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Toward Boundedly Rational Analysis
Thomas Icard (icard@cmu.edu)

Department of Philosophy, Baker Hall 135
Carnegie Mellon, Pittsburgh, PA 15213-3890 USA

Abstract

The Bayesian program in cognitive science has been subject to
criticism, due in part to puzzles about the role of rationality and
approximation. While somewhat sympathetic with these con-
cerns, I propose that a thoroughgoing boundedly rational anal-
ysis strategy can answer to some of them. Through simulation
results I illustrate the method by showing how one can retrod-
ict recently reported results about particle filter models of cat-
egorization (Sanborn et al., 2010). I also introduce new obsta-
cles that surface once we take bounded rationality seriously.
Specifically, again through simulation, I show that the analy-
sis of optimal sampling from Vul et al. (2014) is interestingly
complicated by the introduction of agents capable of metarea-
soning. Under broad conditions, such agents outperform all
uniform k-sampling agents. This motivates the computational
study of boundedly rational metareasoning in its own right.
Keywords: rational analysis, bounded rationality, algorithmic
level, sampling, categorization, metareasoning.

The Rational Analysis Strategy
The program of rational analysis, pioneered by Marr and Pog-
gio (1976), and greatly extended by Anderson (1990), seeks
to understand cognition in terms of rational solutions to un-
derlying problems the mind is assumed to be solving. Many
cognitive phenomena can be characterized as inference prob-
lems under uncertainty, where some latent state must be in-
ferred on the basis of observed information. For such prob-
lems Bayesian methods provide a robust and well understood
notion of optimality or rationality (DeGroot, 2004). Bayesian
models of cognition have become increasingly popular in re-
cent years, and have been applied to phenomena as diverse
as vision, causal learning, language understanding, and in-
tuitive physics (see Griffiths et al. 2008; Tenenbaum et al.
2011). This work typically understands inference as condi-
tionalization on a probability distribution assumed to capture
the subject’s ‘intuitive model’ of the situation or domain.

Rational analysis, and the Bayesian instantiation thereof, is
sometimes used to show in what sense a given behavior can
be understood as rational. Even when we have a mechanistic
understanding of how some cognitive function works, a ratio-
nal analysis can shed light on why it works the way it does,
often generating new testable predictions (e.g., Movellan and
McClelland 2001). A more ambitious use of the method is in
guiding our search for mechanisms in the first place. Indeed,
one of the motivations behind Marr and Poggio’s and An-
derson’s proposals was to narrow down the search space of
cognitive models, by assuming that the right model must be
one that at least approximately solves the underlying (e.g., in-
ference) problem. In that way, progress on the computational
level problem (Marr, 1982)—in addition to being worthwhile
in its own right—may also promise progress in the search for
more mechanistic, biologically detailed, models of cognition.

Anderson (1990) proposed his often-rehearsed six steps
comprising the rational analysis strategy:

1. Precisely specify the goals of the cognitive system.

2. Develop a formal model of the environment to which the
system is adapted.

3. Make minimal assumptions on computational limitations.

4. Derive the optimal behavior given items 1 through 3.

5. Examine the empirical literature to see if the predictions of
the behavioral function are confirmed.

6. If the predictions are off, iterate.

He then illustrated the methodology with four example do-
mains: memory retrieval, category learning, judging causal
strength, and problem solving (i.e., decision making). In each
case, he was able to show a good fit to a wide range of data,
demonstrating that the strategy can be successful.

Anderson’s Rational Model of Categorization
As a running example, consider Anderson’s (1990; 1991)
analysis of categorization. One may object to some of the
assumptions behind the model, but categorization per se is
not our focus—it is merely intended as a useful illustration.

A subject is assumed to observe a sequence of objects with
various combinations of features; upon observing a new ob-
ject, the subject needs to make an inference about an unob-
served feature. Let Yi be the value of the feature of interest for
the ith observed object, and let Xi be the ith vector of values
for the remaining features. Let us furthermore abbreviate the
conjunction of the first n values, Y1, . . . ,Yn and X1, . . . ,Xn, as
YN and XN , respectively. The problem facing the subject is to
infer the value of Yn, given observations of XN and YN−1, i.e.,
to find the value of Yn that maximizes the posterior probability
P(Yn | XN ,YN−1) of Yn given XN and YN−1.

