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Poikilothermic animals comprise most species on Earth and are especially sensitive to
changes in environmental temperatures. Species conservation in a changing climate
relies upon predictions of species responses to future conditions, yet predicting
species responses to climate change when temperatures exceed the bounds of observed
data is fraught with challenges. We present a physiologically guided abundance
(PGA) model that combines observations of species abundance and environmental
conditions with laboratory-derived data on the physiological response of poikilotherms
to temperature to predict species geographical distributions and abundance in response
to climate change. The model incorporates uncertainty in laboratory-derived thermal
response curves and provides estimates of thermal habitat suitability and extinction
probability based on site-specific conditions. We show that temperature-driven changes
in distributions, local extinction, and abundance of cold, cool, and warm-adapted
species vary substantially when physiological information is incorporated. Notably,
cold-adapted species were predicted by the PGA model to be extirpated in 61%
of locations that they currently inhabit, while extirpation was never predicted by a
correlative niche model. Failure to account for species-specific physiological constraints
could lead to unrealistic predictions under a warming climate, including underestimates
of local extirpation for cold-adapted species near the edges of their climate niche space
and overoptimistic predictions of warm-adapted species.

cold-blooded | data fusion | extrapolation | freshwater fishes

Predicting species distributions and abundance under future climate scenarios is one of
the foundations of climate science and adaptation. Predicting species responses to climate
change is fraught with uncertainty, particularly when future conditions are predicted to
exist outside the bounds of observed data (1). Most predictions of species responses
to climate change are based on species occurrence and rely on field-derived data and
correlative niche models (2). The use of presence only or presence/absence data—in
contrast to models of abundance—is often driven by data availability, especially when
modeling at large spatial extents or across many species and ecosystems. The reliance
on correlative niche models—as opposed to mechanistic models—is largely because
they do not require information about ecological processes structuring populations
and they are relatively straightforward to implement (e.g., ref. 3). Both modeling
approaches, however, have benefits and constraints. For example, mechanistic models
are frequently based on fine-scale measurements of individual physiology and must
be linked to population-level processes at coarser spatial and temporal scales (4).
Furthermore, either approach may produce unrealistic predictions when extrapolated to
future temperature conditions not experienced by animals in their current range (5, 6).
For correlative niche models, predictions about species responses to future climates are
often made by estimating climate-related regression parameters across the current range of
observed conditions and then extrapolating these relationships to make predictions about
responses to warming. This approach assumes that species-environment relationships are
biologically meaningful and will continue under future temperatures that are often outside
the observed range of temperature conditions (7). Such approaches rely on the realized
rather than the fundamental niche of species and may have limited transferability when
applied to new conditions (8). Statistical methods exist for reducing uncertainty associated
with extrapolation, including nonrandom subsetting of data used for validation (1, 9).
These approaches assume a continuation of the functional relationships between species
and climate into unsampled space, when in reality, the relationship between temperature
and poikilotherms frequently exhibits nonlinear or threshold dynamics that may not be
estimated using field-derived data alone (10). Mechanistic models, in contrast, explicitly
consider important processes that constrain demographic processes and species ranges
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and provide an ecological foundation for predicting responses
to future climates (11). Mechanistic models, however, require
information on processes that regulate populations that may not
be readily available for many organisms (12) and may itself be
uncertain. Given the potential limitations of either approach,
hybrid models that combine correlative and mechanistic ap-
proaches offer an encouraging alternative (13).

Some hybrid approaches use “data fusion” to improve pre-
dictions of species responses to climate change (14, 15). For
example, information on physiology, life history, and trophic
interactions has been integrated to predict distributions of marine
fishes under climate change scenarios (16). To date, climate
change-motivated data fusion efforts have focused on modeling
species presence or presence/absence. However, the tight link
between climate and demographic processes suggests that changes
in species abundance will either occur before or accompany range
shifts for most organisms (e.g., ref. 17).

