each of the numerical examples simulated in MATLAB can be found

at the following GitHub repositories.

• Figure 1.1: github.com/HybridSystemsLab/UnitingMotivationHBF

• Figure 1.2: github.com/HybridSystemsLab/UnitingMotivationSC

• Figure 1.3: github.com/HybridSystemsLab/UnitingMotivation

• Figure 1.4 and Example 5.2.7:

gitHub.com/HybridSystemsLab/UnitingTradeoff

• Figure 1.5: github.com/HybridSystemsLab/RobustnessHeavyBall

• Example 4.3.4: github.com/HybridSystemsLab/UnitingLevelSetsHBF

290

• Example 4.4.5: github.com/HybridSystemsLab/UnitingRobustnessHBF

• Example 4.4.6: github.com/HybridSystemsLab/UnitingGradientsHBF

• Example 5.1.5: github.com/HybridSystemsLab/UnitingRobustnessSC

• Example 5.1.6: github.com/HybridSystemsLab/UnitingSC

• Example 5.2.5: gitHub.com/HybridSystemsLab/UnitingRobustness

• Example 5.2.6: gitHub.com/HybridSystemsLab/UnitingNSC

• Example 7.5.1: github.com/HybridSystemsLab/PGASHeavyBall

The numerical examples for the totally asynchronous heavy ball algorithm

were simulated using Python 3, with the following installed package and libraries.

• NumPy: https://numpy.org

• Matplotlib: https://matplotlib.org/

• Seaborn: https://seaborn.pydata.org/

Code for the numerical examples simulated in Python 3 can be found at the

following GitHub repository.

• Figure 1.6 and 8.1: github.com/HybridSystemsLab/MultiagentHBF

291

Bibliography

[1] Simon Michalowsky and Christian Ebenbauer. The multidimensional n-th
order heavy ball method and its application to extremum seeking. In 53rd
IEEE Conference on Decision and Control, pages 2660–2666, 2014.

[2] Euhanna Ghadimi. Accelerating convergence of large-scale optimization algo-
rithms. PhD thesis, KTH Royal Institute of Technology, 2015.

[3] Jia Liu, Atilla Eryilmaz, Ness B Shroff, and Elizabeth S Bentley. Heavy-
ball: A new approach to tame delay and convergence in wireless network
optimization. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE, 2016.

[4] Gianluca Bianchin, Jorge I Poveda, and Emiliano Dall’Anese. Online opti-
mization of switched lti systems using continuous-time and hybrid accelerated
gradient flows. arXiv preprint arXiv:2008.03903, 2020.

[5] Marcello Colombino, Emiliano Dall’Anese, and Andrey Bernstein. Online
optimization as a feedback controller: Stability and tracking. IEEE Trans-
actions on Control of Network Systems, 7(1):422–432, 2019.

[6] Sandeep Menta, Adrian Hauswirth, Saverio Bolognani, Gabriela Hug, and
Florian Dörfler. Stability of dynamic feedback optimization with applications
to power systems. In 2018 56th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pages 136–143. IEEE, 2018.

[7] Gianluca Bianchin and Fabio Pasqualetti. Gramian-based optimization for
the analysis and control of traffic networks. IEEE Transactions on Intelligent
Transportation Systems, 21(7):3013–3024, 2019.

[8] Ronny Kutadinata, Will Moase, Chris Manzie, Lele Zhang, and Tim Garoni.
Enhancing the performance of existing urban traffic light control through
extremum-seeking. Transportation Research Part C: Emerging Technologies,
62:1–20, 2016.

292

[9] Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson.
Global convergence of the heavy-ball method for convex optimization. In
14th IEEE European Control Conference, pages 310–315, 2015.

[10] Stefano Sarao Mannelli and Pierfrancesco Urbani. Analytical study of
momentum-based acceleration methods in paradigmatic high-dimensional
non-convex problems. Advances in Neural Information Processing Systems,
34, 2021.

[11] Guilherme Franca, Daniel P Robinson, and Rene Vidal. A dynamical sys-
tems perspective on nonsmooth constrained optimization. arXiv preprint
arXiv:1808.04048, 2018.

[12] Michael Muehlebach and Michael Jordan. A dynamical systems perspective
on nesterov acceleration. In International Conference on Machine Learning,
pages 4656–4662. PMLR, 2019.

