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Abstract 

When assessing the quality of health information 

encountered online, reasoners may rely on the wisdom of 

others and the degree of consensus apparent. However, it is 

unclear whether reasoners weigh the opinions of others 

evenly or make assumptions about the amount of evidence 

that each has seen. We investigated this question in an online 

experiment where people were asked to rate their belief in a 

series of health claims both before and after reading 

responses from other users. The degree of consensus among 

these users and their level of expertise (non-experts vs. expert 

organisations) was manipulated within-subjects. While we 

found belief change increased monotonically with the degree 

of consensus for both experts and non-experts, our results 

indicate qualitatively different patterns of increase between 

the two groups. Our study suggests that people reason from 

consensus using nuanced assumptions about the evidence 

underlying other people’s opinions.  

 
Keywords: reasoning; consensus; expertise; health 

information; social media. 

 

Introduction 

Social media plays a highly influential role in today’s 

information landscape, serving as an alternative to 

traditional media amidst declining social capital and trust in 

private and public institutions (Fletcher & Park, 2017; 

Lewandowsky, Ecker & Cook, 2017). Social media 

facilitates rapid public health communication, but the 

proliferation of health-related misinformation on social 

media is a sizeable threat to the health and safety of the 

general public (Suarez-Lledo & Alvarez-Galvez, 2021; 

Zhao, Hu, Zhou, Song, Wang, Zheng, Zhang & Hou, 2023). 

Take the following claim: “Poor sleep is linked to 

Alzheimer’s”. Given the prevalence of misinformation and 

wide range of expertise on social media, how might a user 

determine the claim’s veracity if encountered online?  

Lacking sufficient expertise of their own, people often 

look towards the judgements of others and their degree of 

consensus (Asch, 1956; Harkins & Petty, 1981; Ransom, 

Perfors & Stephens, 2021; Simmonds, Stephens, Searston, 

Asad & Ransom, 2023). A simple consideration of 

consensus could involve a counting heuristic, where the 

persuasiveness of a consensus increases with its size 

(Mercier & Morin, 2019). Alternatively, people may make 

more complex inferences about the underlying quantity of 

evidence that informed a given consensus, wherein larger 

groups are assumed to have access to more evidence 

(Harkins & Petty, 1987). It is currently unclear which 

reasoning strategy people typically use, as both are 

consistent with classic consensus effects; a positive 

relationship between consensus quantity (i.e., the number 

of people that form a consensus) and its persuasiveness.  

To help disentangle these strategies, we can explore the 

extent to which people consider evidential overlaps within 

a consensus. If people conceptualise a given consensus as 

an accumulation of underlying evidence, the presence of 

evidential overlaps (i.e., multiple sources having seen the 

same piece of evidence) should compromise its 

informational value compared to an otherwise equivalent 

consensus where no such overlaps exist (Whalen, Griffiths 

& Buchsbaum, 2018). If people instead leverage consensus 

using a simple counting heuristic, the existence of such 

evidential overlaps should have no effect.  

One source of evidential overlap is in consensus quantity 

itself. This path of reasoning assumes that each source 

within the consensus represents a sample of underlying 

evidence viewed from a finite evidence space. As consensus 

quantity increases, the proportion of the total evidence 

space viewed by the consensus increases, but the 

probability of evidential overlap also increases. This 

overlap should result in a negatively accelerating curve 

when graphing the persuasiveness of a consensus against its 

size. This type of relationship has been reported across 

some of the literature (e.g., Asch, 1951; Bovens & 

Hartmann, 2004; Shu & Carlson, 2014), but others have 

found no such pattern, instead reporting a linear 

relationship between consensus quantity and persuasion 

(Gerard, Wilhelmy & Conolley, 1968; Nordholm, 1975).  

Another source of evidential overlap is expertise. At a 

simplistic level, an expert can be differentiated from a non-

expert by the size of the sample they are able to draw from 

the total evidence space (Klein, 2008). People appear to be 

aware of this, perceiving a single expert opinion as being 

equivalent to at least 10 non-expert opinions (Hornikx, 

Harris and Boekema, 2018), and generally finding experts 

to be more persuasive than non-experts (Jucks & Thon, 

2017; Maddux & Rogers, 1980; Simmonds et al., 2023). 

