
UC Irvine
UC Irvine Previously Published Works

Title
A sparse quantized hopfield network for online-continual memory.

Permalink
https://escholarship.org/uc/item/7683s2t2

Journal
Nature Communications, 15(1)

Authors
Alonso, Nicholas
Krichmar, Jeffrey

Publication Date
2024-05-02

DOI
10.1038/s41467-024-46976-4

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7683s2t2
https://escholarship.org
http://www.cdlib.org/

Article https://doi.org/10.1038/s41467-024-46976-4

A sparse quantized hopfield network for
online-continual memory

Nicholas Alonso 1 & Jeffrey L. Krichmar 1,2

An important difference between brains and deep neural networks is the way
they learn. Nervous systems learn online where a stream of noisy data points
are presented in a non-independent, identically distributed way. Further,
synaptic plasticity in the brain depends only on information local to synapses.
Deep networks, on the other hand, typically use non-local learning algorithms
and are trained in an offline, non-noisy, independent, identically distributed
setting. Understanding how neural networks learn under the same constraints
as the brain is an open problem for neuroscience and neuromorphic com-
puting. A standard approach to this problem has yet to be established. In this
paper, we propose that discrete graphical models that learn via an online
maximum a posteriori learning algorithm could provide such an approach.We
implement this kind of model in a neural network called the Sparse Quantized
Hopfield Network. We show our model outperforms state-of-the-art neural
networks on associative memory tasks, outperforms these networks in online,
continual settings, learns efficiently with noisy inputs, and is better than
baselines on an episodic memory task.

A fundamental question in computational neuroscience and neuro-
morphic computing is the question of how to train deep neural net-
works using only local learning rules in the learning scenario faced by
the brain, where data is noisy and presented in an online-continual
fashion. Local learning rules use only information spatially and tem-
porally adjacent to the synapse at the time of the update (e.g., pre-
synaptic and post-synaptic neuron activity). Online-continual learning
occurs when a stream of single data points are presented during
training in a non-independent and identically distributed (non-i.i.d.)
fashion (e.g., several data sets are presented one dataset at a time).
Brains must learn under these conditions, and neuromorphic hard-
ware embedded in real-world systems have similar constraints1.

Standard approaches to deep learning have not provided a solu-
tion to this problem. The standard approach trains neural networks
with stochastic gradient descent (SGD) implemented by the back-
propagation algorithm (BP)2. BP is a non-local learning algorithm
generally considered biologically implausible3–5 and is difficult tomake
compatible with neuromorphic hardware6,7. Further, the standard
training paradigm is offline learning, where data is mini-batched, i.i.d.,

non-noisy, and can be passed over formultiple epochs during training.
Learning in the noisy, online-continual scenario is much more difficult
than in the offline scenario. Unlike offline learners, online-continual
learners must avoid problems like catastrophic forgetting and are
pressured to deal with noise and to be more sample efficient (faster
learners).

Furthermore, recent work on this problem has not approached all
the aspects of the problem simultaneously. For example, although bio-
plausible algorithms have been developed for deep networks, these
algorithms are typically tested and developed for offline settings (e.g.,
refs. 8–11). Although progress has been made on online-continual
learning, essentially all of this work uses BP in some capacity (see
refs. 12–17). Someworks do test local learning algorithms in online and
continual settings separately, but do not address the online and con-
tinual setting simultaneously or focus on shallow recurrent networks
(e.g., refs. 18–20). Therefore, local learning models that perform
online-continual learning without resorting to BP are needed.

We attempt to remedy this situation by making the following
contributions: (1) Unlike previous works on online-continual learning,

Received: 21 August 2023

Accepted: 13 March 2024

Check for updates

1Department of Cognitive Science, University of California, Irvine, CA, USA. 2Department Computer Science, University of California, Irvine, CA, USA.
e-mail: nalonso2@uci.edu

Nature Communications | (2024) 15:3722 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7797-8416
http://orcid.org/0000-0002-7797-8416
http://orcid.org/0000-0002-7797-8416
http://orcid.org/0000-0002-7797-8416
http://orcid.org/0000-0002-7797-8416
http://orcid.org/0000-0003-0739-2468
http://orcid.org/0000-0003-0739-2468
http://orcid.org/0000-0003-0739-2468
http://orcid.org/0000-0003-0739-2468
http://orcid.org/0000-0003-0739-2468
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46976-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46976-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46976-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46976-4&domain=pdf
mailto:nalonso2@uci.edu

which tend to focus on classification, we study the more general and
basic task of associative memory, i.e., the basic process of storing and
retrieving corrupted and partial patterns. We believe studying this
basic task could yield ideas that apply across a wide range of tasks,
rather than a single narrow task, like classification. (2) We propose a
general approach to online-continual associative memory, based on
the idea that a sparse neural code, representing the value of a discrete
variable, can deal with both noisy and partial input and prevent cata-
strophic forgetting. We propose implementing this strategy using
discrete graphical models that learn via algorithms similar to max-
imum a posteriori (MAP) learning, where MAP learning has the
advantage of using local learning rules. (3) We implement this
approach in a neural network called the sparse quantized Hopfield
network (SQHN), an energy-based model that optimizes an energy
function and utilizes a learning algorithm that combines neuro-genesis
(neuron growth) and local learning rules, both engineered specifically
to yield high performance in the noisy and online-continual setting. (4)
We develop two memory tasks, which are new to the recent machine
learning literature on associative memory models, the noisy encoding
task and an episodicmemory task. 5) We run a variety of tests showing
that SQHN significantly outperforms baselines on these new tasks and
matches or exceeds state-of-the-art (SoTA) on more standard asso-
ciative memory tasks.

Results
Toward a foundation for local, online-continualmemorymodels
Our goal is to design amodel that can (1) deal with noisy, partial inputs
in associative memory tasks, (2) learn in a sample-efficient way that
avoids catastrophic forgetting in online-continual learning scenarios,
and (3) use only local learning rules. Our proposed approach has
three parts.

First, we propose that using neural networks which utilize quan-
tized neural codes could provide a principled approach to associative
recall. More specifically, we imagine a general process, akin to vector
quantization21, which maps continuous-valued input vectors, to a
neural code with a finite set of values. Such a mapping is necessarily a
process of pattern completion, i.e., a processwhere a subset of distinct
vectors aremapped to the same vector/code. The associative memory
problemmay also be cast as one of pattern completion, where the goal
is to reconstruct stored data points, x, given corrupted or partial ver-
sions, ~x, of it, i.e., ½~x0,~x1, . . .� ! x. A general process akin to vector
quantization can be used to perform this mapping via
½~x0,~x1, . . .�!θh

!θx, where h is a single discrete neural code deter-
minedbyparametersθ and the inputs. Pattern completion is intuitively
more difficult with continuous latent codes, since these codes may
vary in an infinite number of ways, making it more difficult to map
many corrupted versions of a data point to the same latent code and
reconstruction (e.g., see experiments and discussion).

Second, we primarily use parameter isolation to avoid cata-
strophic forgetting, which is a strategy that has recent success in BP-
based deep learning models (e.g., refs. 22–25). This strategy allocates
subsets of newandoldparameters to different tasks during training, as
needed. By only using and updating small subsets of parameters each
iteration, models are able to drastically avoid forgetting. However,
there needs to be a principled method to decide which parameters to
update or add at which times.

Third, we propose using a MAP learning algorithm as a local
learning algorithm, in discrete-graphical models, which naturally
implement vector quantization and parameter isolation. MAP learning
works by first performing inference over hidden variables to find their
specific values, h*, that maximize the posterior P(h*∣x, θ)∝ P(h*, x∣θ). In
discrete graphical models, these values are integers. The process of
vector quantization maybe seen as a MAP inference process, where
inputs are assigned the component with the highest posterior prob-
ability. Parameters are then updated to further increase the probability

of the joint P(h*, x∣θ). Local learning rules are naturally used in this
algorithm. Further, if integer values are represented by sparse, one-hot
vectors, updates are also sparse, i.e., perform parameter isolation.

The sparse quantized hopfield network
Wedevelop an implementation of a discrete graphical model that uses
primarily neural network operations. We call it the sparse quantized
Hopfield network (SQHN). SQHNs have architectural similarities to
Hopfield networks and Bayesian networks. Unlike standard Bayesian
networks, SQHNs are relatively easy to scale andmore compatiblewith
the hardware that assumes vector-matrix multiplication as the basic
operation (e.g., GPUs andmemristors). Unlike common Hopfield nets,
SQHNs explicitly utilize quantization and implement a discrete,
directed graphical model. Hidden nodes in SQHNmodels are assigned
integer values during inference, represented by sparse one-hot vec-
tors. Sparsity distinguishes SQHNs from prior quantized Hopfield
networks (e.g., refs. 26,27), which assign an integer value to each
neuron. The sparse code we use ensures subsets of parameters are
isolated during training.

SQHNs implement directed graphical models. In this paper, we
consider tree-architectures without loops (see Fig. 1), though many
other architectures are possible. Visible nodes are nodes clamped to
portions of the input (e.g., image patches), which are assumed, though
not required, to be continuous. Each hidden node l represents a
categorical variable that takes an integer value represented by a one-
hot vector, h*

l . We also notate clamped values at visible nodes as h*
l .

Conditional probability pðh*
l jpalÞ of node l given its parent value is

parameterized by synaptic weightmatrices. For example, in the simple
case where l has one parent pðh*

l jpalÞ it is parameterized by matrix
Mpal ,l

. The energy is a summation over conditional probabilities:

Eðh*,θÞ= 1
L

XL
l =0

pðh*
l jpalÞ: ð1Þ

Typically, in directed graphical models, like Bayesian Networks,
the aim of MAP inference is to update the values of hidden nodes to
maximize the joint probability of node states, which is the product of
the conditional probabilities rather than the sum28. We show that the
summation of the conditional probabilities approximates a kind of
joint probability that takes into account uncertainty over parameters
(Supplementary 1.1). Taking into account this uncertainty is crucial for
learning in online settings. Further, by approximating this joint dis-
tribution with the energy above, we can implement a model that per-
forms inference using only standard artificial neural network
operations that sum inputs to neurons rather than multiply, which
would be needed with the standard joint distribution
(Supplementary 1.2).

