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ABSTRACT OF THE DISSERTATION

Statistical and Adaptive Patch-based Image Denoising

by

Enming Luo

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2016

Professor Truong Nguyen, Chair

With the explosion in the number of digital images taken every day, people

are demanding more accurate and visually pleasing images. However, the captured

images by modern cameras are inevitably degraded by noise. Besides deteriorating

image visual quality, noise also degrades the performance of high-level vision tasks

such as object recognition and tracking. Therefore, image denoising is a critical

preprocessing step. This thesis presents novel contributions to the field of image

denoising.

Image denoising is a highly ill-posed inverse problem. To alleviate the

ill-posedness, an effective prior plays an important role and is a key factor for

successful image denoising. With abundance of images available online, we pro-

pose to obtain priors from external image databases. In this thesis, we perform

xvi



statistical analyses and rigorous derivations on how to obtain effective priors by

utilizing external databases. For three denoising applications under different ex-

ternal settings, we show how we can explore effective priors and accordingly we

present adaptive patch-based image denoising algorithms. In specific, we propose

three adaptive algorithms: (1) adaptive non-local means for multiview image de-

noising; (2) adaptive image denoising by targeted databases; (3) adaptive image

denoising by mixture adaption.

In (1), we present how to improve the non-local prior by finding more rele-

vant patches in the multiview image denoising setting. We propose a method that

uses a robust joint-view distance metric to measure the similarity of patches and

derive an adaptive procedure to determine the optimal number of patches for final

non-local means denoising. In (2), we propose to switch from generic database to

targeted database, i.e., for specific objects to be denoised, only targeted databases

with relevant images should be used. We explore both the group sparsity prior and

the localized Bayesian prior, and show how a near optimal and adaptive denoising

filter can be designed so that the targeted database can be maximally utilized. In

(3), we propose an adaptive learning procedure called Expectation-Maximization

(EM) adaptation. The adaptive process takes a generic prior learned from a generic

database and transfers it to the image of interest to create a specific prior. This

adapted prior better captures the distribution of the image of interest and is con-

sistently better than the un-adapted one. For all the three denoising applications,

we conduct various denoising experiments. Our proposed adaptive algorithms have

some superior denoising performance than some state-of-the-art algorithms.

xvii



Chapter 1

Introduction

1.1 Image Restoration

Image restoration is a classical signal recovery problem where the goal is to

restore a clean image from its degraded observation. The problem has been studied

for decades, but it is still a vibrant research topic because it plays an important

role in many areas such as consumer camera imaging, medical imaging, satellite

imaging and military surveillance.

x Lowpass
Filter H

y

ε

Figure 1.1: Degradation model: y is corrupted image by first passing the original
image x into a lowpass filter H and then adding noise ε to it.

Due to physical limitations of the imaging system and various environmental

factors, the captured image represents a degraded version of the original scene.

Some common degradations include blur, noise, geometric degradations and color

imperfections. While some degradations are complex, the majority can be modeled

as the linear degradation model. As shown in Figure 1.1, the original high-quality

image x undergoes blur H first and is then corrupted by noise ε. Blurring is

1
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usually modeled as the convolution of an image with a blur kernel (also known as

the point spread function, PSF). There are different types of blurs. If the PSF is

the same throughout the image, the blur is termed spatially-invariant (e.g., camera

motion blur). Otherwise, if the PSF is different for different image pixels, the blur

is termed spatially-variant (e.g., lens defocus blur). Besides blur, noise causes

random fluctuation in pixel intensity which obscures the original image content.

The characteristics of noise depend on the noise sources. Some common types of

noise include electronic noise, shot noise, salt-and-pepper noise, speckle noise, and

quantization noise. To put things together, the imaging system is mathematically

modeled as [5]

y = Hx+ ε, (1.1)

where x ∈ R
N is a lexicographically ordered vector denoting the unknown high-

quality image, y ∈ R
N denotes the observed degraded image, H ∈ R

N×N denotes

the linear transformation operator, and ε ∈ R
N denotes the random noise. Image

restoration aims to reconstruct the original sharp image f from the blurry and

noisy observation y.

1.2 Image Denoising

If H in (1.1) is an identity matrix, image restoration becomes an image

denoising problem, the goal of which is to restore a clean image from its noisy ob-

servation. In the thesis, we focus on the image denoising problem. This problem

has been studied for decades, but it still remains a fundamental image processing

task both as a process itself, and as a component in other processes. For one

reason, noise removal improves the image visual quality and improves the perfor-

mance of many subsequent computer vision applications such as object detection;

For another, image denoising serves as a test bed for a wide range of other in-

verse problems in image processing such as image deblurring, image inpainting

and super-resolution.

Though noise is introduced in various forms at different stages in the imag-

ing system, two major types of noise are: electronic noise and shot noise. Electronic
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noise stems from different causes such as instability of voltage, temperature fluctu-

ation of electronic components, quantization error of analog-to-digital conversion,

etc. Typically electronic noise is modeled to be Gaussian distributed.

On the other hand, shot noise is caused by the random arrival of photons.

When photons hit the image sensors, they arrive in a random way as opposed to

uniformly, which results in shot noise. Typically this photon counting process is

modeled to be Poisson distributed and is especially serious when the light condition

is bad. However, shot noise can be transformed to be Gaussian distributed via

Anscombe root transformation [6]. Therefore, shot noise can also be addressed by

any denoising algorithm for Gaussian noise.

In the image denoising literature, the mixture of different noises is pop-

ularly modeled as additive white Gaussian noise (AWGN) with zero mean. For

one reason, denoising methods targeted at Gaussian noise are practically applica-

ble for other types of noise. For another, Gaussian distribution has mathematical

tractability and could significantly facilitate the mathematical analysis when de-

signing denoising methods. In our thesis, we consider the classical image denoising

problem: Given an additive i.i.d. Gaussian noise model,

y = x+ ε, (1.2)

our goal is to find an estimate of x from y, where x ∈ R
n denotes the (unknown)

clean image, ε ∼ N (0, σ2I) ∈ R
n denotes the additive i.i.d. Gaussian noise with

σ2 noise variance, and y ∈ R
n denotes the observed noisy image.

1.3 Denoising Literature

Image denoising is a long-lasting problem and numerous denoising algo-

rithms have been proposed in the past few decades. Among the various denois-

ing methods, most of them can be classified as either a spatial domain denoising

method or a transform domain denoising method. A spatial domain denoising

method alters the pixels directly in the spatial domain such as Gaussian filtering,

anisotropic filtering [7], bilateral filtering [8] and steering kernel regression [9]. A
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transform domain denoising method converts an image into a transform domain

and then alters the transform coefficients to reduce noise such as Wiener filtering

[10–12], wavelet-based techniques [13,14] and dictionary-based techniques [15,16].

In our thesis, we focus on the class of patch-based image denoising algo-

rithms [11,12,17–24]. These methods are the most highly-regarded class of meth-

ods, and have drawn a lot of attention in the denoising community in recent years.

The basic idea of a patch-based denoising algorithm is to partition a noisy image

into overlapped or non-overlapped patches, denoise each patch through the statis-

tics of some other reference patches, and then combine all the denoised patches

to yield a final denoised image. In specific, given a
√
d ×

√
d patch q ∈ R

d from

the noisy image y, the algorithm finds a set of reference patches p1, . . . ,pk ∈ R
d

and applies some linear (or non-linear) function Φ to obtain an estimate p̂ of the

unknown clean patch p as

p̂ = Φ(q; p1, . . . ,pk). (1.3)

For example, in the classic non-local means (NLM) [17], Φ is a weighted average

of the reference patches,

p̂ =

k∑
i=1

e−‖q−pi‖2/h2
pi

k∑
i=1

e−‖q−pi‖2/h2

, (1.4)

where h is a decay parameter.

Image denoising is an ill-posed inverse problem because the information

provided by the noisy observation is not sufficient to ensure a unique and stable

restored image in the right class [25]. Thus, it is necessary to regularize the inverse

problem by adding prior knowledge of the image. Patch-based image denoising

algorithms exploit the statistics of other reference patches for denoising, and are

actually enforcing prior knowledge in solving the ill-posed inverse problem. For

example, NLM in (1.4) is actually enforcing a non-local prior. In other words,

the best estimate p̂ in NLM should be close to the non-local reference patches

p1, . . . ,pk ∈ R
d. Many other patch-based denoising algorithms are also assuming
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some notions of prior, either explicitly or implicitly.

Depending on the source of the reference patches or training samples in

general, the priors can be classified as internal prior [26] or external prior [27,28].

The internal prior is trained or learned using samples from the single noisy image

while the training samples for the external prior are from a database of external

clean images. To date, there is no clear conclusion about which of the internal or

external methods is better. However, it is generally observed that internal meth-

ods are computationally less expensive, whereas external methods have greater

potential to achieve better performance by mining appropriate datasets.

The other difference between internal and external priors is the informative-

ness. For internal priors, since the statistics is learned specifically for the image of

interest, there is no redundancy as opposed to learning from a database of generic

images. However, the challenge is that the image is noisy so that the priors do

not completely reflect the ground truth. On the other hand, while external priors

tend to over-learn for a specific image, the priors are indeed computed from ground

truth clean images.

In this thesis, we discuss image denoising under three different external

settings. Thus our training samples are from external databases. We present how

to obtain effective priors by either mining appropriate external databases or by

combining the external prior with the internal prior in a systematic way.

1.4 Contribution

Through advancing prior modeling, we can effectively advance our capabil-

ity for successful image denoising. In this thesis, we focus on how to find good

priors and specifically perform rigorous statistical analyses on how to obtain effec-

tive priors through different ways. For different scenarios, we utilize the effective

priors and design adaptive patch-based image denoising algorithms that achieve

superior denoising performance.

This remainder of this thesis is organized as follows:

1. Chapter 2 – Multiview Image Denoising
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In this chapter, we discuss image denoising when we have multiple noisy

views of the same scene. We present an adaptive procedure derived from

statistical properties of the estimates to determine the optimal number of

patches to be used. The returned reference patches are more similar to the

noisy patch of interest and thus provide a good non-local prior for the final

non-local means denoising method.

2. Chapter 3 – Targeted Image Denoising

In this chapter, we discuss image denoising when a targeted external database

is available. A targeted database contains images that are only relevant to the

noisy image of interest and thus provide exceptional prior for the denoising

task. We explore both the group sparsity prior and the localized Bayesian

prior, and present how the targeted database can be maximally utilized by

proposing a near optimal and adaptive linear denoising filter.

3. Chapter 4 – Guided Image Denoising

In this chapter, we discuss image denoising when only a generic database (as

opposed to a targeted database) is available. We present how a generic prior

learned from a generic database can be adapted to the image of interest to

generate a specific prior. During the adaptation, the generic model parame-

ters serve as a “guide” when learning the new model parameters. We show

that the adapted prior is consistently better than the originally un-adapted

prior for image denoising.



Chapter 2

Adaptive Non-local Means for

Multiview Image Denoising

2.1 Introduction

In this chapter, we consider multiview image denoising A multiview sys-

tem captures multiple but non-identical observations of the same scene. However,

due to the lighting condition, physical limitations and sometimes malfunctions of

the system, the captured views are often corrupted with noise. Multiview im-

age denoising aims at denoising one view at a time by using all the similar but

non-identical noisy views.

Multiview image denoising could be thought of as a special case of external

denoising in the sense that the external database consists of adjacent noisy views,

which are used to assist in denoising of the current view. Defining g(k) = f (k)+n(k)

for k = 1, . . . , K a sequence of K noisy observations, where n(k) is a vector of i.i.d.

Gaussian noise of variance σ2, our goal is to recover f (1), . . . , f (K) ∈ R
N from

g(1), . . . , g(K) ∈ R
N .

The method we consider in our work is the NLM [17] filtering approach.

Letting p
(k)
i ∈ R

d be a patch centered at the ith pixel in the kth image, NLM

7
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computes the weights as

W
(kl)
ij = exp

{
−‖p(k)

i − p
(l)
j ‖2

h2

}
, (2.1)

and denoises the images as




f̂
(1)

...

f̂
(K)


 =




D(1)

. . .

D(K)




−1 


W (11) . . . W (1K)

...
. . .

...

W (K1) . . . W (KK)







g(1)

...

g(K)




here, D(k) = diag([W (k1), . . . ,W (kK)]T1KN×1) is a diagonal matrix for normal-

ization. For notation simplicity and without loss of generality, in the rest of the

chapter we consider denoising f (1) using g(1), . . . , g(K).

One of the biggest issues in the above multiple-image NLM is that the

Euclidean distance metric ‖p(k)
i −p

(l)
j ‖2 does not capture the true similarity between

p
(k)
i and p

(l)
j . In other words, two patches could be different, but their Euclidean

distance might be close because of noise. Therefore, to improve the performance

of NLM, one fundamental challenge is how to search for the right patches.

2.1.1 Overview of the Proposed Method

To tackle the problem, our first attempt is to improve the metric. In multi-

view denoising problems, we consider the robust joint-view distance [29] to measure

the similarity. Given a patch p
(1)
i , we first compute the correspondences (dispar-

ity maps) from view 1 to views 2, . . . , K using off-the-shelf algorithms such as

block matching [30], optical flow [31], or TV/L1 [32]. Denoting the disparities as

{q(1)i , . . . , q
(K)
i } for i = 1, . . . , N , we define the distance between two patches p

(1)
i

and p
(1)
j as

D(p
(1)
i ,p

(1)
j )

def
=

K∑

k=1

∥∥∥∥p
(k)

i+q
(k)
i

− p
(k)

j+q
(k)
j

∥∥∥∥
2

. (2.2)

Replacing ‖p(1)
i − p

(1)
j ‖2 by D(p

(1)
i ,p

(1)
j ) could improve the robustness of

patch similarity, but as observed by Kervrann and Boulanger [18], the presence of
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many dissimilar patches could still cause unwanted bias in the denoising procedure.

Therefore, our second modification is to keep a set of m most similar patches so

that there are only m non-zero entries in each row of W (kl).

To obtain a set of m most similar patches with respect to p
(1)
i , we compute

D(p
(1)
i ,p

(1)
j ) for all possible j’s and keep the m best matches. We then define the

set of m best matching patches in View 1:

Ω
(1)
i,m =

{
j | the indices of m smallest D(p

(1)
i ,p

(1)
j )
}
, (2.3)

and the sets of m best matching patches in other views:

Ω
(k)
i,m =

{
j + q

(k)
j | j ∈ Ω

(1)
i,m

}
, k = 2, . . . , K. (2.4)

Note that Ω
(k)
i,m ⊂ Ω

(k)
i,m+1. Restricting W

(kl)
ij to Ω

(k)
i,m yields the following denoising

algorithm:

f̂
(1)
i,m =

K∑
k=1

∑

j∈Ω(k)
i,m

W
(1k)
ij g

(k)
j

K∑
k=1

∑

j∈Ω(k)
i,m

W
(1k)
ij

def
=

K∑

k=1

∑

j∈Ω(k)
i,m

W̃
(1k)
ij g

(k)
j , (2.5)

where W̃
(1k)
ij

def
=W

(1k)
ij /

K∑
k=1

∑

j∈Ω(k)
i,m

W
(1k)
ij .

It can be seen that the performance of the above denoising procedure in

(2.5) depends on how m is chosen. Intuitively, m should not be too small or

too large, for otherwise insufficient patches or excessive dissimilar patches will be

included. Therefore, we propose an adaptive scheme to choose the optimal m.

Specifically, we increase from m− 1 to m until one of the following criteria is met

• (Condition 1) Denoising Consistency:

∣∣∣f̂ (1)
i,m − f̂

(1)
i,m′

∣∣∣ ≥ γ, (2.6)

for any m′ = 1, . . . , m − 1, which requires that the deviation between the

current and the previous estimates to be small.
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• (Condition 2) Intersection of Confidence Interval:

m⋂

t=1

[αi,t, βi,t] = ∅, (2.7)

which requires that the confidence intervals [α, β] of the current and previous

estimate intersect.

As we shall see, this adaptive scheme will give us a set of m most similar patches

that improve the denoising quality.

2.1.2 Related Works

The literature on single image denoising is rich. However, state-of-the-art

single image denoising methods such as NLM [17], BM3D [11], LPG-PCA [22]

and many other methods reported in [33] are insufficient for multiview denoising,

as these methods assume that similar patches exist at different locations within

the image. Extensions of these methods such as [34, 35] are also insufficient for

multiview denoising due to similar reasons.

Direct extension of single image denoising methods have been proposed to

handle video denoising. In [36], Buades et al. proposed a video denoising method

by allowing NLM to search for similar patches in adjacent frames. Similar ideas are

applicable to BM3D, yielding the benchmark video denoising method VBM3D [19]

and BM4D [37]. One problem of these methods is that displacement across different

images is never explicitly used. While the authors of NLM [36], VBM3D [19] and

BM4D [37] claim this as an advantage, Liu and Freeman [38] showed that reliable

motion vectors are indeed helpful.

Another problem of video NLM [36], VBM3D [19] and BM4D [37] is that the

number of patches increases as the number of images increases. This is undesirable

because there will be many small but non-zero weights which could reduce the

denoising result. Therefore, Kervrann and Boulanger [18] proposed a method

to adaptively look for optimal spatial search window size. Later, in [39] they

applied similar ideas to videos and demonstrated outstanding performance over

other methods [40–44].
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2.1.3 Contributions and Outline

Our proposed method utilizes the strength of the robust metric proposed

in [29], and the spatial adaptivity proposed by Kervrann and Boulanger [18], and

V. Katkovnik [45]. The key contributions are:

• New Algorithm for Multiple Image Denoising: Our new denoising

scheme in (2.5) uses only similar patches defined in (2.3) and (2.4). As will

be discussed in Section 2.3, the new algorithm out-performs existing methods.

• Adaptive Neighborhood Selection: We propose an adaptive scheme to

determine the optimal m. The optimal m allows us to denoise the image with

the right number of relevant patches, as contrast to classical NLM where all

patches are used.

In the following sections, we discuss our proposed method in Section 2.2

and show experimental results in Section 2.3. Conclusion is given in Section 2.4.

2.2 Proposed Method

In this section, we describe the proposed method. For clarity we present the

overall algorithm in Algorithm 1, and discuss the ideas in the following subsections.

Algorithm 1 Proposed Algorithm

1: Input: g(1), . . . , g(K).

2: Output: f̂
(1)
.

3: Pre-denoise {g(k)} by single-view methods to obtain {g(k)}.
4: Run optical flows to obtain {q(1), . . . , q(k)}.
5: for all i pixels do
6: Compute D(p

(1)
i ,p

(1)
j ) using (2.2).

7: Compute the sets Ω
(k)
i,m using (2.3) and (2.4).