However, when accumulated within a consensus, the large 
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sample drawn by each expert should result in a greater 

likelihood of evidential overlap. This overlap should be 

especially heightened when considering opinions from 

expert organisations, each of which represents a consensus 

of its own and thus should have an even larger coverage of 

the total evidence space. There is some evidence to suggest 

that people consider this potential evidence overlap when 

reasoning. A study by Simmonds et al. (2023) reported that 

a single expert organisation repeating the same argument 

five times was just as persuasive as five different expert 

organisations providing one argument each - a finding that 

was not replicated amongst individual non-expert sources. 

Similarly, Connor Desai, Xie and Hayes (2022) found that 

participants were just as persuaded by a single, repeatedly-

cited expert organisation than four expert organisations 

cited once each, unless their independence was made clear.  

The current paper aims to further explore the findings of 

Simmonds et al. (2023), investigating whether people 

reason from consensus by making assumptions about the 

underlying evidence that each source represents; comparing 

non-expert versus expert organisation sources. We begin by 

presenting a preliminary Bayesian analysis to aid in 

developing the intuition behind our hypotheses. We then 

tested these hypotheses in an experiment examining the 

effect of consensus quantity and expertise on people’s belief 

in health claims.  

 

Bayesian Analysis and Computational Simulation 

Consider a blank reasoner who must update their belief in a 

health claim (h) upon exposure to a consensus comprising 

m number of Bayesian reasoners. Each Bayesian reasoner 

has constructed their belief via the sampling of evidence 

from a shared and limited evidence space. Amongst a 

consensus of m number of these reasoners, 𝑛1, … , 𝑛𝑚 

denotes the size of each sample drawn, and 𝑘1, … , 𝑘𝑚 

denotes the amount of supporting evidence within each 

sample. Both 𝑛1, … , 𝑛𝑚 and 𝑘1, … , 𝑘𝑚 can be summed to 

produce the total (n) and supporting (k) amount of evidence 

the consensus represents, respectively: 

 

𝑛 = ∑ 𝑛𝑖

𝑚

𝑖=1

      and     𝑘 = ∑ 𝑘𝑖

𝑚

𝑖=1

          (1) 

 

In this example, we assume that all sources support h (k 

> n – k).  The process by which the reasoner updates their 

belief in h after exposure to this consensus should then 

follow Bayes’ Rule: 

 ` 

𝑃(ℎ|𝑛, 𝑘) =  
𝑃(𝑛, 𝑘|ℎ)𝑃(ℎ)

𝑃(𝑛, 𝑘)
          (2) 

 

This equation can be simplified by specifying that the 

prior belief distribution, 𝑃(ℎ), is a beta distribution with 

parameters α and β, which respectively denote the number 

 
1 See OSF link: 

https://osf.io/hkeps/?view_only=c20f7d2290864047b2014

f825bf18f20  

of successes and failures. Furthermore, as we assume that 

the relevant evidence exists as a series of Bernoulli trials, 

the likelihood distribution, 𝑃(𝑛, 𝑘|ℎ), can be re-written as a 

Bernoulli distribution. By substituting these components 

into Bayes’ theorem, we get the following formula: 

 

𝑃(ℎ|𝑛, 𝑘) = 𝑏𝑒𝑡𝑎(ℎ|𝛼 + 𝑘, 𝛽 + 𝑛 − 𝑘)          (3) 

 

Equation 3 indicates that the posterior belief distribution 

is equal to the prior belief distribution but with parameters 

updated to account for the amount of evidence the 

consensus represents. 

The effect of consensus quantity on beliefs is reflected by 

m, which when increased, subsequently results in an 

increase in n and k, which, in turn, shifts and tightens the 

shape of the posterior belief distribution. Expertise, on the 

other hand, is reflected in 𝑛𝑖 and ki. As Expertise increases 

(i.e., non-expert to individual expert to expert organisation), 

𝑛𝑖 will increase while keeping the proportion of 𝑛𝑖 to 𝑘𝑖 

constant, tightening the posterior belief distribution.  

As consensus quantity and expertise increase, so too does 

the probability of evidential overlap. If the reasoner 

believes that multiple sources are basing their opinion on a 

shared piece of evidence, that evidence should only be 

included once when determining n and k. The relationship 

between m and belief change should thus form a negatively 

accelerating curve, one that reaches its plateau at a faster 

rate when expertise is high. 

