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We discovered unique Anderson localization behaviors of pseu-
dospin systems in a 1D disordered potential. For a pseudospin-
1 system, due to the absence of backscattering under normal
incidence and the presence of a conical band structure, the
wave localization behaviors are entirely different from those of
conventional disordered systems. We show that there exists a
critical strength of random potential (Wc), which is equal to
the incident energy (E), below which the localization length
ξ decreases with the random strength W for a fixed incident
angle θ. But the localization length drops abruptly to a mini-
mum at W = Wc and rises immediately afterward. The incident
angle dependence of the localization length has different asymp-
totic behaviors in the two regions of random strength, with
ξ∝ sin−4 θ when W <Wc and ξ∝ sin−2 θ when W >Wc . The
existence of a sharp transition at W = Wc is due to the emergence
of evanescent waves in the systems when W >Wc . Such localiza-
tion behavior is unique to pseudospin-1 systems. For pseudospin-
1/2 systems, there is also a minimum localization length as
randomness increases, but the transition from decreasing to
increasing localization length at the minimum is smooth rather
than abrupt. In both decreasing and increasing regions, the θ
dependence of the localization length has the same asymptotic
behavior ξ∝ sin−2 θ.

localization | pseudospin | disorder | evanescent waves | photonic crystals

Anderson localization is one of the most fundamental and
universal phenomena in disordered systems. Anderson’s

seminal work (1) has inspired intensive studies on the effect of
randomness in a vast variety of electronic and classical wave sys-
tems (2–10). Meanwhile, the rapid progress in experimental tech-
niques enables us to reach an unprecedented level of manipulat-
ing artificial materials such as ultracold atomic gases (11) and
nano/microdielectric structures (12), making it possible to cre-
ate new materials with unusual transport properties (11–14). The
interplay between disorder and new artificial materials contin-
ues to generate many amazing phenomena, such as the suppres-
sion of Anderson localization in metamaterials (15–17), super-
collimation of electron beams in 1D disorder potentials (18),
and delocalization of relativistic Dirac particles in 1D disordered
systems (19).

Among these new materials, pseudospin-1/2 materials are of
particular interest due to their conical band structure and the
chiral nature of the underlying quasiparticle states. A proto-
typical example of such materials is graphene (13, 14). The
low-energy excitations in graphene behave like massless Dirac
particles and the orbital wave function can be represented by a
two-component spinor, with each component corresponding to
the amplitude of the electron wave function on one of the trigo-
nal sublattices of graphene. We emphasize that the “pseudospin-
1/2” character in graphene refers to the spatial degree of free-
dom and has nothing to do with the intrinsic spin of electrons.
The Dirac cone and the associated pseudospin-1/2 character-
istic of quasiparticles can also be found in a wide range of
quantum and classical wave systems, such as topological insu-

lators (20, 21) and the photonic and phononic counterparts
of graphene (22–24). Recently, pseudospin-1 systems have also
attracted much attention (23–38). Different from the Dirac
cones in graphene, a Dirac-like cone is found in pseudospin-
1 systems where two cones meet and intersect with an addi-
tional flat band at a Dirac-like point. For example, certain pho-
tonic crystals (PCs) can exhibit such conical dispersions at the
Brillouin zone center due to the accidental degeneracy of
monopole and dipole excitations (23–27), which combines to
give three degrees of freedom. The physics near the Dirac-
like point can be described by an effective spin-orbit Hamilto-
nian with pseudospin S = 1 and their wave functions are rep-
resented by a three-component spinor. Such systems are called
“pseudospin-1 materials” (27). These systems have also been
theoretically predicted (28–32) and experimentally realized by
manipulating ultracold atoms in an optical lattice (33) or arrang-
ing an array of optical waveguides in a Lieb lattice (34–37). As
an analogy with the gate voltage in graphene and other charged
Dirac fermion systems, the potentials in pseudospin-1 systems
can be shifted up and down by a simple change of length scale in
PCs (27) or an appropriate holographic mask in ultracold atom
systems (28–32).