[13] Boris Polyak and Pavel Shcherbakov. Lyapunov functions: an optimization
theory perspective. IFAC-PapersOnLine, 50(1):7456–7461, 2017.

[14] Hedy Attouch, Xavier Goudou, and Patrick Redont. The heavy ball with
friction method, I. the continuous dynamical system: global exploration of the
local minima of a real-valued function by asymptotic analysis of a dissipative
dynamical system. Communications in Contemporary Mathematics, 2(01):1–
34, 2000.

[15] Weijie Su, Stephen Boyd, and Emmanuel J Candès. A differential equation
for modeling nesterov’s accelerated gradient method: Theory and insights.
The Journal of Machine Learning Research, 17(1):5312–5354, 2016.

[16] Walid Krichene, Alexandre Bayen, and Peter Bartlett. Accelerated mirror
descent in continuous and discrete time. Advances in neural information
processing systems, 28:2845–2853, 2015.

[17] Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational per-
spective on accelerated methods in optimization. Proceedings of the National
Academy of Sciences, 113(47):E7351–E7358, 2016.

[18] Ashia C Wilson, Ben Recht, and Michael I Jordan. A lyapunov analysis of
accelerated methods in optimization. Journal of Machine Learning Research,
22(113):1–34, 2021.

[19] Arman Sharifi Kolarijani, Peyman Mohajerin Esfahani, and Tamás Keviczky.
Continuous-time accelerated methods via a hybrid control lens. IEEE Trans-
actions on Automatic Control, pages 3425–3440, October 2019.

293

[20] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid dynamical
systems. IEEE Control Systems, 29(2):28–93, 2009.

[21] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, New Jersey,
2012.

[22] Ricardo G. Sanfelice. Hybrid Feedback Control. Princeton University Press,
New Jersey, 2021.

[23] Boris T Polyak. Some methods of speeding up the convergence of itera-
tion methods. USSR Computational Mathematics and Mathematical Physics,
4(5):1–17, 1964.

[24] Justin H Le and Andrew R Teel. Hybrid heavy-ball systems: reset methods
for optimization with uncertainty. In 2021 American Control Conference
(ACC), pages 2236–2241. IEEE, 2021.

[25] Othmane Sebbouh, Ch Dossal, and Aude Rondepierre. Convergence rates
of damped inertial dynamics under geometric conditions and perturbations.
SIAM Journal on Optimization, 30(3):1850–1877, 2020.

[26] Simon Michalowsky and Christian Ebenbauer. Extremum control of linear
systems based on output feedback. In 55th IEEE Conference on Decision
and Control, pages 2963–2968, 2016.

[27] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design
of optimization algorithms via integral quadratic constraints. SIAM Journal
on Optimization, 26(1):57–95, 2016.

[28] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods
of smooth convex optimization with inexact oracle. Mathematical Program-
ming, 146(1-2):37–75, 2014.

[29] Nicolas Flammarion and Francis Bach. From averaging to acceleration, there
is only a step-size. In Conference on Learning Theory, pages 658–695, 2015.

[30] Yurii E Nesterov. A method for solving the convex programming problem
with convergence rate O

(
1

k2

)
. In Dokl. Akad. Nauk SSSR, volume 269, pages

543–547, 1983.

[31] Arman Sharifi Kolarijani, Peyman Mohajerin Esfahani, and Tamas Keviczky.
Fast gradient-based methods with exponential rate: A hybrid control frame-
work. In International Conference on Machine Learning, pages 2728–2736,
2018.

294

[32] Jorge I Poveda and Na Li. Inducing uniform asymptotic stability in non-
autonomous accelerated optimization dynamics via hybrid regularization. In
2019 IEEE 58th Conference on Decision and Control (CDC), pages 3000–
3005. IEEE, 2019.

[33] Andrew R Teel, Jorge I Poveda, and Justin Le. First-order optimization
algorithms with resets and hamiltonian flows. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 5838–5843. IEEE, 2019.

[34] D. M. Hustig-Schultz and R. G. Sanfelice. A robust hybrid heavy ball al-
gorithm for optimization with high performance. In 2019 American Control
Conference (ACC), pages 151–156, 2019.

[35] Jorge I Poveda and Andrew R Teel. The heavy-ball ODE with time-varying
damping: Persistence of excitation and uniform asymptotic stability. In 2020
American Control Conference (ACC), pages 773–778. IEEE, 2020.