Algorithm 1. SQHN recall algorithm

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 2

Algorithm 2. SQHN learning algorithm

SQHNmodels update neuron activities during recall in a way akin
toMAP inference, where neurons are updated tomaximize the energy:

h* = argmaxh*Eðh*, θ, xÞ, ð2Þ

where h* is the set of one-hot vectors assigned to each node.We use an
inference procedure, to approximate this minimization problem. The
procedure resembles the max-product algorithm29. Like the max-
product algorithm, the SQHN inference procedure is computationally
cheap, requiring only a single feed-forward/bottom-up (FF) and
feedback/top-down (FB) sweep through the network. Unlike the
max-product algorithm, however, the SQHN inference is more
straightforward to implement, uses only standard neural network
operations, is more compatible with the hardware that assumes
vector-matrix multiplies (e.g., GPUs), and minimizes a different
quantity than the standard max-product algorithm (see

supplementary 1.1). Mathematically, the SQHN recall process can be
understood as follows: each data point xt observed during training is
stored at a maxima of the energy. Therefore, given a corrupted input
~xt , an SQHNcan reconstruct the original by finding the latent code that
maximizes the energy given ~xt , which will be the same latent code as
the original data point andwill therefore output a close reconstruction
of the original data point (Fig. 1B), where typically the higher the
energy of the latent code, the better the reconstruction. Mechan-
istically, recall works by propagating signals up to the memory node
which is assigned a memory value. Then a signal is propagated down,
encouraging lower-level hidden nodes to take values associated with
the memory node’s value (Fig. 1C). For a pseudo-code description, see
algorithm 1.

SQHNs update their parameters using an algorithm akin to MAP
learning, where each training iteration the model first performs infer-
ence to maximize energy w.r.t. activities and then updates weights to
further increase energy.

θT = argmaxθ
PT
t =0

Eðθ,h*,t ,xtÞ, ð3Þ

where matrices at hidden layers must meet certain normalization
constraints, making this a constrained optimization problem. Impor-
tantly, weights are updated to maximize energy over all previously
observed data points rather than just the one present at the current
iteration. This helps prevent forgetting of previous data points in
online scenarios. However, the update is performed using only the
activities and data points from the current iteration (i.e., there is no

Auto-Association Recognition

Is > ?
If yes, judge 'old'

If no, judge 'new'

Hetero-Association

Mask Input

Visible
Nodes

Hidden
Nodes

Memory/
Root Node

= Low Energy FF
FB

Correct Recall

Hidden Node Value

eulaV
edoN

yr o
me

M

= High Energy

= Memorized
 Datapoint

FF = Feedfoward
Sweep

FB = Feedback
 Sweep

FB

Incorrect Recall

Hidden Node Value

eulaV
edoN

yro
me

M

A B

C

Feedfoward
Sweep

Feedback
Sweep

FF

Fig. 1 | Illustration of SQHN. A Tree-structured, directed, acyclic graph.BDiagram
of recall process in terms of the node values and energy. Nodes take integer values.
Correct recall finds the set of node values at the global maximum of the energy.
Correct recall typically only occurs if thememory node has the correct value, since
thememory node isfixedafter the feedforward (FF) pass, afterwhich it then adjusts
the values of hidden nodes through feedback/top-down signals. C Neural network

diagrams of the SQHN during associative recall and recognition. During recall, the
FF sweep propagates signals up the hierarchy, where the memory/root node
retrieves the most probable (high energy) value, and propagates the signals down,
encouraging hidden nodes to take the values associated with that particular
memory/value.

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 3

buffer of previous data points or activities). The solution is a local
Hebbian-like update rule:

ΔMpal ,l
=

1
c*pal

+ 1
ðh*

l �Mpal ,l
h*
pal

Þh*>
pal

, ð4Þ

where c*pal
is a count of the number of iterations the parent node value

was activated during training (see supplementary 1.4). Becauseh*
pal

is a
sparse, one-hot vector, this is a sparse weight update that only alters
the values in a single column of matrix Mpal ,l

.
Importantly, instead of randomly initializing weights, we initialize

all weights to 0, then grow new neurons and synapses as needed. In
particular, a new neuron is grown at node l at training iteration t, if no
neuron at the node has a value greater than some threshold.We use an
exponentially decaying threshold based on the Dirichlet prior (see
supplementary 1.3):

ϵ=
α

ðt +αÞ , ð5Þ

where t is current training iteration and α is a hyperparameter. Abla-
tions show that if neuron growth, decaying growth threshold, and/or
learning rate decay are removed, themodel performsnoticeablyworse
in online-continual settings (Supplementary Fig. 2). For pseudo-code
of the learning algorithm, see algorithm 2.

Related works
SQHNs have similarities to recursive cortical networks (RCN)30, another
neural network/Bayesian network hybrid that uses an algorithm akin to
MAP learning in a tree-structured architecture. SQHNs use different
learning rules than RCNs. RCNs, for example, do not perform the
averaging operation that SQHNs do, and as a result, RCNs cannot learn
under noise (e.g., see supplemental from ref. 30). RCNs also have more
complex architectures that utilize max-pools and factorize color and
shape representations. RCNs also do not explicitly minimize an energy
function. Further, as far as we know RCNs have not been tested on
natural images, or on associative memory tasks from recent machine
learning literature. Other models like sparse Hopfield-like networks of
refs. 31,32 and Hierarchical Temporal Memory33, also utilize sparse
neural networks with some architectural similarities to SQHNs. How-
ever, these models do not explicitly encode discrete random variables,
they use distinct energy functions or no energy function at all, and they
have not been applied to memory tasks we are interested in here.

Following previous reviews12–17,34, continual and online-continual
learning approachesmay be split into several types: (1) Regularization-
based approaches constrain thewayparameters are updated to reduce
catastrophic forgetting (e.g., refs. 35–39). (2) Memory-based approa-
ches store or model previously observed data for the purpose of
replaying the data during training (e.g., refs. 40–42). (3) Parameter
isolation models avoid forgetting by allocating different parameters
for each task, either by gating components or by dynamically adding
new sub-networks as needed (e.g., refs. 22–25). Our SQHN model dif-
fers from these approaches since it uses local learning rules, while
these previous approaches use BP in some form (e.g., all the methods
reviewed by refs. 14,16 use BP either in pre-training and/or during
online training of the classifier). Our SQHN model uses a kind of
parameter isolation (via sparse neuron activity and neuron growth)
combined with regularization (via learn rate decay schedules) to avoid
forgetting. As far as we can tell, SQHN’s particular strategy is distinct
from these approaches. For example, whereas all the previous works
on regularization and parameter isolation use some form of global
gradient information to regularize and isolate parameters, the SQHN
does so based solely on information local to the neuron or synapse.

Like the SQHN, classic Hopfield networks43 and modern Hopfield
networks (MHN)44–46 are energy-based models that can perform auto-

associative memory tasks. Of existing Hopfield nets, the SQHN is the
most closely related to the continuous modern Hopfield network
(MHN)45. The continuous MHN performs recall using the operation

xnew =M softmaxðβMTxÞ, ð6Þ

where M is a matrix of data points/memory vectors, x is a matrix of
input/query vectors, and β is the inverse temperature. It was shown by
ref. 45 that this model is a special case of the attention layer in the
transformer. One interpretation of this operation is that it is per-
forming a kind of nearest neighbor computation (e.g., ref. 46), where
similarity values between memory vectors and query vectors are
computed using the dot product. A weighted average of memory
vectors is returned, where those memory vectors more similar to the
query vector are given more weight. A simple SQHN network with a
single hidden layer can be interpreted as performing a kind of nearest
neighbor operation as well, where β =∞:

xnew =M argmax
1
Z
ðMT � μÞðx � μÞ

� �
, ð7Þ

where μ is the scalar that shifts the matrix M (we set μ = 0.5 below, see
methods), 1

Z normalizes each elements of the hidden layer input such
that the values range between zero and one, and the input, x, and
shifted memory vectors, mj − μ, are normalized.

Despite both models using a kind of nearest neighbor operation,
SQHNs differ from MHNs in ways that provide the SQHN significant
advantages in the tests below. First, when the memory matrix, M, is
trainable (e.g., as in ref. 44), the MHN uses a randomly initialized fixed
size M, which is trained with BP. The SQHN, on the other hand, uses a
non-random M, which dynamically adds memory vectors as needed,
and uses a local energy-based rule to update existing memory vectors
specifically to solve theonline learningproblemnoted above. Below,we
find the MHN learns slowly and suffers from significant catastrophic
forgetting, whereas the SQHN learns very fast and shows minimal for-
getting. Second, we found that the explicit normalization of the input
and the hard, winner-take-all recall performed by the SQHN, was
superior to operations of the MHN which do not explicitly normalize
input and use softmax. Though softmax approaches the argmax as
β→∞, very large beta values yielded worse performance in scenarios
where the matrix M had to be trained, forcing the MHN to perform a
kind of soft recall in these scenarios making accurate recall difficult.

SQHNs also have interesting similarities to predictive coding
networks (PCNs)47, which have been used recently for associative
memory tasks (e.g., see refs. 19,48–50). Both SQHNs and (PCNs) can be
interpreted as directed graphical models and utilize a MAP learning
algorithm46. The central difference between the two is that SQHNs
have categorical random variables at hidden nodes, while PC networks
have Gaussian random variables. As such, SQHNs and PC networks
minimize distinct energies and use distinct inference procedures.
PCNs minimize the free energy (F):

F =
XL
l =0

1
2
khl �Wpal ,l

hpal
k2, ð8Þ

where hl is the vector at node l representing the value of the Gaussian
mean at that node, and hpal

is the mean vector at the parent node of l.
ThematrixWpal

parameterizes the conditional probability distribution
over lgiven theparent node value. Interestingly, PCNs andSQHNshave
very similar learning rules. The PCN learning rule, applied at the end of
the inference phase, is the gradient of the free energy

ΔWl = �α
∂F
∂Wl

��αðhl �Wpal
hpal

Þh>
pal

, ð9Þ

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 4

which we can see is identical to the SQHN rule up to a scalar learning
rate α.