Anderson argued that the ideal way to determine such
probabilities would be to consider all possible clusterings of
the first n objects, figuring out the probability of each, and
using the clusterings to determine the probability of Yn given
Xn. In other words, one must determine the value of a latent
variable Zn, which corresponds to a clustering of the n ob-
jects observed so far. Then we can determine the posterior
probabilities by summing over the possible clusterings:

P(Yn | XN ,YN−1) = ∑
Zn

P(Yn | Zn) P(Zn | XN ,YN−1) . (1)

P(Zn | XN ,YN−1) is given in terms of Bayes Rule:

P(Zn | XN ,YN−1) ∝ P(XN ,YN−1 | Zn) P(Zn) . (2)
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The first term is just the likelihood of the features given a
clustering, which we also need to compute P(Yn | Zn) in Eq.
(1). It is given by a beta distribution (features are assumed to
be independent, conditional on a clustering):

P(Yk = v|Zn) =
#v +β

#+2β
.

Here # is the number of objects Zn clusters together with the
kth object; and #v is the number of those objects in the same
cluster that have v as their Y -value.

The prior term for P(Zn) has one free parameter c, the cou-
pling parameter, which determines how likely an object is to
belong to a new clustering. The explicit form of the prior
is rather complicated (see Anderson 1990, 1991 or Sanborn
et al. 2010); it is easiest to understand as resulting from a se-
quential process so that clustering Zn+1 extends Zn with dis-
tribution P(Zn+1 = j|Zn), given by cases:{ c·M j

(1−c)+c·n if j assigns the new object to an old cluster
1−c

(1−c)+c·n if j assigns the new object to a new cluster

M j is the number of objects already in the cluster to which j
assigns the new object, according to Zn. With this prior, the
more often objects are categorized as part of a particular clus-
ter, the more likely new objects are to fall under that cluster.

The computations required by Eq. (1) are intractable. As
Anderson pointed out, the number of clusterings Zn grows ex-
ponentially. For n = 10, there are already 115,975 possible
clusterings, making the sum in Eq. (1) prohibitive in all but
the simplest of cases. This is not an atypical feature of ‘ide-
ally rational’ Bayesian models. Step 3 of the methodology
above says to make minimal assumptions on such limitations.
In addition to the constraint that the required computations
should be tractable, Anderson also assumed that at any given
time, a subject ought to have settled on a particular clustering
of objects seen so far, so that as new objects are observed, the
only question is how to extend that partition to include the
new object. This led him to the following proposal:

LOCAL MAP ALGORITHM: Upon observation of a new
object with features Xn, let Z∗n be the extension of the
current partition Zn−1 that maximizes P(Zn |XN ,YN−1).
One can then estimate P(Yn | XN ,YN−1) by calculating:

P̃(Yn | XN ,YN−1) = P(Yn | Z∗n) P(Z∗n | XN ,YN−1) . (3)

That is, instead of summing over all partitions every time one
needs to make a prediction, Anderson’s local algorithm has
the subject deterministically choosing the maximum a poste-
riori (MAP) partition following each new data point. Eq. (3)
is supposed to be a tractable version of Eq. (1).

Anderson showed that his local MAP algorithm was able
to account for a wide array of empirical phenomena collected
from over two decades of work on categorization, including
order effects, prototype effects, the relative ease of learning
different categories of Boolean concepts, and several more
(see Anderson 1990, 1991 for discussion).

Rationality and Approximation: Criticisms
Despite its success in modeling diverse cognitive phenomena,
the Bayesian program as a whole has come under criticism
recently (Jones and Love, 2011; Eberhardt and Danks, 2011;
Bowers and Davis, 2012; Marcus and Davis, 2013). My focus
here will be on two recurrent themes of this criticism.

