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Classification Accuracy of Neuroimaging
Biomarkers in Attention-Deficit/Hyperactivity
Disorder: Effects of Sample Size and Circular
Analysis

Alfredo A. Pulini, Wesley T. Kerr, Sandra K. Loo, and Agatha Lenartowicz
ISS
ABSTRACT
BACKGROUND: Motivated by an inconsistency between reports of high diagnosis-classification accuracies and
known heterogeneity in attention-deficit/hyperactivity disorder (ADHD), this study assessed classification accuracy
in studies of ADHD as a function of methodological factors that can bias results. We hypothesized that high
classification results in ADHD diagnosis are inflated by methodological factors.
METHODS: We reviewed 69 studies (of 95 studies identified) that used neuroimaging features to predict ADHD
diagnosis. Based on reported methods, we assessed the prevalence of circular analysis, which inflates classification
accuracy, and evaluated the relationship between sample size and accuracy to test if small-sample models tend to
report higher classification accuracy, also an indicator of bias.
RESULTS: Circular analysis was detected in 15.9% of ADHD classification studies, lack of independent test set was
noted in 13%, and insufficient methodological detail to establish its presence was noted in another 11.6%. Accuracy
of classification ranged from 60% to 80% in the 59.4% of reviewed studies that met criteria for independence of
feature selection, model construction, and test datasets. Moreover, there was a negative relationship between ac-
curacy and sample size, implying additional bias contributing to reported accuracies at lower sample sizes.
CONCLUSIONS: High classification accuracies in neuroimaging studies of ADHD appear to be inflated by circular
analysis and small sample size. Accuracies on independent datasets were consistent with known heterogeneity of the
disorder. Steps to resolve these issues, and a shift toward accounting for sample heterogeneity and prediction of
future outcomes, will be crucial in future classification studies in ADHD.
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A significant challenge in the assessment and treatment of
neuropsychiatric disorders is that diagnosis is typically based
on subjective behavioral criteria, a process that is time-
consuming and requires considerable expertise and training.
The need for objective diagnostic indicators has fueled efforts
to define neuropsychiatric biomarkers, particularly based on
structural and functional features of the brain, and with
increasing deployment of machine learning methods. Results
of these efforts have been variable; recent reviews indicate that
classification accuracy is distributed broadly between chance
and near 100% (1–3). Such variability can lead to puzzling
outcomes, as is evident in the case of attention-deficit/
hyperactivity disorder (ADHD). On the one hand, reports of
accuracies in excess of 90% (4–17) have culminated in the
electroencephalography-based theta/beta ratio (TBR) metric
(18) gaining Food and Drug Administration support as an
adjunct to clinical assessment of ADHD (19,20). On the other
hand, the variability echoes increasing awareness of hetero-
geneity in ADHD in symptom presentation (21), neurocognitive
ª 2018 Society of B
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impairment, (22,23) persistence (24–26), treatment response
(27,28), and putative mechanistic pathways (29–31), and sup-
ports the existence of independent subgroups within ADHD
(32–37). The incompatibility between such heterogeneity and a
diagnostic tool validated by existing ADHD diagnosis has
contributed to discussion over the utility of neuroimaging in
diagnosis of ADHD (38–40). It also raises a conceptual ques-
tion: if current diagnosis of ADHD is too clinically variable for
classification, how are high classification accuracies achieved?
The answer to this question is important if it lies in methodo-
logical limitations, which may continue to be a concern in
future studies. Thus, we examine this question using ADHD as
an exemplar given the large existing literature base on neuro-
imaging classifiers of diagnosis.

Potential pitfalls of applying classification approaches to
neuropsychiatric data have been discussed extensively
(1,3,41,42). Two that are particularly relevant include circular
analysis and sample size. First, to evaluate its role in clinical
medicine, a machine learning classifier needs to have good
iological Psychiatry. Published by Elsevier Inc. All rights reserved. 1
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generalizability: defined by good performance on patients not
included in the study (i.e., new patients). In the experimental
setting, this is assessed by cross-validation, whereby a subset
of a dataset is not included in construction of the classification
model (“training”) and subsequently used to assess the per-
formance of the model (“testing”). However, the testing accu-
racy can be inflated owing to a common error of including all
data when selecting features to be used for classification (i.e.,
before training). For instance, a t test may be performed on all
subjects’ data, before cross-validation, to identify brain regions
that are the most discriminative of two groups. This step is
typically performed to reduce the number of features (e.g.,
brain regions) that are included in the model. However,
including all subjects’ data in feature selection (rather than
performing this step on the training subset only) creates
circularity, or "peeking," in the training model that can inflate
reported test accuracy (43). Simulations suggest that accuracy
inflation can reach 40% depending on model parameters
(3,44,45) (also see the Supplement for simulation results). In
2008, a reported 42% of high-impact journal functional mag-
netic resonance imaging (MRI) studies were subject to circular
analysis, with another 14% lacking methodological detail to
reach judgment (43,46), suggesting that such practice is not
uncommon. A second concern is small sample size, as it can
drastically increase both accuracy and variability of cross-
validation accuracy (41,42,47). Simulations show that accu-
racy estimates, in models designed for neuropsychiatric
diagnostics, can become unstable when total sample size is
less than 100 to 150 (41,47–50), and the problem is most se-
vere when combined with circular analysis (45).

