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Abstract

Essays on Econometrics of Dyadic Data

by

Fengshi Niu

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Bryan S. Graham, Chair

Many important social and economic variables are naturally defined for pairs of agents (or
dyads). Examples include trade between pairs of countries (e.g., Tinbergen, 1962), input
purchases and sales between pairs of firms (e.g., Atalay et al., 2011), research and devel-
opment (R&D) partnerships across firms (e.g., König et al., 2019) and friendships between
individuals (e.g., Christakis et al., 2020). Dyadic data arises frequently in the analysis of
social and economic issues. See Graham (2020a) for many other examples and references.
While the statistical analysis of network data began almost a century ago, rigorously justified
methods of inference for dyadic or network statistics are only now emerging (cf., Goldenberg
et al., 2010).

This dissertation studies statistical inference problems of dyadic data. Throughout I focus
on target parameters of fundamental theoretical and applied interest. These include density
functions, regression functions, density-weighted average derivatives, and coefficients in linear
regressions. Dyadic data exhibits a distinct kind of local dependence property: i.e., any
random variables of dyads that share one or two indices/agents may be dependent. The
four chapters of this dissertation develop a broad set of theoretical results for estimation
and inference of nonparametric, parametric, and semiparametric models for dyadic data and
present generic and in some cases surprising implications of the local dependence.

In Chapter 1 I study nonparametric estimation of density functions for undirected dyadic ran-

dom variables (i.e., random variables defined for all n
def
≡
(
N
2

)
unordered pairs of agents/nodes

in a weighted network of order N). In this setting, I show that density functions may be
estimated by an application of the kernel estimation method of Rosenblatt et al. (1956) and
Parzen (1962). I suggest an estimate of their asymptotic variances inspired by a combination
of (i) Newey’s (1994) method of variance estimation for kernel estimators in the “monadic”
setting and (ii) a variance estimator for the (estimated) density of a simple network first
suggested by Holland and Leinhardt (1976). More unusual are the rates of convergence and
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asymptotic (normal) distributions of these dyadic density estimates. Specifically, I show
that they converge at the same rate as the (unconditional) dyadic sample mean: the square
root of the number, N , of nodes. This differs from the results for nonparametric estimation
of densities and regression functions for monadic data, which generally have a slower rate
of convergence than their corresponding sample mean. Then I study the robustness of the
normality-based and the bootstrap-based inference procedures. Since the distribution of this
kernel density estimator depends on both the unknown presence/absence of dyadic depen-
dence and the bandwidth choice, successfully approximating its distribution under a wide
range of scenarios is both nonstandard and especially desirable. Toward this goal, I first
establish the robustness of the normality-based inference by showing that the consistency
of variance estimator and asymptotic normal approximation are valid under both depen-
dence regimes with both commonly used and small-bandwidth asymptotics (Cattaneo et al.,
2014b). Then, I establish asymptotic inconsistency of a wide class of generalized bootstrap
(tailored toward U-statistics) in this setting. Finally, I propose a simple modification of
the bootstrap procedure and show its consistency holds robustly. The chapter ends with a
semiparametric efficiency bound calculation for density estimation and shows that the kernel
density estimator achieves optimal asymptotic variance. Section 1.1, 1.2, 1.3 of this chapter
are joint work with Bryan Graham and James Powell.

In Chapter 2 I study nonparametric estimation of regression functions for directed dyadic
data. Let i = 1, . . . , N index a simple random sample of units drawn from some large
population. For each unit, researchers observe the vector of regressors Xi and, for each of the
N (N − 1) ordered pairs of units, an outcome Yij. The outcomes Yij and Ykl are independent
if their indices are disjoint, but dependent otherwise (i.e., “dyadically dependent”). Let
Wij =

(
X ′i, X

′
j

)′
; using the sampled data I seek to construct a nonparametric estimate

of the mean regression function g (Wij)
def
≡ E [Yij|Xi, Xj] . I present two sets of results.

First, I calculate lower bounds on the minimax risk for estimating the regression function
at (i) a point and (ii) under the infinity norm. Second, I calculate (i) pointwise and (ii)
uniform convergence rates for the dyadic analog of the familiar Nadaraya-Watson (NW)
kernel regression estimator. I show that the NW kernel regression estimator achieves the
optimal rates suggested by the risk bounds when an appropriate bandwidth sequence is
chosen. This optimal rate differs from the one available under iid data: the effective sample
size is smaller and dW = dim(Wij) influences the rate differently. This chapter is joint work
with Bryan Graham and James Powell.

In Chapter 3 I study estimation of the density-weighted average derivative for directed dyadic
data. This parameter is of substantial practical interest as it is proportional to the coefficients
in single index models (Powell et al., 1989), which encompasses various models of limited
dependent variables. Besides carefully setting up the directed dyadic single index regression
model with both monadic and dyadic explainable variables, the main contributions of this
chapter are extending the kernel-based estimator of the density-weighted average derivatives
from the “monadic” iid setup (e.g. Stoker, 1986; Powell et al., 1989; Newey and Stoker, 1993)
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to directed dyadic data and proving its robust asymptotic normality (asymptotic normality
holds under both nondegeneracy and degeneracy and across a wide range of bandwidth
sequences) using asymptotic quadratic approximation. This robust asymptotic normality
result presents an interesting contrast between this kernel-based semiparametric estimator
and the sample mean of dyadic data, which exhibits asymptotic non-normality when dyadic
dependence is absent and whose uniform nonconservative inference procedure does not exist
(Menzel, 2021). This chapter marks the start of my analysis of estimation of semiparametric
models for dyadic data, which is continued in the next chapter.

In Chapter 4 I study error components models of dyadic data, of which a major motivation
is separating the monadic and dyadic components of variation. The development parallels
that of error components with panel data: I progressively enrich the random effect model
by going from being without covariates to being with covariates and from homoskedasticity
to multiplicative heteroskedasticity. Throughout enriching the models, I focus on estimating
the coefficients in a linear regression, which includes both monadic and dyadic explanatory
variables. To understand the nature of the estimation problem under different error compo-
nents models, I study the performance of intuitive OLS estimators, propose more efficient
estimators, calculate the asymptotic efficiency bounds (Cramér-Rao lower bound, CRLB),
and compare the efficiency bounds to variances of the estimators. Under homoskedasticity,
I prove the sample mean, which converges at rate O(N−1/2), and least square estimator

with double-differencing operation, which converges at rate O
((

N
2

)−1/2
)

, achieve the CRLB

and are asymptotically efficient for estimating the marginal expectation and the coefficients
of dyadic variables in a linear regression respectively. Under unknown multiplicative het-
eroskedasticity, I show that the intuitive two-step semiparametric generalized score estimator
for estimating the linear regression coefficients, which is a natural extension of the classical
feasible generalized least square estimator (FGLS) for linear regression with heteroskedas-
ticity for the “monadic” iid data, is not adaptive to the unknown heteroskedasticity. Its
convergence rate is faster than that of the OLS estimator, O(N−1/2), but slower than the

rate suggested by CRLB, O
((

N
2

)−1/2
)

. This result makes a distinction from a familiar result

in the monadic iid setting, i.e. a two-step semiparametric generalized score estimator often
indeed achieves adaptivity and CRLB in iid setting. The gap between the performance of
the best available estimator and the CRLB suggests that for this estimation problem with
dyadic data either there exists a better estimator that is adaptive and achieves the CRLB,
or there is a tighter efficiency bound. I point this gap out for further research.
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Chapter 1

Estimating the Density of A Dyadic
Random Variable 1

1.1 Introduction and Summary

Many important social and economic variables are naturally defined for pairs of agents (or
dyads). Examples include trade between pairs of countries (e.g., Tinbergen, 1962), input
purchases and sales between pairs of firms (e.g., Atalay et al., 2011), research and devel-
opment (R&D) partnerships across firms (e.g., König et al., 2019) and friendships between
individuals (e.g., Christakis et al., 2020). Dyadic data arises frequently in the analysis of
social and economic networks. In economics, such analyses are predominant in, for example,
the analysis of international trade flows. See Graham (2020a) for many other examples and
references.

While the statistical analysis of network data began almost a century ago, rigorously
justified methods of inference for network statistics are only now emerging (cf., Goldenberg
et al., 2010). In this chapter, we study nonparametric estimation of the density function of a
(continuously-valued) dyadic random variable. Examples included the density of migration
across states, trade across nations, liabilities across banks, or minutes of telephone conver-
sation among individuals. While nonparametric density estimation using independent and
identically distributed random samples, henceforth “monadic” data, is well-understood, its
dyadic counterpart has, to our knowledge, not yet been studied.

Holland and Leinhardt (1976) derived the sampling variance of the link frequency in a
simple network (and of other low order subgraph counts). A general asymptotic distribu-
tion theory for subgraph counts, exploiting recent ideas from the probability literature on
dense graph limits (e.g., Diaconis and Janson, 2008; Lovász, 2012), was presented in Bickel
et al. (2011).2 Menzel (2021) presents bootstrap procedures for inference on the mean of a
dyadic random variable. Our focus on nonparametric density estimation appears to be novel.

1Section 1.1, 1.2, 1.3 of this chapter are joint work with Bryan Graham and James Powell.
2See Nowicki (1991) for a summary of earlier research in this area.
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Density estimation is, of course, a topic of intrinsic interest to econometricians and statisti-
cians, but it also provides a relatively simple and canonical starting point for understanding
nonparametric estimation more generally.

We show that an (obvious) adaptation of the Rosenblatt et al. (1956) and Parzen (1962)
kernel density estimator applies to dyadic data. While our dyadic density estimator is
straightforward to define, its rate of convergence and asymptotic sampling properties, depart
significantly from its monadic counterpart. Let N be the number of sampled agents and n =(
N
2

)
the corresponding number of dyads. Estimation is based upon the n dyadic outcomes.

Due to dependence across dyads sharing an agent in common, the rate of convergence of our
density estimate is (generally) much slower than it would be with n i.i.d. outcomes. This rate
of convergence is also invariant across a wide range of bandwidth sequences. This property
is familiar from the econometric literature on semiparametric estimation (e.g., Powell, 1994).
Indeed, from a certain perspective, our nonparametric dyadic density estimate can be viewed
as a semiparametric estimator (in the sense that it can be thought of as an average of
nonparametrically estimated densities).

We also explore the impact of “degeneracy” – which arises either when dependence across
dyads vanishes or when the bandwidth sequence is small – on our sampling theory; such
degeneracy features prominently in Menzel’s (2021) innovative analysis of inference on dyadic
means. To address the concern of degeneracy, we incorporate both the traditional and the
small-bandwidth asymptotics (Cattaneo et al., 2014b) and show that variance estimator
and inference based on asymptotic normality are consistent both under nondegeneracy and
degeneracy.

To further explore the impact of degeneracy on the inference problem, we study the
behavior of a class of generalized bootstrap procedures tailored toward U-statistics and
show bootstrap failure in our setting. More specifically, bootstrap procedures consistent
in the nondegenerate case when the bandwidth is large are strictly conservative in either
the degenerate case or cases with small bandwidth. The conservativeness is severe in the
sense that the confidence interval based on the bootstrap approximation is at least 40%
wider than the percentile interval based on the true distribution of the estimator. This
vanilla version of bootstrap-based inference is hence much less robust compared to inference
based on normal approximation. We then propose a simple algorithmic fix to get a robust
bootstrap and prove its consistency in all scenarios. The robust bootstrap uses a multiple
of the original bandwidth to generate bootstrap samples. The multiplier factor depends on
a specific weight used in the generalized bootstrap and can be calculated analytically. We
think bootstrapping the kernel density estimator provides a relatively simple and canonical
starting point for understanding bootstrapping nonparametric estimators for dyadic data
more generally.

We then calculate the efficient influence function and the optimal asymptotic variance
for estimating the density under degeneracy and verify that the kernel density estimator is
asymptotically efficient. The calculation is based on reducing the problem to the traditional
iid setting by inspecting a particular submodel and then leverage existing theory on efficient
influence function.
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In what follows, section 1.2 presents the setup and assumptions. Section 1.3 shows the
rate of convergence, consistent variance estimation, and asymptotic normality results for
the kernel density estimator. Section 1.4 shows bootstrap failure and presents a robust
generalized bootstrap procedure that works. Section 1.5 calculate the efficient influence
function and the optimal asymptotic variance. Section 1.6 contains proofs of results in the
main text.

1.2 Setup and Assumptions

We use a nonparametric model of dyadic variables. Let i = 1, . . . , N index a random sample
of N individuals. An undirected pair of individuals is called a dyad. {A1, . . . , AN} is an
individual level random sample and {Vij, 1 ≤ i < j ≤ N} is a dyad level random sample. We
assume these two are independent. n =

(
N
2

)
total number of dyads have their corresponding

scalar outcomes {Wij, 1 ≤ i < j ≤ N}, where

Wij = W (Ai, Aj, Vij). (1.1)

To keep a coherent undirected setup, the function W is assumed to be symmetric w.r.t. its
first two arguments, i.e. W (a1, a2, v) = W (a2, a1, v) for any a1, a2, v, and Vji ≡ Vij so that
Wji = W (Aj, Ai, Vij) = W (Ai, Aj, Vji). The statistician observes {Wij, 1 ≤ i < j ≤ N} only.

In what follows we directly maintain (1.1), however, it also a consequence of assuming
that the infinite graph sampled from is jointly exchangeable (Aldous, 1981; Hoover, 1979).
Joint exchangeability of the sampled graph W = [Wij] implies that

[Wij]
D
=
[
Wπ(i)π(j)

]
(1.2)

for every π ∈ Π where π : {1, . . . , N} → {1, . . . , N} is a permutation of the node indices.
Put differently, when node labels have no meaning we have that the “likelihood” of any
simultaneous row and column permutation of W is the same as that of W itself.3 See
Menzel (2021) for a related discussion.

The object of interest is the marginal density fW of Wij at point w0, i.e.

fW (w0).

This marginal density fW (w0) of Wij can be estimated using an immediate extension of
the kernel density estimator for monadic data first proposed by Rosenblatt et al. (1956) and
Parzen (1962):

f̂W,N(w) =

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

KN,hN ,ij(w0),

3For W = [Wij ] the N ×N weighted adjacency matrix and P any conformable permutation matrix

Pr (W ≤ w) = Pr (PWP ≤ w)

for all w ∈W = R
(
N
2

)
.
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where KN,hN ,ij(w0) ≡ h−1
N K

(
w0−Wij

hN

)
. hN is the vanishing bandwidth and K is a fixed kernel

function. hN is the vanishing bandwidth and K is a fixed kernel function. A discussion of
the motivation for the kernel estimator f̂W (w) and its statistical properties under random
sampling (of monadic variables) can be found in Silverman (1986, Chapers 2 & 3).

In the following we will omit subscripts W , N , hN to save notation when there is no
confusion. For example, we will often use Kij to denote KN,hN ,ij(w0). We will use the
following assumptions of the model. They are meant to define the scope of our study.

The kernel density estimator of fW (w0) is

f̂W,N(w) =

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

KN,hN ,ij(w0),

where KN,hN ,ij(w0) ≡ h−1
N K

(
w0−Wij

hN

)
. hN is the vanishing bandwidth and K is a fixed kernel

function. In the following, we will omit subscripts W , N , hN to save notation when there
is no confusion. For example, we will often use Kij to denote KN,hN ,ij(w0). We will use the
following assumptions of the model. They are meant to define the scope of our study.

Assumption 1.2.1 (Model). (a) (Marginal Density) W12 is absolutely continuous
with density fW . fW (w0) > 0. fW is continuously differentiable with derivative f ′W .
f ′W is L-Lipschitz, i.e. |f ′W (w1)− f ′W (w2)| ≤ L|w1 − w2| for any w1, w2 ∈ R.

(b) (Conditional Density) Let fW |A(w|a) be the conditional density of Wij given Ai = a.
Assume the conditional density exists. For all a, fW |A(w|a) is continuously differen-
tiable in w and its first derivative is L-Lipschitz. fW |A is bounded by a constant M ,
i.e. supw,a fW |A(w|a) ≤M <∞.

Note that this model nests two special cases. Special case 1: Wij = W (Ai, Aj) is a
deterministic function of individual-level random variables. It does not depend on the dyad
level idiosyncratic terms Vij. Special case 2: Wij = W (Vij) is a function of the dyad level
idiosyncratic terms Vij only. It does not depend on the individual-level terms Ai, Aj. The
following analysis will work well for all cases. The key dichotomy of the problem will be

Var
(
fW |A (w0|A1)

)
> 0 or Var

(
fW |A (w0|A1)

)
= 0.

We will refer to the case in which Var
(
fW |A (w0|A1)

)
> 0 as the nondegenerate case and

the case in which Var
(
fW |A (w0|A1)

)
= 0 as the degenerate case. To save notation, we

will use Ω1 to denote Var
(
fW |A (w0|A1)

)
from here on

Ω1 = Var
(
fW |A (w0|A1)

)
.

Here is the reason why this variance drives the nature of the estimation problem. Ω1 pins
down the magnitude of the Hajék projection. If it is zero, the remainder terms of the Hajék
projection will be the leading term and the U-type statistic is degenerate. Special case 2
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is a representative example of the degenerate case. Since dyadic dependence is absent (in
first order) under degeneracy, variance of the estimator and convergence rate could have
qualitatively different magnitude. Our analysis will take care of this degeneracy.

We will use the following standard assumptions of the kernel throughout.

Assumption 1.2.2 (Kernel). K integrates to one, i.e.
∫
K(u)du = 1. K is even, i.e.

K(u) = K(−u) for any u ∈ R. K is bounded, i.e. supu |K(u)| ≤ M . K has bounded
support, i.e. K(u) = 0 for any |u| > M .

Note that symmetry of the kernel implies the kernel is orthogonal to the first-order
polynomial, i.e.

∫
uK(u)du = 0. We do not require the use of a higher-order kernel. Given

the assumption of boundedness of conditional density, the assumptions of boundedness and
bounded support conditions of the kernel ensure the integrability of all generic moments
that matter in later analysis. These assumptions are not essential as they can be replaced by
directly imposing relevant integrability conditions. For example, Gaussian kernel, which has
rapidly vanishing tails, would ensure integrability in many cases. Even though it does not
strictly satisfy our assumptions, our results will still hold for it with some rare exceptions.

The purpose of the following assumption is to ensure consistency of the estimator.

Assumption 1.2.3 (Consistency). The sequence of bandwidth hN satisfies N−2 � hN �
1.

Here aN � bN means aN
bN
→ 0 as N → ∞ for the two sequences {aN} and {bN}. Note

this assumption is both necessary and sufficient for consistency. In the following, we will
explicitly impose additional bandwidth conditions for relevant results.

1.3 Kernel Density Estimator: Rate of Convergence,

Consistent Variance Estimation, Asymptotic

Normality

We develop results on the rate of convergence, consistent variance estimation, and asymp-
totic normality in this section. These results also serve as a warm-up for the discussion
of the bootstrap-based inference. Our results incorporate both degenerate case and small-
bandwidth range.

Bias, Variance, and Consistency

Examining the bias and especially variance of the estimator is the most instructive way
to understand its behavior and appreciate the concern of degeneracy and small bandwidth
range. We will present the results first and follow them with the key calculation steps.

Theorem 1.3.1. If assumptions 1.2.1, 1.2.2, and 1.2.3 hold and
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(a) (Bias) Bias
(
f̂W (w0)

)
≡ E

[
f̂W (w0)

]
− fW (w0) = O (h2

N) .

(b) (Variance)

σ2
N ≡ Var

(
f̂W (w0)

)
=

{
N−1

(
1− 1

N−1

)
4Ω1 +

(
N
2

)−1
h−1
N Ω2 +O (N−2 +N−1h2

N) if Ω1 > 0(
N
2

)−1
h−1
N Ω2 +O (N−2 +N−1h4

N) if Ω1 = 0
,

(1.3)

where Ω1 ≡ Var
(
f 2
W |A(w0|A1)

)
and Ω2 ≡ fW (w0)

∫
K2(u)du.

(c) (Consistency)

MSE
(
f̂W (w0)

)
=

{
O
(
h4
N +N−1 +N−2h−1

N

)
if Ω1 > 0

O
(
h4
N +N−1h4

N +N−2h−1
N

)
if Ω1 = 0

. (1.4)

And the estimator is consistent f̂W (w0)
P→ fW (w0).

Proofs can be found in the appendix. Here is the sketch of the variance calculation, which
resembles variance calculation of a U-statistic.

Var
(
f̂W (w0)

)
= Var

((
N

2

)−1∑
i<j

Kij

)

=

(
N

2

)−2 ∑
i1<j1

∑
i2<j2

Cov (Ki1j1 , Ki2j2)

=

(
N

2

)−2 [(
N

2

)
Var (K12) +N(N − 1)(N − 2) Cov (K12, K13)

]
= N−1(N − 1)−1 (N − 2) 4 Ω1,N +N−1(N − 1)−1h−1

N 2Ω2,N , (1.5)

where Ω2,N ≡ hN Var (K12) converges to Ω2 and Ω1,N ≡ Cov (K12, K13) converges to Ω1.
The third equality follows elementary counting and the fact that Ki1j1 and Ki2j2 sharing
zero index are independent.

To further appreciate the results in the nondegenerate case, provided that Ω1(w0) 6= 0
(i.e. the nondegenerate case) and the bandwidth sequence hN is chosen such that

Nh→∞, Nh4 → 0 (1.6)

as N →∞, we get that

MSE
(
f̂W (w0)

)
= o

(
1

N

)
+O

(
1

N

)
+ o

(
1

N

)
= O

(
1

N

)
,
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and hence that √
N(f̂W (w0)− fW (w0)) = Op(1).

In fact, the rate of convergence of f̂W (w0) to fW (w0) will be
√
N as long as Nh4 ≤ C ≤ Nh

for some C > 0 as N →∞, although the mean-squared error will include an additional bias
or variance term of O(N−1) if either Nh or (Nh4)−1 does not diverge to infinity.

To derive the MSE-optimal bandwidth sequence, we minimize (1.4) with respect to its
first and third terms, this yields an optimal bandwidth sequence of

h∗N = O
(
N−

2
5

)
.

This sequence satisfies condition (1.6) above.
Interestingly, the rate of convergence of f̂W (w0) to fW (w0) under condition (1.6) is the

same as the rate of convergence of the sample mean

W̄
def
≡ 1

n

∑
i<j

Wij (1.7)

to its expectation µW
def
≡ E[Wij] when E[W 2

ij] < ∞. Similar variance calculations to those

for f̂w(w0) yield (see also Holland and Leinhardt (1976) and Menzel (2021))

Var(W̄ ) = O

(
Var(Wij)

n

)
+O

(
4 Var(E[Wij|Ai])

N

)
= O

(
1

N

)
,

provided E[Wij|Ai] is non-degenerate, yielding
√
N(W̄ − µ) = Op(1).

Thus, in contrast to the case of i.i.d monadic data, there is no convergence-rate “cost”
associated with nonparametric estimation of fW (w0). The presence of dyadic dependence,
due to its impact on estimation variance, does slow down the feasible rate of convergence
substantially. With iid data, the relevant rate for density estimation would be n2/5 when
the MSE-optimal bandwidth sequence is used. Recalling that n = O (N2), the

√
N rate we

find here corresponds to an n1/4 rate. The slowdown from n2/5 to n1/4 captures the rate of
convergence costs of dyadic dependence on the variance of our density estimate.

The lack of dependence of the convergence rate of f̂W (w0) to fW (w0) on the precise
bandwidth sequence chosen is analogous to that for semiparametric estimators defined as

averages over nonparametrically-estimated components (e.g., Newey, 1994). Defining Kji

def
≡

Kij, the estimator f̂W (w0) can be expressed as

f̂W (w0) =
1

N

N∑
i=1

f̂W |A(w0|Ai),
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where

f̂W |A(w0|Ai)
def
≡ 1

N − 1

N∑
j 6=i,j=1

Kij.

Holding i fixed, the estimator f̂W |A(w0|Ai) can be shown to converge to fW |A(w0|Ai) at the

nonparametric rate
√
Nh, but the average of this nonparametric estimator over Ai converges

at the faster (parametric) rate
√
N. In comparison, while

W̄ =
1

N

N∑
i=1

Ê [Wij|Ai] ,

for

Ê [Wij|Ai]
def
≡ 1

N − 1

N∑
j 6=i,j=1

Wij,

the latter converges at the parametric rate
√
N, and the additional averaging to obtain W̄

does not improve upon that rate.
In the degenerate case (i.e. Ω1 = 0), the convergence rate of the estimator could be faster

than
√
N because the covariance of terms sharing a single index Ω1,N = Cov(Kij, Kil) van-

ishes to zero asN goes to infinity. In the extreme case whereWij = W (Ai, Aj, Vij) = W ∗(Vij),
Wijs are independent from each other and the density estimation problem of “dyadic” vari-
ables reduces to the standard density estimation problem of n iid variables. In this case,
the problem is truely “nonparametric” in the sense that we rediscover the optimal non-
parametric rate of convergence MSE(f̂W (w0)) = O(n−

4
5 ) by setting the optimal bandwidth

h∗N = O
(
N−2/5

)
Variance Estimation

To quantify the uncertainty of the estimator f̂W (w0), we need a con-
sistent estimator of its variance. Motivated by the variance expression

σ2
N =

(
N
2

)−2∑
i1<j1

∑
i2<j2

d(i1, j1, i2, j2) Cov (Ki1j1 , Ki2j2) , where d(i1, j1, i2, j2) =
1 (i1 = i2 or i1 = j2 or j1 = i2 or j1 = j2), we propose the following analog estimator

σ̂2
N =

(
N

2

)−2 ∑
i1<j1

∑
i2<j2

d(i1, j1, i2, j2)
(
Ki1j1 − f̂W (w0)

)(
Ki2j2 − f̂W (w0)

)
.

The following theorem gives us a consistency result that holds under degeneracy and small
bandwidth range.

Theorem 1.3.2 (Consistent Variance Estimation). If assumptions 1.2.1, 1.2.2, 1.2.3
hold, and hN � N−1/4, then

σ̂2
N

σ2
N

= 1 + oP (1).
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Notice this theorem holds under a broad range of bandwidth sequences N−2 � hN �
N−1/4 for both degenerate and non-degenerate case. The proof starts by rewriting the
estimator as

σ̂2
N =

(
N

2

)−2∑
i1<ji

∑
i2<j2

d(i1, j1, i2, j2)
(
Ki1j1 − f̂W (w0)

)(
Ki2j2 − f̂W (w0)

)
= N−1(N − 1)−1(N − 2)4 Ω̂1,N +N−1(N − 1)−1h−1

N 2 Ω̂2,N , (1.8)

where

Ω̂1,N ≡
(
N

3

)−1 ∑
i<j<k

(
KijKik +KijKjk +KikKjk

3

)
− f̂ 2

W (w0)

Ω̂2,N ≡
(
N

2

)−1∑
i<j

hNK
2
ij − hN f̂ 2

W (w0).

This expression mirrors the variance expression (1.5). It proceeds by showing the discrepancy
Ω̂1,N −Ω1 and Ω̂2,N −Ω2 goes to zero fast enough under the assumptions on the bandwidth
sequence. See the detail of the proof in the appendix.

Asymptotic Normality

The following theorem ensures asymptotic normality of f̂W (w0) for both nondegenerate and
degenerate cases and for both standard and small bandwidth range.

Theorem 1.3.3 (Asymptotic Normality). If assumptions 1.2.1, 1.2.2, 1.2.3 hold, and
hN � N−2/5, then

σ−1
N

(
f̂W (w0)− fW (w0)

)
 N(0, 1).

The proof of theorem 1.3.3 uses martingale CLT. The martingale structure is constructed
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by arranging terms in Hoeffding decomposition carefully.

f̂W (w0)− Ef̂W (w0) =

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

(Kij − EKij)

= N−1
∑
i

2 (E [Kij|Ai]− EKij) (1.9)

+

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

(Kij − E [Kij|Ai]− E [Kij|Aj] + EKij)

=
N∑
i=1

[
N−12Di +

(
N

2

)−1 i−1∑
j=1

Eji

]

=
N∑
i=1

YN,i ,

where Di ≡ E [Kij|Ai] − EKij, Eij ≡ Kij − E [Kij|Ai] − E [Kij|Aj] + EKij, and YN,i ≡
N−12Di +

(
N
2

)−1∑i−1
j=1 Eji. The first equality is by definition. The second equality is the

Hoeffding decomposition of U-statistics. The third and fourth equality reveals the martingale
structure. More precisely, let Fi ≡ σ (A1, . . . , Ai, Vkl, 1 ≤ k < l ≤ i) be a filtration. Then
E [Di|Fi−1] = 0, E [Eji|Fi−1] = 0,∀j < i, hence E [YN,i|Fi−1] = 0. The sequence (YN,i, i =
1, . . . , N) therefore is a martingale adapted to (Fi, i = 1, . . . , N). Applying the martingale
CLT in Hall and Heyde (1980) gives the desired normality result for the centered statistic
f̂W (w0)− Ef̂W (w0). The under-smoothing bandwidth assumption hN � N−2/5 ensures the
bias Ef̂W (w0)−fW (w0) is of smaller order. Together these implied the asymptotic normality
result. See the proof in the appendix.

To better appreciate the result, remember Menzel (2021) shows that under degeneracy,
the limit distribution of the sample mean, W̄ , equation (1.7), may be non-Gaussian. This
occurs because the second-order terms in the Hoeffding decomposition of W̄ dominate the
variation under degeneracy and could be asymptotically non-Gaussian (as is familiar from
the theory of U-Statistics, e.g., Chapter 12 of Van der Vaart (2000)).

The situation is both more complicated and simpler here. In the case of the estimated
density f̂W (w0), due to the presence of the vanishing bandwidth, Liaponuv condition, an
important condition for the martingale CLT

σ−4
N

N∑
i=1

E
[
Y 4
N,i

] P→ 0,

continues to hold under degeneracy. It follows then 1
σN

(
f̂W (w0)− fW (w0)

)
continues to be

normal in the limit. This result ensures the normality based inference methods is robust.
Namely, the following Wald-based confidence interval

CI(fW (w0)) := [f̂W (w0)− Φ−1(1− α/2) · σ̂N , f̂W (w0) + Φ−1(1− α/2) · σ̂N ],
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where Φ is the cdf of standard normal, is asymptotically consistent with coverage probability
1− α under the assumptions of theorem 1.3.3.

1.4 Bootstrap Failure and Robust Generalized

Bootstrap

In this section, we review a general class of weighted bootstrap for U-statistic, show its
inconsistency for estimating the distribution of our estimator by a detailed variance calcu-
lation, and propose a simple fix. We then show the bootstrap consistency of the modified
bootstrap procedure. The corresponding bootstrap statistic is preferable both analytically
and computationally.

Generalized Bootstrap

Bootstrapping U-statistics has a well-developed line of literature (see e.g. Bickel and Freed-
man (1981), Arcones and Gine (1992), Janssen (1994), Mccullagh (2000), Owen (2007),
Menzel (2021), Bose and Chatterjee (2018), and Levin and Levina (2019)). A unifying
class of weighted bootstrap statistics proposed by Bose and Chatterjee (2018) encompasses
most state-of-the-art specific proposals. To be concrete, let’s consider a generic second-order

U-statistic UN =
(
N
2

)−1∑N−1
i=1

∑N
j=i+1HN (Xi, Xj). Its corresponding weighted bootstrap

statistic is then

U∆
N =

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

∆N,ijHN (Xi, Xj) ,

where the weights satisfy the following assumption.