Whereas these pseudospin Hamiltonians share the common
feature of conical dispersions near a singular point, differ-
ent pseudospin numbers (1 vs. 1/2) give rise to distinct physi-
cal behaviors. For example, carriers in pseudospin-1/2 systems
encircling the Dirac point pick up a Berry phase of π whereas
those in pseudospin-1 systems pick up a Berry phase of 0 (14, 27),
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Fig. 1. Schematic diagram of 1D disordered systems. (A) Top view of the
structure. Each layer has the same thickness d, but feels a randomized poten-
tial. (B) One possible realization of random potentials. The potentials V are
uniformly distributed in the range [−W,W].

meaning that the topological characteristics of the wave func-
tions in momentum space depend on the pseudospin num-
bers and the localization behaviors may be different. In addi-
tion, in the presence of a 2D potential barrier, scattering of
low-energy carriers in pseudospin-1/2 systems gives zero
backscattering amplitude, whereas the scattering is isotropic
for pseudospin-1 systems (38). The scattering behavior in the
presence of a 1D potential barrier is also different. For exam-
ple, the so-called “super-Klein tunneling” (perfect transmis-
sion for all incident angles when the incident energy equals
half of the barrier) can exist only in pseudospin-1 systems
(27–32). In 1D disordered graphene superlattices, localiza-
tion behaviors such as angle-dependent electron transmis-
sion (39, 40) and directional filtering due to strong angle-
dependent localization length (41) have been predicted. We
present here some surprising, counterintuitive transport phe-
nomena for pseudospin-1 systems in 1D disordered potentials
(Fig. 1). We also show results of pseudospin-1/2 systems for
comparison.

The disorder-induced localization behavior in pseudospin-1
systems under 1D disordered potentials is entirely different from
that in any conventional disordered systems, in which all states
become localized in 1D random potentials due to the con-
structive interference of two counterpropagating waves in the
backward direction (2–5). However, for pseudospin-1 systems,
a disordered 1D potential gives rise to a random phase only
in the spatial wave function and does not produce any back-
ward scatterings for waves propagating in the normal direction.
Such behavior was first discovered in pseudospin-1/2 systems
(14, 19, 42, 43). In the case of pseudospin-1 electromagnetic
(EM) waves (27), the absence of backscattering can be inter-
preted as the impedance match between any two adjacent lay-
ers in such systems. Thus, Anderson localization occurs only for
obliquely incident waves. It is interesting to point out that for
conventional random layered media the impedance matching
condition can also lead to a diverging localization length for p
waves at some incident angle known as the stochastic Brewster
effect (44, 45).

Furthermore, due to the existence of a Dirac-like point, the
introduction of a disorder potential makes it possible to have
evanescent waves occurring in the system when the potential
at a certain layer is close to the incident energy. The presence
of evanescent waves also makes the transport of waves differ-
ent from that in conventional disordered systems. Here we show
both analytically and numerically that, for pseudospin-1 systems,
when the randomness is small so that no evanescent waves occur
in any layer, the localization length ξ decays with the incident
angle θ according to ξ∝ sin−4 θ at small θ. However, when the
strength of the random potential reaches a critical value, which
equals the incident energy of the wave, the localization length
drops suddenly to a minimum and rises immediately afterward
as evanescent waves emerge. In the latter case, the θ dependence
of ξ changes to a different behavior; i.e., ξ∝ sin−2 θ. The sud-
den drop as well as the subsequently immediate rise of ξ with
increasing randomness and the change of the asymptotic behav-

ior in the θ dependence are not seen in any conventional dis-
ordered systems, to the best of our knowledge (Fig. 2). In con-
ventional disordered systems, ξ always decreases with increasing
randomness, consistent with our intuition that disorder should
disrupt transmission. The existence of a critical randomness in
pseudospin-1 systems suggests some kind of sharp transition
between two localization phases. The physical origin of such a
transition is the occurrence of evanescent waves in certain fluc-
tuating layers with randomness that is beyond the critical ran-
domness. Evanescent waves are known to produce a diffusive-
like transport in an ordered graphene at the Dirac point (46,
47). We discover that evanescent waves can produce even more
fascinating transport behaviors in disordered pseudospin-1 sys-
tems. For pseudospin-1/2 systems in 1D disordered potentials,
our results find a smooth crossover in the localization length
behavior, from a decreasing one at small randomness to an
increasing one at large randomness, and an angular dependence
of ξ∝ sin−2 θ in both the localization length decreasing and
increasing regimes. We show that the absence of the sharp tran-
sition in pseudospin-1/2 systems is due to the presence of addi-
tional interface scatterings, which produces a ξ∝ sin−2 θ behav-
ior even at small randomness. Thus, the θ-dependent localiza-
tion length behavior does not change when the randomness is
increased.