[36] Jelena Diakonikolas and Michael I Jordan. Generalized momentum-based
methods: A hamiltonian perspective. SIAM Journal on Optimization,
31(1):915–944, 2021.

[37] Jorge I Poveda and Na Li. Robust hybrid zero-order optimization algorithms
with acceleration via averaging in time. Automatica, 123:109361, 2021.

[38] Bryan Van Scoy, Randy A Freeman, and Kevin M Lynch. The fastest known
globally convergent first-order method for minimizing strongly convex func-
tions. IEEE Control Systems Letters, 2(1):49–54, 2017.

[39] Boya Sun, Jemin George, and Solmaz Kia. High-resolution modeling of the
fastest first-order optimization method for strongly convex functions. In 2020
59th IEEE Conference on Decision and Control (CDC), pages 4237–4242.
IEEE, 2020.

[40] SK Zavriev and FV Kostyuk. Heavy-ball method in nonconvex optimization
problems. Computational Mathematics and Modeling, 4(4):336–341, 1993.

[41] Sébastien Gadat, Fabien Panloup, Sofiane Saadane, et al. Stochastic heavy
ball. Electronic Journal of Statistics, 12(1):461–529, 2018.

[42] Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock. ipiano: Inertial
proximal algorithm for nonconvex optimization. SIAM Journal on Imaging
Sciences, 7(2):1388–1419, 2014.

[43] Thomas Pock and Shoham Sabach. Inertial proximal alternating linearized
minimization (ipalm) for nonconvex and nonsmooth problems. SIAM Journal
on Imaging Sciences, 9(4):1756–1787, 2016.

295

[44] Radu Ioan Boţ, Ernö Robert Csetnek, and Szilárd Csaba László. An inertial
forward–backward algorithm for the minimization of the sum of two noncon-
vex functions. EURO Journal on Computational Optimization, 4(1):3–25,
2016.

[45] Tom Strizic, Jorge I Poveda, and Andrew R Teel. Hybrid gradient descent
for robust global optimization on the circle. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 2985–2990. IEEE, 2017.

[46] Matina Baradaran, Jorge I Poveda, and Andrew R Teel. Stochastic hybrid
inclusions applied to global almost sure optimization on manifolds. In 2018
IEEE Conference on Decision and Control (CDC), pages 6538–6543. IEEE,
2018.

[47] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for
global optimization in Rn. SIAM Journal on Control and Optimization,
25(3):737–753, 1987.

[48] Hongbin Wang and Paul C Miller. Scaled heavy-ball acceleration of the
richardson-lucy algorithm for 3d microscopy image restoration. IEEE Trans-
actions on Image Processing, 23(2):848–854, 2013.

[49] Peter Ochs, Thomas Brox, and Thomas Pock. ipiasco: inertial proximal
algorithm for strongly convex optimization. Journal of Mathematical Imaging
and Vision, 53(2):171–181, 2015.

[50] Katherine Hendrickson and Matthew Hale. Towards totally asynchronous
primal-dual optimization in blocks. arXiv preprint arXiv:2004.05142, 2020.

[51] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms.
IEEE transactions on automatic control, 31(9):803–812, 1986.

[52] Yurii Nesterov. Introductory lectures on convex optimization, vol. 87, 2004.

[53] Jingzhao Zhang, César A Uribe, Aryan Mokhtari, and Ali Jadbabaie. Achiev-
ing acceleration in distributed optimization via direct discretization of the
heavy-ball ode. In 2019 American Control Conference (ACC), pages 3408–
3413. IEEE, 2019.

[54] Huaqing Li, Huqiang Cheng, Zheng Wang, and Guo-Cheng Wu. Dis-
tributed nesterov gradient and heavy-ball double accelerated asynchronous
optimization. IEEE Transactions on Neural Networks and Learning Systems,
32(12):5723–5737, 2020.

296

[55] Annie I Chen and Asuman Ozdaglar. A fast distributed proximal-gradient
method. In 2012 50th Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton), pages 601–608. IEEE, 2012.

[56] Daniel E Ochoa, Jorge I Poveda, César A Uribe, and Nicanor Quijano. Ro-
bust optimization over networks using distributed restarting of accelerated
dynamics. IEEE Control Systems Letters, 5(1):301–306, 2020.

[57] Alex Olshevsky. Linear time average consensus and distributed optimization
on fixed graphs. SIAM Journal on Control and Optimization, 55(6):3990–
4014, 2017.