Understanding potential changes in species abundance, in
addition to their distributions, has significant value for devel-
oping climate adaptation and management strategies. Managing
species abundance is the focus of efforts related to threatened
and endangered species, harvested species, and invasive species.
To date, most efforts aimed at understanding shifts in species
distributions in response to changing habitat conditions have
been biased toward terrestrial ecosystems and birds and less
than ∼3% of poikilothermic animals (18, 19). This bias
toward terrestrial homeotherms leaves out poikilotherms, which
comprise most species on Earth and represent a diverse group
of organisms that are particularly sensitive to changes in thermal
habitat conditions (20). Although there is a dearth of studies on
the response of the distribution and abundance of poikilotherms
to climate change, these taxa are well studied in terms of
laboratory-derived physiological data on thermal performance
and tolerance (21). Demographic processes and relative fitness
of poikilotherms can be mechanistically linked to temperature
preferences and thresholds, and these relationships can inform
predicted responses to climate change (22). Because most
species lack adequate data for developing mechanistic models
of abundance, there is a need for data-fusion approaches that
integrate field-derived data on species-environment relationships
with mechanistic understanding of temperature controls on
demographics in order to make predictions about abundance
and distributions under a changing climate.

We propose a physiologically guided abundance (PGA) model
for predicting the effects of temperature on the geographical
distribution and abundance of poikilothermic animals. The PGA
model fuses data from experimental studies with landscape-level
monitoring of species abundance and environmental conditions.
Most poikilothermic animals share a similar functional response
in relative performance to changes in temperatures that can
be derived from laboratory studies (23). This temperature–
performance response curve is generalizable across diverse poik-
ilothermic taxa and can be leveraged to guide predictions of
abundance under a changing climate.

The performance response of poikilotherms to environmental
temperature can be described by an asymmetrical concave
curve, where relative performance—which could be quantified
as changes in growth, reproductive rates, activity, or other
metabolic or physiological changes—is maximized at an optimal
temperature (Topt ) and declines to zero at the minimum and
maximum critical temperatures (CTmin and CTmax , respectively;
Fig. 1A). The asymmetry of the curve has important ramifications
for species responses to climate change because increases in tem-

perature beyond Topt can quickly result in individuals reaching
the heat-stressed zone of their tolerable thermal range. Failure
to adequately capture the asymmetrical, descending limb of
the thermal performance curve when predicting abundance
and distributions under future climate scenarios may lead
to biologically unrealistic predictions and is more likely to
occur when making extrapolations beyond observed temperature
ranges.

Temperature performance response curves and their relevant
parameters are generally derived from laboratory and observa-
tional studies of individuals. Recent research has demonstrated a
strong concordance between individual, lab-based physiological
processes and population-level performance, and while the
absolute value of thermal heating tolerances differed between
lab and wild populations, both declined at similar rates with
increasing temperatures (24). This temperature-performance link
motivates our current work that fuses physiological response
curves to inform predictions from species abundance models.
Data fusion occurs by explicitly incorporating a thermal per-
formance response curve into a statistical model of abundance.
Information derived from experimental and observational studies
is introduced into the analysis through informative prior distribu-
tions on model parameters describing the thermal performance
response curve. This approach enables prediction of species
abundance in response to changing thermal conditions even
when temperatures exceed the bounds of observed conditions.
Uncertainty in thermal response curves based on the range
of literature values is also incorporated. We compare model
predictions from the PGA model to an approach commonly
used for predicting species distributions in a changing climate—
a model that includes a linear and quadratic temperature effect,
hereafter referred to as a naive model—for three freshwater fishes
that differ in thermal preferences and tolerance across more than
1,300 lakes located in the Midwestern United States.