Despite these similarities, SQHNs show advantages over PCNs in
several respects. First, the iterative, gradient-based inference proce-
dure of PCNs is computationally costly, requiring dozens, sometimes
hundreds, of updates to neurons each iteration to achieve good per-
formance on associative memory tasks (e.g., see refs. 19,48). This
effectively renders PCNs impractical for online learning, which favors
fast, computationally cheap models. SQHNs, on the other hand, per-
form only a single FF and FB sweep through the network to perform
inference. Secondly, we hypothesized above that continuous-valued
latent variables are necessarily more sensitive to corrupted inputs,
since such variables may take an infinite number of values, and,
therefore can always adjust hidden values to increase the likelihood of
corruption in the data. MAP inference in discrete models, on the other
hand, can better ignorecorruption since its latent codeonly has afinite
number of values, and can therefore map similar versions of the same
input to the same latent code, yielding exact reconstruction. This
hypothesis is supported in our experiments, where we find SQHNs are
much more robust to noisy inputs than PCNs.

Experiment: auto-association and hetero-association
comparison
We tested SQHN on several tasks and compared its performance to
SoTA and baselines. Specifically, we tested performance on: (1) Auto-
association. (2) Hetero-association. (3) Online-continual auto-associa-
tion. (4) Noisy encoding. (5) Episodic memory.

We first compared SQHN models to SoTA associative memory
models on auto-associative and hetero-associative recall tasks. For
both tasks, unaltered data points from a set Xtrain are presented to the
model during training. In auto-association, during testing, themodel is
given corrupted versions, ~Xtrain, of training data, and the model is
tasked with reconstructing the original data points. Here, corruption
is added to the images with white noise. For hetero-association tasks,
during testing portions of the input data are treated as missing. Fol-
lowing, the recentworkof ref. 19,we remove a certainnumber of pixels
from the input data randomly (pixel dropout), or we remove a certain
number of the rightmost pixels (mask).

Three SQHNs are tested: an SQHN with one hidden layer (SQHN
L1), two hidden layers (SQHN L2), and three hidden layers (SQHN L3).
We compare to two types of SoTAmodels: predictive coding networks
(PCN) and modern Hopfield networks (MHNs). PCNs are neural net-
work models51, that implement a kind of probabilistic generative
model with continuous latent variables47. Three types are compared:
offline-trained PCN (GPCN)48 and two online-trained versions
(BayesPCN, BayesPCN with forgetting)19. Continuous MHNs45 have
similarities to auto-encoders with a single hidden layer where a soft-
max activation is used. We compare it to the original model of ref. 45
(MHN), a version of this model by ref. 52, which showed better per-
formance by using a Manhattan distance measurement in its recall
operation (MHN-Manhtn) (see methods), and the MHN of ref. 19 that
used a gradient-based inference procedure (MHN-GradInf).

Results are in Table 1. PCN models struggled with noisy, auto-
association task. The MHN that uses Manhattan distance performed
very well, and the MHN-GradInf and the one-level SQHN model per-
formed perfectly on all auto-association tests. The multi-level SQHNs
were more sensitive to white noise on smaller CIFAR-10 images, but
still performed well with moderate corruption, and performed very
well when they have larger lower-layer receptive field sizes, which they
use on the larger Tiny Imagenet images.

The GPCN and BayesPCN achieved very low recall MSE on most
masking tasks. MHN-grad and the MHN with Manhattan distance per-
formed well on moderate masking, but failed completely on the high
masking scenario. The one and three level SQHN models performed
perfectly on all masking tasks, while the two level performed nearly

perfectly. SQHN models were the only models to match SoTA perfor-
mance across both auto-associative and hetero-associative tasks.

Experiment: online, continual auto-association
Next, we test SQHNs on online, continual auto-association. The
application for online learning algorithms are typically embedded
learning systems (e.g., robots, sensing devices, etc.), where computa-
tionally and memory-efficient algorithms are preferred. PCN networks
are highly computationally expensive, requiring hundreds of neuron
updates per training iteration (see refs. 19,48), making them imprac-
tical as an online auto-associative memory system. Thus, we compare
SQHNs to the computationally efficient MHN model. However, we
cannot perform the batch update that is typically used in auto-
associative memory tests of MHNs. Instead, following previous work
(e.g., refs. 44,45), we train MHNs with BP to reduce reconstruction
error. As baseline comparisons, we train MHNs with BP/SGD and BP
with an Adam optimizer. We also train with several compute-efficient
algorithms common to continual learning: online elastic weight con-
solidation (EWC++)53, which is a kind of regularized SGD, and episodic
recall (ER)40, which uses a small buffer to store a mini-batch of pre-
viously observed data points and SGD to update weights with the
mini-batch.

We test on two kinds of online-continual auto-associative tasks:
online class incremental (OCI) andonline domain incremental (ODI). In
both, data from each task is presented incrementally, one task at a
time. In the OCI setting, each task consists of images from the same
class. In the ODI setting, there are four data sets, each composed of
visually distinct images (e.g., dataset 1 has bright images, dataset 2 has
dim images, etc.). During training, models perform a single pass over
each dataset, observing only a single data point at each iteration,
before switching to the next dataset. At testing, a noisy version of
previously observed data were presented.

Performance is measured using recall MSE (LMSE) and following
previous works19,48 recall accuracy:

AT =
1
T

XT
t =0

1
1
d
kxt � xt,newk2 < γ

� �
, ð10Þ

where the indicator function 1 is one if the recall MSE is below
threshold, γ, and zero otherwise. We also use a ‘cumulative’ (i.e.,
average) performance measure, which is common in online learning
scenarios:

CMSE =
1
T

XT
t =0

Lt
MSE, CAcc =

1
T

XT
t =0

At , ð11Þ

where Lt
MSE and At is the recall MSE and recall accuracy, respectively,

at iteration t given the model parameters and input data at iteration t.
Cumulative measures are sensitive not just the final performance, but
also to sample efficiency, i.e., how quickly the models improves per-
formance. Finally, design and use a measure of sensitivity to data
ordering (SMSE):

SMSE = COnContMSE � COnMSE

�� ��: ð12Þ

This sensitivity measure is 0 when the model achieves the same
cumulative MSE in the online (On) and online-continual (OnCont)
settings, and increases as the performance differs. Models insensitive
to ordering arehighly useful in realistic scenarioswhere thewaydata is
presented to the model is difficult to control and predict.

Results are shown in Fig. 2. SQHNs were highly insensitive to the
ordering of the data in online-continual scenarios (Fig. 2C, top and
bottom). They perform one-shot memorization until their capacity is
reached, and then their performance decays slowly (Fig. 2A, top and
bottom), yielding very good cumulative performance (Fig. 2B, top and

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 5

bottom). The BP-based MHNs learned too slowly to recall any data
points andweremuchmore sensitive to ordering, especially in theODI
setting. This leads to poor cumulative scores. These results provide
evidence the SQHN is a highly effective online-continual learner,
especially in scenarios where fast learning is essential, and may have
general benefits over SGD/BP-based approaches.

Experiment: noisy encoding
Wedesigned and tested SQHNmodels on a noisy encoding task. In this
task, in each training iteration, some number of noisy samples of an
image are generated and presented to the network one at a time.
Images are Gaussian (white noise added) or binary samples. The
models must encode the images, and reconstruct them at test time,
when they are presented with the original non-corrupted versions. At
nopoint during training is themodel shown the non-corrupted version
of the data. The purpose of this task is to specifically test the model’s
ability to demonstrate unsupervised learning in a noisy setting.

We compared the one and three hidden layer SQHN and MHN
models on E-MNIST and CIFAR-100, respectively. The one-layer mod-
els had 300 hidden layer neurons, while the three hidden layer archi-
tectures had 150 neurons at each node. Networks were presented with
300 and 150 noisy images, respectively, so an inability to recall the
images was more dependent on an inability to remove noise during
learning rather than on capacity constraints.

In addition to testing the SQHN and MHN models, we tested an
SQHN model with a slight alteration (SQHN+), where after the hidden
states are computed for the first image sample, the hidden states are
held fixed for the remaining duration of the training iteration. This
ensures the latent code did not change during the encoding of the
same image.

SQHN models, especially SQHN+, were highly effective at
removing noise during learning (Fig. 3), and both SQHN models sig-
nificantly outperformed MHNs trained with BP and BP-Adam. This

provides evidence the SQHN can be an effective learner under noise
and outcompete similar BP-based models.

Experiment: episodic memory
Next, we designed and tested models on an episodic memory task
inspired by human and animal memory experiments, which we call
episodic recognition. Recognition is a hallmark ability of animal
memory but has not, as far as we can find, been developed into a
formalized machine-learning test. In our task, models are presented
with a sequence of training data points, Xtrain, in an online fashion.
Afterward, themodel is tested ona binary classification task, where the
modelmust classify the data point presented asold (in the training set)
or new (not from the training set). The testing dataset is an equal
portion of observed training images, Xtrain, new unobserved images
from a related (in distribution) data set, Xnew−in, and new images from
an unrelated (out of distribution) data set, Xnew−out. A high-performing
memory system will achieve significantly above-chance accuracy,
which will decay gracefully as the size of the data set increases.

We develop a principled method for the SQHN to perform
recognition. This method uses the value of the neuron at the root/
memory node with the maximum value. This maximum value tells us
how similar the features of the current data point is to the features of
the most similar previously observed data point (Supplementary
Note 5). If the max activity at the memory node is above some
threshold, the data point is judged to be old. If below, it is judged to be
new. The threshold we use is the moving average, μl, of the activity
values observed for each neuron:

μt
L,j =

ctL,j � 1

ctL,j
μt�1
L,j +

1
ctL,j

ht
L,j, ð13Þ

where j is the neuron with the maximum value, hL,j, at root node L at
iteration t . We show that this value is an estimate of the desired

Table 1 | Top

Recall MSE - Moderate corruption

White noise Pixel dropout Mask

CIFAR-10 TinyImgNet CIFAR-10 TinyImgNet CIFAR-10 TinyImgNet

GPCN(offline)19 0.0121(±0.0001) 0.0067(±0.0004) 0.0001(±0.0000) 0.0000(±0.0000) 0.0009(±0.0000) 0.0001(±0.0000)

BayesPCN19 0.0337(±0.0007) 0.6606(±0.0267) 0.0001(±0.0000) 0.0000(±0.0000) 0.0019(±0.0000) 0.0000(±0.0000)

BayesPCN(forget)19 0.0188(±0.0002) 0.0176(±0.0001) 0.0019(±0.0000) 0.0008(±0.0000) 0.0465(±0.0001) 0.0235(±0.0001)

MHN 0.1457(±0.0097) 0.0955(±0.0073) 0.4512(±0.0558) 0.4545(±0.0456) 0.5538(±0.0149) 0.6101(±0.0091)