The objective of this study was to review neuroimaging-
based studies on ADHD classification to assess the contribu-
tion of circular analysis and sample size to classification
accuracy, thereby testing for accuracy-inflating effects of
these two factors and whether these effects have changed
over time. The results reveal a more accurate portrayal of
classification accuracies in ADHD, revealing methodological
weaknesses that should be addressed in future studies, and
that generalize to studies of any neuropsychiatric disorder.
METHODS AND MATERIALS

We performed a literature search using multiple databases
(PubMed, Web of Science) and search engines (Google
Scholar), with key words including ADHD, ADD, classification,
machine learning, classifier, prediction, and accuracy, retaining
publications that explicitly described a classification frame-
work to distinguish between ADHD and comparison groups
(N = 95 studies) based on neuroimaging features. Studies
were excluded if 1) no control group was examined (ADHD
only or ADHD vs. other disorder groups) (n = 5); 2) sample
size per class or age group was not specified (n = 5); 3) total
sample was ,6, limiting within-group variance (n = 2); 4)
accuracy was shown graphically but not reported in the text
(n = 3); 5) the model did not use neuroimaging features (n =
9); and 6) classification was not performed based on original
ADHD diagnostic labels (n = 1). One study was excluded due
to a retraction. This exclusion protocol yielded a final total of
69 studies (Table 1; see Supplement for list of excluded
studies).
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
Study Characteristics

For each study we identified sample size, population (adult,
pediatric), feature type, and classifier model. We used a cutoff
of 18 years of age for classifying studies as adult versus child
populations. For simplicity, studies with participants up to and
including 18 years of age were labeled as child studies and
studies with participants over and including 18 years of age
were labeled as adult studies. An exception was the 2017
study of Duffy et al. (51), who used a range of 2 to 22 years of
age, which was labeled as “children” in Table 1 for simplicity. If
studies performed separate analyses for adults and for chil-
dren, we report the study twice, treating each group as a
separate population.

Frequency of Circular Analysis

To assess the frequency of circular analysis, we evaluated the
methods section of each study. We identified procedures for
feature selection and those for classification, with the goal
being to identify if the same dataset was used for feature se-
lection and in the testing of the classification model. If this was
unambiguously the case, the study was labeled as non-
independent (see Table 1) with respect to model testing. In
many instances, there was ambiguity regarding nonindepen-
dence given the methods description and/or presented work-
flow. Such studies were labeled as unknown, with respect to
nonindependence. For all such studies, we contacted the pri-
mary author to seek additional details to reduce the size of the
unknown category. Some studies presented rationale for
including all subjects’ data in model training because the al-
gorithm of feature selection analysis was independent from the
analysis of the classifier, and thus should not affect classifier
performance (14,51). However, as true independence in such
cases can be difficult to ascertain (43), we included such
studies in the nonindependent category. Therefore, we adop-
ted a rather strict criterion of requiring a completely different
set of subjects to be used for feature selection versus testing,
to label a study as free of circular analysis. This definition
subsumes cases where features were defined based on prior
knowledge (i.e., prior studies de facto use independent data to
define the features). It also implies that for studies that use an
iterative cross-validation scheme, feature selection must be
either based on prior knowledge or performed within the
training set of every iteration for the classifier to be guaranteed
free of circular analysis. Finally, we also identified studies in
which no test set was defined (all data were used in feature
selection and model construction) and thus no cross-validation
was performed. Such studies may suggest potentially useful
features but have no test of model generalizability. At the other
extreme, we also identify studies that identified an additional
completely independent testing dataset (which we refer to as
the validation set to distinguish it from the test set), not
involved in feature selection, which provides an additional
objective, external validation of model generalizability.

Sample Size and Accuracy

For each study, we obtained the total sample size and clas-
sifier specificity, sensitivity, and accuracy. Where multiple
models were examined, we took the best-performing model.
Where accuracy was unreported, we calculated accuracy from
018; -:-–- www.sobp.org/BPCNNI
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specificity, sensitivity, and sample size. We tested whether
accuracy varies with sample size using a logistic regression
model with accuracy treated as probability of a binary outcome
(i.e., corresponding to correct/incorrect prediction) and sample
size as predictor. This model assumes that classification ac-
curacy follows a binomial distribution (41,42,52,53). Influential
observations were identified using Cook’s D statistic
exceeding 4 / n 2 k 2 1 (n = sample size, k = number of ob-
servations) and, if present, were excluded from final model fit.

Time Analysis

Finally, we sought to establish whether the methodological
factors of concern (small sample size and circular analysis) are
current problems, or whether their presence (if established) is
restricted to older studies, preceding awareness of these is-
sues in the field. To do so, we analyzed 1) an analogous lo-
gistic regression model with accuracy as a probability of a
binary outcome and year of publication as a predictor; 2) a
linear regression model with sample size as the dependent
variable and year of publication as a predictor; and 3) contin-
gency tables for presence of circular analysis (yes/no/un-
known) and time windows constructed by binning years of
publication by median split (,2013, $2013), and in a second
analysis, also the top and bottom 33rd percentiles (#2011,
.2014).

RESULTS

Study Set Characteristics

Of the 69 studies reviewed (Table 1, Figure 1), 32 (46.4%) used
electroencephalographic (EEG) features, 35 (50.7%) used
functional or structural MRI features, and 2 (2.9%)
used magnetoencephalography or functional near-infrared
spectroscopy. Sample size varied from 10 to over 1177. Of
these studies, 47 (68.1%) included children only, 14 (20.3%)
included both adults and children, and 8 (11.6%) were of adults
only. Classifier model parameters varied highly across studies.
Almost no studies used the exact same set of features, with
the exception of studies of TBR. Among algorithms chosen,
support vector machines were the most common, used in 26
(37.6%) studies, followed by discriminant linear analysis (13
studies, 18.8%), neural networks (8 studies, 11.6%), and lo-
gistic regression (5 studies, 7.3%). Four studies employed
receiver-operating characteristic curve analysis (5.8%) to draw
conclusions regarding ability of features to discriminate be-
tween groups.

