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Abstract

This review considers current advances in tools to investigate the functional biology of Giardia, 

it’s coding and non-coding genes, features and cellular and molecular biology. We consider major 

gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and 

in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and 

genomic elements, as well as detailed exploration of coding genes through inferred homology to 

model organisms, have provided significant, primary level insight. Improved methods to model the 

three-dimensional structure of proteins offer new insights into their function, and binding 

interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to 

prioritise proteins for further study and experimentation. These approaches can be supplemented 

by the growing and highly accessible arsenal of systems-based methods now being applied to 

Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating 

advanced tools for detection of real-time transcription, evaluation of chromatin states and direct 

measurement of macromolecular complexes. Methods to directly interrogate and perturb gene 

function have made major leaps in recent years, with CRISPr-interference now available. These 

approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo 

imaging, are set to revolutionize the field and herald an exciting time during which the field may 

finally realise Giardia’s long proposed potential as a model parasite and eukaryote.

1. Introduction

Undertaking comprehensive functional studies has remained a persistent obstacle in 

parasitological research, outside of a small number of apicomplexans, such as species of 

Plasmodium and Toxoplasma gondii (Limenitakis and Soldati-Favre, 2011; Meissner et al., 

2007). Primary obstacles to genetically tractable parasites include an inability to readily 

culture them outside of a host, a lack of knowledge of the genetic and regulatory systems of 

*Corresponding author: jex.a@wehi.edu.au.
†Equal contribution.

HHS Public Access
Author manuscript
Adv Parasitol. Author manuscript; available in PMC 2021 February 12.

Published in final edited form as:
Adv Parasitol. 2020 ; 107: 97–137. doi:10.1016/bs.apar.2019.12.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parasites or the unavailability of tools to apply to them. Giardia intestinalis has been in vitro 

culturable for several decades in complex media, principally Keister’s modified TYI-S-33 

(Davids and Gillin, 2011) and its regulatory genetics and gene composition have been 

explored through the publication of reference genomes (Franzen et al., 2009; Jerlstrom-

Hultqvist et al., 2010; Morrison et al., 2007) and other “omics” driven research over the past 

decade (e.g., Ansell et al., 2015a, 2017; Emery et al., 2018; Franzén et al., 2013; Ma’ayeh et 

al., 2018; Spycher et al., 2013), albeit with much still to be done. The complex binucleate 

and multiploidal (2N, 4N and 8N at various stages of the life cycle; Bernander et al., 2001) 

cellular biology of Giardia has proven a persistent obstacle to functional research, and for 

much of its post-genomic period efforts to develop functional tools for Giardia have met 

with limited success (Luján and Svärd, 2011). Because of its importance as a parasite, its 

scalable culturability in cell-free media, and its deep-branching position within the 

eukaryotic tree of life (Morrison et al., 2007), Giardia has long been proposed as an 

intriguing and potentially impactful model organism (Luján and Svärd, 2011), but its 

recalcitrance to genetic manipulation has proven a persistent road-block to realising this 

potential.

Here, we review advances in functional research of Giardia, drawing on recent publications 

in the field, as well as novel advances in other fields that may be applicable for Giardia. Our 

hope is that this review will act not only as a summary of the progress in research in this 

field over the last few years, but also as stimulus for renewed thinking on functional research 

in Giardia and on the potential to exploit these technologies for novel anti-giardial therapies, 

but to harness this fascinating protist as a model for eukaryotic biology.

2. Advances in in vitro cultivation

The inability to culture parasites in a laboratory setting, either in vitro or in vivo, presents 

the primary obstacle to advancing functional research. Fortunately, this obstacle has been 

overcome for Giardia for several decades. In vitro cultivation of G. intestinalis is readily 

undertaken in TYI-S-33 media (Davids and Gillin, 2011), with or without nitrogen-sparging 

for culture-adapted strains isolates. Giardia intestinalis trophozoites (at least of the 

assemblage A) can be triggered into in vitro cyst formation in encystation media, which is 

typically modified “high-bile” version of TYI-S-33 (Davids and Gillin, 2011).

