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Abstract Plant diversity is considered one factor structur-
ing soil fungal communities because the diversity of
compounds in leaf litter might determine the extent of
resource heterogeneity for decomposer communities. Low-
land tropical rain forests have the highest plant diversity per
area of any biome. Since fungi are responsible for much of
the decomposition occurring in forest soils, understanding
the factors that structure fungi in tropical forests may
provide valuable insight for predicting changes in global
carbon and nitrogen fluxes. To test the role of plant
diversity in shaping fungal community structure and
function, soil (0–20 cm) and leaf litter (O horizons) were
collected from six established 1-ha forest census plots
across a natural plant diversity gradient on the Isthmus of
Panama. We used 454 pyrosequencing and phospholipid

fatty acid analysis to evaluate correlations between micro-
bial community composition, precipitation, soil nutrients,
and plant richness. In soil, the number of fungal taxa
increased significantly with increasing mean annual precip-
itation, but not with plant richness. There were no
correlations between fungal communities in leaf litter and
plant diversity or precipitation, and fungal communities
were found to be compositionally distinct between soil and
leaf litter. To directly test for effects of plant species
richness on fungal diversity and function, we experimen-
tally re-created litter diversity gradients in litter bags with 1,
25, and 50 species of litter. After 6 months, we found a
significant effect of litter diversity on decomposition rate
between one and 25 species of leaf litter. However, fungal
richness did not track plant species richness. Although
studies in a broader range of sites is required, these results
suggest that precipitation may be a more important factor
than plant diversity or soil nutrient status in structuring
tropical forest soil fungal communities.

Introduction

Soil fungi are integral components to nutrient cycling in forest
ecosystems [1], but little is known about the ecological factors
that structure their diversity and distribution in tropical rain
forests. While several recent studies in tropical rain forests
have used DNA sequencing technologies to assess microbial
diversity [2–5], our knowledge of tropical soil fungi is mostly
limited to sporocarp surveys and community profiling data
[6–8]. Most molecular-based investigations of soil fungi have
been performed in temperate and boreal systems (e.g.,
[9–11]), but the unique attributes of tropical ecosystems mean
it might not be possible to generalize findings from higher
latitudes to soil microbes in tropical forests [12].
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Lowland tropical rain forests often contain hundreds of
tree species per hectare [13, 14], which may have important
implications for soil fungi involved in litter decomposition.
Leaf structure, chemistry, and elemental stoichiometry vary
markedly across plant taxa, and the quantity and quality of
plant-derived organic inputs can influence decomposition
rates [15–18]. Fungi degrade a large portion of the plant-
derived compounds [19], so the diverse mixtures of leaf
litter on the forest floor of tropical rain forests may enable
the coexistence of diverse fungal taxa via resource
partitioning [20, 21]. Spatial differentiation and resource
partitioning has been demonstrated for several groups of
fungi [22–24], indicating that resource heterogeneity may
be important for supporting diverse fungal assemblages.
Nonetheless, field and laboratory experiments evaluating
links between plant diversity, fungal diversity, and ecosys-
tem function have yielded mixed results [1, 25, 26].
Furthermore, the few studies that have been performed in
tropical ecosystems have been conducted in experimental,
montane, or agricultural systems (e.g., [27–29]). Therefore,
the applicability of those results to diverse lowland rain
forest is unknown.

In this study, we evaluated the effects of plant litter
diversity on fungal diversity and function using a series of
plots in tropical rain forest across the Isthmus of Panama
that varied in tree diversity [30]. Findings from the natural
diversity gradient were integrated with experimental manip-
ulations of plant diversity in a litter decomposition
experiment. We tested the hypotheses that (1) fungal
diversity and microbial biomass would be positively
correlated with natural gradients in plant diversity and (2)
fungal diversity would be correlated with experimental
manipulations of leaf litter diversity, mimicking patterns
found across the natural plant diversity gradient.