8: Compute f̂
(1)
i,m using (2.5).

9: If f̂
(1)
i,m does not satisfy Condition 1 or 2, then increase m and repeat Lines 8

– 9.
10: end for
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2.2.1 Pre-processing and Optical Flow

In order to compute D(p
(1)
i ,p

(1)
j ), we first need to determine the disparity

maps q(1), . . . , q(K) ∈ R
N×2. In our work, we use the classical optical flow [31],

with the MATLAB/C++ implementation by Liu [46].

Running optical flow on g(k)’s directly is problematic, because g(k)’s are

noisy images. Therefore, we pre-filter g(k)’s to obtain cleaner images before optical

flow. The pre-filtering is done using single-image NLM.

2.2.2 Bias and Variance for Multiview Image NLM

Our proposed adaptive scheme for finding optimalm requires the knowledge

of the bias and variance of f̂
(1)
i,m. To derive the bias and variance of f̂

(1)
i,m, we

substitute g
(1)
i = f

(1)
i + n

(1)
i into (2.5), and we can show that

b
(1)
i,m

def
=Bias(f̂

(1)
i,m) =

K∑

k=1

∑

j∈Ω(k)
i,m

W̃
(1k)
ij f

(1)
j ,

(
v
(1)
i,m

)2
def
=Var(f̂

(1)
i,m) =

K∑

k=1

∑

j∈Ω(k)
i,m

(
W̃

(1k)
ij

)2
σ2.

We now discuss the conditions in Line 9 of Algorithm 1. For notation

simplicity we drop the super-script and let W̃ij = W̃
(1k)
ij , f̂j = f̂

(1)
j , bi,m = b

(1)
i,m, and

vi,m = v
(1)
i,m.

2.2.3 Condition 1: Denoising Consistency

The intuition of the denoising consistency is that by increasing m − 1 to

m, the changes f̂i,m′ − f̂i,m for all m′ = 1, . . . , m − 1 cannot be too large. In

other words, we want the algorithm to terminate when the following probabilistic

criterion is satisfied:

Pr
[∣∣∣f̂i,m′ − f̂i,m

∣∣∣ ≤ ε
]
≤ λ, m′ = 1, . . . , m− 1, (2.8)
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where ε is a threshold, and λ ≪ 1 defines the probability (typically ≈ 0.01). The

probability on the left hand side of (2.8) can be determined through the following

proposition.

Proposition 1. The probability inequality Pr
[∣∣∣f̂i,m′ − f̂i,m

∣∣∣ ≤ ε
]
≤ λ holds if and

only if ∣∣∣f̂i,m′ − f̂i,m

∣∣∣ ≤ Q−1

(
1− λ

2

)
∆vi,m′ , (2.9)

where Q(·) is the Q-function of standard normal distribution, and ∆v2i,m′

def

= v2i,m −
v2i,m′.

Proof. First, we define ∆f̂i,m′ = f̂i,m− f̂i,m′ . Consequently, the corresponding bias

and variance can be defined as

∆bi,m′

def
= bi,m − bi,m′ =

K∑

k=1



∑

j∈Ω(k)
i,m

W̃i,jfj −
∑

j∈Ω(k)

i,m′

W i,jfj


 ,

∆v2i,m′

def
= v2i,m − v2i,m′ =

K∑

k=1



∑

j∈Ω(k)
i,m

σ2W̃ 2
i,j −

∑

j∈Ω(k)

i,m′

σ2W
2

i,j


 ,

where W̃ is the normalized version of W (m non-zero entries), and W is the

normalized version of W (m′ non zero entries).

Since f̂i,m′ =
∑K

k=1

∑
j∈Ω(k)

i,m′

W̃i,j(fj + nj), it can be shown that f̂i,m′ ∼
N (bi,m′, v2i,m′) and hence ∆f̂i,m′ ∼ N (∆bi,m′,∆v2i,m′). Substitute this into (2.9)

yields

Pr
[∣∣∣∆f̂i,m′

∣∣∣ ≤ ε
]
= Pr

[
∆f̂i,m′ ≥ −ε

]
− Pr

[
∆f̂i,m′ ≥ ε

]

= Q

(
−−ε−∆bi,m′

∆vi,m

)
−Q

(
−ε−∆bi,m′

∆vi,m′

)
.

Assuming that bi,m = bi,m′ , we have ∆bi,m′ = 0 and hence

Pr
[∣∣∣∆f̂i,m′

∣∣∣ ≤ ε
]
= 1− 2Q

(
ε

∆vi,m′

)
.
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Finally, setting Pr
[∣∣∣∆f̂i,m′

∣∣∣ ≤ ε
]
≤ λ yields 1 − 2Q

(
ε

∆vi,m′

)
≤ λ, which in

turn requires that

ε ≤ Q−1

(
1− λ

2

)
∆vi,m′

def
= γ.

This implies that Pr
[∣∣∣∆f̂i,m′

∣∣∣ ≤ ε
]
≤ λ iff

∣∣∣∆f̂i,m′

∣∣∣ ≤ γ.

As a consequence of Proposition 1, the algorithm should terminate if
∣∣∣∆f̂i,m′

∣∣∣
≤ γ. Hence, the optimal m is the smallest integer such that

∣∣∣∆f̂i,m′

∣∣∣ ≥ γ, i.e.,

m∗ = argmin
m

{∣∣∣f̂i,m − f̂i,m′

∣∣∣ ≥ γ, 1 ≤ m′ ≤ m
}
. (2.10)

2.2.4 Condition 2: Intersection of Confidence Interval

Our second condition is based on the intuition that m should be increased

as long as f̂i,m has similar confidence interval with f̂i,m′ for m′ = 1, . . . , m − 1.

Since f̂i,m ∼ N (bi,m, v
2
i,m), the confidence interval of f̂i,m is

[f̂i,m − τvi,m, f̂i,m + τvi,m].

where τ controls the likelihood that the true value fi lies in the interval:

αi,m
def
= f̂i,m − τvi,m ≤ fi ≤ f̂i,m + τvi,m

def
= βi,m. (2.11)

Therefore, the smallest intersection before having no feasible solution determines

the optimal m:

m∗ = argmin
m

{
m :

m⋂

t=1

[αi,t, βi,t] = ∅
}
. (2.12)

2.3 Experimental Results

In this subsection we present some experimental results for multiview image

denoising and video denoising using Algorithm 1.
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2.3.1 Multi-view Image Denoising

We downloaded 4 sets of images from Middlebury Computer Vision Page

http : //vision.middlebury.edu/stereo/. Each set of images consists of 5 views, so

that K = 5. In our experiments, we add noise of variance σ = 20 (out of 255).

We compared our proposed algorithm with four existing methods, namely

Video NLM [47], BM3D [11], Video BM3D [19] and BM4D [37]. The results are

shown in Table 2.1 and snapshots of the images are shown in Figure 2.1.

Table 2.1: PSNR and SSIM (value in the parenthesis) results using Video NLM,
BM3D, Video-BM3D, BM4D and the proposed methods for denoising images in
Middlebury dataset.

Barn Cone Teddy Venus

Video NLM [47]
28.95 28.81 29.95 30.55

(0.8363) (0.8358) (0.8688) (0.8941)

BM3D [11]
28.97 28.90 30.18 30.51

(0.8442) (0.8443) (0.8844) (0.9038)

Video BM3D [19]
30.38 28.42 29.70 31.54

(0.8840) (0.8353) (0.8755) (0.9192)

BM4D [37]
28.70 27.93 29.28 29.96

(0.8368) (0.8127) (0.8575) (0.8920)

Ours - Cond 1
30.67 30.04 31.11 32.00

(0.9000) (0.8905) (0.9000) (0.9189)

Ours - Cond 2
30.48 29.91 31.05 31.91

(0.8946) (0.8850) (0.8992) (0.9192)

Ours - Cond 1 30.74 30.13 31.23 32.08
(true disparity) (0.9034) (0.8977) (0.9058) (0.9224)
Ours - Cond 2 30.54 29.98 31.14 31.98
(true disparity) (0.8977) (0.8915) (0.9042) (0.9224)

The results suggest the following observations. First, the proposed method

(using either conditions) out-performs the competitors by a big margin. Compared

with NLM (which uses all patches in the neighborhood), the results indicate that

a large number of dissimilar patches, despite having small weights, could severely

reduce the denoising quality as a whole. Compared with BM4D (which groups

temporal patches at the same locations of consecutive frames as similar patches),

the results indicate that if similar patches cannot be grouped accurately across
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Table 2.2: PSNR and SSIM values for video denoising.

Video Sequences
BM3D VBM3D BM4D Ours
[11] [19] [37] Cond 1

Facility Management
31.48 32.73 31.07 32.84
(0.89) (0.91) (0.88) (0.92)

Jacob School
25.83 28.12 25.23 27.97
(0.84) (0.91) (0.81) (0.91)

Market Place
31.69 32.61 32.97 32.80
(0.93) (0.94) (0.94) (0.92)

SuperLoop - Big
30.81 30.79 30.13 31.45
(0.94) (0.93) (0.92) (0.93)

SuperLoop - Small
29.04 31.48 31.95 31.30
(0.89) (0.92) (0.93) (0.92)

Voigt Drive 1
29.81 31.32 31.69 31.19
(0.92) (0.94) (0.95) (0.93)

Voigt Drive 2
29.89 31.80 31.98 31.48
(0.91) (0.94) (0.94) (0.93)

views, additional patches would deteriorate the denoising performace.

2.3.2 Video Denoising

Our proposed method is primarily designed for multiview denoising where

displacement is large. When the displacement is small, our proposed method

still works. However, the marginal gain compared to existing video denoising algo-

rithms becomes smaller. Nevertheless, as indicated in Table 2.2 and Figure 2.2, the

PSNR values of our proposed method is competitive with existing video denoising

algorithms. Averaged over the 7 video sequences we tested, the PSNR improve-

ments of the proposed method over BM3D, VBM3D and BM4D are +1.5dB, +0.05

and +0.57dB, respectively.

2.4 Conclusion

We presented an adaptive non-local means denoising method for multiview

images in which similar patches are carefully chosen according to the local statistics

of the estimates. Dissimilar patches are discarded in order to achieve a trade-off
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between bias and variance. Experimental results showed that the proposed method

outperforms state-of-the-art denoising algorithms in multiview denoising settings,

and performs competitively in video denoising settings.
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(a) Noisy σ = 20 (b) VBM3D 30.38dB

(c) BM4D 28.70dB (d) Ours 30.67dB

Figure 2.1: Multiview denoising using VBM3D, BM4D and the proposed method
for the image “Barn”.



19

(a) Noisy σ = 20 (b) VBM3D 32.73dB

(c) BM4D 31.07dB (d) Ours 32.84dB

Figure 2.2: Multiview denoising using VBM3D, BM4D and the proposed method
for the image “Facility Management”.



Chapter 3

Adaptive Image Denoising by

Targeted Databases

3.1 Introduction

In multiview image denoising, to denoise one noisy view, we consider its

adjacent noisy views as a “database” of reference images. Equivalently, we may

extend this idea to a general database, which consists of external noise-free images.

In general, with the increasing amount of high-quality image data available online

(e.g., google image, flicker, and instagram), such databases could be easily built.

For example, a popular image database ImageNet has hundreds of thousands of

clean images. These databases are referred to as generic databases in the sense

that they contain various different scenes. From a theoretic point of view, if the

database covers the entire space of patches, then the complete prior distribution

of the patches can be computed. We thereby can achieve optimal denoising with

minimum mean squared error (MMSE) [48]. Unfortunately, all databases in reality

have finite sizes. A finite generic database, though large in volume, does not

necessarily contain enough useful information for the noisy image of interest. Our

strategy is to switch from generic database to targeted database. Here, a targeted

database refers to a database that contains images relevant to the noisy image

only. With the rapid development of image retrieval technology, retrieving relevant

20
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images to form a targeted database for the query image becomes more and more

plausible. In addition, as will be illustrated in later parts of this chapter, in

many practical scenarios, building targeted databases is less difficult. For example,

targeted databases can be built for text images (e.g., newspapers and documents),

human faces (under certain conditions), and images captured by multiview camera

systems. Other possible scenarios include images of license plates, medical CT

and MRI images, and images of landmarks. We term this strategy as database

adaptivity.

The concept of using targeted databases has been proposed in various oc-

casions, e.g., [49–54]. However, none of these methods are tailored for image de-

noising problems. The objective of this chapter is to bridge the gap by addressing

the following question:

Suppose we are given a targeted external database, how should we design a

denoising algorithm which can maximally utilize the database?

Here, we assume that the reference patches p1, . . . ,pk are given. We emphasize

that this assumption is application specific — for the examples we mentioned

earlier (e.g., text, multiview, face, etc), the assumption is typically true because

these images have relatively less variety in content.

3.1.1 Related Work

When the reference patches are given, the above question perhaps becomes

a simple one: We can extend existing internal denoising algorithms in a brute-

force way to handle external databases. For example, one can modify existing

algorithms, e.g., [11, 12, 17, 55], so that the patches are searched from a database

instead of the noisy image. Likewise, one can also treat an external database as a

“video” and feed the data to multi-image denoising algorithms, e.g., [19,29,36,56].

However, the problem of these approaches is that the brute force modifications are

heuristic. There is no theoretical guarantee of performance.

An alternative response to the above question is to train a statistical prior

of the targeted database, e.g., [15, 21, 57–60]. The merit of this approach is that
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the performance often has theoretical guarantee because the denoising problem

can now be formulated as a maximum a posteriori (MAP) estimation. However,

the drawback is that many of these methods require a large number of training

samples which is not always available in practice.

3.1.2 Contributions and Outline

In view of the above seemingly easy yet challenging question, we propose a

new denoising algorithm using targeted external databases. Compared to existing

methods, the proposed method achieves better performance and only requires a

small number of external images. In this chapter, we offer the following contribu-

tions:

1. Generalization of Existing Methods. We propose a generalized framework

which encapsulates a number of denoising algorithms. In particular, we show

(in Section 3.3) that the proposed group sparsity minimization generalizes

both fixed basis and PCA methods. We also show (in Section 3.4) that the

proposed local Bayesian MSE solution is a generalization of many spectral

operations in existing methods.

2. Improvement Strategies. We propose two improvement strategies for the

generalized denoising framework. In Section 3.3.4, we present a patch selec-

tion optimization to improve the patch search process. In Section 3.4.4, we

present a soft-thresholding and a hard-thresholding method to improve the

spectral coefficients learned by the algorithm.

3. Perturbation Analysis (in Section 3.5). We analyze the sensitivity of the

proposed denoising framework with respect to the variability of the external

database. To our knowledge, similar analysis has not been discussed in the

denoising literature.

4. Detailed Proofs. Proofs of the results are presented in the Appendix.

The rest of the chapter is organized as follows. After outlining the design

framework in Section 3.2, we present the above contributions in Section 3.3 – 3.5.
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Experimental results are discussed in Section 3.6, and concluding remarks are given

in Section 3.7.

3.2 Optimal Linear Denoising Filter

The foundation of our proposed method is the classical optimal linear de-

noising filter design problem [48]. In this section, we give a brief review of the

design framework and highlight its limitations.

3.2.1 Optimal Filter

The design of an optimal denoising filter can be posed as follows: Given

a noisy patch q ∈ R
d, and assuming that the noise is i.i.d. Gaussian with zero

mean and variance σ2, we want to find a linear operator A ∈ R
d×d such that the

estimate p̂ = Aq has the minimum mean squared error (MSE) compared to the

ground truth p ∈ R
d. That is, we want to solve the optimization

A = argmin
A

E
[
‖Aq − p‖22

]
. (3.1)

Here, we assume that A is symmetric, or otherwise the Sinkhorn-Knopp

iteration [61] can be used to symmetrize A. BecauseA is symmetric, one can apply

the eigen-decomposition, A = UΛUT , where U = [u1, . . . ,ud] ∈ R
d×d is the basis

matrix and Λ = diag {λ1, . . . , λd} ∈ R
d×d is the diagonal matrix containing the

spectral coefficients. With U and Λ, the optimization problem in (3.1) becomes

(U ,Λ) = argmin
U ,Λ

E

[∥∥UΛUTq − p
∥∥2
2

]
, (3.2)

subject to the constraint that U is an orthonormal matrix.

The joint optimization (3.2) can be solved by noting the following Lemma.

Lemma 1. Let ui be the ith column of the matrix U , and λi be the (i, i)th entry
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of the diagonal matrix Λ. If q = p+ η, where η
iid∼ N (0, σ2I), then

E

[∥∥UΛUTq − p
∥∥2
2

]
=

d∑

i=1

[
(1− λi)

2(uT
i p)

2 + σ2λ2
i

]
. (3.3)

Proof. See Appendix A.1 or [62].

With Lemma 1, the denoised patch as a consequence of (3.2) is as follows.

Lemma 2. The denoised patch p̂ using the optimal U and Λ of (3.2) is

p̂ = U

(
diag

{ ‖p‖2
‖p‖2 + σ2

, 0, . . . , 0

})
UTq,

where U is any orthonormal matrix with the first column u1 = p/‖p‖2, and

diag {·} denotes the diagonalization operator.

Proof. See Appendix A.2.

Lemma 2 states that if hypothetically we are given the ground truth p,

the optimal denoising process is to first project the noisy observation q onto the

subspace spanned by p, perform a Wiener shrinkage ‖p‖2/(‖p‖2 + σ2), and then

re-project the shrinkage coefficients to obtain the denoised estimate. However,

since in reality we never have access to the ground truth p, this optimal result is

not achievable.

3.2.2 Problem Statement

Since the oracle optimal filter is not achievable in practice, the question

becomes whether it is possible to find a surrogate solution that does not require

the ground truth p.

To answer this question, it is helpful to separate the joint optimization (3.2)

by first fixing U and minimize the MSE with respect toΛ. In this case, the optimal

filter can be found by minimizing (3.3) with respect to each λi, which amounts to
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determining the root of the derivative of (3.3):

∂

∂λi

n∑

i=1

(1− λi)
2(uT

i p)
2 + σ2λ2

i = 0.

One can show that (3.3) achieves the minimum when

λi =
(uT

i p)
2

(uT
i p)

2 + σ2
, (3.4)

in which the minimum MSE estimator is given by

p̂ = U

(
diag

{
(uT

1 p)
2

(uT
1 p)

2 + σ2
, . . . ,

(uT
d p)

2

(uT
d p)

2 + σ2

})
UTq, (3.5)

where {u1, . . . ,ud} are the columns of U .

Inspecting (3.5), we identify two parts of the problem:

1. Determine U . The choice of U plays a critical role in the denoising perfor-

mance. In literature, U are typically chosen as the FFT or the DCT bases

[11,20]. In [12,22,23], the PCA bases of various data matrices are proposed.