In light of the intractability of computations like that in (1)
above, one might wonder what role these ‘ideal Bayesian’
models are supposed to play. As the categorization example
demonstrates, so far as concrete mechanisms are concerned,
the ideal model can at best help focus our search for tractable
models, as approximations to that ideal. Once we give up on
the ideal as a model for the cognitive mechanism, however,
one might reasonably worry that the link to rationality is sev-
ered. If people are approximating Bayesian solutions, then in
what sense is their behavior really Bayesian? More broadly,
in what sense is a Bayesian approximation rational?

This worry is coupled with a related, empirical criticism.
In much of the experimental data used to support Bayesian
models, the distribution of responses is shown to match the
posterior distribution for the proposed model. On the face of
it, this looks like a disconfirmation that people’s individual
behavior is Bayesian. Assuming MAP inference is the ideal,
it would appear that most individual subjects are behaving
irrationally. This raises the challenge of specifying when a
given Bayesian analysis is vindicated by the data, and when
people’s behavior has been genuinely rationalized. If the hy-
pothesis that people are (in an appropriate sense) Bayesian is
to be falsifiable, it must be possible to find instances where a
Bayesian analysis would be inappropriate.

The Sampling Hypothesis
These criticisms have been partially addressed by a line of
work proposing that people do not explicitly calculate poste-
rior distributions, but rather sample from the appropriate pos-
teriors. This Sampling Hypothesis (e.g., Vul et al. 2014) ac-
counts for posterior matching under the assumption that each
subject in an experiment is drawing relatively few, e.g., one
or two, samples from the normative posterior.

Moreover, this behavior can be rationalized in a certain
sense. Assuming additional samples from a distribution come
at a cost, under certain further assumptions about the utilities
and probabilities, Vul et al. (2014) showed that it can be opti-
mal to draw only a single sample before making a decision.

In addition to the generic posterior matching phenomenon,
concrete sampling algorithms, e.g., based on Markov chain
Monte Carlo, have been used to explain more specific cog-
nitive phenomena (for many references, see Griffiths et al.
2008; Tenenbaum et al. 2011), including in categorization.

Sanborn et al. (2010), for example, showed that the fit
of Anderson’s model to the data on categorization could be
improved by replacing his Local MAP Algorithm with one
based on the particle filter. Instead of choosing the MAP
clustering at each stage, the subject maintains at any given
time a set of R ‘particles’, each corresponding to a clustering,
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and bases inferences on the whole set:

PARTICLE FILTER ALGORITHM (SANBORN ET AL.):
Upon observation of a new object with features Xn, draw
samples Z(1)

n , . . . ,Z(R)
n from P(Zn | XN ,YN−1). One can

then approximate P(Yn | XN ,YN−1) by calculating:

P̃(Yn |XN ,YN−1) =
R

∑
r=1

P(Yn | Z
(r)
n )P(Z(r)

n |XN ,YN−1) . (4)

They compared the MAP Algorithm with the cases of R = 1
and R= 100 particles. For several empirical findings, all three
provided a good fit. For order effects, the single-particle-
filter and the MAP algorithm were closer to the human data
than the 100-particle-filter. However, one characteristic of a
particle filter with few particles—not possessed by the MAP
algorithm—is its ability to predict individual variation. In
line with the posterior matching behavior described above,
when two clusterings Z and Z′ have roughly equal probabil-
ity, but that of Z is marginally higher, the MAP algorithm
will always settle on Z, while the R-particle-filter will noisily
choose between Z and Z′. This behavior is in fact borne out in
the experiments that Anderson himself described. Thus, the
particle filter algorithm—also touted as being more rational
than the MAP algorithm, as it is an approximation to the ideal
model in a precise sense—models the human data at least as
well as the MAP algorithm, and in some ways even better.

Does Sampling Answer to the Criticisms?
The Sampling Hypothesis goes some way toward answering
the criticisms described above. However, it leaves some im-
portant questions unanswered. First, the result from Vul et al.
(2014)—that it may be optimal to draw only a few samples—
assumes from the start that an agent will make its decision
on the basis of some number of samples from a given model.
In particular, the analysis does not compare drawing samples
from the model with any other non-sampling algorithms. Un-
less we have some independent reason for assuming sampling
is the only candidate algorithm, this strategy does not prop-
erly follow step 4 of Anderson’s program.