Prevalence of Circular Analysis

A total of 15.9% (11 of 69) presented methods that were
consistent with circular analysis, whereby feature selection
was performed on the full dataset including the test data. Nine
studies (13.0%) did not employ any cross-validation. Hence,
the reported accuracies were untested with respect to gener-
alizability. In 8 of 69 studies (11.6%), independence was un-
clear (unknown). That is, the methods provided insufficient
information to determine if circular analysis was present. For
example, some studies used linear discriminant analysis
trained on half the dataset, but t tests were used to determine
which features were considered by the linear discriminant
Biological Psychiatry: Cognitive Neuroscien
analysis. Importantly, it was not specified which data were
used to perform the t tests (training sample only or full sample).
We note that before active author inquiry, we encountered a
total of 17 studies (24.6%, 17 of 69) with methodological detail
insufficient to make a determination regarding feature
selection.

In sum, we identified 41 studies (59.4%) that met our
criteria for independence of the test set relative to training and
feature selection. Of these, most (29 of 41 or 70.7%) were
studies using functional MRI features [25 as part of the
ADHD-200 competition (54)]. Only 26.8% (11 of 41) used EEG
features. Thus, where an assessment could be performed,
circular analysis was more prevalent in EEG studies than MRI,
c2

1, n = 51 = 8.52, p , .004.

Sample Size and Classifier Accuracy

In studies that met independence criteria, the relationship
between sample size and accuracy was significant (Wald c2 =
18.9, p , .001; odds ratio = 0.9987; 95% confidence interval =
0.9983–0.9993) (Figure 2); for a one-unit increase in sample
size, the odds of correct classification decreased by 0.12%.
This translates into a predicted drop of approximately 5.9% in
classifier accuracy when increasing a sample from n = 10 to
n = 300, or 25.4% when increasing a sample from n = 10 to n =
1000. A sample size–accuracy relationship was not significant
for studies that failed to meet independence criteria (Wald c2 =
0.03, p = .88) (Figure 2), possibly because of inflated accuracy
across sample sizes. Confirming these effects, the mean ac-
curacy of the 25% largest independent test set studies was
significantly lower than the mean accuracy of the 25% smallest
studies (meanlargest = 68.1%, meansmallest = 84.5% [t18 = 4.4, p
, .0001]), and also significantly lower than the nonindependent
studies (meannonindependent = 83.6% [t18 = 3.3, p , .005]).

As a larger portion of MRI than EEG studies used inde-
pendent testing, we repeated the analysis for each modality to
test whether this relationship is largely driven by MRI studies.
As expected, for MRI studies, the negative association of
sample size and classification accuracy was significant (Wald
c2 = 17.0, p , .001; odds ratio = 0.9988, 95% confidence
interval = 0.9983–0.9995). For EEG studies, the relationship
was not significant (Wald c2 = 0.01, p = .91).

EEG-Based Theta/Beta Ratio

Our analysis included seven studies (9.9%) that classified
ADHD based on the EEG-signal TBR (10,18,20,55–58). These
studies are considered separately because they did not uni-
formly conform to the above assessment of circular analysis,
and also because of their significance as an Food and Drug
Administration–approved adjunct to clinical assessment
(19,20). Of these, the studies of Ogrim et al. (56), Liechti et al.
(57), and Sangal and Sangal (58) used analyses that did not
include cross-validation. The remaining four studies [Snyder
et al. (18,20) and Monastra et al. (10,55)] used a distribution-
based classification scheme. They predicted ADHD diagnosis
based on a TBR threshold defined as 1.5 standard deviations
greater than the mean of a normative control population (55). In
the Monastra et al. (10,55) studies, the 1999 study (55) iden-
tified the threshold, whereas the 2001 study (10) provided the
cross-validation result using new participants. In the Snyder
ce and Neuroimaging - 2018; -:-–- www.sobp.org/BPCNNI 3
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Table 1. Neuroimaging Classification Studies of ADHD

Study Diagnosis, n (Age Group) N
Independent

Set Features Classifier PerformanceTest Set CV Notes

EEG

Duffy et al., 2017 (51) 347 ADHD, 619 TD (CH) 966 No CA DFA ACCestCV: 88%
a

SEN: 86.8%, SPE: 88.5%
Twofold
RS-CV (10
iterations)

NI

Chabot et al., 1996 (74) 407 ADD/ADHD,
242 SDLD, 310 TD (CH)

959 No PSF, CA, MAL DFA ACCestCV: 75%
Three-class correctly classified

percentages: 66% TD, 81%
ADHD, 61% SDLD

HS UN

Chabot and Serfontein,
1996 (12)

407 ADHD, 310 TD (CH) 717 No PSF DFA ACCestCV: 91%
SEN: 94%, SPE: 88%

HS UN

Helgadottir et al.,
2015 (75)

310 ADHD, 351 TD (CH) 661 36 ADHD, 36 TD
Total: 72

PSF, CA SVM ACCIS: 76% IS

Smith et al., 2003 (76) 50 ADHD-C,
50 ADHD-I, 50 TD (CH)

150 No LM, AM (ERP) DFA ACCCV: 73% (8-12 years)
ACCCV: 59% (13-18 years)

LOO CV

Mueller et al., 2011 (4) 75 ADHD, 75 TD (AD) 150 17 ADHD LM, AM (ERP) SVM ACCIS: 94% IS Only ADHD
in IS

Mueller et al., 2010 (5) 74 ADHD, 74 TD (AD) 148 No LM (ERP) RBF-SVM ACCCV: 92%
SEN: 90%, SPE: 94%