Results

We evaluated model fit for the PGA and naive models using
the Pareto smoothed importance-sampling leave-one-out cross-
validation information criterion (PSIS-LOO-IC). The naive
model provided a better fit to the observed data (SI Appendix,
Table S1) indicating that the data-driven naive model produces
more accurate predictions of distributions and abundance under
current conditions. A naive model may also be useful for
extrapolating under future climates if observed data span the
entire potential thermal range of a species. However, because
the observed temperature data for most species—including those
used in our analysis—do not span the species entire tolerable
temperature (or geographic) range (i.e., the data are truncated),
extrapolation of relationships outside of these conditions using
the naive model has the potential to produce unrealistic predic-
tions. We argue that despite providing poorer fit to current data,
by capturing this nonmonotonic relationship, the PGA model
is likely preferred for extrapolating abundance and distributions
of poikilotherms under future climate scenarios for species with
truncated data and for species with truncated thermal ranges in
nature, such as poikilotherms living near the equator.

The predicted effects of warming (an increase of 1, 2, 3, or 4 ◦C
increase in mean July water temperatures) on poikilothermic an-
imals depended on a species’ thermal tolerance curve and degree
of warming as well as the model used for prediction. Thermal
habitat suitability and extinction probability are represented by
the PGA model’s thermal performance scalar for each species.
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Fig. 1. (A) Theoretical thermal performance curve for poikilothermic animals. The performance curve uses a Gaussian function to describe the ascending
limb of the performance curve from zero at a critical minimum temperature (CTmin) up to an optimal temperature (Topt ) and a quadratic decline to zero at
critical maximum temperature (CTmax ). The parameter � is the scale parameter of the ascending Gaussian limb of the response curve from CTmin to Topt . (B)
Performance curves for a cold-water (cisco), cool-water (yellow perch), and warm-water (bluegill) fish species derived from laboratory-based thermal tolerance
studies. Thin lines represent uncertainty in thermal performance curves and are derived from 100 random draws of normally distributed thermal performance
curve parameters, where the mean and SD of the normal distribution are based on literature-derived values. Thick lines represent the mean performance curve
across the 100 draws. The rug plot shows the density of mean July water temperatures in Minnesota lakes. Silhouette images are from http://phylopic.org/
under creative commons license.

Even under current conditions and uncertainty in thermal per-
formance curves, surface water temperatures of lakes exceeded the
cold-water species’ thermal optimum, and performance rapidly
approached zero with increasing water temperatures (Figs. 1B
and 2). In contrast, current water temperatures are generally near
the optimal temperature for the cool-water species, and their
performance only slightly declined as water warmed. Current
temperatures were generally slightly below the thermal optimum
for the warm-water species, and therefore, warming conditions
increased their performance as lake thermal habitat approached
Topt (Figs. 1B and 2).

Extinction Probabilities of Cold-Adapted Species. The PGA
model predicted a posterior probability of extinction of >90%
for the cold-water species in some lakes across all levels of
warming. At each level of warming, the temperatures of many
lakes would exceed the critical thermal maximum of this cold-
water species, given the uncertainty in thermal response curves,
with the most stark differences at a 4 ◦C increase in mean July
water temperature. Here, the PGA model predicted that 67%

(n = 900 lakes) of lakes would be thermally unsuitable for the
cold-water species, and they would be extirpated in 61% (n = 192)
of the lakes they currently inhabit (Fig. 3). In contrast, the naive
model cannot provide estimates of extinction probability and
never predicted extirpation (abundance of 0) for the cold-water
species even though mean July water temperatures exceeded
CTmax in many lakes. The naive model did predict decreases
in abundance for all lakes (Fig. 3) as the estimated quadratic
effect captured the downward parabolic temperature effect for
this species (SI Appendix, Table S1 and Fig. S1). However,
the downward parabolic temperature effect fails to capture the
asymmetry in thermal response to temperature and a biologically
relevant CTmax , and the cold-water species was predicted to
persist even as temperatures exceeded CTmax by several degrees
(Fig. 3).