The same worry applies to both the MAP and particle fil-
ter approximations to the rational model of categorization.
Anderson (1991) made some informal remarks about why
the MAP algorithm is rational, perhaps even optimal given
certain constraints (412); and Sanborn et al.’s (2010) model
is pitched as a ‘more rational approximation’ because (4)
asymptotically converges to the ideal (1). However, neither
has given a convincing argument for why one or the other
is rational in any sense we would care about. Why would
an agent using an approximation to the model in (1) be well
adapted to its environment? In particular, why would such an
agent be better adapted than one who uses some other algo-
rithm that does not approximate the ideally rational model?

Boundedly Rational Analysis
It is commonly assumed that a computational level analysis
constrains the algorithmic level analysis. This is not always

reasonable, however. Sometimes, once computational costs
are properly taken into account, the optimal algorithm looks
nothing like the ideal model or any straightforward approxi-
mation thereto (examples to follow).

One of the primary messages of this paper is that, once we
take costs seriously, we should no longer think of the ‘prob-
lem being solved’ as being one of pure inference, inherited
from the computational level; instead we should think of the
algorithmic problem to be solved as one of constraint opti-
mization: make the best guess subject to memory, time, en-
ergy, and other cost constraints. This idea is of course familiar
from early work by Simon (1957), and emphasized by many
since (e.g., Gigerenzer and Goldstein 1996). The ideal model
in (1) epitomizes what Simon referred to as a substantively ra-
tional solution. What we want, as part of a rational analysis,
is a boundedly rational, or procedurally rational, solution.

Sketch of a Theory of Bounded Rationality
Let us model an agent’s environment using a prior probability
distribution P(H) over latent states of the world H, together
with a likelihood function P(D1, . . . ,Dn|H) for sequences of
n observations. Thus, upon making the first n observations
D = D1, . . . ,Dn, the posterior probability for H is given by
Bayes Rule: P(H|D) ∝ P(D|H) P(H) . Our agent will face
a decision problem, with some set A = {A1, . . . ,Am, . . .} of
possible actions, and a utility u(Ai,H) ∈ R for all Ai ∈ A and
each value of H. Call the initial distribution, a sequence of
observations, and a decision problem together a scenario.

Making no assumptions about the agent’s computational
limitations, we can define an agent function α to be a mapping
from observations D to a distribution α(D) over A . That is,
α(D) assigns a probability to each Ai ∈A . The fitness φ of an
agent function α is given by:

φ(α) = ∑
H

P(H) ·∑
D

P(D|H) ·∑
j

α(D)(A j) ·u(A j,H) (5)

Nature chooses a state H and generates some observations D
based on H; then the agent must take an action Ai; the payoff
is the weighted sum of utility for each of the actions it might
take. When it exists, an optimal (highest fitness) agent func-
tion α∗ is one that never chooses an action Ai whose expected
utility under the posterior distribution (conditioned on D) is
dominated by another action A j:

OPTIMAL AGENT FUNCTIONS: α∗ is optimal if for all
Ai and D: α∗(D)(Ai)= 0, whenever there is A j ∈A , such
that ∑H P(H | D) u(A j,H) > ∑H P(H | D) u(Ai,H).

This notion of optimality captures the computational level
problem. On Anderson’s analysis of categorization, H is the
state of the world, a specification of all the properties of all
the objects in the world. The observations are sequences of
objects; then upon viewing a new object, the agent must act
appropriately, depending on an unobserved property of this
new object. In many cases we can simply assume that the
actions correlate one-to-one with the possible values of the
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unobserved variable (e.g., poisonous : avoid, nutritious : con-
sume), and the utility is positive for a correct guess, and zero
or negative for an incorrect guess, for example.