Results and Discussion
Models and Numerical Results. The systems under investigation
are pseudospin-1 systems in 1D disordered potentials, which are
in the form of N random layers (or strips). Each layer has the
same thickness d , but feels a random potential V (x ) with a
strength W , as shown in Fig. 1. Here, V = 0 denotes the energy
of the Dirac-like point of the background medium. A plane
wave is incident on the layered structure at an incident angle
θ from the background with the incident energy E . For nor-
mal incidence (θ= 0), the waves are delocalized, irrespective of
the strength of randomness due to the absence of backscatter-
ing (27). Here we consider oblique incidence (θ 6= 0), for which

A B

C D

Fig. 2. Localization length as a function of normalized random poten-
tial strength for different incident angles and energies in 1D disordered
pseudospin-1 and -1/2 systems calculated with the TMM. (A) Localization
length for three different incident angles in pseudospin-1 systems. (B) Local-
ization length for three different incident energies in pseudospin-1 sys-
tems. (C) Same as A, but for pseudospin-1/2 systems. (D) Same as B, but
for pseudospin-1/2 systems. The black dashed lines in A and C show the
results obtained by the surface Green function (SGF) method. The localiza-
tion lengths for small W are fitted by dotted lines, showing an asymptotic
behavior ξ∝ W

−2. Both E and W are in units of 2π/d.
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Anderson localization can occur. It has been shown previously
that the wave equation of such systems can be described by
a generalized 2D Dirac equation with a 1D random potential
(27–32),

Hψ = [}vg~S · ~k + V (x )I]ψ = Eψ. [1]

Here ψ is a spinor function, ~k = (kx , ky) is the wavevector oper-
ator with kx =−i ∂

∂x
and ky =−i ∂

∂y
, ~S = (Sx ,Sy) is the matrix

representation of the spin-1 operator, vg is the group velocity,
and I is the identity matrix in the pseudospin space. We note
that Eq. 1 is valid for both matter waves (quantum particles)
(28–32) and EM waves (27) as long as the dispersion of the sys-
tem near some high-symmetry k points can be described by the
pseudospin-1 model. For simplicity, Eq. 1 can be rewritten as

[~S · ~k + V (x )I]ψ = Eψ, [2]

with E =E/}vg and V (x ) =V (x )/}vg . The normalized ran-
dom potential in the j th layer is taken to be V (x ) = vj
(j = 1, 2, 3, · · · ,N ), which is an independent random variable
distributed uniformly in the range [−W ,W ] (W =W /}vg is the
random strength of the normalized potential). We can calculate
the transmission coefficient TN through a random stack of N lay-
ers by the transfer-matrix method (TMM) (27). The localization
length ξ, or the inverse of the Lyapunov exponent γ, is obtained
through the relation

ξ = γ−1 = − lim
N→∞

2Nd

〈lnTN 〉c
, [3]

where 〈〉c denotes ensemble averaging.
We first show the localization length as a function of the ran-

dom strength W . Results of averaging over 4,000 configurations
with N taken to be five times the localization length are shown in
Fig. 2 A and B for different incident angles and energies, respec-
tively. At small randomness, these results show that the local-
ization length decreases with increasing randomness following a
general form ξ∝W

−2
, similar to the behavior found in ordinary

disordered media (3, 4). However, if W is further increased, the
localization length ξ drops abruptly to a minimum at a critical
W c =E , independent of incident angle and energy, and rises
immediately afterward.

These results are rather intriguing. First, the cusp-like
turnaround of localization behavior is not seen in any other dis-
order systems to our knowledge. For conventional disordered
media, ξ always decreases with increasing disorder. Second, the
sudden change of localization behavior near the critical ran-
dom strength W c =E indicates some kind of sharp transition
between two different localization phases: W <E and W >E in
the E −W space. To further elaborate on this point, we exam-
ine the θ dependence of the localization length. The result of
E = 0.02 and small disorder W = 0.01 (<E ) is shown by blue
circles in Fig. 3A, where a log-log plot of ξ vs. sin θ shows a
straight line with a slope of −4 for small incident angles θ,
indicating a ξ∝ sin−4 θ behavior. However, the slope changes
to −2 for a higher disorder W = 0.03 (>E ) (blue diamonds),
indicating a ξ∝ sin−2 θ behavior. There is hence a change of
localization behaviors from ξ∝ sin−4 θ to ξ∝ sin−2 θ in the
two different regions of W . We show analytically later that
this transition occurs exactly at W =E , and the physical ori-
gins of the above anomalous localization behaviors are the exis-
tence of the Dirac-like point and the occurrence of evanescent
waves in some layers caused by a diverging scattering strength
when W >E .