Predicting Abundance under Climate Change. Inferences about
the effect of warming on the three thermal guilds were influenced
by the portion of the thermal tolerance curve represented in
the observed temperature data and the uncertainty in thermal
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Fig. 2. Posterior mean thermal performance scalars (solid circles) and associated 95% credible intervals (vertical lines) from the PGA model for cold-water
(cisco), cool-water (yellow perch), and warm-water (bluegill) fish species for Minnesota lakes under current conditions (Top row) and a 4 ◦C increase in mean
July water temperatures (bottom row). The figure shows 100 randomly selected lakes. Performance scalars range between 0 and 1, with 1 representing optimal
performance and 0 representing extirpation. Silhouette images are from http://phylopic.org/ under creative commons license.

response curves (Fig. 1B). Differences in abundance predictions
between models are driven primarily by differences in functional
responses to temperature. Species responses are dependent
upon the range of observed temperatures relative to a species
critical thermal maximum temperature and whether predicted
temperatures approached or exceeded that critical maximum
value. The effects of other environmental conditions on species
abundance were remarkably consistent between the two modeling
approaches (SI Appendix, Table S1). Model predictions between
the two models diverged most notably when extrapolating
outside the observed range of temperature data. For the cold-
water species, the PGA model predicted a more rapid decline
in abundance with increasing mean July water temperatures
compared to the naive model. Severe declines in abundance
of the cold-water species were predicted only by the naive
model as temperatures warmed by 3 or 4 ◦C (Fig. 4), although
both models predict extremely low abundance (naive model)
or extinction (PGA model) at very warm water temperatures
(e.g., >30 ◦C; Fig. 4). For the cool and warm-water species,
the PGA model predicted smaller and less variable percent
changes in relative abundance in response to increasing water
temperatures compared to the naive model (Figs. 3 and 4).
However, differences in extrapolations of relative abundance
under warming water conditions between the two models were
in opposite directions for the cool and warm-water species. The
PGA model predicted higher relative abundance with increasing
water temperatures for the cool-water species and lower relative
abundance for the warm-water species compared to the naive
model.

Although the models often predicted no change (PGA model)
or declines (naive model) in relative abundance for the cool-
water species and increases in abundance for the warm-water
species relative to current conditions, the purely data-driven naive
model predictions were not informed by species physiological
requirements, which led to unconstrained predictions under
warming (Fig. 3 and SI Appendix, Figs. S2 and S3). For example,
the cool-water species was predicted to decline by an average of
7% (range = −32% to 24%) with a 4 ◦C increase in mean July
water temperature based on the PGA model but was predicted
to decline by an average of 53% (range = −77% to 62%)
based on the naive model. A similar pattern of more constrained
predictions under the PGA model compared to the naive model
was observed for the warm-water species, where the PGA model
predicted a 10% average increase in abundance across all lakes
(range =−2% to 34%) and the naive model predicted an average
increase in relative abundance of 48% (range = −39% to 128%;
Fig. 3).

Discussion

Predicting the effects of climate change on species geographic
distributions and abundance is a global priority for informing
climate adaptation and mitigation strategies and biodiversity
conservation (18, 25). However, the majority of species on Earth
(and poikilotherms, in particular) lack field-derived abundance
data to inform landscape-scale predictions, and even fewer
have adequate physiological data available to enable mechanistic
modeling of species responses to climate change. We develop
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Fig. 3. Predicted percent change in relative abundance for cold-water (cisco), cool-water (yellow perch), and warm-water (bluegill) fish species using the PGA
(Top row) and naive (Bottom row) models for Minnesota lakes with a 4 ◦C mean July water temperature increase. Black × represents lakes with a predicted
posterior probability of extinction >90%. Silhouette images are from http://phylopic.org/ under creative commons license.

and illustrate the utility of a physiologically guided abundance
(PGA) model for predicting the effects of climate change on
the geographic distribution and abundance of poikilothermic
animals. In the absence of sufficient data to parameterize
mechanistic models, the PGA model advances correlative niche-
based modeling approaches by fusing temperature preference and
tolerance data with species abundance data and environmental
predictors of distributions and abundance.