Methods

Field Work

To assess the effects of natural variations in plant diversity,
we examined soil fungal diversity and microbial biomass in
pre-existing plots in Panama that contained between 63 and
165 tree species ha−1. All plots were 1 ha in size and
characterized as old growth, primary forest [30]. These
plots also varied in mean annual precipitation and several
soil properties (Table 1), so all quantified biotic and abiotic
factors were included in the final analyses. From each plot,
15 composite soil cores (0–20 cm) were collected from
random locations within each plot. At the same point of soil
core collection, the leaf litter (O horizons) from the forest
floor was also collected, as we expected that fungi in
freshly fallen and partially decomposed litter might respond

differently to plant diversity and precipitation compared to
fungi in mineral soil. Following field collection, samples
were immediately frozen at −20 °C. In addition to microbial
analyses (see following section), soils were analyzed for pH
in a 1:2 water ratio using a glass electrode and Mehlich P,
Ca, K, Mg, Al, Fe, Mn, and Zn using inductively coupled
plasma atomic emission spectroscopy [31]. To generate C/N
ratios, total C and N were analyzed using dry combustion.

To directly test for effects of plant species richness on
fungal diversity and function, we experimentally re-created
litter diversity gradients in 2-mm nylon screen litter bags
(20×20 cm) with 1, 25, and 50 species of plant leaf litter.
Leaf litter was collected in traps on Barro Colorado Island
over a period of 6 months (emptied every week), air-dried,
and identified to species when possible. Plant species were
randomly selected from a pool of 72 species (supplemen-
tary docs) and placed in three separate combinations for
each treatment. For single species treatments, we selected
Doliocarpus sp. (Dilleniaceae), Trichilia tuberculata
(Meliaceae), and Alseis blackiana (Rubiaceae) because
these species were abundant in litter traps and are well
represented in a 50-ha permanent forest research plot that
has been intensely studied since 1980 [32]. Leaf litter was
manually broken into pieces for every treatment in order to
fit all species combinations into the litter bags. Litter bags
were filled with 15 g of leaf litter for each treatment and
placed on the mineral soil surface in three sites in the
primary rain forest on Barro Colorado Island outside of the
50-ha research plot. All three of the litter decomposition
sites were of the same soil type (AVA soil; Typic Eutrudox
[33]) and had similar mean annual precipitation. After
6 months, bags were collected and weighed to determine
the effect of plant litter diversity on mass loss rates.

Microbial Analyses

DNAwas extracted from 0.25 g sub-samples of the composite
soil and litter samples in each plot and from each litter bag
using the Powersoil DNA extraction kit (MoBio, Carlsbad, CA,
USA). Three DNA extractions from each sample were pooled
to obtain a better representation of the microbial community
[34]. General fungal primers targeting the fungal 18S rRNA
gene [35] were modified and successfully implemented to
amplify the general fungal community using a barcoded
pyrosequencing procedure described previously [36–39]. The
forward primer consisted of the 454 Life Sciences Primer B
attached to the SSU817f primer with an “AG” linker sequence
(GCCTTGCCAGCCCGCTCAGAGTTAGCATGGAA
TAATRR-AATAGGA). The reverse primer contained the 454
Life Sciences Primer A, a unique 12 base-code barcode for
each PCR product, with an “AC” sequence linking it to the
SSU1196r primer (GCCTCCCTCGCGCCATCAG-12 bp bar-
code ACTCTGGACCTGGTGAGTTTCC). The 12-bp bar-
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code allowed us to pool together all of the amplicons for
sequencing with sequences ultimately assigned to individual
samples. Amplifications were done according to a previously
described protocol [36] using 0.25 μl of each primer
(30 mM), 3 μl of DNA template, and 22.5 μl Platinum
PCR SuperMix (Invitrogen, Carlsbad, CA, USA). Fungal
amplicons were sequenced on a Roche 454 Gene Sequencer
at the Environmental Genomics Core Facility at the University
of South Carolina (Columbia, SC, USA) running the titanium
chemistry.

Following pyrosequencing, sequences were processed
through the Quantitative Insights Into Microbial Ecology
(QIIME) pipeline [40]. In QIIME, sequences were quality
checked, aligned, and grouped into phylotypes at a 97%
sequence similarity cutoff. While 97% sequence similarity
is an arbitrary delineation of fungal taxa, other ecological
studies use this and similar cutoff values (e.g., [2, 11, 41]).
One phylotype representative from each group was chosen,
and a phylogenetic tree was constructed with the FastTree
algorithm [42]. The closest taxonomic identity for each
representative phylotype was determined by BLAST
comparison against sequences contained within the SILVA
database [43] and GenBank.