To see whether such anomalous localization behaviors also
occur in pseudospin-1/2 systems, we studied numerically the
localization length behaviors for such systems. The Hamilto-

nian of pseudospin-1/2 systems has the same form as Eq. 1
except that the wave function is a two-component spinor (14,
18) and the spin matrices become Pauli matrices. The results
of the TMM are shown in Fig. 2 C and D. Compared with
Fig. 2 A and B, for all incident angles and energies studied,
the cusp-like sharp change in ξ does not exist in pseudospin-1/2
systems. Instead, ξ shows a smooth crossover from a decreas-
ing behavior at small randomness to an increasing one at large
randomness with a minimum around a few E . Furthermore,
the θ dependence of ξ in both regions shows a ξ∝ sin−2 θ
behavior as shown in Fig. 3A. The difference in the θ depen-
dence of ξ in the two pseudospin systems is due to different
scattering potentials for oblique waves. In the following, we
present analytical derivations of the localization length for both
systems.

Transformation from a Vector Wave Equation to a Scalar One. For
the layered structure, the wavevector component parallel to
the interface (ky = k0 sin θ, where k0 =E is the wavevector in
the background) is conserved, with the same ky value in all
layers. Thus, the wave functions for pseudospin-1 systems can
be written as ψ(x , y) = (ψ1(x ), ψ2(x ), ψ3(x ))Te ikyy . Using the
following matrix representation for the spin operator, ~S =
Sx x̂ + Sy ŷ ,

Sx =
1√
2

0 1 0
1 0 1
0 1 0

, Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

, [4]

we rewrite Eq. 2 as

1√
2

 0 −i ∂
∂x
− iky 0

−i ∂
∂x

+ iky 0 −i ∂
∂x
− iky

0 −i ∂
∂x

+ iky 0

ψ1

ψ2

ψ3


+V (x )

ψ1

ψ2

ψ3

 = E

ψ1

ψ2

ψ3

. [5]

By eliminating ψ1(x ) and ψ3(x ), we can convert Eq. 5 into a
scalar wave equation for ψ2(x ),

− d

dx

(
1

E −V (x )

dψ2

dx

)
+

k2
y

E −V (x )
ψ2 = (E −V (x ))ψ2. [6]

Without loss of generality, we take the first interface of the
N -layer system as the origin, define a new dimensionless

A B

Fig. 3. Localization behaviors for disordered pseudospin-1 and -1/2 sys-
tems. (A) Localization length as a function of incident angle for incident
energy E = 0.02 and two random strengths in 1D disordered pseudospin-1
and -1/2 systems calculated using the TMM. The two random strengths are
chosen from the respective decreasing and increasing regions in Fig. 2 A and
C for pseudospin-1 and -1/2 systems. The localization length of pseudospin-
1 systems at small θ for W = 0.01 (<E) (blue circles) is fitted by a dotted
line, showing ξ∝ sin−4 θ. The other three cases are fitted by ξ∝ sin−2 θ.
(B) Comparison of the localization length calculated by using the TMM and
analytical results shown in Eq. 14. Both E and W are in units of 2π/d.
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coordinate variable u ≡
∫ x

0
(E −V (x ))dx , and write Ψ(u)≡ψ2(x )

and U (u)≡V (x ). Then, Eq. 6 can be reexpressed as

d2Ψ

du2
+ Ψ =

k2
y

(E −U (u))
2 Ψ. [7]

The above coordinate transformation changes a nonstandard
wave equation, Eq. 6, to a standard one, Eq. 7, where the scat-
tering potential due to the disordered potential V (x ) is explic-
itly shown on the right-hand side of Eq. 7. In the case of nor-
mal incidence, i.e., ky = 0, Eq. 7 describes wave propagation
in a homogeneous medium and contains two general solutions
Ψ∝ e±iu = exp

[
±i
∫ x

0
(E −V (x ))dx

]
. Thus, the accumulated

random phase due to V (x ) during the one-way transport is now
absorbed in the new coordinate u . For the layered structure
where the potential is piecewise constant, the i th interface in the
u coordinate, ui , is written as u1 = 0 and ui =

∑i−1
j=1(E − vj )d

for i ≥ 2 from the above coordinate transformation. It is impor-
tant to point out that we have transformed a three-component
vector wave equation for obliquely propagating waves, i.e., Eq. 1,
into an equivalent scalar wave equation for normally propagat-
ing waves, and the oblique angle enters the wave equation in the
scattering terms, i.e., Eq. 7. Such a transformation allows us to
derive analytically certain asymptotic localization behaviors.