However, the optimality of these bases is not fully understood.

2. Determine Λ. Even if U is fixed, the optimal Λ in (3.4) still depends on the

unknown ground truth p. In [11], Λ is determined by hard-thresholding a

stack of DCT coefficients or applying an empirical Wiener filter constructed

from a first-pass estimate. In [22], Λ is formed by the PCA coefficients of a

set of relevant noisy patches. Again, it is unclear which of these is optimal.

Motivated by the problems about U and Λ, in the following two sections we

present our proposed method for each of these problems. We discuss its relationship

to prior works, and present ways to further improve it.

3.3 Determine U

In this section we present our proposed method to determine the basis

matrix U and show that it is a generalization of a number of existing denoising
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algorithms. We also discuss ways to improve U .

3.3.1 Database Reduction by k Nearest Neighbors

Our first task to determine the basis matrix U is to reduce the database.

This step is necessary because while all patches in the database come from images

that contain similar content to the noisy image, a big portion of the patches are

still not useful to denoise a particular noisy patch.

The database reduction is performed by selecting the k most similar patches

to the noisy patch (i.e., the one to be denoised). The similarity is measured based

on the ℓ2 distance between the noisy patch q and the database {pj}nj=1, where

n > k, as

d(q,pj) = ‖q − pj‖2, for j = 1, . . . , n.

Effectively, this amounts to searching k nearest neighbors (kNN) from a set of n

data points.

The kNN procedure is effective to select a subset of the database. However,

it has the drawback that under the ℓ2 distance, some of the k selected patches

could be irrelevant. We will address this issue more thoroughly in Section 3.3.4 by

discussing methods to improve the robustness of the kNN.

3.3.2 Group Sparsity

Given {pj}kj=1 from the kNN search, we postulate that a good projection

matrix U should be the one that makes the projected vectors {UTpj}kj=1 similar

in both magnitude and location. This hypothesis follows from the observation that

since {pj}kj=1 have small ℓ2 distances from q, it must hold that any pi and pj

(hence UTpi and UTpj) in the set should also be similar.

In addition to being self-similar, we require each projected vector UTpj to

contain as few non-zero entries as possible, i.e., sparse. The reason is related to

the shrinkage step to be discussed in Section 3.4, because a vector of few non-

zero coefficients has higher energy concentration and hence is more effective for

denoising.
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In order to satisfy these two requirements, we propose to consider the idea

of group sparsity1, which is characterized by the matrix ℓ1,2 norm, defined as

‖X‖1,2 def
=

d∑

i=1

‖xi‖2, (3.6)

for any matrix X ∈ R
d×k, where xi is the ith row of a matrix X. In words, a small

‖X‖1,2 makes sure that X has few non-zero entries, and the non-zero entries are

located similarly in each column. A pictorial illustration is shown in Figure 3.1.

(a) sparse (b) group sparse

Figure 3.1: Comparison between sparsity (where columns are sparse, but do
not coordinate) and group sparsity (where all columns are sparse with similar
locations).

Going back to our problem, we propose to minimize the ℓ1,2-norm of the

matrix UTP :
minimize

U
‖UTP ‖1,2

subject to UTU = I,
(3.7)

where P
def
= [p1, . . . ,pk]. Here, the equality constraint ensures that U is orthonor-

mal. Thus, the solution of (3.7) is the projection matrix that generates the most

group sparse vector.

An interesting fact of this problem is that the solution is identical to the

classical principal component analysis (PCA) result, which is given in the following

1Group sparsity was first proposed by Cotter et al. for group sparse reconstruction [63] and
later used by Mairal et al. for denoising [21], but towards a different end from the method
presented in this paper.
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lemma.

Lemma 3. The solution to (3.7) is that

[U ,S] = eig(PP T ), (3.8)

where S is the corresponding eigenvalue matrix.

Proof. See Appendix A.3.

Remark 1. In practice, we note that the k reference patches might have deviations

in terms of similarity with q. Thus, we improve the data matrix P by introducing

a diagonal weight matrix

W =
1

Z
diag

{
e−‖q−p1‖2/h2

, . . . , e−‖q−pk‖2/h2
}
, (3.9)

for some user tunable parameter h and normalization constant Z
def
= 1TW1. In

this case, (3.7) becomes

minimize
U

‖UTPW 1/2‖1,2
subject to UTU = I,

(3.10)

of which the solution is given by

[U ,S] = eig(PWP T ). (3.11)

3.3.3 Relationship to Prior Works

The fact that (3.11) is the solution to a group sparsity minimization prob-

lem allows us to understand the performance of a number of existing denoising

algorithms to some extent.

3.3.3.1 BM3D [11]

It is perhaps a misconception that the underlying principle of BM3D is to

enforce sparsity of the 3-dimensional data volume (which we shall call it a 3-way
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tensor). However, what BM3D enforces is the group sparsity of the slices of the

tensor, not the sparsity of the tensor.

To see this, we note that the 3-dimensional transforms in BM3D are sep-

arable (e.g., DCT2 + Haar in its default setting). Thus, unless the reference

patches p1, . . . ,pk are highly dissimilar, the DCT2 coefficients will be similar in

both magnitude and location. That means if we fix a location and trace the DCT2

coefficients along the third axis, the signal we observe is almost flat. Hence, ap-

plying the Haar transform returns a sparse vector. Clearly, such sparsity is based

on the stationarity of the DCT2 coefficients along the third axis. In essence, this

is equivalent to being group sparse.

3.3.3.2 HOSVD [24]

The true tensor sparsity can only be utilized by the high order singular value

decomposition (HOSVD), which is recently studied in [24]. Let P ∈ R

√
d×

√
d×k be

the tensor by stacking the patches p1, . . . ,pk into a 3-dimensional array. HOSVD

seeks three orthonormal matrices U (1) ∈ R

√
d×

√
d, U (2) ∈ R

√
d×

√
d, U (3) ∈ R

k×k

and an array S ∈ R

√
d×

√
d×k, such that

S = P ×1 U
(1)T ×2 U

(2)T ×3 U
(3)T ,

where ×k denotes a tensor mode-k multiplication [64].

HOSVD ignores the fact that image patches tend to be group sparse instead

of being tensor sparse. Consequently, its performance is worse than BM3D, as we

observe in [24].

3.3.3.3 Shape-adaptive BM3D [20]

As a variation of BM3D, SA-BM3D groups similar patches according to a

mask defined by q. The mask modifies the standard ℓ2 distance between patches

to a weighted ℓ2 distance by masking out irrelevant sub-regions.

Shape-adaptive BM3D can be easily generalized in our proposed framework

by defining an additional weight matrix W s ∈ R
d×d (where the subscript s denotes
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a spatial weight) and consider the weighted data

P = W 1/2
s PW 1/2,

where W ∈ R
k×k is defined in (3.9). Here the matrix W s is used to control

the relative emphasis of each pixel in the spatial coordinate. For the rest of the

chapter, we let W s = I to improve computational efficiency.

3.3.3.4 BM3D-PCA [12] and LPG-PCA [22]

The idea of both BM3D-PCA and LPG-PCA is that given p1, . . . ,pk, U

is determined as the principal components of P = [p1, . . . ,pk]. Incidentally, such

approaches arrive at the same result as (3.11), i.e., the principal components are

indeed the solution of a group sparse minimization. However, the key of using the

group sparsity is not noticed in [12] and [22]. This provides additional theoretical

justifications for both methods.

3.3.4 Improvement: Patch Selection Refinement

The optimization problem (3.10) suggests that the U computed from (3.11)

is the optimal basis with respect to the reference patches {pj}kj=1. However, one

issue that remains is how to improve the selection of the k patches.

3.3.4.1 Patch Selection as Linear Programming

To facilitate the discussion of our proposed scheme, it is useful to revisit

the kNN search from an optimization perspective.

It is not difficult to see that the kNN search can be formulated as the

following optimization problem

minimize
x∈{0,1}n

∑n
j=1 xj‖q − pj‖2

subject to
∑n

j=1 xj = k.
(3.12)

Here, the optimization variables xj ∈ {0, 1} form a vector of indicators. If xj = 1,
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(a) p (b) ϕ(x) = 0

(c) ϕ(x) = 1TBx (d) ϕ(x) = eTx

Figure 3.2: Refined patch matching results: (a) ground truth, (b) 10 best refer-
ence patches using q (σ = 50), (c) 10 best reference patches using ϕ(x) = 1TBx

(where τ = 1/(2n)), (d) 10 best reference patches using ϕ(x) = eTx (where τ = 1).

then the corresponding pj should be selected. Thus, by minimizing
∑n

j=1 xj‖q −
pj‖2 we obtain the k nearest neighbors of q.

Problem (3.12) is a combinatorial problem as it seeks for one out of the
(
n
k

)

configurations that minimizes the objective. However, a close inspection reveals

that such a combinatorial search is unnecessary. In fact, (3.12) is equivalent to a

relaxed convex optimization (more specifically, a linear programming problem)

minimize
x

cTx

subject to xT1 = k, 0 ≤ x ≤ 1,
(3.13)

where we define c = [c1, · · · , cn]T with cj
def
= ‖q − pj‖2. To see the equivalence

between (3.12) and (3.13), we consider a simple case where n = 2 and k = 1. In

this case, the constraints xT1 = k and 0 ≤ x ≤ 1 form a closed line segment

in the positive quadrant. Since the objective function cTx is linear, the optimal

point must be at one of the vertices of the line segment, which is either x = [0, 1]T ,

or x = [1, 0]T . Thus, by checking which of c1 or c2 is smaller, we can determine
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the optimal solution. A similar argument holds for higher dimensions, and this

justifies our claim.

Remark 2. Because the optimal solution must be a vertex of the polytope defined

by the constraints xT1 = k and 0 ≤ x ≤ 1, (3.13) can be solved efficiently by

locating the k smallest entries in c, eliminating the need of an iterative linear

programming solver.

3.3.4.2 Regularization by Cross Similarity

Our proposed patch selection scheme is to modify (3.13) by adding an ap-

propriate penalty term to the objective function:

minimize
x

cTx+ τϕ(x)

subject to xT1 = k, 0 ≤ x ≤ 1,
(3.14)

where ϕ(x) is the penalty function and τ > 0 is a parameter. In our work we

present two possible choices of ϕ(x).

The first choice of ϕ(x) is to consider ϕ(x) = xTBx, where B ∈ R
n×n is a

symmetric matrix with Bij
def
= ‖pi −pj‖2. Writing (3.14) explicitly, we see that the

optimization problem (3.12) becomes

minimize
0≤x≤1,xT 1=k

∑

j

xj‖q − pj‖2 + τ
∑

i,j

xixj‖pi − pj‖2. (3.15)

The penalized problem (3.15) suggests that the optimal k reference patches should

not be determined merely from ‖q − pj‖2 (which could be problematic due to the

noise present in q). Instead, a good reference patch should also be similar to all

other patches that are selected. The cross similarity term xixj‖pi − pj‖2 provides

a way for such measure. This shares some similarities to the patch ordering con-

cept proposed by Cohen and Elad [55]. The difference is that the patch ordering

proposed in [55] is a shortest path problem that tries to organize the noisy patches,

whereas ours is to solve a regularized optimization.

Problem (3.15) is in general not convex because the matrixB is not positive
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semidefinite. One way to relax the formulation is to consider ϕ(x) = 1TBx.

Geometrically, the solution of using ϕ(x) = 1TBx tends to identify patches that

are close to sum of all other patches in the set. In many cases, this is similar

to ϕ(x) = xTBx which finds patches that are similar to every individual patch

in the set. In practice, we find that the difference between ϕ(x) = xTBx and

ϕ(x) = 1TBx is not significant. Thus, for computational efficiency we choose

ϕ(x) = 1TBx.

3.3.4.3 Regularization by First-pass Estimate

The second choice of ϕ(x) is based on a first-pass estimate p using some

denoising algorithms, for example, BM3D or the proposed method without this

patch selection step. In this case, by defining ej
def
= ‖p − pj‖2 we consider the

penalty function ϕ(x) = eTx, where e = [e1, · · · , en]T . This implies the following

optimization problem

minimize
0≤x≤1,xT 1=k

∑
j xj‖q − pj‖2 + τ

∑
j xj‖p− pj‖2, (3.16)

which takes the same form as (3.13). Therefore, (3.16) can be solved in closed

form by identifying the k smallest entries of the vector c + τe.

The interpretation of (3.16) is straight forward: The linear combination

of ‖q − pj‖2 and ‖p − pj‖2 shows a competition between the noisy patch q and

the first-pass estimate p. In most of the common scenarios, ‖q− pj‖2 is preferred
when noise level is low, whereas p is preferred when noise level is high. This in turn

suggests a plausible choice τ , by which empirically we find that choosing τ = 0.01

when σ < 30 and τ = 1 when σ > 30 is a good balance between the performance

and generality.

3.3.4.4 Comparisons

To demonstrate the effectiveness of the two proposed patch selection steps,

we consider a ground truth (clean) patch shown in Figure 3.2 (a). From a pool

of n = 200 reference patches, we apply an exhaustive search algorithm to choose
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p ϕ(x) = 0 ϕ(x) = 1
TBx ϕ(x) = eTx

Ground Truth 28.29 dB 28.50 dB 29.30 dB

Figure 3.3: Denoising results: A ground truth patch cropped from an image,
and the denoised patches of using different improvement schemes. Noise standard
deviation is σ = 50.

k = 40 patches that best match with the noisy observation q, where the first 10

patches are shown in Figure 3.2 (b). The results of the two selection refinement

methods are shown in Figure 3.2 (c)-(d), where in both cases the parameter τ

is adjusted for the best performance. For the case of ϕ(x) = 1TBx, we set

τ = 1/(200n) when σ < 30 and τ = 1/(2n) when σ > 30. For the case of

ϕ(x) = eTx, we use the denoised result of BM3D as the first-pass estimate p, and

set τ = 0.01 when σ < 30 and τ = 1 when σ > 30. The results show that the

PSNR increases from 28.29 dB to 28.50 dB if we use ϕ(x) = 1TBx, and further

increases to 29.30 dB if we use ϕ(x) = eTx. The full performance comparison is

shown in Figure 3.4, where we show the PSNR curve for a range of noise levels of

an image.

From the results of Figure 3.3 and Figure 3.4, we observe that in general

ϕ(x) = eTx performs better than ϕ(x) = 1TBx. This suggests that the first-pass

estimate tends to be a better prior than the cross similarity, as cross similarity

depends on the database (which does not adapt to the noisy data), whereas first-

pass estimate depends on the noisy image. A thorough theoretical analysis of the

performance is an interesting direction for future work.
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Figure 3.4: Denoising results of three patch selection improvement schemes. The
PSNR value is computed from a 432 × 381 image, containing 4536 patches (over-
lapped by 2 pixels horizontally and vertically).

3.4 Determine Λ

In this section we present our proposed method to determine Λ for a fixed

U . Our proposed method is based on the concept of a Bayesian MSE estimator.

3.4.1 Bayesian MSE Estimator

Recall that the noisy patch is related to the latent clean patch as q = p+η,

where η
iid∼ N (0, σ2I) denotes the noise. Therefore, the conditional distribution of

q given p is

f(q |p) = N (p, σ2I). (3.17)
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Assuming that the prior distribution f(p) is known, it is natural to consider the

Bayesian mean squared error (BMSE) between the estimate p̂
def
= UΛUTq and the

ground truth p:

BMSE
def
= Ep

[
Eq|p

[
‖p̂− p‖22

∣∣ p
]]
. (3.18)

Here, the subscripts remark the distributions under which the expectations are

taken.

The BMSE defined in (3.18) suggests that the optimal Λ should be the

minimizer of the optimization problem

Λ = argmin
Λ

Ep

[
Eq|p

[∥∥UΛUTq − p
∥∥2
2

∣∣∣ p
]]

. (3.19)

In the next subsection we discuss how to solve (3.19).

3.4.2 Localized Prior from the Targeted Database

Minimizing BMSE over Λ involves knowing the prior distribution f(p).

However, in general, the exact form of f(p) is never known. This leads to many

popular models in the literature, e.g., Gaussian mixture model [60], the field of

expert model [58,65], and the expected patch log-likelihood model (EPLL) [59,66].

One common issue of all these models is that the prior f(p) is built from

a generic database of patches. In other words, the f(p) models all patches in

the database. As a result, f(p) is often a high dimensional distribution with

complicated shapes.

In our targeted database setting, the difficult prior modeling becomes a

much simpler task. The reason is that while the shape of the distribution f(p) is

still unknown, the subsampled reference patches (which are few but highly repre-

sentative) could be well approximated as samples drawn from a single Gaussian

centered around some mean µ and covariance Σ. Therefore, by appropriately es-

timating µ and Σ of this localized prior, we can derive the optimal Λ as given by

the following Lemma:

Lemma 4. Let f(q |p) = N (p, σ2I), and let f(p) = N (µ,Σ) for any vector µ
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and matrix Σ, then the optimal Λ that minimizes (3.18) is

Λ =
diag

{
UTΣU +UTµµTU

}

diag
{
UTΣU +UTµµTU + σ2I

} , (3.20)

where the division operation is element-wise.

Proof. See Appendix A.4.

To specify µ and Σ, we let

µ =
k∑

j=1

wjpj , Σ =
k∑

j=1

wj(pj − µ)(pj − µ)T , (3.21)

where wj is the jth diagonal entry of W defined in (3.9). Intuitively, an interpre-

tation of (3.21) is that µ is the non-local mean of the reference patches. However,

the more important part of (3.21) is Σ, which measures the uncertainty of the

reference patches with respect to µ. This uncertainty measure makes some fun-

damental improvements to existing methods which will be discussed in Section

IV-C.

We note that Lemma 4 holds even if f(p) is not Gaussian. In fact, for

any distribution f(p) with the first cumulant µ and the second cumulant Σ, the

optimal solution in (A.10) still holds. This links our work to the classical linear

minimum MSE (LMMSE) estimation [67].

From a computational perspective, µ and Σ defined in (3.21) lead to a very

efficient implementation as illustrated by the following lemma.

Lemma 5. Using µ and Σ defined in (3.21), the optimal Λ is given by

Λ =
S

S + σ2I
, (3.22)

where [U ,S] = eig(PWP T ) is the eigen-decomposition of the weighted matrix

PW 1/2.

Proof. See Appendix A.5.
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Combining Lemma 5 with Lemma 3, we observe that for any set of reference

patches {pj}kj=1, U and Λ can be determined simultaneously through the eigen-

decomposition of PWP T . Therefore, we arrive at the overall algorithm shown in

Algorithm 2.