Given that most problems of interest are hard, with the as-
sociated optimal agent functions intractable, we want to study
not just abstract agent functions, but more concrete represen-
tations of agents and the actual computations they perform.
Suppose we have fixed some class Π of programs in a given
language. We can think of programs π ∈ Π as reflecting the
mental steps an agent goes through in the course of receiving
data D and deciding which action Ai to perform. Following
each new data point Dk, there is some distribution over A re-
flecting the agent’s proclivities to perform various actions, at
that point in time. In this way π refines a more abstract agent
function απ. Let us suppose, very abstractly, that we can as-
sociate with a given program π, under a certain scenario, an
expected cost: Cπ(D). The cost-adjusted fitness of π is then:

φ(π) = φ(απ)−Cπ , (6)

where Cπ = ∑H P(H) ·∑D P(D | H) ·Cπ(D) is the overall ex-
pected cost. That is, we take the fitness of the program’s asso-
ciated agent function less expected costs. An agent is bound-
edly rational to the extent that the cost-adjusted fitness of its
program is high (cf. Russell and Subramanian 1995).

In this setup, we can interpret Vul et al.’s (2014) results as
showing that, if we take Π to include the k-samplers for all k,
then for certain values of C and in certain decision problems,
the 1-sampler is most boundedly rational.

Boundedly Rational Categorization
Finding a boundedly optimal algorithm can be difficult in
general. However, it is often possible to compare the (cost-
adjusted) fitness of algorithms in simulated environments.
For illustration, we performed a comparison between Ander-
son’s local MAP algorithm, several particle filter algorithms
(R = 1,2,5,10), and a baseline ‘reflex agent’, which makes
random predictions on new observations, and maximizes with
respect to count frequency on previously observed objects.

Specifically, we generated sequences of data according to
the Dirichlet process described above, consisting of N objects
varying along d binary dimensions, before generating a test
object with some feature hidden. Each agent observes the
N objects, updating its representation at each step, and then
makes an inference about the hidden feature, receiving payoff
1 if correct, 0 otherwise. With parameter settings typical of
the categorization experiments reported in Anderson (1990,
1991), the results are depicted in Table 1.

In all scenarios, the 10-particle-filter agent is optimal. The
next highest performing agent is highlighted in bold. With
very few observations, the 5-particle-filter outperforms the
MAP algorithm, while we find the opposite result with more
observations. With an intermediate number they are on a par.

If a rational analysis is to be guided toward the algorithm
that appears most rational, and the empirical results suggest
that the 1-particle-filter provides a better fit to human data
than the MAP algorithm, then these simulation results may

d = 3, N = 3 d = 5, N = 8 d = 3, N = 30
reflex 0.561 0.555 0.654
MAP 0.601 0.626 0.656
R = 1 0.573 0.603 0.625
R = 2 0.596 0.623 0.629
R = 5 0.606 0.626 0.642

R = 10 0.608 0.640 0.662

Table 1: Average payoffs for categorization agents, with d
binary dimensions (i.e. features) and N observations. The
coupling parameter is set to c = 0.5. In all cases, β = 1.

look discouraging. However, with a boundedly rational anal-
ysis, we would take costs into account.1 Under the tentative
assumption that it costs more to reduce noise than to toler-
ate some noise, it may be that the difference in expected fit-
ness is made up for by this difference in cost. Furthermore,
the 2- and 5-particle-filter agents are already competitive with
the MAP algorithm. While Sanborn et al. did not explicitly
study these agents (A. Sanborn, p.c.), it is easy to see that such
algorithms would likely provide an equally good alternative.
Recall that in many cases, the MAP, R = 1, and R = 100 algo-
rithms all matched the data well. For the other cases, particle
filters with 5 or fewer particles also exhibit order effects, and
would predict individual variation. At the same time, if main-
taining more particles comes at a cost, this cost would have to
be very low for the increase from R = 5 to R = 10 particles,
for example, to be worth the small gain in fitness.

This small study is not conclusive, but it is quite sugges-
tive. We can tentatively conclude that, under Anderson’s own
assumptions about the nature of the environment, reasonable
assumptions about cost would result in a particle filter with
between 1 and 5 particles being boundedly rational.

Calculation versus Look-up
Note that in Table 1, when N = 30 the reflex agent outper-
forms all but the MAP agent and the 10-particle-filter agent.
Given the simplicity of the computations this agent performs,
we would expect it to incur low costs, and thus to be quite
boundedly rational in this scenario, according to the defi-
nition given above, perhaps the most boundedly rational of
all six agents. In this particular categorization example, we
might not want to assume the environment will be such that
an agent will observe 30 objects before having to make a pre-
diction. However, the example makes a more general point,
that if we were to assume this did capture the structure of
the environment, our boundedly rational analysis would not
justify hypothesizing a more complicated agent type.