Similarly, we can use the Pauli matrices for the spin-1/2 oper-
ator in Eq. 1 to construct a scalar wave equation for pseudospin-
1/2 systems. In the u coordinate system, the wave equation has
the form (Scalar Wave Equation)

d2Ψ

du2
+ Ψ =

k2
y

(E −U (u))
2 Ψ + kyΨ

N+1∑
i=1

Uiδ(u − ui), [8]

where Ui = 1

E−vi
− 1

E−vi−1
. Note that in comparison with

pseudospin-1 systems, pseudospin-1/2 systems have additional
interface scattering terms kyΨ

∑N+1
i=1 Uiδ(u − ui) located at all

N + 1 interfaces.
The difference in the θ dependence of ξ in the two systems

shown in Fig. 3A, when W is small, can be qualitatively under-
stood from the scattering terms in Eqs. 7 and 8. For ordinary
disordered media, it is well accepted that the localization length
in 1D systems is on the order of the mean free path, which is
inversely proportional to the square of the scattering strength
(3). In the case of small ky , the k2

y dependence in the effec-
tive scattering potential of Eq. 7 gives rise to a k−4

y (or sin−4θ)
behavior in the localization length, whereas the ky dependence
in the interface scattering terms of Eq. 8 dominates and leads
to a k−2

y (or sin−2θ) behavior. The sudden drop of localization
length near W =E for pseudospin-1 systems is due to the diverg-
ing scattering term in Eq. 7 when |E −U (u)|< |ky | in some lay-
ers so that the waves become evanescent inside those layers.
We show analytically that it is the existence of those evanescent
waves that changes the θ dependence of ξ from ξ∝ sin−4 θ in
the region W <E to ξ∝ sin−2 θ in the region W >E . When W
goes beyond its critical value E , the probability of having evanes-
cent waves is reduced with increasing W , and in the meantime,
the scattering potentials in the propagating layers are weakened
in general. As a result, ξ increases with W . However, such a sud-
den drop of ξ is smeared out by the interface scattering terms in
Eq. 8 so that a smooth change of localization behaviors is found
for pseudospin-1/2 systems.

Lyapunov Exponent Obtained by the SGF Method. Because Eqs.
7 and 8 are already in the form of scalar wave equations
for normal-incident propagating waves, we can now solve the
wave localization problem of pseudospin systems using the SGF
method, which gives the following expression for the transmis-

sion coefficient of a normal-incident plane wave propagating
through an N -layered random system (48):

TN = |DN+1|−2, [9]

where

DN+1

D0
N+1

=

[
e2iΦ1,N+1

N+1∏
n=1

(1− rn,n−1)(1− rn−1,n)

]− 1
2

. [10]

Here rn,n−1 denotes the reflection amplitude of a plane wave
incident from the nth layer on the (n −1)th layer, Φi,j = Φj ,i is
the phase accumulation between the i th and j th interfaces of the
sample, and D0

N+1 is the determinant of an N + 1 by N + 1
matrix D̂0

N+1 with the following elements:

(D̂0
N+1)nk =

{
δnk + (1− δnk )rk,k−1e

iΦn,k n ≥ k ,
δnk + (1− δnk )rk−1,ke

iΦn,k n ≤ k .
[11]

The expressions for Φn,k and rk,k−1 are shown in Phase Accumu-
lation and Reflection Amplitudes for both pseudospin-1 and -1/2
systems. From Eqs. 9 and 10, we obtain the expression for Lya-
punov exponent γ in Eq. 3 as

γ = ξ−1 = γ1 + γ2, [12]

with γ2≡− 1
2Nd
〈ln |e2iΦ1,N+1

∏N+1
n=1 (1− rn,n−1)(1− rn−1,n)|〉

c

and γ1≡ 1
Nd

〈
ln |D0

N+1|
〉
c
. We first numerically calculate the

localization length by using Eq. 12 as a function of W for a fixed
incident angle and energy. The results are shown as black dashed
lines in Fig. 2 A and C for pseudospin-1 and -1/2 systems, respec-
tively. They are in excellent agreement with those obtained from
the TMM.