Algorithm 2 Proposed Algorithm

Input: Noisy patch q, noise variance σ2, and clean reference patches p1, . . . ,pk

Output: Estimate p̂

Learn U and Λ

• Form data matrix P and weight matrix W

• Compute eigen-decomposition [U ,S] = eig(PWP T )

• Compute Λ = S
S+σ2I

. (division is element-wise)

Denoise: p̂ = UΛUTq.

3.4.3 Relationship to Prior Works

It is interesting to note that many existing patch-based denoising algorithms

assume some notions of prior, either explicitly or implicitly. In this subsection, we

mention a few of the important ones. For notational simplicity, we will focus on

the ith diagonal entry of Λ = diag {λ1, . . . , λd}.

3.4.3.1 BM3D [11], Shape-Adaptive BM3D [20] and BM3D-PCA [12]

BM3D and its variants have two denoising steps. In the first step, the

algorithm applies a basis matrix U (either a pre-defined basis such as DCT, or

a basis learned from PCA). Then, it applies a hard-thresholding to the projected

coefficients to obtain a filtered image p. In the second step, the filtered image p is

used as a pilot estimate to the desired spectral component

λi =
(uT

i p)
2

(uT
i p)

2 + σ2
. (3.23)

Following our proposed Bayesian framework, we observe that the role of
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using p in (3.23) is equivalent to assuming a dirac delta prior

f(p) = δ(p− p). (3.24)

In other words, the prior that BM3D assumes is concentrated at one point, p,

and there is no measure of uncertainty. As a result, the algorithm becomes highly

sensitive to the first-pass estimate. In contrast, (3.21) suggests that the first-pass

estimate can be defined as a non-local mean solution. Additionally, we incorporate

a covariance matrix Σ to measure the uncertainty of observing µ. These provide a

more robust estimate to the denoising algorithm which is absent from BM3D and

its variants.

3.4.3.2 LPG-PCA [22]

In LPG-PCA, the ith spectral component λi is defined as

λi =
(uT

i q)
2 − σ2

(uT
i q)

2
, (3.25)

where q is the noisy patch. The (implicit) assumption in [22] is that (uT
i q)

2 ≈
(uT

i p)
2+σ2, and so by substituting (uT

i p)
2 ≈ (uT

i q)
2−σ2 into (3.4) yields (3.25).

However, the assumption implies the existence of a perturbation ∆p such that

(uT
i q)

2 = (uT
i (p + ∆p))2 + σ2. Letting p = p + ∆p, we see that LPG-PCA

implicitly assumes a dirac prior as in (3.23) and (3.24). The denoising result

depends on the magnitude of ∆p.

3.4.3.3 Generic Global Prior [15, 21, 57, 59]

As a comparison to methods using generic databases such as [15,21,57,59],

we note that the key difference lies in the usage of a global prior versus a local prior.

Figure 3.5 illustrates the concept pictorially. The generic (global) prior f(p) covers

the entire space, whereas the targeted (local) prior is concentrated at its mean.

The advantage of the local prior is that it allows one to denoise an image with

few reference patches. It saves us from the intractable computation of learning the
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µ1 µ2

targeted f1(p)

targeted f2(p)

generic f(p)

Figure 3.5: Generic prior vs targeted priors: Generic prior has an arbitrary shape
spanned over the entire space; Targeted priors are concentrated at the means. In
this figure, f1(p) and f2(p) illustrate two targeted priors corresponding to two
patches of an image.

global prior, which is a high-dimensional non-parametric function.

3.4.4 Improving Λ

The Bayesian framework proposed above can be generalized to further im-

prove the denoising performance. Referring to (3.19), we observe that the BMSE

optimization can be reformulated to incorporate a penalty term in Λ. Here, we

consider the following ℓα penalized BMSE:

BMSEα
def
= Ep

[
Eq|p

[∥∥UΛUTq − p
∥∥2
2

∣∣∣p
]]

+ γ‖Λ1‖α, (3.26)

where γ > 0 is the penalty parameter, and α ∈ {0, 1} controls which norm to be

used. The solution to the minimization of (3.26) is given by the following lemma.

Lemma 6. Let si be the ith diagonal entry in S, where S is the eigenvalue matrix

of PWP T , then the optimal Λ that minimizes BMSEα is diag {λ1, · · · , λd}, where

λi = max

(
si − γ/2

si + σ2
, 0

)
, for α = 1, (3.27)
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and

λi =
si

si + σ2
1

(
s2i

si + σ2
> γ

)
, for α = 0. (3.28)

Proof. See Appendix A.6.

The motivation of introducing an ℓα-norm penalty in (3.26) is related the

group sparsity used in defining U . Recall from Section 3.3 that since U is the

optimal solution to a group sparsity optimization, only few of the entries in the

ideal projectionUTp should be non-zero. Consequently, it is desired to require Λ to

be also sparse so that the reconstruction UΛUTq has similar spectral components

as that of p.

To demonstrate the effectiveness of the proposed ℓα formulation, we consider

the example patch shown in Figure 3.3. For a refined database of k = 40 patches,

we consider the original minimum BMSE solution (γ = 0), the ℓ0 solution with

γ = 0.02, and the ℓ1 solution with γ = 0.02. The results in Figure 3.6 show that

with the proposed penalty term, the new BMSEα solution performs consistently

better than the original BMSE solution.

3.5 Performance Analysis

There are two important aspects of the algorithm that we must analyze.

The first one is the sensitivity of the proposed algorithm to the choice of the patches

P = [p1, . . . ,pk]. We want to establish the relationship between the perturbation

∆P on P and the corresponding change in MSE. This will allow us to decide

how much effort should be spent in seeking a good P . The second aspect is the

difficulty of finding a good P , or in other words, what are the factors that affect

the probability of finding a good database?
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Figure 3.6: Comparisons of the ℓ1 and ℓ0 adaptive solutions over the original
solution with γ = 0. The PSNR value for each noise level is averaged over 100
independent trials to reduce the bias due to a particular noise realization.

3.5.1 Sensitivity Analysis

The purpose of sensitivity analysis is to study the influence on the denoising

quality by using different patches. More specifically, we consider

Q = [p1, . . . ,pk] + [ǫ1, . . . , ǫk]

= P +∆P (3.29)

to be a perturbed version of P with perturbation

∆P
def
= [ǫ1, . . . , ǫk]. (3.30)
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Our goal is to study the change in MSE:

∆MSE = E
[
‖p̂P − p̂Q‖2

]
, (3.31)

where p̂P is the denoised signal using P and p̂Q is the denoised signal using Q.

To make our analysis less tedious, we use a common weight matrix W to

both P and Q instead of two different weights. Consequently, we define

P̃
def
= PW 1/2, and Q̃

def
= QW 1/2, (3.32)

and

∆P̃ = P̃ − Q̃. (3.33)

Our main result is the following.

Theorem 1. The MSE difference using the two different sets of patches P and Q

is bounded as

∆MSE ≤
(
γ‖p‖22 + σ2

) ∥∥∥∆P̃
∥∥∥
2

F
, (3.34)

for some constant γ > 0.

Proof. See Appendix A.7.

The implication of Theorem 1 is that

∆MSE ≍ O
(∥∥∥∆P̃

∥∥∥
2

F

)
. (3.35)

Therefore, if {p1, . . . ,pk} are the k best patches found in a database, then the best

MSE is upper bounded by
∥∥∥∆P̃

∥∥∥
2

F
.

3.5.2 Database Analysis

Our second theoretical question concerns about the probability of getting

a good database. Let p0 ∈ R
n be the target patch to be matched, and let the

non-parametric distribution of any patch p in the entire R
n be f(p). If we draw

N i.i.d. samples p1, . . . ,pN from f(p), the question is: How large should N be so
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that at least one of the N samples is close to p0? That is, for any fixed ε > 0, we

want to study the probability

Pr

[
min

1≤i≤N
‖pi − p0‖2 > ε

]
. (3.36)

The answer to (3.36) is the following theorem.

Theorem 2.

Pr

[
min

1≤i≤N
‖pi − p0‖2 > ε

]
≤ exp {−C N εn f(p0)} , (3.37)

where C = πn/2

Γ(n
2
+1)

is a constant.

Proof. See Appendix A.8.

• Relation to N : When N increases, the probability of large deviation reduces

exponentially. Therefore, asymptotically as the number of samples N → ∞,

the probability of finding a p ≈ p0 approaches 1.

• Relation to ε: ε is the precision of the deviation. Therefore, as ε → 0, N has

to be increased in order to retain the same convergence rate.

• Relation to f(p0): f(p0) is the distribution of the data point at p0. If p0

represents a rare patch, then a larger N is needed.

• Relation to n: The patch dimensionality n affects both the precision εn and

the constant C, because C → 0 as n → ∞. Therefore, increased n also

requires increased N .

3.6 Experimental Results

In this section, we present a set of denoising experiments to evaluate the

performance of the proposed algorithm against several existing methods.
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3.6.1 Comparison Methods

The methods we choose for comparison are BM3D [11], BM3D-PCA [12],

LPG-PCA [22], NLM [17] and EPLL [59]. Except for EPLL, all other four methods

are internal denoising methods. We re-implement and modify the internal methods

so that patch search is performed over the targeted external databases. These

methods are iterated for two times where the solution of the first step is used as a

basic estimate for the second step. The specific settings of each algorithm are as

follows:

1. BM3D-PCA [12] and LPG-PCA [22]: U is learned from the best k external

patches, which is the same as in our proposed method. Λ is computed

following (3.23) for BM3D-PCA and (3.25) for LPG-PCA. In BM3D-PCA’s

first step, the threshold is set to 2.7σ.

2. NLM [17]: The weights in NLM are computed according to a Gaussian func-

tion of the ℓ2 distance of two patches [68, 69]. However, instead of using all

reference patches in the database, we use the best k patches following [18].

3. BM3D [11]: As a benchmark, we run the original BM3D code2 of Dabov et al.

to show the performance of internal image denoising. For a fair comparison,

we adjust the patch size, step size and search window size so that they are

consistent with other methods. We use the default settings of BM3D for

other parameters.

4. EPLL [59]: EPLL is an external denoising method, but the default patch

prior is learned from a generic database. For a fair comparison, we use a

targeted database that is used by the proposed method. We train the prior

distribution using the EM algorithm mentioned in [59].

To emphasize the difference between the original algorithms (which are

single-image denoising algorithms) and the corresponding new implementations

for external databases, we denote the original, (single-image) denoising algorithms

2http://www.cs.tut.fi/~foi/GCF-BM3D/
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with “i” (internal), and the corresponding new implementations when using exter-

nal databases with “e” (external).

We add zero-mean Gaussian noise with standard deviations from σ = 20

to σ = 80 to the test images. The patch size is set as 8× 8 (i.e., d = 64), and the

sliding step size is 6 in the first step and 4 in the second step. Two quality metrics,

namely Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) are

used to evaluate the objective quality of the denoised images.

3.6.2 Denoising Text and Documents

Our first experiment considers denoising a text image. The purpose is to

simulate the case where we want to denoise a noisy document with the help of

other similar but non-identical texts. This idea can be easily generalized to other

scenarios such as handwritten signatures, bar codes and license plates.

To prepare this scenario, we capture a region (127×104) of a document and

add noise. We then build the targeted external database by cropping 9 arbitrary

portions from a different document but with the same font sizes.

3.6.2.1 Denoising Performance

Figure 3.7 shows the denoising results when we add excessive noise (σ =

100) to the query image. Among all the methods, the proposed method yields the

highest PSNR and SSIM values. The PSNR is 5 dB better than the benchmark

BM3D (internal) denoising algorithm. Some existing training-based methods, such

as EPLL, do not perform well due to the insufficient training samples from the

targeted database. Compared to other external denoising methods, the proposed

method shows a better utilization of the targeted database.

We plot and compare the PSNR values over a range of noise levels in Fig-

ure 3.8. Our proposed method outperforms other competitors, especially at high

noise levels. For example, for σ = 60, our restored result is 0.82 dB better than

the second best result by eBM3D-PCA.
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3.6.2.2 Database Quality

We show how the database quality affects our denoising performance. Given

a database, we compute its average distance from the clean image of interest.

Specifically, for each patch pi ∈ R
d in a clean image containing m patches and a

database P of n patches, we compute its minimum distance

d(pi,P)
def
= min

pj∈P
‖pi − pj‖2/

√
d.

The average patch-database distance is then defined as d(P)
def
= (1/m)

∑m
i=1 d(pi,P).

Therefore, a smaller d(P) indicates that the database is more relevant to the ground

truth (clean) image.

Figure 3.9 shows the results. For all noise levels, when the average distance

between an image and a database decreases, the proposed method benefits from

the database quality improvement and thus enhances the denoising performance.

3.6.3 Denoising Multiview Images

Our second experiment considers the scenario of capturing images using a

multiview camera system. The multiview images are captured at different viewing

positions. Suppose that one or more cameras are not functioning properly so that

some images are corrupted with noise. Our goal is to demonstrate that with the

help of the other clean views, the noisy view could be restored.

To simulate the experiment, we download 2 multivew datasets from Middle-

bury Computer Vision Page3. Each set of images consists of 5 views. We add i.i.d.

Gaussian noise to one view and then use the rest 4 views to assist in denoising.

In Figure 3.10, we visually show the denoising results of the “Barn” and

“Cone” multiview datasets. In comparison to the competing methods, our pro-

posed method has the highest PSNR values. The magnified areas indicate that

our proposed method removes the noise significantly and better reconstructs some

fine details. In Figure 3.11, we plot and compare the PSNR values over a range of

3http://vision.middlebury.edu/stereo/
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noise levels. The proposed method is consistently better than its competitors. For

example, for σ = 50, our proposed method is 0.80 dB better than eBM3D-PCA

and 1.94 dB better than iBM3D.

3.6.4 Denoising Human Faces

Our third experiment considers denoising human face images. In low light

conditions, images captured are typically corrupted by noise. To facilitate other

high-level vision tasks such as recognition and tracking, denoising is a necessary

pre-processing step. This experiment demonstrates the ability of denoising face

images.

In this experiment, we use the Gore face database from [1], of which some

examples are shown in the top row of Figure 3.12 (each image is 60 × 80). We

simulate the denoising task by adding noise to a randomly chosen image and then

use the other images (19 other face images in our experiment) in the database to

assist in denoising.

In the bottom row of Figure 3.12, we show the noisy face and denoising

results. We observe that while the facial expressions are different and there are

misalignments between images, the proposed method still generates robust results.

In Figure 3.13, we plot the PSNR curves, where we see consistent gain compared

to other methods.

3.7 Conclusion

Classical image denoising methods based on a single noisy input or generic

databases are approaching their performance limits. We proposed an adaptive

image denoising algorithm using targeted databases. The proposed method ap-

plies a group sparsity minimization and a localized prior to learn the basis matrix

and the spectral coefficients of the optimal denoising filter, respectively. We show

that the new method generalizes a number of existing patch-based denoising al-

gorithms such as BM3D, BM3D-PCA, Shape-adaptive BM3D, LPG-PCA, and

EPLL. Based on the new framework, we proposed improvement schemes, namely
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an improved patch selection procedure for determining the basis matrix and a

penalized minimization for determining the spectral coefficients. For a variety of

scenarios including text, multiview images and faces, we demonstrated empirically

that the proposed method has superior performance over existing methods. With

the increasing amount of image data available online, we anticipate that the pro-

posed method is an important first step towards a data-dependent generation of

denoising algorithms.
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(a) clean (b) noisy σ = 100 (c) iBM3D
16.68 dB (0.7100)

(d) EPLL(generic) (e) EPLL(target) (f) eNLM
16.93 dB (0.7341) 18.65 dB (0.8234) 20.72 dB (0.8422)

(g) eBM3D (h) eBM3D-PCA (i) eLPG-PCA
20.33 dB (0.8228) 21.39 dB (0.8435) 20.37 dB (0.7299)

(j) ours
22.20 dB (0.9069)

Figure 3.7: Denoising text images: Visual comparison and objective comparison
(PSNR and SSIM in the parenthesis). Prefix “i” stands for internal denoising
(single-image denoising), and prefix “e” stands for external denoising (using ex-
ternal databases).
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Figure 3.8: Text image denoising: PSNR vs noise levels. In this plot, each PSNR
value is averaged over 8 independent Monte-Carlo trials to reduce the bias due to
a particular noise realization.
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Figure 3.9: Denoising performance in terms of the database quality. The average
patch-database distance d(P) is a measure of the database quality.
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(a) noisy (b) iBM3D (c) eNLM

(σ = 20) 28.99 dB 31.17 dB

(d) eBM3D-PCA (e) eLPG-PCA (f) ours

32.18 dB 32.92 dB 33.65 dB

(a) noisy (b) iBM3D (c) eNLM

(σ = 20) 28.77 dB 29.97 dB

(d) eBM3D-PCA (e) eLPG-PCA (f) ours

31.03 dB 31.80 dB 32.18 dB

Figure 3.10: Multiview image denoising: Visual comparison and objective com-
parison (PSNR). [Top two rows] “Barn”; [Bottom two rows] “Cone”.
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Figure 3.11: Multiview image denoising for “Barn”: PSNR vs noise levels. In
this plot, each PSNR value is averaged over 8 independent Monte-Carlo trials to
reduce the bias due to a particular noise realization.
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noisy
(σ = 20)

iBM3D
32.04 dB

eNLM
32.74 dB

eBM3D-PCA
33.29 dB

ours
33.86 dB

Figure 3.12: Face denoising of Gore dataset [1]. [Top] Database images; [Bottom]
Denoising results.
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Figure 3.13: Face denoising results: PSNR vs noise levels. In this plot, each
PSNR value is averaged over 8 independent Monte-Carlo trials to reduce the bias
due to a particular noise realization.



Chapter 4

Adaptive Image Denoising by

Mixture Adaptation

4.1 Introduction

In Chapter 3, we propose to switch from generic database to targeted

database. We demonstrate that by mining appropriate databases exceptional ex-

ternal priors can be learned. In some practical scenarios such as text image denois-

ing and face image denoising, building a targeted database is plausible. However,

the challenge is that building a targeted database for any image of interest can be

difficult. In this chapter, we consider the scenario when only a generic database

(as opposed to a targeted database) is available. We propose to learn a generic

prior from the generic database and then adapt the generic prior to the image of

interest to create a specific prior.

Before discussing the proposed prior adaptation idea, we introduce the de-

noising framework – maximum-a-posteriori (MAP) approach [15,59]. Let the noisy

model be

y = x+ ε, (4.1)

where x ∈ R
n denotes the (unknown) clean image, ε ∼ N (0, σ2I) ∈ R

n denotes

the additive i.i.d. Gaussian noise with σ2 noise variance, and y ∈ R
n denotes the

observed noisy image. MAP is a Bayesian approach which formulates the image

57
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denoising problem by maximizing the posterior probability

argmax
x

f(y|x)f(x) = argmin
x

{
1

2σ2
‖y − x‖2 − log f(x)

}
,

where the first term is a quadratic due to the Gaussian noise model, and the second

term is the negative log of the prior of the latent clean image.