We applied this framework to a computational 

simulation1 using R version 4.2.3. to visualize our 

hypotheses. 99 simulated participants sampled a prior belief 

rating towards hypothesis h from a unform prior 

distribution (𝑏𝑒𝑡𝑎(𝛼 = 1, 𝛽 = 1)). Subjects were then 

exposed to a consensus of one to five Bayesian reasoners, 

all of whom had sampled from the total evidence space and 

supported h with complete certainty (n = k). The expertise 

of these reasoners was manipulated across two levels: Non-

Expert and Expert. Expert sources were assumed to have 

sampled more of the total evidence space than non-experts 

(𝑛𝑖
𝑒𝑥𝑝𝑒𝑟𝑡

> 𝑛𝑖
𝑛𝑜𝑛−𝑒𝑥𝑝𝑒𝑟𝑡

).  Evidential overlap was accounted 

for by removing duplicate pieces of evidence sampled from 

each source. The total amount of unique evidence the 

consensus sampled was then used to update the prior belief 

distribution of the blank reasoner, a posterior belief rating 

was sampled, and belief change was calculated (posterior 

minus prior).  

Figure 1 displays belief change as a function of 

consensus quantity and expertise averaged across the 99 

runs. Most important to this figure is the qualitative patterns 

that emerge. Belief change is consistently higher upon 

exposure to an Expert consensus (for >0 sources) than Non-

Expert consensus when keeping consensus quantity 

constant. Across both expertise conditions, belief change 

also displays a negatively accelerating curve against 

consensus quantity. However, the rate at which belief 
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change plateaus is greater in the Expert condition than in 

the Non-Expert condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the basis of this analysis, we first hypothesise that in 

an experiment, people's beliefs will shift in the direction of 

the consensus position (with greater consensus quantity 

leading to a larger shift), consistent with prior findings (e.g., 

Asch, 1956; Ransom, Perfors & Stephens, 2021).  We next 

hypothesise that Expert organisations will lead to greater 

belief change than Non-Expert individuals when holding 

consensus quantity constant. We posit that this will arise 

because expert organisations are assumed to have access to 

a greater quantity of underlying evidence to inform their 

opinion (Hornikx, Harris & Boekima, 2018). We also 

hypothesize that there will be a monotonically increasing 

relationship between consensus quantity and the degree of 

belief change.  However, the difference in mean belief 

revision on trials with m sources compared to trials with m-

1 sources will decrease as m increases, due to perceived 

evidential overlap. We further hypothesize that this will 

decrease at a greater rate as m increases in Expert trials than 

Non-Expert trials, due to the perception of larger evidential 

overlaps (e.g., Connor Desai, Xie & Hayes, 2022). 

 

Method 

The current experiment aimed to explore how belief in 

health claims changes after exposure to a consensus of 

varying levels of consensus quantity and expertise. In a 

mock social media platform, participants were shown 12 

health claims across 12 trials, with one claim per trial. In 

each trial, participants rated their belief in the claim before 

being exposed to five responses from five different users. 

These responses either argued in favour of or against the 

veracity of the claim (called Target Responses) or were 

related but took no clear stance on its veracity (called Filler 

Responses). The ratio of Target to Filler Responses present, 

as well as the expertise of the users providing the responses 

were manipulated across trials (Non-Expert individuals vs 

Expert Organisations). Individual non-experts were 

compared to expert organisations to maximize the potential 

difference in underlying evidence coverage. The method 

was pre-registered on AsPredicted before data collection 

(https://aspredicted.org/F12_7ZG). 

Figure 2. Experimental design. In the icons shown, each 

colour is a unique user; no colour fill = Filler Responses, 

colour fill = Target Responses. Heads = Non-Experts, 

crosses = Expert organisations. 