MHN-Manhtn 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0020(±0.0028) 0.0016(±0.0012)

MHN-GradInf19 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0001(±0.0000)

SQHN L1 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000)

SQHN L2 0.0002(±0.0001) 0.0000(±0.0000) 0.0000(±0.0000) 0.0002(±0.0002) 0.0001(±0.0000) 0.0008(±0.0002)

SQHN L3 0.1076(±0.0022) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000)

Recall MSE - High Corruption

White Noise Pixel Dropout Mask

CIFAR-10 TinyImgNet CIFAR-10 TinyImgNet CIFAR-10 TinyImgNet

BayesPCN19 0.0755(±0.0002) 0.0242(±0.0002) 0.0000(±0.0000) 0.0000(±0.0000) 0.0006(±0.0000) 0.0001(±0.0000)

MHN-Manhtn 0.0000(±0.0000) 0.0000(±0.0000) 0.1840(±0.0368) 0.1248(±0.0884) 0.7644(±0.2844) 0.7588(±0.2188)

MHN-GradInf19 0.0052(±0.0000) 0.0000(±0.0000) 0.3840(±0.0010) 0.5630(±0.0036) 0.3957(±0.0000) 0.6378(±0.0000)

SQHN L1 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000)

SQHN L2 0.0904(±0.0078) 0.0002(±0.0004) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0008(±0.0006)

SQHN L3 0.3324(±0.0056) 0.0240(±0.0032) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000) 0.0000(±0.0000)

Recall MSE of 1024 images from CIFAR-10 and Tiny ImageNet data sets. At test time, images are either corrupted with white noise (variance 0.2), 25% of the pixels dropped, or the right 25% of the
pixelsmasked.BottomRecallMSEof 128 images fromCIFAR-10andTiny ImageNet data sets.At test time, images are either corruptedwithwhitenoise (variance0.8), 75%of thepixelsdropped,or the
right 75% of the pixels masked.

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 6

probability of p(xt = old∣θ(t−1), xt) = 0.5, which is the threshold at which it
becomesmore probable than not that the data point is old rather than
new (Supplementary Note 5). For a pseudo-code description of
recognition, see Supplementary Algorithm 3.

Since there are no previous baselines to compare SQHN against
for the episodic recognition task that we know of, we ran a simple
comparison between an SQHN and MHN with single hidden layers
(Fig. 4). SinceMHN has not been used for an episodic recognition task,
we created two methods for performing recognition in an MHN with
one hidden layer. The first method uses the activities at the hidden
layer as a measure of similarity to stored data points. The second
method keeps a moving average of the recall MSE during training. If
the hidden layer activity is above or if theMSE is below a threshold, the
model judges the data point as new. A grid search is used to set the
threshold parameter.

SQHN models performed perfectly until capacity is reached
(vertical dotted line). The performance then decayed gradually,

whereas MHN models were unable to do better than chance (Fig. 4A).
The performance differences seem due to the fact that SQHN models
‘overfit’ the training data (Fig. 4B), early in training, allowing it to
recognize Xnew−in as less probable than Xold−in. TheMHNmodel, on the
other hand, performed identically with old and new in-distribution
data. This allowed MHN to generalize better earlier, but it prevented
the MHN from being able to distinguish previously observed data
points from similar data points that were not present in the training
distribution.

Experiment: further comparison of SQHN architectures
Finally, we did a thorough comparison of SQHNmodels that have one,
two, or three hidden layers (Fig. 5A), to better establish what the
advantages and disadvantages are of adding more hidden layers to
the SQHN.

First, we tested how sensitive SQHN models are to corruption in
several auto-association tasks (Fig. 5B). During training each model

Class Incremental (OCI)

Task 1 Task 2

Domain Incremental (ODI)

Task 1 Task 2 Task 3 Task 4

D

Class Incremental (OCI)

Task 1 Task 2

Domain Incremental (ODI)

Task 1 Task 2 Task 3 Task 4

D

0.0

0.5

1.0

C
um

ul
at

iv
e

A
cc

.

EMNIST (OCI) CIFAR-100 (OCI) MNIST (ODI) SQHN
MHN-SGD
MHN-Adam
MHN-EWC++
MHN-ER

1000 2000
Hid. Neurons

0.0

0.1

C
um

ul
at

iv
e

M
SE

1000 2000 3000
Hid. Neurons

1000 2000
Hid. Neurons

B

1000 2000
Hid. Neurons

0.00

0.05

O
rd

er
Se

ns
it
iv

it
y

EMNIST (OCI)

1000 2000 3000
Hid. Neurons

CIFAR-100 (OCI)

1000 2000
Hid. Neurons

MNIST (ODI)

0.0

0.5

1.0

R
ec

al
lA

cc

CIFAR-100 (OCI) CIFAR-SVHN (ODI)

0 1000 2000
Training Iteration

0.0

0.1

0.2

R
ec

al
lM

SE

0 1000 2000
Training Iteration

C

0.0

0.5

1.0

R
ec

al
lA

cc

EMNIST (OCI) CIFAR-100 (OCI) MNIST (ODI)

0 2000
Training Iteration

0.0

0.2

R
ec

al
lM

SE

0 2000 4000
Training Iteration

0 2000
Training Iteration

A

A

200 400 600 800 1000
Hid. Neurons

0.00

0.05

O
rd

er
Se

ns
iti

vi
ty

CIFAR-100 (OCI)

200 400 600 800 1000
Hid. Neurons

CIFAR-SVHN (ODI)C

0.0

0.5

1.0

C
um

ul
.A

cc
.

CIFAR-100 (OCI) CIFAR-SVHN (ODI)
SQHN(L3)
MHN(L3)-SGD
MHN(L3)-Adam
MHN(L3)-EWC++
MHN(L3)-ER

250 500 750 1000
Hid. Neurons

0.00

0.05

0.10

0.15

C
um

ul
.M

SE

250 500 750 1000
Hid. Neurons

B

Fig. 2 | Online-continual auto-association. Top: One hidden layer models with
small (300), medium (1300), and large (2300) node sizes. Bottom: Three hidden
layermodelswith small (200), medium (600), and large (1000) node sizes.ARecall
accuracy and recall MSE during training on models with medium-sized hidden

nodes. B Cumulative recall MSE and recall accuracy for each model size. C Order
sensitivity for each model size. D Online class incremental (OCI) versus online
domain incremental (ODI) settings.

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 7

memorizes 1000 images from the CIFAR-100, TinyImageNet, or Cal-
tech 256 data sets. During testing, images are either corrupted with
white noise or, what we call, an occlusion. In the occlusion scenario,
pixels in a rectangular region of random shape and position are set
equal to either 0 (black occlusion), a random color (color occlusion),
or white noise (noise occlusion). (Note this is distinct from masking,
sincemodels treat pixels as corrupted rather thanmissing.) Results are
in Fig. 5B. All SQHN models performed recall perfectly when corrup-
tion was small. Adding more hidden layers tended to improve per-
formance on occlusion tasks, likely because trees represent data as a
part-whole hierarchy and, therefore, can better ignore corrupted parts
of the input during inference. Architectures whose bottom hidden

layer nodes had larger receptive fields performed better on the noise
task. The one-layer SQHN had the largest receptive field, so it per-
formed the best. For the largest images (CalTech256), however,
receptive field sizes at the bottom layers were large for all models
(minimum 8×8), and all models performed similarly on noisy recall.

Next, we observed auto-associative recall performance during
online (i.i.d.) learning for SQHN models with different numbers of
layers and node sizes (Fig. 5D). All SQHN models performed one-shot
memorization untilminimumcapacity is reached (which is the number
of neurons at hidden nodes, see theorem 1 Supplementary Note 6).
Deeper SQHN’s recall accuracy decayed at a much slower rate. We
suspected this was due to their ability to reuse primitive feature

0.0

0.5

1.0
R
ec

al
lA

cc
.

White Noise Binary Sample

SQHN
SQHN+
MHN-SGD
MHN-Adam

0 20 40
Samples per Iter

0.00

0.05

0.10

R
ec

al
lM

SE

0 20 40
Samples per Iter

EMNISTA

0.0

0.5

1.0

R
ec

al
lA

cc
.

White Noise Binary Sample

SQHN(L3)
SQHN+(L3)
MHN(L3)-SGD
MHN(L3)-Adam

10 20
Samples per Iter

0.0

0.1

0.2

R
ec

al
lM

SE

10 20
Samples per Iter

CIFAR-100B

Fig. 3 | Noisy encoding task. A Recall accuracy and recallMSE for one hidden layer
models under white and noise and binary sample conditions. Example of the
reconstruction during test time for SQHN+ model, in the case of 1, 6, and

12 samples. B Recall accuracy and recall MSE for three hidden layer models under
white and noise and binary sample conditions with reconstruction example for
SQHN on the right.

0 1000 2000 3000
Training Iteration

0.6

0.7

0.8

0.9

1.0

Pr
op

or
ti
on

R
ec

og
ni

ze
d SQHN

SQHN(mse)
MHN
MHN(mse)

0 1000 2000 3000
Training Iteration

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

SQHN

Train Dist.
In Dist.
Out Dist.

0 1000 2000 3000
Training Iteration

0.00

0.02

0.04

0.06

0.08

0.10

M
SE

MHNA B C

Fig. 4 | Recognition task. A The recognition accuracy for SQHN and MHN are
shown in networks with 300 neurons at the hidden layer (300th iteration marked
by a vertical dotted line). B The MSE for the SQHN model on the training MNIST

data (Train Dist.), hold-out MNIST data (In Dist.), and the F-MNIST data (Out Dist.)
C The MSEs for the MHN model.

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 8

representations at lower nodes. It is well knownnatural images arewell
described as compositional hierarchies of a small set of primitive
features. By learning a small set of primitive features at lower layers,
multi-level SQHNs seem able to generalize these learned features
across more data points, increasing capacity and slowing the forget
rate. We tested these models on test/hold-out data and indeed found
the multi-level tree-architectures generalized better to new data than
the one hidden layer model.

Finally, we compared SQHN models on the episodic recognition
task. (Fig. 5E). Models had 500 neurons at each node. The Xtrain data
were CIFAR-10 train images,Xnew−inwereCIFAR-10 images fromahold/
out test set, and Xnew−out were images from the SVHN dataset with
flipped pixels. Figure 5E shows all SQHN models were able to perform
well above-chance accuracy (66%, horizontal dotted line) even when
far more training data was presented than the number of neurons at
the memory node.