10-fold CV UN

Kemner et al.,
1999 (77)

43 ADHD, 43 TD, 50 AUT,
30 DYS, 16 MCDD (CH)

182 No AM (ERP) DFA ACCCV: 46% (5-classes) HS

Biederman et al.,
2017 (78)

34 ADHD, 29 TD (AD) 63 No BN/PSF (ERP) Linear SVM AUCCV: 92%
SEN: 86%, SPE: 95%

10-fold CV (10
iterations)

UN

Ghassemi et al.,
2012 (8)

10 ADHD, 40 TD (AD) 50 No EN (WAV), LE K-NNC ACCCV: 96 % LOO CV

Allahverdi et al.,
2011 (79)

29 ADHD, 20 TD (CH) 49 No LE, FD MLP-NN ACCCV: All electrodes 69%,
central 62%, parietal 61%,
occipital 56%, frontal 86%

80/20 RS

Robaey et al.,
1992 (80)

12 ADHD, 12 TD (CH) 24 No AM, LM (ERP) DFA ACC: 79% No CV NI

Tenev et al., 2014 (81) 67 ADHD, 50 TD (AD) 117 No PSF SVMs ACCCV: 82% 10-fold CV UN

Lenartowicz et al.,
2014 (82)

52 ADHD, 47 TD (CH) 99 No PSF, P2 LR ACCCV: 70% Sixfold CV NI

Mohammadi et al.,
2016 (9)

30 ADHD, 30 TD (CH) 60 No FD, EN, FE MLP-NN ACCCV: 94% 70/10/20 RS NI

Ahmadlou and Adeli,
2010 (7)

47 ADHD, 7 TD (CH) 54 No SLM (WAV) RBF-NN ACCCV: 96% 90/10 RS NI

Mann et al., 1992 (83) 25 ADHD, 27 TD (CH) 52 No PSF DFA ACCest: 77%
SEN: 80%, SPE: 74%

No CV NI

Poil et al., 2014 (84) 22 ADHD, 27 TD (AD)
19 ADHD, 22 TD (CH)

90 No PSF RBF-SVM ACCestCV-AD: 76%
SEN: 67%, SPE: 83%
ACCestCV-CH: 64%
SEN: 56%, SPE: 70%

Twofold CV NI

Tcheslavski and Beex,
2006 (85)

6 ADHD, 7 TD (CH) 13 No CA EDC ACCCV: 63% LOO CV NI

Lubar et al., 1985 (11) 69 ADD, 34 TD (CH) 103 No PSF DFA ACC: 98% No CV NI
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Table 1. Continued

Study Diagnosis, n (Age Group) N
Independent

Set Features Classifier PerformanceTest Set CV Notes

Alba-Sanchez et al.,
2010 (86)

28 ADHD, 10 TD (CH) 38 No PSF NN ACCCV: 70% Sixfold CV

Nazhvani et al.,
2013 (6)

12 TD, 12 ADHD,
12 BMD (CH, AD)

36 No LM, AM (VEP) 1-NNC ACCCV ADHD vs. TD: 95% LOO-CV

Kim et al., 2015 (87) 53 ADHD, 44 TD (CH) 97 No TGC ROC AUC: 71% No CV

Kovatchev et al.,
2001 (88)

33 ADHD, 34 TD (CH, AD) 67 No Cindex LR ACC: 80%
SEN: 82%, SPE: 77%

No CV

Magee et al., 2005 (89) 253 ADHD, 67 TD (CH) 320 No PSF LR ACC: 74%
SEN: 85%, SPE: 42%

No CV

EEG (TBR)

Snyder et al., 2008 (18) 97 ADHD, 62 TD (CH) 159 See main text TBR DIS ACC: 89%
SEN: 87%, SPE: 94%

See main text See main
text

Monastra et al., 1999
(55)

221 ADHD-C, 176 ADHD-I,
85 TD (CH, AD)

482 No TBR DIS ACCest: 88%
SEN: 86%, SPE: 98%

No CV UN (SPE)

Sangal and Sangal,
2015 (58)

58 ADHD, 28 TD (CH) 86 No TBR
PSF

ROC ACCest: 66%
SENTBR: 78%, SPETBR: 43%
ACCest: 77%
SENPSF: 86%, SPEPSF: 57%

No CV

Monastra et al., 2001
(10)

37 ADHD-I, 59 ADHD-C,
33 TD (CH, AD)

129 See main text TBR DIS ACCest: 91%
SEN: 90%, SPE: 94%

See main text See main
text

Ogrim et al., 2012 (56) 62 ADHD, 39 TD (CH) 101 No TBR, TP LR ACCTBR: 58%
ACCTP: 62%

No CV

Liechti et al., 2013 (57) 32 ADHD, 30 TD (CH) 62 No PSF, TBR DFA ACCTBR: 44%
SEN: 47%, SPE: 40%
ACCPSF: 71%
SEN: 69%, SPE: 73%

No CV

Snyder et al., 2015 (20) 275 (CH) 275 See main text TBR 1
clinical
evaluation

HA ACC: 88% See main text See main
text

MRI

Ghiassian et al., 2013
(90)

279 ADHD, 790
TD (CH, AD; ADHD200)

1069 77 ADHD, 94 TD
Total: 171

SF RBF-SVM ACCIS: 63% IS

Dai et al., 2012 (91) 285 ADHD, 491
TD (ADHD200, CH)

776 (Estimated)
75 ADHD, 94 TD

Total: 169

FF/FC, SF RBF-SVM ACCIS: 59%
SEN: 44%, SPE: 71%

IS

Eloyan et al., 2012 (92) 285 ADHD, 491
TD (CH, AD, ADHD200)