 

Design 

Trials were organised into a 6x2 factorial design (see Figure 

2). Consensus quantity was manipulated by changing the 

ratio of Target to Filler Responses presented within-subjects 

across six levels: 0:5, 1:4, 2:3, 3:2, 4:1, and 5:0. The total 

number of responses in any given trial was always five to 

ensure consistency in reading time across trials. All-Filler 

trials (0:5) served as control conditions. The expertise of 

those authoring the responses was manipulated within-

subjects across two levels: Non-Expert and Expert. In 

Expert trials, all responses were authored by health 

organisations. In Non-Expert trials, all responses were 

authored by ordinary individual users. Source diversity was 

controlled such that each response came from a unique 

source. Target Responses always argued in favour of the 

“ground truth”, determined by the existing scientific 

consensus (i.e., supported true claims, argued against false 

claims). Argument diversity amongst the Target Responses 

was controlled such that, for each claim, responses would 

convey the same argument but slightly reworded.  

 

Participants 

139 participants were recruited on Amazon Mechanical 

Turk (MTurk) in January 2024. Concerns of data quality 

from MTurk have been raised in recent years (e.g., Ahler, 

Roush & Sood, 2021; Chmielewski & Kucker, 2019; 

Kennedy, Clifford, Burleigh, Waggoner, Jewell & Winter, 

2020). To alleviate these concerns, participants were pre-

screened for English-proficiency and response quality via 

the use of qualification tests. Participants also had to be at 

least 18 years of age, and each was compensated $3USD. 

Analysis of the pre-registered attention check resulted in the 

exclusion of 40 participants who scored lower than 80%, 

Figure 1. Simulated data run 99 times. Displays 

belief change as a function of consensus quantity across 

Non-Expert and Expert conditions. Bolded lines 

display mean values. Thin lines display each run. 

 

Consensus Quantity 
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leaving a total sample size of 99. This sample size was 

deemed sufficient as it aligns with past studies examining 

online reasoning (e.g., Alister, Perfors & Ransom, 2022; 

Jucks & Thon, 2017; Simmonds et al., 2023). The age range 

of the sample was between 20 and 77 years of age (M = 

40.52, Med = 39, SD = 10.70). The majority of participants 

were white, (71.72%) male, (58.59%) from the US 

(86.87%), had attained a high school education or above 

(98.99%), self-identified as left-leaning (52.51%), and used 

social media daily (74.75%). 

 

Materials  

Claims and Responses Participants responded to 12 

claims1 covering various health topics (e.g., “Brown sugar 

is healthier than white sugar.”). The final set of claims used 

in the experiment was derived from the results of a pilot 

test, where claims that evoked low polarisation from 

respondents were selected for inclusion. These claims were 

primarily based on topics covered by popular fact-checking 

websites (e.g., Snopes), and common health myths. Half of 

the 12 claims had scientific backing, while the remaining 

half did not. This design choice was made with the aim of 

reflecting the variable levels of accuracy that characterise 

real online health claims.  

Target Responses1 were generated by writing an 

argument that aligned with the ground truth in response to 

each claim (e.g., “Regardless of its reduced processing, 

brown sugar is no healthier than white sugar.”). ChatGPT 

was then used to reword this argument five times as if they 

were coming from five different users. Filler Responses1 

were generated by hand with further assistance from 

ChatGPT. These responses concerned a related health topic 

and shared certain keywords with the claim but did not 

argue for or against it (e.g., “Brushing, flossing, and 

limiting sugary treats are the best ways to prevent tooth 

decay.”). 

 

Response Sources Responses were authored by either non-

experts or experts1. Non-expert names and avatars were 

fictional and randomly selected for each trial. Avatars were 

either AI-generated or collected online. Names were 

generated using random name generators. Expert groups 

were indicated using a verification tick and consisted of real 

health organisations (e.g., Australian Medical Association). 

We specifically chose organisations that were less well 

known, to minimize a potential familiarity confound. The 

organisations’ logos were used for avatars.  

 

Procedure  

Participants were given a brief description of the study, 

provided informed consent, and shown task instructions. 

Instructions stated that for each of the 12 trials they would 

be shown a health claim and five responses from users of 

various backgrounds. It was emphasized that users with a 

verification tick were credible sources of subject-matter 

expertise. This clarification attempted to minimize any 

confusion surrounding our use of the verification system. 

Participants then completed four validation questions that 

required correct answers to allow further progress. They 

also provided basic demographic information.   