Assumption 1.4.1 (Weights). (∆N,ij, 1 ≤ i < j ≤ N) ∈ R(N2 ) is a vector of random
weights independent from the observed data. It satisfies

(a) Exchangeability in the sense that (∆N,π(1)π(2), . . . ,∆N,π(1)π(N),∆N,π(2)π(3), . . . ,∆N,π(2)π(N), . . . ,
∆π(N−1)π(N)) has the same distribution for all permutation π of {1, . . . , N}

(b) E∆N,12 = µN → 1 as N →∞

(c) Var (∆N,12) = υN,2 → υ2, Cov (∆N,12,∆N,13) = υN,1 → υ1, Cov (∆N,12,∆N,34) =
υN,0 → 0, where υ2, υ1 > 0 are positive constants.

Multiple ways of extending bootstrap statistic of sample mean in iid setting to U-statstic
setting are special cases lying in this class. Product weights of the form ∆N,ij = ∆N,i∆N,j

with (∆N,1, . . . ,∆N,N) ∼ Mult(N, 1
N
, . . . , 1

N
) is an analog of Efron’s nonparametric bootstrap.

An analog of Bayesian bootstrap is (∆N,1, . . . ,∆N,N) ∼ N ·Dirichlet(N, 1, . . . , 1). Both cases
satisfy assumption 4 with υ2 = 3, υ1 = 1. Additive weights of the form ∆N,ij = ∆N,i+∆N,j−1
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with (∆N,1, . . . ,∆N,N) ∼ Mult(N, 1
N
, . . . , 1

N
) corresponds to pigeon-hole bootstrap. This case

satisfies assumption 4 with υ2 = 2, υ1 = 1.

Inconsistency of Generalized Bootstrap

We will write down the generalized bootstrap statistic of the centered kernel density estimator
and show its inconsistency by comparing its conditional variance to the variance of the kernel
density estimator. More specifically, bootstrap consistent in the nondegenerate case when
the bandwidth is large is strictly conservative in either the degenerate case or cases with
small bandwidth. The conservativeness is severe in the sense that the confidence intervals
based on these bootstrap approximations are at least 40% wider than the percentile interval
based on the true distribution of the estimator.

As notation we use P,E,Var to denote probability, expectation, variance under P and
use P ∗,E∗,Var∗ to denote the conditional probability, expectation, variance under the con-
ditional probability given FN = σ (Ai, Vjk, 1 ≤ i ≤ N, 1 ≤ j < k ≤ N).

Consider the following exchangeably weighted bootstrap statistics of the centered statistic
f̂N − Ef̂N (

f̂N,hN − Ef̂N,hN
)∆

=

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

∆N,ij

(
KN,hN ,ij − K̄N,hN ,··

)
,

We use K̄N,hN ,·· to denote f̂N in this context in order to emphasize it is a sample average.
The most instructive way to understand the behavior of the weighted bootstrap statistic

is to inspect its conditional variance.

Lemma 1.4.1. If assumptions 1.2.1, 1.2.2, 1.2.3, 1.4.1 hold and hN � N−1/4, then

Var∗
((

f̂N,hN − Ef̂N,hN
)∆
)

=

(
N−1

(
1− 1

N − 1

)
4Ω1 · υ1 +

(
N

2

)−1

h−1
N Ω2 · υ2

)
· (1 + op(1)).

(1.10)

The proof of the result is in the appendix. The proof uses basic variance expansion and
convergence results used in the proof of theorem 1.3.2, consistency of the variance estimator.

Armed with this lemma and theorem 1.3.3, we are ready to state the the bootstrap
inconsistency result.

Theorem 1.4.2 (Bootstrap Inconsistency). If assumptions 1.2.1, 1.2.2, 1.2.3, 1.4.1 hold

and hN � N−1/4, and if the bootstrap is consistent, i.e. σ−1
N

(
f̂N,hN − Ef̂N,hN

)∆ ∣∣FN  p

N (0, 1), in the nondegenerate case when hN � N−1, then it is inconsistent both in the
nondegenerate case when h ≤≤ N−1 and in the degenerate case.
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Proof. A necessary condition for bootstrap consistency is the ra-

tio of the conditional variance Var∗
((

f̂N,hN − Ef̂N,hN
)∆
)

in equa-

tion (1.10) to the variance σ2
N = Var

(
f̂N,hN (w0)

)
in equation (1.3)

(
N−1

(
1− 1

N − 1

)
4Ω1 · υ1 +

(
N

2

)−1

h−1
N Ω2 · υ2

)/(
N−1

(
1− 1

N − 1

)
4Ω1 +

(
N

2

)−1

h−1
N Ω2

)

should converge in probability to 1. Both equations hold under the assumptions. We can
check for what kind of weight regimes the limit of the ratio is 1 under different scenarios.

In the nondegenerate case when hN � N−1, the limit of the ratio being 1 would imply
υ1 = 1. In either the nondegenerate case when hN ≤≤ N−1 or the degenerage case, the
limit of the ratio being 1 would imply υ2 = 1, However, υ1 = 1 and υ2 = 1 can never
happen together. To see this, notice by the definition of υ1 and υ2, for any constant integer k,


υ2 υ1

υ1 υ2
. . .

. . . . . . υ1

υ1 υ2


k×k

= lim
N→∞



υN,2 υN,1 υN,0 · · · · · · υN,0

υN,1 υN,2 υN,1
. . . . . . υN,0

υN,0 υN,1 υN,2
. . . . . . υN,0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . υN,1
υN,0 υN,0 υN,0 · · · υN,1 υN,2


k×k

= lim
N→∞

Var


∆N,12

∆N,23
...

∆N,kk+1



is positive semidefinite. Specificaly, kυ2 − 2(k − 1)υ1 = limN→∞Var
(∑k

i=1(−1)i∆ii+1

)
≥ 0.

This means υ2 ≥ (2 − 2
k
)υ1 for any positive integer k. Taking the limit gives us υ2 ≥ 2υ1.

This implies for example, if υ1 = 1, then υ2 ≥ 2 and υ2 6= 2. (This bound is sharp since it is
attained by for example additive multinomial weights.) This means there exists no weight
regimes satisfying bootstrap consistency simultaneously in both cases. �

Here is the intuition behind this bootstrap failure. The variance Var
(
f̂N,hN (w0)

)
is a

summation of dyad specific variance and the covariance due to node sharing as shown in
equation (1.5). In the nondegenerate case when hN � N−1, the covariance due to node
sharing is dominating. Bootstrap consistency in this case requires the bootstrap weights to
exhibit a similar dependence structure with covariance due to node sharing. As a side effect,
this class of dependent weights will necessarily capture too much dyad specific variance.
This is not a problem in this case per se because the contribution of dyad specific variance
is infinitesimal in the limit. However, this is a serious problem both in the nondegenerate
case when hN ≤≤ N−1 and in the degenerate case, where the contribution of dyad specific
variance is first-order. A serious upward bias will show up. In this situation, the “best”
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weights would be those achieving the lower bound υ2 = 2υ1, e.g. additive weights, so that
this upward bias is the smallest.

Roughly speaking, bootstrap consistency in the first case requires weights to exhibits
nondegenerate U-type dependence in the limit; bootstrap consistency in the second case
requires weights to exhibits independence (or equivalently degenerate U-type dependence)
in the limit. The set of weights satisfying both is empty.

Robustness in the sense of consistency across all cases is not achievable by any weight
regimes. However, it is achievable by altering the bootstrapped terms through altering the
bandwidth used to construct them. This idea first shows up in a remark in Cattaneo et al.
(2014a).

Modification: Bootstrapping with a Constant Multiple Bandwidth

We propose a simple algorithmic fix to get a robust bootstrap consistent in all scenarios. This
robust bootstrap uses a multiple of the original bandwidth to generate bootstrap samples.
The multiplier factor depends on a specific weight used in the generalized bootstrap and can
be calculated analytically.

Consider the following modified bootstrap statistic(
f̂N,h′N − Ef̂N,h′N

)∆

=

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

∆N,ij

(
KN,h′N ,ij

− K̄N,h′N ,··
)
.

This is exactly the previously discussed bootstrap statistic with a different bandwidth, h′N .

h′N ≡
υ2,N

υ1,N

hN

is a multiple of hN with a known weight-specific multiplier
υ2,N
υ1,N

. Plugging this bandwidth

into equation (1.10) gives us the conditional variance

Var∗
((

f̂N,h′N − Ef̂N,h′N
)∆
)

=

(
N−1

(
1− 1

N − 1

)
4Ω1 · υ1 +

(
N

2

)−1

h−1
N Ω2 · υ2 ·

υ1,N

υ2,N

)
· (1 + op(1))

= Var
(
f̂N,hN − Ef̂N,hN

)
· υ1.

This means this bootstrap statistic has consistent conditional variance simultaneously across
all cases for weights with υ1 = 1. Enlarging the bandwidth by a ratio of

υ2,N
υ1,N

reduces the

dyad specific variance while retains the covariance contribution. This precisely cancels out
the previously discussed upward bias. We summarize this result in the following lemma.

Lemma 1.4.3. If assumptions 1.2.1, 1.2.2, 1.2.3, 1.4.1 hold and hN � N−1/4,, and υ1 = 1,

then Var∗
((

f̂N,h′N − Ef̂N,h′N
)∆
)

= Var
(
f̂N,hN − Ef̂N,hN

)
· (1 + op(1)).
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Robust Bootstrap Consistency

We will show consistency of the modified bootstrap statistic with the following additive
weights.

Assumption 1.4.2 (Additive Multinomial Weights). The weights (∆N,ij, 1 ≤ i <
j ≤ N) is of the additive form ∆N,ij = ∆N,i + ∆N,j − 1 with (∆N,1, . . . ,∆N,N) ∼
Mult(N, 1

N
, . . . , 1

N
).

Bootstrap with additive multinomial weights enjoys both analytical convenience and
computational efficiency due to the following algebraic relation.

(
f̂N,h′N − Ef̂N,h′N

)∆

=

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

(∆N,i + ∆N,j − 1)
(
KN,h′N ,ij

− K̄N,h′N ,··
)

= N−1

N∑
i=1

∆N,i2
(
K̄N,h′N ,i· − K̄N,h′N ,··

)
, (1.11)

where K̄N,h′N ,i· ≡ (N − 1)−1
∑

j 6=iKN,h′N ,ij
.

Expression (1.11) reveals the same probabilistic structure as the well-studied nonpara-
metric bootstrap in iid setting. The bootstrapped object here is the empirical Hájek pro-
jection in the sense that 2

(
K̄N,h′N ,i· − K̄N,h′N ,··

)
in the expression is an empirical analog of

terms 2 (E (Kij|Ai)− E (Kij)) in the actual Hájek projection (1.9). This interpretation is
intuitively appealing in its own right. Moreover, this expression enables directly applying
probability results of the iid setting, which simplifies the asymptotic analysis.

In terms of computation, expression (1.11) implies that the time complexity and space
complexity of sampling this bootstrap statistic B times are O (N(B + 1) +N2) and O(N)
as shown in Bose and Chatterjee (2018). Those of bootstrap with general weights are
O (N2(B + 1)) and O (N2), both of which are significantly improved under additivity.

In what follows we will prove consistency of using the distribution of
(
f̂N,h′N − Ef̂N,h′N

)∆

to estimate the distribution of the original estimation error f̂N,hN − f . The key technical
tool behind this proof is what we call conditional Lindeberg-Feller central limit theorem.

Theorem 1.4.4 (Conditional Lindeberg-Feller CLT). Let FN be a sequence of
σ−algebra. If

1. XN,1, . . . , XN,kN are random variables conditionally independent given FN with
E [XN,m|FN ] = 0, m = 1, 2, . . . , kN

2.
∑kN

i=1 E
[
X2
N,i|FN

]
 p 1

3. For all ε > 0,
∑kN

i=1 E [|XN,i|21 (|XN,i| > ε) |FN ] p 0,
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then Sn =
∑kn

i=1Xn,i has Sn|Fn  N(0, 1) in the sense that for any t ∈ R, P (Sn ≤ t|Fn) p

Φ (t).

This theorem says if the triangular array Xn,1, . . . , Xn,kn satisfies the conditions of the
classic Lindeberg-Feller CLT conditional on some information set FN , then the sum Sn =∑kn

i=1Xn,i given FN weakly converge to the standard normal distribution in probability. The
proof of the theorem relies on a subsequence argument.

Proof. Denote QN(t) ≡ P (SN ≤ t|FN), VN =
∑kN

i=1 E
[
X2
N,kN
|FN

]
, and TN(ε) =∑kN

i=1 E [|XN,i|21 (|XN,i| > ε) |FN ]. We will prove that for any t ∈ R, QN(t)  p Φ (t) by
a subsequence argument. Since for any fixed t, QN(t) p Φ (t) if and only if for every sub-
sequence QN(m)(t) there is a further subsequence QN(mk)(t) that converges almost surely to
Φ (t), we can focus on proving the latter in order to prove the former.

For any fixed sequence of indices N(m), condition 2 and 3 imply that there is a subse-
quence N(mk) and E with P (E) = 1 s.t. VN(mk) → 1 and for all ε > 0, TN(mk)(ε) → 0 on
E. Lindeberg-Feller CLT for QN(mk) on E implies QN(mk)(t) → Φ (t) on E. In other word,

QN(mk)(t)
a.s.→ Φ (t). We’ve proved the latter. Hence, for any t ∈ R, QN(t) p Φ (t). �

To use the conditional Lindeberg-Feller CLT, the first thing we do is writing the statis-

tic σ−1
N

(
f̂N,h′N − Ef̂N,h′N

)∆

as a sum of conditionally independent random variables given

realization of the data.

σ−1
N

(
f̂N,h′N − Ef̂N,h′N

)∆

=
N∑
i=1

σ−1
N 2

(
K̄∗N,h′N ,i· − K̄N,h′N ,··

)
, (1.12)

where K̄∗i·s are independent uniform draws with replacement from K̄1·, K̄2·, . . . , K̄N ·. This
rewriting uses the special structure of multinomial weights. The RHS term has similar
stochastic nature as a generic statistic from nonparametric bootstrap in the iid setting.

Theorem 1.4.5 (Robust Bootstrap Consistency). If assumptions 1.2.1, 1.2.2, 1.2.3,
1.4.1, 1.4.2 hold and hN � N−2/5, then

σ−1
N

(
f̂N,h′N − Ef̂N,h′N

)∆ ∣∣∣FN  N (0, 1) , (1.13)

which together with the asymptotic normality of the original estimator implies bootstrap con-

sistency supt∈R

∣∣∣∣P ∗(σ−1
N

(
f̂N,h′N − Ef̂N,h′N

)∆

< t

)
− P

(
σ−1
N

(
f̂N,hN − f

)
< t
)∣∣∣∣ P→ 0.

Proof. We will verify the three conditions of theorem 1.4.4 (conditional Lindeberg-
Feller CLT) to prove the weak convergence of (1.12). The conditioning information
here is FN = σ (Ai, Vjk, 1 ≤ i ≤ N, 1 ≤ j < k ≤ N). The triangular array is XN,i =

σ−1
N 2

(
K̄∗N,h′N ,i·

− K̄N,h′N ,··

)
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The first condition, conditional independence and mean zero, holds by the definition of

K̄∗N,h′N ,i·
s and E

(
K̄∗N,h′N ,i·

− K̄N,h′N ,··|FN
)

=
∑N

i=1
1
N

(
K̄∗N,h′N ,i·

− K̄N,h′N ,··

)
= 0. The second

condition, convergence of conditional variance in probability, is established in lemma 1.4.3.
The third condition, conditional Lindeberg’s condition in probability, is verified by moment
calculations in lemma 1.6.4 in the appendix. Since all three conditions are satisfied, theorem
1.4.4 implies the weak convergence in probability (1.13). �

1.5 Efficient Influence Function and Optimal

Asymptotic Variance

Now that we have developed an in-depth understanding of a specific estimator, the kernel
density estimator, we will take one step further and find out the efficiency bound of this
density estimation problem across all possible estimators. The following theorem rigorously
derives the efficient influence function under nondegeneracy, Ω1 6= 0, and shows that the
kernel estimator is asymptotically efficient.

Theorem 1.5.1 (Efficient Influence Function and Optimal Asymptotic Variance). If as-
sumption 1.2.1 holds and the problem is nondegenerate, Ω1 6= 0, then the efficient influence
function for estimating fW (w0) is

ψ̃(a) = 2 · [fW |A(w0|A = a)− fW (w0)]

and the optimal asymptotic variance is 4 Var
(
fW |A(w0|A = a)

)
. If in addition assumptions

1.2.2, 1.2.2 holds and N−1 � hN � N−2/5, the kernel density estimator is asymptotically
efficient.

Proof. Imagine the situation where we observe (A1, . . . , AN) in addition to
(Wij, 1 ≤ i < j ≤ N). Since the set of estimators as a function of the infeasible hy-
pothetical data (A1, . . . , AN ,Wij, 1 ≤ i < j ≤ N) is larger than the set of estimators as
a function of the actual data (Wij, 1 ≤ i < j ≤ N), the asymptotic efficiency bound of
the former serves as a lower bound of that of the latter. We will work with the former
set of estimators to get the efficiency bound and then show that the bound obtained are
achievable by sequences of estimators using only the actual data (Wij, 1 ≤ i < j ≤ N),
which concludes the proof.

To start the discussion, let’s index the full nonparametric model by the pair
(
PA, PW |AA

)
.

PA denotes the distribution of A. PW |AA denotes the conditional distribution of Wij|Ai, Aj.
We denote the full model by

P =
{
P(PA,PW |AA) : Assumption 1.2.1 is satisfied

}
.

The first step of calculating the efficiency bound is reducing the problem to the familiar iid
setting by a sufficiency argument. Consider the following submodel with a fixed and known
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primitive PW |AA = PW |AA,0

P(PW |AA,0) =
{
P(PA,PW |AA) ∈ P : PW |AA = PW |AA,0

}
,

where the conditional distribution of W12 given A1, A2 is fixed and known. This submodel
is indexed by PA, which is the only unknown. Since for every (a1, . . . , aN) and PA, the
conditional distribution of (A1, . . . , AN ,Wij, 1 ≤ i < j ≤ N) under P(PA,PW |AA,0) given

(A1, . . . , AN) = (a1, . . . , aN) does not depend on PA, (A1, . . . , AN) is a sufficient statistic
for P(PW |AA,0) (or for (A1, . . . , AN ,Wij, 1 ≤ i < j ≤ N)). As a result, for any estimator
as a function of (A1, . . . , AN ,Wij, 1 ≤ i < j ≤ N), there exists a (random) estimator as a
function of (A1, . . . , AN) only with the same distribution. Hence, for the purpose of getting
distributional properties of estimators, working with estimators as a function of (A1, . . . , AN)
only is completely general in this submodel. Notice this means we are back in the iid setting
in the sense we are looking at the set of estimators which are functions of iid random variables
(A1, . . . , AN) and the only unknown is PA. We can use all the machinery developed for iid
data to get an efficiency bound among estimators which are functions of (A1, . . . , AN) for
estimating fW (w0) in this submodel.

In the submodel P
(
PW |AA,0

)
with the data (A1, . . . , AN), write the estimand fW (w0) as

a function of the unknown primitive PA

fW (w0) = ν (PA) =
d

dw

∣∣∣
w=w0

∫ ∫
PW |AA,0(w|a1, a2)dPA(a1)dPA(a2).

Take a directional derivative of the parameter ν with respect to h− PA

ν̇ (PA) (h− PA) =
d

dt

∣∣∣
t=0
ν (PA + t(h− PA))

=
d

dt

∣∣∣
t=0

d

dw

∣∣∣
w=w0

(∫ ∫
PW |AA,0(w|a1, a2)

d (PA + t(h− PA)) (a1)d (PA + t(h− FA)) (a2)

)
= 2

∫
d

dw

∣∣∣
w=w0

∫
PW |AA,0(w|a1, a2)dPA(a1)d (h− PA) (a2)

=

∫
2fW |A(w0|A = a2)d (h− PA) (a2)

= Ph−PAψ,

where ψ(a) ≡ 2fW |A(w0|A = a) is identified as the influence function. Since the model is
nonparametric in the sense PA can be any probability law on the sample space, the tangent
set at PA consists of all measurable functions g satisfying

∫
gdPA = 0. The efficient influence

function, which is the projection of influence function ψ(a) onto the tangent set, is

ψ̃(a) = ψ(a)− Eψ(A) = 2 · [fW |A(w0|A = a)− fW (w0)].
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An estimator is efficient if and only if it has the asymptotic linear expansion ν̂ (PA) = ν (PA)+
N−1/2

∑N
i=1 ψ̃PA(Ai) + oP

(
N−1/2

)
. Under assumption 1.2.2, 1.2.3, and N−1 � hN � N−2/5,

the kernel density estimator has exactly this asymptotic linear expansion. This implies the
kernel density estimator is asymptotically efficient in any submodel P(PW |AA,0) and it is
asymptotically efficient in the full nonparametric model P . �

1.6 Appendix: Proofs

This Appendix contains proofs of results in the main text of Chapter 1.

Proof of Theorem 1.3.1

Proof. (a)

E
[
f̂W (w0)

]
= EK12

= E
[
h−1
N K

(
w0 −W12

hN

)]
=

∫
h−1
N K

(
w0 − s
hN

)
fW (s)ds

=

∫
K (u) fW (w0 − hNu)du

=

∫
K (u) [fW (w0)− f ′W (w0 − hN ū)hu] du

=

∫
K (u)

[
fW (w0)− f ′W (w0)hNu+O

(
h2
Nu

2
)]
du

= fW (w0) +O
(
h2
N

)
.

The third equality uses change of variable u ≡ w0−s
hN

. The fourth equality follows mean
value theorem guaranteed by continuous differentiability of fW . The fifth equality
follows Lipschitz condition of f ′W . The last equality follows the fact that

∫
K(u)u du =

0 because K(u) = K(−u). Integrability of all terms are guaranteed by boundedness of
K and fW and the bounded support assumption on the kernel K.
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(b)

E
[
K2
ij

]
=

∫
h−2
N

[
K

(
w0 − s
hN

)]2

fW (s)ds

= h−1
N

∫
[K(u)]2 fW (w0 − hNu)du

= h−1
N

∫
[K(u)]2 [fW (w0)− f ′W (w0 − hN ū)hu)] du

= h−1
N

∫
[K(u)]2

[
fW (w0)− f ′W (w0)hNu+O(h2

Nu
2))
]
du

= h−1
N fW (w0)

∫
[K(u)]2 du− f ′W (w0)

∫
[K(u)]2 u du+O(hN)

= h−1
N fW (w0)

∫
K2(u)du+O(1).

Plug it into the definition of Ω2,N .

Ω2,N = hNE
[
K2

12

]
− hNE

[
f̂W (w0)

]2

= hN ·
[
h−1
N fW (w0)

∫
[K(u)]2 du+O(1)

]
− hN

[
fW (w0) +O

(
h2
N

)]2
= Ω2 +O(hN).

Ω1,N = E
[
(E [K12|A1]− EK12)2]

= E
{[
fW |A(w0|A1)− fW (w0) +O

(
h2
N

)]2}
=

{
Ω1 +O (h2

N) if Ω1 > 0
O (h4

N) if Ω1 = 0.
.

The second equality follows the observation that

E (K12|A1) = fW |A(w0|A1) +O
(
h2
N

)
(1.14)

and EK12 = fW (w0) + O (h2
N). In the special case Var

(
f 2
W |A(w0|A1)

)
= 0, we

have fW |A(w0|A1) − fW (w0)
a.s.
= 0 and E

{[
fW |A(w0|A1)− fW (w0) +O (h2

N)
]2}

=

E
{

[0 +O (h2
N)]

2
}

= O (h4
N). Plug these back into variance formula (1.5).

σ2
N ≡ Var

(
f̂W (w0)

)
=

{
N−1

(
1− 1

N−1

)
4Ω1 +

(
N
2

)−1
h−1
N Ω2 +O (N−2 +N−1h2

N) if Ω1 > 0(
N
2

)−1
h−1
N Ω2 +O (N−2 +N−1h4

N) if Ω1 = 0
,

(c) This part is implied by (a) and (b).
�
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Proof of Theorem 1.3.2

Proof. The variance estimator is

σ̂2
N =

(
N

2

)−2∑
i1<ji

∑
i2<j2

d(i1, j1, i2, j2)
(
Ki1j1 − f̂W (w0)

)(
Ki2j2 − f̂W (w0)

)
= N−1(N − 1)−1(N − 2)4 Ω̂1,N +N−1(N − 1)−1h−1

N 2 Ω̂2,N ,

where

Ω̂1,N ≡
(
N

3

)−1 ∑
i<j<k

(
KijKik +KijKjk +KikKjk

3

)
− f̂ 2

W (w0)

Ω̂2,N ≡
(
N

2

)−1∑
i<j

hNK
2
ij − hN f̂ 2

W (w0).

The following lemma is useful for proving theorem 1.3.2.

Lemma 1.6.1. Under assumption 1.2.1, 1.2.2, 1.2.3,

(a) EΩ̂1,N = Ω1,N − σ2
N , EΩ̂2,N = Ω2,N − hNσ2

N .

(b)

Var
(

Ω̂1,N

)
≤
{
O
(
N−3h−2

N +N−2h−1
N +N−1

)
if Ω1 > 0

O
(
N−3h−2

N +N−2h−1
N +N−1h2

N

)
if Ω1 = 0

(c) Var
(

Ω̂2,N

)
≤ O

(
N−2h−1

N +N−1
)
.

The proof of this lemma can be found at the end of this subsection. Armed with this
lemma, we are ready to prove theorem 1.3.2.

By the definition of σ2
N , σ̂

2
N in equation (1.3), (1.8),

σ̂2
N

σ2
N

=
N−1(N − 1)−1h−1

N 2 Ω̂2,N +N−1(N − 1)−1(N − 2)4 Ω̂1,N

N−1(N − 1)−1h−1
N 2 Ω2,N +N−1(N − 1)−1(N − 2)4 Ω1,N

=
Ω̂2,N + (N − 2)hN2 Ω̂1,N

Ω2,N + (N − 2)hN2 Ω1,N

.

By lemma (1.6.1) (a),

E
[
σ̂2
N

σ2
N

]
=

EΩ̂2,N + (N − 2)hN2 EΩ̂1,N

Ω2,N + (N − 2)hN2 Ω1,N

= 1− 1 + 2(N − 2)h2
N

Ω2,N + 2(N − 2)hN Ω1,N

σ2
N = 1 + o(1).
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This result doesn’t depend on assumption of Ω1. The variance is

Var

(
σ̂2
N

σ2
N

)
= Var

(
Ω̂2,N + (N − 2)h2 Ω̂1,N

Ω2,N + (N − 2)h2 Ω1,N

)
≤ [Ω2,N + (N − 2)h2 Ω1,N ]−2

[
2 Var

(
Ω̂2,N

)
+ 2 Var

(
(N − 2)h2 Ω̂1,N

)]
.

Based on bounds in lemma 1.6.1 and bound in the proof of theorem 1.3.1(b), we get
Case 1: Ω1 > 0

Var

(
σ̂2
N

σ2
N

)
= O

(
(1 +NhN)−2

[
N−2h−1

N +N−1 +N2h2
N(N−3h−2

N +N−2h−1
N +N−1)

])
= O

(
(1 +NhN)−2

[
N−2h−1

N +N−1 + hN +Nh2
N

])
= O

(
N−2h−1

N +N−1 + hN +N−1
)

= o(1).

Case 2: Ω1 = 0

Var

(
σ̂2
N

σ2
N

)
= O

(
1−2

[
N−2h−1

N +N−1 +N2h2
N(N−3h−2

N +N−2h−1
N +N−1h2

N)
])

= O
(
N−2h−1

N +N−1 +N−1 + hN +Nh4
N

)
= o(1).

The second step and the last step uses the fact that hN � N−1/4

To summarize, we’ve shown

E
[
σ̂2
N

σ2
N

]
= 1 + o(1), Var

(
σ̂2
N

σ2
N

)
= o(1).

Hence,
σ̂2
N

σ2
N

= 1 + op(1). �

Proof of Lemma 1.6.2

The following technical lemma and the calculation in its proof is useful for proving lemma
1.6.1. We will prove it first.

Lemma 1.6.2 (Moments). Under assumption 1.2.1, 1.2.2, 1.2.3,

(a) For any c ∈ N, E (|K12|c) = O
(
h
−(c−1)+
N

)
.
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(b) For any k ∈ {1, 2, . . . , N}, cij ∈ N, E

[∏∏
i<j

|Kij|cij
]
≤ O

h−
[(∑

i 6=k
cik

)
−1

]
+

N

 ·
E

∏∏
i<j
i,j 6=k

|Kij|cij

.

(c) Let m ≡ | unique(i1, j1, i2, j2, i3, j3, i4, j4)| be the number of distinct nodes of the four
dyads (i1, j1), (i2, j2), (i3, j3), (i4, j4). Then

Cov (Ki1j1Ki2j2 , Ki3j3Ki4j4) =

{
0 if m = 8

O
(
h
−b4−m/2c
N

)
if 2 ≤ m ≤ 7

Moreover, if Ω1 = 0, then Cov (Ki1j1Ki2j2 , Ki3j3Ki4j4) = O(h2
N) in case m = 1.

Proof. (a) If c = 0, then (c − 1)+ = 0, h0
N = 1 and E (|K12|0) = 1 = O (1) is trivial. If

c ≥ 1, then

E (|K12|c) = h−cN

∫ ∣∣∣∣K (w0 − s
hN

)∣∣∣∣c fW (s)ds

= h
−(c−1)
N

∫
|K (u)|c fW (w0 − hNu)ds

≤ h
−(c−1)
N

(
fW (w0)

∫
|K (u)|c ds+O(hN)

)
= O

(
h
−(c−1)
N

)
.

(b) By the iterated expectation formula,

E

[∏∏
i<j

|Kij|cij
]

= E

{
E

[∏∏
i<j

|Kij|cij
∣∣∣∣A1, . . . , Ak−1, Ak+1, . . . , AN

]}

= E

{
E

∏∏
i<j
i,j 6=k

|Kij|cij
∣∣∣∣A1, . . . , Ak−1, Ak+1, . . . , AN


· E

[∏
i 6=k

|Kik|cik
∣∣∣∣A1, . . . , Ak−1, Ak+1, . . . , AN

]}
(1.15)

By Jensen’s inequality, ∏
i 6=k

|Kik|cik ≤
∑
i 6=k

cik∑
l 6=k clk

∣∣∣K∑
l 6=k clk

ik

∣∣∣ .
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The second term in (1.15) is hence upper bounded by

E

[∏
i 6=k

|Kik|cik
∣∣∣∣A1, . . . , Ak−1, Ak+1, . . . , AN

]

≤ E

[∑
i 6=k

cik∑
l 6=k clk

∣∣∣K∑
l 6=k clk

ik

∣∣∣ ∣∣∣∣A1, . . . , Ak−1, Ak+1, . . . , AN

]

=
∑
i 6=k

cik∑
l 6=k clk

E
[∣∣∣K∑

l 6=k clk
ik

∣∣∣ ∣∣∣∣Ai]

=
∑
i 6=k

cik∑
l 6=k clk

O

h−
[(∑

l 6=k
clk

)
−1

]
+


= O

h−
[(∑

i6=k
cik

)
−1

]
+

N

 .