776 65 ADHD, 128 TD
Total: 193

SF, FF/FC Various methods ACCIS: 61%
SEN: 21%
SPE: 91%

IS

Ghiassian et al., 2016
(93)

285 ADHD, 491
TD (CH, AD, ADHD200)

776 77 ADHD, 94 TD
Total: 171

SF, PD RBF-SVM ACCIS: 70% IS

Colby et al., 2012 (94) 285 ADHD, 491
TD (CH, AD; ADHD200)

776 51 ADHD-C,
26 ADHD-I, 94 TD

Total: 171

SF, FF/FC, DD RBF-SVM ACCIS: 55%
SEN: 33%, SPE: 80%

IS
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Table 1. Continued

Study Diagnosis, n (Age Group) N
Independent

Set Features Classifier PerformanceTest Set CV Notes

Dey et al., 2012 (95) 156 ADHD-C, 99 ADHD-I,
11 ADHD-H, 468
TD (CH, AD, ADHD200)

734 50 ADHD-C,
26 ADHD-I,
2 ADHD-H, 93 TD

Total: 171

NF PCA-LDA ACCIS: 70%
SEN: 87%, SPE: 49%

IS

Sidhu et al., 2012 (96) 141 ADHD-C, 98 ADHD-I,
429 TD (CH, AD, ADHD200)

668 51 ADHD-C,
26 ADHD-I, 94 TD

Total: 171

PD/ PD, PSF SVM ACCIS-PD: 71%
ACCIS-PD, PSF: 67%

IS

Fair et al., 2013 (35) 112 ADHD-C, 80
ADHD-I, 455 TD (CH)

647 No FC SVM-based MVPA ACCCV ADHD-C vs. TD: 77%
SEN: 75%, SPE: 77%
ACCCV ADHD-I vs. TD: 83%
SEN: 79%, SPE: 87%

LOO CV

dos Santos Siqueira
et al., 2014 (97)

269 ADHD, 340
TD (CH, ADHD200)

609 No FC Linear SVM ACCCV: 73%
SEN: 63%, SPE: 83%

LOO CV

Chang et al., 2012 (98) 210 ADHD, 226
TD (CH, AD; ADHD200)

436 No SF Linear SVM ACCCV: 70% 10-fold CV

Tan et al., 2017 (99) 215 ADHD, 98
TD (CH, ADHD200)

313 No FF, PD Linear SVM ACCCV: 69%
SEN: 78%, SPE: 57%

10-fold CV

Wolfers et al.,
2016 (100)

184 ADHD, 128 TD (CH, AD) 312 No FF GPC AUCCV: 64% LOO CV

Cheng et al., 2012
(101)

98 ADHD, 141 TD (CH) 239 No fALFF, ReHo,
FF/FC, SF

RBF-SVM ACCCV: 76%
SEN: 63%, SPE: 85%

LOO CV

Jie et al., 2016 (102) 118 ADHD, 98
TD (CH, ADHD200)

216 No FC SVM ACCCV: 83%
SEN: 84%, SPE: 82%

LOO CV

Du et al., 2016 (103) 118 ADHD,
98 TD (CH, ADHD200)

216 No FC SVM ACCCV: 95%
SEN: 93%, SPE: 97%

10-fold CV

Qureshi et al.,
2017 (104)

53 ADHD-C, 53 ADHD-I,
53 TD (CH, ADHD200)

159 14 ADHD-C,
14 ADHD-I, 14 TD

Total: 42

SF ELM ACCIS ADHD-C vs. TD: 89%
ACCIS ADHD-I vs. TD: 93%

IS

Qureshi et al.,
2016 (105)

53 ADHD-C, 53 ADHD-I,
53 TD (CH, ADHD200)

159 No SF H-ELM ACCCV ADHD-C vs. TD: 78%
ACCCV ADHD-I vs. TD: 80%

10-fold CV

Qureshi and Boreom,
2016 (106)

30 ADHD-C, 30 ADHD-I,
30 TD (CH, ADHD200)

90 No SF Linear SVM ACCCV ADHD-C vs. TD: 79%
ACCCV ADHD-I vs. TD: 70%

10-fold CV

Abibullaev and An,
2012 (17)

7 ADHD, 3 TD (CH) 10 No PSF RBF-SVM ACCCV: 97% Fivefold CV UN

Fu et al., 2013 (15) 21 ADHD, 27 TD (AD)
Total: 48

48 No PSF SVM ACCCV: 96% HS UN

Kurtek et al.,
2011 (107)

19 ADHD, 15 TD (AD)
Total: 34

34 No SF LOO-NNC ACCCV: 91% Fivefold CV

Hammer et al.,
2015 (14)

20 ADHD, 20 TD (CH)
Total: 40

40 No FF LR ACCCV: 93% LOO-CV NI

Iannaccone et al.,
2015 (108)

18 ADHD, 18 TD (CH)
Total: 36

36 No FF, SF Linear SVM ACCCV: 78%
SEN: 78%, SPE: 78%

LOO-CV UN

Deshpande et al.,
2015 (13)

260 ADHD-C, 173 ADHD-I,
744 TD (CH, AD; ADHD200)

1177 No FF/FC FCC-ANN ACCCV ADHD-C or ADHD-I vs. TD:
.90% (precise values
unclear)

LOO-CV

Peng et al., 2013 (109) 55 ADHD, 55 TD (CH) 110 No SF ELM ACCCV: 90% LOO-CV NI
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Table 1. Continued