Our approach relies on several assumptions when using
a thermal performance function to inform climate change
predictions. An underlying assumption is that there exists
concordance between a species distribution and abundance and
physiological performance—such that species will be more likely
to be present and at higher abundance in locations that are
physiologically optimal. However, there is the possibility that
where a species occurs, or where peak abundance is observed,
does not correspond to a physiologically optimum habitat.
This mismatch between species distributions/abundance and
demographic performance can result from factors that change
performance over time (including management actions and

competition with other species), which can bias predictions in
response to climate change (26). We also assume a specific form
of the thermal response function, but our approach is flexible and
could be changed to accommodate species-specific variation in
physiological responses to temperature, e.g., differences between
eurytherms and stenotherms; (27).

Additional assumptions can be accommodated within the PGA
modeling framework. For example, ontogenetic shifts in thermal
tolerance are common among poikilotherms (28) and would
be important to accommodate if suitable data were available
(SI Appendix, Assumptions). We also assume that performance
goes to zero at temperature values at or above CTmax . This
assumption could be relaxed, and performance could be set to
any value deemed appropriate for a given objective e.g., 0.05 as
in ref. 16. Furthermore, different values of CTmax or Topt could
be used for species that exist in different portions of their thermal
range and may be acclimated to higher or lower temperatures.
Consideration of the physiological end point(s) (i.e., traits)
used to develop the thermal response curve is warranted to
ensure that they are ecologically relevant and related to fitness
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Fig. 4. Predicted percent change in relative abundance for cold-water (cisco), cool-water (yellow perch), and warm-water (bluegill) fish species using the PGA
(Top row) and naive (Bottom row) models for Minnesota lakes with a 1 to 4 ◦C increase in mean July water temperatures. Y-axis density estimate is scaled to a
maximum of 1. Silhouette images are from http://phylopic.org/ under creative commons license.

(29). Other methodological differences in thermal performance
experiments that may affect thermal performance values, e.g.,
acclimation temperatures; (30) could also be evaluated to help
ensure comparability across studies. Lastly, the PGA model does
not account for potential changes in thermal tolerance through
plasticity or evolution; however, poikilotherms may have limited
ability to change upper thermal limits in response to predicted
temperature increases due to climate change (31). Our approach
could be modified to incorporate additional variables relevant to
a species abundance or persistent based on data availability and
knowledge of life history.

Because many poikilothermic animals are physiologically
adapted to specific thermal conditions (32), they represent some
of the most important ecological indicators of climate change—
they are the proverbial “canaries in the coalmine.” They also
perform critical services to ecosystems, such as the provision
of food and the pollination of agro-ecosystems and wild plant
communities (33). Likewise, many poikilothermic animals are
invasive outside their native ranges and have the potential to have
climate-mediated catastrophic ecological impacts on biodiversity,
social-ecological systems, and human health and well-being
(34–37). Our method represents an approach to making predic-
tions of poikilotherm distributions and abundance in a warming
world.

Materials and Methods

We illustrate the PGA model using three different freshwater fish species that
differ in their distributions and thermal preference and tolerance (38). We
contrast model predictions under different future climate scenarios among
a cold-water stenotherm cisco Coregonus artedi; found in 24% [n = 316]
of study lakes and widely distributed cool-water and warm-water species
that are important for both commercial and recreational fisheries: yellow

perch Perca flavescens found in 95% [n = 1274] of study lakes and
bluegill Lepomis macrochirus found in 90% [n = 1206] of study lakes;
Fig. 1B.

Fish and Environmental Data. Fish catch data were collected by the Min-
nesota Department of Natural Resources (MNDNR) using standard sampling
methodology between 1998 and 2019 (39). We restricted our analysis to those
samples collected between June 1 and September 30. All three species were
sampled using gill nets and trap nets, commonly utilized gears for assessing
the relative abundance of fishes in littoral (nearshore) and pelagic (off-shore)
zones of inland lakes. Sampling effort consisted of one net (gill net or trap net)
deployed for a 24-h sampling period.