Plug this back in (1.15). We get

E

[∏∏
i<j

|Kij|cij
]

= E

{
E

[∏∏
i<j

|Kij|cij
∣∣∣∣A1, . . . , Ak−1, Ak+1, . . . , AN

]}

≤ O

h−
[(∑

i 6=k
cik

)
−1

]
+

N

 · E{E
∏∏

i<j
i,j 6=k

|Kij|cij
∣∣∣∣A1, . . . , Ak−1, Ak+1, . . . , AN


}

= O

h−
[(∑

i 6=k
cik

)
−1

]
+

N

 · E
∏∏

i<j
i,j 6=k

|Kij|cij

 .
(c) If m = 8, Ki1j1Ki2j2 , Ki3j3Ki4j4 are independent from each other and their covariance

is zero.
If m ≤ 7, we will use the bound from part (b) to iteratively remove nodes and bound
the moments E |Ki1j1Ki2j2Ki3j3Ki4j4|. The exact bound will depend on the graph

G = (V = unique(i1, j1, i2, j2, i3, j3, i4, j4), E = {(i1, j1), (i2, j2), (i3, j3), (i4, j4)}) .

If m = 2, there is only a single possible graph

◦ ◦
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If m = 3, all possible graphs are

◦

◦◦

◦

◦◦

◦

◦◦

If m = 4, then all possible graphs are

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

It’s also feasible to list the possible graph isomorphisms for m = 5, 6, 7.

We will give an example of how to use the bound in part (a),(b) for a typical graph
like the red one above when m = 4. We start from the first graph below on the
left. To apply bound of part (b), we typically pick the node k as the node with the
smallest number of dyads in the graph. Here in step one, we pick node k = 3, which
is highlighted in green. Since node 3 is in a single dyad, its contribution is of order

O
(
h

(1−1)+
N

)
= O(1). After applying the bound, we can then delete node 3 and reduce

the graph to the second graph. In the second step, we apply the bound in part (b)
with node k = 4. Since node 4 is in two dyad in this graph, its contribution is of order

O
(
h

(2−1)+
N

)
= O(h). We can then delete node 4 and reduce the graph to the third

graph. In the third step, we apply the bound in part (b). Since there is a single dyad

left in the graph, its contribution is of order O
(
h

(1−1)+
N

)
= O(1). The total magnitude

of E |Ki1j1Ki2j2Ki3j3Ki4j4| is therefore bounded by the sum of contributions in all three
steps, which is O(1) ·O(hN) ·O(1) = O(hN).

◦

◦

◦

◦

2

3

1

4

◦◦

◦

21

4

◦◦ 21

Apply this bound iteratively gives us the result of part (c).



CHAPTER 1. ESTIMATING THE DENSITY OF A DYADIC RANDOM VARIABLE 26

In the special case where Ω1 = 0, we have fW (w0|A1)
a.s.
= fW (w0) and hence E (Kij|Ai) =

fW (w0|A1) +O (h2
N)

a.s.
= fW (w0) +O (h2

N). Calculation based on this fact shows

E (K12K13K14K15) = f 4
W (w0) +O(h2

N)

E (K12K13K14K45) = f 4
W (w0) +O(h2

N)

E (K12K23K14K45) = f 4
W (w0) +O(h2

N)

(EK12K13)2 = f 4
W (w0) +O(h2

N),

which implies if Ω1 = 0, then Cov (Ki1j1Ki2j2 , Ki3j3Ki4j4) = O(h2) in case m = 1.
�

Proof of Lemma 1.6.1

Proof. (a)

EΩ̂1,N = E [K12K13]− E
[
f̂ 2
W (w0)

]
= Ω1,N − σ2

N

EΩ̂2,N = hE
[
K2

12

]
− hE

[
f̂ 2
W (w0)

]
= Ω2,N − hNσ2

N .

(b)

Var
(

Ω̂1,N

)
= Var

((
N

3

)−1 ∑
i<j<k

(
KijKik +KijKjk +KikKjk

3

)
− f̂ 2

W (w0)

)

≤ 2 Var

((
N

3

)−1 ∑
i<j<k

(
KijKik +KijKjk +KikKjk

3

))
+ 2 Var

(
f̂ 2
W (w0)

)
.

(1.16)

Calculation of the first term is similar to the previous variance calculation.

Var

((
N

3

)−1 ∑
i<j<k

(
KijKik +KijKjk +KikKjk

3

))
= O

(
N−3

)
· γ3,N +O

(
N−2

)
· γ2,N +O

(
N−1

)
· γ1,N (1.17)

where

γ3,N ≡ Var (s123)

γ2,N ≡ Cov (s123, s124)

γ1,N ≡ Cov (s123, s145)

sijk ≡
KijKik +KijKjk +KikKjk

3
.
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We will get general bounds of γ3,N , γ2,N , γ1,N using lemma 1.6.2.

γ3,N = Var (s123) = Var

(
K12K13 +K12K23 +K13K23

3

)
≤ Var (K12K13) ≤ E

[
K2

12K
2
13

]
≤ O

(
h−2
N

)
|γ2,N | = |Cov (s123, s124) |

= 9−1 |Cov (K12K13 +K12K23 +K13K23, K12K14 +K12K24 +K14K24)|

= 9−1

{
E |K12K13K12K14|+ E |K12K13K12K24|+ E |K12K13K14K24|

+ E |K12K23K12K14|+ E |K12K23K12K24|+ E |K12K23K14K24|

+ E |K13K23K12K14|+ E |K13K23K12K24|+ E |K13K23K14K24|
}

+O(1)

= O
(
h−1
N

)
.

The last equality follows the same argument as the proof in lemma 1.6.2(c). The four
different relevant graph isomorphisms in the nine terms are

4

3

1

2

◦

◦

◦

◦

4

3

1

2

◦

◦

◦

◦

4

3

1

2

◦

◦

◦

◦

4

3

1

2

◦

◦

◦

◦

Lastly, we bound |γ1,N | by

|γ1,N |
= |Cov (s123, s145) |
= 9−1 |Cov (K12K13 +K12K23 +K13K23, K14K15 +K14K45 +K15K45)|

= 9−1

∣∣∣∣Cov (K12K13, K14K15) + Cov (K12K13, K14K45) + Cov (K12K13, K15K45)

+ Cov (K12K23, K14K15) + Cov (K12K23, K14K45) + Cov (K12K23, K15K45)

+ Cov (K13K23, K14K15) + Cov (K13K23, K14K45) + Cov (K13K23, K15K45)

∣∣∣∣
= 9−1

∣∣∣∣Cov (K12K13, K14K15) + 4 Cov (K12K13, K14K45) + 4 Cov (K12K23, K14K45)

∣∣∣∣
= 9−1

∣∣∣∣E (K12K13K14K15) + 4E (K12K13K14K45) + 4E (K12K23K14K45)− 9 (EK12K13)2

∣∣∣∣
≤ O (1) .

The last inequality follows from applying lemma (1.6.2)(a)(b). In the special case when
Ω1 = 0, lemma (1.6.2)(c) implies γ1,N = O(h2

N).
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Use these bounds in equation (1.17). We get in general

Var

((
N

3

)−1 ∑
i<j<k

(
KijKik +KijKjk +KikKjk

3

))
=O

(
N−3

)
γ3,N +O

(
N−2

)
γ2,N +O

(
N−1

)
γ1,N

≤O
(
N−3h−2

N +N−2h−1
N +N−1

)
.

In the special case in which Ω1 = 0,

Var

((
N

3

)−1 ∑
i<j<k

(
KijKik +KijKjk +KikKjk

3

))
≤ O

(
N−3h−2

N +N−2h−1
N +N−1h2

N

)
.

To calculate the second term in (1.16), notice

Var
(
f̂ 2
W (w0)

)
= Var

((
N

2

)−2∑
i1<ji

∑
i2<j2

Ki1j1Ki2j2

)

=

(
N

2

)−4∑
i1<ji

∑
i2<j2

∑
i3<j3

∑
i4<j4

Cov (Ki1j1Ki2j2 , Ki3j3Ki4j4)

=

(
N

2

)−4 7∑
m=2

O (Nm)O
(
h
−b4−m/2c
N

)
= O

(
N−8

)
·O
(
N7 · 1 +N6 · h−1

N +N5h−1
N +N4h−2

N +N3h−2
N +N2h−3

N

)
= O

(
N−2h−1

N +N−1
)
.

The third equality follow the fact that there are O
((
N
m

))
= O (Nm) number of terms

with | unique(i1, j1, i2, j2, i3, j3, i4, j4)| = m number of distinct associated nodes and the
bound from lemma (1.6.2). In the special case Ω1 = 0, we have a tighter bound for

m = 1 and Var
(
f̂ 2
W (w0)

)
= O(N−2h−1

N +N−1h2
N)

Going back to (1.16), we have proved

Var
(

Ω̂1,N

)
≤
{
O
(
N−3h−2

N +N−2h−1
N +N−1

)
if Ω1 > 0

O
(
N−3h−2

N +N−2h−1
N +N−1h2

N

)
if Ω1 = 0

(c)

Var
(

Ω̂2,N

)
= Var

((
N

2

)−1∑
i<j

hNK
2
ij − hN f̂ 2

W (w0)

)

≤ 2 Var

((
N

2

)−1∑
i<j

hNK
2
ij

)
+ 2 Var

(
hN f̂

2
W (w0)

)
. (1.18)
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Calculation of the first term in (1.18) is similar to the variance calculation done previ-
ously.

Var

((
N

2

)−1∑
i<j

hNK
2
ij

)
= O

(
N−2

)
η2,N +O

(
N−1

)
η1,N ,

where

η2,N ≡ Var
(
hNK

2
12

)
= h2

NE
[
K4

12

]
− h2

NE
[
K2

12

]2
= h2

N ·O
(
h−3
N

)
− h2

NO
(
h−1
N

)2
= O

(
h−1
N

)
η1,N ≡ Cov

(
hNK

2
12, hNK

2
13

)
= h2

NE
[
K2

12K
2
13

]
− h2

NE
[
K2

12

]2
= h2

NE
[
E
(
K2

12|A1

)
E
(
K2

13|A1

)]
− h2

NE
[
K2

12

]2
= h2

N ·O
(
h−1
N

)2 − h2
N ·O

(
h−1
N

)2

= O(1).

Plug these back into the variance expression.

Var

((
N

2

)−1∑
i<j

hNK
2
ij

)
≤ O

(
N−2h−1

N +N−1
)
.

The second term in (1.18) has been bounded already in part (b). Combine these

together. We get Var
(

Ω̂2,N

)
= O

(
N−2h−1

N +N−1
)
.

�

Proof of Theorem 1.3.3

Proof. We will apply Brown’s martingale central limit theorem, as rephrased in in [Hall and
Heyde] Corollary 3.1, p. 58. This requires us check two conditions:

1. Conditional Lindeberg condition

for any ε > 0,
N∑
i=1

E
[
Y 2
N,i

σ2
N

1

(
YN,i
σN

> ε

) ∣∣∣∣Fi−1

]
P→ 0. (1.19)

2. Stability condition

N∑
i=1

E
[
Y 2
N,i

σ2
N

∣∣∣∣Fi−1

]
P→ 1. (1.20)

In order to verify these, we will investigate their sufficient conditions which are easier to
work with, namely
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1’. Lyapunov condition

σ−4
N

N∑
i=1

E
[
Y 4
N,i

] P→ 0, (1.21)

2’. Stronger stability condition

σ−2
N

N∑
i=1

Y 2
N,i

P→ 1. (1.22)

(1.21) implies (1.19). (1.21) (1.22) together implies (1.20). The following two facts are
particularly useful for verifying (1.21) and (1.22).

|Di| = |E (Kij|Ai)− EKij| =
∣∣fW |A(w0|Ai)− fW (w0) +O

(
h2
N

)∣∣ =

{
O(1) if Ω1 > 0
O(h2

N) if Ω1 = 0

(1.23)

E
(
|Kij|

∣∣∣Ai) = O(1).

First, we verify Lyapunov condition (1.21). Since

(a+ b)4 ≤ 8a4 + 8b4,

to show

σ−4
N

N∑
i=1

E
[
Y 4
N,i

]
= σ−4

N

N∑
i=1

E

(N−12Di +

(
N

2

)−1 i−1∑
j=1

Eji

)4
→ 0,

we only need to show

σ−4
N

N∑
i=1

E
[(
N−12Di

)4
]
→ 0, and σ−4

N

N∑
i=1

E

((N
2

)−1 i−1∑
j=1

Eji

)4
→ 0.

The first term is

σ−4
N

N∑
i=1

E
[
N−4D4

i

]
=

 O
((
N−2h−1

N +N−1
)−2

N−3
)

= O (N−1) if Ω1 > 0

O
((
N−2h−1

N

)−2
N−3h8

N

)
= O (Nh10

N ) if Ω1 = 0
,

which converges to zero as long as hN � N−1/10. To simplify the second term

E

( i−1∑
j=1

Eji

)4
 = E

[
i−1∑
j=1

E4
ji + 2

i−1∑
j1=2

j1−1∑
j2=1

E2
j1i
E2
j2i

]
,
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where we use the fact that E
[
E3
j1i
Ej2i

]
= E

[
Ej1iEj2iE

2
j3i

]
= E [Ej1iEj2iEj3iEj4i] = 0,∀j1 6=

j2 6= j3 6= j4, 1 ≤ j1, j2, j3, j4 ≤ i− 1. Hence

N∑
i=1

E

( i−1∑
j=1

Eji

)4
 =

N∑
i=1

i−1∑
j=1

E
[
E4
ji

]
+ 2

N∑
i=1

i−1∑
j1=2

j1−1∑
j2=1

E
[
E2
j1i
E2
j2i

]
= O

(
N2h−3

N +N3h−2
N

)
.

Back to the original term, in all cases

σ−4
N

N∑
i=1

E

((N
2

)−1 i−1∑
j=1

Eji

)4
 = O

((
N−2h−1

N

)−2
N−8

(
N2h−3

N +N3h−2
N

))
= O

(
N−2h−1

N +N−1
)

= o(1).

By now, we’ve verified Lyapunov condition (1.21). Second, let’s verify the stronger stability
condition (1.22).

N∑
i=1

Y 2
N,i =

N∑
i=1

(
N−12Di +

(
N

2

)−1 i−1∑
j=1

Eji

)2

= N−24
N∑
i=1

D2
i +N−1

(
N

2

)−1

4
N∑
i=2

i−1∑
j=1

EjiDi +

(
N

2

)−2 N∑
i=2

i−1∑
j=1

E2
ji

+

(
N

2

)−2

2
N∑
i=3

i−1∑
j1=2

j1−1∑
j2=1

Ej1iEj2i. (1.24)

We will bound the variance of these four terms. To bound the variance of the first term in
(1.24), note that

Var

(
N∑
i=1

D2
i

)
= N Var

(
D2
i

)
=

{
O(N) if Ω1 > 0
O (Nh4

N) if Ω1 = 0
.

To bound the variance of the second term in (1.24), note that

Var

(
N∑
i=2

i−1∑
j=1

EjiDi

)
=
∑
j<i

∑
l<k

Cov (EjiDi, ElkDk)

=
∑
j<i

Var (EjiDi) + 2
∑
j<i<k

Cov (EjiDi, EjkDk)

=

{
O
(
N2h−1

N +N3
)

if Ω1 > 0
O (N2h3

N +N3h4
N) if Ω1 = 0

.
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The second equality follows from the fact that Cov (EjiDi, ElkDk) = 0 when j 6= l. The
third inequality follows from repeatedly applying the bound (1.23). To bound the variance
of the third term in (1.24), note that

Var

(
N∑
i=2

i−1∑
j=1

E2
ji

)
=
∑
j<i

∑
l<k

Cov
(
E2
ji, E

2
lk

)
=
∑
j<i

Var
(
E2
ji

)
+ 2

∑
j<i<k

[
Cov

(
E2
ji, E

2
jk

)
+ Cov

(
E2
ji, E

2
ik

)
+ Cov

(
E2
jk, E

2
ik

)]
= O

(
N2h−3

N +N3h−2
N

)
.

The last equality follows

Var
(
E2
ji

)
≤ E

(
E4
ji

)
= O

(
E
(
K4
ji

))
= O

(
h−3
N

)
Cov

(
E2
ji, E

2
jk

)
≤ E

(
E2
jiE

2
jk

)
= E

(
E
(
E2
ji|Aj

)2
)

= O
(
E
(
E
(
K2
ji|Aj

)2
))

= O
(
h−2
N

)
.

To bound the variance of the fourth term in (1.24), note that

Var

(
N∑
i=3

i−1∑
j1=2

j1−1∑
j2=1

Ej1iEj2i

)
=

∑
j2<j1<i

Var (Ej1iEj2i) + 2
∑

j2<j1<i2<i1

Cov (Ej1i1Ej2i1 , Ej1i2Ej2i2)

= O
(
N3h−2

N +N4h−1
N

)
.

The first equality is due to Cov (Ej1i1Ej2i1 , Ek1i2Ek2i2) 6= 0 only if (j1 = k1 and j2 = k2) or
(j1 = k2 and j2 = k1). The second equality follows

Var (Ej1iEj2i) ≤ E
(
E2
j1i
E2
j2i

)
= E

(
E
(
E2
j1i
|Ai
)2
)

= O
(
E
(
E
(
K2
j1i
|Ai
)2
))

= O
(
h−2
N

)
Cov (Ej1i1Ej2i1 , Ej1i2Ej2i2) = O (E (Kj1i1Kj2i1Kj1i2Kj2i2)) = O

(
h−1
N

)
.

Now go back to equation (1.24).

Var

(
N∑
i=1

Y 2
N,i

)
≤ 4 Var

(
N−24

N∑
i=1

D2
i

)
+ 4 Var

(
N−1

(
N

2

)−1

4
N∑
i=2

i−1∑
j=1

EjiDi

)
+ 4 Var

((
N

2

)−2 N∑
i=2

i−1∑
j=1

E2
ji

)

+ 4 Var

((
N

2

)−2

2
N∑
i=3

i−1∑
j1=2

j1−1∑
j2=1

Ej1iEj2i

)

≤
{
O
(
N−4 ·N +N−6 ·

(
N2h−1

N +N3
)

+N−8 ·
(
N2h−3

N +N3h−2
N

)
+N−8 ·

(
N3h−2

N +N4h−1
N

))
if Ω1 > 0

O
(
N−4 ·Nh4 +N−6 · (N2h3

N +N3h4
N) +N−8 ·

(
N2h−3

N +N3h−2
N

)
+N−8 ·

(
N3h−2

N +N4h−1
N

))
if Ω1 = 0

=

{
O
(
N−3 +N−4h−1

N +N−5h−2
N +N−6h−3

N

)
if Ω1 > 0

O
(
N−3h4

N +N−4h3
N +N−4h−1

N +N−5h−2
N +N−6h−3

N

)
if Ω1 = 0

This suggestsd

σ−4
N Var

(
N∑
i=1

Y 2
N,i

)
=

 O
((
N−2h−1

N +N−1
)−2 (

N−3 +N−4h−1
N +N−5h−2

N +N−6h−3
N

))
if Ω1 > 0

O
((
N−2h−1

N

)−2 (
N−3h4

N +N−4h3
N +N−4h−1

N +N−5h−2
N +N−6h−3

N

))
if Ω1 = 0

=

{
O
(
N−1 +N−2h−1

N

)
if Ω1 > 0

O
(
Nh6

N + hN +N−1 +N−2h−1
N

)
if Ω1 = 0
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If N−2 � h � N−1/6, then this converge to zero and the stability condition holds. Now
that we’ve verified both conditions, the CLT implies

σ−1
N

(
f̂W (w0)− Ef̂W (w0)

)
 N(0, 1).

Under the under-smoothing bandwidth condition hN � N−2/5, the bias is of smaller order
Bias2(f̂W (w0)) = op(f̂W (w0)− Ef̂W (w0)). Together these implies

σ−1
N

(
f̂W (w0)− fW (w0)

)
 N(0, 1).

�

Proof of Lemma 1.4.1

Proof.

Var∗
((

f̂N,hN − Ef̂N,hN
)∆
)

=

(
N

2

)−2 ∑
i1<j1

∑
i2<j2

Cov (∆N,i1j1 ,∆N,i2j2)
(
KN,hN ,i1j1 − K̄N,hN ,··

) (
KN,hN ,i2j2 − K̄N,hN ,··

)
=

(
N

2

)−2
{
υN,2

(∑
i<j

K2
N,hN ,ij

−
(
N

2

)
K̄2
N,hN ,··

)
+ 2υN,1

[ ∑
i<j<k

(
KN,hN ,ijKN,hN ,ik

+KN,hN ,ijKN,hN ,jk +KN,hN ,ikKN,hN ,jk

)
− 1

2
N(N − 1)(N − 2)K̄2

N,hN ,··

]
+ 2υN,0

[ ∑
i<j<k<l

(
KN,hN ,ijKN,hN ,kl +KN,hN ,ikKN,hN ,jl

+KN,hN ,ilKN,hN ,jk

)
− 1

8
N(N − 1)(N − 2)(N − 3)K̄2

N,hN ,··

]}
= aNS2 + bNS3 − cNS4

where

S2 =
1(
N
2

)∑
i<j

K2
ij

S3 =
1(
N
3

) ∑
i<j<k

1

3
(KijKik +KijKjk +KikKjk)

S4 =
1(
N
4

) ∑
i<j<k<l

1

3
(KijKkl +KikKjl +KilKjk)



CHAPTER 1. ESTIMATING THE DENSITY OF A DYADIC RANDOM VARIABLE 34

and

aN = υN,2

(
N

2

)−1

−

(
υN,2

(
N

2

)−1

+ υN,1
4(N − 2)

N(N − 1)
+ υN,0

(N − 2)(N − 3)

N(N − 1)

)
2

N(N − 1)

= υN,2

(
N

2

)−1

(1 + o(1))

bN = υN,1
4(N − 2)

N(N − 1)
−

(
υN,2

(
N

2

)−1

+ υN,1
4(N − 2)

N(N − 1)
+ υN,0

(N − 2)(N − 3)

N(N − 1)

)
4(N − 2)

N(N − 1)

= υN,1
4(N − 2)

N(N − 1)
(1 + o(1))

cN =

[
υN,0 −

(
υN,2

(
N

2

)−1

+ υN,1
4(N − 2)

N(N − 1)
+ υN,0

(N − 2)(N − 3)

N(N − 1)

)]
(N − 2)(N − 3)

N(N − 1)

=

(
υN,2

(
N

2

)−1

+ υN,1
4(N − 2)

N(N − 1)

)
(1 + o(1)).

Var∗
((

f̂N,hN − Ef̂N,hN
)∆
)

= aNS2 + bNS3 − cNS4

=

[
υN,2

(
N

2

)−1

(S2 − S4) + υN,1
4(N − 2)

N(N − 1)
(S1 − S4)

]
(1 + op(1))

(1.25)

Now use the following lemma and the assumption 1.4.1. This lemma is a result of lemma
1.6.2 and 1.6.1.

Lemma 1.6.3. If assumptions 1.2.1, 1.2.2, 1.2.3 hold, and hN � N−1/4, then

(a) hNS2  p Ω2

(b) S3  p E [f 2(w|Ai)] = Ω1 + f 2
W (w)

(c) S4  p f
2
W (w).

Equation (1.25) becomes

Var∗
((

f̂N,hN − Ef̂N,hN
)∆
)

=

[
N−1

(
1− 1

N − 1

)
4Ω1 · υ1 +

(
N

2

)−1

h−1
N Ω2 · υ2

]
(1 + op(1)).

�
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Proof of Conditional Lindeberg’s Condition In Probability

Lemma 1.6.4 (Conditional Lindeberg’s Condition In Probability). If assumptions 1.2.1,
1.2.2, 1.2.3, 1.4.1 hold and hN � N−1/4, for all ε > 0,

TN(ε) =
N∑
i=1

E

[∣∣∣∣ 1

NσN

(
K̄∗i· − K̄··

)∣∣∣∣2 1(∣∣∣∣ 1

NσN

(
K̄∗i· − K̄··

)∣∣∣∣ > ε

) ∣∣∣FN] p 0,

where FN ≡ σ (Wij, 1 ≤ i < j ≤ N).

Proof.

TN(ε) =
N∑
i=1

E

[∣∣∣∣ 1

NσN

(
K̄∗i· − K̄··

)∣∣∣∣2 1(∣∣∣∣ 1

NσN

(
K̄∗i· − K̄··

)∣∣∣∣ > ε

) ∣∣∣FN]

=
N∑
i=1

∣∣∣∣ 1

NσN

(
K̄i· − K̄··

)∣∣∣∣2 1(∣∣∣∣ 1

NσN

(
K̄i· − K̄··

)∣∣∣∣ > ε

)

ETN(ε) = N · E

[∣∣∣∣ 1

NσN

(
K̄i· − K̄··

)∣∣∣∣2 1(∣∣∣∣ 1

NσN

(
K̄i· − K̄··

)∣∣∣∣ > ε

)]

≤ N · 1

ε2
E

[∣∣∣∣ 1

NσN

(
K̄i· − K̄··

)∣∣∣∣4
]

=
8

ε2N3σ4
N

E
[∣∣K̄i· − fW (w0)

∣∣4 +
∣∣K̄·· − fW (w0)

∣∣4]
≤ 16

ε2N3σ4
N

E
[(
K̄i· − fW (w0)

)4
]

=


O

(
1

N3(N−1+N−2h−1
N )

2

)
·O
(
1 +N−1h−1

N +N−2h−2
N +N−3h−3

N

)
if Ω1 > 0

O

(
1

N3(N−2h−1
N )

2

)
·O
(
h8 +N−1h3

N +N−2h−2
N +N−3h−3

N

)
if Ω1 = 0

=

{
O
(
N−1 +N−2h−1

N

)
if Ω1 > 0

O
(
Nh10

N + h5
N +N−1 +N−2h−1

N

)
if Ω1 = 0

= o(1).

The second line is due to 1
(∣∣∣ 1

NσN

(
K̄i· − K̄··

)∣∣∣ > ε
)
≤ 1

ε2

∣∣∣ 1
NσN

(
K̄i· − K̄··

)∣∣∣2. The third line is

due to |x+y|4 ≤ 8(|x|4+|y|4). The fourth line is due to K̄··−fW (w) = N−1
∑

i(K̄i·−fW (w0))
and E(K̄·· − fW (w0))4 ≤ E[N−1

∑
i(K̄i· − fW (w0))4] = E[(K̄i· − fW (w0))4]. The fifth line is
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due to 1.3.1(b) and the fact that

E
[(
K̄i· − fW (w0)

)4
]

= O

(
E [(K12 − fW (w0)) (K13 − fW (w0)) (K14 − fW (w0)) (K15 − fW (w0))]

+N−1E
[
(K12 − fW (w0))2 (K13 − fW (w0)) (K14 − fW (w0))

]
+N−2E

[
(K12 − fW (w0))3 (K13 − fW (w0)) + (K12 − fW (w0))2 (K12 − fW (w0))2]

+N−3E
[
(K12 − fW (w0))4])

=

{
O(1 +N−1h−1

N +N−2h−2
N +N−3h−3

N ) if Ω1 > 0
O(h8

N +N−1h3
N +N−2h−2

N +N−3h−3
N ) if Ω1 = 0

,

the second line of which is based on implications of lemma 1.6.2 and equation (1.23)

E [(K12 − fW (w0)) (K13 − fW (w0)) (K14 − fW (w0)) (K15 − fW (w0))] =

{
O(1) if Ω1 > 0
O(h8

N) if Ω1 = 0

E
[
(K12 − fW (w0))2 (K13 − fW (w0)) (K14 − fW (w0))

]
=

{
O(h−1

N ) if Ω1 > 0
O(h3

N) if Ω1 = 0

E
[
(K12 − fW (w0))3 (K13 − fW (w0)) + (K12 − fW (w0))2 (K12 − fW (w0))2] = O(h−2

N )

E
[
(K12 − fW (w0))4] = O(h−3

N ).

TN(ε) > 0 and ETN(ε)→ 0 as N →∞ implies TN(ε)
P→ 0. �
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Chapter 2

Nonparametric Dyadic Regression 1

2.1 Introduction and Summary

Let i = 1, . . . , N index a simple random sample of units drawn from some large population.
For each unit we observe the vector of regressors Xi and, for each of the N (N − 1) ordered
pairs of units, or directed dyads, we observe the “dyadic” outcome Yij (e.g., total exports
from country i to country j). The outcomes Yij and Ykl are independent if their indices are
disjoint, but dependent otherwise (e.g., exports from Japan to Korea may covary with those
from Japan to Vietnam).

Let Wij =
(
X ′i, X

′
j

)′
; using the sampled data we seek to construct a nonparametric

estimate of the mean regression function

g (Wij)
def
≡ E [Yij|Xi, Xj] . (2.1)

We present two sets of results. First, we calculate lower bounds on the minimax risk for
estimating the regression function at (i) a point and (ii) under the infinity norm. Second, we
calculate (i) pointwise and (ii) uniform convergence rates for the dyadic analog of the familiar
Nadaraya-Watson (NW) kernel regression estimator. We show that the NW kernel regression
estimator achieves the optimal rates suggested by our risk bounds when an appropriate
bandwidth sequence is chosen.

Analogous results are widely available in the i.i.d. setting. For nonparametric regression
risk bounds see, for example, Stone (1980, 1982) and Ibragimov and Has’ Minskii (1982,
1984). Tsybakov (2008) provides a masterful synthesis of these results, from which we draw
in formulating our own proofs.

Uniform convergence of kernel averages with i.i.d. data, as well as stationary strong mix-
ing data, have been studied by, for example, Newey (1994) and Hansen (2008) respectively.
The latter paper includes additional references to the extensive literature in this area. Our
uniform convergence proofs build upon those of Hansen (2008). Nonparametric density esti-

1This chapter is joint work with Bryan Graham and James Powell.
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mation with dyadic data was first considered by Graham et al. (2019); Chiang et al. (2019)
present uniform convergence results for dyadic density estimators.2

Our results provide insight in the structure of dyadic nonparametric estimation problems.

Our minimax risk bounds suggest that, N , the number of units, not n
def
≡ N × (N − 1), the

number of dyadic outcomes, is the relevant “sample size” for dyadic estimation problems.
This is consistent with the long standing intuition among empirical researchers that dyadic
dependence makes inference less precise (see Aronow et al. (2017) and the references cited
therein), as well as with a small, but growing, number of more formal rates-of-convergence
results (cf., Graham, 2020a).

More surprisingly, we find that the relevant dimension of our estimation problem is just
dX = dim(Xi), not dW = 2dX . We provide two intuitions for this fact. The first, described
below, stems from the thought experiment underlying our minimax risk bound calculations.
The second, arises from the fact that the Hájek projection of the NW estimator has a
“partial-mean-like” structure. As is well known, averaging over the marginal distribution of
some regressors, while holding the remaining ones fixed, improves rates-of-convergence (e.g.,
Newey, 1994; Linton and Nielsen, 1995).