Participants completed 12 trials. For each trial, a 

randomly selected health claim appeared above a 100-point 

sliding scale (see left panel of Figure 3). Participants were 

asked to rate the extent to which they agreed with the claim 

using the scale, which ranged from 0 (strongly disagree) to 

100 (strongly agree). After submitting their initial belief 

rating, participants were shown five randomly ordered 

responses. To encourage participants to carefully attend to 

these responses, they were barred from progressing until 

they had labelled each in terms of its stance towards the 

health claim. The label options were “+”, “-” and “o”, which 

represented agreement with the claim, disagreement with 

the claim, and neutrality towards the claim, respectively 

(see right panel of Figure 3). The accuracy of these 

responses was later used as an attention check, where 

participants with <80% accuracy were excluded from 

analysis. This step also allowed us to ensure that the 

perceived stance of responses aligned with what was 

intended. After labelling each response, the labels 

disappeared and the health claim and sliding scale 

reappeared on screen, which participants used to provide an 

updated belief rating (their initial rating could be seen). 

After completing 12 trials, participants were debriefed and 

paid. 

Figure 3. Screenshots of the mock social media platform. Left panel is the prior belief rating screen. Right panel is the 

attention check screen.  
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Results 

We first examined participants’ attention check accuracy. 

Out of 60 responses to label, participant accuracy ranged 

from 11.67% to 100% (M = 81.06%). Participants who 

scored less than 80% were excluded from further analysis, 

resulting in a final sample size of 99 with a mean accuracy 

of 93.67%.  

Figure 4 displays the relationship between belief change 

(posterior minus prior) and the number of Target Responses 

across both expertise conditions. Belief change was sign-

adjusted such that a positive value reflects a shift towards 

the stance held by the Target Responses. In Figure 4, 

exposure to Target Responses tended to, on average, elicit a 

positive change value. Belief change also tended to increase 

with the number of Target Responses present. The Expert 

and Non-Expert curves feature some overlap, although the 

Expert condition evoked greater belief change at 1-4 Target 

Responses. Both curves appear to be negatively 

accelerating but the Expert curve plateaus faster than the 

Non-Expert curve. 

Our hypotheses were statistically tested using a sequence 

of linear regression models. Model 1 served as a baseline 

model predicting belief change. Model 2 added a predictor 

that captured the number of Target Responses present. 

Model 3 added a predictor which captured the presence of 

expertise. Finally, Model 4 added a predictor that captured 

the interaction between the number of Target Responses 

present and their expertise. Comparison between these 

models was conducted using AIC and BIC (see Table 1), 

which showed divergent preferences: BIC most preferred 

Model 2, while AIC most preferred Model 3. This type of 

disagreement can occur as BIC more strongly penalises 

models that add less meaningful variables (Leppink, 2019). 

For the purposes of this paper, both preferred models will 

be outlined. 

Model 2 was statistically significant (F(2, 1185) = 108.4, 

p < .001), with number of Target Responses being a 

significant predictor of belief change (t(1185) = 14.71, p < 

.001). Model 3 was also statistically significant (F(3,1184) 

= 74.73, p < .001), indicating a significant effect of number 

of Target Responses (t(1184) = 14.75, p < .001) and 

expertise (t(1184) = 2.52, p = .01). Standardised regression 

coefficients from Model 3 indicated a greater influence of 

number of Target Tweets (β = 0.39) on belief change than 

expertise (β = 0.07). The small effect of expertise is 

reflected in the disagreement between BIC and AIC, 

indicating that the addition of expertise in Model 3 only 

added marginal predictive value. These results support the 

first hypothesis, suggesting that increasing the number of 

Target Responses increased belief change. They also 

provide tentative support for the second hypothesis, as 

expertise had a significant but relatively small effect on 

belief change. 

To test the third hypothesis, we can observe Figure 4, 

which suggests that as the number of Target Responses 

increases, so too did belief change in a monotonically 

increasing pattern. When aggregating across expertise 

conditions, belief change increased as the number of Target 

Responses increased from 0 (M = -0.98, SD = 14.00) to 1 

(M = 8.78, SD = 15.63), from 1 to 2 (M = 15.26, SD = 

18.04), and from 2 to 3 (M = 19.83, SD = 17.03). After 3 

Target Responses, belief change began to plateau when 

increasing to 4 (M = 20.04, SD = 17.56) and 5 (M = 22.01, 

SD = 21.15). These results support a monotonic relationship 

between the number of Target Responses and belief change. 

However, this relationship begins to display diminishing 

returns as consensus quantity increases, thus supporting our 

third hypothesis.  