We choose to use MAP because of its ability to explicitly formulate the

prior knowledge about the image via the prior distribution f(x). Thus, finding

a good prior f(x) is of vital importance for successful MAP optimization [58, 60,

65]. However, modeling the whole image x is extremely difficult if not impossible

because of the high dimensionality of x. To alleviate the problem, we adopt

the common wisdom by approximating f(x) using a collection of small patches

[11, 17, 59]. Such prior is known as the patch prior. Mathematically, letting P i ∈
R

d×n be a patch-extract operator which extracts the i-th d-dimensional patch from

the image x, a patch prior expresses the negative log of the image prior as a sum

of the log patch priors. Therefore, the MAP framework becomes

argmin
x

{
1

2σ2
‖y − x‖2 − 1

n

n∑

i=1

log f(P ix)

}
, (4.2)

where the second term in (4.2) is called the expected patch log likelihood (EPLL)

[59].

The focus of this work is a robust and efficient way of learning the model

parameters of f(P ix). Generally speaking, estimating the model parameter re-

quires a good training set of data, which can be either obtained internally (i.e.,

from the single noisy image) or externally (i.e., from a database of images). Our

approach combines the power of internal [26] and external priors [27,28,70–72]. It

is different from the existing fusion approaches which merely combine the results

of the internal and the external methods. For example, Mosseri et al. [27] used

a patch signal-to-noise ratio as a quantitative metric to decide whether a patch

should be denoised internally or externally; Burger et al. [28] applied a neural

network approach to learn the weights to combine internal and external denoising

results; Yue et al. [73] fused the internal and external denoising results in the
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frequency domain. In all these approaches, there is no theoretically optimal way

to calculate the weights.

4.1.1 Contribution and Organization

Our proposed algorithm is an adaptation approach. Like many external

methods, we assume that we have an external database of images for training.

However, we do not simply compute the statistics of the external database. Instead,

we use the external statistics as a “guide” for learning the internal statistics. As

will be illustrated in the subsequent sections, this can be formally done using a

Bayesian framework.

This chapter is an extension of our previous work reported in [74]. The

three new contributions are:

1. Derivation of the EM adaptation algorithm. We rigorously derive the pro-

posed EM adaptation algorithm from a full Bayesian hyper-prior perspective.

Our derivation complements the work of Gauvain and Lee [75] by providing

additional simplifications and justifications to reduce computational com-

plexity. We further provide discussion of the convergence.

2. Handling of noisy data. We provide detailed discussion of how to perform

EM adaptation for noisy images. In particular, we demonstrate how to auto-

matically adjust the internal parameters of the algorithm using pre-filtered

images.

3. Extended denoising applications. We demonstrate how the proposed EM

adaptation algorithm can be used to adapt noisy images, external databases,

and targeted databases.

Our work is similar to a very recent work of Lu et al. [76]. In compari-

son with [76], we provide significantly more technical insights, in particular, the

full Bayesian derivation, computational simplification, convergence analysis, noise

handling, and significantly broader range of applications.
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The rest of the chapter is organized as follows. Section 4.2 gives a brief

review of Gaussian mixture model. Section 4.3 presents the proposed EM adapta-

tion algorithm. Section 4.4 discusses how the EM adaptation algorithm should be

modified when the image is noisy. Experimental results are presented in Section

4.5.

4.2 Mathematical Preliminaries

In this section we provide a brief review of the Gaussian mixture model

(GMM) and the corresponding image denoising algorithm under the MAP frame-

work, which will serve as foundation for our subsequent discussions of the proposed

adaptation algorithm.

4.2.1 GMM and MAP Denoising

For notational simplicity, we shall denote pi
def
= P ix ∈ R

d as the i-th patch

from x. We say that pi is generated from a GMM if the distribution f(pi |Θ) is

f(pi |Θ) =
K∑

k=1

πkN (pi|µk,Σk), (4.3)

where
∑K

k=1 πk = 1 with πk being the weight of the k-th Gaussian component, and

N (pi|µk,Σk)

def
=

1

(2π)d/2|Σk|1/2
exp
(
− 1

2
(pi − µk)

TΣ−1
k (pi − µk)

)
(4.4)

is the k-th Gaussian distribution with mean µk and covariance Σk. We denote

Θ
def
= {(πk,µk,Σk)}Kk=1 as the GMM parameter.

With the GMM defined in (4.3), we can specify the denoising procedure by

solving the optimization problem in (4.2). Here, we follow [77, 78] by using the

Half Quadratic Splitting strategy. The idea is to replace (4.2) with the following
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equivalent minimization

argmin
x,{vi}ni=1

{
1

2σ2
‖y − x‖2

+
1

n

n∑

i=1

(
− log f(vi) +

β

2
‖P ix− vi‖2

)}
, (4.5)

where {vi}ni=1 are some auxiliary variables and β is a penalty parameter. By as-

suming that f(vi) is dominated by the mode of the Gaussian mixture, the solution

to (4.5) is given in the following proposition.

Proposition 2. Assuming f(vi) is dominated by the k∗
i -th components, where

k∗
i

def

= argmax
k

πkN (vi|µk,Σk), the solution of (4.5) is

x =
(
nσ−2I + β

n∑

i=1

P T
i P i

)−1(
nσ−2y + β

n∑

i=1

P T
i vi

)
,

vi =
(
βΣk∗i

+ I
)−1
(
µk∗i

+ βΣk∗i
P ix

)
.

Proof. See Appendix B.1 or [59].

Proposition 2 is a general procedure for denoising images using a GMM un-

der the MAP framework. There are, of course, other possible denoising procedures

which also use GMM under the MAP framework, e.g., using surrogate methods

[79]. However, we shall not elaborate on these options. Our focus is on how to

obtain the GMM.

4.2.2 EM Algorithm

The GMM parameter Θ = {(πk,µk,Σk)}Kk=1 is typically learned using the

Expectation-Maximization (EM) algorithm from a large collection of training sam-

ples. EM is a known method and so we shall skip the introduction. Interested

readers can refer to [80] for a comprehensive tutorial. What is more important are

the limitations of EM when applied to image denoising:
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1. Adaptivity: For a fixed image database, the GMM parameters are specifi-

cally trained for this particular database. We call it the generic parameter.

If, for example, we are given an image which does not necessarily belong

to the database, then it becomes unclear how one can adapt the generic

parameter to the image.

2. Computational cost: Learning a good GMM requires a large number of

training samples. For example, the GMM in [59] is learned from 2,000,000

randomly sampled patches. If our goal is to adapt a generic parameter to

a particular image, then it would be more desirable to bypass the computa-

tional intensive procedure.

3. Finite samples: When training samples are few, the learned GMM will be

over-fitted; some components will even become singular. This problem needs

to be resolved because a noisy image contains much fewer patches than a

database of patches.

4. Noise: In image denoising, the observed image always contains noise. It is

not clear how to mitigate the noise while running the EM algorithm.

4.3 EM Adaptation

The proposed EM adaptation takes a generic prior and adapts it to cre-

ate a specific prior using very few samples. Before giving the details of the EM

adaptation, we first provide a toy example to illustrate the idea.

4.3.1 Toy Example

Suppose we are given two 2-dimensional GMMs with 2 clusters in each

GMM. From each GMM, we synthetically generate 400 data points with each

point representing a 2D coordinate shown in Figure 4.1 (a) and (b). Imagine that

the data points in (a) come from an external database whereas the data points in

(b) come from a clean image of interest.
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(c) GMM 2 / 20 points (d) Adapted / 20 points

Figure 4.1: (a) and (b): Two GMMs, each learned using the EM algorithm from
400 data points of 2D coordinates. (c): A GMM learned from a subset of 20 data
points drawn from (b). (d): An adapted GMM using the same 20 data points in
(c).

With the two sets of data, we apply EM to learn the two individual GMMs.

Since we have enough samples, the GMMs are estimated reasonably well shown

in (a) and (b). However, imagine that we only have 20 data points from (b), as

shown in (c). If we learn a GMM from these 20 data points, then the learned

GMM becomes over-fitted to these 20 data points. This is reflected in the very

different behavior of (c) compared to (b). So we ask a question: Can we start

with GMM 1 and adapt it to create a specific GMM for the finite 20 data points?

EM adaptation provides a solution. We observe in (d) that the adapted GMM is

significantly better than (c), despite the fact that it only uses 20 data points.
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4.3.2 Bayesian Hyper-prior

As illustrated in the toy example, what EM adaptation does is to use the

generic model parameters as a “guide” when learning the new model parameters.

Mathematically, suppose that {p̃1, . . . , p̃n} are patches from a single image pa-

rameterized by a GMM with a parameter Θ̃
def
= {(π̃k, µ̃k, Σ̃k)}Kk=1. Our goal is to

estimate Θ̃ with the aid of some generic GMM parameter Θ. Before we discuss

how this is done, we present a brief overview of a Bayesian inference framework.

From a Bayesian inference perspective, estimation of the parameter Θ̃ can

be formulated as

Θ̃ = argmax
Θ̃

log f(Θ̃ | p̃1, . . . , p̃n)

= argmax
Θ̃

(
log f(p̃1, . . . , p̃n | Θ̃) + log f(Θ̃)

)
, (4.6)

where

f(p̃1, . . . , p̃n | Θ̃) =

n∏

i=1

{
K∑

k=1

π̃kN (p̃i|µ̃k, Σ̃k)

}

is the joint distribution of the samples, and f(Θ̃) is some prior of Θ̃. We note that

(4.6) is also a MAP problem. However, the MAP for (4.6) is the estimation of the

model parameter Θ̃, which is different from the MAP for denoising used in (4.2).

Although the difference seems subtle, there is a drastic different implication which

we should be aware of.

In (4.6), f(p̃1, . . . , p̃n | Θ̃) denotes the distribution of a collection of patches

conditioned on the parameter Θ̃. It is the likelihood of observing {p̃1, . . . , p̃n}
given the model parameter Θ̃. f(Θ̃) is a distribution of the parameter, which is

called hyper-prior in machine learning [81]. Since Θ̃ is the model parameter, the

hyper-prior f(Θ̃) defines the probability density of Θ̃.

Same as the usual Bayesian modeling, hyper-priors are chosen according

to a subjective belief. However, for efficient computation, hyper-priors are usu-

ally chosen as the conjugate priors of the likelihood function f(p̃1, . . . , p̃n | Θ̃) so

that the posterior distribution f(Θ̃ | p̃1, . . . , p̃n) has the same functional form as

the prior distribution. For example, Beta distribution is a conjugate prior for a
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Bernoulli likelihood function, Gaussian distribution is a conjugate prior for a likeli-

hood function that is also Gaussian, etc. For more discussions on conjugate priors

we refer the readers to [81].

4.3.3 f(Θ̃) for GMM

For GMM, no joint conjugate prior can be found through the sufficient

statistic approach [75]. However, we can separately model the mixture weight

vector and the parameters for each individual Gaussian and then combine.

First, the mixture gains can be modeled as a multinomial distribution so

that the corresponding conjugate prior for the mixture weight vector (π̃1, · · · , π̃K)

is a Dirichlet density

π̃1, · · · , π̃K ∼ Dir(v1, · · · , vk), (4.7)

where vi > 0 is a pseudo-count for the Dirichlet distribution.

For mean and covariance (µ̃k, Σ̃k), a practical solution is the normal-inverse-

Wishart density so that

(µ̃k, Σ̃k) ∼ NIW(ϑk, τk,Ψk, ϕk), for k = 1, · · · , K, (4.8)

where (ϑk, τk,Ψk, ϕk) are the parameters for the normal-inverse-Wishart density

such that ϑk is a vector of dimension d, τk > 0, Ψk is a d × d positive definite

matrix, and ϕk > d− 1.

Remark 3. The choice of the normal-inverse-Wishart is important here, for it is

the conjugate prior of a multivariate normal distribution with unknown mean and

unknown covariance matrix. This choice is slightly different from [75] where the

authors choose a normal-Wishart, which, in our opinion, is less efficient.

Assuming all the parameters are independent, we can model f(Θ̃) as a

product of (4.7) and (4.8). By ignoring the scaling constants, it is not difficult to
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show that

f(Θ̃) ∝∏K
k=1

{
π̃vk−1
k |Σ̃k|−(ϕk+d+2)/2

exp
(
− τk

2
(µ̃k − ϑk)

T Σ̃
−1

k (µ̃k − ϑk)− 1
2
tr(ΨkΣ̃

−1

k )
)}

.
(4.9)

The importance of (4.9) is that it is a conjugate prior of the complete data.

As a result, the posterior density f(Θ̃|p̃1, . . . , p̃n) belongs to the same distribution

family as f(Θ̃). This can be formally described in the following Proposition.

Proposition 3. Given the prior in (4.9), the posterior f(Θ̃|p̃1, . . . , p̃n) is given

by

f(Θ̃ | p̃1, . . . , p̃n) ∝
∏K

k=1

{
π̃
v′k−1

k |Σ̃k|−(ϕ′

k+d+2)/2

exp
(
− τ ′k

2
(µ̃k − ϑ′

k)
T
Σ̃

−1

k (µ̃k − ϑ′
k)− 1

2
tr(Ψ′

kΣ̃
−1

k )
)} (4.10)

where

v′k = vk + nk, ϕ′
k = ϕk + nk, τ ′k = τk + nk,

ϑ′
k =

τkϑk + nkµ̄k

τk + nk

,

Ψ′
k = Ψk + Sk +

τknk

τk + nk

(ϑk − µ̄k)(ϑk − µ̄k)
T ,

µ̄k =
1

nk

n∑

i=1

γkip̃i, Sk =

n∑

i=1

γki(p̃i − µ̄k)(p̃i − µ̄k)
T

are the parameters for the posterior density.

Proof. See Appendix B.2.

4.3.4 Solve for Θ̃

Solving for the optimal Θ̃ is equivalent to solving the following optimization

problem

maximize
Θ̃

L(Θ̃)
def
= log f(Θ̃|p̃1, . . . , p̃n)

subject to
∑K

k=1 π̃k = 1.
(4.11)
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The constrained problem (4.11) can be solved by considering the Lagrange function

and taking derivatives with respect to each individual parameter. We summarize

the optimal solutions in the following Proposition.

Proposition 4. The optimal (π̃k, µ̃k, Σ̃k) for (4.11) are

π̃k =
n

(
∑K

k=1 vk −K) + n
· nk

n

+

∑K
k=1 vk −K

(
∑K

k=1 vk −K) + n
· vk − 1
∑K

k=1 vk −K
, (4.12)

µ̃k =
1

τk + nk

n∑

i=1

γkip̃i +
τk

τk + nk
ϑk, (4.13)

Σ̃k =
nk

ϕk + d+ 2 + nk

1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+
1

ϕk + d+ 2 + nk

(
Ψk + τk(ϑk − µ̃k)(ϑk − µ̃k)

T
)
. (4.14)

Proof. See Appendix B.3.

Remark 4. The results we showed in Proposition 4 are different from [75]. In

particular, the denominator for Σ̃k in [75] is ϕk − d + nk whereas ours is ϕk +

d+2+nk. However, by using the following simplification, we can obtain the same

result for both cases.

4.3.5 Simplification of Θ̃

The results in Proposition 4 are general expressions for any hyper-parameters.

We now discuss how to simplify the result with the help of the generic prior. First,

since vk−1∑K
k=1 vk−K

is the mode of the Dirichlet distribution, a good surrogate for it is

πk. Second, ϑk denotes the prior mean in the normal-inverse-Wishart distribution

and thus can be appropriately approximated by µk. Moreover, sinceΨk is the scale

matrix on Σ̃k and τk denotes the number of prior measurements in the normal-

inverse-Wishart distribution, they can be reasonably chosen asΨk = (ϕk+d+2)Σk
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and τk = ϕk + d+ 2. Plugging these approximations in the results of Proposition

4, we summarize the simplification results as follows.

Proposition 5. Define ρ
def
= nk

n
(
∑K

k=1 vk −K) = τk = ϕk + d+ 2. Let

ϑk = µk, Ψk = (ϕk + d+ 2)Σk,
vk − 1

∑K
k=1 vk −K

= πk,

and αk = nk

ρ+nk
, then (4.12)-(4.14) become

π̃k =αk
nk

n
+ (1− αk)πk, (4.15)

µ̃k =αk
1

nk

n∑

i=1

γkip̃i + (1− αk)µk, (4.16)

Σ̃k = αk
1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+ (1− αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)
. (4.17)

Remark 5. We note that Reynold et al. [82] presented similar simplification re-

sults (without derivations) as ours. However, their results are only for the scalar

case or when the covariance matrices are diagonal. In contrast, our results support

full covariance matrices and thus are more general. As will be seen, for our denois-

ing application, since the image pixels (especially adjacent pixels) are correlated,

full matrix GMMs are required.

Comparing (4.17) with the work of Lu et al. [76], we note that in [76] the

covariance is

Σ̃k = αk
1

nk

n∑

i=1

γkip̃ip̃
T
i + (1− αk)Σk. (4.18)

This result, although looks reasonable, is generally not valid if we follow the Bayesian

hyper-prior approach, unless µk and µ̃k are equal to 0.

4.3.6 EM Adaptation Algorithm

The proposed EM adaptation algorithm is summarized in Algorithm 3. EM

adaptation shares many similarities with the standard EM algorithm. To better
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understand the differences, we take a closer look at each step.

E-Step: E-step in the EM adaptation is the same as in EM algorithm: We

compute the likelihood of p̃i conditioned on the generic parameter (πk,µk,Σk) as

γki =
πkN (p̃i |µk,Σk)∑K
l=1 πlN (p̃i |µl,Σl)

. (4.19)

M-Step: The more interesting step of the adaptation is the M-step. From

(4.22) to (4.24), (π̃k, µ̃k, Σ̃k) are updated through a linear combination of the

contributions from the new data and the generic parameters. On one extreme

when αk = 1, the M-step turns exactly back to the M-step in EM algorithm. On

the other extreme when αk = 0, all emphasis is put on the generic parameters.

For αk that lies in between, the updates are a weighted averaging of the new data

and the generic parameters. Taking the mean as an example, the EM adaptation

updates the mean according to

µ̃k = αk

(
1

nk

n∑

i=1

γkip̃i

)

︸ ︷︷ ︸
new data

+ (1− αk)µk

︸ ︷︷ ︸
generic prior

. (4.20)

The updated mean in (4.20) is a linear combination of two terms, where the first

term is an empirical data average with the fractional weight γki from each data

point p̃i and the second term is the generic mean µk. Similarly for the covariance

update in (4.24), the first term computes an empirical covariance with each data

point weighted by γki which is the same as in the M-step of EM algorithm, and

the second term includes the generic covariance along with an adjustment term

(µk − µ̃k)(µk − µ̃k)
T . These two terms are then linearly combined to yield the

updated covariance.