Graham (2020a) surveys empirical studies in economics utilizing dyadic data. Interest
in, as well as the availability of, such data are growing in economics, other academic fields,
and in enterprise settings. This paper provides an initial set of results for nonparametric
regression with dyadic data. These results are, of course, of direct interest. They should, as
has been true with their i.i.d. predecessors, also be useful for proving consistency of two-step
semiparametric M-estimators under dyadic dependence (see Chiang et al. (2019) for some
results on double machine learning with dyadic data).

2.2 Lower Bounds on the Minimax Risk

Let i = 1, . . . , N index a simple random sample of units drawn from some large population.
The econometrician observes the vector of regressors, Xi, for each sampled unit as well as
the scalar outcome, Yij, for each directed pair of sampled units (i.e., each directed dyad). Let
ZN = (X1, . . . , XN , Yij, 1 ≤ i 6= j ≤ N) be the observable data when N units are sampled.
The regression function of interest is (2.1) above. The goal is to construct a nonparametric
estimate of g : RdW → R where dW = 2dx.

We assume that Yij is generated according to the following conditionally independent
dyad (CID) model (cf., Graham, 2020a, Section 3.3).

Yij = h(Xi, Xj, Ui, Uj, Vij). (2.2)

Random sampling ensures that (Xi, Ui) is independent and identically distributed for
i = 1, . . . , N . We further assume that {(Vij, Vji)}1≤i<j≤N are i.i.d. and indepenent of

2It is possible that the methods of inference presented in Chiang et al. (2019) could be adapted to our
setting.
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X = (X1, . . . , XN)′ and U = (U1, . . . , UN). Here h is an unknown function, often called
the graphon. This set-up, which can also be derived as an implication of more primitive
exchangeability assumptions, has the following implications (see Graham (2020a,b) for ad-
ditional discussion):

1. The Yij are relatively exchangeable given the Wij. Namely, the conditional distribution
of Y is invariant across permutations of the indices σ : N→ N satisfying the restriction

[Wσ(i)σ(j)]
d
= [Wij]:

[Yij]
d
= [Yσ(i)σ(j)].

2. Yij and Ykl are independent if their indices are disjoint.

3. Yij and Ykl are dependent (unconditionally or conditionally given X1, . . . , XN) if they
share at least one index in common.

The statistical problem is to estimate the regression function g when the only prior
restriction on it is that it belongs to the Hölder class of functions.

Definition 2.2.1. (Hölder Class) Given a vector s = (s1, . . . , sd), define |s| = s1+· · ·+sd
and

Ds =
∂s1+···+sd

∂s1w1 · · · ∂sdwd
.

Let β and L be two positive numbers. The Hölder class Σ(β, L) on Rd is defined as the set
of l = bβc times differentiable functions g : Rd → R whose partial derivative Dsg satisfies

|Dsg(w)−Dsg(w′)| ≤ L||w − w′||β−l∞ , ∀w,w′ ∈ Rd

for all s such that |s| = bβc. bβc denotes the greatest integer strictly less than the real
number β.

An estimator ĝN is a function w 7→ ĝN(w) = ĝN(w,ZN) measurable with respect to Z.
Our first result establishes a lower bound on the minimax risk for estimating the regression
function at a single point and under the infinity norm. We state this result under a Gaussian
error assumption, which simplifies the proof.

Theorem 2.2.1. (Minimax Risk Lower Bound) Suppose that β > 0 and L > 0; Xi

is continuously distributed on RdX with density f and supx f(x) ≤ B3 < ∞; and Yij is
generated according to the following nonparametric regression model:

Yij = g (Wij) + eij, i 6= j,

with eij = Ui + Uj + Vij, Ui
iid∼ N(0, 1), and Vij

iid∼ N(0, 1), then
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(i) For all w ∈ RdW ,

lim inf
N→∞

inf
ĝN

sup
g∈Σ(β,L)

Eg
[
N

2β
2β+dX (ĝN(w)− g(w))2

]
≥ c1,

where c1 > 0 depends only on β and L.

(ii)

lim inf
N→∞

inf
ĝN

sup
g∈Σ(β,L)

Eg

[(
N

lnN

) 2β
2β+dX

||ĝN − g||2∞

]
≥ c2,

where c2 > 0 also depends only on β and L.

Our proof follows the general recipe outlined in Chapter 2 of Tsybakov (2008). The lower
bound at a point is based on Le Cam’s method of two hypotheses. The lower bound under
the infinity norm is based on Fano’s method of multiple hypotheses.

The key, and novel, step in our proof involves constructing hypotheses close enough to
one other in terms of Kullback-Leibler (KL) divergence while being at the same time different
enough in terms of the target regression function.

An essential feature of our construction is additive separability of the regression functions.
In the hypotheses we consider, Yij = k(Xi) + k(Xj) + Ui + Uj + Vij. Next suppose we also

observe Ti
def
≡ k(Xi) + Ui. Observe that (Xi, Ti, i = 1, . . . , N) is sufficient with respect to

(Xi, Ti, i = 1, . . . , N, Ykl, 1 ≤ k 6= l ≤ N) for the parameter k.
It is well-known that the optimal rates of convergence for estimating k using iid data

(Xi, Ti, i = 1, . . . , N) are N
− β

2β+dX pointwise and
(
N

lnN

)− β
2β+dX for the infinity norm. We

expect the rates for estimating g to be no faster than these. The proof of Theorem 2.2.1
makes this intuition rigorous.

Relative to its iid counterpart, there are two distinctive features of Theorem 2.2.1. First,
the relevant sample size is not the number of observed dyadic outcomes n = N × (N − 1),
but instead the number of sampled units, N . Dependence across outcomes sharing indices
in common is strong enough to slow down the feasible rate of convergence. Second, although
the regression function has dW = 2dX arguments, the relevant dimension reflected in the
rate of convergence result is just dX (i.e., just half of what might naively be expected).

The form of our constructed hypotheses provides one intuition for this second finding:
clearly the relevant dimension of the problem of estimating k(x) is just dX . Relatedly this
finding is consistent with those of Linton and Nielsen (1995) in their analysis of additively
separable, but otherwise nonparametric, regression functions (see also Newey (1994)).

The pairwise structure of dyadic data results in apparent data abundance (sample N
agents, but observe O(N2) outcomes!). This abundance is both illusory, in the sense that
the effective sample size is indeed just N , and real, in the sense that availability of the
pairwise outcome data allows for an effective reduction in the dimensionality of the problem
via partial mean like average (as in Newey (1994) and Linton and Nielsen (1995) in a different
context).
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2.3 Kernel Estimator of Dyadic Regression

In this section we study the properties of a specific nonparametric regression estimator.
Namely, the dyadic analog of the well-known Nadaraya-Watson (NW) kernel regression esti-
mator. While our results are specific to this estimator, they could, for example, be extended
to apply to local linear regression (e.g., Hansen, 2008).

The dyadic NW kernel regression estimator is

ĝN(w) :=

∑
1≤i 6=j≤N Kij,N(w)Yij∑

1≤i 6=j≤N Kij,N(w)
, (2.3)

where

Kij,N(w) :=
1

hdWN
K

(
Wij − w
hN

)
,

K is a fixed multivariate kernel function, and hN is a vanishing bandwidth sequence.
We first develop a sequence of results useful for bounding the variance of kernel objects

of the form

Ψ̂N(w) :=
1

N(N − 1)

∑
1≤i 6=j≤N

YijKij,N(w) (2.4)

and then apply these results to the NW regression estimator. We then bound the NW
estimator’s bias and combine the two sets of results to formulate a risk bound.

Variance Bound and Uniform Convergence

Here we are interested in bounding the deviation of Ψ̂N(w) from its mean. We begin with a
presentation of our maintained assumptions.

Assumption 2.3.1 (Model). The data generating process is as described in Section 2.2
with

(i) Xi continuously distributed with marginal density f(x) s.t. supx∈RdX f(x) ≤ B3 <∞;

(ii) supx1,x2∈RdX E
[
|Y12|2

∣∣(X1, X2) = (x1, x2)
]
· f(x1)f(x2) ≤ B4 <∞,

supx1,x2,x3∈RdX E
[
|Y12Y13|

∣∣(X1, X2, X3) = (x1, x2, x3)
]
· f(x1)f(x2)f(x3) ≤ B5 <∞.

Condition (i) is a standard condition in the context of kernel estimation, while (ii) ensures
that various second moments appearing in our variance calculations are finite.

Assumption 2.3.2 (Kernel, Part A). supw∈RdW |K(w)| ≤ Kmax < ∞,∫
w∈RdW |K(w)|dw ≤ B1 <∞, and supx∈RdX

∫
|K(x, x′)|dx′ ≤ B2 <∞.

Assumption 2.3.2 is satisfied by many widely-used multivariate kernel functions. Our
first result holds under Assumptions 2.3.1 and 2.3.2.
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Theorem 2.3.1 (Variance Bound). Under Assumptions 2.3.1 and 2.3.2, and the band-
width condition NhdXN → ∞ as N → ∞, there exists a constant M0 < ∞ such that for N
sufficiently large

Var
(

Ψ̂N(w)
)
≤ M0

NhdXN

for all w ∈ RdW .

A proof is available in the appendix. Mirroring our risk bound results, two features of
Theorem 2.3.1 merit comment. First, N not n = N × (N − 1) appears in the denominator.
This is due to the effects of dependence across dyads sharing units in common. Second,
the relevant dimension of the problem is dX , not dW = 2dX , this reflects the U-statistic
like structure of kernel weighted averages and the partial mean like averaging this structure
induces.

To establish uniform convergence, we need additional moment conditions on Yij as well as
some smoothness conditions on the kernel K. As in Hansen (2008), we require the kernel to
either have bounded support and be Lipschitz or have bounded derivatives and an integrable
tail. See Hansen (2008) for additional discussion about these conditions. As with Assumption
2.3.2 above, most commonly used kernels satisfy these conditions.

Assumption 2.3.3 (Regularity Condition). (i) For some s > 2, E|Y12|s < ∞ and
supx1,x2∈RdX E

[
|Y12|s

∣∣(X1, X2) = (x1, x2)
]
· f(x1, x2) ≤ B4,s <∞;

(ii) For some Λ1 <∞ and L <∞, either (a) or (b) holds

(a) K(w) = 0 for ||w|| > L, and |K(w)−K(w′)| ≤ Λ1||w − w′|| for all w,w′ ∈ R2d

(b) K(w) is differentiable,
∣∣∣∣ ∂
∂w
K(w)

∣∣∣∣ ≤ Λ1, where
∣∣∣∣ ∂
∂w
K(w)

∣∣∣∣ =∣∣∣∣∣∣( ∂
∂w1

K(w), . . . ∂
∂w2d

K(w)
)∣∣∣∣∣∣
∞

, and for some ν > 1,
∣∣∣∣ ∂
∂w
K(w)

∣∣∣∣ ≤ Λ1||w||−ν for

||w|| > L.

Part (ii) coincides with Assumption 3 in Hansen (2008). This assumption implies that
for all ||w1 − w2|| ≤ δ ≤ L,

|K(w2)−K(w1)| ≤ δK∗(w1),

where K∗(u) satisfies Assumption 2.3.1. If case (a) holds, then K∗(u) = 2dΛ11(||u|| ≤ 2L).
If case (b) holds, then, K∗(u) = 2d[Λ11(||u|| ≤ 2L) + (||u|| − L)−ν 1(||u|| > 2L)]. In both
cases K∗ is bounded and integrable and therefore satisfies Assumption 2.3.1.

Define

aN :=

(
lnN

NhdXN

)1/2

.

Theorem 2.3.2 (Weak Uniform Convergence). Under As-
sumptions 2.3.1, 2.3.2, 2.3.3, and the bandwidth conditions
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max

{
min

{
(aNh

2dX
N )−

1
s−1 , [N2(ln(lnN))2 lnN ]

1
s

}
, a
− 1
s−1

N

}
� min

{
a−1
N , N

lnN
h

3
2
dX

N

}
and

N
lnN

hdXN →∞, we have for any q > 0, cN = N q,

sup
||w||≤cN

∣∣∣Ψ̂N(w)− EΨ̂N(w)
∣∣∣ = OP (aN).

This theorem establishes uniform convergence of Ψ̂N(w) to its mean in probability over
an expanding set with radius growing at a polynomial rate.

In the proof, we decompose Ψ̂N(w) into two parts

Ψ̂N(w) = Ψ̃N(w) +RN(w),

in which Ψ̃N(w) = 1
N(N−1)

∑
1≤i 6=j≤N Yij ·1 (|Yij| < τN)Kij,N is a truncated version of Ψ̂N(w)

with a carefully chosen threshold parameter τN and RN(w) is a residual. The boundedness
induced by this truncation is technically convenient as it facilitates the application of various
concentration inequalities. To establish concentration of Ψ̃N , we apply Bernstein inequality
to its Hájek Projection (i.e., to the first-order terms in the Hoeffding decomposition) and
apply Arcones and Gine (1993)’s concentration inequalities for degenerate U-statistics to
the second-order terms in the Hoeffding decompositon. Both these bounds requires the
truncation threshold to be small enough. To bound the magnitude of the residual RN , we
can either apply a triangular inequality to bound the sup of its first moment or use the Borel-
Cantelli Lemma to bound its probability of being nonzero. Both these bounds requires the
truncation threshold to be large.

A proper truncation threshold satisfying both requirements exists only if the bandwidth
sequence satisfies the condition

max

{
min

{
(aNh

2dX
N )−

1
s−1 , [N2(ln(lnN))2 lnN ]

1
s

}
, a
− 1
s−1

N

}
� min

{
a−1
N ,

N

lnN
h

3
2
dX

N

}
.

The complicated form of this condition is technical in nature. When all (conditional) mo-
ments of Y12 are bounded, such that s = ∞ (of Assumption 2.3.3 above), this condition

simplifies to N
lnN

h
3
2
dX

N � 1.
In order to state the weak uniform convergence result for the kernel regression estimator

ĝN , we need additional smoothness assumptions on the kernel. As in other applications of
kernel estimation, these assumptions are employed for bias reduction purpose.

Assumption 2.3.4 (Kernel, Part B).∫
RdW

wl11 · · ·w
ldW
dW

K(w)dw =

{
1, if l1 = · · · = ldW = 0

0, if (l1, . . . , ldW )′ ∈ ZdW+ and l1 + · · ·+ ldX < β

We can now give a uniform convergence result for the NW regression estimator under
dyadic dependence over a sequence of expanding sets.
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Theorem 2.3.3. Suppose fW , g ∈ Σ(β, L) and δN = inf ||w||≤CN fW (w) > 0, δ−1
N a∗N → 0

where a∗N :=

(
lnN

Nh
dX
N

)1/2

+ hβN . Under the Assumptions of Theorem, 2.3.2 and Assumption

2.3.4

sup
||w||≤CN

|ĝN(w)− g(w)| = Op(δ
−1
N a∗N).

The optimal convergence rate is

sup
||w||≤CN

|ĝN(w)− g(w)| = Op

(
δ−1
N

(
lnN

N

) β
2β+dX

)
.

As in the iid case, the KW estimator achieves the optimal rate suggested by Theorem
2.2.1 for a compact set with CN = C. If we look at a sequence of expanding sets approaching
the entire space RdW , then there is an additional penalty term δN due to the presence of the
denominator fW (w).

2.4 Appendix: Proofs

This Appendix contains proofs of results in the main text of Chapter 2.
All notation is as established in the main text unless noted otherwise. Equation num-

bering continues in sequence with that of the main text.

Proof of Theorem 2.2.1

Our method of proof follows the general approach outlined in Chapter 2 of Tsybakov (2008).
To prove part (i) we use Le Cam’s two-point method to find a lower risk bound for estimation
of the regression function at a point. To prove statement (ii), which involves the infinity-norm
metric, we use Fano’s method.

Proof of statement (i)

Our proof of statement (i) essentially involves checking the conditions, as specially formulated
for our dyadic regression problem, of Theorem 2.3 of (Tsybakov, 2008).

For k = 0, 1, let PkN be a probability measure for the observed data {(X ′i, Yij)}1≤i 6=j≤N
with regression function gkN . The general reduction scheme outlined in Section 2.2 of Tsy-
bakov (2008), as well as his Theorems 2.1 and 2.2, imply that our Theorem 2.2.1 will hold
if we can construct two sequences of hypotheses g0N , g1N such that

(a) the regression functions g0N , g1N are in the Hölder class Σ(β, L);

(b) d (θ1, θ0) = |g1N(w) − g0N(w)| ≥ 2AψN with ψN = N
− β

2β+dX and θ0 = g0N(w) and
θ1 = g1N(w) for some fixed w ∈ X× X;
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(c) the Kullback-Leibler divergence of P0N from P1N is bounded: KL(P0N , P1N) ≤ α <∞.

The “trick” of the proof is choosing these two sequences of hypotheses appropriately.
Letting w = (x10, x20) we choose the sequences:

g0N(x1, x2) ≡ 0

g1N(x1, x2) =
LhβN

2

[
K

(
x1 − x10

hN

)
+K

(
x1 − x20

hN

)
+K

(
x2 − x10

hN

)
+K

(
x2 − x20

hN

)]
where hN = c0N

− 1
2β+dX and the function K : RdW → [0,∞) satisfies

K ∈ Σ (β, 1/2) ∩ C∞(RdX ) and K(x) > 0⇐⇒ ||x||∞ ∈ (−1/2, 1/2). (2.5)

There exist functions K satisfying this condition. For example, for a sufficiently small a > 0,
we can take

K(x) = ΠdX
i=1λ(xi), where λ(u) = aη(2u) and η(u) = exp

(
− 1

1− u2

)
1(|u| ≤ 1).

See also Equation (2.34) in Tsybakov (2008).
We verify conditions (a), (b) and (c) in sequence.

Verification of (a) g0N , g1N ∈ Σ(β, L)

For s = (s1, . . . , sdX︸ ︷︷ ︸
S1

, sdX+1
, . . . , s2dX︸ ︷︷ ︸
S2

) with |s| = bβc, w = (x1, x2) and w′ = (x′1, x
′
2), the sth

order derivative of g1N is

Dsg1N(w)

= LhβN

[
DsK

(
x1 − x10

hN

)
+DsK

(
x1 − x20

hN

)
+DsK

(
x2 − x10

hN

)
+DsK

(
x2 − x20

hN

)]

=


0 if |S1| /∈ {0, |s|}
Lh

β−bβc
N

2

[
DS1K

(
x1−x10
hN

)
+DS1K

(
x1−x20
hN

)]
if |S1| = |s|

Lh
β−bβc
N

2

[
DS2K

(
x2−x10
hN

)
+DS2K

(
x2−x20
hN

)]
if |S1| = 0

.

Therefore, if |S1| /∈ {0, |s|}, then |Dsg1N(w)−Dsg1N(w′)| = 0; if |S1| = |s|, then

|Dsg1N(w)−Dsg1N(w′)|

=
Lh

β−bβc
N

2

[ ∣∣∣∣DS1K (x1 − x10

hN

)
−DS1K

(
x′1 − x10

hN

)∣∣∣∣
+

∣∣∣∣DS1K (x1 − x20

hN

)
−DS1K

(
x′1 − x20

hN

)∣∣∣∣ ]
≤ L||x1 − x′1||β−bβc∞

≤ L||w − w′||β−bβc∞ ;



CHAPTER 2. NONPARAMETRIC DYADIC REGRESSION 46

and, finally, if |S1| = 0, then

|Dsg1N(w)−Dsg1N(w′)|

=
Lh

β−bβc
N

2

[ ∣∣∣∣DS2K (x2 − x10

hN

)
−DS2K

(
x′2 − x10

hN

)∣∣∣∣
+

∣∣∣∣DS2K (x2 − x20

hN

)
−DS2K

(
x′2 − x20

hN

)∣∣∣∣ ]
≤ L||x2 − x′2||β−bβc∞

≤ L||w − w′||β−bβc∞ .

Hence g1N ∈ Σ(β, L). We also have that g0N ∈ Σ(β, L) by inspection.

Verification of (b): d (θ (P0N) , θ (P1N)) = |g1N(w)− g0N(w)| ≥ 2AψN with ψN = N−
β

2β+d

Here we check that our hypotheses are 2s-separated. We have that

|g1N(w)− g0N(w)| = LhβN
2

[
2K (0) +K

(
x10 − x20

hN

)
+K

(
x20 − x10

hN

)]
≥ 2LhβNK (0)

= LK (0) cβ0ψN ,

and hence condition (b) holds with A =
LK(0)cβ0

2
.

Verification of (c): KL(P0N , P1N) ≤ α <∞

This condition allows for the application of part (iii) of Theorem 2.2 in Tsybakov (2008). We
begin by establishing some helpful notation. Let Y = [Yij]1≤i,j≤N be the N × N adjacency
matrix; Gk = [gkN(Wij)]1≤i,j≤N for k = 0, 1 the associated matrices of regression functions
for the two sequences of hypotheses; and V = [Vij]1≤i,j≤N the corresponding matrix of dyadic-
specific disturbances. Note the diagonals of each of these matrices consist of “structural”
zeros. Further let U = [Ui]1≤i≤N be the N × 1 vector of agent-specific disturbances. Finally

let K be the N × 1 vector with ith element
LhβN

2

[
K
(
Xi−x10
hN

)
+K

(
Xi−x20
hN

)]
.

Let ιJ denote a J × 1 vector of ones, 0
¯K,J

a K × J matrix of zeros, and IJ the J × J
identity matrix. We also define the following selection matrices:

T1 =


ιN−1 0 0 · · · 0 0

0
¯

ιN−2 0 · · · 0 0
...

...
. . .

...
...

...
0 0 0 · · · 1 0


(N2 )×N

, T2 =


0
¯N−1,1 IN−1

0
¯N−2,2 IN−2

...
...

0 1


(N2 )×N

,

from which we form T = T1 +T2 and, finally, T = ι2⊗T . Next let y = (vech(Y′)′, vech(Y)′)′

be the N(N − 1)× 1 vectorization of the dyadic outcomes. Similarly let gk for k = 0, 1 and
v be the corresponding vectorizations of, respectively, Gk and V.
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Using this notation we can write the N(N − 1)× 1 vector of composite regression errors
eij = Ui + Uj + Vij as e = TU + v and its variance covariance matrix as

Ω = Var (e) = IN(N−1)×N(N−1) + TTT .

Under P0N we have that

g0 = 0, y = e, y|X ∼ N (0,Ω) .

While under P1N we instead have that

g1 = TK, y = TK + e, y|X ∼ N (TK,Ω) .

Let Kmax = maxuK(u) and recall that hN = c0N
− 1

2β+dX . We can now evaluate the KL
divergence as follows:

KL (P0N , P1N) =

∫
log

dP0N

dP1N

dP0N (2.6)

=

∫
log

p0N(y|X)

p1N(y|X)
dP0N

= −1

2

∫
y>Ω−1y − (y − g1)>Ω−1(y − g1)dP0N

=
1

2

∫
g>1 Ω−1g1dP0N

=
1

2
EP0N

[
K>T>(I + TT>)−1TK

]
≤ 1

2
EP0N

[
K>K

]
≤ 1

2
L2K2

maxB3h
2β+dX
N N

=
1

2
L2K2

maxB3c
2β+dX
0 ,

for N large enough such that NhdXN ≥ 1 and LKmaxh
2β
N bounded above.

In the derivation above, the third equality follows from the form of the multivariate
normal density. The weak inequality in line six holds because

K>K−K>T>(I + TT>)−1TK = K>
[
IN −T>(I + TT>)−1T

]
K

= K>
[
IN + T>T

]−1
K

≥ 0.
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Finally, the weak inequality in line seven holds because, using condition (2.5) above,

E

[(
K

(
Xi − x10

hN

)
+K

(
Xi − x20

hN

))2
]

≤ 2E

[(
K

(
Xi − x10

hN

))2

+

(
K

(
Xi − x20

hN

))2
]

= 2

∫ (
K

(
x− x10

hN

))2

+

(
K

(
x− x20

hN

))2

dF (x)

≤ 2K2
max

∫
1

(∣∣∣∣x− x10

hN

∣∣∣∣ ≤ 1

2

)
+ 1

(∣∣∣∣x− x20

hN

∣∣∣∣ ≤ 1

2

)
dF (x)

= 2K2
maxh

dX
N

[∫
1

(
|u| ≤ 1

2

)
[f(x10 + hNu) + f(x20 + hNu)]du

]
≤ 4hdXN B3K

2
max,

and where it is also helpful to remind oneself of the definition of K given earlier.

If we take c0 =
(

2α
L2K2

maxB3

) 1
2β+dX , then we obtain KL (P0N , P1N) ≤ α. This result, and

condition (b) above, gives – invoking equations (2.7) and (2.9) on p. 29 of Tsybakov (2008)
as well as part (iii) of his Theorem 2.2:

inf
ĝN

sup
g∈Σ(β,L)

Eg [1 (|g1N(w)− g0N(w)| ≥ AψN)] ≥ max

(
1

4
exp (−α) ,

1−
√

α
2

2

)

for N large enough. Some rearrangement and the Markov Inequality then yield

inf
ĝN

sup
g∈Σ(β,L)

Eg
[
N

2β
2β+dX (g1N(w)− g0N(w))2

]
≥ A2 max

(
1

4
exp (−α) ,

1−
√

α
2

2

)
.

Since the constant to the right of the inequality only depends on β and L part (i) of the
Theorem follows after taking the limit inferior of the expression above as N →∞.

Proof of statement (ii)

Again let PkN be the probability measure of the observed data (Xi, Yij, 1 ≤ i 6= j ≤ N) with
the regression function gkN . Theorem 2.5 of Tsybakov (2008) implies that part (ii) will hold
if we can construct sequences of hypotheses P0N , P1N , . . . , PMNN such that

(a) g0N , gkN ∈ Σ(β, L), k = 1, . . . ,MN ;

(b) d (θk, θl) = ||gkN − glN ||∞ ≥ 2AψN , ψN =
(
N

lnN

)− β
2β+d and θk = gkN and θl = glN for

k 6= l and k, l = 1, . . . ,MN ;
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(c) 1
MN

∑MN

k=1 KL(PkN , P0N) ≤ α lnMN .

Define the hypotheses:

g0N :(x1, x2)→ 0

gkN :(x1, x2)→ LhβN

[
K

(
x1 − xkN

hN

)
+K

(
x2 − xkN

hN

)]
where k ∈ IN = {1, 2, . . . ,mN}dX , hN = c0

(
N

lnN

)− 1
2β+dX , mN = dh−1

N e, MN = |IN | = mdX
N ,

and for k = (k1, k2, . . . , kd), xkN =
(
k1−1/2
mN

, k2−1/2
mN

, . . . , kd−1/2
mN

)
, the function K : RdX →

[0,∞) satisfies (2.5). Notice the supports of these functions for the same N are disjoint.
The results follows by verifying conditions (a), (b) and (c). We have already shown that
condition (a) holds in the proof of part (i). The condition (b) holds with A = LK(0)cβ0
because

||gkN − glN ||∞ ≥ |gkN(xkN , xkN)− glN(xkN , xkN)| = 2LhβNK(0) = 2LK(0)cβ0ψN .

To verify condition (c) we evaluate the KL-divergence:

1

MN

∑
k∈IN

KL(PkN , P0N) ≤ 1

MN

∑
k∈IN

1

2
EP0N

[
K>k Kk

]
≤ 1

MN

∑
k∈IN

2L2h2β
N K

2
max

N∑
i=1

∫
1

(∣∣∣∣xi − xkNhN

∣∣∣∣ ≤ 1

2

)
dF (xi)

=
1

MN

2L2h2β
N K

2
max

N∑
i=1

∫ ∑
k∈IN

1

(∣∣∣∣xi − xkNhN

∣∣∣∣ ≤ 1

2

)
dF (xi)

≤ 2L2h2β+dX
N K2

maxN

= 2L2K2
maxc

2β+dX
0 lnN.

The first and second line are proved in part (i). The fourth line use the fact that the

support of functions gkN , k ∈ IN are disjoint and
∑

k∈IN 1
(∣∣∣xi−xkNhN

∣∣∣ ≤ 1
2

)
≤ 1. We have

lnMN = ln(mdX
N ) ≥ dX

2β+dX
ln
(
N

lnN

)
− dX ln c0 ≥ dX

2β+dX+1
lnN for sufficiently large N . The

condition is thus satisfied with sufficiently large c0. The result follows from Theorem 2.5 of
Tsybakov (2008).

Proof of Theorem 2.3.1

Applying the variance operator to Ψ̂(w) yields

V
(

Ψ̂(w)
)

=
4

N

N − 2

N − 1
VN,1 +

(
N

2

)−1

VN,2
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where, starting with the second term,

VN,2 = V
(

1

2
[Y12K12 + Y21K21]

)
≤ V (Y12K12) ≤ E

(
Y 2

12K
2
12

)
= h−4dX

N

∫
E
[
Y 2

12|(X1, X2) = (x1, x2)
]
K2

(
x− x1

hN
,
x− x2

hN

)
f(x1)f(x2)dx1dx2

= h−2dX
N

∫
E
[
Y 2

12|(X1, X2) = (x− hNs1, x
′ − hNs2)

]
· f(x− hNs1)f(x′ − hNs2)K2 (s1, s2) ds1ds2

≤ h−2dX
N B4KmaxB1.

Next, consider the first term. We get that

VN,1 = C
(

1

2
(Y12K12 + Y21K21) ,

1

2
(Y13K13 + Y31K31)

)
= V

(
E
[

1

2
(Y12K12 + Y21K21)

∣∣∣X1, U1

])
≤ 1

2
Var

(
E
(
Y12K12

∣∣∣X1, U1

))
+

1

2
Var

(
E
(
Y21K21

∣∣∣X1, U1

))
≤ 1

2
E (Y12K12Y13K13) +

1

2
E (Y21K21Y31K31)

=
1

2
h−4dX
N

∫
E (Y12Y13|(X1, X2, X3) = (x1, x2, x3))

·K
(
x− x1

hN
,
x′ − x2

hN

)
K

(
x− x1

hN
,
x′ − x3

hN

)
f(x1)f(x2)f(x3)dx1dx2dx3

+
1

2
h−4dX
N

∫
E (Y21Y31|(X1, X2, X3) = (x1, x2, x3))

·K
(
x− x2

hN
,
x′ − x1

hN

)
K

(
x− x3

hN
,
x′ − x1

hN

)
f(x1)f(x2)f(x3)dx1dx2dx3

= h−dXN

1

2

∫
E (Y12Y13|(X1, X2, X3) = (x− hNs1, x

′ − hNs2, x
′ − hNs3))

· f(x− hNs1)f(x′ − hNs2)f(x′ − hNs3)K (s1, s2)K (s1, s3) ds1ds2ds3

+ h−dXN

1

2

∫
E (Y21Y31|(X1, X2, X3) = (x′ − hNs1, x− hNs2, x− hNs3))

· f(x′ − hNs1)f(x− hNs2)f(x− hNs3)K (s1, s2)K (s1, s3) ds1ds2ds3

≤ h−dXN B5

∫
|K (s1, s2) ||K (s1, s3) |ds1ds2ds3

≤ h−dXN B5B2B1. (2.7)
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These two bounds imply the variance bound

V
(

Ψ̂(w)
)
≤
(
N

2

)−1

h−2dX
N B4KmaxB1 +

4(N − 2)

N(N − 1)
h−dXN B5B2B1

= N−1h−dXN

[
N − 2

N − 1
4B5B2B1 +N−1h−dXN

4N

N − 1
B4KmaxB1

]
,

which, in turn, implies that for M0 = 4B5B2B1 + 1 and sufficiently large N , V
(

Ψ̂(w)
)
≤

M0

Nh
dX
N

for all w ∈ RdW as claimed.