Although G. intestinalis is a micro-aerophile and TYI-S-33 can be made anaerobic through 

nitrogen-sparging (i.e., gassing) or, in small volumes, using anaerobic pouches in a sealed 

container (Ansell et al., 2016), it is common practice to simply make media up in an aerobic 

environment, inoculate the culture with Giardia trophozoites and then seal the culture flask 

with a non-vented lid (Davids and Gillin, 2011). In this non-sparged approach, Giardia 
trophozoites may show a 24–48h lag-phase before exponential growth. Ansell et al. (2015a) 

showed that although trophozoites grow in the early 24–48h period, they transcribe many 

regulators of the oxidative stress response even up to 60h after inoculation and appear 

largely reliant on arginine metabolism for ATP. After ~60h in culture, these trophozoites 

dramatically shift their transcriptional behaviour, down-regulating their stress responses and 

up-regulating oxygen-sensitive glycolytic ATP production. Companion experiments in fully 

anaerobic media are needed, but these data suggest that culture conditions may have a 
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significant effect on the cellular behaviour of this oxygen-sensitive parasite and are worth 

considering in functional studies.

2.1 Systems for studies of Giardia-host cell interactions in vitro and in vivo

Giardia infects the upper small intestine and primarily interacts with intestinal epithelial 

cells (IECs) during host-cell adherence via its adhesive disc. However, it is difficult to grow 

primary IECs, and this has led to the use of intestinal cell lines as models in most in vitro 

studies of the small intestine (Dosh et al., 2018). Several in vitro models of host parasite-

interactions during giardiasis have been developed using IECs in co-incubations with axenic 

Giardia parasites. The best described and most used cell line in studies of IECs is Caco-2, an 

adenocarcinomal colonic epithelial cell line that is restricted in propagation by cell-to-cell 

contact and can be induced to express small intestinal features (such as apical to basolateral 

polarization, formation of tight junctions and the appearance of microvilli) by growth post-

confluence for around 20 days (Sambuy et al., 2005). Proteomic analyses have shown 

similar expression profiles between Caco-2 cells and cells derived from scrapings of the 

human intestinal epithelium (Lenaerts et al., 2007).

The Caco-2 cell line in its differentiated state is also the most used IEC in studies of Giardia-

IEC interactions in vitro (Fisher et al., 2013; Kraft et al., 2017; Ma’ayeh et al., 2017, 2018; 

Roxstrom-Lindquist et al., 2005). The first studies were published in the early 1990s by 

Favennec et al. (1990, 1991) and mainly studied attachment and drug treatment, something 

that has been followed up in several other studies (Muller et al., 2006). The role of nitric 

oxide, studies of the intestinal barrier and several gene expression studies have been 

performed later (Eckmann et al., 2000; Ma’ayeh et al., 2018; Teoh et al., 2000). The human 

HT-29 cell line has also been used in Giardia-IEC interaction studies. It is more 

heterogeneous than the Caco-2 cell line, consisting mainly of un-differentiated cells and a 

smaller mucus producing subpopulation (3–5%) (Huet et al., 1987; Maoret et al., 1989). It 

can be differentiated into an enterocyte-like cell by glucose starvation, and several mucus-

secreting clones have been established (Chastre et al., 1985; Lievin-Le Moal, 2013).

Other cell-lines for Giardia interactions include the HCT-8 cell line, which is derived from a 

human ileocecal adenocarcinoma and has been used in at least three studies of Giardia-host 

cell interactions (Koh et al., 2013; Panaro et al., 2007). The rat intestinal epithelial cells, 

IEC-6 have been used in several Giardia interaction studies and continuous co-culture, with 

purified giardial proteins and analysed from these interactions (Cabrera-Licona et al., 2017; 

Ma’ayeh and Brook-Carter, 2012; McCabe et al., 1991; Ortega-Pierres et al., 2018). A few 

studies of Giardia-host cell interactions have used the SCBN cell line, as it was initially 

described as a “small intestine epithelial cell line of human origin”, but later studies showed 

that this cell line is of canine origin (Buret and Lin, 2008). However, the SCBN cell line 

does show different responses to Giardia parasites from different assemblages, and Giardia 
parasites are capable of both tight junction alteration and apoptotic induction and resistance 

in SCBN cells (Buret et al., 2002; Scott et al., 2002; Teoh et al., 2000).

The breadth of datasets from in vitro IEC-Giardia interaction models has highlighted several 

important processes during early pathogenesis (Einarsson et al., 2016c). Identification of key 

molecular mechanisms and pathways indicate multiple levels of crosstalk in the context of 
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virulence biology in the parasite, and immunology of the host. The in vitro data the 

community has generated to date, using simple in vitro systems, can lead to directed 

experiments in more complex human models like human small intestinal enteroids (Chen et 

al., 2017; Zachos et al., 2016). It should also be possible to use human biopsies from 

giardiasis patients in studies of specific factors and mechanisms.