In sum, addingmore levels to tree-structured SQHNs significantly
improves auto-associative recall with occlusion, slows the decay of
recall accuracy after the network hits capacity, and improves gen-
eralization without significant loss in recognition ability. While adding
levels can make the SQHN more sensitive to noise, this seems limited
to small images.

Discussion
Artificial neural networks were originally designed to mimic the way
biological neural circuits process information54. The way biological
circuits learn to process information, however, is an open question. In
particular, it is unknown how the brain uses local learning rules
effectively in noisy, online-continual settings. In this paper, we

proposed a general local learning approach to the basic task of storing
and retrieving patterns in noisy, online-continual scenarios. We pro-
posed using a sparse, quantized neural code to deal with noisy and
partial inputs and to prevent catastrophic forgetting, and imple-
menting this strategy via a discrete graphical model that performed
MAP learning, an algorithm that uses local learning rules. We imple-
mented this approach in the SQHN model.

Our results support the effectiveness of our approach and the
SQHN. First, we found the sparse quantized neural code of the SQHN
was advantageous in auto-associative recall over similar models that
use a dense, continuous latent code. PC models, for example, like the
SQHN, implement directed graphical models and learn via MAP
learning46. However, because PCmodels use a continuous latent code,
they weremuchmore sensitive to noise than SQHNmodels. This lends
credence to the idea that using a quantized neural code helps sig-
nificantly with auto-association. MHN models performed similarly to
SQHNs on the noise auto-association task. This is likely because, under
the hyperparameter settings that yielded the best performance, these
MHNs essentially implemented a discrete latent code (see section
“Related works”). However, the operation MHNs use to map inputs to
latent codes, is not as effective as that of SQHNs in the high masking
settings.

Second, we found SQHNs significantly outperformed similarMHN
architectures trained with BP-based algorithms on online-continual
learning tasks. The SQHN trained faster, demonstrated one-shot
memorization, showed only a small, stable forgetting rate, and was
largely insensitive to ordering. It achieved all of this while using little
extra memory, no episodic memory buffer, and little compute. Part of
these performance advantages may be attributable to the parameter

None Black

NoiseColor

1 Hidden Layer (L1)

2 Hidden Layer (L2)

3 Hidden Layer (L3)

A C Occlusion Types

0 2000
Train Iteration

0.6

0.8

1.0

R
ec

og
ni

ti
on

A
cc

w/o Noise

0 2000
Train Iteration

w/ Noise

E

0.0

0.5

1.0

R
ec

al
lA

cc

#Neuron=200 #Neuron=600 #Neuron=1000

lwr bnd
SQHN L1
SQHN L2
SQHN L3

0 1000 2000
Training Iteration

0.00

0.05

0.10

Te
st

M
SE

0 1000 2000 3000
Training Iteration

0 1000 2000 3000
Training Iteration

D

0

1

CI
FA

R-
10

0

Noise Black Occlusion Color Occlusion Noise Occlusion

0

1

Re
ca

ll
Ac

c

Ti
ny

Im
gN

et

0 1
Noise Variance

0

1

Ca
lte

ch
25

6

SQHN 1L
SQHN 2L
SQHN 3L

0.0 0.5
Fraction Occluded

0.0 0.5
Fraction Occluded

0.0 0.5
Fraction Occluded

B

Fig. 5 | Comparison of SQHN architectures with different numbers of hidden
layers. A Depiction of various SQHN architectures. B Recall accuracy across three
data sets (CIFAR-100, Tiny Imagenet, Caltech 256) under the white noise and sev-
eral occlusion scenarios. C Visualization of the black, color, and noise occlusions.
DRecall accuracyduringonline trainingwithoutnoise (top row) andMSEona test a
test set (bottom row). The lower bound on recall accuracy posited by theorem 2
(supplementary note 6) is marked by a gray line. Models tested with different

maximum number of neurons per node (200, 600, 1000). E Recognition accuracy
for three SQHNmodels, with and without noise. 500 neurons are allocated to each
node (vertical dotted line marks when all 500 neurons are grown). CIFAR-100 data
was used for train and in-distribution set, while a flipped pixel version of the Street
View House Numbers (SVHN) dataset was used for out-of-distribution. The best
guessing strategy yields 66% accuracy (horizontal dotted line).

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 9

isolation approachgenerally.However, the SQHNalsouses an effective
learning rate schedule to prevent forgetting (Fig. 2), and we also find
mathematically that using MAP inference to set the one-hot values at
hidden nodes is a principled way of deciding which parameters to
update. In particular, it yields a set of activities and updates that
require only a small change to existing parameters (Supplementary
Note 6). This suggests the exciting prospect that MAP learning in dis-
crete models, like SQHNs, provides a justified and bio-plausible way to
perform parameter isolation, which unlike previous parameter isola-
tion methods (e.g., refs. 22–25), does not require the computation of
non-local global loss gradients to decide how to isolate parameters.

Third, the sparse quantized code reduced the negative effects of
noise during the noisy encoding process by yielding a hidden latent
code that was largely stable across noisy samples. If we fixed the latent
code to be perfectly stable, as we did with SQHN+, then performance
improves even more. The sparse updates also helped prevent noise
from interfering with previously recorded memories.

Finally, the SQHN proved to be highly effective in the episodic
recognition task. The memory node of the SQHN stored an explicit,
itemized record of previously observed feature representations of
input data (see Supplementary Note 5). During recall, the memory
node performs a nearest neighbor operation by finding the item with
the highest energy. This operation turned out to yield a straightfor-
ward method for detecting new versus old data points, is similar to
classic cognitive models of episodic recognition (e.g., ref. 55), and it
performed well even when the memory node was pushed past its
capacity. Models like the MHN trained with BP, on the other hand, did
not naturally learn an explicit record of previously observed feature
prototypes and struggled to distinguish new from similar, old data
points.

Importantly, SQHN’s energy function yields a straightforward way
to implement a directed graphical model with largely standard artifi-
cial neural network operations. In particular, since the energy was a
sum of probabilities, rather than a product, neurons in the SQHN
architecture summed inputs from children and parent nodes rather
than multiplied (as belief networks do28), yielding standard neural
network operations which are easily scaled and more compatible with
hardware built specifically to handle vector-matrix multiplies. SQHN
does so without the need to move probabilities to the log domain,
which can sometimes yield unusual properties like the need to repre-
sent very large negative numbers (i.e., overflow issues). The energy can
also be justified as an approximation to the joint distribution when
uncertainty (i.e., a prior distribution) is placed over parameters (sup-
plementary note 1). Taken together these results suggest that our
general approach, and the SQHN implementation of it, could provide a
highly promising basis for building neuromorphic online-continual
learners.

It is also interesting to note the striking similarities between
SQHNs and models of memory from neuroscience. In particular, in
addition to utilizing sparse codes and local learning rules like the brain,
the memory node of the SQHNs has similarities to the hippocampus
(HP). HP is a region of the brain closely tied to episodic memory. We
showed in our experiments the memory node, like the HP, is highly
effective for episodic recognition. Further, the HP, like the memory
node in SQHNs, is often proposed to be at the top of the cortical
hierarchy56, and some theories propose a central function of the HP is
to retrieve and return previously stored patterns given partial, noisy
inputs from cortex57,58. This is precisely what the memory node of
SQHNs does (see Fig. 1). Maybe most interesting, we find that, on
average, neurons grow more rapidly and for longer periods in the
memory node than the rest of the network and synapses in the
memory node tend to have larger step sizes (more flexibility) on
average (Supplementary Fig. 3). This is highly consistent with obser-
vations that HP grows neurons into adulthood while the rest of the
cortex stops in early adulthood59, and the observation that synapses

are highly flexible in HP compared to the rest of the cortex60. Impor-
tantly, the SQHN was not engineered to have these properties. Rather
these properties emerged from the SQHN learning algorithm as it
solved the online-continual learning problem.

Future work will need to assess whether and how the SQHN pro-
vides possible new ideas or insights into these topics in neuroscience.
Further, on the machine learning side, future work will need to assess
the SQHN on tasks that require generalization, such as classification
tasks. Although we found SQHNs with simple tree-architectures to be
highly efficient at storing and retrieving training data, and preventing
forgetting, we believe somewhat more complicated SQHN archi-
tectures will be needed for high performance on tasks like classifica-
tion or self-supervised learning where generalizing to new data points
is needed. Nonetheless, the results here suggest SQHNs could provide
a promising approach for learning these tasks in the online-continual
setting.

Methods
Datasets and hyperparameters
Image values ranged between 0 and 1, unless otherwise noted. Images
are converted to pytorch tensors, but no normalization or other
alterations were made unless otherwise specified. MNIST, Fashion-
MNIST, and EMNIST are image data sets with images sized 1 × 28 × 28.
SVHN, CIFAR-10, and CIFAR-100 are natural image data sets with
images sized 3 × 32 × 32. Tiny ImageNet is a natural image data set
with images sized 3 × 64 × 64. Finally, CalTech256 is a natural image
data set with images of various sizes. We cropped all CalTech256
images to 3 × 128 × 128. For all models, we use a grid search to find
hyperparameters.

Unless otherwise specified, we use a recall threshold, γ, of .01.
Prior works (e.g., refs. 19,48) use smaller thresholds of 0.005 or 0.001.
We use a slightly larger threshold here, since we find one of our main
comparisonmodels,MHN, is unable to recall any images while training
with BP, and we wanted to show this was not simply a result of an
arbitrarily small recall threshold.

SQHN implementation details
All SQHN architectures are set up to have a tree structure. One can
think of the structure as being similar to locally connected networks or
convolutional networks without weight sharing. Thus, we can talk
about SQHNs as having a certain number of channels at each hidden
layer (equivalent to the number of neurons at each node) and the
receptive field size of each channel/node. To simplify the archi-
tectures, we design SQHNs so that nodes have non-overlapping
receptive fields, which means each node has one parent. More com-
plex versions of SQHNs canbeused formore complex vision tasks, but
we found these simpler architectures performed very well and eased
scaling in associative memory tasks. Here we explain how inference is
implemented. Inference involves a single feed-forward and feedback
sweep through the network. The goal of inference is to maximize
energy, i.e., the sum of conditional probabilities of input and hidden
node values (equation (1)).