As Model 4 was not the most preferred model by either 

AIC or BIC, our findings do not fully support the fourth 

hypothesis. However, we note qualitative similarities 

between our experimental findings (Figure 4) and the 

predictions made in our Bayesian analysis (Figure 1), 

wherein the Expert condition increases before plateauing 

(at three Target Responses instead of one, however), while 

the Non-Expert condition gradually increases with 

consensus quantity. This indicates some support for the 

fourth hypothesis, but more investigation is warranted. 

 

Discussion 

We aimed to investigate whether people leverage a simple 

assumption about the amount of underlying evidence a 

consensus represents, by measuring belief change across 

varying levels of consensus quantity and expertise. A core 

finding was that consensus is a consistently persuasive cue, 

aligning with much of the previous literature (e.g., Harkins 

& Petty, 1981; Ransom, Perfors & Stephens, 2021; 

Model Predictors AIC BIC SE 

1 Prior  10386 10401 19.12 

2 Prior + Target Responses 10189 10209 17.59 

3 Prior + Target Responses + Expertise 10184 10210 17.55 

4 Prior + Target Responses * Expertise 10186 10217 17.55 

Figure 4. Belief change as a function of the number 

of Target Responses present across Non-Expert and 

Expert conditions. Points display mean values. Error 

bars are within-subjects 95%CI. 

Table 1. Comparison of the four linear regression 

models on the basis of AIC and BIC (lower AIC and 

BIC indicate better fit).  
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Simmonds et al., 2023). Additionally, our results show that 

consensus quantity has a monotonically increasing 

relationship with belief change. This finding also aligns 

with literature that reports a majority to be increasingly 

persuasive as its size grows (e.g., Mercier & Morin, 2019).  

However, we note a pattern of diminishing returns in 

persuasiveness from additional consensus quantity beyond 

a certain point (around 3 messages). This finding is 

consistent with the explanation captured by our Bayesian 

analysis, wherein increasing consensus quantity increases 

the amount of underlying evidence that the consensus 

represents but increases the probability of evidential 

overlaps between sources. This suggests that participants 

are doing more than simply counting up the number of 

sources in a consensus when assessing its persuasiveness. 

Interestingly, the point at which belief change plateaus in 

our data is at the same point noted by Shu and Carlson 

(2014), whose study suggests that there is a “charm of 

three”, where persuasion is maximised at three messages, 

although we did not replicate the subsequent decline in 

persuasiveness that they reported at 4 messages.  

Our results also indicate that expertise was a significant 

predictor of belief change, although with a small effect size. 

This finding aligns with Simmonds et al. (2023), where 

expertise was similarly identified as a significant predictor 

of belief change, but also with a small effect size. The 

replication of such a finding implies that while participants 

differentiate between sources based on their expertise, the 

extent to which they do is perhaps less than expected. A 

qualitative comparison between our experiment results and 

the Bayesian simulation indicate that participants perceived 

the expert organisation opinions as having only slightly 

higher evidential value than the non-expert opinions, which 

contrasts with previous findings that experts can be highly 

persuasive (e.g., Hornikx, Harris & Boekema, 2018; Jucks 

& Thon, 2017; Maddux & Rogers, 1980). Alternatively, our 

results may indicate that participants over-estimated the 

evidential value of the non-expert sources. Such an over-

estimation could be explained based on various factors 

explored across the literature, including identity heuristics 

(Sundar, 2008), and the persuasiveness of anecdotal 

evidence (Zebregs, van den Putte, Neijens & de Graaf, 

2015). Either explanation is concerning given our use of 

expert organisations, which each represent a consensus 

among individual experts. The similarity in persuasiveness 

between non-expert individual users and health 

organisations warrants further exploration.  

Although our findings did not identify a significant 

interaction effect between expertise and consensus quantity, 

it should be noted that the relationship observed in Figure 4 

does qualitatively resemble the relationship displayed in 

Figure 1, although with a much smaller effect of expertise. 

The most notable similarity is the plateauing of belief 

change that is most pronounced in the Expert condition. 

Akin to similar research (e.g., Connor Desai, Xie & Hayes,  

2022; Simmonds et al., 2023), these findings further allude 

to differences in perceptions of source dependency between 

expert and non-expert sources. Further research would help 

elucidate possible effects.  