Asymptotic θ-Dependent Localization Length Behavior in Region
W< E. In the following, using Eq. 12, we show analytically that
localization length follows the asymptotic behavior ξ∝ sin−4 θ in
the region of W <E . In this case, the reflection amplitudes in
pseudospin-1 systems can be approximated as rn−1,n =−rn,n−1≈
− k2

y

4

[
1

(E−vn )
2 − 1

(E−vn−1)
2

]
, as long as |ky |� |E−U (u)|. In this

limit, as shown in Lyapunov Exponent in the Region of W <E ,
the Lyapunov exponent γ can be written as

A B

Fig. 4. Effect of evanescent waves on the localization behaviors in
pseudospin-1 systems. (A) Comparison of the Lyapunov exponents as a func-
tion of incident angle with and without evanescent waves included in 1D
disordered pseudospin-1 systems at E = 0.02 and W = 0.03. In the case with
evanescent waves, γ1 at small θ (green triangles) is fitted by a dotted line
showing γ1 ∝ sin2 θ, and the numerical result of γ2 (red circles) agrees excel-
lently with the analytic prediction in Eq. 16 (red solid line). For the random
distribution of potentials |E− v|> 0.1E, no evanescent waves occur at suffi-
ciently small θ. γ in this case (blue squares) shows an excellent fit to a dotted
line γ∝ sin4 θ for small θ. (B) Comparison between the localization lengths
with and without evanescent waves for pseudospin-1 systems with E = 0.02
and sin θ= 0.3. Both E and W are in units of 2π/d.
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γ = ξ−1 = γ1 + γ2 ≈
E4 sin

4
θ

32d
(α1 + α2), [13]

where α1 and α2 are coefficients corresponding to γ1 and γ2,
respectively. Note that γ in Eq. 13 is proportional to sin4θ for
the region W <E . In the case of W �E , we can further take a
small vn/E expansion for α1 and α2. It can be shown that α1 and
α2 then reduce to simple forms, α1 ≈ − 8W

2

3E
6 cos(2Ed cos θ) and

α2 ≈ 8W
2

3E
6 . Thus, Eq. 13 gives the following expression for γ in

the limit W �E :

γ = ξ−1 ≈ W 2 sin
4
θ

12E
2
d

[
1− cos(2Ed cos θ)

]
. [14]

We also numerically calculated the localization length in this
limit. The results are shown in Fig. 3B by the symbols. We
find excellent agreement between the analytical and numerical
results. We note that γ vanishes at certain energies that satisfy
the on-average Fabry–Perot resonance condition Ed cos θ=mπ
(m ∈ integers). Such Fabry–Perot resonance-induced anoma-
lies were also observed in conventional 1D disordered mate-
rials (49–51). Thus, ξ tends to diverge at these energies. The
finite values of ξ at these resonances are due to high-order
corrections.

For pseudospin-1/2 systems, the asymptotic behavior of γ in
the limit of small ky and W �E can be obtained using a similar
approach (Lyapunov Exponent in the Region of W <E ,) and has
the expression

γ = ξ−1 ≈ W 2 sin
2
θ

12E
2
d

[
1− cos(2Ed cos θ)

]
. [15]

The validity of Eq. 15 is also confirmed numerically (Fig. S1).
From Eqs. 14 and 15, we can see that in both pseudospin systems
the localization length decreases as ξ∝W

−2
, showing exactly

the same behaviors in Fig. 2. More importantly, our analyti-
cal results prove that the pseudospin number indeed makes a
profound difference on the localization behaviors, leading to a
ξ∝ sin−4S θ localization length behavior for small θ, where S is
the pseudospin number.