Environmental predictor variables that are known to directly or indirectly
influence inland lake fish abundance were included in the model. Environmental
predictors were lake area, lake maximum depth, water clarity (Secchi disk
depth), and the proportion of different land use and land cover in the lake
watershed (SI Appendix, Table S2). Lake area and maximum depth were
obtained from MNDNR public databases (https://gisdata.mn.gov/dataset/water-
lake-basin-morphology). Water clarity was derived from remotely sensed Secchi
disk depths (Max Gilnes, Rensselaer Polytechnic Institute, Troy, NY, United States,
05/2020, written communication). Lake water temperatures were simulated
using a deep-learning model of daily water temperatures for lakes in the United
States and are summarized here as mean July surface temperatures from ref.
40. Lake water temperature data and water clarity at the time of sampling
were quantified using a 5-year rolling mean of annual values. The proportion
of developed and agricultural land use and wetland land cover in each lake
watershed was calculated based on the 2016 National Land Cover Database (41)
and accessed through the LAGOSNE R package (42, 43).

Climate Change Predictions. We predict species distributions and abundance
at each lake under current conditions and for a 1, 2, 3, and 4 ◦C increase in mean
July water temperatures. A 4 ◦C increase corresponds to the predicted average
regional increase in air temperature across the region for the 2071 to 2100 time
period (44).
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Physiologically Guided Abundance Model. Our model for catch data fits
within the Poisson model framework for count data where the intensity is defined
as the product of relative abundance (a measure of the size of a population that
is assumed to be proportional to the true population abundance) and effort. The
thermalperformancecurveis incorporatedintothemodel forrelativeabundance,
and the effort scaling captures both sampling effort and catchability.

Let Cijt be the number of fish caught in lake i = 1, . . . , I, using sampling
gear j = 1, . . . , J in year t = 1998, . . . , 2019 and Eijt be the effort associated
with each sample. We model the count data as

Cijt ∼ Pois(̃Eijtλit), [1]

where Ẽijt = Eijtθj, � = [θ1, . . . , θJ]
′ is the catchability vector, and λit is the

relative abundance. We define

λit = P(Tit) exp(Xitβ),

where Xit is a vector of lake covariates at the time of the sample, β is the
coefficient vector, and P(Tit) is the abundance scalar derived from the species-
specific thermal performance function evaluated at temperature Tit . The values
of the function P(Tit) range from 0 (poor performance if temperatures exceed
CTmax or are below CTmin) to 1 (optimal performance at Topt ).

Although there are different thermal performance functions that can be
used to describe the relationship between performance and temperature (45),
we assumed an asymmetric thermal performance curve that uses a Gaussian
function to describe the ascending limb of the performance curve up to Topt and a
quadratic decline to 0 at CTmax for the descending limb (46, 47). This performance
curvehasbeenpreviouslyusedinstudiesontheeffectsofchangingtemperatures
on poikilotherms (48, 49). We parameterize the thermal performance curve as

P(T) =


exp
(
−

( T−Topt
2σ

)2)
T ≤ Topt

1−
( T−Topt

Topt−CTmax

)2
Topt < T ≤ CTmax

0 T > CTmax ,

[2]

where σ is the scale parameter for the Gaussian portion of the curve, and all
other parameters are as described above and in Fig. 1. Although all parameters
(Topt , CTmax , and σ ) can theoretically be estimated using abundance data (SI
Appendix, Fig. S4), if sample locations do not span the entire temperature range
of a species current distribution, then estimated parameters may be biologically
inaccurate (e.g., an underestimated CTmax), highly uncertain, or both. This is
likely the case for many poikilotherms, where abundance data are available only
within a portion of a species’ range.