It is important to note some possible limitations with our 

experiment which will inform future work. Firstly, the 

results from our attention check indicate minor 

discrepancies between the intended stance of our responses 

and the stance perceived by some of the participants. This 

discrepancy may be attributable to a lack of attention on the 

participants’ behalf, but future research can strengthen the 

clarity of stances held by the responses.  

Additionally, our sample of participants were primarily 

white males from the US, potentially making it difficult to 

generalise the findings to a broader population. As trust in 

institutions may vary across countries (Gil de Zúñiga, 

Ardèvol-Abreu, Diehl, Gómez Patiño & Liu, 2019), it is 

likely that the persuasiveness of expertise would vary. 

Gathering data from a more diverse sample would help 

improve generalisability.  

Finally, we want to emphasize the preliminary nature of 

the Bayesian analysis we present here. It is based upon 

several simplifying assumptions, including the assumption 

that people have an idea about the finite amount of 

underlying evidence for/against a given claim, and that this 

is the primary factor influencing reasoning. We believe that 

this paper acts as strong initial point from which future 

research can investigate the reality of these assumptions.  

Despite these limitations, our findings suggest several 

important implications. Consensus quantity is an important 

factor when aiming to change beliefs about health claims 

online – regardless of the expertise of those comprising the 

consensus. Concerningly, when the claim in question is 

false, the ability to sway opinion through pure consensus 

quantity can contribute to the spread of misinformation. 

However, we also note that by commenting on the veracity 

of online health claims, experts are also able to sway people 

in their favour. This implication reinforces the notion 

suggested in Simmonds et al. (2023) that experts can 

successfully act as influencers of public opinion in the face 

of misinformation. Encouraging health organisations to 

take an active role in online fact-checking and improving 

their visibility to the public will help people navigate the 

mass of health information available online. However, it is 

also important to note the diminishing returns that arise as 

consensus quantity grows (when there are no opposing 

messages) – a phenomenon that appears marginally more 

prevalent in response to experts. Thus, experts may be able 

to maximise their persuasive value if they choose to 

comment on health claims that remain unacknowledged by 

other experts.  

 

Acknowledgements 

This research was supported by a 2022 Digi+ FAME grant 

from The University of Adelaide. 

 

 

 

 

 

4790



References 

Ahler, D. J., Roush, C. E., & Sood, G. (2021). The micro-

task market for lemons: data quality on Amazon’s 

Mechanical Turk. Political Science Research and 

Methods, 1–20. 

Alister, M., Ransom, K. J., & Perfors, A. (2022). Source 

independence affects argument persuasiveness when the 

relevance is clear. Proceedings of the Annual Meeting of 

the Cognitive Science Society, 44(44). 

Asch, S. E. (1951). Effects of group pressure upon the 

modification and distortion of judgments. In H. 

Guetzkow (Ed.), Groups, leadership and men; research 

in human relations (pp. 177–190). Carnegie Press. 

Asch, S. E. (1956). Studies of independence and 

conformity: I. A minority of one against a unanimous 

majority. Psychological Monographs, 70(9), 1–70. 

Bovens, L., & Hartmann, S. (2004). Bayesian 

epistemology. OUP Oxford. 

Chmielewski, M., & Kucker, S. C. (2020). An MTurk 

Crisis? Shifts in Data Quality and the Impact on Study 

Results. Social Psychological and Personality Science, 

11(4), 464-473. 

Connor Desai, S., Xie, B., & Hayes, B. K. (2022). Getting 

to the source of the illusion of consensus. Cognition, 223, 

105023. 

Fletcher, R., & Park, S. (2017). The Impact of Trust in the 

News Media on Online News Consumption and 

Participation. Digital Journalism, 5(10), 1281–1299.  

Gerard, H. B., Wilhelmy, R. A., & Conolley, E. S. (1968). 

Conformity and group size. Journal of Personality and 

Social Psychology, 8(1), 79–82. 

Gil de Zúñiga, H., Ardèvol-Abreu, A., Diehl, T., Gómez 

Patiño, M., & Liu, J. H. (2019). Trust in Institutional 

Actors across 22 Countries. Examining Political, 

Science, and Media Trust Around the World. Revista 

Latina de Comunicación Social, 74, 237-262. 