Proof of Theorem 2.3.2

For τN a sequence of positive truncation parameters we consider the sum

Ψ̃N(w) =
1(
N
2

) ∑
1≤i<j≤N

1

2

[
Yij · 1 (|Yij| < τN)

1

hdWN
K

(
w −Wij

hN

)
+Yji · 1 (|Yji| < τN)

1

hdWN
K

(
w −Wji

hN

)]
.

We will use Z̃N,ij to denote the summands in the above expression in what follows. The
Hoeffding decomposition of this U -like statistic is

Ψ̃(w) = EΨ̃(w) +
2

N

N∑
i=1

Z̄N,i︸ ︷︷ ︸
TN,1(w)

+
1(
N
2

) ∑
1≤i<j≤N

Z̆N,ij︸ ︷︷ ︸
TN,2(w)

,

where

Z̄N,i = E
[
Z̃N,ij

∣∣∣Xi, Ui

]
− EZ̃N,ij

Z̆N,ij = Z̃N,ij − E
[
Z̃N,ij

∣∣∣Xi, Ui

]
− E

[
Z̃N,ij

∣∣∣Xj, Uj

]
+ EZ̃N,ij.

Notice that TN,1(w) is an average of N iid mean-zero random variables while TN,2(w) is a
degenerate second-order U -like statistic.

To proceed further we require the following Lemma.

Lemma 2.4.1. Under Assumptions 2.3.1 and 2.3.2, for any α > 0, there exists constant
Mα such that

(i) if τN � a−1
N , then supw∈RdW P (|TN,1(w)| > MαaN) = O (N−α);

(ii) if τN � Nh
3
2
dX/ lnN and aN = o(1), then supw∈RdW P (|TN,2(w)| > MαaN) =

O (N−α);
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(iii) if for some s > 1, supx1,x2∈RdX E
[
|Y12|s

∣∣(X1, X2) = (x1, x2)
]
·f(x1, x2) ≤ B4,s <∞ and

τN � a
− 1
s−1

N , then supw∈RdW

∣∣∣E(Φ̂(w)− Φ̃(w)
)∣∣∣ = o (aN);

(iv) if for some s > 1, E |Y12|s ≤ B6,s and τN � (aNh
2dX
N )−

1
s−1 , then

supw∈RdW

∣∣∣Φ̂N(w)− Φ̃N(w)
∣∣∣ = oP (aN);

(v) if for some s > 2, τN = (N2φN)
1
s where φN = (ln(lnN))2 lnN , and E |Y12|s ≤ B6,s,

then P (Φ̂N = Φ̃N) = P
(

Φ̂N(w) = Φ̃N(w),∀w ∈ R2dX

)
→ 1 as N →∞.

The proof of the above Lemma may be found below. The bandwidth conditions stated
in the hypotheses of Theorem 2.3.2 ensure that we can pick truncation thresholds τN which
satisfy the following conditions

1. τN � a−1
N ;

2. τN � N
lnN

h
3
2
dX

N ;

3. τN � a
− 1
s−1

N ;

4. τN � (N2φN)
1
s or τN � (aNh

2dX
N )−

1
s−1 .

These conditions allow for the application of Lemma 2.4.1. Denote RN(w) := Ψ̂N(w) −
Ψ̃N(w). For any set CN ⊂ R2d,

P

(
sup
w∈CN

∣∣∣Ψ̂N(w)− EΨ̂N(w)
∣∣∣ > 8MaN

)
= P

(
sup
w∈CN

∣∣∣Ψ̃N(w)− EΨ̃N(w) +RN(w)− ERN(w)
∣∣∣ > 8MaN

)
≤ P

(
sup
w∈CN

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣ > 6MaN

)
+ P

(
sup
w∈CN

|RN(w)− ERN(w)| > 2MaN

)
.

(2.8)

The second term in inequality (2.8) converges to zero because

P

(
sup
w∈CN

|RN(w)− ERN(w)| > 2MaN

)
≤ P

(
sup

w∈RdW
|RN(w)− ERN(w)| > 2MaN

)

≤ P

(
sup

w∈RdW
|RN(w)| > MaN

)
+ 1

(
sup

w∈RdW
|ERN(w)| > MaN

)
(2.9)

= o(1).
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The last line holds because

1

(
sup

w∈RdW
|ERN(w)| > MaN

)
= 0 for large N (2.10)

P

(
sup

w∈RdW
|RN(w)| > MaN

)
= oP (1). (2.11)

To see (2.10), notice part (iii) of Lemma 2.4.1 implies that supw∈RdW |ERN(w)| = o(aN).
Hence 1 (supw∈R2d |ERN(w)| > MaN) = 0 for large N . To see (2.11), notice the inequality

P

(
sup

w∈RdW
|RN(w)| > MaN

)
≤ min

{
1− P (Φ̂N = Φ̃N),

E supw∈RdW |RN(w)|
MaN

}
,

suggests we can bound either term on the right-hand side to bound the term on the left-hand
side. The threshold we pick meets the conditions of both parts (iv) and (v) of Lemma 2.4.1,

which ensures either 1−P (Φ̂N = Φ̃N) = o(1) or
E sup

w∈RdW |RN (w)|
MaN

= o(1). This implies (2.11).
To show the first term in inequality (2.8) converges to zero, we will use a covering ar-

gument to reduce finding the supremum over an infinite number points to finding the max-
imum over a finite number of points. We then invoke point-wise concentration bounds.
This part closely follows the argument in Hansen (2008). Cover any compact region
CN ⊂ RdW by finite number of balls of radius aNhN centered at grid points in the set
LN = {wN,1, wN,2, . . . , wN,LN} (Here we abuse the notation a bit: LN is used to refer to both
the set and its cardinality). Denote the ball AN,j = {w ∈ RdW : ||w − wN,j|| ≤ aNhN}. For
N large enough such that aN < L (L is the constant appearing in Assumption 2.3.3), for
any point w ∈ AN,j within the ball, assumption 2.3.3 (ii) implies∣∣∣∣K (w −Wij

h

)
−K

(
wN,j −Wij

h

)∣∣∣∣ ≤ aNK
∗
(
wN,j −Wij

h

)
. (2.12)

Define

Φ̆N(w) :=
1

N(N − 1)

∑
1≤i 6=j≤N

Yij · 1 (|Yij| < τN)
1

hdW
K∗
(
w −Wij

h

)
,

which is a version of Φ̃(w) with K replaced by K∗. The bound (2.12) implies∣∣∣Ψ̃N(w)− Ψ̃N(wN,j)
∣∣∣ ≤ aN Φ̆N(wN,j),
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with |EΦ̆N(wN,j)| ≤ B
1/2
4 B

1/2
3

∫
|K∗(w)|dw < ∞. Next bound the sup within the ball by a

value at the center and the sup discrepancy

sup
w∈AN,j

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣

≤
∣∣∣Ψ̃N(wN,j)− EΨ̃N(wN,j)

∣∣∣+ sup
w∈AN,j

∣∣∣Ψ̃N(w)− Ψ̃N(wN,j)
∣∣∣+ sup

w∈AN,j

∣∣∣E(Ψ̃N(w)− Ψ̃N(wN,j)
)∣∣∣

≤
∣∣∣Ψ̃N(wN,j)− EΨ̃N(wN,j)

∣∣∣+ aN

[
Φ̆N(wN,j) + EΦ̆N(wN,j)

]
≤
∣∣∣Ψ̃N(wN,j)− EΨ̃N(wN,j)

∣∣∣+ aN

∣∣∣Φ̆N(wN,j)− EΦ̆N(wN,j)
∣∣∣+ 2aNEΦ̆N(wN,j)

≤
∣∣∣Ψ̃N(wN,j)− EΨ̃N(wN,j)

∣∣∣+
∣∣∣Φ̆N(wN,j)− EΦ̆N(wN,j)

∣∣∣+ 2aNEΦ̆N(wN,j).

The last inequality follow because aN ≤ 1 for N large enough. For any constant M ≥
B

1/2
4 B

1/2
3

∫
|K∗(w)|dw ≥ EΦ̆N(wN,j),

P

(
sup

w∈AN,j

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣ > 6MaN

)
≤ P

(∣∣∣Ψ̃N(wN,j)− EΨ̃N(wN,j)
∣∣∣+
∣∣∣Φ̆N(w)− EΦ̆N(w)

∣∣∣+ 2aNEΦ̆N(w) > 6MaN

)
≤ P

(∣∣∣Ψ̃N(wN,j)− EΨ̃N(wN,j)
∣∣∣ > 2MaN

)
+ P

(∣∣∣Φ̆N(w)− EΦ̆N(w)
∣∣∣ > 2MaN

)
,

as well as

P

(
sup
w∈CN

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣ > 6MaN

)
≤

LN∑
j=1

P

(
sup

w∈AN,j

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣ > 6MaN

)

≤ LN max
j∈{1,2,...,LN}

P

(
sup

w∈AN,j

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣ > 6MaN

)
≤ LN max

j∈{1,2,...,LN}
P
(∣∣∣Ψ̃N(wN,j)− EΨ̃N(wN,j)

∣∣∣ > 2MaN

)
+ LN max

j∈{1,2,...,LN}
P
(∣∣∣Φ̆N(w)− EΦ̆N(w)

∣∣∣ > 2MaN

)
. (2.13)

We now bound the two terms in (2.13) using the same argument, as both K and K∗ satisfy
Assumption 2.3.1, and this is the only property of the function K or K∗ we will use. For
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any α > 0 and Mα as in Lemma 2.4.1, for any w ∈ RdW

sup
w∈RdW

P
(∣∣∣Ψ̃N(w)− EΨ̃N(w)

∣∣∣ > 2MαaN

)
= sup

w∈RdW
P (|TN,1(w) + TN,2(w)| > 2MαaN)

≤ sup
w∈RdW

P (|TN,1(w)| > MαaN)

+ sup
w∈RdW

P (|TN,2(w)| > MαaN)

= O
(
N−α

)
.

Hence

P

(
sup
w∈CN

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣ > 6MaN

)
≤ O

(
LNN

−α) .
If we take CN = {w ∈ RdW : ||w|| < cN} where cN = N q, then CN can be covered by

LN = 2
(

cN
aNhN

)dW
number of balls with radius aNhN . Hence we can take α large enough,

e.g. α = (q+ 1
2
)dW + 3, so that O (LNN

−α) = O

((
cN

aNhN

)dW
N−α

)
= O

(
N (q+ 1

2
)dW+2−α

)
=

O (N−1) = o(1). We have therefore shown that

P

(
sup
w∈CN

∣∣∣Ψ̃N(w)− EΨ̃N(w)
∣∣∣ > 6MaN

)
= o(1). (2.14)

Together the two bounds (2.9) and (2.14) imply that the right-hand side of equal-
ity (2.8) is o(1). This is saying for sufficiently large M < ∞, we have

P
(

supw∈CN

∣∣∣Ψ̂N(w)− EΨ̂N(w)
∣∣∣ > 8MaN

)
= o(1), which is sufficient for

sup
||w||≤cN

∣∣∣Ψ̂N(w)− EΨ̂N(w)
∣∣∣ = O(aN).

as required.

Proof of Lemma 2.4.1

Proof of claim (i)

To prove the first claim of the Lemma we will apply the classic Bernstein’s inequality (see
equation 2.10 on p. 36 of the textbook Boucheron et al. (2013)).

Let Q1, . . . , QN be independent random variables with finite variance such that
Qi ≤ b for some b > 0 almost surely for all i < N . Let S =

∑N
i=1(Qi − EQi) and

v =
∑N

i=1 E [Q2
i ]. Then for any t > 0,

P (S ≥ t) ≤ exp

(
− t2

2(v + bt/3)

)
.
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In order to invoke the inequality, we first show that Qi(w) := τ−1
N hdXN Z̄N,i(w) is bounded.

In the following we will use the abbreviated notation Qi for Qi(w). Remember Z̄N,i is the

mean-normalized version of E
[
Z̃N,ij

∣∣∣Xi, Ui

]
. Since

τ−1
N hdX

∣∣∣E [Z̃N,ij∣∣∣Xi, Ui

]∣∣∣
= τ−1

N hdX
∣∣∣∣E [1

2
[Yij · 1 (|Yij| < τN)Kij

+Yji · 1 (|Yji| < τN)Kji]
∣∣∣Xi, Ui

]∣∣∣
≤ hdXN

1

2
E
[
|Kij|+ |Kji|

∣∣∣Xi, Ui

]
= h−dXN

1

2
E
[∣∣∣∣K (w −Wij

hN

)∣∣∣∣+

∣∣∣∣K (w −Wji

hN

)∣∣∣∣ ∣∣∣Xi

]
= h−dXN

1

2

∫ [∣∣∣∣K (x− xihN
,
x′ − xj
hN

)∣∣∣∣+

∣∣∣∣K (x− xjhN
,
x′ − xi
hN

)∣∣∣∣] f(xj)dxj

=
1

2

∫ ∣∣∣∣K (x− xihN
, s

)∣∣∣∣ f(x′ − hNs) +

∣∣∣∣K (s, x′ − xihN

)∣∣∣∣ f(x− hNs)ds

≤ B2B3,

we have |Qi| = |τ−1
N hdXN Z̄N,i| < 2B2B3. Write P (TN,1(w) > MaN) in the form suitable for

applying Bernstein’s inequality

P (TN,1(w) > MaN) = P

(
2

N

N∑
i=1

Z̄N,i > MaN

)

= P

(
N∑
i=1

τ−1
N hdXN Z̄N,i >

M

2
NhdXN aNτ

−1
N

)
= P (S ≥ t),

in which S =
∑N

i=1Qi and t = M
2
NhdXN aNτ

−1
N . Applying Bernstein’s inequality gives us

P (S ≥ t) ≤ exp
(
− t2

2(v+bt/3)

)
where v :=

∑N
i=1 E [Q2

i ] and b = 2B2B3. Since the function

exp
(
− t2

2(v+bt/3)

)
is increasing in v, we have for any v′ > v

P (S ≥ t) ≤ exp

(
− t2

2(v′ + bt/3)

)
. (2.15)

The upper bound v′ we are going to use is the following one

v =
N∑
i=1

E
[
Q2
i

]
=

N∑
i=1

E
[(
τ−1
N hdXN Z̄N,i

)2
]

= τ−2
N h2dX

N NVN,1 ≤ τ−2
N NhdXN B5B2B1 := v′,
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in which the inequality is an implication of (2.7). Plugging the expression of v′, t, b, and aN
into the RHS of (2.15) gives us

exp

(
− t2

2(v′ + bt/3)

)
= exp

(
− M2

8B5B2B1 + 8B2B3MaNτN/3
lnN

)
.

By assumption aNτN → 0 as N → ∞, we can pick N0 such that 8B2B3aNτN/3 ≤ 1 for
any N > N0. For any α > 0, we can pick M large enough so that M2

8B5B2B1+M
≥ α and

exp
(
− M2

8B5B2B1+M
lnN

)
< Nα. In particular, Mα =

α+
√
α2+32B5B2B1α

2
will work. This means

we have proved

P (TN,1(w) > MαaN) = O
(
N−α

)
.

We get the two-sided bound by applying the same argument twice for TN,1(w) and −TN,1(w).
Moreover, because the derivation of the bound and the value of Mα doesn’t depend on the
specific point w, we have also proved our desired result

sup
w∈RdW

P (|TN,1(w)| > MαaN) = O
(
N−α

)
.

Proof of claim (ii)

We will use Propsition 2.3(c), a concentration inequality, from Arcones and Gine (1993)3 to
prove the second claim.

Let {Xi, i ∈ N} and {Vi1,...,im , (i1, . . . , im) ∈ INm} be independent random samples;
||f ||∞ ≤ c, E ]f(X1, . . . , Xm, V1,...,m)] = 0, σ2 = E [f 2(X1, . . . , Xm, V1,...,m)]; f is
P-canonical, then there are constants ci depending only on m such that for any
t > 0,

P

∣∣∣∣∣∣N−m/2
∑

(i1,...,im)∈INm

f(Xi1 , . . . , Xim , Vi1,...,im)

∣∣∣∣∣∣ > t


≤ c1 exp

(
− c2t

2/m

σ2/m + (ct1/mN−1/2)
2/(m+1)

)
.

In order to apply the inequality, we first show that τ−1
N h2dX

N Z̆N,ij is bounded. Decompose

Z̆N,ij = Z̃N,ij − E
[
Z̃N,ij

∣∣∣Xi, Ui

]
− E

[
Z̃N,ij

∣∣∣Xj, Uj

]
+ EZ̃N,ij.

3There is a small modification compared to the original proposition. Since our statistic is not exactly a
U-statistic as there are the iid Vij variables in our setup, we include this additional term in the statement
of inequality. The proof of the inequality in our setup could follow the same steps of the original Arcones
and Gine (1993) one. The reason this works is that the Vij terms are iid and won’t affect the randomization
inequality, decoupling inequality, and the hypercontractivity inequality used in the proof.



CHAPTER 2. NONPARAMETRIC DYADIC REGRESSION 58

The last three terms on the right-hand side are bounded because τ−1
N EZ̃N,ij =

O(1) and τ−1
N E

[
Z̃N,ij

∣∣∣Xi, Ui

]
= O(h−dXN ). Moreover, |τ−1

N h2dX
N Z̃N,ij| = 1

2
|τ−1
N Yij ·

1 (|Yij| < τN)K
(
w−Wij

hN

)
|+ 1

2
|τ−1
N Yji ·1 (|Yji| < τN)K

(
w−Wji

hN

)
| ≤ Kmax. Hence, there exists

constant c > 0 s.t. |τ−1
N h2dX

N Z̆N,ij| < c. Applying the concentration inequality to TN,2(w)
then gives us

P (|TN,2(w)| > MaN) = P

(∣∣∣∣∣ 1(
N
2

) ∑
1≤i<j≤N

Z̆N,ij

∣∣∣∣∣ > MaN

)

= P

(∣∣∣∣∣N−1
∑

1≤i<j≤N

τ−1
N h2dX

N Z̆N,ij

∣∣∣∣∣ > M
N − 1

2
h2dX
N aNτ

−1
N

)

≤ c1 exp

(
− c2t

σ + (ct1/2N−1/2)
2/3

)

= c1 exp

(
− c2t

σ lnN + (ct1/2N−1/2)
2/3

lnN
· lnN

)

where t = M N−1
2
h2dX
N aNτ

−1
N and σ2 = Var

(
τ−1
N h2dX

N Z̆N,ij

)
. We will show that

c2t

σ lnN+(ct1/2N−1/2)
2/3

lnN
→∞ as N →∞ by showing both t

σ lnN
→∞ and t

(ct1/2N−1/2)
2/3

lnN
→

∞ as N →∞.
Beginning with the former claim:

t

σ lnN
=

M N−1
2
h2dX
N aNτ

−1
N

τ−1
N h2dX

N Var
(
Z̆N,ij

)1/2

lnN

=
M(N − 1)aN

2 Var
(
Z̆N,ij

)1/2

lnN

≥ M(N − 1)aN

2V
1/2
N,2 lnN

≥ MNaN

4
(
h−2dX
N B4KmaxB1

)1/2

lnN

=
M

4 (B4KmaxB1)1/2
aN

(
lnN

NhdXN

)−1

=
M

4 (B4KmaxB1)1/2
a−1
N

→∞, as N →∞.
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The latter claim follows because:

t

(ct1/2N−1/2)
2/3

lnN
=

(
t2N

c2(lnN)3

)1/3

=

(
(M N−1

2
h2dX
N aNτ

−1
N )2N

c2(lnN)3

)1/3

≥
(
M2

16c2
N3(lnN)−3h4dX

N a2
Nτ
−2
N

)1/3

=

(
M2

16c2

)1/3 (
Nh

3
2
dX

N (lnN)−1τ−1
N

)2/3

→∞, as N →∞.

The last line above is an implication of the condition τN � Nh
3
2
dX

N / lnN . Combining these
two limit results gives us c2t

σ lnN+(ct1/2N−1/2)
2/3

lnN
→ ∞ as N → ∞. Notice the bound again

doesn’t depend on w and the inequality still holds when we take the sup over w ∈ RdW on
the left-hand side. Hence for any M > 0 and any α > 0, supw∈RdW P (|TN,2(w)| > MaN) =
O (N−α).

Proof of claim (iii)

Direct evaluation yields∣∣∣E(Φ̂(w)− Φ̃(w)
)∣∣∣ =

∣∣∣∣E [Yij1 (|Yij| > τN)
1

h2dX
N

K

(
w −Wij

h

)]∣∣∣∣
≤ E

[
|Yij|

∣∣τ−1
N Yij

∣∣s−1
1 (|Yij| > τN)

1

h2dX
N

∣∣∣∣K (w −Wij

hN

)∣∣∣∣]
≤ τ

−(s−1)
N E

[
|Yij|s

1

h2dX
N

∣∣∣∣K (w −Wij

h

)∣∣∣∣]
= τ

−(s−1)
N

∫
E [|Y12|s |(X1, X2) = (x1, x2)]

1

h2dX
N∣∣∣∣K (x− x1

hN
,
x− x2

hN

)∣∣∣∣ f(x1, x2)dx1dx2

= τ
−(s−1)
N

∫
E [|Y12|s |(X1, X2) = (x− hNs1, x

′ − hNs2)]

× f(x− hNs1, x
′ − hNs2) |K (s1, s2)| ds1ds2

≤ τ
−(s−1)
N B4,sB1.

Since the last expression doesn’t depend on w, we have supw∈RdW

∣∣∣E(Φ̂(w)− Φ̃(w)
)∣∣∣ =

o(aN).
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Proof of claim (iv)

First, we eliminate the sup by upper bounding the terms involving K by Kmax.

sup
w∈RdW

∣∣∣Φ̂N(w)− Φ̃N(w)
∣∣∣ = sup

w∈RdW

∣∣∣∣∣ 1

N(N − 1)

∑
1≤i 6=j≤N

Yij1 (|Yij| > τN)
1

hdWN
K

(
w −Wij

hN

)∣∣∣∣∣
≤ 1

N(N − 1)

∑
1≤i 6=j≤N

|Yij|1 (|Yij| > τN)
1

h2dX
N

sup
w∈RdW

∣∣∣∣K (w −Wij

hN

)∣∣∣∣
≤ Kmaxh

−2dX
N τ

−(s−1)
N

1

N(N − 1)

∑
1≤i 6=j≤N

|Yij|s .

Then, taking expectation on both sides yields

E

(
sup

w∈RdW

∣∣∣Φ̂N(w)− Φ̃N(w)
∣∣∣) ≤ Kmaxh

−2dX
N τ

−(s−1)
N E (|Yij|s) ≤ KmaxB6,sh

−2dX
N τ

−(s−1)
N = o(aN).

Proof of claim (v)

If all the |Yij|, 1 ≤ i 6= j ≤ N are smaller than the truncation threshold τN , then Φ̂N = Φ̃N ,

P
(

Φ̂N = Φ̃N

)
≥ P

(
max

1≤i<j≤N
|Yij| ≤ τN

)
.

We now show that the RHS converges to 1. Observe

∞∑
N=2

N−1∑
i=1

[P (|YiN | > τN) + P (|YNi| > τN)] ≤
∞∑
N=2

N−1∑
i=1

[
E
(
|YiN |sτ−sN

)
+ E

(
|YNi|sτ−sN

)]
= E (|YiN |s)

∞∑
N=2

N−1∑
i=1

2N−2φ−1
N

≤ E (|YiN |s)
∞∑
N=2

2

N(ln lnN)2 lnN

<∞,

The Borel-Cantelli lemma implies P (Aij, i 6= j, i.o.) = 0 where the set Aij = {ω : Yij(ω) >
τmax{i,j}}. This means, except for a null set N , for any ω ∈ N c, there exists a N(ω) s.t. for
all N ≥ N(ω), YiN(ω) ≤ τN . Since τN ↑ ∞ as N →∞, we can take N∗(ω) ≥ N(ω) such that
τN∗(w) > maxi,j≤N(ω) |Yij(ω)|. Then for any N ≥ N∗(ω), we have max1≤i<j≤N |Yij(ω)| ≤ τN
and hence Φ̂N = Φ̃N . Define the set EN := {ω : N∗(ω) ≤ N} ⊂ {ω : Φ̂N = Φ̃N}. Since
EN ↑ N c and P (N c) = 1, we have P (Φ̂N = Φ̃N) ≥ P (EN)→ 1 as N →∞.
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Proof of Theorem 2.3.3

The proof follows the general approach used in Hansen (2008). Denote f̂W,N(w) =
1

N(N−1)

∑
1≤i 6=j≤N Kij,N(w). We can write

ĝN(w) =
Ψ̂N(w)

f̂W,N(w)
.

We examine the numerator and denominator separately. An application of Theorem 2.3.2
yields

sup
||w||≤CN

|Ψ̂N(w)− EΨ̂N(w)| = Op(aN)

sup
||w||≤CN

|f̂W,N(w)− Ef̂W,N(w)| = Op(aN).

Standard bias calculations give

sup
||w||≤CN

|EΨ̂N(w)−Ψ(w)| = O(hβN)

sup
||w||≤CN

|Ef̂W,N(w)− fW (w)| = O(hβN).

Combining these results we get

sup
||w||≤CN

|Ψ̂N(w)−Ψ(w)| = Op(aN) +O(hβN) = O(a∗N)

sup
||w||≤CN

|f̂W,N(w)− fW (w)| = Op(aN) +O(hβN) = O(a∗N).

Uniformly over ||w|| ≤ CN we have

Ψ̂N(w)

f̂W,N(w)
=

Ψ̂N(w)/fW (w)

f̂W,N(w)/fW (w)
=
g(w) + (Ψ̂N(w)−Ψ(w))/fW (w)

1 + (f̂W,N(w)− fW (w))/fW (w)
=
g(w) +Op(δ

−1
N a∗N)

1 +Op(δ
−1
N a∗N)

= g(w) +Op(δ
−1
N a∗N)

as claimed. The optimal rate is obtained by setting hN �
(

lnN
N

) 1
2β+dX .
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Chapter 3

Density-Weighted Average
Derivatives for Dyadic Data

3.1 Introduction and Summary

In this chapter, we study estimation of the density-weighted average derivative for directed
dyadic data. This parameter is of substantial practical interest as it is proportional to the
coefficients in single index models (Powell et al., 1989), which encompasses various models of
limited dependent variables. The main contributions of this chapter are extending the clas-
sical kernel-based estimator of the density-weighted average derivatives from the “monadic”
iid setup (e.g. Stoker, 1986; Powell et al., 1989; Newey and Stoker, 1993) to directed dyadic
data, and proving its robust asymptotic normality (in the sense asymptotic normality holds
under both nondegeneracy and degeneracy and across a wide range of bandwidth sequences)
using asymptotic quadratic approximation. This robust asymptotic normality result presents
an interesting contrast between this kernel-based semiparametric estimator and the sample
mean of dyadic data, which exhibits asymptotic non-normality when dyadic dependence is
absent and whose uniform nonconservative inference procedure doesn’t exist (Menzel, 2021).

Compared to the previous two chapters, this chapter studies a richer setup for directed
dyadic data in the following sense. Instead of only considering monadic regressors as in
chapter 2, we consider both monadic and dyadic regressors in this chapter. To appreciate
this, consider a model of export/import among countries. Natural explainable variables
include both GDP of each country, a monadic variable, and export/import tax between
pairs of countries, a dyadic variable. As we will see in the results, the rate of convergence of
estimators may differ depending on whether we are estimating the coefficient of a monadic
variable or a dyadic variable. A similar phenomenon also shows up in Chapter 4 (for different
reasons though).
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3.2 Population and Sampling Framework

We consider an empirical problem where i ∈ N indices agents in an infinite population of
interest. Agents are also referred as nodes, individuals, or monads. A (directed) pair of
agent (i, j) constitutes a dyad, in which we refer to agent i as “ego” and agent j as “alter”.

The data generating process specifies the joint distribution of the dyadic outcome Yij for
dyad (i, j) together with observed monadic ego regressors Bi, monadic alter regressors Cj,
and dyadic regressors Dij.

In a toy specification of the gravity equation in international trade, Yij is the logarithm
of export from country i to country j. Bi, Cj are the logarithm of the values of exporter’s
output and the value of importer’s expenditure, respectively. Dij is the logarithm of the
distance from country i to j.

We are going to use a latent space model satisfying the following key modeling assump-
tions. First, the regressors Xij := (Bi, Cj, Dij) are jointly exchangeable. Namely,

[Xij]
d
= [Xσ(i)σ(j)]

for every permutation π ∈ Π where π : {1, 2, . . . , N} → {1, 2, . . . , N} is a permutation of
the nodes indices. In other words, the joint likelihood of regressors is invariant to the node
labeling. Second, the outcome are relatively exchangeable given the regressors. Namely,
the conditional distribution of Y is invariant against permutation of indices σX : N → N
satisfying the restriction [XσX(i)σX(j)]

d
= [Xij]:

[Yij]
d
= [YσX(i)σX(j)].

Put differently, the conditional likelihood of outcomes given the regressor values does not
depend on the node labeling. Third, outcomes of dyads sharing zero index are independent
of each other. Outcomes of dyads sharing one index, like Yij and Yil, are allowed to be corre-
lated with each other even conditional on the observed covariates. This dyadic dependence is
crucial for statistical analysis. For many statistical procedures, the dyadic dependence ren-
ders the effective sample size to be the number of nodes instead of the much larger number
of dyads.

We state the sampling assumptions of all relevant latent variables first. Then we con-
struct the observed variables using the latent variables. Let {(Ai, Bi, Ci)}i≥1, {(Ui)}i≥1,
{(Vij, Vji)}i,j≥1,i<j, {(εij, εji)}i,j≥1,i<j be sequences of i.i.d. random variables additionally in-

dependent of one another. (Vij, Vji) and (εij, εji) are both symmetric, namely (Vij, Vji)
d
=

(Vji, Vij) and (εij, εji)
d
= (εji, εij). We explain specific roles of these variables in the following.

For each agent i, we observe the monadic random variables (Bi, Ci) in which Bi ∈ B ⊂
RdB is ego-relevant and Ci ∈ C ⊂ RdC is alter-relevant. For each dyad (i, j), we observe
dyadic explanatory variables Dij ∈ D ⊂ RdD generated according to

Dij = D (Ai, Aj, εij) ,
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where Ai is an agent-specific random vector of attributes (of arbitrary dimension, not nec-
essarily observable) and εij is an unobservable random vector. The scalar dyadic outcome
variable Yij ∈ Y ⊂ R is generated according to

Yij = Y (Bi, Cj, Dij, Ui, Uj, Vij) ,

where Ui is an unobservable scalar random variable uniformly distributed on [0, 1] and Vij is
an unobservable scalar random variable.