Consider a different example, inspired by a recent discus-
sion in the vision literature (Maloney and Mamassian, 2009).
Imagine a point estimation problem in which the underly-

1It is worth mentioning that with a higher coupling parameter,
c = 0.75, the 1-particle-filter agent does outperform the local MAP
agent, even ignoring costs. This is because the MAP agent is more
often fooled by ‘garden path’ sequences, whereas the particle filter
has some chance of escaping them (cf. Sanborn et al. 2010).

640



ing state of the world is drawn from a normal distribution
S ∼ N (µ,σ2

1), where µ is the mean and σ2
1 is the variance.

The agent obtains a noisy reading D of S, which is also de-
scribed by a normal distribution around the true point S, i.e.,
D ∼ N (S,σ2

2), for some σ2
2. With action space A = R, the

utility function for making an estimate S̃ when the true value
is S is given by the usual squared error, U(S̃,S) =−(S̃−S)2.
The optimal agent function is the one that maximizes fitness
according to Eq. (5) as given above (minimizing expected er-
ror, making the necessary adjustments to Eq. (5) for the con-
tinuous setting). Once we consider agent programs, refining
the more general agent function, several possibilities emerge.
The agent could separately represent information about the
state of the world and about the problem being solved and
combine them in some appropriate way. Alternatively, it is
possible for the agent to manifest the same behavior with a
simpler method. Letting τ1 = 1/σ2

1 and τ2 = 1/σ2
2—the preci-

sion of S and D, respectively (DeGroot, 2004, 38)—the op-
timal agent function can also be described by the following:

S̃ =
τ1

τ1 + τ2
µ+

τ2

τ1 + τ2
D ,

as a function only of the data point D. In other words, per-
forming optimally in this task requires merely being able to
apply a linear map of the form x 7→ a+bx.

Simulating an agent that learns a and b through simple lin-
ear regression, with different settings of the learning param-
eter, we see how (boundedly) rational such an agent can be.
When the learning parameter is as high as 0.1, it does reason-
ably well after only 10 trials but soon after levels off in per-
formance, remaining suboptimal. If it is set lower, e.g., near
0.01, it takes much longer to perform well; but eventually, af-
ter about 100,000 trials, its performance is indistinguishable
from the agent that straightforwardly computes Eq. (5) with
known mean µ and variances σ2

1 and σ2
2. If the scenario in

which we are assessing agent fitness is one where training
time is cheap and trials are amply available, then this is an-
other case where we would not be justified in assuming that
an agent adapted to this setting will implement something di-
rectly approximating Bayesian calculations. There would be
no reason for an agent facing this environment to represent
separate information about the world, since it can apply a very
simple ‘look-up’ rule to decide what to do.

Broader Scenarios
In order to justify the complexity required by (even merely
approximately) Bayesian calculations, we need to consider
more complex scenarios, in which there is either uncertainty
about the problem to be faced, a sequence of problems to be
faced, or both. For instance, if the categorizer may have to
make decisions after 3, 8, 10, 30, etc. observations, then it
may be important to make accurate predictions with relatively
little data. Likewise, in the normal-normal example, the agent
may not be able to go through 100,000 learning trials.

Other general features of Bayesian (and related) models,
such as their capacity for generalization, abstraction, trans-

fer, etc. (Tenenbaum et al., 2011), will also only surface
by considering iterated scenarios, in which the results from
one learning episode, for example, may benefit the learner
in a later episode. Psychologists have been keenly aware
of the need for ‘inductive biases’ to model empirical learn-
ing dynamics. But there is a normative aspect as well, in
that agents exhibiting these general features will outperform
agents lacking them in sufficiently broad scenarios. Impor-
tantly, approximations, such as sampling algorithms, inherit
these general properties from the ideal models. A thorough-
going boundedly rational analysis would invoke such consid-
erations to show that one or another approximation is indeed
more boundedly rational than the alternatives, if indeed it is.