4.3.7 Convergence

The EM adaptation shown in Algorithm 3 is an EM algorithm. Therefore,

its convergence is guaranteed by the classical theory, which we state without proof
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Algorithm 3 EM adaptation Algorithm

Input: Θ = {(πk,µk,Σk)}Kk=1, {p̃1, . . . , p̃n}.
Output: Adapted parameters Θ̃ = {(π̃k, µ̃k, Σ̃k)}Kk=1.
E-step : Compute, for k = 1, . . . , K and i = 1, . . . , n

γki =
πkN (p̃i|µk,Σk)
K∑
l=1

πlN (p̃i|µl,Σl)

, nk =

n∑

i=1

γki. (4.21)

M-step : Compute, for k = 1, . . . , K

π̃k = αk
nk

n
+ (1− αk)πk, (4.22)

µ̃k = αk
1

nk

n∑

i=1

γkip̃i + (1− αk)µk, (4.23)

Σ̃k = αk
1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+ (1− αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)
. (4.24)

Postprocessing: Normalize {π̃k}Kk=1 so that they sum to 1,

and ensure {Σ̃k}Kk=1 is positive semi-definite.

as follows.

Proposition 6. Let L(Θ̃) = log f(p̃1, . . . , p̃n)|Θ̃) be the log-likelihood function,

f(Θ̃) be the prior distribution, and Q
(
Θ̃|Θ̃(m))

be the Q function in the m-th

iteration of the EM iteration. If

Q
(
Θ̃|Θ̃(m))

+ log f(Θ̃) ≥ Q
(
Θ̃

(m)|Θ̃(m))
+ log f

(
Θ̃

(m))
,

then

L(Θ̃) + log f(Θ̃) ≥ L
(
Θ̃

(m))
+ log f

(
Θ̃

(m))
.

Proof. See [80].

While classical EM algorithm requires many iterations to converge, we ob-

serve that the proposed EM adaptation usually settles down in very few iterations.

To demonstrate this observation, we conduct experiments on different testing im-
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ages. Figure 4.2 shows the result of one testing image. For all noise levels (σ = 20

to 100), PSNR increases as more iterations are applied and converges after about 4

iterations. We also observe that for most testing images, the improvement becomes

marginal after one single iteration.
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Figure 4.2: Image denoising using EM adaptation: The PSNR only improves
marginally after the first iteration, confirming that the EM adaptation can typically
be performed in a single iteration. Test image: House (256 × 256). Noise levels:
σ = 20, . . . , 100.

4.4 EM Adaptation for Denoising

The proposed Algorithm 3 works only when the training patches {p̃1, . . . , p̃n}
are from the clean ground-truth image x. In this section, we discuss how to modify

the EM adaptation algorithm for noisy images.
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4.4.1 Adaptation to a Pre-filtered Image

To deal with the presence of noise, we adopt a two-stage approach similar to

BM3D [11]. In the first stage, we apply an existing denoising algorithm to obtain

a pre-filtered image. The adaptation is then applied to the pre-filtered image to

generate an adapted prior. In the second stage, we apply the MAP denoising as

described in Section II-A to obtain the final denoised image. However, since a

pre-filtered image is not the same as the latent clean image, we must quantify

the residual noise remaining in the pre-filtered image and revise the adaptation

equations accordingly.

To this end, we let x be the pre-filtered image. The distribution of the

residue x− x is typically unknown but empirically we observe that it can be rea-

sonably approximated by a single Gaussian. Thus, we model (x−x) ∼ N (0, σ̃2I),

where σ̃2 def
= E‖x − x‖2 is the variance of x. By incorporating the residual noise,

we modify (4.21) as

γki =
πkN (p̃i |µk,Σk + σ̃2I)

∑K
l=1 πlN (p̃l |µl,Σl + σ̃2I)

, (4.25)

and (4.24) as

Σ̃k = αk
1

nk

n∑

i=1

γki
(
(p̃i − µ̃k)(p̃i − µ̃k)

T − σ̃2I
)

+ (1− αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)
. (4.26)

It now remains to determine the parameter σ̃2.

4.4.2 Estimating σ̃2

By definition, σ̃2 is the variance of the pre-filtered image with the mean x.

In another point of view, σ̃2 is also the mean squared error of x compared to x.

Therefore, if we would like to estimate σ̃2, we only need to estimate the amount

of “noise” remaining in x. This is a challenging task because we do not have the

ground truth x.
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In the absence of the clean image, one strategy is to use the Stein’s Unbiased

Risk Estimator (SURE) [83]. SURE provides a way for unbiased estimation of the

true MSE. The analytical expression of SURE is

σ̃2 ≈ SURE
def
=

1

n
‖y − x‖2 − σ2 +

2σ2

n
div, (4.27)

where div denotes the divergence of the denoising algorithm with respect to the

noisy measurements. However, not all denoising algorithms have a closed form for

the divergence term. To alleviate this issue, we adopt the Monte-Carlo SURE [84]

to approximate the divergence. We shall not repeat Monte-Carlo SURE here but

we summarize the steps in Algorithm 4.

Algorithm 4 Monte-Carlo SURE for Estimating σ̃2

Input: noisy image y ∈ R
n, noise variance σ2, a small δ = 0.01.

Output: σ̃2.
Generate b ∼ N (0, I) ∈ R

n.
Construct y′ = y + δb.
Apply a denoising algorithm on y and y′ to get two pre-filtered images x and
x′, respectively.
Compute div = 1

δ
bT (x′ − x).

Compute σ̃2 = SURE
def
= 1

n
‖y − x‖2 − σ2 + 2σ2

n
div.

To demonstrate the effectiveness of Monte-Carlo SURE, we compare the es-

timates for σ̃/σ when we use the true MSE and Monte-Carlo SURE. As is observed

in Figure 4.3, over a large range of noise levels, the Monte-Carlo SURE curves are

quite similar to the true MSE curves. The pre-filtering method in Figure 4.3 is

EPLL. For other methods such as BM3D, we have similar observations for different

noise levels.

4.4.3 Estimating αk

Besides the pre-filtering for noisy images, we should also determine the com-

bination weight αk for the EM adaptation. From the derivation of the algorithm,

the combination weight αk =
nk

nk+ρ
is determined by both the probabilistic count nk
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Figure 4.3: Comparison between the true MSE and Monte-Carlo SURE when
estimating σ̃/σ over a large range of noise levels. The pre-filtering method is
EPLL.

and the relevance factor ρ. The factor ρ is adjusted to allow different adaptation

rates. For example, in the application of speaker verification [82,85], ρ is set to 16

and experiments show that the performance is insensitive to ρ being in the range

of 8 and 20.

For our denoising task, we empirically determine the influence of ρ on the

denoising performance. Given a pre-filtered image, we adjust ρ for the EM adap-

tation algorithm and check the corresponding denoising result. In Figure 4.4, we

show how PSNR changes in terms of ρ. The PSNR curves indicate that for a

testing image of 64 × 64, a large ρ for EM adaptation is better. As the testing

images become large, we observe that the optimal ρ becomes small. Empirically,

we find that ρ in the range of 1 and 10 works well for a variety of images (over
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200× 200) for different noise levels.
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Figure 4.4: The effect of ρ on denoising performance. The pre-filtered image is
used for EM adaptation algorithm. The testing images are of size 64 × 64 with
noise σ = 20.

4.4.4 Computational Improvement

Finally, we comment on a simple but very effective way of improving the

computational speed. If we take a closer look at the M-step in Algorithm 3, we

observe that π̃k and µ̃k are easy to compute. However, Σ̃k is time-consuming to

compute, because updating each of the K covariance matrices requires n time-

consuming outer product operations
∑n

i=1 γki(p̃i − µ̃k)(p̃i − µ̃k)
T . Most previous

works mitigate the problem by assuming that the covariance is diagonal [82,85,86].

However, this assumption is not valid in our case because image pixels (especially
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neighboring pixels) are correlated.

Our solution to this problem is shown in the following Proposition. The

new result is an exact computation of (4.24) but with significantly less operations.

The idea is to exploit the algebraic structure of the covariance matrix.

Proposition 7. The full covariance adaptation in (4.24) can be simplified as

Σ̃k = αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − µ̃kµ̃

T
k

+ (1− αk)(Σk + µkµ
T
k ). (4.28)

Proof. See Appendix B.4.

The simplification is very rewarding because computing αk
1
nk

∑n
i=1 γkip̃ip̃

T
i

does not involve µ̃k and thus can be pre-computed for each component, which

makes the computation of Σ̃k much more efficient. In Table 4.1, we list the aver-

aging runtime when computing (4.24) and (4.28) for two image sizes.

Table 4.1: Runtime comparison between (4.24) and (4.28) for different image
sizes.

image size Eq. (4.24) Eqn. (4.28) Speedup
(original) (ours) factor

runtime (sec) (64× 64) 31.34 0.30 104.5
runtime (sec) (128× 128) 136.58 1.32 103.2

4.5 Experimental Results

In this section, we present experimental results for single and example-based

image denoising. Single refers to using the single noisy image for training, whereas

example refers to using an external reference image for training.

4.5.1 Experiment Settings

For comparison, we consider two state-of-the-art methods: BM3D [11] and

EPLL [59]. For both methods, we run the original codes provided by the authors
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with the default parameters. The GMM prior in EPLL is learned from 2,000,000

randomly chosen 8× 8 patches. For a fair comparison, we use the same GMM as

the generic GMM for the proposed EM adaptation. We consider three versions

of EM adaptation: (1) An oracle adaptation by adapting the generic prior to the

ground-truth image, denoted as aGMM-clean; (2) A pre-filtered adaptation by

adapting the generic prior to the EPLL result, denoted as aGMM-EPLL; (3) A

pre-filtered adaptation by adapting the generic prior to the BM3D result, denoted

as aGMM-BM3D. In the example-based image denoising, we adapt the generic

prior to an example image and denote it as aGMM-example. We set the parameter

ρ = 1 and experimental results show that the performance is insensitive to ρ being

in the range of 1 and 10. We run denoising experiments on a variety of images

and for a large range of noise standard deviations (σ = 20, 40, 60, 80, 100). To

reduce the bias due to a particular noise realization, each reported PSNR result is

averaged over 8 independent trials.

4.5.2 Single Image Denoising

We use 6 standard images of size 256 × 256, and 6 natural images of size

481 × 321 randomly chosen from [2] for the single image denoising experiments.

The testing images are shown in Figure 4.5.

Figure 4.6 shows the denoising results for three standard testing images

and Figure 4.7 shows the denoising results for three natural testing images. In

comparison to the competing methods, our proposed method yields the highest

PSNR values. The magnified areas indicate that the proposed method removes

the noise while preserves image details better.

We report the detailed PSNR results for different noise variances in Table

4.2 for the standard images and in Table 4.3 for the natural images. Three key

observations could be noted here. First, comparing aGMM-EPLL with EPLL, the

denoising results from aGMM-EPLL are consistently better than EPLL with an

average gain of about 0.3 dB. This validates the usefulness of the adapted GMM

through the proposed EM adaptation. Second, the quality of the image used for

EM adaptation affects the final denoising performance. For example, it is obvious
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that using the ground-truth clean image for EM adaptation is much better than

using the denoised images such as the EPLL or BM3D denoised image. In some

cases, aGMM-BM3D yields larger PSNR values than aGMM-EPLL due to the

fact that the denoised image from BM3D is better than that from EPLL. Third,

the PSNR differences between the oracle case and EPLL for standard images are

larger than those for natural images. The reason is that the generic prior in EPLL is

already learned from thousands of natural image patches, and thus the adaptation

to another natural image may not further improve the performance much.

4.5.3 External Image Denoising

In this subsection, we evaluate the denoising performance when an example

image is available for EM adaptation. An example image refers to a clean image

and is relevant to the noisy image of interest. In [71,72], it is shown that obtaining

reference images is feasible in some scenarios such as text images and face images.

We consider the following three scenarios for our experiments.

1. Flower image denoising: We use the 102 flowers dataset from [3] which con-

sists of 102 different categories of flowers. We randomly pick one category

and then sample two flower images: one as the testing image with addi-

tive i.i.d. Gaussian noise and the other as the example image for the EM

adaptation.

2. Face image denoising: We use the FEI face dataset from [4] which consists of

100 aligned and frontal face images of size 260× 360. We randomly pick one

face image as the image of interest. We then randomly sample another image

from the dataset and treat it as the example image for our EM adaptation.

3. Text image denoising: To prepare for this scenario, we randomly crop a

200×200 region from a document and add noise to it. We then crop another

200 × 200 region from a very different document and use it as the example

image.

In Figure 4.8, 4.9 and 4.10, we show the denoising results for the three dif-

ferent scenarios. As shown, the example images in the second column are similar
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but differ from the testing images. We compare the three denoising methods. The

major difference lies in how the default GMM is adapted: In EPLL there is no

EM adaptation, i.e., the default generic GMM is used for denoising. In aGMM-

example the default GMM is adapted to the example image while in aGMM-clean

the default GMM is adapted to the ground truth image. As observed, the oracle

aGMM-clean yields the best denoising performance. aGMM-example outperforms

the benchmark EPLL (generic GMM) denoising algorithm both visually and ob-

jectively. For example, on average, it is 0.28 dB better in the Flower scenario, 0.78

dB better in the Face scenario, and 1.57 dB better in the Text scenario.

Since the default generic GMM is learned from thousands of natural image

patches, it serves as a good prior if the testing image is also a natural image.

In other words, if the testing image is quite different from a natural image, the

generic GMM will perform worse to assist in denoising. However, if we have an

example image for EM adaptation, the adapted GMM will produce significantly

better results than the non-adapted GMM. To validate this, we further consider

denoising a text image when we add excessive noise to the test image. In Figure

4.11 (a) and (b), we show the clean text image and its noisy version (σ = 80). In (c),

we show the example text image with bold-faced words, which is similar but still

differs much from (a). From Figure 4.11 (d) to (i), we show all the denoising results.

Among all of them, the oracle case (f), which adapts the generic GMM using the

ground-truth image, yields the highest PSNR. The other three adaptation-based

methods (g)-(i) also perform well, and outperform the baseline methods BM3D and

EPLL both visually and objectively. For example, aGMM-example and aGMM-

EPLL outperform EPLL by 1.56 dB and 0.77 dB, respectively. The extraordinary

result in (g) indicates that in the scenario of text image denoising, even a less

similar example image can help adapt the generic GMM much and improve the

denoising performance significantly.

4.5.4 Complexity Analysis

Our current implementation is in MATLAB (single thread) and we use an

Intel Core i7-3770 CPU with 8 GB RAM. The runtime is about 66 seconds to
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denoise an image of size 256× 256, where the EM adaptation part takes about 14

seconds while the MAP denoising part takes about 52 seconds. It is worth pointing

out that the simplication in (4.28) in Section IV-D has significantly improved the

computational efficiency for EM adaptation.

4.6 Conclusion

We proposed an EM adaptation method to learn effective image priors. The

proposed algorithm is rigorously derived from the Bayesian hyper-prior perspective

and is further simplified to reduce the computational complexity. In the absence of

the latent clean image, we proposed modifications of the algorithm and analyzed

how some internal parameters can be automatically estimated. The adapted prior

from the EM adaptation better captures the prior distribution of the image of

interest and is consistently better than the un-adapted generic one. In the context

of image denoising, experimental results demonstrate its superiority over some

existing denoising algorithms such as EPLL and BM3D. Future work includes its

extended work on video denoising and other restoration tasks such as deblurring

and inpainting.
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Figure 4.5: Test images for single image denoising. [Top] standard images of size
256× 256; [Bottom] natural images of size 481× 321 [2]
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noisy image BM3D EPLL aGMM-EPLL

σ = 20 33.67 dB 33.03 dB 33.63 dB
(0.8709) (0.8618) (0.8671)

σ = 20 31.60 dB 31.41 dB 31.82 dB
(0.8960) (0.8917) (0.8998)

σ = 20 31.14 dB 31.12 dB 31.44 dB
(0.8843) (0.8859) (0.8926)

Figure 4.6: Single image denoising by using the denoised image for EM adap-
tation: Visual comparison and objective comparison (PSNR and SSIM in the
parenthesis). The testing images are standard images of size 256× 256.
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noisy image BM3D EPLL aGMM-EPLL

σ = 40 28.78 dB 28.69 dB 28.90 dB
(0.8196) (0.8103) (0.8270)

σ = 40 29.43 dB 29.45 dB 29.70 dB
(0.7597) (0.7555) (0.7652)

σ = 40 29.80 dB 29.93 dB 30.21 dB
(0.7687) (0.7655) (0.7751)

Figure 4.7: Single image denoising by using the denoised image for EM adap-
tation: Visual comparison and objective comparison (PSNR and SSIM in the
parenthesis). The testing images are natural images of size 481× 321.
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Table 4.2: PSNR results for standard images of size 256× 256. The PSNR value
for each noise level is averaged over 8 independent trials to reduce the bias due to
a particular noise realization.

BM3D aGMM-BM3D EPLL aGMM-EPLL aGMM-clean

Airplane

σ = 20 30.44 30.77 30.57 30.87 31.28
σ = 40 26.45 27.09 27.00 27.16 27.48
σ = 60 25.15 25.09 25.14 25.24 25.50
σ = 80 23.85 23.72 23.74 23.83 24.00
σ = 100 22.82 22.60 22.61 22.66 22.80

Boat

σ = 20 29.69 29.90 29.83 30.00 30.39
σ = 40 26.09 26.57 26.46 26.60 26.86
σ = 60 24.58 24.65 24.69 24.77 25.01
σ = 80 23.40 23.36 23.41 23.46 23.69
σ = 100 22.64 22.56 22.58 22.61 22.76

Cameraman

σ = 20 30.28 30.33 30.21 30.38 31.09
σ = 40 26.78 27.29 26.96 27.25 27.76
σ = 60 25.35 25.42 25.24 25.52 26.07
σ = 80 24.05 24.04 23.90 24.14 24.66
σ = 100 23.05 22.88 22.79 22.94 23.41

House

σ = 20 33.67 33.81 33.03 33.63 34.33
σ = 40 30.49 30.85 29.94 30.64 31.31
σ = 60 28.88 28.73 27.97 28.57 29.19
σ = 80 27.12 26.95 26.34 26.87 27.28
σ = 100 25.92 25.70 25.33 25.67 26.01

Lena

σ = 20 31.60 31.76 31.41 31.82 32.37
σ = 40 27.83 28.18 27.98 28.25 28.62
σ = 60 26.36 26.16 26.03 26.23 26.51
σ = 80 25.05 24.85 24.70 24.91 25.12
σ = 100 23.88 23.76 23.58 23.79 23.96

Peppers

σ = 20 31.14 31.40 31.12 31.44 32.04
σ = 40 27.42 28.00 27.70 28.03 28.43
σ = 60 25.87 25.98 25.70 26.06 26.39
σ = 80 24.43 24.56 24.25 24.64 24.92
σ = 100 23.28 23.30 23.05 23.39 23.61

Average 26.59 26.68 26.44 26.71 27.09
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Table 4.3: PSNR results for natural images of size 481 × 321. The PSNR value
for each noise level is averaged over 8 independent trials to reduce the bias due to
a particular noise realization.