Study Diagnosis, n (Age Group) N
Independent

Set Features Classifier PerformanceTest Set CV Notes

Igual et al., 2012 (110) 39 ADHD, 39 TD (CH) 78 No SF SVM (Adaboost) ACCCV: 72% SEN: 60%, SPE:
86%

Fivefold CV

Johnston et al., 2014
(111)

34 ADHD, 34 TD (CH) 68 No SF RBF-SVM ACCCV: 93% LOO-CV

Dey et al., 2014 (112) 15 ADHD-C, 1 ADHD-H,
12 ADHD-I,
38 TD (CH, ADHD200,
OHSU database)

66 5 ADHD-C,
1 ADHD-H,
1 ADHD-I, 27 TD

Total: 34

FC Polynomial SVM ACCIS: 82%
SEN: 89%, SPE: 50%

IS

Hart et al., 2014 (113) 30 ADHD, 30 TD (CH) 60 No FF GPC ACCCV: 77%
SEN: 90%, SPE: 63%

LOO-CV

Lim et al., 2013 (114) 29 ADHD, 29 TD (CH) 58 No SF GPC ACCCV: 79%
SEN: 76%, SPE: 83%

LOO-CV

Wang et al., 2013 (115) 23 ADHD, 23 TD (AD) 46 No ReHo SVM ACCCV: 80%
SEN: 87%, SPE: 74%

LOO-CV

Hart et al., 2014 (116) 20 ADHD, 20 TD (CH) 40 No FF GPC ACCCV: 75%
SEN: 80%, SPE: 70%

LOO-CV

Zhu et al., 2008 (117) 9 ADHD, 11 TD (CH) 20 No ReHo PCA-FDA ACCCV: 85%
SEN: 78%, SPE: 91%

LOO-CV

Zhu et al., 2005 (118) 9 ADHD, 1 TD (CH) 10 No ReHo FDA ACCCV: 85%
SEN: 78%,SPE: 91%

LOO-CV

Semrud-Clikeman
et al., 1996 (119)

10 ADHD-C,
10 DYS, 10 TD (CH)

30 No SF, PD DFA ACCADHD-C: 80%
ACCDYS : 90%
ACCTD: 90% (three-class

model)

No CV

MEG

Gomez et al., 2013
(120)

14 ADHD, 14 TD (CH) 28 No FE ROC ACCCV: 82% LOO-CV

fNIRS

Monden et al., 2015
(16)

30 ADHD, 30 TD (CH) 60 No AM ROC AUC: 85%
SEN: 90%, SPE: 70%

No CV

ACC, accuracy; ACCest, estimated accuracy; AD, adults; ADD, attention-deficit disorder; ADHD, attention-deficit/hyperactivity disorder; ADHD200, ADHD-200 Global Competition;
ADHD-C, attention-deficit/hyperactivity disorder combined type; ADHD-H, attention-deficit/hyperactivity disorder hyperactive type; ADHD-I, attention-deficit/hyperactivity disorder
inattentive type; AM, amplitude measure; ANN, artificial neural network; AUC, area under the curve; AUT, autistic children; BMD, bipolar mood disorder; BN, brain network; CA,
coherence analysis; CH, children; Cindex, consistency index; CV, cross-validation; DD, demographic data; DFA, discriminant function analysis; DIS, distribution; DYS, dyslexia; EDC,
Euclidean distance–based classifier; EEG, electroencephalography; ELM, extreme learning machine; EN, entropy; ERP, event-related potential; FALFF, fractional amplitude of low-
frequency fluctuation; FC, functional connectivity; FCC-ANN, fully connected cascade artificial neural network; FD, fractal dimension; FDA, Fisher discriminative analysis; FE, fuzzy
entropy; FF, functional feature; fNIRS, functional near-infrared spectroscopy; GPC, Gaussian process classifier; h-ELM, hierarchical extreme learning machine; HA, human assessment;
HS, half split; IS, independent set; LDA, linear discriminant analysis; LE, Lyapunov exponent; LM, latency measures; LOO, leave-one-out; LR, logistic regression; MAL, maturational lag;
MCDD, multiple complex developmental disorder; MEG, magnetoencephalography; MLP, multilayer perceptron; MRI, magnetic resonance imaging; MVPA, multivariate pattern analysis;
NF, network features; NI, nonindependent test set; NN, neural network; NNC, nearest neighbor classifier; OHSU, Oregon Health and Science University; PCA, principal component
analysis; PD, personal data; PSF, power spectra features; RBF, radial basis function; ReHo, regional homogeneity; ROC, receiver-operating characteristic; RS, random split; SEN,
sensitivity; SDLD, specific developmental learning disorder; SF, structural feature; SLM, synchronization likelihood method; SPE, specificity; SVM, support vector machine; TBR, theta/
beta ratio; TD, typically developing; TGC, theta-phase gamma-amplitude coupling; TP, theta power; UN, unclear; WAV, wavelet; VEP, visual evoked potential.

aWhen the study did not provide the accuracy, we estimated it given the sample size, specificity and sensitivity.