Boundedly Rational Metareasoning
Once we introduce enough uncertainty over what problem the
agent will face, it becomes substantially more difficult to de-
termine what a boundedly rational solution will look like. In
particular, we introduce the possibility that an agent may have
the capacity to reason online about how to solve the problem
it finds itself facing; that is, we introduce the possibility of
boundedly rational metareasoning agents. To take an exam-
ple, in the work described above by Vul et al. (2014), there is a
single decision problem, and the analysis shows what the op-
timal sampling strategy is for that decision problem. If there
is uncertainty over the decision problem, it turns out a simple
metareasoner dominates all fixed k-samplers.

In computer simulations, we randomly drew parameters for
a Bayes net, a state and an observation, and then randomly
generated a decision problem that depended on some subset
of the (five) variables, with utilities ranging between 0 and
100. A sample cost C was drawn from a normal distribution
with σ2 = 1.0 and µ ∼ Uniform(0,3). We then compared
the performance of eight agents. The first seven drew fixed
numbers k of (perfect) samples—1, 2, 3, 4, 5, 7, and 9—
from the network, conditioned on the observation, and then
made a decision using the obvious rule from Vul et al. (2014),
incurring kC reduction in utility on account of the k samples.

The remaining metareasoning agent first applied a heuristic
to determine how many samples to take. This heuristic χ was
an extremely simple stepwise function depending only on the
cost of a sample:

χ(C) =



1 if 2.5 <C ;
2 if 1.5 <C < 2.5 ;
4 if 1.0 <C < 1.5 ;
9 if 0.5 <C < 1.0 ;
15 if C < 0.5 .

The intended interpretation is that χ captures the relative im-
portance of the problem compared to the cost of sampling.
Clearly, more sophisticated functions are conceivable, but this
is already sufficient to make the point. The results of the sim-
ulations are given in Table 2.

Importantly, the metareasoning agent suffered the cost of
each sample it decided to take, but it was also charged for
the initial step of calculating χ(C). For the simulation re-
sults reported in Table 2, the cost of this step was assumed
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average utility
1-sampler 65.6
2-sampler 67.4
3-sampler 67.4
4-sampler 66.8
5-sampler 65.9
7-sampler 63.5
9-sampler 61.1

metareasoner 68.5

Table 2: Average payoffs, out of 100,000 runs.

to be equal to the cost of a single sample, which is arguably
quite uncharitable for a simple step-function. Nonetheless,
the metareasoner still performed significantly better. We also
ran 100,000 iterations without charging for the preprocessing
step, and in this case the metareasoner’s average utility was
70.6. Thus, even if the cost of this simple preprocessing step
is constantly 3.0—on average twice the cost of a sample (av-
erage sample cost is 1.5)—the metareasoner still outperforms
the best constant samplers (the 2-sampler and 3-sampler).

In a broader scenario with multiple problems, if we include
a metareasoner among the possible agents, it turns out to be
optimal. Tellingly, Vul et al. (2014) found that people appar-
ently do strategically adjust the number of samples they draw.

Conclusion
We have proposed a boundedly rational analysis strategy, as
a way of making progress on the search for algorithmic-level
models. This strategy promises answers to some common
criticisms of Bayesian models in cognitive science. In the
case of categorization, we have seen that such an analysis can
retrodict the result observed by Sanborn et al. (2010) that a
particle filter with few particles models the human data better
than the ‘ideal’ model or Anderson’s (1990; 1991) alternative.

The strategy requires taking a broad view of what bounded
(instrumental) rationality means, and considering more ex-
tended scenarios in which agent performance is compared.
This will not preclude (approximate) Bayesian analyses—on
the contrary, I would conjecture—but it will not presuppose
them either. While this is arguably necessary to respond fully
to the criticisms, it also poses new challenges and avenues for
research. Specifically, we saw the need to consider metarea-
soners in the space of possible agent algorithms. Does this
open the door to an unmanageable search space, spoiling the
apparent advantage of invoking rational analysis as a search
strategy? To close, I would like to suggest that here, as else-
where in cognitive science, we can divide and conquer: per-
haps computational cognitive science ought to take this kind
of metareasoning as an object of study in its own right.
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