BM3D aGMM-BM3D EPLL aGMM-EPLL aGMM-clean

Im1

σ = 20 30.96 31.08 31.29 31.30 31.65
σ = 40 28.64 28.76 28.60 28.79 29.03
σ = 60 27.58 27.45 27.16 27.42 27.59
σ = 80 26.63 26.39 26.17 26.38 26.57
σ = 100 25.93 25.82 25.52 25.83 25.82

Im2

σ = 20 32.03 32.10 31.98 32.18 32.59
σ = 40 28.91 28.98 28.74 28.99 29.28
σ = 60 27.44 27.23 27.00 27.33 27.53
σ = 80 26.35 26.23 25.87 26.21 26.34
σ = 100 25.33 25.28 24.88 25.24 25.36

Im3

σ = 20 29.85 30.02 30.10 30.14 30.42
σ = 40 27.03 27.30 27.26 27.35 27.57
σ = 60 25.78 25.82 25.77 25.94 26.13
σ = 80 24.97 24.90 24.75 24.96 25.16
σ = 100 24.05 23.94 23.84 23.95 24.21

Im4

σ = 20 31.77 31.81 31.98 31.97 32.27
σ = 40 29.38 29.57 29.35 29.64 29.84
σ = 60 28.35 28.23 27.95 28.30 28.41
σ = 80 27.54 27.34 26.97 27.39 27.46
σ = 100 26.70 26.57 26.18 26.61 26.65

Im5

σ = 20 31.09 31.42 31.39 31.53 31.86
σ = 40 27.98 28.22 28.18 28.28 28.55
σ = 60 26.55 26.53 26.54 26.65 26.84
σ = 80 25.49 25.40 25.29 25.44 25.60
σ = 100 24.90 24.76 24.65 24.81 24.97

Im6

σ = 20 32.30 32.48 32.54 32.64 32.94
σ = 40 29.84 30.13 29.83 30.17 30.39
σ = 60 28.60 28.69 28.28 28.70 28.79
σ = 80 27.66 27.60 27.19 27.61 27.66
σ = 100 26.78 26.65 26.28 26.65 26.71

Average 27.88 27.89 27.72 27.95 28.14
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noisy example EPLL aGMM aGMM
image image -example -clean

σ = 50 26.90 dB 27.28 dB 27.84 dB
(0.7918) (0.8051) (0.8181)

σ = 50 27.49 dB 27.68 dB 28.06 dB
(0.7428) (0.7507) (0.7613)

Figure 4.8: External image denoising by using an example image for EM adap-
tation: Visual comparison and objective comparison (PSNR and SSIM in the
parenthesis). The flower images are from the 102flowers dataset [3].

noisy example EPLL aGMM aGMM
image image -example -clean

σ = 50 29.79 dB 30.53 dB 30.68 dB
(0.8414) (0.8611) (0.8630)

σ = 50 29.44 dB 30.26 dB 30.52 dB
(0.8233) (0.8513) (0.8528)

Figure 4.9: External image denoising by using an example image for EM adap-
tation: Visual comparison and objective comparison (PSNR and SSIM in the
parenthesis). The face images are from the FEI face dataset [4].
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noisy example EPLL aGMM aGMM
image image -example -clean

σ = 50 20.29 dB 21.98 dB 22.49 dB
(0.8524) (0.9311) (0.9373)

σ = 50 21.56 dB 23.02 dB 23.50 dB
(0.8703) (0.9302) (0.9369)

Figure 4.10: External image denoising by using an example image for EM adap-
tation: Visual comparison and objective comparison (PSNR and SSIM in the
parenthesis). The text images are cropped from randomly chosen documents.
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(a) clean image (b) noisy image (c) targeted image
σ = 80

(d) BM3D (e) EPLL (f) aGMM-clean
(16.70 dB) (17.61 dB) (19.65 dB)

(g) aGMM-example (h) aGMM-EPLL (i) aGMM-BM3D
(19.17 dB) (18.38 dB) (17.84 dB)

Figure 4.11: Text image denoising



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Image denoising is a long-lasting problem and it is also a test bed for a

wide range of inverse problems in image processing. By advancing prior modeling

we are effectively advancing our capability of solving more challenging recovery

problems. In this thesis, we summarize our work on how to obtain effective priors

from external image databases. For three different denoising applications with

external databases, we explore effective priors, and propose statistical and adaptive

patch-based image denoising algorithms.

The thesis begins with the introduction on patch-based image denoising and

the discussion of internal prior (denoising) and external prior (denoising). Internal

denoising based on single noisy images will soon reach the performance limit. Ex-

ternal denoising is an alternative solution and has much room for improvement. In

Chapter 2, 3 and 4, we show how to explore effective priors from external databases

and develop adaptive denoising algorithms under different external settings.

In Chapter 2, we consider multiview image denoising. For each noisy view,

the external database consists of its adjacent noisy views. We explore the non-local

prior and present an adaptive non-local means denoising method, in which similar

patches are carefully chosen from the database according to the local statistics of

the estimates while dissimilar patches are discarded in order to achieve a trade-off

between bias and variance.

89
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In Chapter 3, we consider target-oriented image denoising. To facilitate the

denoising of a noisy image of interest, we propose to exploit a targeted database

instead of a generic database. To maximally utilize the targeted database, we

show how to design an optimal linear denoising filter by exploring both the group

sparsity prior and the localized Bayesian prior. The proposed method finds patches

from the targeted database, which are then utilized to learn the basis matrix and

the spectral coefficients of the optimal denoising filter.

In Chapter 4, we consider image denoising when only a generic database (as

opposed to a targeted database) is available. We propose to take a generic prior

learned from a generic database and then adapt it to the image of interest to create

a specific prior. We rigorously derive the proposed Expectation-Maximization

(EM) adaptation algorithm from a full Bayesian hyper-prior perspective. The

proposed algorithm is further modified so that it also works when the image of

interest is noisy.

In all Chapter 2, 3 and 4, we presented experimental results for a wide range

of existing algorithms and our proposed methods. The comparative analyses show

that our proposed methods have superior performance over existing methods both

visually and quantitatively.

5.2 Future Work

There are a few suggestions for future work.

• In applying any patch-based image denoising algorithm, the denoising per-

formance is intimately related to the capability of finding reference patches.

Typically, one searches for similar patches by measuring patch similarity

between a noisy patch and any other candidate patch based on some pre-

defined metric. In Chapter 2, we proposed a robust distance metric for the

specific multiview denoising setting. Yet in most denoising applications, the

commonly used metric is the ℓ2 distance (i.e., Euclidean distance). However,

this metric has a drawback in that the Euclidean distance does not necessar-

ily capture the true patch similarity. In other words, two patches could be
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quite different, but their Euclidean distance might still be small. To improve

the patch matching, two directions are worth exploring: (1) metric learning

[87]. Basically we want to learn a similarity metric such that when a noisy

query patch searches for its KNNs with this metric in a database, the rank-

ings of the returned patches are the same as those when a clean query patch

is used for patch searching. (2) deep learning [88–90]. The idea is to learn

a deep encoder function which maps two noisy patches into an embedding

space such that their relative distance could well “approximate” the relative

distance between their clean versions.

• In Chapter 3, finding a good external database for the noisy image of interest

is significant for the success of the proposed denoising algorithm. For an

arbitrary noisy image to search for a targeted database, some image retrieval

techniques in the computer vision area can be explored. In the case when it

is hard to build a good targeted database or the returned external database is

less satisfactory, one suggestion is to adaptively combine external denoising

with internal denoising.

• In Chapter 4, the prior adaptation is applied to image denoising but it can

be extended to the application of video denoising without much change. The

proposed EM adaptation algorithm is rigorously derived for denoising, but it

could be further modified so that it is also tailored for other inverse problems

such as deblurring, inpainting and super-resolution.



Appendix A

Proofs of Chapter 3

A.1 Proof of Lemma 1

Proof. First, by writing q = p+ η we get

E

[∥∥UΛUTq − p
∥∥2
2

]
= E

[∥∥UΛUT (p+ n)− p
∥∥2
2

]
.

Since η is i.i.d. Gaussian, we have

E

[∥∥UΛUT (p+ η)− p
∥∥2
2

]

=E

[∥∥(UΛUT − I)p+UΛUTη
∥∥2
2

]

=
∥∥U(Λ− I)UTp

∥∥2
2
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[∥∥UΛUTη
∥∥2
2
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=
∥∥U(Λ− I)UTp

∥∥2
2
+ σ2Tr

(
Λ2
)

=

n∑

i=1

[
(1− λi)

2(uT
i p)

2 + σ2λ2
i

]
,

which shows the desired result.
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A.2 Proof of Lemma 2

Proof. From (3.3), the optimization to be solved is

minimize
u1,...,ud,λ1,...,λd

∑d
i=1

[
(1− λi)

2(uT
i p)

2 + σ2λ2
i

]

subject to uT
i ui = 1, uT

i uj = 0.

Since each term in the sum of the objective function is non-negative, we can con-

sider the minimization over each individual term separately. This gives

minimize
ui,λi

(1− λi)
2(uT

i p)
2 + σ2λ2

i

subject to uT
i ui = 1.

The Lagrangian function of the above equality-constrained problem is

L(ui, λi, β) = (1− λi)
2(uT

i p)
2 + σ2λ2

i + β(1− uT
i ui),

where β is the Lagrange multiplier. Differentiating L with respect to ui, λi and β

yields

∂L
∂λi

= −2(1− λi)(u
T
i p)

2 + 2σ2λi (A.1)

∂L
∂ui

= 2(1− λi)
2(uT

i p)p− 2βui (A.2)

∂L
∂β

= 1− uT
i ui. (A.3)

Setting ∂L/∂λi = 0 yields λi = (uT
i p)

2/
(
(uT

i p)
2 + σ2

)
. Substituting this

λi into (A.2) and setting ∂L/∂ui = 0 yields

2σ4(uT
i p)p

((uT
i p)

2 + σ2)
2 − 2βui = 0. (A.4)

There are two solutions. The first one is the trivial one: ui = any unit vector

orthogonal to p, and β = 0. In this case, uT
i p = 0 and βui = 0 so that the left
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hand side of (A.4) is 0. The non-trivial solution is

ui = p/‖p‖, and β =
σ4‖p‖2

(‖p‖2 + σ2)2
, (A.5)

which can be proved easily by substituting (A.5) into (A.4). Therefore, the de-

noising result is

p̂ = U

(
diag

{ ‖p‖2
‖p‖2 + σ2

, 0, . . . , 0

})
UTq.

A.3 Proof of Lemma 3

Proof. Let ui be the ith column of U . Then, (3.7) becomes

minimize
u1,...,ud

∑d
i=1 ‖uT

i P ‖2
subject to uT

i ui = 1, uT
i uj = 0.

(A.6)

Since each term in the sum of (A.6) is non-negative, we can consider each individual

term
minimize

ui

‖uT
i P ‖2

subject to uT
i ui = 1,

which is equivalent to

minimize
ui

‖uT
i P ‖22

subject to uT
i ui = 1.

(A.7)

The constrained problem (A.7) can be solved by considering the Lagrange

function,

L(ui, β) = ‖uT
i P ‖22 + β(1− uT

i ui). (A.8)

Taking derivatives ∂L
∂ui

= 0 and ∂L
∂β

= 0 yield

PP Tui = βui, and uT
i ui = 1.
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Therefore, ui is the eigenvector of PP T , and β is the corresponding eigenvalue.

A.4 Proof of Lemma 4

Proof. First, by plugging q = p+ η into BMSE we get

BMSE = Ep

[
Eq|p

[∥∥UΛUT (p+ η)− p
∥∥2
2

∣∣∣p
]]

= Ep

[
pTU (I −Λ)2UTp

]
+ σ2Tr

(
Λ2
)
.

Let L
def
= (I −Λ)2, and recall the fact that for any random variable x ∼ N (µx,Σx)

and any matrix A, it holds that E
[
xTAx

]
= E[x]TAE[x]+Tr (AΣx). Therefore,

the above BMSE can be simplified as

BMSE = µTULUTµ+ Tr
(
ULUTΣ

)
+ σ2Tr

(
Λ2
)

= Tr
(
LUTµµTU +LUTΣU

)
+ σ2Tr

(
Λ2
)
. (A.9)

Differentiating BMSE with respect to Λ yields

∂

∂Λ
BMSE =

∂L

∂Λ

∂

∂L
BMSE

= −2(I −Λ)
(
UTµµTU +UTΣU

)
+ 2σ2Λ.

Setting ∂
∂Λ

BMSE = 0 and assuming that the diagonal terms are dominant, we

have

Λ =
diag

{
UTΣU +UTµµTU

}

diag
{
UTΣU +UTµµTU

}
+σ2I

. (A.10)
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A.5 Proof of Lemma 5

Proof. First, we write Σ in (3.21) in a matrix form

Σ =
(
P − µ1T

)
W
(
P − µ1T

)T

= PWP T − µ1TWP T − PW1µT + µ1TW1µT .

It is not difficult to see that 1TWP T = µT ,PW1 = µ and 1TW1 = 1. Therefore,

Σ = PWP T − µµT − µµT + µµT

= PWP T − µµT ,

which gives

Σ+ µµT = PWP T . (A.11)

Substituting (A.11) into (A.10), we have

Λ =
diag

{
UTΣU +UTµµTU

}

diag
{
UTΣU +UTµµTU

}
+σ2I

=
diag

{
UTPWP TU

}

diag
{
UTPWP TU

}
+σ2I

=
diag

{
UTUSUTU

}

diag
{
UTUSUTU

}
+σ2I

=
S

S + σ2I
, (A.12)

where the divisions are element-wise.
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A.6 Proof of Lemma 6

Proof. To prove Lemma 6, we first apply the results in (A.9) and (A.12)

Ep

[
Eq|p

[∥∥UΛUTq − p
∥∥2
2

∣∣∣p
]]

=Tr
(
(I −Λ)2UTµµTU + (I −Λ)2UTΣU

)
+ σ2Tr

(
Λ2
)

=Tr(I −Λ)2S + σ2Tr
(
Λ2
)

=
d∑

i=1

[
(1− λi)

2si + σ2λ2
i

]

=
d∑

i=1

[
(si + σ2)

(
λi −

si
si + σ2

)2

+
siσ

2

si + σ2

]
.

Adding the penalty term γ‖Λ1‖α, the minimization problem with respect to λi

becomes

minimize
λi

d∑

i=1

[
(si + σ2)

(
λi −

si
si + σ2

)2
]
+ γ‖Λ1‖α, (A.13)

where γ‖Λ1‖α = γ
∑d

i=1 |λi| or γ
∑d

i=1 1(λi 6= 0) for α = 1 or 0. We note that

when α = 1 or 0, (A.13) is the standard shrinkage problem [91], in which a closed

form solution exists. Following from [32], the solutions are given by

λi = max

(
si − γ/2

si + σ2
, 0

)
, for α = 1,

and

λi =
si

si + σ2
1

(
s2i

si + σ2
> γ

)
, for α = 0.

Even if we do not identify the above standard shrinkage problem, we could still

show the proof as follows:

In
∑d

i=1 [(1− λi)
2si + σ2λ2

i ], the derivative with respect to each λi is −2(1−λi)si+

2σ2λi, where si is the ith diagonal entry in S.

We first consider the case for ℓ1 regularization: γ‖Λ1‖1 = γ
d∑

i=1

|λi|. For λi 6= 0,

its derivative with respect to λi is γsign(λi). Therefore, setting the sum of the
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derivatives to be zero yields

−2(1 − λi)si + 2σ2λi + γsign(λi) = 0. (A.14)

Note that we have si > 0 and γ > 0, thus λi has to be inbetween 0 and 1, because

otherwise the equation in (A.14) does not hold. For example, if λi > 1, we then

have −2(1 − λi)si > 0, 2σ2λi > 0, and γsign(λi) > 0, making their sum to be

larger than 0.

Solving equation (A.14) yields λi =
si−γ/2
si+σ2 . Lastly if we include the case

when λi = 0, we get the final result, which has a soft-thresholding form

λi = max

(
si − γ/2

si + σ2
, 0

)
.

We then consider the case for ℓ0 regularization: γ‖Λ1‖0 = γ
d∑

i=1

1 (λi 6= 0),

where 1 is the indicator function. The ℓ0 regularized BMSE can be written

as
d∑

i=1

[(1− λi)
2si + σ2λ2

i ] + γ
n∑

i=1

1 (λi 6= 0). Since each term in the sum is non-

negative, minimizing the overall ℓ0 regularized BMSE is equivalent to minimizing

each individual term, which gives

minimize
λi

f(λi)
def
= (1− λi)

2(uT
i p)

2 + σ2λ2
i + γ1 (λi 6= 0) .

We consider two cases, i.e., λi = 0 and λi 6= 0.

If λi = 0, we have f(λi) = si.

If λi 6= 0, we have

f(λi) =
[
(1− λi)

2si + σ2λ2
i

]
+ γ. (A.15)

It is easy to show that equation (A.15) is minimized when λi = si
si+σ2 , and its

corresponding minimal value is f(λi) =
σ2si
si+σ2 + γ.

Therefore, if σ2si
si+σ2 + γ < si, i.e.,

s2i
si+σ2 > γ, we choose λi =

si
si+σ2 , otherwise

we choose λi = 0. The final result has a hard-thresholding form

λi =
si

si + σ2
1

(
s2i

si + σ2
> γ

)
.
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A.7 Proof of Theorem 1

To prove Theorem 1, we first need to define some notations. We let λi(P̃ )

be the ith singular value of P̃ , and λi(Q̃) be ith singular value of Q̃. We also let

ui be the ith singular vector of P̃ , and vi be the ith singular vector of Q̃. Then,

we can prove the following two lemmas.

Lemma 7. Let λi(P̃ ) and λi(Q̃) be the ith singular values of P̃ and Q̃, respectively.