A
D
H
D

N
euroim

aging
B
iom

arkers
and

C
lassification

B
iologicalP

sychiatry:
C
ognitive

N
euroscience

and
N
euroim

aging
-

2018;
-
:-

–
-

w
w
w
.so

b
p
.o
rg
/B

P
C
N
N
I

7 B
io
lo
g
ical

P
sychiatry:

C
N
N
I

http://www.sobp.org/BPCNNI


BOTH
20.3%

ADULTS
11.6%

CHILDREN
68.1%

EEG
46.3%

MRI
50.7%
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DLA
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SVM

37.7%NN
11.6 %

OTHER
13 %

C

LR 7.3%
ROC 5.8% THR 4.4%

Multiple 1.4%

NI
15.9%

Unknown 
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Test Set 
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Figure 1. Study characteristics. (A) Of the reviewed studies, 28.9% did
not meet independence criteria due to nonindependence (NI) or lack of
cross-validation (noCV), with another 11.6% lacking clarity to rule out cir-
cular analysis. (B) Most studies used features derived from electroenceph-
alography (EEG) and magnetic resonance imaging (MRI)–related signals. (C)
Support vector machine (SVM) and discriminant linear analysis (DLA) were
the most common algorithms. (D) The majority of ADHD classification
studies included pediatric populations. fNIRS, functional near-infrared
spectroscopy; LR, logistic regression; MEG, magnetoencephalography;
NN, neural network; ROC, receiver-operating characteristic; THR, threshold-
based classification.
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et al. (18,20) studies, the thresholds were defined based on an
external database in the 2008 study (18), and based on the
2008 result in the 2015 study (20). Thus, the Snyder et al.
(18,20) studies and the 2001 Monastra et al. study (10) can be
considered independent cross-validation and by this definition
do not fall under circular analysis. However, these studies had
limitations with respect to estimation of specificity. The non-
ADHD comparison sample size averaged 16 individuals per
age group [i.e., n = 7, 11, and 15 per tested age group in
Monastra et al. (10); n = 9, 20, and 33 per tested age group in
Snyder et al. (18)]. Finally, in the 2015 study of Snyder et al.
(20), accuracy based on TBR alone was not reported. In all, test
results are either lacking or underpowered for effective
assessment of TBR classification generalizability.

Time Effects

As shown in Figure 3, year of publication predicted neither ac-
curacy (Wald c2 = 0.77, p = .38) nor sample size (for a linear fit
[F1,67 = 0.22, p = .64], for an exponential fit [F1,67 = 0.75, p, .39]).
Given a median split (based on year published) of studies into
those published in or post-2013 (n = 36) versus pre-2013 (n = 33),
there was no difference in proportion of studies that met inde-
pendence criteria (pre-2013 = 19, during 2013/post-2013 = 22),
failed the independence criteria (pre-2013 = 10, during 2013/
8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
post-2013 = 10), or were unclassified (pre-2013 = 4, during 2013/
post-2013 = 4) (c2 = 0.09, p = .97). A similar result was obtained
comparing the bottom third (oldest) versus the top third (newest)
of studies. The relationship between accuracy and sample size
reported in the previous section remained significant with the
inclusion of publication date as a covariate (Wald c2 = 25.5, p ,

.001; odds ratio = 0.9988, 95% confidence interval =
0.9983–0.9992).

DISCUSSION

The aim of our study was to assess the contribution of circular
analysis and small-sample bias to accuracy of diagnostic
classification studies in ADHD using neuroimaging biomarkers.
We found circular analysis in 15.9% of ADHD classification
studies, lack of cross-validation in 13%, and insufficient
methodological detail to establish its presence in another
11.6%. Our results reveal that accuracy of classification is
60% to 80% in the 59.4% of studies that met our criteria for
independence of feature selection, model construction, and
test datasets. There was a negative relationship between ac-
curacy and sample size even in the presence of independent
testing, suggesting that small-sample accuracies may be
subject to bias.

Methodological Factors and Classification
Accuracy

A key conclusion from our analysis is that in 28.9% of the
studies reviewed, reported accuracy was likely inflated owing
to presence of circular analysis or lack of internal validation
(test set). In some cases, the use of a full dataset for feature
selection was justified by using an analysis thought to be in-
dependent from the contrast of ADHD patients versus control
subjects [e.g., mean effect across all subjects within a condi-
tion (14), principal component analysis (51)]. However, the in-
dependence of such approaches is difficult to guarantee and
can still contribute to bias during testing (43), and therefore
should be avoided. External validation, an even stronger test
on generalizability, was absent in 55 studies (79.7%), sug-
gesting that our estimates of true accuracy in classification of
ADHD may be optimistic still. Time analyses did not support
the conclusion that rates of circular analysis are decreasing
across publication year. However, our estimate of 15.9% of
studies reviewed is nearly a third of that reported in 2008, when
42% of high impact–journal functional MRI studies were sub-
ject to circular analysis (43,46), supporting an awareness of
these methodological issues in the community. Nevertheless,
the frequency of the lack of sufficient methodological detail
(24.6% before author inquiry, 11.6% after author inquiry) was
high and highlights a need for systematicity in review criteria of
classification studies. There are now a number of excellent
reviews, many specifically targeting biomarker studies in
neuropsychiatry, that provide such guidance (1–3,41,42).