Let hl,j be the internal state value of the jth neuron in the lth node.
Let the lth node be in the first hidden layer, which has one child node.
LetMl be the matrix from node l to its child node, which is visible and
clamped in image patch xcl . The matrix Ml can be decomposed into
columns or ‘memory vectors’:Ml = [ml,0,ml,1,…,ml,J]. During the feed-
forward pass hl,j receives the signal

hl,j =
:5ðm>

l,j � :5Þðxcl � :5Þ
k ðm>

l,j � :5Þ kk ðxcl
� :5Þk + :5: ð14Þ

This operation is a kind of shifted cosine similarity operation
between in input and each memory vector ml,j. We show in supple-
mentals this operation can be interpreted as a weighted, normalized

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 10

average of the probability of each pixel value, under the assumption
each pixels value is a binary variable (Supplementary Note 2). In matrix
form, this operation only involves a vector-matrixmultiply, like a neural
network, with an extra shift operation and normalization operation:

hl =
1
2Z

ðM>
l � :5Þðxcl

� :5Þ+ :5, ð15Þ

where 1
Z is the neuron-wise normalization. In practice, one could also

store a separate feedback matrix with the shifted, transposed, and
normalized version of matrixMl.

Hidden nodes at the second layer and higher have children nodes
that represent discrete/categorical variables. Computing the sum of
probabilities of each child therefore requires a different operation. Let
hcn

be the vector of internal neuron values of the nth child node of
node l, and let hmax

cn
=maxðhcn

Þ, where max is an activation function
that returns a vector of all zeros except for the maximum value, e.g.,
max([0.1, 0.8, 0.4]) = [0, 0.8, 0]. Let hmax

c be the concatenation of all N
children node max values: hmax

c = ½hmax,>
c0

,hmax,>
c1

, . . .hmax,>
cN

�>, and letMl

be the concatenation of the matrices lead from node l to its children:
Ml = ½M>

l,0,M
>
l,1, . . .M

>
l,N �

>
. The update for a hidden node is

hl =
1
Z
M>

l h
max
c , ð16Þ

where Z =N k hmax
c k. We show in the supplementary material this is

equivalent to taking the weighted average of the conditional prob-
ability of child node assignments, whereeach conditional probability is
weighted by the weighted average of the probability of its children
values,whichare aweightedprobability of their children values, and so
on (see Supplementary Note 2). Using this weighting thus conveys
information about the probabilities of all descendants.

After signals propagate to the root/memory node, signals are
propagated down the tree, and one-hot values assigned to each node.
Let argmax be the activation function that assigns a one-hot to the
maximum value, e.g., argmax([0.1, 0.8, 0.4]) = [0, 1, 0]. Let h*

l be the
one-hot assignment for the lth node. At the memory node, the
assignment is simply

h*
L = argmaxðhLÞ: ð17Þ

Signals are then propagated down according to

h*
l = argmaxðλhl + ð1� λÞMpal ,l

h*
pal

Þ, ð18Þ

where pal is the parent node of l and λ a hyperparameter. For all recall
tasks, we set λ =0.5.

Associative recall comparison
For our initial comparison to SoTA associative memory models, we
tested our SQHN models on the same associative memory task as19.

Model architectures. Each SQHN and MHN model had the same
number of neurons at each of its nodes as there were images. Multi-
level SQHN models had nodes with non-overlapping receptive fields.
The SQHNL2had local receptivefield sizes 4 × 4 forCIFAR and8 × 8 for
tiny image net at its bottom layer, and a full receptivefieldof 4 × 4 at its
top layer for bothdata sets. SQHNL3hadkernel sizes 2 × 2 and4 × 4 for
CIFAR and tiny image net, respectively, at its bottom layer. It had
kernel size 4 × 4 at both its second and third layers for both data sets.
The single-layer SQHN and MHNmodels we train have a single hidden
layer where each neuron has full receptive fields.

Hyperparameters. For the MHN hyperparameters were not needed,
since each image (or image patch) was stored in a separate column of

the matrix. In SQHN models α =∞ so that each image was stored at
hidden layers using a separate set of neurons.

Experiment setup. In the moderate corruption task, 1024 images are
presented. In the high corruption task, 128 are presented. The auto-
associative task used white noise corruption with variances of 0.2 and
0.8 for moderate and high corruption task, respectively. For hetero-
associative tasks, 25 and 75% of pixels are masked for moderate and
high tasks. Masked pixels are treated as missing in these tasks and are
therefore ignored by the bottom hidden layer of SQHN (rather than
being treated as0 values, which affects the normalization term).MSE is
only computed in hetero-associative tasks between the output and the
original pixels that were missing in the input.

Yoo et al.19 tests the generative predictive coding network (GPCN)
of48, which trains offline. Yoo et al. develops a version for online
training, called BayesPCN, and BayesPCN with forgetting, which pre-
vents learning from slowing too much.

We also compared to MHN models. Following previous works
(e.g., refs. 19,52, we updateMHNs with a simple batch update where all
the input vectors are stored in columnsof a “memorymatrix”M andwe
set the temperature, β to 10,000, essentially treating it as a argmax
operator. The original model of ref. 45 performs retrieval via the
operation

xðnewÞ =M softmaxðβM>~xÞ, ð19Þ

where β is the temperature. Millidge et al.52 showed this recall process
is a kind of nearest neighbor operation, where a weighted average of
memory vectors are returned, andmemory vectorsmore similar to the
input, according to a dot product measure, are given more weight.
Recall is typically best when β is large, and the nearest memory vector
is returned. Millidge showed that other similarity measures work bet-
ter than dot products.We show the best-performingmodel ofMillidge
et al. which uses the Manhattan distance. Finally, we also report the
results of the gradient-basedMHN (MHN-grad) listed in19 that performs
recall via a gradient-based inferenceprocedure insteadof the one-shot
recall process shown above.

An important caveat is that the results reported by ref. 19 used
images normalized to −1 and 1. Our SQHNmodelwas designed for non-
normalized images with values 0 to 1. Tomake the comparison fair, we
multiplied the MSE scores for the SQHN by 4 since normalized images
(ranging from −1 to 1) have an error range twice as large as unnorma-
lized images (ranging from0 to 1),which is then squared in the squared
error: let e = x − xnew be the unnormalized image and output error. If the
image and output were normalized before computing the error we
would be 2e. If this error is then squared we get 4e2. Further, the
standard deviation must be multiplied by two.

Online-continual auto-associative memory tests (Fig. 2)
Experiment setup. In the online-continual learning task, images were
presented online (one at a time and only a single pass through the
data) in a non-i.i.d. fashion. In particular, images from the first task are
presented online, then images from the second task are presented
online, and so on. We tested grouping images by class (online class
incremental or OCI) and by visually distinct data sets (online domain
incremental or ODI). Each class and domain group had an equal
number of images. In theODI setting, the one-layermodels trainedone
four different data sets/domains: MNIST, MNIST with flipped pixels,
FMNIST, andFMNISTwithflippedpixels.One-layermodelswere tested
with 300, 1300, and 2300 hidden layer neurons on MNIST data sets,
and 700, 2000, and 3300 on CIFAR-100. The three-layer models
trained on CIFAR-10 with dark pixels (xdark = x ×0.5), CIFAR-10 with
bright flipped pixels (xlight = (− 1 × x + 1) × 0.5 + 0.5), SVHN dataset with
dark pixels, and SVHN with bright flipped pixels.

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 11

Model architectures. The three-layer SQHN model had nodes with
non-overlapping receptive fields. Receptive fields for each layer were
4 × 4, 4 × 4, and 2 × 2, at the first, second, and third hidden layers,
respectively. The one-layer model was tested with node sizes 300,
1300, and 2300. The three-layer model was tested tested with node
sizes 200, 600, 1000. During test time, training images with a noise
variance of 0.2 are presented. The SQHN is compared to the modern
Hopfield network (MHN)44,45.

We compare to the MHN of ref. 45, in particular, because it is the
most similar architecturally to SQHN, and has a very high capacity
relative to other MHNs45. The one-layer model performs recall as:

xnew =M softmaxðβMTxÞ, ð20Þ

where x is the input vector and M with weight matrix, and β a scalar
temperature. This same mechanism can be stacked into tree-like
hierarchies as well, similar to the multi-level SQHN. For the multi-level
MHN we essentially use the same architecture (same local receptive
field and node sizes) but replace the argmax with softmax and remove
the normalization.

One issue we ran into was there was no standard way to train this
model online for auto-associative tasks like the ones used here. The
original model of ref. 45 was trained with BP, but not used for auto-
associative memory. Instead, it was treated like the attention layer of a
transformer, where M is generated by a separate set of weights. Thus,
we train the model like the original MHNs of ref. 44, which were used
for auto-association, where BP is used to directly optimizeM. Since we
are training to reduce recallMSE, wedirectly optimizeMHNs to reduce
recall MSE. We test the model trained with plain SGD, SGD with Adam
optimization61, EWC++53 which is an online version of EWC35, and epi-
sodic replay with a small memory buffer40. EWC++ uses a moving
average of the Fisher information matrix, F, to modulate parameter
updates. Parameter updates for EWC are regularized loss gradients
where the objective, ~L is:

~L
k
= Lk + λ

X
i

F
θk�1
i

ðθi � θk�1
i Þ2, ð21Þ

where θk�1
i is the ith value of the parameters from task k − 1 and λ

weight the regularization. In EWC++, the Fisher is computed as a
moving average Ft = αFt + (1 − α)Ft−1, where t is the current training
iteration, and a moving average of parameters is kept as well. At the
end of each task, F

θk�1
i

is set equal to Ft and the moving average of
parameters set equal to θk−1. One issue is that EWC++ needs to know
task boundaries, so it can store the parameters and Fisher matrix from
previous task. In our task, no such supervision is allowed. To deal with
this, we just treat each data point as its own task and compute a
moving average of the parameters, the same as the Fisher information
matrix. This should still allow parameters and Fishers to maintain
information about previous tasks. The λ and α hyper-params are found
via grid search. Generally, we find that regularization provides little to
no benefit, because the training runs are short and therefore training
speed is as important as preventing forgetting. EWC slowed down
training speed, too when λ was significant, so the regularization
provided little help.