This latent space model could be motivated by the Aldous-Hoover representation of
jointly exchangeable array (Aldous, 1981; Hoover, 1979) and its extension to relative ex-
changeable arrays by Crane and Towsner (2018). More extensive discussion can be found in
Graham (2020a), Menzel (2021), and Davezies et al. (2021).

Compared to existing setups in the literature, the model here highlights the distinct roles
of monadic and dyadic regressors. The latent variables Ai, Ui for example serve as elements
of the exchangeable array representation and do not necessarily have an explicit structural
interpretation. Interestingly, we will see later on the monadic and dyadic regressors may
exhibit different rates of convergence. One crucial assumption is that the dimension of
monadic regressors is greater or equal to one. We will give more comments on this after we
present the rate of convergence result.

3.3 Estimand, Estimator, and Hoeffding

Decomposition

We introduce the target parameter of our interest here and follow it with a specification and
discussion of the estimator, density weighted average derivatives.

The object of our interest is the regression function of the outcome Yij given all the
observed variables involving nodes i and j, (Bi, Ci, Bj, Cj, Dij, Dji). This regression function
is assumed to be a function of Xij := (Bi, Cj, Dij) ∈ RdX , 1 dX = dB + dC + dD. Bi captures
the ego-relevant effect, Cj captures the alter-relevant effect, Dij captures the dyadic effect:

E [Yij|Bi, Ci, Bj, Cj, Dij, Dji] = E[Yij|Bi, Cj, Dij︸ ︷︷ ︸
Xij

] = g (Xij) . (3.1)

To save notation, we will assume dB = dC , which is the most common case in a typical setting.
Besides its innate conceptual meaning, the ego vs alter distinction is technically relevant as it
facilitates the statement of support conditions, which is crucial for nonparametric estimation.

The main assumption on this regression function is the single index restriction: g(x) =
G(x′β0). This assumption says the regression function depends on the projection of x

1Notice there is no hidden exclusion restriction from a representation perspective, because we can always
pinpoint the ego-relevant and alter-relevant variables after inspecting the conditional expectation given full
information. However, real exclusion restrictions may be present when any specific specification is being
used.
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onto a single dimension identified by β0. Under this assumption, θ0 := E
(
f(X)∂g(X)

∂X

)
=

E
(
f(X)Ġ(X ′β0)

)
β0 is proportional to the index coefficient β0. If in addition the function

g(x)f 2(x) vanishes at the boundary, which facilitates the application of integration by parts,
then as shown by Powell et al. (1989) (PSS thereafter) the following representation holds

θ0 = −2E
[
Y
∂f(X)

∂X

]
. (3.2)

This representation motivates the density weighted average derivative estimator

θ̂N = −2
1

N(N − 1)

∑
i 6=j

Yij
∂

∂Xij

f̂N,ij (Xij) , (3.3)

where the two-way leave-out kernel density estimator is

f̂N,ij(x) =
1

(N − 2)(N − 3)

∑
(l,m)

l 6=m6=i 6=j

1

hdN
K

(
x−Xlm

hN

)
. (3.4)

Notice we leave dyads involving i and j out when we are estimating the density at point Xij.
This trick is a generalization of PSS’s leave-out trick with the cross-sectional data to the
dyadic data. It makes the bias much simpler to analyze, which resonates with the multiway
cross fitting procedure in Chiang and Tan (2020). It also facilitates setting up the estimator
as a fourth-order “U”-statistic, 2

Define

δijlm(h) := Yij
∂

∂Xij

1

hd
K

(
Xij −Xlm

h

)
and its symmetrized version

pijlm(h) :=
1

24

∑
(i′,j′,l′,m′)∈Pijlm

δi′j′l′m′(h).

Each term pijlm(h) is a symmetric function of primitive node variables and dyad variables
involving i, j, l,m:

pijlm(h) = p
(
h; Ai, Bi, Ci, Ui, Aj, Bj, Cj, Uj, Al, Bl, Cl, Ul, Am, Bm, Cm, Um,

εij, Vij, εji, Vji, εil, Vil, εli, Vli, εim, Vim, εmi, Vmi, εjl, Vjl, εlj, Vlj, εlm, Vlm, εml, Vml
)
.

2The quotation marks around the U indicates that the statistic is not strictly speaking a U-statistic in
the traditional sense as an average of symmetric functions of combinations of iid random variables because of
the presence of dyadic primitive variables ε and V in this statistics. However, this will not make the analysis
of this statistic any different from a U-statistic, as will be revealed by the Hoeffding decomposition.
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Write the estimator as a “U”-statistics:

θ̂N(h) = −2

(
N

4

)−1 ∑
i<j<l<m

pijlm(h). (3.5)

We will study its Hoeffding decomposition to understand its asymptotic behavior. Toward
this end, define the information sets (σ-algebra) for one, two, and three indices as

F{i} = σ (Ai, Bi, Ci, Ui)

F{i,j} = σ (Ai, Bi, Ci, Ui, Aj, Bj, Cj, Uj, εij, Vij, εji, Vji)

F{i,j,l} = σ (Ai, Bi, Ci, Ui, Aj, Bj, Cj, Uj, Al, Bl, Cl, Ul, εij, Vij, εji, Vji, εil, Vil, εli, Vli, εjl, Vjl, εlj, Vlj) .

Define the Hoeffding decomposition of the “U”-statistics UN(h) :=
(
N
4

)−1∑
i<j<l<m pijlm(h)

by

UN(h) =
4∑
c=0

(
4

c

)
UN,c(h),

in which each UN,c(h) is defined by

UN,c(h) =
1(
N
c

) ∑
1≤i1<···<ic≤N

qc,i1...ic(h)

with

q0(h) = E (pijlm(h))

q1,i(h) = E
(
pijlm(h)|F{i}

)
− E (pijlm(h))

q2,ij(h) = E
(
pijlm(h)|F{i,j}

)
− E

(
pijlm(h)|F{i}

)
− E

(
pijlm(h)|F{j}

)
+ E (pijlm(h))

q3,ijl(h) = E
(
pijlm(h)|F{i,j,l}

)
− E

(
pijlm(h)|F{i,j}

)
− E

(
pijlm(h)|F{i,l}

)
− E

(
pijlm(h)|F{j,l}

)
+ E

(
pijlm(h)|F{i}

)
+ E

(
pijlm(h)|F{j}

)
+ E

(
pijlm(h)|F{l}

)
− E (pijlm(h))

q4,ijlm(h) = pijlm(h)− E
(
pijlm(h)|F{i,j,l}

)
− E

(
pijlm(h)|F{i,j,m}

)
− E

(
pijlm(h)|F{i,l,m}

)
− E

(
pijlm(h)|F{j,m,l}

)
+ E

(
pijlm(h)|F{i,j}

)
+ E

(
pijlm(h)|F{i,l}

)
+ E

(
pijlm(h)|F{i,m}

)
+ E

(
pijlm(h)|F{j,l}

)
+ E

(
pijlm(h)|F{j,m}

)
+ E

(
pijlm(h)|F{l,m}

)
− E

(
pijlm(h)|F{i}

)
− E

(
pijlm(h)|F{j}

)
− E

(
pijlm(h)|F{l}

)
− E

(
pijlm(h)|F{m}

)
+ E (pijlm(h)) .

Namely UN,0(h) = E (pijlm(h)) is the expectation. UN,1(h), UN,2(h), UN,3(h), UN,4(h) are “U”-
statistics of order 1, 2, 3, 4. UN,1(h), the first-order terms, is often referred as the Hajek
projection. The Hajek projection gives a best approximation by a sum of functions of one
node information F{i} at a time. The Hoeffding decomposition gives improved approximation
by using sums of functions of two, three, or four nodes information.
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3.4 Assumptions

This section presents assumptions on the model, kernel, and bandwidth sequences. These
assumptions ensure that the estimand θ0 is well-defined and the estimator θ̂N is well-behaved.

Assumption 3.4.1 (Model). (a) EY 4
ij <∞.

(b) Ω as defined in lemma 3.6.3 is positive definite.

(c) The density function f and the function gf is (Q + 1) times differentiable, and f, gf
and their first (Q+ 1) derivatives are bounded, for some Q ≥ 2.

(d) lim||x||→∞[f(x) + |g(x)f(x)|] = 0 where || · || is the Euclidean norm.

(e) (Bi, Dij) conditional on F{j} has density fBi,Dij |F{j}
(
b, d|F{j}

)
, which is bounded to-

gether with its first two derivatives. E
[
Yij|Bi = b,Dij = d,F{j}

]
fBi,Dij |F{j}

(
b, d|F{j}

)
and its first two derivatives are bounded.

(f) (Cj, Dij) conditional on F{i} has density fCj ,Dij |Fi
(
c, d|F{i}

)
, which is bounded together

with its first two derivatives. E
[
Yij|Cj = c,Dij = d,F{i}

]
fCj ,Dij |F{i}

(
c, d|F{j}

)
and its

first two derivatives are bounded.

The Ω in assumption 3.4.1 Part (b) is the asymptotic variance of the second-order terms in
the Hoeffding decomposition. This assumption says this second-order term is nondegenerate.
We are not imposing assumptions on the first-order term. The asymptotic variance of the
first-order term

Σ := Var

(
E
[

∂

∂Xij

gf(Xij) +
∂

∂Xji

gf(Xji)− Yij
∂

∂Xij

f (Xij)− Yji
∂

∂Xji

f (Xji)

∣∣∣∣F{i}])
is allowed to be not strictly positive definite. In this sense, we are allowing for first-order
degeneracy.

The other assumptions are mostly technical. They ensures relevant smoothness and
boundedness.

Assumption 3.4.2 (Kernel). (a) K follows a product form: for x = (b, c, d) where b ∈
RdB , c ∈ RdC , d ∈ RdD , K(x) = KB(b)KC(c)KD(d).

∫
RdB KB(b)db =

∫
RdC KC(c)dc =∫

RdD KD(d)dd = 1

(b) KB, KC , KD are even and differentiable. K and its first derivative are bounded.

(c)
∫
K̇(u)K̇(u)′du is positive definite where K̇(u) = ∂

∂u
K(u).

(d) For some Q > 2,
∫
Rd |K(u)|

(
1 + ||u||Q

)
du+

∫
||K̇(u)|| (1 + ||u||2) du <∞, and∫

RdX
ul11 · · ·u

ldX
dX
K(u)du =

{
1, if l1 = · · · = ldX = 0

0, if (l1, . . . , ld)
′ ∈ ZdX+ and l1 + · · ·+ ldX < Q
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The assumptions on the kernel are standard. We use multiplicative kernels, K(x) =
KB(b)KC(c)KD(d), to simplify the derivation.

Assumption 3.4.3 (Bias). Nh
Q+

dB
2

N → 0.

This assumption is equivalent to N−2h−dBN � h2Q
N , which ensures the square bias of the

estimator is always asymptotically smaller than the second-order term UN,2 in the Hoeffding
decomposition.

Assumption 3.4.4 (Asymptotically Quadratic). Nh
dB+dD+2

2
N →∞

This condition ensures the estimator θ̂N is asymptotically equivalent to a second-order
U-statistic, the sum of its first-order and second-order terms in the Hoeffding decomposi-
tion. This condition is weaker than the more frequently seen asymptotic linearity condition,
which would imply the estimator θ̂N is asymptotically equivalent to a sample mean, a first-
order U-statistic. To see this more closely, note the condition for asymptotic linearity is

Nh
max

{
dB+2,

dB+2dD+2

3

}
N → ∞. Because dB+dD+2

2
= 1

4
(dB + 2) + 3

4

(
dB+2dD+2

3

)
is a convex

combination of dB + 2 and dB+2dD+2
3

, assumption 3.4.4 is a weakly weaker condition. Also,
this condition ensures the second-order term always dominates the fourth-order term both.

Under nondegeneracy, this condition can be weaken to Nh
min

{
dB+dD+2

2
,
dB+2dD+2

3

}
N →∞.

3.5 Asymptotic Quadratic Approximation and

Asymptotic Normality

This section presents the main theoretical results. The final goals are to show the asymptotic
normality of the estimator and [to present a consistent variance estimator].

Both lemma 3.5.1, 3.5.2 below are imported from PSS. Lemma 3.5.1 gives us the repre-
sentation motivating the estimator. Lemma 3.5.2 bounds the order of magnitude of the bias.
Their proofs are in the appendix.

Lemma 3.5.1 (Representation). Given Assumptions 3.4.1,

θ0 := E
(
f(X)

∂g(X)

∂X

)
= −2E

(
Y
∂f(X)

∂X

)
Lemma 3.5.2 (Bias). Given Assumption 3.4.1, 3.4.2 and hN → 0,

Eθ̂N − θ = O
(
hQN

)
Lemma 3.5.3 below involves calculation specific for the dyadic data setup. The de-

tail of the calculation is in the appendix. The key task in the calculation is figuring out
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the order of magnitude of the second moments of E
[
pijlm(hN)|F{i}

]
, E
[
pijlm(hN)|F{i,j}

]
,

E
[
pijlm(hN)|F{i,j,l}

]
, and pijlm(hN). Taking conditional expectation of the kernel object

pijlm(hN) given some information set means smoothing (integrating) over variables condi-
tionally continuously distributed while keeping variables fully pinned down by these infor-
mation fixed. Intuition tells us conditional expectation given less information has smaller
order of magnitude because more conditionally continuously distributed variables are get-
ting smoothed over. The support conditions specified in Assumption 3.4.1 on the regressor
Xij = (Bi, Cj, Dij) solidify this intuition by making sure all the variables not fully pinned
down to be conditionally continuously distributed.

Lemma 3.5.3 (Order of Magnitude of the Hoeffding Decomposition). Given Assumption
3.4.1, 3.4.2, and hN → 0, the order of magnitude of terms in the Hoeffding decomposition
are

Var
(√

NUN,1

)
=

1

16
Σ +O

(
hQN

)
(3.6)

Var


√(

N

2

)h
dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

UN,2(hN)

 =
1

36
Ω +O (hN) (3.7)

Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

UN,3

 = O
(
N−3

)
(3.8)

Var (UN,4) = N−4O
(
h
−(dX+2)
N

)
. (3.9)

Proof of this lemma is in the appendix. Notice that these results crucially depend on
the presence of monadic regressors. Without the presence of monadic regressors, the con-

vergence rate of the dyadic regressor will be parametric (either
√
N or

√(
N
2

)
depending on

(non)degeneracy).
Notice the variance of the Hajek projection 4UN,1 is of order O(N−1) under nondegen-

eracy. The variance of the second-order term UN,2 is always larger than that of the third-
order term UN,3 by order of N . The relative magnitude of the fourth-order term versus the
second-order term depends on the bandwidth: only when the bandwidth is very small the
fourth-order term is larger. When the bandwidth is large, the Hajek projection captures the
leading variance. This together with Lindberg-Levy CLT leads to the result of first-order
asymptotic normality. This result will technically break if the U-statistic is degenerate, in
which case the first-order terms vanish. The concern of degeneracy motivates us to explore
a more robust asymptotic approximation using a quadratic form, which incorporates the
second-order terms in addition to the first-order terms. Verifying conditions of a martingale
CLT in Eubank and Wang (1999) gives us asymptotic normality of the quadratic approxi-
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mation, which holds under both degeneracy and nondegeneracy and across a broader range
of bandwidth sequences (Cattaneo et al., 2014b).

Lemma 3.5.4 (CLT). Given Assumption 3.4.1, 3.4.2, 3.4.3, 3.4.4,
√
N4UN,1(hN)

√(
N
2

)h
dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 6UN,2(hN)

 N

((
0
0

)
,

(
Σ 0
0 Ω

))
. (3.10)

Proof. Our proof strategy follows that of CCJ (2014).

To prepare, notice lemma 3.6.2 shows that E[pijlm(hN)|F{i}] = 1
4
ηi + O

(
hQN

)
, in which

ηi = E
[
− ∂
∂Xij

gf(Xij)− ∂
∂Xji

gf(Xji) + Yij
∂

∂Xij
f (Xij) + Yji

∂
∂Xji

f (Xji)

∣∣∣∣F{i}]. ηi doesn’t de-

pend on N . This implies

√
N4UN,1(hN) =

1√
N

N∑
i=1

(ηi − Eηi) +OP

(
hQN

)
,

because

√
N4UN,1(hN)− 1√

N

N∑
i=1

(ηi − Eηi)

=
1√
N

N∑
i=1

[
4E
[
pijlm(hN)|F{i}

]
− ηi − (4E[pijlm(hN)]− Eηi)

]
whose variance is bounded above by O

(
h2Q
N

)
.

The multivariate CLT (3.10) holds once

√
N4uN,1 +

√(
N

2

)
6uN,2(hN) N

(
0, σ2 + ω2

)
(3.11)

for any λ1 ∈ RdX and λ2 ∈ RdX , where

uN,1 =
1

N

N∑
i=1

li, li = λ′1(ηi − Eηi), σ2 = λ′1Σλ1,

uN,2 =

(
N

2

)−1∑
i<j

wN,ij, wN,ij = λ′2

h
dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 q2,ij(hN), ω2 = λ′2Ωλ2.
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Assuming λ1 and λ2 are both none zero, we establish (3.11) by invoking the theorem of
Eubank and Wang (1999). In our notation, conditions (1.3)-(1.6) of Eubank and Wang
(1999) are

(
N

2

)−1

max
1≤j≤N

N∑
i=1

E
[
w2
N,ij

]
→ 0 (3.12)(

N

2

)2

Eu4
N,2 → 3ω4 (3.13)

N−2

N∑
i=1

E
[
l4i
]
→ 0 (3.14)

(
N

2

)−1

N−1E

( N∑
j=2

j−1∑
i=1

E
(
wN,ijlj|F{1,...,j−1}

))2
→ 0. (3.15)

Because of exchangeability, (3.12) is equivalent to N−1E
[
w2
N,ij

]
→ 0, which is satisfied

because of

E
[
w2
N,ij

]
= λ′2 Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 q2,ij(hN)

λ2 → λ′2Ωλ2 = ω2 (3.16)

by lemma (3.6.4).
By de Jong (1987) Prop. 3.1, condition (3.13) is satisfied if

N−2E[w4
N,ij]→ 0 (3.17)

N−1E[w2
N,ijw

2
N,il]→ 0 (3.18)

E[wN,ijwN,ilwN,jmwN,lm]→ 0 (3.19)

E[w2
N,ij]→ ω2 (3.20)

We verify each of the condition one by one.
(3.17): E[w4

N,ij] = h−dBN by change of variable and (3.17) holds if N2hdBN → ∞, which is
ensured by assumption 3.4.4.
(3.18): E[w2

N,ijw
2
N,il] = E[E[w2

N,ij|F{i}]2] = O(1) and (3.18) holds because N−1O(1) = o(1).

(3.19): E[wN,ijwN,ilwN,jmwN,lm] = E[E[wN,ijwN,il|F{j,l}]2] = hdN → 0. This can be shown
using change of variable.
(3.20): This is the same as (3.16).
Condition (3.14) is ensured by E[l4i ] = O(1) and N−2E[l4i ] = N−2O(1) = o(1).

Condition (3.15) is equivalent to E
[(
E
(
wN,ijlj|F{i}

))2
]
→ 0. Since E

(
wN,ijlj|F{i}

)
= h

dB
2
N

by integration by parts and bounding arguments, (3.15) is satisfied. �
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Now we are ready to prove the asymptotic normality result based on asymptotic quadratic
approximation.

Theorem 3.5.5 (Asymptotic Quadratic Approximation). Given Assumptions 3.4.1, 3.4.2,
3.4.3, 3.4.4, the second-order approximation of UN dominates the approximation error,

UN − UN,0 (hN) = [4UN,1 (hN) + 6UN,2 (hN)] (1 + oP (1)) .

And θ̂N is asymptotically normal

Var
(
θ̂N

)−1/2 (
θ̂N − θ0

)
 N (0, IdX ) ,

in which the variance

Var
(
θ̂N

)
= 4

N−1Σ +

(
N

2

)−1

h−dBN

h−1
N 0 0
0 h−1

N 0
0 0 1

Ω

h−1
N 0 0
0 h−1

N 0
0 0 1

 (1 + o(1))

Proof. Remember by definition the estimator θ̂N = −2UN . The Hoeffding decompositon of
UN is

UN(hN)− UN,0(hN) = 4UN,1(hN) + 6UN,2(hN) + 4UN,3(hN) + UN,4(hN).

UN,1(hN), UN,2(hN), UN,3(hN), UN,4(hN) are all mean zero. They are uncorrelated with each
other and their variance are calculated in lemma 3.5.3.

First, we will show the bias is asymptotically negligible. Notice

θ̂N − θ0 = −2UN − θ0

= −2(UN − UN,0) + (−2UN,0 − θ0) ,

in which the first part is the deviation from the mean and the second part is the bias. Lemma

3.5.2 tells us the bias square is bounded above by O
(
h2Q
N

)
. Lemma 3.5.3 together with

assumption 3.4.1 (b) tells us the variance of the second-order term Var (UN,2) is of order
at least N−2hdBN . These together with the bandwidth condition assumption 3.4.3 ensures
(−2UN,0 − θ0)2 = o (Var (UN,2)) and (−2UN,0 − θ0)2 = o (Var (UN)). As a result, bias plays
an asymptotically negligible role.

Var
(
θ̂N

)−1/2 (
θ̂N − θ0

)
= −Var (UN)−1/2 (UN − UN,0)− Var (UN)−1/2 (UN,0 +

θ0

2
)

= −Var (UN)−1/2 (UN − UN,0) + o(1).

Second, we will show CLT holds for the centered statistic UN − UN,0.
Under Assumption 3.4.1 (b) about second order nondegeneracy and assumption 3.4.4,

lemma 3.5.3 ensures the second-order term dominates the third-order term and the fourth-
order term Var (UN,3(hN)) = o (Var (UN,2(hN))) and Var (UN,4(hN)) = o (Var (UN,2(hN))).



CHAPTER 3. DENSITY-WEIGHTED AVERAGE DERIVATIVES 73

Consequently, the sum of the first- and second-order term dominates in the Hoeffding de-
composition Var (4UN,3 + UN,4) = o (Var (4UN,1 + 6UN,2)). Hence,

Var (UN)−1/2 (UN − UN,0)

= Var (4UN,1 + 6UN,2 + 4UN,3 + UN,4)−1/2 (4UN,1 + 6UN,2 + 4UN,3 + UN,4)

= [Var (4UN,1 + 6UN,2)]−1/2 (4UN,1 + 6UN,2) + o(1).

CLT in lemma 3.5.4 together with the fact that

4UN,1 + 6UN,2 = N−1/24
√
NUN,1

+

(
N

2

)−1/2

h
− dB+2

2
N 0 0

0 h
− dB+2

2
N 0

0 0 h
− dB

2
N


√(

N

2

)h
dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 6UN,2

implies the CLT holds for 4UN,1 + 6UN,2: Var (UN)−1/2 (UN − UN,0) N(0, IdX ). Hence,

Var
(
θ̂N

)−1/2 (
θ̂N − θ0

)
 N(0, IdX ).

�

This robust asymptotic normality result based on asymptotic quadratic approximation
suggests the possibility of constructing a normality-based robust confidence interval. The
only ingredient left to be filled is a consistent variance estimator. We propose a variance
estimator in the following. Though we do not have a formal consistency result for this
estimator, we conjecture that this estimator will be consistent under similar to that in
theorem 3.5.5.

Variance Estimation

Motivated by the variance expression

1

4
Var

(
θ̂N

)
=

(
N

4

)−2 ∑
i1<j1<l1<m1

∑
i2<j2<l2<m2

Cov (pi1j1l1m1(hN), pi2j2l2m2(hN)) ,

we propose the following analog estimator

1

4
V̂
(
θ̂N

)
=

(
N

4

)−2 ∑
i1<j1<l1<m1

∑
i2<j2<l2<m2

{
d (i1, j1, l1,m1, i2, j2, l2,m2)

· [pi1j1l1m1(hN)− UN ] [pi2j2l2m2(hN)− UN ]′
}
.
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Consistency result of this estimator is left for further research.
To prove consistency, we will decompose this variance estimator into four parts each

corresponding to one term in the Hoeffding decomposition.

d (i1, j1, l1,m1, i2, j2, l2,m2) = d1 (i1, j1, l1,m1, i2, j2, l2,m2) + d2 (i1, j1, l1,m1, i2, j2, l2,m2)

+ d3 (i1, j1, l1,m1, i2, j2, l2,m2) + d4 (i1, j1, l1,m1, i2, j2, l2,m2) ,

where

d1 (i1, j1, l1,m1, i2, j2, l2,m2) = 1 (|{i1, j1, l1,m1} ∩ {i2, j2, l2,m2}| = 1)

d2 (i1, j1, l1,m1, i2, j2, l2,m2) = 1 (|{i1, j1, l1,m1} ∩ {i2, j2, l2,m2}| = 2)

d3 (i1, j1, l1,m1, i2, j2, l2,m2) = 1 (|{i1, j1, l1,m1} ∩ {i2, j2, l2,m2}| = 3)

d4 (i1, j1, l1,m1, i2, j2, l2,m2) = 1 (|{i1, j1, l1,m1} ∩ {i2, j2, l2,m2}| = 4) .

Write V̂ (UN) into four parts.

V̂ (UN) = V̂1 + V̂2 + V̂3 + V̂4

V̂1 =

(
N

4

)−2 ∑
i1<j1<l1<m1

∑
i2<j2<l2<m2

{
d1 (i1, j1, l1,m1, i2, j2, l2,m2)

· [pi1j1l1m1(hN)− UN ] [pi2j2l2m2(hN)− UN ]′
}

V̂2 =

(
N

4

)−2 ∑
i1<j1<l1<m1

∑
i2<j2<l2<m2

{
d2 (i1, j1, l1,m1, i2, j2, l2,m2)

· [pi1j1l1m1(hN)− UN ] [pi2j2l2m2(hN)− UN ]′
}

V̂3 =

(
N

4

)−2 ∑
i1<j1<l1<m1

∑
i2<j2<l2<m2

{
d3 (i1, j1, l1,m1, i2, j2, l2,m2)

· [pi1j1l1m1(hN)− UN ] [pi2j2l2m2(hN)− UN ]′
}

V̂4 =

(
N

4

)−2 ∑
i1<j1<l1<m1

∑
i2<j2<l2<m2

{
d4 (i1, j1, l1,m1, i2, j2, l2,m2)

· [pi1j1l1m1(hN)− UN ] [pi2j2l2m2(hN)− UN ]′
}
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We’d like to show

NV̂1
P→ Σ (3.21)(

N

2

)
hdBN

hN 0 0
0 hN 0
0 0 1

 V̂2

hN 0 0
0 hN 0
0 0 1

 P→ Ω (3.22)

V̂3 + V̂4 = oP

N−1Σ +

(
N

2

)−1

h−dBN

h−1
N 0 0
0 h−1

N 0
0 0 1

Ω

h−1
N 0 0
0 h−1

N 0
0 0 1

 (3.23)

Completion of this proof outline is left for further research.

3.6 Appendix: Proofs

This Appendix contains proofs of results in the main text of Chapter 3.

Proof of Lemma 3.5.1

Proof. Partition x into its first coordinate vs the rest, x = (x1, x
′
−1)′,

E
(
f(X)

∂g(X)

∂X

)
=

∫
f 2(x)

∂g(x)

∂x1

dx

=

∫
dx0

∫
f 2(x1, x−1)

∂g(x1, x−1)

∂x1

dx1

= −2

∫
dx0

∫
f(x1, x−1)

∂f(x1, x−1)

∂x1

g(x1, x−1)dx1

= −2E
(
Y
∂f(X)

∂X

)
,

where the third equality follows by integration by part and the limit condition∫
f 2(x1, x−1)

∂g(x1, x−1)

∂x1

dx1 = g(x1, x−1)f 2(x1, x−1)|+∞−∞

−
∫

2f(x1, x−1)
∂f(x1, x−1)

∂x1

g(x1, x−1)dx1

= −
∫

2f(x1, x−1)
∂f(x1, x−1)

∂x1

g(x1, x−1)dx1.

�
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Proof of Lemma 3.5.2

Proof. Use the following notation to distinguish the first coordinate from the rest in Xij =
(Xij,1, X

′
ij,−1)′.

E
[
Yij

∂

∂Xij,1

1

hdXN
K

(
Xij −Xlm

hN

)]
= E

[
g (Xij)E

[
∂

∂Xij,1

1

hdXN
K

(
Xij −Xlm

hN

)
|Xij

]]
= E

[
g (Xij)

(
∂

∂Xij,1

f(Xij) +O
(
hQ
))]

= E
[
Yij

∂

∂Xij,1

f(Xij)

]
+O

(
hQ
)
,

which implies Eθ̂N = θ +O
(
hQ
)
. The second equality follows by

E
[

∂

∂Xij,1

1

hdXN
K

(
Xij −Xlm

hN

)
|Xij

]
=

∫
∂

∂Xij,1

1

hdXN
K

(
Xij − x
hN

)
f(x)dx

=

∫ ∫
1

hN

∂

∂u1

K (u1, u−1) f(Xij,1 − hNu1, Xij,−1 − hNu−1)du1du−1

=

∫
K (u)

∂

∂(Xij,1 − hNu)
f(Xij − hNu)du

=
∂

∂Xij,1

f(Xij) +O
(
hQ
)
,

in which the third equality follows by integration by part:∫
1

hN

∂

∂u1

K (u1, u−1) f(Xij,1 − hNu1, Xij,−1 − hNu−1)du1

=
1

hN
K(u1, u−1)f(Xij,1 − hNu1, Xij,−1 − hNu−1)|+∞−∞

+

∫
K(u1, u−1)

∂

∂(Xij,1 − hNu)
f(Xij,1 − hNu1, Xij,−1 − hNu−1)du1

=

∫
K(u1, u−1)

∂

∂(Xij,1 − hNu)
f(Xij,1 − hNu1, Xij,−1 − hNu−1)du1

�

Proof of Lemma 3.5.3

To prove lemma 3.5.3, we will need to calculate E
[
pijlm(h)|F{i}

]
, E

[
pijlm(h)|F{i,j}

]
,

E
[
pijlm(h)|F{i,j,l}

]
. Toward this end, we will first calculate the conditional expectations of
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δijlm(h) in lemma 3.6.1. Then we use these result to calculate and bound corresponding condi-
tional second moments of pijlm(h) in lemma 3.6.3 and variance of qN,1,i, qN,2,ij, qN,3,ijl, qN,4,ijlm
in lemma 3.6.4. Lemma 3.5.3 is a natural result of lemma 3.6.4.

In the following, for a vector V =

(
v1

v2

)
, we use V 2 to denote element-wise square

V 2 =

(
v1

v2

)2

=

(
v2

1

v2
2

)
.

Lemma 3.6.1. Under Assumption 3.4.1, 3.4.2, and hN → 0,

(a) E
[
δijlm(hN)

∣∣∣F{j,l,m}] =


1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂Bl

{
E
[
Yij|Bi = Bl, Dij = Dlm,F{j}

]
fBi,Dij |F{j}

(
Bl, Dlm|F{j}

)}
+O (hN)

]
1

h
dC+1

N

K̇C

(
Cj−Cm
hN

) [
E
[
Yij|Bi = Bl, Dij = Dlm,F{j}

]
fBi,Dij |F{j}

(
Bl, Dlm|F{j}

)
+O (hN)

]
1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂Dlm

{
E
[
Yij|Bi = Bl, Dij = Dlm,F{j}

]
fBi,Dij |F{j}

(
Bl, Dlm|F{j}

)}
+O (hN)

]
.