In vivo model systems described below will also be important to verify the role of factors 

identified in vitro and to identify new factors and mechanism important during Giardia 
infections. Giardia muris has been used as a model for understanding the pathogenesis and 

immunological responses of the host during establishment of infection, beginning in the 

1960s (Friend, 1966). The availability of knock-out mice and other host-related resources 

makes G. muris a powerful alternative model to study the induction of pathogenesis during 

Giardia infections, which cannot be accomplished by studying natural human infections or 

using human cell lines (Fink and Singer, 2017). The life cycle and infective process of G. 
muris is a close reflection of the infection by G. intestinalis (Dann et al., 2018). Several 

major findings of Giardia biology (flagellar and disc function and cellular differentiation) 

(Holberton, 1973; Schaefer et al., 1984) and immunity (IgA and Th17) responses, defensins 

and post-infectious colitis (Dann et al., 2018; Dreesen et al., 2014; Langford et al., 2002; 

Manko et al., 2017)have been pioneered in G. muris, and later been shown to be transferable 

to human G. intestinalis infections (Saghaug et al., 2016). Unfortunately, the research on G. 
muris has been constrained by the absolute lack of genome information and gene expression 

data, however, with a draft genome of G. muris is now available in public databases (NCBI 

and GiardiaDB), this should stimulate wider uptake of G. muris as an in vivo model.

3. Major knowledge gaps in functional biology in Giardia

Draft genomes have been available for Giardia intestinalis assemblage A (WB: Morrison et 

al., 2007), B (GS: Franzen et al., 2009) and E (P15: Jerlstrom-Hultqvist et al., 2010) for a 

number of years. These assemblies have provided the basis for predicting Giardia’s ~5500 

coding gene models. Recent efforts (see current release in GiardiaDB) to curate these 

models have significantly improved their functional annotation; yet, ~60% of these are 

defined as “conserved” or “hypothetical” proteins. Additional work on completing the G. 
intestinalis genomes and refining the annotation of these coding genes (including through 

transcriptomic and proteomic support) are needed.

Regulatory regions of the Giardia genome are even less defined. Among coding models, 

neither promoters nor 5′ or 3′ untranslated regions (UTRs) are well characterized. To date, 

studies indicate that most coding G. intestinalis genes have little to no 5′ UTR and a greatly 

reduced 3′ UTR (Adam, 2000; Morrison et al., 2007), but this is not confirmed through 

broad-scale direct transcript sequencing (e.g., using PacBIO or Nanopore technology). There 

are few annotated transcription factors in the G. intestinalis gene set (Franzen et al., 2009; 

Jerlstrom-Hultqvist et al., 2010; Morrison et al., 2007), and their binding sites and the genes 

they regulate are largely unknown. To our knowledge, there has been no comprehensive 

study of enhancer regions in Giardia. Lastly, although Giardia shows significant variation in 

karyotype and chromatin condensation between nuclei (Tůmová et al., 2007) and during the 

cell-cycle (Tůmová et al., 2015) and histone methyltransferases appear to be important in 
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encystation (Carranza et al., 2016; Salusso et al., 2017; Sonda et al., 2010), antigenic 

variation (Carranza et al., 2016) and drug resistance (Ansell et al., 2015b), to date there has 

been no extensive study of chromatin level regulation in this parasite.

Post-transcriptional and post-translational regulation plays an important but largely 

unexplored role in Giardia biology. Giardia intestinalis was one of the first eukaryotes in 

which DICER was structurally resolved (MacRae et al., 2006). Consistent with this, Giardia 
has functional RNA interference systems (Prucca et al., 2008), but these have, as yet, been 

relatively unexplored. Small RNA sequencing has been undertaken in G. intestinalis WB 

trophozoites at confluence in TYI-S-33 media (Chen et al., 2009). This work characterised a 

large number of potential small-interfering and microRNAs, but did not define the genes 

regulated by them. To date, the only confirmed role for RNAi systems in Giardia is in 

regulation of variant-surface protein expression (Gargantini et al., 2016; Prucca et al., 2008; 

Saraiya et al., 2014). Studies of other post-transcriptional and post-translation regulatory 

systems are limited. Williams and Elmendorf (2011) showed evidence for Pumilio-domain 

(Puf) proteins in Giardia, which are RNA-binding proteins that play important post-

transcriptional regulatory roles in a variety of eukaryotes (Gerber et al., 2004; Spassov and 

Jurecic, 2003). These have not been further explored.