Microbial biomass was measured on plot samples of soil
and leaf litter using phospholipid fatty acid analysis
(PLFA). PLFA was not performed on litter bag samples,
as there was insufficient material. For PLFA analyses, two
samples (2 g each) of both organic and mineral soil were
lyophilized from each plot [44]. Lipids were extracted from
each sample with a single-phase, phosphate-buffered,
CHCl3–CH3OH solvent and separated from neutral and
glycolipid fractions by silicic acid column chromatography.
Phospholipids were transesterified to fatty acid methyl
esters and quantified by mass spectrometry [45, 46] using
an Agilent 6980N gas chromatography system (Agilent

Technologies). Total PLFAs were used as an index of living
microbial biomass. The mean for both PLFA extractions
was used in the calculations for each sample.

Statistical Analyses

To determine the relationships between fungal community
composition (fungal phylotypes and total biomass), plant
species richness, soil chemistry, and mean annual precipi-
tation across the 1-ha plots, Spearman rank correlation
analyses were performed using SPSS (SPSS v. 17.0 for
Mac, Chicago, IL, USA). Compositional differences in
fungal communities across soil and litter horizons were
analyzed by analysis of similarity (ANOSIM). Data were
rarified to 1,000 sequences prior to downstream analyses.
Proportional counts of rarified phylotypes were then
square-root transformed minimizing the influence of rare
taxa. Nonmetric multidimensional scaling plots were used
to visualize similarity in fungal community composition
across plots (Primer v6).

For the litter bag decomposition experiment, a general
linear model was used to evaluate the effects of litter
diversity on fungal richness. Spearman rank correlation
analyses were used to test for relationships between fungal
richness, plant litter richness, and decomposition rate (k).

Results

Plot Analyses

Four hundred fifty-four pyrosequencing yielded a total of
57,560 sequences with 9,733 phylotypes and an average of
1,598 sequences per sample. Seventeen percent were non-
fungal eukaryotes and 0.4% could not be identified to

Table 1 Data for plots used in
microbial analyses that naturally
varied in plant diversity and
other biotic and abiotic factors
(plant data from Pyke et al. [30])

All data for plant communities
were derived from woody spe-
cies ≥10.0 cm dbh. Soils
analyses were derived from
mineral soil cores (0–20 cm)

Plot ID

7 B3 B1 B6 9 32

Annual ppt (mm) 2,438 2,579 2,589 2,589 2,889 3,293

# Species 93 99 84 76 107 165

Fisher’s alpha 39.21 41.59 31.41 23.1 41.6 81.35

Shannon (H′) 3.96 3.97 3.53 2.66 3.91 4.52

pH 4.5 6.4 6.3 5.6 4.9 5.8

P (mg Pkg−1) 2.1 1.5 3.6 7.0 1.5 1.3

Al (mg Al kg−1) 745.5 791.7 1,302.8 1,396.3 886.5 968.4

Total bases (Ca+K+Mg) 387.9 3,285.7 2,111.2 1,046.5 2,297.0 2,057.9

NH4 (mg Nkg−1) 0.3 1.7 2.4 2.3 4.8 2.5

NO3 (mg Nkg−1) 1.8 2.9 2.3 2.5 1.0 1.6

C/N ratio 6.7 8.0 8.5 8.9 5.1 10.4
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domain. Prior to statistical analyses, non-fungal and
unclassifiable sequences were removed, leaving an average

of 945 sequences per sample and 367 unique phylotypes per
sample (soil and litter samples were counted separately).