,

E
[
δijlm(hN)

∣∣∣F{i,l,m}] =


1

h
dB+1

N

K̇B

(
Bi−Bl
hN

) [
E
[
Yij|Cj = Cm, Dij = Dlm,F{i}

]
fCj ,Dij |F{i}

(
Cm, Dlm|F{i}

)
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂Cm

{
E
[
Yij|Cj = Cm, Dij = Dlm,F{i}

]
fCj ,Dij |F{i}

(
Cm, Dlm|F{i}

)}
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂Dlm

{
E
[
Yij|Cj = Cm, Dij = Dlm,F{i}

]
fCj ,Dij |F{i}

(
Cm, Dlm|F{i}

)}
+O (hN)

]
.

,

E
[
δijlm(hN)

∣∣∣F{i,j,m}] =


1

h
dC
N

KC

(
Cj−Cm

h

)
Yij

[
∂
∂Bi

fDlm,Bl|F{m}
(
Dij, Bi|F{m}

)
+O (hN)

]
1

h
dC+1

N

K̇C

(
Cj−Cm

h

)
Yij

[
fDlm,Bl|F{m}

(
Dij, Bi|F{m}

)
+O (hN)

]
1

h
dC
N

KC

(
Cj−Cm

h

)
Yij

[
∂

∂Dij
fDlm,Bl|F{m}

(
Dij, Bi|F{m}

)
+O (hN)

]
,

E
[
δijlm(hN)

∣∣∣F{i,j,l}] =


1

h
dB+1

N

K̇B

(
Bi−Bl
h

)
Yij

[
fDlm,Cm|F{l}

(
Dij, Cj|F{l}

)
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
h

)
Yij

[
∂

∂Cm
fDlm,Cm|F{l}

(
Dij, Cj|F{l}

)
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
h

)
Yij

[
∂

∂Dlm
fDlm,Cm|F{l}

(
Dij, Cj|F{l}

)
+O (hN)

]
.

(b) E
[
δijlm(hN)

∣∣∣F{i,j}] = Yij
∂

∂Xij
f(Xij) +O

(
hQN

)
,

E
[
δijlm(hN)

∣∣∣F{i,l}] =


1

h
dB+1

N

K̇B

(
Bi−Bl
hN

) [
E
[
Yij|Cj − Cm = 0, Dij −Dlm = 0,F{i,l}

]
fCj−Cm,Dij−Dlm|Fil(0, 0|F{i,l}) +O(hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂t
|t=0E

[
Yij|Cj − Cm = t,Dij −Dlm = 0,F{i,l}

]
fCj−Cm,Dij−Dlm|F{i,l}(t, 0|F{i,l}) +O(hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂t
|t=0E

[
Yij|Cj − Cm = 0, Dij −Dlm = t,F{i,l}

]
fCj−Cm,D{i,l}−Dlm|F{i,l}(0, t|F{i,l}) +O(hN)

]
,

E
[
δijlm(hN)

∣∣∣F{i,m}] = − ∂
∂t

∣∣∣∣
t=0

{
E
[
Yij|Xij −Xlm = t,F{i,m}

]
fXij−Xlm|F{i,m}

(
t|F{i,m}

)}
+

O (hN),

E
[
δijlm(hN)

∣∣∣F{j,l}] = − ∂
∂t

∣∣∣∣
t=0

{
E
[
Yij|Xij −Xlm = t,F{j,l}

]
fXij−Xlm|F{j,l}

(
t|F{j,l}

)}
+

O (hN) .,

E
[
δijlm(hN)

∣∣∣F{j,m}] =


1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂t
|t=0E

[
Yij|Bi −Bl = t,Dij −Dlm = 0,F{j,m}

]
fBi−Bl,Dij−Dlm|F{j,m}(t, 0|F{j,m}) +O(hN)

]
1

h
dC+1

N

K̇C

(
Cj−Cm
hN

) [
E
[
Yij|Bi −Bl = 0, Dij −Dlm = 0,F{j,m}

]
fBi−Bl,Dij−Dlm|F{j,m}(0, 0|F{j,m}) +O(hN)

]
1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂t
|t=0E

[
Yij|Bi −Bl = 0, Dij −Dlm = t,F{j,m}

]
fBi−Bl,Dij−Dlm|F{j,m}(0, t|F{j,m}) +O(hN)

]
,

E
[
δijlm(hN)

∣∣∣F{l,m}] = − ∂
∂Xlm

gf(Xlm) +O
(
hQN

)
.



CHAPTER 3. DENSITY-WEIGHTED AVERAGE DERIVATIVES 78

(c) E
[
δijlm(hN)

∣∣∣F{i}] = E
[
Yij

∂
∂Xij

f(Xij)
∣∣∣F{i}]+O

(
hQN

)
,

E
[
δijlm(hN)

∣∣∣F{j}] = E
[
Yij

∂
∂Xij

f(Xij)
∣∣∣F{j}]+O

(
hQN

)
,

E
[
δijlm(hN)

∣∣∣F{l}] = E
[
− ∂
∂Xlm

gf (Xlm)
∣∣∣F{l}]+O

(
hQN

)
,

E
[
δijlm(hN)

∣∣∣F{m}] = E
[
− ∂
∂Xlm

gf (Xlm)
∣∣∣F{m}]+O

(
hQN

)
.

Proof. (a)

E
[
δijlm(hN)

∣∣∣F{i,j,m}]
= YijE

[
∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{i,j,m}]
= YijE

[
∂

∂Xij

1

hdXN
KB

(
Bi −Bl

h

)
KC

(
Cj − Cm

h

)
KD

(
Dij −Dlm

h

) ∣∣∣F{i,j,m}]
= Yij

∂

∂Xij

{
1

hdCN
KC

(
Cj − Cm

h

)
· E
[

1

hdB+dD
N

KB

(
Bi −Bl

h

)
KD

(
Dij −Dlm

h

) ∣∣∣F{i,j,m}]}
= Yij

∂

∂Xij

{
1

hdCN
KC

(
Cj − Cm

h

)[
fDlm,Bl|Fm

(
Dij, Bi|F{m}

)
+O (hN)

]}

=


1

h
dC
N

KC

(
Cj−Cm

h

)
Yij

[
∂
∂Bi

fDlm,Bl|Fm
(
Dij, Bi|F{m}

)
+O (hN)

]
1

h
dC+1

N

K̇C

(
Cj−Cm

h

)
Yij
[
fDlm,Bl|Fm

(
Dij, Bi|F{m}

)
+O (hN)

]
1

h
dC
N

KC

(
Cj−Cm

h

)
Yij

[
∂

∂Dij
fDlm,Bl|Fm

(
Dij, Bi|F{m}

)
+O (hN)

]
 .

Similarly,

E
[
δijlm(hN)

∣∣∣F{i,j,l}] =


1

h
dB+1

N

K̇B

(
Bi−Bl
h

)
Yij
[
fDlm,Cm|Fl

(
Dij, Cj|F{l}

)
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
h

)
Yij

[
∂

∂Cm
fDlm,Cm|Fl

(
Dij, Cj|F{l}

)
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
h

)
Yij

[
∂

∂Dlm
fDlm,Cm|Fl

(
Dij, Cj|F{l}

)
+O (hN)

]
 .
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E
[
δijlm(hN)

∣∣∣F{j,l,m}]
= E

[
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{j,l,m}]

=


1

h
dC
N

KC

(
Cj−Cm
hN

)
E
[
Yij

1

h
dB+dD
N

∂
∂Bi

KB

(
Bi−Bl
hN

)
KD

(
Dij−Dlm

hN

) ∣∣∣F{j,l,m}]
1

h
dC+1

N

K̇C

(
Cj−Cm
hN

)
E
[
Yij

1

h
dB+dD
N

KB

(
Bi−Bl
hN

)
KD

(
Dij−Dlm

hN

) ∣∣∣F{j,l,m}]
1

h
dC
N

KC

(
Cj−Cm
hN

)
E
[
Yij

1

h
dB+dD
N

KB

(
Bi−Bl
hN

)
∂

∂Dij
KD

(
Dij−Dlm

hN

) ∣∣∣F{j,l,m}]



=


1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂Bl

{
E
[
Yij|Bi = Bl, Dij = Dlm,F{j}

]
fBi,Dij |F{j}

(
Bl, Dlm|F{j}

)}
+O (hN)

]
1

h
dC+1

N

K̇C

(
Cj−Cm
hN

) [
E
[
Yij|Bi = Bl, Dij = Dlm,F{j}

]
fBi,Dij |F{j}

(
Bl, Dlm|F{j}

)
+O (hN)

]
1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂Dlm

{
E
[
Yij|Bi = Bl, Dij = Dlm,F{j}

]
fBi,Dij |F{j}

(
Bl, Dlm|F{j}

)}
+O (hN)

]
 .

Similarly,

E
[
δijlm(hN)

∣∣∣F{i,l,m}]

=


1

h
dB+1

N

K̇B

(
Bi−Bl
hN

) [
E
[
Yij|Cj = Cm, Dij = Dlm,F{i}

]
fCj ,Dij |F{i}

(
Cm, Dlm|F{i}

)
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂Cm

{
E
[
Yij|Cj = Cm, Dij = Dlm,F{i}

]
fCj ,Dij |F{i}

(
Cm, Dlm|F{i}

)}
+O (hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂Dlm

{
E
[
Yij|Cj = Cm, Dij = Dlm,F{i}

]
fCj ,Dij |F{i}

(
Cm, Dlm|F{i}

)}
+O (hN)

]
 .

(b)

E
[
δijlm(hN)

∣∣∣F{i,j}] = E
[
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{i,j}]
= YijE

[
∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{i,j}]
= Yij

∂

∂Xij

f(Xij) +O
(
hQN

)
.
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E
[
δijlm(hN)

∣∣∣F{i,l}]
= E

[
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{i,l}]
= E

[
Yij

∂

∂Xij

1

hdXN
KB

(
Bi −Bl

hN

)
KC

(
Cj − Cm
hN

)
KD

(
Dij −Dlm

hN

) ∣∣∣F{i,l}]

=


1

h
dB+1

N

K̇B

(
Bi−Bl
hN

)
E
[
Yij

1

h
dC+dD
N

KC

(
Cj−Cm
hN

)
KD

(
Dij−Dlm

hN

) ∣∣∣F{i,l}]
1

h
dB
N

KB

(
Bi−Bl
hN

)
E
[
Yij

1

h
dC+dD
N

∂
∂Cj

KC

(
Cj−Cm
hN

)
KD

(
Dij−Dlm

hN

) ∣∣∣F{i,l}]
1

h
dB
N

KB

(
Bi−Bl
hN

)
E
[
Yij

1

h
dC+dD
N

KC

(
Cj−Cm
hN

)
∂

∂Dij
KD

(
Dij−Dlm

hN

) ∣∣∣F{i,l}]



=


1

h
dB+1

N

K̇B

(
Bi−Bl
hN

) [
E
[
Yij|Cj − Cm = 0, Dij −Dlm = 0,F{i,l}

]
fCj−Cm,Dij−Dlm|Fil(0, 0|F{i,l}) +O(hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂t
|t=0E

[
Yij|Cj − Cm = t,Dij −Dlm = 0,F{i,l}

]
fCj−Cm,Dij−Dlm|F{i,l}(t, 0|F{i,l}) +O(hN)

]
1

h
dB
N

KB

(
Bi−Bl
hN

) [
− ∂
∂t
|t=0E

[
Yij|Cj − Cm = 0, Dij −Dlm = t,F{i,l}

]
fCj−Cm,D{i,l}−Dlm|F{i,l}(0, t|F{i,l}) +O(hN)

]


Similarly,

E
[
δijlm(hN)

∣∣∣F{j,m}]
= E

[
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{j,m}]
= E

[
Yij

∂

∂Xij

1

hdXN
KB

(
Bi −Bl

hN

)
KC

(
Cj − Cm
hN

)
KD

(
Dij −Dlm

hN

) ∣∣∣F{j,m}]

=


1

h
dC
N

KC

(
Cj−Cm
hN

)
E
[
Yij

1

h
dB+dD
N

∂
∂Bi

KB

(
Bi−Bl
hN

)
KD

(
Dij−Dlm

hN

) ∣∣∣F{j,m}]
1

h
dC+1

N

K̇C

(
Cj−Cm
hN

)
E
[
Yij

1

h
dB+dD
N

KB

(
Bi−Bl
hN

)
KD

(
Dij−Dlm

hN

) ∣∣∣F{j,m}]
1

h
dC
N

KB

(
Cj−Cm
hN

)
E
[
Yij

1

h
dB+dD
N

KB

(
Bi−Bl
hN

)
∂

∂Dij
KD

(
Dij−Dlm

hN

) ∣∣∣F{j,m}]



=


1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂t
|t=0E

[
Yij|Bi −Bl = t,Dij −Dlm = 0,F{j,m}

]
fBi−Bl,Dij−Dlm|F{j,m}(t, 0|F{j,m}) +O(hN)

]
1

h
dC+1

N

K̇C

(
Cj−Cm
hN

) [
E
[
Yij|Bi −Bl = 0, Dij −Dlm = 0,F{j,m}

]
fBi−Bl,Dij−Dlm|F{j,m}(0, 0|F{j,m}) +O(hN)

]
1

h
dC
N

KC

(
Cj−Cm
hN

) [
− ∂
∂t
|t=0E

[
Yij|Bi −Bl = 0, Dij −Dlm = t,F{j,m}

]
fBi−Bl,Dij−Dlm|F{j,m}(0, t|F{j,m}) +O(hN)

]


E
[
δijlm(hN)

∣∣∣F{i,m}] = E
[
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{i,m}]
= − ∂

∂t

∣∣∣∣
t=0

{
E
[
Yij|Xij −Xlm = t,F{i,m}

]
fXij−Xlm|F{i,m}

(
t|F{i,m}

)}
+O (hN) .

E
[
δijlm(hN)

∣∣∣F{j,l}]
= E

[
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{j,l}]
= − ∂

∂t

∣∣∣∣
t=0

{
E
[
Yij|Xij −Xlm = t,F{j,l}

]
fXij−Xlm|F{j,l}

(
t|F{j,l}

)}
+O (hN) .
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E
[
δijlm(hN)

∣∣∣F{l,m}] = E
[
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{l,m}]
=

∫
1

hdXN

∂

∂x
K

(
x−Xlm

hN

)
gf(x)dx

= − ∂

∂Xlm

gf(Xlm) +O
(
hQN

)
.

(c)

E
[
δijlm(hN)

∣∣∣F{i}] = E
[
E
(
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{i,j}) ∣∣∣F{i}]
= E

[
Yij

∂

∂Xij

f(Xij)
∣∣∣F{i}]+O

(
hQN

)
.

Similarly, E
[
δijlm(hN)

∣∣∣F{j}] = E
[
Yij

∂
∂Xij

f(Xij)
∣∣∣F{j}]+O

(
hQN

)
.

E
[
δijlm(hN)

∣∣∣F{l}] = E
[
E
(
Yij

∂

∂Xij

1

hdXN
K

(
Xij −Xlm

hN

) ∣∣∣F{l,m}) ∣∣∣F{l}]
= E

[
− ∂

∂Xlm

gf (Xlm)
∣∣∣F{l}]+O

(
hQN

)
.

Similarly, E
[
δijlm(hN)

∣∣∣F{m}] = E
[
− ∂
∂Xlm

gf (Xlm)
∣∣∣F{m}]+O

(
hQN

)
.

�

Lemma (3.6.1) directly implies the following lemma (3.6.2).

Lemma 3.6.2. Under Assumption 3.4.1, 3.4.2, and hN → 0,

(a) E
(
pijlm(hN)|F{i}

)
= 1

4
ηi +O

(
hQN

)
, in which

ηi = E
[
− ∂
∂Xij

gf(Xij)− ∂
∂Xji

gf(Xji) + Yij
∂

∂Xij
f (Xij) + Yji

∂
∂Xji

f (Xji)

∣∣∣∣F{i}]
(b)
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E
[
12pijlm (hN) |F{i,j}

]
=Yij

∂

∂Xij

f(Xij) + Yji
∂

∂Xji

f(Xji)−
∂

∂Xij

gf(Xij)−
∂

∂Xji

gf(Xji) +O(hN)

− ∂

∂t

∣∣∣∣
t=0

{
E
[
Yil|Xil −Xmj = t,F{i,j}

]
fXil−Xmj |F{i,j}

(
t|F{i,j}

)}
− ∂

∂t

∣∣∣∣
t=0

{
E
[
Yjl|Xjl −Xmi = t,F{i,j}

]
fXjl−Xmi|F{i,j}

(
t|F{i,j}

)}
− ∂

∂t

∣∣∣∣
t=0

{
E
[
Ylj|Xlj −Xim = t,F{i,j}

]
fXlj−Xim|F{i,j}

(
t|F{i,j}

)}
− ∂

∂t

∣∣∣∣
t=0

{
E
[
Yli|Xli −Xjm = t,F{i,j}

]
fXli−Xjm|F{i,j}

(
t|F{i,j}

)}

+


1

h
dB+1

N

K̇B

(
Bi−Bj
hN

){
E
[
Yil|Cl − Cm = 0, Dil −Djm = 0,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

}
− 1

h
dB
N

KB

(
Bi−Bj
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Yil|Cl − Cm = t,Dil −Djm = 0,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
t, 0|F{i,j}

)}
+O(hN)

]
− 1

h
dB
N

KB

(
Bi−Bj
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Yil|Cl − Cm = 0, Dil −Djm = t,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, t|F{i,j}

)}
+O(hN)

]


+


1

h
dB+1

N

K̇B

(
Bj−Bi
hN

){
E
[
Yjl|Cl − Cm = 0, Djl −Dim = 0,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

}
− 1

h
dB
N

KB

(
Bj−Bi
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Yjl|Cl − Cm = t,Djl −Dim = 0,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
t, 0|F{i,j}

)}
+O(hN)

]
− 1

h
dB
N

KB

(
Bj−Bi
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Yjl|Cl − Cm = 0, Djl −Dim = t,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, t|F{i,j}

)}
+O(hN)

]


+


− 1

h
dC
N

KC

(
Ci−Cj
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Yli|Bl −Bm = t,Dli −Dmj = 0,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
t, 0|F{i,j}

)}
+O(hN)

]
1

h
dC+1

N

K̇C

(
Ci−Cj
hN

){
E
[
Yli|Bl −Bm = 0, Dli −Dmj = 0,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

}
− 1

h
dC
N

KC

(
Ci−Cj
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Yli|Bl −Bm = 0, Dli −Dmj = t,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, t|F{i,j}

)}
+O(hN)

]


+


− 1

h
dC
N

KC

(
Cj−Ci
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Ylj|Bl −Bm = t,Dlj −Dmi = 0,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
t, 0|F{i,j}

)}
+O(hN)

]
1

h
dC+1

N

K̇C

(
Cj−Ci
hN

){
E
[
Ylj|Bl −Bm = 0, Dlj −Dmi = 0,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

}
− 1

h
dC
N

KC

(
Cj−Ci
hN

)[
∂
∂t

∣∣∣∣
0

{
E
[
Ylj|Bl −Bm = t,Dlj −Dmi = t,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, t|F{i,j}

)}
+O(hN)

]
 .

Proof. These are direct results of lemma (3.6.1) and the definition of pijlm(hN) �

Lemma 3.6.3. Under Assumption 3.4.1, 3.4.2, and hN → 0,

(a) E
[
E
(
pijlm(hN)|F{i}

)2
]

= 1
16

Σ +O
(
hQN

)
, in which

Σ = Var

(
E
[
− ∂
∂Xij

gf(Xij)− ∂
∂Xji

gf(Xji) + Yij
∂

∂Xij
f (Xij) + Yji

∂
∂Xji

f (Xji)

∣∣∣∣F{i}])
(b) For dB = dC,

Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

E
[
pijlm(hN)|F{i,j}

] =
1

36
Ω +O(hN).
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in which Ω =

ΩBB ΩBC ΩBD

ΩT
BC ΩCC ΩCD

ΩT
BD ΩT

CD ΩDD

.

Ω =
1

4
lim
N→∞

1

hdBN
Var

RB

RC

RD

 ,

in which

RB = K̇B

(
Bi −Bj

hN

){
E
[
Yil|Cl − Cm = 0, Dil −Djm = 0,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, 0|F{i,j}

)
− E

[
Yjl|Cl − Cm = 0, Djl −Dim = 0,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

}
RC = K̇C

(
Ci − Cj
hN

){
E
[
Yli|Bl −Bm = 0, Dli −Dmj = 0,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, 0|F{i,j}

)
− E

[
Ylj|Bl −Bm = 0, Dlj −Dmi = 0,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

}
RD = −KB

(
Bi −Bj

hN

)[
∂

∂t

∣∣∣∣
0

{
E
[
Yil|Cl − Cm = 0, Dil −Djm = t,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Yjl|Cl − Cm = 0, Djl −Dim = t,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, t|F{i,j}

)}
+O(hN)

]
−KC

(
Ci − Cj
hN

)[
∂

∂t

∣∣∣∣
0

{
E
[
Yli|Bl −Bm = 0, Dli −Dmj = t,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Ylj|Bl −Bm = t,Dlj −Dmi = t,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, t|F{i,j}

)}
+O(hN)

]

ΩBB =
1

4

∫
K̇B (b) K̇>B (b) db

· E
{[

E
[
Yil|Cl − Cm = 0, Dil −Djm = 0,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, 0|F{i,j}

)
− E

[
Yjl|Cl − Cm = 0, Djl −Dim = 0,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, 0|F{i,j}

) ]2

|Bi −Bj = 0

}
· fBi−Bj(0) +O(hN)

ΩCC =
1

4

∫
K̇C (c) K̇>C (c) dc

· E
{[

E
[
Yli|Bl −Bm = 0, Dli −Dmj = 0,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, 0|F{i,j}

)
− E

[
Ylj|Bl −Bm = 0, Dlj −Dmi = 0,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, 0|F{i,j}

) ]2

|Ci − Cj = 0

}
· fCi−Cj(0) +O(hN)



CHAPTER 3. DENSITY-WEIGHTED AVERAGE DERIVATIVES 84

ΩDD

= lim
N→∞

1

4

1

hdBN
Var

(
−KB

(
Bi −Bj

hN

)[
∂

∂t

∣∣∣∣
0

{
E
[
Yil|Cl − Cm = 0, Dil −Djm = t,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Yjl|Cl − Cm = 0, Djl −Dim = t,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, t|F{i,j}

)} ]
−KC

(
Ci − Cj
hN

)[
∂

∂t

∣∣∣∣
0

{
E
[
Yli|Bl −Bm = 0, Dli −Dmj = t,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Ylj|Bl −Bm = t,Dlj −Dmi = t,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, t|F{i,j}

)} ])
=

1

4

∫
K2
B(b)dbE

([
∂

∂t

∣∣∣∣
0

{
E
[
Yil|Cl − Cm = 0, Dil −Djm = t,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Yjl|Cl − Cm = 0, Djl −Dim = t,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, t|F{i,j}

)} ]2∣∣∣∣Bi −Bj = 0

)
+

1

4

∫
K2
C(c)dcE

([
∂

∂t

∣∣∣∣
0

{
E
[
Yli|Bl −Bm = 0, Dli −Dmj = t,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Ylj|Bl −Bm = t,Dlj −Dmi = t,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, t|F{i,j}

)} ]2∣∣∣∣Ci − Cj = 0

)
+

1

4
lim
N→∞

2

hdBN
Cov

(
−KB

(
Bi −Bj

hN

)[
∂

∂t

∣∣∣∣
0

{
E
[
Yil|Cl − Cm = 0, Dil −Djm = t,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Yjl|Cl − Cm = 0, Djl −Dim = t,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, t|F{i,j}

)} ]
,

−KC

(
Ci − Cj
hN

)[
∂

∂t

∣∣∣∣
0

{
E
[
Yli|Bl −Bm = 0, Dli −Dmj = t,F{i,j}

]
fBl−Bm,Dli−Dmj |F{i,j}

(
0, t|F{i,j}

)}
+
∂

∂t

∣∣∣∣
0

{
E
[
Ylj|Bl −Bm = t,Dlj −Dmi = t,F{i,j}

]
fBl−Bm,Dlj−Dmi|F{i,j}

(
0, t|F{i,j}

)} ])
.

(c) Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

E
[
pN,ijlm|F{i,j,l}

] = O (1),

(d) Var (pijlm(hN)) = O
(
h
−(dX+2)
N

)
.

Proof. (a) This is a direct result of lemma (3.6.2)(a).

(b) The scaling is exactly making the variance asymptotically converging to a finite PSD
matrix. To see this, focus on the first dB components:
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1

hdBN
Var

(
K̇B

(
Bi −Bj

hN

){
E
[
Yil|Cl − Cm = 0, Dil −Djm = 0,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, 0|F{i,j}

)
− E

[
Yjl|Cl − Cm = 0, Djl −Dim = 0,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

})
=

1

hdBN
E
(
K̇B

(
Bi −Bj

hN

)
K̇>B

(
Bi −Bj

hN

)
{
E
[
Yil|Cl − Cm = 0, Dil −Djm = 0,F{i,j}

]
fCl−Cm,Dil−Djm|F{i,j}

(
0, 0|F{i,j}

)
− E

[
Yjl|Cl − Cm = 0, Djl −Dim = 0,F{i,j}

]
fCl−Cm,Djl−Dim|F{i,j}

(
0, 0|F{i,j}

)
+O(hN)

}2)
+O

(
hdB+2
N

)
= ΩBB + o(hN).

Calculation for the middle dC components and the last dD components are conceptu-
ally similar. The covariance term in the definition of ΩDD is written as a limit because
we know the covariance term is not exploding but pinning down its limit requires
additional specification of the joint support conditions of Bi − Bl, Ci − Cl, which we
don’t need to get into.

(c) Integration by parts, change of variable, and bounding arguments give us the result.

(d) Integration by part together with change of variable give us the result.

E
[
δijlm(hN)2

]
= E

[
Y 2
ij

1

h2dX
N

(
∂

∂Xij

K

(
Xij −Xlm

hN

))2
]

=
1

h2dX
N

E

[
E
(
Y 2
ij |Xij

)
E

[(
∂

∂Xij

K

(
Xij −Xlm

hN

))2 ∣∣∣∣Xij

]]

=
1

hdX+2
N

E

[
E
(
Y 2
ij |Xij

) ∫ ( ∂

∂u
K (u)

)2

f (Xij − hNu) du

]
= O

(
h
−(dX+2)
N

)
E
[
pijlm(hN)2

]
≤ E

[
δijlm(hN)2

]
= O

(
h
−(dX+2)
N

)
.

�

Lemma 3.6.4. Under Assumption 3.4.1, 3.4.2, and hN → 0,

(a) Var (q1,i(hN)2) = 1
16

Σ +O
(
hQN

)
,
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(b) Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 q2,ij(hN)

 = 1
36

Ω +O (hN),

(c) Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 q3,ijl(hN)

 = O(1),

(d) Var (q4,ijlm(hN)) = O
(
h
−(dX+2)
N

)
.

Proof. (a) Var (q1,i(hN)) = Var
(
E
(
pijlm(hN)|F{i}

))
= 1

16
Σ +O

(
hQN

)
.

(b) Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 q2,ij(hN)

 = Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

E
(
pijlm(hN)|F{i,j}

)− 2 Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

E
(
pijlm(hN)|F{i}

)
=

1

36
Ω +O(hN).

(c) Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 q3,ijl(hN)

 ≤ Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

E
(
pijlm(hN)|F{i,j,l}

) = O(1).

(d) Similarly, Var (q4,ijlm(hN)) ≤ Var (pijlm(hN)) = O
(
h
−(dX+2)
N

)
.

�

Proof of lemma 3.5.3

Proof. These are results of lemma 3.6.4 together with the facts

Var (UN,1(hN)) = N−1 Var
(
q2
N,1,i

)
Var


√(

N

2

)h
dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

UN,2(hN)

 = Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

 q2,ij(hN)



Var


h

dB+2

2
N 0 0

0 h
dB+2

2
N 0

0 0 h
dB
2
N

UN,3(hN)

 =

(
N

3

)−1

Var (q3,ijl(hN))

Var (UN,4(hN)) =

(
N

4

)−1

E
(
q2
N,4,ijlm

)
.
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Chapter 4

Error Components Models for Dyadic
Data

4.1 Introduction and Summary

In this chapter, we study error components models of dyadic data, of which a major mo-
tivation is separating the monadic and dyadic components of variation. Our development
parallels that of error components with panel data: we progressively enrich the random effect
model by going from being without covariates to being with covariates and from homoskedas-
ticity to multiplicative heteroskedasticity. Throughout enriching the models, we focus on
estimation of the coefficients in a linear regression, which includes both monadic and dyadic
explanatory variables. To understand the nature of the estimation problems under different
error components models, we study the performance of intuitive OLS estimators, propose
more efficient estimators, calculate the asymptotic efficiency bounds (Cramér-Rao lower
bound, CRLB), and compare the efficiency bounds to the estimators we propose. A central
theme of this dissertation is understanding estimation problems of non/semiparametric mod-
els for dyadic data. The linear model with homo/heteroskedasticity is an ideal playground
for this themed exploration.

Under homoskedasticity, we prove the sample mean, which converges at rate O(N−1/2),
and least square estimator with double-differencing operation, which converges at rate

O
((

N
2

)−1/2
)

, achieve the CRLB and are asymptotically efficient for estimating the marginal

expectation and the coefficients of dyadic variables in a linear regression respectively. Under
unknown multiplicative heteroskedasticity, we show that the intuitive two-step semipara-
metric generalized score estimator for estimating the linear regression coefficients, which is
a natural extension of the classical feasible generalized least square estimator (FGLS) for
linear regression with heteroskedasticity for the “monadic” iid data, is not adaptive to the
unknown heteroskedasticity. Its convergence rate is faster than that of the OLS estimator,

O(N−1/2), but slower than the rate suggested by CRLB, O
((

N
2

)−1/2
)

. This result makes a

distinction from a familiar result in the monadic iid setting, i.e. a two-step semiparametric
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generalized score estimator often indeed achieves adaptivity and CRLB in iid setting. The
gap between the performance of the best available estimator and the CRLB suggests that
for this estimation problem with dyadic data either there exists a better estimator that is
adaptive and achieves the CRLB, or there is a tighter efficiency bound. We point this gap
out for further research.

Compared to previous literature, one of our main contributions is extending the discus-
sion of estimating parameters of linear regression from the homoskedasticity model to the
multiplicative heteroskedasticity model. From a modeling perspective, we are moving the
discussion from a parametric model to a semiparametric model. Another main contribu-
tion is calculating the efficiency bound under both homoskedasticity and heteroskedasticity
models. Even though we do not have a formal theory for efficiency bound for dyadic data
yet, the CRLB calculation is intuitive and valuable in its own right. A third contribution
is that we propose and characterize the asymptotic behavior of tetrad-difference estimators,
“fixed-effect” regression estimators, and a feasible two-step semiparametric generalized score
estimator for the unknown heteroskedasticity model. A final contribution is pointing out the
gap between CRLB and the asymptotic behavior of these proposed estimators.