Replicating recent review findings of Varoquaux (41) and
Varoquaux et al. (42) (classification using MRI and magneto-
encephalography), Arbabshirani et al. (1) (classification across
brain disorders, using functional and structural MRI features),
and Schnack and Kahn (48) (classification in studies of
schizophrenia using structural MRI), we show, in the context of
ADHD, that accuracy in classification studies of neuroimaging
018; -:-–- www.sobp.org/BPCNNI
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Figure 3. Classification across publication year. Neither accuracy (top
panel) nor sample size (bottom panel) could be predicted from publication
year. The relationship between the two (Figure 2) was also significant with
publication year as a covariate (see text). Frequency of circular analysis also
did not vary by year. Shading indicates 95% confidence interval.
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Figure 2. Sample size vs. classification accuracy. A negative relationship
between classifier accuracy and sample size was evident in studies that met
test set independence criteria (top panel). This group was dominated by
magnetic resonance imaging (MRI) studies. In contrast, studies that did not
meet independence criteria (bottom panel) were dominated by studies that
used electroencephalographic (EEG) features. Shading indicates 95%
confidence interval. Starred observations were found as influential by
Cook’s D, and were excluded from final model fits.
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data decreased with sample size. This suggests that bias is at
play in small-sample studies, particularly given that, in unbi-
ased analyses, accuracy is known to increase with sample size
(47,49,59). Sources of this bias likely include publication bias,
with small-sample studies that fail to obtain high classification
accuracy being unlikely to be published, leading to underes-
timation of accuracy variance in small-sample studies. In
classification of psychiatric conditions, such as ADHD, a
pertinent source of bias may be sample homogeneity in small
samples that is not representative of the broader population
(48). An important caveat to our observations, the interaction
between sample size and accuracy may be additionally
affected by choice of cross-validation scheme (e.g., k-fold vs.
leave one out), data preprocessing (e.g., control for motion
artifacts), and classifier. An exhaustive analysis of these factors
fell outside of the scope of the current study, owing to
Biological Psychiatry: Cognitive Neuroscien
variability in these factors among studies, but a preliminary
analysis did not reveal differences in choice of classifier or
cross-validation scheme across sample size (see Supplement).
It is notable that accuracy did not appear to decrease across
year of publication, whereas sophistication in machine learning
has certainly improved. The decrease in accuracy with sample
size that we observed appears robust to these alternative
methodological choices.

Critically, the solution to small-sample problems lies in
rigorous statistical assessment of classifier accuracy. This can
be achieved using the binomial test (for two-class problems)
ce and Neuroimaging - 2018; -:-–- www.sobp.org/BPCNNI 9
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and permutation testing (50). Permutation testing, in particular,
is a reliable, flexible, and readily available tool to assess the
significance and variability of a given accuracy (53,60).
Reporting of both significance and an estimate of variability,
such as confidence intervals, is perhaps the most important
recommendation because, independent of availability of larger
samples, such reporting continues to be done inconsistently
based on a 2017 review of 237 classification studies across
brain disorders (1). Finally, although difficult to quantify, it is
inherent that the amount of data per subject varies from study
to study, and thus the reliability varies depending on the
neuroimaging measure employed. This fact underscores
further the importance of data quality in addition to data
quantity in predictive modeling.
Value of Biomarkers in ADHD Diagnosis and Beyond

This study was motivated by an apparent inconsistency be-
tween reports of high classification accuracies and known
heterogeneity in ADHD. We found that the subset of studies
with independent test sets reported an accuracy in the range of
60% to 80%. The fact that these values were significantly
above 50% suggests that neuroimaging-based biomarkers
were associated with ADHD and therefore have some value.
However, these accuracies are too low to be used without
other supporting information in clinical practice because they
would result in substantial false positive and false negative
rates [also see Loo and Barkley (61)]. We also note that the test
set was difficult to define in the studies of TBR (10,18,20,55),
which is significant because TBR is a Food and Drug
Administration–approved adjunct to clinical assessment
(19,20). These studies also did not include large control sam-
ples to accurately estimate the standard error, which could
mean that the specificity of the TBR has been overestimated.
Such a conclusion is consistent both with reported variability in
the group-difference effect size of TBR (38,62,63) and, in
particular, with the observation that decreasing effect sizes of
TBR across studies appears to be correlated with a change in
TBR in the control sample rather than the ADHD sample (62).

However, the low and variable accuracies are consistent
with the inherent heterogeneity of ADHD, documented in
ADHD in symptom presentation (21), neurocognitive impair-
ment (22,23), persistence (24–26), treatment response (27,28),
and putative mechanistic pathways (29–31). Given a hetero-
geneous population, classification models will learn to accu-
rately identify those individuals with features that are shared
among subpopulations, but will be less successful in identi-
fying individuals who have features specific to a subpopula-
tion. However, as argued by Schnack and Kahn (48), a drop in
accuracy in a new testing sample in this context carries in-
formation about the mutual homogeneity of the sample and
may help to identify shared versus nonshared features.

What is the future of biomarkers in ADHD? Echoing recent
reviews, we suggest that the primary goals within ADHD ought
to include parsing of heterogeneity and prediction of future
outcomes, rather than diagnosis. Addressing heterogeneity,
dimensional analysis approaches [e.g., Research Domain Cri-
terion initiative (64,65)] seek to identify novel subgroups, based
on shared neuroimaging (and other feature) profiles. A prom-
ising example of this approach is that of Bansal et al. (66), who
10 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging -
developed an automated routine to first discover natural
groupings based on brain morphology. Using these novel
groupings, they achieved classification sensitivity of 93.6%
and specificity of 88.5% on an independent testing set
including children with ADHD and control subjects. In com-
plement, a shift toward using machine learning and biomarkers
to predict future outcomes—development and aging, educa-
tion, learning, criminality, health-related behaviors, response to
treatments—is likely to have a greater impact than prediction
of diagnosis on personalized clinical practices than can directly
improve patients’ lives (67–69). For instance, brain network
connectivity associated with sustained attention performance
has been shown to predict ADHD symptoms in an independent
sample (70–73), defining a potential tool for diagnosis-
independent assessment of attentional integrity.

Conclusions

In this study, we found that unbiased classification accuracy in
ADHD diagnosis in the range of 60% to 80%, too low to be
viewed as an independently useful biomarker of disease, is
consistent with known heterogeneity in this disorder. These
data are also consistent with contributions of circular analysis
and small-sample bias to inflation of higher accuracies, thus
accounting for the discrepancy. We conclude that steps to
resolve these issues, as well as a shift toward accounting for
sample heterogeneity and prediction of future outcomes, will
be crucial in increasing the utility of classification in ADHD.
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