Episodic replay with a tiny memory buffer40 stores a small sample
of previously observed data-points, then uses SGD to update para-
meters each iteration using the whole sample as a mini-batch. Despite
using a small buffer, this approach has shown to be highly effective in
continual classification. Methods that sample a mini-batch from a lar-
ger buffer can work better16. However, we are interested in memory
and compute-efficient algorithms and are using relatively small data
sets. Thus, we use the tiny memory buffer method. There are several
algorithms for decidingwhen to store adata point in thebuffer.Weuse
the reservoir sampling method (see ref. 40), which is a simple method

that has shown to consistently be better than other methods on clas-
sification tasks. The reservoir method is simple: let n be the maximum
number of data point that can be stored in the buffer, and t be the total
number of data points observed. For thedata point, xt, at each iteration
t, check if the buffer is full. If it is not full, add the data point to the
buffer. If the buffer is full, randomly overwrite one data point in the
buffer with xt, with probability n

t + 1.

Hyperparameters. Specific hyperparameter settings for each model
can be found in the code. The hyperparameters were found via grid
searches. The SQHN model’s only hyperparameter is the α parameter
which controls neuron growth. Ten to fifteen values between 1000 and
100,000were tested, and the best-performingonewas used. TheMHN
model had both the inverse temperature, β, and the learning rate
hyperparameter. For beta we search 10–15 values between 0.01 and
100 for β and between 0.001 and 0.9 for the learning rates.

Noisy encoding
Experiment setup. We compared one and three hidden layers SQHN
andMHNmodels on EMNIST and CIFAR-100, respectively, in the noisy
encoding task. The single-layermodelswere testedwith node size 300,
and were presented with 300 images. Trees had a node size of 150 and
were presented with 150 images. Therefore, any inability to recall
images must be due to an inability to remove noise during learning,
rather than capacity limitations. Images were either Gaussian samples
(white noise added then clamped to range 0 to 1) or binary samples,
were drawn from the original image values. For each image, some
number of samples were drawn and presented to the models online in
a sequence, before moving to the next image. For EMNIST images, we
test 1, 5, 20, and 50 samples. For CIFAR-100, we tested 1, 10, and
20 samples. At no point during training was the original, non-
corrupted image presented to the model. At test time, the original,
non-corrupted image was presented, and the model had to be recon-
structed. We also tested an SQHN model with a slight alteration
(SQHN+), where after the hidden states are computed for the first
image sample, the hidden states are held fixed for the remainder of the
samples. This ensured that samples from the same image were enco-
ded to the same latent state. AlthoughSQHNwasable todo thiswell on
its own, it sometimes mapped samples from the same image to dif-
ferent latent state in the high-noise, binary sample scenario. In these
cases, SQHN+ performed better.

Model architectures and hyperparameters. The same architectures
and hyperparameter searches were used as in the last online auto-
association task.

Episodic recognition
Model architectures. For this test we used single hidden layer SQHN
and MHN architectures with 300 neurons at the hidden layer.

Experiment set-up. For the episodic memory comparison between
SQHN and MHN, we use a one-layer model and MNIST data sets. The
train set is pulled from the MNIST training data. The in-distribution
hold-out set is from MNIST test data. The out-of-distribution set is
from F-MNIST. We test two methods for performing recognition in an
MHN with one hidden layer. The first method uses the activities at the
hidden layer as ameasure of familiarity/similarity. If that value is above
a threshold, ρ, then the model judges it has observed the data point.
The second method keeps a moving average, μ, of the recall MSE
during training, and uses a scalar multiple of this average, ρμ, as the
decision threshold. All hyperparameters were found with grid search.
Learning rates areupdated to achieve the bestperformance in termsof
recall MSE. ρ updated to achieve the best recognition accuracy. 3000
data points from EMNIST are presented in an online and i.d.d. fashion.
At each test point, all previously observed train data are presented

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 12

along with an equal number of in-distribution and out-of-distribution
data. We plot the MSEs of MHN and SQHN for each data set to show
that MHN have no performance difference between training and in-
distribution data, making it good at generalization but unable to per-
form recognition.

Hyperparameters. A grid search was used to find the β and learning
rate values that achieved the best MSE after 3000 iteration for the
MHN. The same procedure was used to find the best α value for SQHN
models. A further grid search was used for ρ testing 10–15 values
between 0 and 1.

SQHN architecture compare (Fig. 5B, D, E)
Auto-association with varying amounts of corruption (Fig. 5B). All
SQHN models had 1000 neurons at each node and are trained to
memorize 1000 images. SQHNs are trained so that each image is
encoded in a unique set of one-hot vectors at hidden nodes, (which can
bedone inpractice by settingα to a very largenumber). Thismeans that
all SQHNmodels are not over capacity, and an inability to recall images
is due only to their inability to handle varying amounts or types of
corruption. Importantly, only auto-associative, and not hetero-associa-
tive, recall is tested. The masks added to images are treated as cor-
rupted pixels (i.e., their values are taken as input) rather than missing
pixels. For noise tasks, we addwhite noise to the images and then clamp
the images to values between 0 and 1. Noise variances tested are [0,
0.05, 0.15, 0.25, 0.4, 0.5, 0.75, 1, 1.25, 1.5]. Fractions masked that are
tested are [0, 0.1, 0.25, 0.5, 0.75, 0.875, 0.9375]. For masking tasks, a
rectangle with random length andwidth (less than or equal to thewidth
and height of the image) is sampled, and its positionwithin the image is
randomly sampled. The black mask sets pixels equal to 0. The color
mask randomly selects an RGB value from a uniform distribution, and
sets pixels in the mask equal to that value. Noise mask sets mask values
equal to awhite noise sample (variance 1), clamped to values between 0
and 1. The one-level SQHN L1model has an input layer kernel size equal
to the size of the image. SQHN L1 essentially performs nearest neighbor
operations comparing each images to the set of training images, which
are stored in columns of its weight matrix, using mean-shifted cosine
similarity. SQHN L2 has an input layer kernel size of 8 × 8, 16 × 16, and
32 × 32 for CIFAR-10, Tiny Imagenet and Caltech 256, respectively. The
second layer kernel across all data sets is sized 4 × 4. SQHN L3 has an
input layer kernel size of 4 × 4, 8 × 8, and 16 × 16 for CIFAR-10, Tiny
Imagenet and Caltech 256, respectively. The second and third layer
kernel sizes across all data sets are sized 4× 4.

Onlineauto-associative learning (Fig. 5D). For this task, one, two, and
three hidden layersmodels were trained in the online i.i.d. scenario on
CIFAR-100. Models were trained with 200, 600, and 1000 neurons at
hidden nodes. SQHN L1 model had an input layer kernel size equal to
the dimension of the image (32 × 32). SQHN L2 had an input layer
kernel size of 4 × 4 (which worked better than the 8 × 8 kernel used in
the experiment above), and a second layer kernel size of 8 × 8. SQHN
L3 has an input layer kernel size of 4 × 4, 8 × 8, and 16 × 16 for CIFAR-10,
Tiny Imagenet and Caltech 256, respectively. The second and third
layer kernel sizes across all data sets are sized 4 × 4. α was set very
large, so networks memorized the first J data points, up until capacity
was reached. We measured recall accuracy without any corruption,
and noticed L2 and L3 architectures performed much better than L1.
We suspected this was because the L2 and L3 architectures learn the
representation of small features that are generalized widely across
training sets. To test this we also measured test MSE on the test set
from CIFAR-100.

SQHN episodic recognition comparison (Fig. 5E). For the recogni-
tion task, a train set, in-distribution hold-out set, and out-of-
distribution set are needed. We use CIFAR-10 training images for the

train set, a hold-out/test set of CIFAR-10 images as the in-distribution
set, and CIFAR-100 with flipped pixels as out-of-distribution set (i.e.,
each image is multiple by −1 then 1 is added). SQHN L1 is given 500
neurons at its hidden node. SQHN L2 and L3 are given 500 neurons at
their memory node. Since only the memory node is used directly for
recognition, we pre-train the lower layers of SQHN L2 and L3 for 1000
iterations onCIFAR-10 images. SQHNL2 has kernel sizes 4 × 4 and 8 × 8
at hidden layers, and a channel size of 40 at the first hidden layer.
SQHN L3 has kernel sizes 2 × 2, 4 × 4, and 4 × 4 at the first, second, and
third hidden layers, respectively, and channel sizes of 40 and 200 at
the first and second hidden layers. After pre-training during the
training phase, images from the train set are presented online in and
i.i.d. manner. Only the weights leading into the memory node are
updated. During testing, models are presented with a set of images,
which are composed of all of the training images observed so far, an
equal number of in-distribution images, and an equal number of out-
of-distribution images. The best guessing strategy is to guess all data
points are new which yields 66% accuracy.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All image data sets used in this paper are publicly available for down-
load. TinyImageNet data set can be downloaded at the following link:
https://www.kaggle.com/c/tiny-imagenet. The remaining data sets are
automatically downloaded through pytorch dataloaders, the code for
which can be found in our open-source repository (see next section).

Code availability
The code can be found at https://github.com/nalonso2/SQHN. Code
was written in Python 3.7.6 using Pytorch version 1.10.0 to implement
models and perform differentiation for models that use
backpropagation.

References
1. Davies,M. et al. Loihi: a neuromorphicmanycore processorwith on-

chip learning. IEEE Micro. 38, 82–99 (2018).
2. Rumelhart, D. E., Durbin, R., Golden, R. & Chauvin, Y. In Back-

propagation: Theory, Architectures and Applications (eds Rumel-
hart, D. E. &Chauvin, Y.) Ch. 1 (Lawrence ErlbaumAssociates, 1995).

3. Crick, F. The recent excitement about neural networks. Nature 337,
129–132 (1989).

4. Stork. Is backpropagation biologically plausible?In International
1989 Joint Conference on Neural Networks 241–246 (IEEE, 1989).

5. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G.
Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346
(2020).

6. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag.
36, 51–63 (2019).

7. Schuman, C. D. et al. Opportunities for neuromorphic computing
algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

8. O’Reilly, R. C. Biologically plausible error-driven learning using
local activation differences: the generalized recirculation algo-
rithm. Neural Comput. 8, 895–938 (1996).

9. Whittington, J. C. & Bogacz, R. An approximation of the error
backpropagation algorithm in a predictive coding network with
local hebbian synaptic plasticity. Neural Comput. 29, 1229–1262
(2017).

10. Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the gap
between energy-based models and backpropagation. Front. Com-
put. Neurosci. 11, 24 (2017).