Harkins, S. G., & Petty, R. E. (1981). Effects of source 

magnification of cognitive effort on attitudes: An 

information-processing view. Journal of Personality and 

Social Psychology, 40(3), 401–413. 

Harkins, S. G., & Petty, R. E. (1987). Information utility 

and the multiple source effect. Journal of Personality and 

Social Psychology, 52(2), 260–268. 

Hornikx, J., Harris, A. J. L., & Boekema, J. (2018). How 

many laypeople holding a popular opinion are needed to 

counter an expert opinion? Thinking & Reasoning, 24(1), 

117–128. 

Jucks, R., & Thon, F. M. (2017). Better to have many 

opinions than one from an expert? Social validation by 

one trustworthy source versus the masses in online health 

forums. Computers in Human Behavior, 70, 375–381. 

Kennedy, R., Clifford, S., Burleigh, T., Waggoner, P. D., 

Jewell, R., & Winter, N. J. G. (2020). The shape of and 

solutions to the MTurk quality crisis. Political Science 

Research and Methods, 8(4), 614–629. 

Klein, G. (2008). Naturalistic Decision Making. Human 

Factors, 50(3), 456–460. 

Leppink, J. (2019). Statistical Methods for Experimental 

Research in Education and Psychology. Springer 

International Publishing. 

Lewandowsky, S., Ecker, U. K. H., & Cook, J. (2017). 

Beyond Misinformation: Understanding and Coping with 

the “Post-Truth” Era. Journal of Applied Research in 

Memory and Cognition, 6(4), 353–369. 

Maddux, J. E., & Rogers, R. W. (1980). Effects of source 

expertness, physical attractiveness, and supporting 

arguments on persuasion: A case of brains over beauty. 

Journal of Personality and Social Psychology, 39(2), 

235–244. 

Mercier, H., & Morin, O. (2019). Majority rules: how good 

are we at aggregating convergent opinions? Evolutionary 

Human Sciences, 1, e6. 

Nordholm, L. A. (1975). Effects of group size and stimulus 

ambiguity on conformity. The Journal of Social 

Psychology, 97(1), 123-130. 

Ransom, K. J., Perfors, A., Stephens, R. (2021). Social 

meta-inference and the evidentiary value of consensus. 

Proceedings of the Annual Meeting of the Cognitive 

Science Society (pp. 833-839). 

Shu, S. B., & Carlson, K. A. (2014). When Three Charms 

but Four Alarms: Identifying the Optimal Number of 

Claims in Persuasion Settings. Journal of Marketing, 

78(1), 127–139. 

Simmonds, B. P, Stephens, R., Searston, R. A, Asad, N., & 

Ransom, K. J. (2023). The Influence of Cues to 

Consensus Quantity and Quality on Belief in Health 

Claims. Proceedings of the Annual Meeting of the 

Cognitive Science Society, 45. 

Stoica, P., & Selen, Y. (2004). Model-order selection: a 

review of information criterion rules. IEEE Signal 

Processing Magazine, 21(4), 36-47. 

Suarez-Lledo, V., & Alvarez-Galvez, J. (2021). Prevalence 

of Health Misinformation on Social Media: Systematic 

Review. Journal of Medical Internet Research, 23(1), 

e17187–e17187.  

Sundar, S. S. (2008). The MAIN model: A heuristic 

approach to understanding technology effects on 

credibility (pp. 73-100). Cambridge, MA: MacArthur 

Foundation Digital Media and Learning Initiative. 

Whalen, A., Griffiths, T. L., & Buchsbaum, D. (2018). 

Sensitivity to Shared Information in Social Learning. 

Cognitive Science, 42(1), 168–187. 

Zebregs, S., van den Putte, B., Neijens, P., & de Graaf, A. 

(2015). The differential impact of statistical and narrative 

evidence on beliefs, attitude, and intention: A meta-

analysis. Health communication, 30(3), 282-289. 

Zhao, S., Hu, S., Zhou, X., Song, S., Wang, Q., Zheng, H., 

Zhang, Y., & Hou, Z. (2023). The Prevalence, Features, 

Influencing Factors, and Solutions for COVID-19 

Vaccine Misinformation: Systematic Review. JMIR 

Public Health and Surveillance, 9, e40201–e40201.

 

4791