Giardia has a reduced core kinome (Manning et al., 2011) as well as chromatin modifying 

enzymes including acetyltransferases, deacetyltransferase and methyltransferases (Iyer et al., 

2008). In Giardia protein post-translational modifications of serine, threonine and tyrosine 

phosphorylationhas been demonstrated by Manning et al. (2011), ubiquitin by Niño et al. 

(2013) and SUMOylation by Vranych et al. (2014). Emery et al. (2018) provided evidence 

for widespread post-translational modifications (e.g., methylation) in metronidazole 

resistance, and Carranza et al. (2016) for roles of acetyllysine and methyllysine histone 

marks in Giardia, but broad-scale characterization of these modifications, particularly at site-

specific levels, has not been undertaken.

4. Computational and “omic” approaches to functional biology research 

in Giardia

It is clear that the next major breakthroughs in our understanding of the molecular biology of 

Giardia must make full use of advances in functional research. Conceptually, these advances 

can be categorized into three major and complimentary themes: (i) improved in silico 

inference, (ii) direct empirical assessment of function through “omics”, labelling and other 

approaches and (iii) direct empirical assessment of function through targeted genetic 

manipulation.

4.1 In silico inference of function

Given its history as a promising but ultimately genetically intractable (or at best challenging) 

organism, much of what we currently understand about Giardia’s functional biology is based 

on in silico inference through comparative analyses with model organisms and other 

parasitic protists. In large part, this has restricted our understanding to the function of coding 

genes and is based primarily on BLAST homology with existing curated protein databases, 
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including the Kyoto Encyclopaedia of Genes and Genomes (KEGG: Kanehisa and Goto, 

2000) and Uniprot (Consortium, 2014). However, although Giardia’s deep-branching origins 

in eukaryotes (Morrison et al., 2007) makes it an intriguing organism to study, the 

evolutionary distance between this parasite and other, more well characterized, eukaryotes is 

severely problematic. As noted above, nearly two-thirds of G. intestinalis coding genes lack 

an identifiable homologue in a genetically tractable organism.

Protein-domain modelling can assist in extracting additional functional information from 

these coding genes. Interproscan is the most well-known and widely used of these 

approaches (Jones et al., 2014). This method identifies conserved features of known protein 

domains from across eukaryotic and prokaryotic life, stored in a number of curated protein 

family databases, including InterPro (Mitchell et al., 2018), PANTHER (Mi et al., 2016) and 

pfam (El-Gebali et al., 2018). These conserved domain data can be used in combination to 

infer each protein’s involvement in common biological functions and provided further 

functional context using the Gene Ontology Hierarchy (Consortium, 2016) or PANTHER 

(Mi et al., 2016). Hidden Markov Modelling (e.g., using HMMER: Potter et al., 2018) and 

other weighted matrix search strategies (e.g., Position Specific Information (PSI)-BLAST: 

Altschul et al., 1997) have added value for identifying homologous sequences for protein 

families or domains not covered in the InterProScan analysis. Whether searching curated or 

custom databases, in essence, these approaches rely on identifying proteins features that are 

widely conserved across evolutionary time. For the most part, these features are so 

conserved because of their importance in forming and maintaining the three-dimensional 

shape of the protein domain, which is crucial to its overall function.

Protein structure, which largely imparts function, generally evolves more slowly than protein 

sequence and can be determined by a small number of essential amino acid residues not 

readily identifiable through comparative sequence alignments. Noting this, protein structural 

homology can be used as a powerful, in silico method to infer protein function, even across 

large evolutionary distances. These approaches rely on modelling protein structure from the 

underlying sequence and assessing the similarity of that model in three-dimensional space to 

solved structures of known proteins, for example, stored in curated repositories, such as the 