Asymptotic θ-Dependent Localization Length Behavior in Region
W> E. In this case, there are strong scatterings for those lay-
ers with the potentials v close to the incident energy E due
to the existence of singularity at E = v in the scattering poten-
tial in Eq. 7, and hence the approximations used above are not
applicable. Although the calculation becomes rather tedious, we
still manage to obtain an analytic form of γ2 for pseudospin-
1 systems (γ2 for Pseudospin-1 Systems in the Case W >E );
that is,

γ2 ≈ −
1

2d
〈ln |1− r2

n,n−1|〉c ≈
E2 sin

2
θ

2W
2
d
. [16]

To confirm the validity of Eq. 16, we numerically calculate γ2

as a function of the incident angle for W = 0.03 and E = 0.02.
The result is plotted by red circles in Fig. 4A, which agrees excel-
lently with the analytic expression (red solid line) shown in Eq.
16. Because the Lyapunov exponent, γ= γ1 + γ2, is an even
function of sin θ, we can safely conclude from Eq. 16 that the
region W >E represents a different localization phase in which
the θ-dependent localization length has an asymptotic behavior,
γ= ξ−1 ∝ sin2 θ, different from the ξ−1 ∝ sin4 θ behavior found
in the region W <E as shown in Eq. 13. Such a sudden change
of θ-dependent localization behavior at W =E is accompanied
by the cusp-like change of localization length from a decreasing
function of W when W <E to an increasing one when W >E as
shown in Fig. 2 A and B. We show in γ2 for Pseudospin-1 Systems

in the Case W >E that the origin of the sin2θ factor in γ2 is the
occurrence of the diverging scattering potentials in certain lay-
ers when |ky |> |E −U (u)| so that the waves become evanescent
inside these layers. In fact, the presence of evanescent waves in
certain layers also leads to a sin2θ dependence in γ1. Due to the
complexity of the matrix D̂0

N+1, an explicit analytic expression
for γ1 is formidable. We numerically calculate γ1 and plot the
result by green triangles in Fig. 4A, which has an excellent fit to
a dotted line showing γ1 ∝ sin2 θ. If the presence of evanescent
waves is the origin that turns a sin4θ dependence of γ into a sin2θ
dependence, we should be able to recover the sin4θ behavior
found in region W <E by purposely excluding evanescent waves
in the random media. To confirm this point, we calculate the θ
dependence of γ for a particular random distribution of poten-
tials, v ∈ [−W ,W ], but with a condition |E − v|> 0.1E so that
no evanescent waves will occur at sufficiently small θ. The result
is plotted by blue squares in Fig. 4A. It is clearly seen that the
γ∝ sin4 θ behavior is indeed recovered. In fact, the sudden drop
of ξ near W c =E shown in Fig. 2 A and B is also due to the pres-
ence of evanescent waves in some layers. To show this, we numer-
ically calculate ξ as a function of W by excluding the evanes-
cent waves. The result is plotted by a blue dashed line in Fig. 4B.
In comparison with the result with evanescent waves included
(blue circles), we can see that the sudden drop of ξ near W c =E
disappears.

However, for pseudospin-1/2 systems, propagating waves also
contribute to γ a sin2θ term due to the interface scattering terms
in Eq. 8, which smears out the sudden drop of ξ, as shown in Fig.
2 C and D, and leads to the same asymptotic θ dependence of ξ
for all W s in Fig. 3A.

Conclusions
We discovered interesting anomalous localization behaviors in
disordered pseudospin-1 systems, using the TMM as well as
analytical solutions from the SGF method. In contrast to ordi-
nary 1D random media where stronger randomness always
induces stronger localization, pseudospin-1 systems have a
critical random strength W c =E at which a cusp-like turn-
around occurs in the localization length as a function of ran-
domness. Additional randomness beyond this critical strength
makes the wave less localized. Such a sudden change gives rise
to two localization phases characterized by different asymp-
totic θ dependence of the localization length; i.e., ξ∝ sin−4 θ
when W <W c and ξ∝ sin−2 θ when W >W c . Such anoma-
lous behaviors arise from the existence of a Dirac-like point
and the occurrence of the evanescent waves in the region
W >W c . For pseudospin-1/2 systems, we find that the sharp
transition is smeared out by additional interface scattering terms
and the localization length behavior shows a smooth change
from decreasing with the random strength at small W to
increasing at large W . In both regions, the θ dependence of
ξ follows the same asymptotic behavior ξ∝ sin−2 θ. Recently
pseudospin-1 systems have been experimentally realized in pho-
tonic (25, 26, 34–37) and ultracold atom systems (33). Mean-
while, the applied potentials in such systems can be realized
by uniformly scaling the structure in PCs (27) or manipulat-
ing an appropriate holographic mask in ultracold atom sys-
tems (28–32). Thus, it is experimentally feasible to prepare a
1D disordered pseudospin-1 system using such artificial struc-
tures. For a given randomness W , two localization phases
can be observed by tuning the incident energy from E >W
to E <W .
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