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 13

https://www.kaggle.com/c/tiny-imagenet
https://github.com/nalonso2/SQHN

11. Sacramento, J., Ponte Costa, R., Bengio, Y. & Senn, W. Dendritic
cortical microcircuits approximate the backpropagation algorithm.
In Proc. 32nd International Conference on Neural Information Pro-
cessing Systems 8735–8746 (Curran Associates Inc., 2018).

12. Khetarpal, K., Riemer, M., Rish, I. & Precup, D. Towards continual
reinforcement learning: a review and perspectives. J. Artif. Intell.
Res. 75, 1401–1476 (2022).

13. Wang, L., Zhang, X., Su, H. & Zhu, J. A comprehensive survey of
continual learning: theory, method and application. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2024).

14. Parisi, G. I. & Lomonaco, V.Online continual learning on sequences.
In Recent Trends in Learning From Data: Tutorials from the INNS Big
Data and Deep Learning Conference (INNSBDDL2019), pp.
197–221 (2020).

15. Gallardo, J., Hayes, T. L. & Kanan, C. Self-supervised training
enhances online continual learning. Preprint at arXiv:2103.14010
(2021).

16. Mai, Z. et al. Online continual learning in image classification: an
empirical survey. Neurocomputing 469, 28–51 (2022).

17. Hayes, T. L. & Kanan, C. Online continual learning for embedded
devices. In Conference on Lifelong Learning Agents, pp. 744–766
(PMLR, 2022).

18. Bellec, G. et al. A solution to the learning dilemma for recurrent
networks of spiking neurons. Nat. Commun. 11, 3625 (2020).

19. Yoo, J. & Wood, F. Bayespcn: a continually learnable predictive
coding associative memory. Adv. Neural Inf. Process. Syst. 35,
29903–29914 (2022).

20. Yin, B., Corradi, F. & Bohté, S. M. Accurate online training of dyna-
mical spiking neural networks through forward propagation
through time. Nat. Mach. Intell. 5, 518–527 (2023).

21. Kohonen, T. & Kohonen, T. Self-Organizing Maps (Springer, 1995).
22. Lee, S., Ha, J., Zhang, D. & Kim,G. A neural dirichlet processmixture

model for task-free continual learning. In International Conference
on Learning.(Representations, ICLR, 2019).

23. Yoon, J., Yang, E., Lee, J. & Hwang, S. J. Lifelong learning with
dynamically expandable networks. In International Conference on
Learning. (Representations, ICLR, 2017).

24. Mallya, A. & Lazebnik, S. Packnet: adding multiple tasks to a single
network by iterative pruning. In Proc. IEEE Conference onComputer
Vision and Pattern Recognition 7765–7773. (IEEE Computer
Society, 2018).

25. Mallya, A., Davis, D. & Lazebnik, S. Piggyback: adapting a single
network to multiple tasks by learning to mask weights. In Proc.
European Conference on Computer Vision (ECCV) 67–82 (2018).

26. Matsuda, S. Quantized hopfield networks for integer programming.
Syst. Comput. Jpn. 30, 1–12 (1999).

27. Matsuda, S. Theoretical analysis of quantized hopfield network for
integer programming. IJCNN’99. Int. Jt. Conf. Neural Netw. Proc. 1,
568–571 (1999).

28. Bishop, C. M. & Nasrabadi, N. M. Pattern Recognition and Machine
Learning Vol. 4 (Springer, 2006).

29. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference (Morgan Kaufmann, 1988).

30. George, D. et al. A generative visionmodel that trainswithhigh data
efficiency and breaks text-based captchas. Science 358,
eaag2612 (2017).

31. O’Reilly, R.C.,Wyatte,D. R. &Rohrlich, J. Deeppredictive learning: a
comprehensive model of three visual streams. Preprint at
arXiv:1709.04654 (2017).

32. Rozell, C. J., Johnson, D. H., Baraniuk, R. G. & Olshausen, B. A.
Sparse coding via thresholding and local competition in neural
circuits. Neural Comput. 20, 2526–2563 (2008).

33. Ahmad, S. & Hawkins, J. Properties of sparse distributed repre-
sentations and their application to hierarchical temporal memory.
Preprint at arXiv:1503.07469 (2015).

34. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. &Wermter, S. Continual
lifelong learning with neural networks: a review. Neural Netw. 113,
54–71 (2019).

35. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural
networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

36. Ritter, H., Botev, A. & Barber, D. Online structured laplace approx-
imations for overcoming catastrophic forgetting. In 32nd Con-
ference on Neural Information Processing Systems (2018).

37. Zenke, F., Poole, B. & Ganguli, S. Continual learning through
synaptic intelligence.Proc.Mach. Learn. Res. 70, 3987–3995 (2017).

38. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M. & Tuytelaars, T.
Memory aware synapses: Learning what (not) to forget. In Proc.
European Conference on Computer Vision (ECCV) 139–154 (2018).

39. Li, Z. & Hoiem, D. Learning without forgetting. IEEE Trans. Pattern
Anal. Mach. Intell. 40, 2935–2947 (2017).

40. Chaudhry, A. et al. On tiny episodicmemories in continual learning.
Preprint at arXiv:1902.10486 (2019).

41. Shin, H., Lee, J. K., Kim, J. & Kim, J. Continual learning with deep
generative replay. In Advances in Neural Information Processing
Systems (2017).

42. Aljundi, R., Lin, M., Goujaud, B. & Bengio, Y. Gradient based sample
selection for online continual learning. In Advances in Neural
Information Processing Systems (2019).

43. Hopfield, J. J. Neural networks and physical systemswith emergent
collective computational abilities. Proc. Natl Acad. Sci. USA 79,
2554–2558 (1982).

44. Krotov, D. & Hopfield, J. J. Dense associative memory for pattern
recognition. In Advances in Neural Information Processing Ssys-
tems (2016).

45. Ramsauer, H. et al. Hopfield networks is all you need. In Interna-
tional Conference on Learning. (Representations, ICLR, 2020).

46. Millidge, B., Song, Y., Salvatori, T., Lukasiewicz, T. & Bogacz, R. A
theoretical framework for inference and learning in predictive
coding networks. In The Eleventh International Conference on
Learning. (Representations, ICLR, 2022).

47. Friston, K. & Kiebel, S. Predictive coding under the free-energy
principle. Philos. Trans. R. Soc. B Biol. Sci. 364, 1211–1221 (2009).

48. Salvatori, T. et al. Associative memories via predictive coding. Adv.
Neural Inf. Process. Syst. 34, 3874–3886 (2021).

49. Tang, M. et al. Recurrent predictive coding models for associative
memory employing covariance learning. PLoS Comput. Biol. 19,
e1010719 (2023).

50. Tang, M., Barron, H. & Bogacz, R. Sequential memory with temporal
predictive coding. Tang, Mufeng, Helen Barron, and Rafal Bogacz.
Advances in Neural Information Processing Systems 36 (2024).

51. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field
effects. Nat. Neurosci. 2, 79–87 (1999).

52. Millidge, B., Salvatori, T., Song, Y., Lukasiewicz, T. & Bogacz, R.
Universal hopfield networks: a general framework for single-shot
associative memory models. In International Conference on
Machine Learning pp. 15561–15583 (PMLR, 2022).

53. Chaudhry, A., Dokania, P. K., Ajanthan, T. & Torr, P. H. Riemannian
walk for incremental learning: Understanding forgetting and
intransigence. In Proc. European Conference on Computer Vision
(ECCV) 532–547 (2018).

54. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas imma-
nent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

55. Shiffrin, R. M. & Steyvers, M. A model for recognition memory:
Rem–retrieving effectively from memory. Psychon. Bull. Rev. 4,
145–166 (1997).

56. McNaughton, B. L. Cortical hierarchies, sleep, and the extraction of
knowledge from memory. Artif. Intell. 174, 205–214 (2010).

57. Teyler, T. J. & DiScenna, P. The hippocampal memory indexing
theory. Behav. Neurosci. 100, 147–54 (1986).

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 14

58. Teyler, T. J. & Rudy, J. W. The hippocampal indexing theory and
episodic memory: updating the index. Hippocampus 17,
1158–69 (2007).

59. Ming, G.-l & Song, H. Adult neurogenesis in the mammalian brain:
significant answers and significant questions. Neuron 70,
687–702 (2011).

60. Kumaran, D., Hassabis, D. &McClelland, J. L.What learning systems
do intelligent agents need? complementary learning systems the-
ory updated. Trends Cogn. Sci. 20, 512–534 (2016).

61. Kingma, D. P. & Ba, J. Adam: amethod for stochastic optimization. In
International Conference on Learning. (Representations,
ICLR, 2014).

Acknowledgements
Wewould like to thankMark Steyvers for the illuminating discussionswe
had on episodic memory and novelty detection. This work was sup-
ported by the National Science FoundationGrant IIS-1813785 and the Air
Force Office of Scientific Research Grant FA9550-19-1-0306.

Author contributions
Nicholas Alonso and Jeffrey Krichmar conceived the SQHN model
design and experiment designs. Nicholas Alonso developed the math-
ematical theory and results behind the SQHN network, wrote the code
for the simulations, and was the lead writer of the manuscript. Jeffrey
Krichmar advised and edited the writing of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46976-4.

Correspondence and requests for materials should be addressed to
Nicholas Alonso.

Peer review information Nature Communications thanks Tommaso
Salvatori, and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-46976-4

Nature Communications | (2024) 15:3722 15

https://doi.org/10.1038/s41467-024-46976-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A sparse quantized hopfield network for online-continual�memory
	Results
	Toward a foundation for local, online-continual memory�models
	The sparse quantized hopfield network
	Related�works
	Experiment: auto-association and hetero-association comparison
	Experiment: online, continual auto-association
	Experiment: noisy encoding
	Experiment: episodic�memory
	Experiment: further comparison of SQHN architectures

	Discussion
	Methods
	Datasets and hyperparameters
	SQHN implementation details
	Associative recall comparison
	Model architectures
	Hyperparameters
	Experiment�setup
	Online-continual auto-associative memory tests (Fig. 2)
	Experiment�setup
	Model architectures
	Hyperparameters
	Noisy encoding
	Experiment�setup
	Model architectures and hyperparameters
	Episodic recognition
	Model architectures
	Experiment set-up
	Hyperparameters
	SQHN architecture compare (Fig. 5B,�D, E)
	Auto-association with varying amounts of corruption (Fig. 5B)
	Online auto-associative learning (Fig. 5D)
	SQHN episodic recognition comparison (Fig. 5E)
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