Then, (
k∑

i=1

(
λi(P̃ )− λi(Q̃)

)2
)1/2

≤
∥∥∥∆P̃

∥∥∥
2
. (A.16)

Proof. By Horn and Johnson, Corollary 7.3.8(a) [92]

Lemma 8. Let ui be the ith singular vector of P̃ ∈ R
n×k, and let vi be the ith

singular vector of Q̃ ∈ R
n×k, where k < n. If λi(P̃ ) 6= λj(P̃ ) for any i 6= j and

i, j = 1, . . . , k, then

‖vi − ui‖2 ≤ ρ
∥∥∥∆P̃

∥∥∥
2
, (A.17)

for some constants ρ, and i = 1, . . . , k.

Proof. First, by Equation (10) of [Liu et al.], we have for i = 1, . . . , k

vi = ui +

k∑

j 6=i,j=1


uT

j [(∆P̃ ) P̃
T
+ P̃ (∆P̃ )T ]ui

λi(P̃ )2 − λj(P̃ )2


uj. (A.18)
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Therefore,

‖vi − ui‖2

=

∥∥∥∥∥∥

k∑

j 6=i,j=1


uT

j [(∆P̃ ) P̃
T
+ P̃ (∆P̃ )T ]ui

λi(P̃ )2 − λj(P̃ )2


uj

∥∥∥∥∥∥
2

≤
∥∥∥(∆P̃ ) P̃

T
+ P̃ (∆P̃ )T

∥∥∥
2

∑

j 6=i

(
1

λi(P̃ )2 − λj(P̃ )2

)

≤ 2
∥∥∥∆P̃

∥∥∥
2

∥∥∥P̃
∥∥∥
2

∑

j 6=i

(
1

λi(P̃ )2 − λj(P̃ )2

)
.

Letting

ρ = 2
∥∥∥P̃
∥∥∥
2

k∑

j 6=i,j=1

(
1

λi(P̃ )2 − λj(P̃ )2

)
,

completes the proof.

Now, we want to give a precise definition of p̂P and p̂Q:

Definition 1. The denoised signals p̂P and p̂Q are defined as

p̂P = USUTq and p̂Q = V RV Tq,

where,

S = diag

{
λ1(P̃ )2

λ1(P̃ )2 + σ2
, . . . ,

λk(P̃ )2

λk(P̃ )2 + σ2
, 0, . . . , 0

}
,

R = diag

{
λ1(Q̃)2

λ1(Q̃)2 + σ2
, . . . ,

λk(Q̃)2

λk(Q̃)2 + σ2
, 0, . . . , 0

}
.

Lemma 9. The operator difference ‖USUT − V RV T‖F is bounded as

‖USUT − V RV T‖F ≤ γ
∥∥∥∆P̃

∥∥∥
F
, (A.19)

for some constant γ.
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Proof. First, we observe that

∥∥USUT − V RV T
∥∥
F

=
∥∥USUT − V SV T + V SV T − V RV T

∥∥
F

=
∥∥USUT − V SV T

∥∥
F
+
∥∥V SV T − V RV T

∥∥
F

=
∥∥(U − V )S(U − V )T

∥∥
F
+ ‖S −R‖F .

The bound on the first term can be derived using Lemma 1.

∥∥(U − V )S(U − V )T
∥∥
F

=

∥∥∥∥∥

k∑

i=1

(
λi(P̃ )2

λi(P̃ )2 + σ2

)
(ui − vi)(ui − vi)

T

∥∥∥∥∥
F

≤
k∑

i=1

(
λi(P̃ )2

λi(P̃ )2 + σ2

)
‖ui − vi‖2

≤
k∑

i=1

(
λi(P̃ )2

λi(P̃ )2 + σ2

)(
ρ
∥∥∥∆P̃

∥∥∥
2

)
.
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The bound on the second term is

‖S −R‖F

=




k∑

i=1

(
λi(P̃ )2

λi(P̃ )2 + σ2
− λi(Q̃)2

λi(Q̃)2 + σ2

)2



1/2

=




k∑

i=1

(
σ2(λi(Q̃)2 − λi(P̃ )2)

(λi(P̃ )2 + σ2)(λi(Q̃)2 + σ2)

)2



1/2

≤




k∑

i=1

(
(λi(Q̃)2 − λi(P̃ )2)

σ2

)2



1/2

=




k∑

i=1

(
(λi(Q̃)− λi(P̃ ))(λi(Q̃) + λi(P̃ ))

σ2

)2



1/2

≤
(

1

σ2
max
1≤i≤k

∣∣∣λi(Q̃) + λi(P̃ )
∣∣∣
)( k∑

i=1

(
λi(Q̃)− λi(P̃ )

)2
)1/2

≤
(

1

σ2
max
1≤i≤k

∣∣∣λi(Q̃) + λi(P̃ )
∣∣∣
) ∥∥∥∆P̃

∥∥∥
2
,

where the last inequality is due to Lemma 2. Finally, if we let

γ =

(
1

σ2
max
1≤i≤k

∣∣∣λi(Q̃) + λi(P̃ )
∣∣∣
)
+ ρ

k∑

i=1

(
λi(P̃ )2

λi(P̃ )2 + σ2

)
, (A.20)

then the proof is completed.

Proof of Theorem 1:

Proof. First, it holds that

E

[∥∥p̂P − p̂Q

∥∥2
]

= E

[∥∥USUTq − V RV Tq
∥∥2
]

=
∥∥(USUT − V RV T )p

∥∥2
2
+ σ2

∥∥USUT − V RV T
∥∥2
F

≤ ‖p‖22
∥∥USUT − V RV T

∥∥2
F
+ σ2

∥∥USUT − V RV T
∥∥2
F
.
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Then, by Lemma 9 we have

‖USUT − V RV T‖F ≤ γ
∥∥∥∆P̃

∥∥∥
F
.

Therefore,

E
[
‖p̂1 − p̂2‖2

]
≤
(
γ2‖p‖22 + γ2σ2

) ∥∥∥∆P̃

∥∥∥
2

F
.

A.8 Proof of Theorem 2

Proof. First, we observe that

Pr

[
min

1≤i≤N
‖pi − p0‖2 > ε

]
=

N∏

i=1

Pr [‖pi − p0‖2 > ε] . (A.21)

Then,

Pr [‖p− p0‖2 > ε] = 1−
∫

{‖p−p0‖2<ε}
f(p)dp. (A.22)

By Taylor expansion on f(p), we have

f(p) = f(p0) +∇f(p0)
T (p− p0) +O(‖p− p0‖2). (A.23)

Assuming ε ≪ 1, and substitute (A.23) into (A.22), we have

∫

{‖p−p0‖2<ε}
f(p)dp

=

∫

{‖p−p0‖2<ε}
f(p0) +∇f(p0)

T (p− p0)dp. (A.24)

The first integral can be evaluated as

∫

{‖p−p0‖2<ε}
f(p0)dp = f(p0)

∫

{‖p−p0‖2<ε}
dp

= f(p0)
εnπn/2

Γ(n
2
+ 1)

,
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where the last equality holds because the integral is the volume of an n-dimensional

sphere.

For the second integral, we let x = p − p0 and a = ∇f(p0). Then, by

transforming the Cartesian coordinate to the polar coordinate, we have

∫

{‖p−p0‖2<ε}
∇f(p0)

T (p− p0)dp

=

∫

{‖x‖2<ε}
aTxdx

=

∫ ε

0

∫ 2π

φn−1=0

∫ π

φn−2=0

· · ·
∫ 2π

φ1=0

[
a1, . . . , an

]




r cosφ1

r sinφ1 cosφ2

. . .

r sin φ1 . . . sinφn−2 cos φn−1

r sinφ1 . . . sinφn−2 sinφn−1




× rn−1 sinn−2 φ1 sin
n−3 φ2 . . . sinφn−2drdφ1, . . . , dφn−1.

The last integral vanishes, because each term involves an integration of sin φi or

cosφi over [0, π].

Therefore, substituting into (A.24) yields

∫

{‖p−p0‖2<ε}
f(p)dp = f(p0)

εnπn/2

Γ(n
2
+ 1)

,

and hence by letting C = πn/2

Γ(n
2
+1)

, we have

N∏

i=1

Pr [‖pi − p0‖2 > ε] = (1− Cεnf(p0))
N

= exp {N log (1− Cεnf(p0))}
≤ exp {−CNεnf(p0)} .

Here, the last inequality holds because log(1 − x) < −x for 0 < x < 1. To
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see this, we consider the function φ(x) = log(1 − x) + x. It holds that φ′(x) =

−1/(1− x) + 1 < 0 for 0 < x < 1. So φ(x) < φ(0), and hence log(1− x) < −x for

0 < x < 1.



Appendix B

Proofs of Chapter 4

B.1 Proof of Proposition 2

Proof. The minimization problem (4.5) can be split into two subproblems and

solved in an alternating fashion. Given initial guesses x(0) and v
(0)
i , the algorithm

alternatingly updates a sequence of x(m) and v
(m)
i such that

v
(m+1)
i = argmin

vi

{
− log f(vi) +

β(m)

2
‖P ix

(m) − vi‖2
}
, (B.1)

x(m+1) =

argmin
x

{nσ−2

2
‖y − x‖2 + β(m)

2

n∑

i=1

‖P ix− v
(m+1)
i ‖2

}
, (B.2)

where β(m) is an increasing sequence of penalty paramters.

For subproblem (B.1), if we further assume that f(vi) is dominated by one

of the components k∗
i where

k∗
i

def
=argmax

k
πkN (vi|µk,Σk), (B.3)

106
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we then relax (B.1) to

argmin
vi

{1
2
‖vi − µk∗i

‖2
Σ

−1
k∗
i

+
β(m)

2
‖P ix

(m) − vi‖2
}
, (B.4)

the closed-form solution of which is

v
(m+1)
i =

(
β(m)Σk∗i

+ I
)−1
(
µk∗i

+ β(m)Σk∗i
P ix

(m)
)
. (B.5)

Subproblem (B.2) is also a quadratic problem and has a closed-form solution

as
x(m+1) =(
nσ−2I + β(m)

n∑
i=1

P T
i P i

)−1(
nσ−2y + β(m)

n∑
i=1

P T
i v

(m+1)
i

)
.

(B.6)

The minimizations in (B.1) and (B.2) are alternatingly solved until convergence.

The final (B.6) gives the denoised image.

B.2 Proof of Proposition 3

Proof. Similarly as in the standard EM algorithm for GMM fitting, we first com-

pute the probability that the i-th sample belongs to the k-th Gaussian component

as

γki =
π
(m)
k N (p̃i |µ(m)

k ,Σ
(m)
k )

∑K
l=1 π

(m)
l N (p̃i |µ(m)

l ,Σ
(m)
l )

, (B.7)

where {(π(m)
k ,µ

(m)
k ,Σ

(m)
k )}Kk=1 are the GMM parameters in the m-th iteration and

let nk
def
=
∑n

i=1 γki. We can then approximate log f(p̃1, . . . , p̃n)|Θ̃) in (4.6) by the
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Q function as follows

Q(Θ̃|Θ̃(m)
) =

n∑

i=1

K∑

k=1

γki log
(
π̃kN (p̃i|µ̃k, Σ̃k)

)

.
=

n∑

i=1

K∑

k=1

γki

(
log π̃k −

1

2
log |Σ̃k|

− 1

2
(p̃i − µ̃k)

T Σ̃
−1

k (p̃i − µ̃k)
)

=
K∑

k=1

nk(log π̃k −
1

2
log |Σ̃k|)

− 1

2

K∑

k=1

n∑

i=1

γki(p̃i − µ̃k)
T Σ̃

−1

k (p̃i − µ̃k), (B.8)

where
.
= indicates that some constant terms that are irrelevant to the parameters

Θ̃ are dropped. We further define two notations

µ̄k
def
=

1

nk

n∑

i=1

γkip̃i, Sk
def
=

n∑

i=1

γki(p̃i − µ̄k)(p̃i − µ̄k)
T . (B.9)

Using the equality
∑n

i=1 γki(p̃i−µ̃k)
T Σ̃

−1

k (p̃i−µ̃k) = nk(µ̃k−µ̄k)
T Σ̃

−1

k (µ̃k−µ̄k)+

tr(SkΣ̃
−1

k ), we can rewrite the Q function as follows

Q(Θ̃|Θ̃(m)
) =

K∑

k=1

{
nk(log π̃k −

1

2
log |Σ̃k|)

− nk

2
(µ̃k − µ̄k)

T Σ̃
−1

k (µ̃k − µ̄k)−
1

2
tr(SkΣ̃

−1

k )
}
.
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Therefore, we have

f(Θ̃|p̃1, . . . , p̃n) ∝ exp
(
Q(Θ̃|Θ̃(m)

) + log f(Θ̃)
)

= f(Θ̃)

K∏

k=1

{
π̃nk
k |Σ̃k|−nk/2

exp
(
− nk

2
(µ̃k − µ̄k)

T Σ̃
−1

k (µ̃k − µ̄k)−
1

2
tr(SkΣ̃

−1

k )
)}

=

K∏

k=1

{
π̃vk+nk−1
k |Σ̃k|−(ϕk+nk+d+2)/2exp

(
− τk + nk

2

(µ̃k −
τkϑk + nkµ̄k

τk + nk
)T Σ̃

−1

k (µ̃k −
τkϑk + nkµ̄k

τk + nk
)
)

exp
(
− 1

2
tr((Ψk + Sk

+
τknk

τk + nk
(ϑk − µ̄k)(ϑk − µ̄k)

T )Σ̃
−1

k )
)}

. (B.10)

Defining v′k
def
= vk + nk, ϕ

′
k

def
= ϕk + nk, τ

′
k

def
= τk + nk,ϑ

′
k

def
= τkϑk+nkµ̄k

τk+nk
, and Ψ′

k
def
=

Ψk + Sk +
τknk

τk+nk
(ϑk − µ̄k)(ϑk − µ̄k)

T , we will get

f(Θ̃|p̃1, . . . , p̃n) ∝
∏K

k=1

{
π̃
v′k−1

k |Σ̃k|−(ϕ′

k+d+2)/2

exp
(
− τ ′k

2
(µ̃k − ϑ′

k)
T
Σ̃

−1

k (µ̃k − ϑ′
k)− 1

2
tr(Ψ′

kΣ̃
−1

k )
)}

,

which completes the proof.

B.3 Proof of Proposition 4

Proof. We ignore some irrelevant terms and get log f(Θ̃|p̃1, . . . , p̃n)
.
=
∑K

k=1{(v′k−
1) log π̃k − (ϕ′

k+d+2)

2
log |Σ̃k| − τ ′k

2
(µ̃k − ϑ′

k)
T Σ̃

−1

k (µ̃k − ϑ′
k)− 1

2
tr(Ψ′

kΣ̃
−1

k )}. Taking
derivatives with respect to π̃k, µ̃k and Σ̃k will yield the following solutions.

• Solution to π̃k.

We form the Lagrangian

J(π̃k, λ) =
K∑

k=1

(v′k − 1) log π̃k + λ

(
K∑

k=1

π̃k − 1

)
,
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and the optimal solution satisfies

∂J

∂π̃k

=
v′k − 1

π̃k

+ λ = 0.

It is easy to see that λ = −∑K
k=1(v

′
k − 1), and thus the solution to π̃k is

π̃k =
v′k − 1

∑K
k=1(v

′
k − 1)

=
(vk − 1) + nk

(
∑K

k=1 vk −K) + n

=
n

(
∑K

k=1 vk −K) + n
· nk

n

+

∑K
k=1 vk −K

(
∑K

k=1 vk −K) + n
· vk − 1
∑K

k=1 vk −K
. (B.11)

• Solution to µ̃k.

We let
∂L

∂µ̃k

= −τ ′k
2
Σ̃

−1

k (µ̃k − ϑ′
k) = 0, (B.12)

the solution of which is

µ̃k =
τkϑk + nkµ̄k

τk + nk

=
1

τk + nk

n∑

i=1

γkip̃i +
τk

τk + nk
ϑk. (B.13)

• Solution to Σ̃k.

We let

∂L

∂Σ̃k

=− ϕ′
k + d+ 2

2
Σ̃

−1

k +
1

2
Σ̃

−1

k Ψ′
kΣ̃

−1

k

+
τ ′k
2
Σ̃

−1

k (µ̃k − ϑ′
k)(µ̃k − ϑ′

k)
T Σ̃

−1

k

= 0,
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which yields

(ϕ′
k + d+ 2)Σ̃k = Ψ′

k + τ ′k(µ̃k − ϑ′
k)(µ̃k − ϑ′

k)
T , (B.14)

the solution of which is

Σ̃k =
Ψ′

k + τ ′k(µ̃k − ϑ′
k)(µ̃k − ϑ′

k)
T

ϕ′
k + d+ 2

=
Ψk + τk(µ̃k − ϑk)(µ̃k − ϑk)

T

ϕk + d+ 2 + nk

+
nk(µ̃k − µ̄k)(µ̃k − µ̄k)

T + Sk

ϕk + d+ 2 + nk

=
nk

ϕk + d+ 2 + nk

1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

+
1

ϕk + d+ 2 + nk

(
Ψk + τk(ϑk − µ̃k)(ϑk − µ̃k)

T
)
. (B.15)

B.4 Proof of Proposition 7

Proof. Our first attempt is to expand the first term in (4.24).

αk
1

nk

n∑

i=1

γki(p̃i − µ̃k)(p̃i − µ̃k)
T

= αk
1

nk

n∑

i=1

γki(p̃ip̃
T
i − p̃iµ̃

T
k − µ̃kp̃

T
i + µ̃kµ̃

T
k )

, αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − (µ̃k − (1− αk)µk)µ̃

T
k

− µ̃k(µ̃k − (1− αk)µk)
T + αkµ̃kµ̃

T
k

= αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − 2µ̃kµ̃

T
k

+ (1− αk)(µkµ̃
T
k + µ̃kµ

T
k ) + αkµ̃kµ̃

T
k , (B.16)
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where , holds because αk
1
nk

∑n
i=1 γkip̃i = µ̃k − (1− αk)µk from (4.23).

We then expand the second term in (4.24)

(1− αk)
(
Σk + (µk − µ̃k)(µk − µ̃k)

T
)

= (1− αk)(Σk + µkµ
T
k + µ̃kµ̃

T
k )

− (1− αk)(µkµ̃
T
k + µ̃kµ

T
k ). (B.17)

Combining (B.16) and (B.17), we get a simplified (4.24) as

Σ̃k = αk
1

nk

n∑

i=1

γkip̃ip̃
T
i − µ̃kµ̃

T
k

+ (1− αk)(Σk + µkµ
T
k ). (B.18)
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