Table 2 Results of Spearman
ranked correlations for fungal
taxa and microbial biomass in
litter, mineral soil, and both
horizons combined

N=12; one soil and one litter
sample were analyzed per plot

*p<0.05; **p<0.01

Plant richness Precipitation
Spearman’s ρ Spearman’s ρ

Total fungal phylotypes (litter) 0.40 0.10

Total fungal phylotypes (soil) 0.39 0.75*

Total fungal phylotypes (litter+soil) 0.41 0.57*

Total microbial biomass (litter+soil) 0.38 0.10

Litter Total fungal orders 0.30 −0.20
Total fungal families −0.30 0.00

Total microbial biomass 0.31 0.09

Soil Total fungal orders 0.52 0.74*

Total fungal families 0.37 0.90**

Total microbial biomass 0.54 0.99**

a

b

Figure 1 Nonmetric multidi-
mensional scaling plots show-
ing compositional separation of
fungal communities across litter
(O horizons; N=5) and mineral
soil (N=6) horizons for plots (a)
and all samples including litter
bags (b) (N=36)
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Across plots, the total number of fungal phylotypes (soil+
litter) was not significantly correlated with plant species
richness but was significantly correlated with mean annual
precipitation (Table 2). When analyzed separately, soil and
litter fungi responded differently to precipitation; total soil
fungal phylotypes increased significantly with increasing
mean annual precipitation, whereas precipitation had no
significant effect on litter fungi (Table 2).

When separated out by soil vs. litter horizons, ANOSIM
showed that fungal communities were distinct across horizons
(Fig. 1; R=0.96, p<0.001). In soils, there were significantly
more fungal sequences from the Chytridiomycota (Fig. 2; F
(1, 10)=16.1; p=0.003) and Glomeromycota (F (1, 10)=15.8;
p=0.003). By contrast, litter samples contained significantly
more Ascomycota (F (1, 10)=9.9; p=0.01). Total Basidiomy-
cota sequences did not differ significantly among soils
(F (1, 10)=1.5; p=0.2).

Total microbial biomass (per gram of dry matter) showed
similar patterns across horizons as pyrosequencing results:
Microbial biomass was significantly correlated with mean
annual precipitation in soil samples (ρ=0.81, p<0.03), but
not with plant richness or stem number (Table 2). Microbial
biomass was not significantly correlated with any of the
plant metrics or precipitation in litter or when data for soil
and litter samples were combined. In soils, the mole
percentage of the 16:1ω5c PLFA, an indicator of arbuscular
mycorrhizal biomass [47, 48], was significantly correlated
with mean annual precipitation (ρ=0.81, p=0.03) and tree
species richness (ρ=0.78; p=0.04). The mole percentage of
fungal biomass in litter was significantly correlated with the
number of tree stems (ρ=0.77; p=0.04), but not with any
other plot metric. Total microbial biomass per gram of dry
matter was significantly higher in litter compared to soil

samples (F (1, 10)=46.9, p<0.001), and the mole percent-
age of fungal PLFAs was also significantly higher in litter
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versus soil samples (F (1, 10)=29.6, p<0.001), resulting in
higher fungal to bacterial ratios in litter (F (1, 10)=23.0, p<
0.001).

Soil elemental analyses (Table 1) revealed that in soil
samples, total microbial biomass was positively correlated
with total inorganic N (ρ=0.77, p=0.04) but none of the
other elemental data. NH4 was positively correlated with
total fungal phylotypes (ρ=0.77, p=0.02) and total fungal
families (ρ=0.83, p=0.02). C/N ratios were positively
correlated with total fungal orders (ρ=0.94, p=0.002).

Litter Bag Experiment

After 6 months, decomposition of leaf litter in single
species bags was significantly slower than decomposition
in 25 (p=0.03) and 50 species treatments (Fig. 3a; p=0.02).
However, there was no difference in decomposition rates
between 25 and 50 species treatments (p=0.96). There was
also no difference in decomposition rates among single
species litter bags containing only Doliocarpus sp., Trichi-
lia, or Alseis (Fig. 3b).

Fungal richness was not significantly correlated with
plant litter diversity. In single species treatments, fungal
communities decomposing Doliocarpus sp. litter were
significantly clustered (Fig. 4; R=0.94), but there were no
detectable patterns in fungal communities for other single
species litter bags.