[58] Dušan Jakovetić, Joao Xavier, and José MF Moura. Fast distributed gradient
methods. IEEE Transactions on Automatic Control, 59(5):1131–1146, 2014.

[59] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed compu-
tation: numerical methods, volume 23. Prentice hall Englewood Cliffs, NJ,
1989.

[60] Dimitri P Bertsekas. Distributed asynchronous computation of fixed points.
Mathematical Programming, 27(1):107–120, 1983.

[61] Stefan Hochhaus and Matthew T Hale. Asynchronous distributed optimiza-
tion with heterogeneous regularizations and normalizations. In 2018 IEEE
Conference on Decision and Control (CDC), pages 4232–4237. IEEE, 2018.

[62] Matthew Ubl and Matthew T Hale. Totally asynchronous distributed
quadratic programming with independent stepsizes and regularizations. In
2019 IEEE 58th Conference on Decision and Control (CDC), pages 7423–
7428. IEEE, 2019.

[63] MT Hale and Magnus Egerstedt. Cloud-based optimization: A quasi-
decentralized approach to multi-agent coordination. In 53rd IEEE Conference
on Decision and Control, pages 6635–6640. IEEE, 2014.

[64] Matthew T Hale, Angelia Nedić, and Magnus Egerstedt. Asynchronous mul-
tiagent primal-dual optimization. IEEE Transactions on Automatic Control,
62(9):4421–4435, 2017.

[65] Jayash Koshal, Angelia Nedić, and Uday V Shanbhag. Multiuser optimiza-
tion: Distributed algorithms and error analysis. SIAM Journal on Optimiza-
tion, 21(3):1046–1081, 2011.

[66] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

297

[67] Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth,
and linear convergence of proximal methods. Mathematics of Operations
Research, 2018.

[68] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gra-
dient and proximal-gradient methods under the polyak-łojasiewicz condition.
In Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pages 795–811. Springer, 2016.

[69] Ion Necoara, Yu Nesterov, and Francois Glineur. Linear convergence of first
order methods for non-strongly convex optimization. Mathematical Program-
ming, 175(1-2):69–107, 2019.

[70] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent:
Parallelism and convergence properties. SIAM Journal on Optimization,
25(1):351–376, 2015.

[71] A. S. Kolarijani, P. M. Esfahani, and T. Keviczky. Continuous-time accel-
erated methods via a hybrid control lens. IEEE Transactions on Automatic
Control, 65(8):3425–3440, 2020.

[72] Michèle Audin and Mihai Damian. Morse Theory and Floer Homology.
Springer, 2014.

[73] Ron Larson, Robert Hostetler, and Bruce H Edwards. Calculus: Early tran-
scendental functions. Houghton Mifflin, 4th edition, 2007.

[74] Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

[75] Ricardo G Sanfelice, Rafal Goebel, and Andrew R Teel. Invariance principles
for hybrid systems with connections to detectability and asymptotic stability.
IEEE Transactions on Automatic Control, 52(12):2282–2297, 2007.

[76] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317.
Springer Science & Business Media, 2009.

[77] H. K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River, New
Jersey, 3 edition, 2002.

[78] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I
Jordan. How to escape saddle points efficiently. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1724–1732.
JMLR. org, 2017.

[79] Othmane Sebbouh, Charles Dossal, and Aude Rondepierre. Nesterov’s accel-
eration and polyak’s heavy ball method in continuous time: convergence rate
analysis under geometric conditions and perturbations. July 2019.

298

[80] Gabriel Behrendt and Matthew Hale. Technical report: A totally asyn-
chronous algorithm for tracking solutions to time-varying convex optimization
problems. arXiv preprint arXiv:2110.06705, 2021.

[81] Brendan O’donoghue and Emmanuel Candes. Adaptive restart for accelerated
gradient schemes. Foundations of computational mathematics, 15(3):715–732,
2015.

[82] Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz,
Michael I Jordan, and Benjamin Recht. First-order methods almost always
avoid strict saddle points. Mathematical programming, 176(1):311–337, 2019.

[83] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle
points—online stochastic gradient for tensor decomposition. In Conference
on learning theory, pages 797–842. PMLR, 2015.

[84] Matthew Ubl, Kasra Yazdani, and Matthew T Hale. Linear regularizers
enforce the strict saddle property. arXiv preprint arXiv:2205.09160, 2022.

