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 Author’s View Author’s View

Half of all human melanomas harbor acti-
vating mutations in the serine-threonine 
protein kinase BRAF, most commonly at 
position V600 (BRAFV600). BRAF inhibi-
tors kill melanoma cells harboring BRAF 
mutations by interrupting oncogenic 
BRAFV600 signaling through the mitogen-
activated protein kinase pathway, which 
generally supports cell survival and prolif-
eration. The BRAF inhibitors vemurafenib 
and dabrafenib induce tumor regression 
in a high proportion of patients bearing 
BRAFV600 mutant metastatic melanoma, 
and vemurafenib improves overall survival 
as compared with standard of care chemo-
therapy.1 The emergence of drug resistance 
upon BRAF inhibition was predicted even 
before oncologists observed disappoint-
ing relapses. This has been a common 
issue with previous targeted agents against 
chronic myelogenous leukemia (with ima-
tinib, used as an inhibitor of BCR-ABL), 
gastrointestinal stromal tumors (with 
imatinib, used to inhibit mutant KIT), 
non-small-cell lung cancer (with gefitinib, 
used to inhibit mutant EGFR) and breast 
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cancer (with trastuzumab or lapatinib, 
used to inhibit amplified ERBB2/HER2). 
Multiple mechanisms of resistance to 
BRAF inhibitors have been discovered, 
including NRAS mutations, BRAF ampli-
fication, the emergence of BRAF splice 
variants and downstream alterations in 
MEK. These have directed the next steps 
in melanoma research, including the 
development of approaches to concur-
rently inhibit BRAF and MEK.2

The contribution of the host to the anti-
neoplastic effects of BRAF inhibitors was 
poorly understood since—until recently—
no murine model of transplantable, syn-
geneic BRAFV600E-driven melanoma was 
available. Some patients treated with BRAF 
inhibitors exhibit increased intratumoral 
CD8+ T cells soon after therapy. This and 
other data reviewed in ref. 3 suggested that 
BRAF inhibitors could engage the host 
immune response to mediate tumor regres-
sion. We have now took advantage of two 
relatively resistant syngeneic variants of 
BRAFV600E-driven mouse melanoma xeno-
grafts and a transgenic mouse model of 

melanoma to illustrate the ability of a Type 
I BRAF inhibitor, PLX4720, to reduce the 
local production of C-C chemokine ligand 
2 (CCL2).4 With these models, we demon-
strated a key role for host C-C chemokine 
receptor type 2 (CCR2, the main CCL2 
receptor), but not for host CCL2, in the 
antitumor activity of PLX4720 (Fig. 1). 
Notably, our melanoma models did not 
express CCR2, yet clearly some hetero-
geneity exists with respect to CCL2 pro-
duction and response to BRAF inhibition 
across a spectrum of human melanomas 
(unpublished data). Evidently, multiple 
host mechanisms might be at play, depend-
ing (at least in part) upon the genetic 
diversity of the tumor. In this light, our 
data were complementary to recent find-
ings demonstrating the role of oncogenic 
BRAFV600E in stromal immunosuppression 
upon the induction of interleukin (IL)-1 
secretion by melanoma cells.5

A robust increase in the ratio between 
tumor-infiltrating CD8+ T  cells and 
FOXP3+ regulatory T cells (Tregs) as well 
as CD8+ T-cell functions were partially 

Type I BRAF inhibitors and immunotherapy constitute two new exciting approaches for the treatment of advanced 
malignant melanoma. We have recently elucidated a role for host C-C chemokine receptor Type 2 (CCR2) in the 
antineoplastic effects of Type I BRAF inhibitors in mice, supporting the therapeutic potential of combining BRAF inhibitors 
with immunotherapy.
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Based on natural immune responses to 
melanomas and on the ability of PLX4720 
to reduce CCL2 expression by mela-
noma cells, there is no strong theoretical 
argument to disregard agents that pro-
mote intratumoral CD8+ T-cell function. 
Certainly, anti-CTLA4 (ipilimumab) and 
anti-PD1/PD-L1 antibodies are making 
a significant impact in the treatment of 
malignant melanoma, and these agents are 
nowadays being evaluated in clinical tri-
als in combination with BRAF inhibitors. 
The resistance to BRAF inhibitors often 
leads to increased PD-L1 expression by 
melanoma cells, providing a strong ratio-
nale for combinatorial regimens including 
anti-PD-L1 antibodies.10 Adoptive T-cell 
transfer (ACT) should also be considered 
in this setting,11,12 as BRAF inhibitors have 
been shown to limit vascular endothelial 
growth factor (VEGF) production by can-
cer cells. Unfortunately, the use of ACT is 
now rather restricted because of the special 
expertise needed for this type of therapeu-
tic approach. BRAF inhibitors efficiently 
combine with immunotherapies that medi-
ate antitumor effects via CD8+ T cells, and 
current data support the clinical testing of 
combinatorial regimens including BRAF-
targeted agents and immunotherapy in 