Discussion

We found little support for the hypothesis that increasing the
number of leaf litter species decomposing on the forest floor
will result in greater diversity and abundance of fungal

communities. There was also no relationship among plant
richness and fungal richness in the 1-ha forest plots, indicating
that relationships among fungal diversity and the plant species
in these forests are complex with no clear pattern of
correlation. Rather, our results from 454 pyrosequencing
showed that soil fungal richness was positively correlatedwith
increasing precipitation, but not with increasing tree species
richness or soil nutrients. However, since we only analyzed
samples from six 1-ha plots, results should be interpreted with
caution, as more intensive sampling across the precipitation
gradient may reveal different correlates of soil fungal
communities.

The fact that there was not a clear relationship between
fungal diversity and plant diversity is counter to expect-
ations, particularly in the litter decomposition experiment.
Based on our results, the observed increase in decomposi-
tion rates from one to 25 litter species in the litter bag
experiment did not appear to result from parallel increases
in fungal richness. Numerous studies have reported additive
and synergistic effects of litter mixing in decomposition
experiments [1, 49], and microbial community composition
has been suggested as a plausible mechanism for these
patterns [25, 50]. However, relationships between plant
diversity, microbial diversity, and ecosystem function have
been highly variable across studies [51, 52], and we only
found significant relationships between litter diversity and
decomposition at the low end of the plant litter richness
continuum. Other experiments have found similar results, in
which a decelerating relationship between decomposition
rates and increasing microbial or plant litter species was
observed [53–55]. This type of relationship between
diversity and function implies some level of functional
overlap among decomposer microbes in their breakdown of
plant materials [53]. More detailed chemical analyses of the

Figure 4 Non-metric multidi-
mensional scaling plot of fungal
communities in single species
litter bag treatments (N=9).
There was no overall difference
in fungal communities between
the three litter types; however,
fungal communities in bags with
Doliocarpus litter were more
similar to each other (ANOSIM
p<0.05) when samples were
coded as Doliocarpus vs.
non-Doliocarpus
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plant litter we used in the decomposition experiment may
reveal that the plant species were more similar chemically
than would be expected taxonomically [56]. Focusing on
the litter chemistry, rather than the plant species composi-
tion per se, should be a priority for future studies.

Our results showing that fungal richness increases at the
high end of the precipitation gradient are different from a
recent manipulative rainfall study in California [57] and
another experimental study in an old-field ecosystem [58].
In the California study, fungal diversity was the highest
under low rainfall treatments [57], and in the old-field
experiment, fungal abundance was not affected by precip-
itation; however, fungal community composition was
altered, although the responses were lineage-specific [58].
The manipulative nature of these experiments may account
for the differences we observed across the gradient on the
Isthmus of Panama, as the experimental studies would
capture short-term dynamics, whereas climatic gradients
result from the accumulation patterns and processes
integrated over centuries or longer. An alternative and
more likely explanation for the disparate patterns is that it
may not be possible to generalize the findings from coastal
grasslands and old-field ecosystems to tropical rain forests,
particularly since mean annual precipitation ranges are
much higher in Panama than in coastal grasslands and old-
field communities. There may also be annual variations and
seasonal patterns that were not accounted for in our single
time point collections [59].

Across all samples, we found that fungal communities
were distinct in litter versus soil, indicating vertical
segregation of microbial communities across these hori-
zons. Organic horizons contain greater quantities of labile
sugars and higher C/N ratios than deeper soil horizons [19,
60], which may facilitate the proliferation of decomposer
taxa that are more competitive for these C substrates. Other
studies in boreal and temperate ecosystems have detected
vertical segregation of fungi [11, 23, 61] and differences in
microbial biomass [62], suggesting broad generalizability
of this pattern. Whether or not the taxa found in litter vs.
deeper horizons are functionally similar across ecosystems
remains to be tested. In addition to distinctive community
composition, fungi in litter versus mineral soil horizons
showed different relationships to plant richness and
precipitation. It is difficult to draw strong inferences from
the data, as many of these fungal groups have not been
extensively studied, particularly in the tropics. Nonetheless,
this study highlights the potential importance of precipita-
tion as an abiotic factor structuring fungal communities and
is one of the first studies to evaluate these relationships in
lowland tropical rain forests.
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