[85] John Milnor. Lectures on the h-cobordism theorem, volume 2258. Princeton
university press, 2015.

299

	List of Figures
	List of Tables
	List of Symbols
	Abstract
	Dedication
	Acknowledgments
	Introduction and Motivation
	Overview of the Work
	Uniting Heavy Ball Algorithms for Performance Improvement
	Related Work
	Motivation
	Contributions

	Uniting Nesterov's Method and the Heavy Ball Method for Performance Improvement
	Related Work
	Motivation
	Contributions For Strongly Convex L
	Contributions For Nonstrongly Convex L

	A Uniting Framework for Performance Improvement
	Related Work
	Motivation
	Contributions

	Hybrid Optimization for Nonconvex Problems
	Related Work
	Motivation
	Contributions

	A Totally Asynchronous, Block-Based Heavy Ball Algorithm for Convex Optimization
	Related Work
	Motivation
	Contributions

	Organization

	Preliminaries
	Hybrid Systems
	Optimization
	Morse Theory
	Nonsmooth Lyapunov Functions
	Mean Value Theorem
	Properties of Sets
	Difference Inclusions

	Accelerated Gradient Algorithms Modeled as Dynamical Systems
	Nesterov's Accelerated Gradient Descent Modeled as a Dynamical System
	Strongly Convex L
	Nonstrongly Convex L
	Extensions of the Results for Nonstrongly Convex L

	The Heavy Ball Method Modeled as a Dynamical System
	Strongly Convex L
	Nonstrongly Convex L
	Extensions of the Results for Nonstrongly Convex L
	Nonconvex L

	Uniting Heavy Ball Algorithms
	Problem Statement
	Modeling
	Uniting Heavy Ball Methods Using Measurements of L and L
	Design of the Sets U0 and T1,0
	Design of the Parameter q
	Well-posedness of the Hybrid Closed-Loop System H
	Existence of solutions to H
	Main Result
	Numerical Example

	Uniting Heavy Ball Methods Using Measurements of L
	Design of U0
	Design of T1,0
	Design of T0,1
	Well-posedness of the Hybrid Closed-Loop System H
	Existence of solutions to H
	Main Result
	Numerical Examples

	Extensions

	Uniting Nesterov's Method and the Heavy Ball Method
	Strongly Convex L
	Problem Statement
	Modeling
	Design of U0
	Design of T1,0
	Design of T0,1
	Design of the Parameter
	Well-posedness of the Hybrid Closed-Loop System H
	Existence of Solutions to H
	Main Result
	Numerical Examples

	Nonstrongly Convex L
	Problem Statement
	Modeling
	Design of the Set U0
	Design of the Set T1,0
	Design of the Set T0,1
	Well-posedness of the Hybrid Closed-Loop System H
	Existence of Solutions to H
	Main Result
	Numerical Examples
	Extensions

	Uniting Framework for Accelerated Optimization
	Problem Statement
	Hybrid Uniting Framework for Accelerated Gradient Methods
	Modeling
	Design
	Basic Properties of H

	Examples for Applying the framework
	Uniting Heavy Ball Algorithms
	Uniting Nesterov's Method and the Heavy Ball Method for Strongly Convex L
	Uniting Nesterov's Method and the Heavy Ball Method for Nonstrongly Convex L

	Uniting Other Gradient Algorithms

	Hybrid Accelerated Optimization for Nonconvexity
	Problem Statement
	Design
	Hybrid System Model of the Proposed Algorithm
	Main Result
	Numerical Example

	Accelerated Multiagent Optimizaton
	Problem Statement
	Synchronous Heavy Ball
	Modeling
	Results for Algorithm 6

	Synchronous, Double-Update Heavy Ball
	Modeling
	Results for Algorithm 7

	Asynchronous, Double-Update Heavy Ball
	Modeling
	Forward Invariance of (XX)N for Algorithm 8
	Convergence rate of Algorithm 8

	Numerical Example

	Conclusion
	Summary
	Future Directions

	General Results on Hybrid Systems
	Existence of Solutions, Stability, and Invariance

	General Results on Totally Asynchronous Multiagent Algorithms
	Totally Asynchronous Convergence

	General Results on Optimality and Projection
	Optimality Conditions and Projection Theorem

	Code for Numerical Examples
	Bibliography