Accounting for Uncertainty in Thermal Response Curves. The response
metrics used for deriving thermal response parameters were most commonly
growth rates (for Topt ) and loss of equilibrium for CTmin and CTmax . Using
the growth of individuals to quantify Topt is useful for fishes because it is
related to survival, reproductive potential, life-span, and population dynamics
(50–52). Loss of equilibrium is commonly used to assess thermal tolerance in
fishes because it is assumed to represent death under wild conditions (53).
However, the use of different response metrics results in uncertainty in thermal
response curves (Fig. 1B). We incorporate this uncertainty in the model through
the Bayesian framework by assigning prior distributions to these parameters
based on the literature. Independent normal prior distributions are assigned
to Topt and CTmax using the literature-derived means and standard deviations
reported in SI Appendix, Table S3. To fully specify the model, we assign prior
distributions to all other model parameters, while σ is derived and assumed
fixed (Section Species thermal tolerance data and SI Appendix, Table S3). The
catchability vector, �, is modeled using a scaled Dirichlet prior with length J
parameter vector α = [1, . . . , 1] and a scaling such that

∑J
j=1 θj = J. For

each coefficient parameter, we assign βl ∼ N(0, 100) for l = 1, . . . , r, where
r is the total number of estimated coefficients.

We use numerical integration to incorporate the uncertainty in Topt and CTmax
as an alternative to using the joint posterior of all parameters since the latter
approach would be too heavily weighted by the likelihood given the data and
thus would overwhelm the literature-derived values when using temperature

data that do not span the entire range of values for which the temperature curves
are estimated.

Specifically, we randomly sample Topt and CTmax from their prior distribu-
tions, while ensuring that Topt is less than CTmax , providing a random realization
of the thermal response curve. For each realization of Topt and CTmax , we fit the
Bayesian model and obtain samples from the posterior distribution of all other
model parameters with these values fixed. Numerical integration is obtained by
repeating this process 100 times and aggregating the posterior distributions.
This allows for the uncertainty in thermal response curves based on the literature
to be propagated through to uncertainty in the other parameters and predictions.

Species Thermal ToleranceData. Thermal tolerance data were compiled from
the literature (54–63) and references therein. Because estimates of σ are not
typically available in the literature, σ was derived using estimates of CTmin
and Topt following ref. 22, where σ = (Topt - CTmin)/4. If multiple CTmin values
were available, the mean value, in addition to the mean Topt , was used when
deriving the fixedσ for the thermal performance curve. If appropriate data were
available, a prior could also be placed on σ (SI Appendix, Fig. S4).

All lake and landscape predictors were standardized to have mean zero and
SD of one prior to analysis. Prior to standardization, because land use/cover
variables and lake area and depth had heavily skewed distributions, they were
logit-transformed and loge-transformed, respectively. For each model iteration,
one for each of the 100 realizations of thermal response curves, a single Markov
chain was run for a total of 3,000 iterations, of which the first 2,000 iterations were
discarded as burn-in. Every 5th sample was retained for a total of 200 samples
per iteration, resulting in a grand total of 20,000 samples used to characterize
the posterior distributions of the model parameters across all 100 iterations.
Convergence was assessed visually through posterior distribution trace plots.
Inference on the model parameters includes posterior mean estimates and 95%
credible intervals. All models were fitted using the rstan package (64) called
from the program R (65).

Comparison of the PGA Model to the Naive Model. We compared current
and future climate predictions from the PGA model with predictions from a
naive model that is purely data-driven and does not use thermal performance
information. The naive model represents a common approach to modeling
temperature effects on species distributions and abundance, where temperature
is simply included in the linear predictor, in this case, as a quadratic term, i.e.,
temperaturei and temperature2

i ; (66) and (67). Specifically, the naive model
is described by Eq. 1, where the thermal performance scalar is removed and
temperature and temperature2 are added as predictors in Xit . Leave-one-out
cross-validation (LOO) was performed to compare the PGA and naive model fits
for each species (68). Using LOO, the log pointwise predictive density (ELPD)
and the LOO information criterion (LOO-IC = -2× ELPD) using Pareto smoothed
importance sampling (PSIS) were calculated using the loo R package (69).
Lower PSIS-LOO-IC values represent a model with a better fit to the data.

Data, Materials, and Software Availability. The biological and environmen-
tal data associated with this manuscript are available on the Data Repository
for University of Minnesota (GJAH is the point of contact): https://doi.org/10.
13020/g1kt-4583. The code for Bayesian model fitting and posterior inference
is available at https://doi.org/10.5066/P9YYGI5R.
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