To our surprise, no obvious combinatorial 
activity was noted when BRAF inhibitor 
was combined with antibodies targeting 
the cytotoxic T-lymphocyte antigen 4 
(CTLA4), programmed death 1 (PD1) or 
T-cell immunoglobulin mucin 3 (TIM3). 
Whether these checkpoint inhibitors 
require different therapeutic schedules 
or are efficient in other models of mela-
noma remains to be elucidated. The 
schedules and doses of PLX4720 were 
important for the efficacy of the combi-
natorial regimen involving anti-CD137 
antibodies, with PLX4720 to be given 
preferably first or concurrently. Our data 
with BrafCATyr-creERT2Ptenfl/fl mice are the 
first to demonstrate a single agent activ-
ity for an immunotherapeutic approach 
in this model of de novo melanomagen-
esis.4 Still, the mechanisms underlying the 
improved therapeutic effects of PLX4720 
combined with PLX4720 may be dif-
ferent in BRAFV600 mutant tumors that 
exhibit a high sensitivity to BRAF inhibi-
tors.9 Given the low frequency of lym-
phocytes that infiltrate the melanomas of 
BrafCATyr-creERT2Ptenfl/fl mice, this trans-
genic model may be not especially suitable 
to mimic patients that naturally mount 
antitumor immune responses.

required for the therapeutic activity of 
PLX4720 (Fig. 1).4 A high CD8+/FOXP3+ 
T-cell ratio is widely recognized as an 
indicator of an effective cell-mediated 
immune response. Although we showed 
that CCR2 was expressed predominantly 
on a proportion of tumor-infiltrating 
CD11b+ cells and CD4+ Tregs, and that 
only intratumoral Tregs decreased upon 
the administration of PLX4720, identify-
ing the exact nature of the host CCR2+ 
cell compartment that underpins the 
therapeutic efficacy of PLX4720 requires 
a complex genetic approach involving 
the specific deletion of CCR2 in CD11b+ 
myeloid cells or FOXP3+ T cells.

These findings, conceptual advances 
and emerging experiences,6–8 and the fact 
that BRAF inhibitors meet most of the crite-
ria of immunomodulatory agents, warrants 
the evaluation of combining immuno-
therapy with BRAF inhibitors, like vemu-
rafenib or dabrafenib, in preclinical mouse 
models and clinical trials. Therefore, we 
have progressed to show that the combi-
nation of PLX4720 with agonistic anti-
CD137 or anti-CCL2 antibodies exerted 
significant antitumor activity against 
transplanted and de novo melanomas, in 
a dose- and schedule-dependent fashion.4 

Figure 1. BRAF inhibitors and agonistic CD137-targeting monoclonal antibodies suppress BRAFV600E-expressing melanoma. (A) C-C chemokine ligand 
2 (CCL2) produced by BRAFV600E-expressing melanoma promotes the accumulation of C-C chemokine receptor type 2 (CCR2)+ regulatory T cells (Tregs), 
limiting the expansion of antitumor CD8+ T cells. (B) BRAF inhibitors decreased the amount of CCL2 produced by BRAFV600E-expressing melanomas, in 
turn reducing the local abundance of CCR2+ Tregs and increasing the recruitment and/or expansion of antitumor CD8+ T cells. Such an expansion of 
antitumor CD8+ T cells can be further enhanced by the administration of agonistic anti-CD137 monoclonal antibodies.
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