4.2 A Variance Decomposition

We start from a simple variance-components model

Model: Yij = µ+ Ui + Uj + Vij, 1 ≤ i < j ≤ N

U1, . . . , UN
iid∼ N

(
0, σ2

U

)
, Vij

iid∼ N
(
0, σ2

V

)
,

(U1, . . . , UN , Vij, 1 ≤ i < j ≤ N) are independent

µ, σ2
A, σ

2
V are unknown

Data: (Yij, 1 ≤ i < j ≤ N) only, Ui are unobserved

Estimand: µ, σ2
U , σ

2
V .

Write the variables in matrix form

Y(N2 )×1 = µι(N2 ) + T(N2 )×NUN×1 + V(N2 )×1,
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in which the matrix collecting all the dummies is

T =



1 1 0 · · · 0 0
1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 0
1 0 0 · · · 0 1
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 1 0 · · · 1 0
0 1 0 · · · 0 1
...

...
...

...
...

...
0 0 0 · · · 1 1


(N2 )×N

= (a1, . . . , aN) .

Conditionally

Y|U ∼ N
(
µι(N2 ) + T(N2 )×NUN×1, σ

2
V I(N2 )

)
.

Marginally

Y ∼ N
(
µι(N2 ), Σ = σ2

V I(N2 ) + σ2
UTT>

)
.

The (unconditional) likelihood is

l
(
µ, σ2

U , σ
2
V ; Y

)
= −1

2

(
Y − µι(N2 )

)>
Σ−1

(
Y − µι(N2 )

)
− 1

2
ln(det(Σ))−

(
N

2

)
1

2
ln(2π).

The MLE is

µ̂ = Ȳ =

(
N

2

)−1∑
i<j

Yij.

Notice that the µ̂ here coincides with the GLS with known Σ. Gauss-Markov theorem
implies µ̂ is BLUE. It is also asymptotic efficient.

√
N (µ̂− µ)  N (0, 4σ2

U). The MLE for
the variances σ̂2

U , σ̂
2
V seems reasonable but they are not our main focus.

4.3 Error Components Regression

Homoskedasticity

The regression version of the previous model with conditioning variables based on individual
covariates is

Model: Yij = Y (Xi, Ui, Xj, Uj, Vij) = W>
ij β + (fi + fj)

>γ + eij, 1 ≤ i < j ≤ N

eij = Ui + Uj + Vij,
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where the regressor Wij = W (Xi, Xj) for a known function W : R2d → RpW , fi = f(Xi) for
a known function f : Rd → Rpf and

Sampling assumption: X1, . . . , XN
iid∼ PX known, U1, . . . , UN

iid∼ N
(
0, σ2

U

)
, Vij

iid∼ N
(
0, σ2

V

)
(X1, . . . , XN , U1, . . . , UN , Vij, 1 ≤ i < j ≤ N) are independent.

Primitives: β ∈ RpW , γ ∈ Rpf , σ2
U , σ

2
V ∈ R+ are unknown

W, f, PX are known

Data : (Yij, 1 ≤ i < j ≤ N,X1, . . . , XN) only, Ui are unobserved

Estimand: β, γ, σ2
U , σ

2
V .

Compared to the error-components model in the previous section, this regression model
specifies a richer form of error components allowing for a potential correlation between the
monadic effect and the dyadic effect.

Conditionally

Y|X,U ∼ N
(
W(N2 )×pWβ + T(N2 )×N fN×pfγ + T(N2 )×NUN×1, σ

2
V I(N2 )

)
.

Marginally

Y|X ∼ N
(
W(N2 )×pWβ + T(N2 )×N fN×pfγ, Σ = σ2

V I(N2 ) + σ2
UTT>

)
.

The (unconditional) likelihood is

l
(
β, γ, σ2

U , σ
2
V ; Y,X

)
= −1

2
(Y −Wβ −Tfγ)>Σ−1 (Y −Wβ −Tfγ)

− 1

2
ln(det(Σ))−

(
N

2

)
1

2
ln(2π).

MLE

Here we report the MLE of the linear coefficients (β, γ). We are using S and T interchange-
ably here (S = T).(

β̂
γ̂

)
=

[(
W

...Sf

)>
Σ̂−1

(
W

...Sf

)]−1(
W

...Sf

)>
Σ̂−1Y

Σ̂ = σ̂2
V I(N2 ) + σ̂2

UTT>.

The MLE in this type of model is not guaranteed to have good performance. It seems to
perform reasonably in line with the intuition. It could be tedious but insightful to understand
its performance. We are not writing down full explicit analytical expressions here.
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OLS in Levels

Here we report the OLS (in levels) estimator of (β, γ) and outline its asymptotic properties.(
β̂
γ̂

)
=

[(
W

...Sf

)>(
W

...Sf

)]−1(
W

...Sf

)>
Y(

β̂ − β
γ̂ − γ

)
=

(
W>W W>Sf

(Sf)>W (Sf)>Sf

)−1(
W>

(Sf)>

)
e

=

[∑
i<j

(
WijW

>
ij Wij(fi + fj)

>

(fi + fj)W
>
ij (fi + fj)(fi + fj)

>

)]−1∑
i<j

(
Wij

(fi + fj)

)
eij

In the special case where we know γ, the infeasible OLS of a scalar β has
√
N
(
β̂ − β

)
=

[(
N

2

)−1∑
i<j

W 2
ij

]−1√
N

(
N

2

)−1∑
i<j

Wijeij  N
(
0, (EW 2

12)−14 Var
(
P{1}W12

)
σ2
U

)
.

Here P{1}W12 := E[W12|X1]−EW12 is the Hajek projection of W12 on index 1. In the special
case where we know β, the infeasible OLS of a scalar γ has

√
N (γ̂ − γ) =

[(
N

2

)−1∑
i<j

(fi + fj)
2

]−1√
N

(
N

2

)−1∑
i<j

(fi + fj)eij

 N
(
0, (E(f1 + f2)2)−14 Var (f1)σ2

U

)
.

The OLS estimator γ̂ is asymptotically efficient, as we will see in the discussion of efficiency.
The OLS estimator β̂ is rate inefficient. Since β could be identified by dyadic variation, we
naturally expect a root-

(
N
2

)
convergence rate. This could be achieved by several estimators,

including “fixed-effect” estimator and tetrad difference estimator.

Tetrad Estimator

Consider the following estimator of β.

QN(b) ≡ 1

N(N − 1)(N − 2)(N − 3)

∑
1≤i 6=j 6=k 6=l≤N

1

2

[
∆ijklY −∆ijklW

>b
]2

β̂ = arg min
b∈RpW

QN(b),

where we use the notation ∆ijklZ ≡ Zij − Zik − Zjl + Zkl. Tetrad differencing removes the
the monadic effects and keeps only the dyadic effects left

∆ijklY = ∆ijklW
>β + ∆ijkl(f + f) + ∆ijkl(U + U + V )

= ∆ijklW
>β + ∆ijklV.
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We can write β̂ explicitly as

β̂ − β =

(
1

N(N − 1)(N − 2)(N − 3)

∑
1≤i 6=j 6=k 6=l≤N

∆ijklW∆ijklW
>

)−1

·

(
1

N(N − 1)(N − 2)(N − 3)

∑
1≤i 6=j 6=k 6=l≤N

∆ijklW∆ijklV

)
. (4.1)

Moreover we write the second term in (4.1) as a U-statistic

1

N(N − 1)(N − 2)(N − 3)

∑
1≤i 6=j 6=k 6=l≤N

∆ijklW∆ijklV =

(
N

4

)−1 ∑
i<j<k<l

ξijkl

ξijkl =
1

4!

∑
(a,b,c,d)∈p({i,j,k,l})

∆abcdW∆abcdV,

where ξijkl is a symmetrized kernel. Since

E [ξ1234|X1, Ui] = 0,

this U-statistic is degenerate in the sense that its Hajek projection is zero, which implies the
variance of this second term is of order O(N−2). Together with the fact the first converges
to a constant in the limit, it implies β̂ converges at rate root-

(
N
2

)
.

“Fixed-Effect” Estimator

The fixed-effect estimator achieves similar goal as the tetrad difference estimator.

β̂ =
[
W> (I − PT) W

]−1
W> (I − PT) Y,

where PT = T (T>T )−1T> is the projection matrix of column space of T. This estimator
uses I − PT to extract pure dyadic variation and regress the projection residual of Y onto
that of W . This estimator is intuitively again converging at rate root-

(
N
2

)
.

Infeasible OLS with Second-Order Terms in Hoeffding Decomposition

For this particular model, Hoeffding decomposition decomposes monadic effect and dyadic
effect in a clear way.1 For any random variable Z, denote PZ ≡ EZ, P{i}Z ≡ E[Z|Xi, Ui]−
EZ, P{i,j}Z ≡ Z − E[Z|Xi, Ui] − E[Z|Xj, Uj] + EZ. Let’s write down the decomposition
explicitly

Yij = PYij + (P{i}Yij + P{j}Yij) + P{i,j}Yij

PYij = PW>β + 2Pf>γ

(P{i}Yij + P{j}Yij) = (P{i}Wij + P{j}Wij)
>β + (fi + fj − 2Pf)>γ + Ui + Uj

P{i,j}Yij = P{i,j}W
>
ij β + Vij

1We will see later on that there may still be subtlety unrevealed by Hoeffding decomposition
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Both the tetrad estimator and the “fixed-effect” estimator are essentially asymptotically
equivalent to OLS of

P{i,j}Yij = P{i,j}W
>
ij β + Vij.

Estimators based on the second-order terms in the Hoeffding decomposition may exhibit rate

root-
(
N
2

)
convergence. This is because the “score” term

(
N
2

)−1∑
i<j P{i,j}Wij ·Vij is degenerate

with zero Hajek projection. Namely, E
[(
P{i,j}Wij

)
· Vij|Xi, Ui

]
= 0 or equivalently(

P{i,j}Wij

)
· Vij ∈ H{i,j} ≡

{
P{i,j}Z(Xi, Ui, Xj, Uj, Vij) : ∀Z : R2d+3 → Rp, p = 1, 2, . . .

}
.

Heteroskedasticity

Here we extend the homoskedastic model in the previous section by introducing a specific
form of multiplicative heteroskedasticity.

Model: Yij = W>
ij β + (fi + fj)

>γ + rij, 1 ≤ i < j ≤ N

rij = σ(Xi, Xj) · eij = σ(Xi, Xj) · (Ui + Uj + Vij),

where σ : R2d → R+ specifies the form of heteroskedasticity. The sampling assumptions stay
the same as the homoskedastic model. One may suspect the tetrad estimator or the “fixed-
effect” estimator has the same fast rate of convergence in this enriched model. However, this
is not the case. We will see tetrad/fixed-effect estimator will lose their fast root-

(
N
2

)
rate in

general. The best way to see this is by inspecting the second-order terms in the Hoeffding
decomposition.

P{i,j}Yij = P{i,j}W
>
ij β + P{i,j}rij

= P{i,j}W
>
ij β

+ [σ(Xi, Xj)− Pσ − P{i}σ(Xi, Xj)]Ui + [σ(Xi, Xj)− Pσ − P{j}σ(Xi, Xj)]Uj

+ σ(Xi, Xj)Vij.

The key observation for understanding the (infeasible) OLS based on this equation is the

following. The “score” term
(
N
2

)−1∑
i<j[Pi,jWij · Pi,jrij] is a nondegenerate U-statistic in

general. To see this, we need to show that its Hajek projection is not zero. Let’s compute
the projection of P{i,j}Wij · P{i,j}rij onto the space of (Xi, Ui).

P{i}
(
P{i,j}Wij · P{i,j}rij

)
= E

(
P{i,j}Wij · P{i,j}rij

∣∣Xi, Ui
)

= E
(
P{i,j}Wij · [σ(Xi, Xj)− Pσ − P{i}σ(Xi, Xj)]Ui

∣∣Xi, Ui
)

= UiE
(
P{i,j}Wij · [σ(Xi, Xj)− Pσ − P{i}σ(Xi, Xj)]

∣∣Xi

)
,

which is not zero in general. 2 To interpret this nondegeneracy, notice

P{i,j}rij = [σ(Xi, Xj)−Pσ−P{i}σ(Xi, Xj)]Ui+[σ(Xi, Xj)−Pσ−P{i}σ(Xi, Xj)]Ui+σ(Xi, Xj)Vij,
2For example, if Wij = XiXj and σ(Xi, Xj) = 1 + X2

iX
2
j , then the last term is UiX

2
i (Xi −

EX) Cov
(
Xj , X

2
j

)
.
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which involves both monadic and dyadic variation. P{i,j}rij itself being degenerate doesn’t
guarantee its product with P{i,j}Wij to be degenerate. In fact, the product is degenerate only
in special cases, e.g. homoskedasticity. When σ(Xi, Xj) = σ is a constant, the product is
degenerate. To make this more explicit, σ(Xi, Xj) = σ implies P{i,j}rij = σP{i,j}eij = σVij,
which is totally independent of the monadic variation. Unfortunately, this degeneracy is
special rather than general.

The nondegeneracy of P{i,j}Wij · P{i,j}rij implies that the infeasible OLS converges at

rate root-N instead of root-
(
N
2

)
. The remaining question is “Can we construct root-

(
N
2

)
estimator?”

Before trying to answer this question, it is instructive to investigate a local to homoskedas-
ticity asymptotics.

Local to Homoskedasticity

We are looking at a sequence of model with moving primitives. In particular, σN(Xi, Xj) =
σ+N−ασ̃(Xi, Xj) where σ is a constant and σ̃(Xi, Xj) is a mean-zero function. α ≥ 0 controls
the speed of slipping into homoskedasticity. In this sequence of model, the projection term

P{i}
(
P{i,j}Wij · P{i,j}rij

)
= N−αUiE

(
P{i,j}Wij · [σ̃(Xi, Xj)− P{i}σ̃(Xi, Xj)]

∣∣Xi, Ui
)
,

is shrinking to zero at rate N−α. This implies the variance of the score term(
N
2

)−1∑
i<j

(
P{i,j}Wij · P{i,j}rij

)
is of order O

(
N−1 Var

(
P{i}

(
P{i,j}Wij · P{i,j}rij

))
+N−2

)
=

O (N−1−2α +N−2). The convergence rate of the infeasible OLS is root-N−min{1+2α,2}. This
asymptotic analysis interpolates the “homo-” and the “hetero-” worlds

Infeasible Weighted OLS with Infeasible Weight

A simple (infeasible) reweighting, namely

Ỹij ≡ σ(Xi, Xj)
−1Yij

= σ(Xi, Xj)
−1W>

ij β + σ(Xi, Xj)
−1(fi + fj)

>γ + σ(Xi, Xj)
−1rij

= W̃>
ij β + f̃ >ij γ + eij,

gets us back into the nice situation under homoskedasticity. Here we list some comments
about this result. First, the infeasible OLS with infeasible weight is expected to converge at
rate root-

(
N
2

)
. Second, it seems to open up the possibility to estimate γ at a faster rate than

root-N . The main takeaway is that we can construct a more efficient estimator if we have
additional knowledge about the heteroskedasticity structure. We will see in the following
that even if we do not know this heteroskedasticity form σ, we can still estimate it and use
the estimated σ to construct a more efficient estimator.
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Feasible Weighted Tetrad Estimator

Suppose we do not know the exact form of the heteroskedasticity function σ(Xi, Xj). We
would like to construct a feasible version of the previous infeasible OLS with infeasible
weight. This task is similar to constructing a feasible GLS in the classical linear regression
with heteroskedasticity model. Here is the proposed algorithm.

Algorithm 1 Feasible Weighted Tetrad Estimator

1: Input: Monadic variables {Xi, fi, i = 1, . . . , N}, dyadic outcome {Yij, 1 ≤ i < j ≤ N},
function W .

2: Output: estimate (β̂, γ̂)
3:

4: Fit a simple OLS (in level) to get an initial estimate of β and γ(
β̃
γ̃

)
=

[(
W

...Sf

)>(
W

...Sf

)]−1(
W

...Sf

)>
Y

5: Compute the regression residual r̂ij = Yij −W>
ij β̃ − (fi + fj)

>γ̃ 3

6: Estimate σ2 function by running a (non)parametric regression of r̂2
ij on regressor (Xi, Xj).

Use σ̂2 to denote the estimated function
7: Construct transformed data using σ̂2. Ỹij = σ̂(Xi, Xj)

−1Yij, W̃ij = σ̂(Xi, Xj)
−1Wij, f̃ij =

σ̂(Xi, Xj)
−1(fi + fj).

8: Generate the final estimate by an OLS on tetrad-difference terms(
β̂
γ̂

)
= arg min

b,c∈RpW+pf

QN(b, c),

QN(b, c) ≡ 1

N(N − 1)(N − 2)(N − 3)

∑
1≤i 6=j 6=k 6=l≤N

1

2

[
∆ijklỸ −∆ijklW̃

>b−∆ijklf̃
>c
]2

.

In the following, we will outline an informal analysis of this estimator. The first step
OLS estimator has an estimation error of order root-N as we have shown before. As a
result, the discrepancy between the residual r̂ and the true regression error r is also of
order O(N−1/2). The nonparametric regression for estimating σ2 has an estimation error

at rate O
(
N−

β
2β+dx

)
. This estimation error together with the already existing discrepancy

r̂2 = r2 +O(N−1/2) implies the σ̂−σ = O
(
N−

β
2β+dx

)
. The residual in the transformed data

3A more principled way to generate these residuals involves sample splitting (or graph splitting) and
constructing residuals from out-of-sample predictions. This trick help us bypass the in-sample overfitting
problem and simplify the bias analysis.
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Ỹij = W̃>
ij β + f̃>ij γ + r̃ij is

r̃ij =
rij

σ̂(Xi, Xj)
=

(
1− σ̂(Xi, Xj)− σ(Xi, Xj)

σ̂(Xi, Xj)

)
· eij.

Since
σ̂(Xi,Xj)−σ(Xi,Xj)

σ̂(Xi,Xj)
= O

(
N−

β
2β+dx

)
, the transformed data is local to homoskedasticity.

The result from local to homoskedasticity analysis suggests the infeasible OLS will converge
at rate (

β̂ − β
γ̂ − γ

)
= O

(
N−( 1

2
+ β

2β+dx
)
)
.

We expect that replacing the infeasible OLS with the tetrad estimator in the last step
will not change this result. Notice that using this nonparametrically estimated weight is
not asymptotically equivalent to using the infeasible weight. Weighting by the estimated
weight pushes the estimator in the heteroskedastic model to be equivalent to the unweighted
estimator in the local to homoskedasticity model (but not equivalent to the unweighted
estimator in the homoskedastic model).

One way to think about the problem here is that the estimated weight is converging slower

than (or equal to) the usual cutoff rate, n−1/4 =
(
N
2

)−1/4
= N−1/2, in a typical analysis of

two-step semiparametric estimator. The analogy to an unweighted estimator under local to
homoskedasticity gives a more precise intuition.

Suppose we are willing to specify a parametric model for σ2 and estimate it using para-
metric dyadic regression instead of nonparametric dyadic regression. In this case, the weight
can be estimated at a faster rate σ̂−σ = O(N−1/2) . This is a knife-edge case in the following
sense. The estimation error is exactly equal to the n−1/4 cutoff rate for two-step semiparamet-

ric estimation. Local to homoskedasticity analysis will tell us

(
β̂ − β
γ̂ − γ

)
= O (N−1) , which is

the same rate as the infeasible weighted infeasible OLS. This is the best convergence rate we
can achieve. We conjecture the knife-edge nature implies a non-vanishing asymptotic bias or
an additional variance term when we go from an infeasible estimator to a feasible estimator.

4.4 Cramér-Rao Lower Bound

In previous sections, we see that parameters can be estimated at different rates ranging
between root-N and root-

(
N
2

)
and the convergence rate may be different depending on what

estimator we use. In this section, we want to understand the nature of the estimation
problems in a different way by calculating the Cramér-Rao lower bound of parameters in the
linear dyadic regression. The exercise delivers not only the optimal rate of convergence but
also the optimal asymptotic variance. Even though we do not have a theorem formalizing
this, we conjecture the CRLB gives us an efficiency bound in dyadic setting. We work out
the calculation of CRLB in the following.
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We are working with a slightly more general nonlinear regression model with het-
eroskedasticity here.

Model: Yij = µθ(Xi, Xj) + rij, 1 ≤ i < j ≤ N

rij = σ(Xi, Xj) · eij = σ(Xi, Xj) · (Ui + Uj + Vij), Ui
iid∼ N(0, 1), Vij

iid∼ N(0, 1). (4.2)

Suppose the density of X denoted by λ is also known. The only unknown parameters in this
model are θ and σ.

The log likelihood and the score of observing the hypothetical data (X,U,Y) =
(X1, . . . , XN , U1, . . . , UN , Yij, i < j) is

l (θ, σ; X,U,Y) =
N∑
i=1

[log λ (Xi) + log φ (Ui)]

+
∑
i<j

[
log φ

(
Yij − µθ (Xi, Xj)

σ(Xi, Xj)
− Ui − Uj

)
− log σ(Xi, Xj)

]
l̇θ,σ (θ, σ; X,U,Y) :=

∂

∂θ
l (θ, σ; X,U,Y) =

∑
i<j

Vij ·
µ̇ij(θ)

σij

∂

∂t

∣∣∣
t=0
l
(
θ, σ(1 + tg)−1; X,U,Y

)
=
∑
i<j

(−Vijeij + 1)gij.

φ here denotes the density of the standard normal distribution. The last line is calculating
the directional derivative of the log likelihood w.r.t. the σ in a direction defined by function
g. To calculate the score of the actual data (X,Y), notice

l̇ (θ, σ; X,Y) :=
∂

∂θ
l (θ, σ; X,Y)

=
∂
∂θ
pθ,σ (X,Y)

pθ,σ (X,Y)
=

∂
∂θ

(∫
pθ,σ (X,u,Y) du

)
pθ,σ (X,Y)

=

∫ ∂
∂θ
pθ,σ(X,u,Y)

pθ,σ(X,u,Y)
· pθ,σ (X,u,Y) du

pθ,σ (X,Y)

=

∫
l̇ (θ, σ; X,u,Y) pθ,σ

(
u
∣∣∣X,Y) du

= Eθ,σ
[
l̇ (θ, σ; X,U,Y)

∣∣∣X,Y] .
Applying this to our problem gives

l̇θ,σ (θ, σ; X,Y) =
∑
i<j

E
(
Vij

∣∣∣e) · µ̇ij(θ)
σij

∂

∂t

∣∣∣
t=0
l
(
θ, σ(1 + tg)−1; X,Y

)
=
∑
i<j

[
−E

(
Vij

∣∣∣e) eij + 1
]
gij,
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where e = (eij, i < j). The overall “efficient score” for θ is

l̃θ,σ (θ, σ; X,Y) := l̇θ,σ (θ, σ; X,Y)− Π l̇θ,σ (θ, σ; X,Y)

= l̇θ,σ (θ, σ; X,Y)− 0

= l̇θ,σ (θ, σ; X,Y) , (4.3)

in which Π l̇θ,σ (θ, σ; X,Y) denotes the L2 projection of l̇θ,σ (θ, σ; X,Y) onto
the tangent space spanned by the overall score of the nuisance parameter{
∂
∂t

∣∣∣
t=0
l (θ, σ(1 + tg)−1; X,Y) : g : R2dx → R, ||g||∞ <∞

}
. The projection is zero because

for any direction g

Cov

(
l̇θ (θ, σ; X,Y) ,

∂

∂t

∣∣∣
t=0
l
(
θ, σ(1 + tg)−1; X,Y

))
= Cov

(∑
i<j

E
(
Vij

∣∣∣e) µ̇ij(θ)
σij

,
∑
i<j

[
−E

(
Vij

∣∣∣e) eij + 1
]
gij

)

=
∑
i1<j1

∑
i2<j2

E
{
E
(
Vi1j1

∣∣∣e) · [−E(Vi2j2∣∣∣e) ei2j2 + 1
]}
· E
[
µ̇i1j1(θ)

σi1j1
gi2j2

]
=
∑
i1<j1

∑
i2<j2

0 · E
[
µ̇i1j1(θ)

σi1j1
gi2j2

]
= 0.

Here the second equality holds because E
(
Vi1j1

∣∣∣e) · E(Vi2j2∣∣∣e) · ei2j2 can be expressed as

third-order (see equation (4.8) in the appendix) polynomials of Us and V s and all of these
third-order polynomials have zero expectation. (4.3) implies the “efficient score function”
l̃θ,σ doesn’t depend on whether the nuisance parameter σ is known or not. Remarkably, the
efficiency bound remains the same even if we do not know σ. Remember a similar result
holds for linear regression with unknown heteroskedasticity in the cross-sectional iid setting.

We summarize the previous analysis into the following theorem.

Theorem 4.4.1 (CRLB of Dyadic Regression with Heteroskedasticity). For the dyadic re-
gression model with heteroskedasticity in (4.2), the overall efficient score for θ is

l̃θ,σ (θ, σ; X,Y) := l̇θ,σ (θ, σ; X,Y) =
∑
i<j

E
(
Vij

∣∣∣e) · µ̇ij(θ)
σij

. (4.4)

The Fisher information of θ is I(θ) = Var
(
l̃θ,σ (θ, σ; X,Y)

)
and the CRLB is I(θ)−1.

To appreciate this result, it’s useful to calculate the Fisher information explicitly in special
cases. Suppose the true model is indeed homoskedastic with σ(Xi, Xj) = 1. If µθ(x1, x2) =
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(x1 + x2) · θ, then l̃ (θ; X,Y) =
∑N

i=1XiUi + oL2

(√
N
)
, I(θ) = NE [X2

1 ] (1 + o(1)). If

µθ(x1, x2) = x1 ·x2 ·θ, then l̃ (θ; X,Y) =
[∑

i<j Vij (Xi − µX) (Xj − µX)
]

(1 + oP (1)) , I(β) =(
N
2

)
Var (X1)2 (1 + oP (1)). The results are in line with our intuition. The coefficient of the

monadic regressor will at best converge at rate O
(
N−1/2

)
. The coefficient of the dyadic

regressor will at best converge at rate O
((

N
2

)−1/2
)

. Careful inspection reveals that OLS

achieves the optimal asymptotic variance for the former model and the tetrad estimator
achieves the optimal asymptotic variance for the later model.

Let’s go back to the model in 4.3 now. Because the CRLB stays the same either we

know σ or we don’t know σ, we expect an efficient estimator will deliver O
((

N
2

)−1/2
)

rate of

convergence for the parameter β, γ. The best estimator we proposed, the feasible weighted

tetrad estimator in 4.3, only converges at a slower rate O
(
N−( 1

2
+ β

2β+dx
)
)

. This gap between

the estimator and the efficiency bound is quite interesting in its own right. Remember there
is not any such gap for linear regression with unknown heteroskedasticity with iid data,
where a similar two-step estimator achieves the asymptotic efficiency bound. For dyadic
regression, either there exists a better estimator that is adaptive and achieves the CRLB, or
there is a tighter efficiency bound. We are not sure which case is happening. We point this
out as an open question for further research.

4.5 Appendix: Proofs

This appendix gives some detailed calculations of score functions. Here we give an analytical
expression of the term E (Vij|e), which shows up repeatedly in the derivation and in the
expression of the efficient score (4.4). Toward this goal, we first calculate E (Ui|e). A useful
expression is e = TU + V. Because all the variables Us, V s, and es are jointly normal,
calculating conditional expectation reduces to calculating the best linear approximation.
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The normality assumption comes in very handy in this case.

E
(
U1

∣∣∣e) = Cov (U1, e) Var (e)−1 e

= (1, . . . , 1︸ ︷︷ ︸
N−1

, 0, . . . 0)1×(N2 )

(
I(N2 ) + TT>

)−1

e

= (1, . . . , 1︸ ︷︷ ︸
N−1

, 0, . . . 0)1×(N2 )

[
I(N2 ) − (N − 1)−1TT> + 4(N − 1)−1(2N − 1)−11(N2 )1>(N2 )

]
e

(4.5)

=

[
1

N − 1
(1>N−1, 0

>
(N2 )−N−1

)− 2

(N − 1)(2N − 1)
1>(N2 )

]
e (4.6)

= e1 −
N

2N − 1
e, (4.7)

where e1 := 1
N−1

∑
j 6=1 e1j and e := 1

(N2 )

∑
i<j eij. The third equality (4.5) uses the following

explicit expression of the inverse matrix.(
I(N2 ) + TT>

)−1

= I(N2 ) −T
(
IN + T>T

)−1
T>

= I(N2 ) −T(N − 1)−1
(
IN − (2N − 1)−11N1>N

)
T>

= I(N2 ) − (N − 1)−1TT> + 4(N − 1)−1(2N − 1)−11(N2 )1>(N2 )

The fourth equality (4.6) is due to

(1>N−1, 0
>
(N2 )−N−1

)
[
I(N2 ) − (N − 1)−1TT> + 4(N − 1)−1(2N − 1)−11(N2 )1>(N2 )

]
= (1>N−1, 0

>
(N2 )−N−1

)− (N − 1)−1(N − 1, 1, . . . , 1)N×1T
> + 4(N − 1)−1(2N − 1)−1(N − 1)1>(N2 )

= (1>N−1, 0
>
(N2 )−N−1

)− (N − 1)−1
[
(N − 2)(1>N−1, 0

>
(N2 )−N−1

) + 21>(N2 )

]
+

4

2N − 1
1>(N2 )

=
1

N − 1
(1>N−1, 0

>
(N2 )−N−1

)− 2

(N − 1)(2N − 1)
1>(N2 ).

We are now ready to calculate E (V12|e).

E
(
V12

∣∣∣e) = E
(
e12 − U1 − U2

∣∣∣e)
= e12 − E

(
U1

∣∣∣e)− E
(
U2

∣∣∣e)
= e12 − e1 − e2 +

2N

2N − 1
e (4.8)

= V12 − V1 − V2 +

(
1 +

1

2N − 1

)
V +

1

N − 1
(U1 + U2)− 2N

(N − 1)(2N − 1)
U,
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where V1 := 1
N−1

∑
j 6=1 V1j, V := 1

(N2 )

∑
i<j Vij, and U = 1

N

∑
i Ui. In the main text we

made the following claim: if µθ(x1, x2) = (x1 + x2) · θ, then l̃ (θ; X,Y) =
∑N

i=1 XiUi +

oL2

(√
N
)
, I(θ) = NE [X2

1 ] (1 + o(1)). We give its derivation here. Theorem 4.4.1 implies

l̃θ,σ (θ, σ; X,Y) =
∑
i<j

E
(
Vij

∣∣∣e) · (Xi +Xj) .

Plug in the expression of E
(
V12

∣∣∣e).

∑
i<j

E
(
Vij

∣∣∣e) · (Xi +Xj)

=
N∑
i=1

[
Xi ·

∑
j 6=i

E
(
Vij

∣∣∣e)]

=
N∑
i=1

Xi ·
(
Vi −

N

2N − 1
V + Ui

(
1− 1

N − 1

)
+

N

(N − 1)(2N − 1)
U

)

=

(
1− 1

N − 1

) N∑
i=1

XiUi +
N∑
i=1

XiVi +
N∑
i=1

Xi

(
− N

2N − 1
V +

N

(N − 1)(2N − 1)
U

)

=
N∑
i=1

XiUi + oL2

(√
N
)
.
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