Protein Databank (Berman et al., 2000). Many programs are available for protein structural 

modelling and inference of function. These programs rely on two major approaches 

including (1) ab initio prediction based on amino acid sequence [e.g., ROBETTA (Kim et 

al., 2004) and EVfold (Sheridan et al., 2015)] and (2) a guided (Bayesian) approach 

threading the protein sequence across known solved structures based on underlying 

sequence similarity [e.g., SPARKS-X (Yang et al., 2011)] and considering the amino acid 

sequence. Programs such as Swiss Model (Waterhouse et al., 2018), LOMETS (Wu and 

Zhang, 2007) and MODELLER (Eswar et al., 2007) support inference of protein homology 

based on comparisons between the predicted protein structure and solved structures for 

known proteins in curated databases. Software packages including HHpred (Söding et al., 

2005), RaptorX (Källberg et al., 2012) and Phyre2 (Kelley et al., 2015) combine threading 

and homology-based inference in one package. Finally, complex suites of prediction 

methods, most notably packaged together in the I-Tasser suite (Iterative-threading assembly 

refinement: Roy et al., 2010), combine ab initio prediction with iterative refinement through 

guided threading methods, followed finally by homology based inference and predicted 
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functional annotation. Protein models generated from these predictions can be rendered and 

visualised in a variety of software packages, including Jmol (Hanson, 2010) and Chimera 

(Yang et al., 2012).

Accuracy and computational time varies dramatically among these approaches, with 

complex methods, not surprisingly, being the most computationally intensive and robust. 

The Critical Assessment of Methods of Protein Structural Prediction (CASP: Moult, 2005) 

provides an independent benchmarking of these methods, in which programmers are given 

24 months (the time between CASP rounds) to provide their best prediction of the structure 

of ~50–100 unsolved proteins while structural biologists attempt to solve the structure using 

empirical approaches (e.g., X-RAY crystallography, NMR and Cryo-EM). Programs are 

scored on a variety of criteria, including the accuracy of the protein backbone, of 

comparative alignments among the predicted models and similar solved structures, and of ab 

initio modelling of protein subdomains present in the query protein and absent from related 

solved structures. Since 2006, I-Tasser has been rated the, or among the, best performing 

packages for protein structural homology prediction (Roy et al., 2010). The package is 

limited to proteins under 1500 amino acids and typically performs best for proteins under 

750 amino acids. Larger proteins (up to ~3500 amino acids) can be modelled using Phyre2 

(Kelley et al., 2015), but only for components of the protein with close homology to known 

structures (i.e., no ab initio folding).

In an effort to expand on the functional annotation of G. intestinalis WB genes, Ansell et al. 

(2019) undertook genome-wide protein structural homology prediction for most conserved 

and hypothetical proteins encoded in the G. intestinalis WB reference genome, as well as a 

subset of several hundred proteins with an existing function annotation. These predictions 

and their underlying meta-data are available for individual or bulk download through http://

www.predictein.org/giardia_intestinalis or accessible via individual gene-pages in 

GiardiaDB. Structural prediction of already functionally annotated proteins can assist in 

testing and refining these annotations, which for Giardia and other non-model organisms are 

often based on sequence homology only. These predictions can help in identifying ligand or 

co-factor binding sites; I-Tasser has an in-built function to predict ligand interactions (Roy et 

al., 2010), or support subsequent in silico docking experiments (Śledź and Caflisch, 2018), 

for prospective chemical inhibitor development.

Structural homology programs, including I-Tasser, produce a number of quality metrics that 

can be used to assist researchers in interpreting the outcome and separating higher and lower 

confidence predictions (Roy et al., 2010). Root mean standard deviation (RMSD) is a 

common metric, measured in angstroms, to assess the physical distance between the 

predicted 3D structure of the query protein and its structural homologue among solved 

proteins in the PDB. This metric is calculated by measuring the distance between each 

amino acid in the query protein and its nearest structurally equivalent amino acid in the PDB 

homologue and then computing the overall variance among these distances across the entire 

predicted model. In general terms, the lower the RMSD value, the more structurally similar 

are the two proteins in 3D space. In our experience, an RMSD ~<5Å is generally usable for 

functional inference and, according to Roy et al. (2010), an RMSD <2–3 is of sufficiently 
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resolved to support subsequent in silico docking and protein-protein interaction modelling. 

However, this will vary among predictions.

It is important to note that RMSD can only be calculated for the portion of the query model 

for which a structural homologue is available among the solved PDB proteins. Due to the 

challenges associated with expressing and crystallising proteins for empirical structural 

analysis, it is a common occurrence for PDB models to represent only a critical subdomain 

of a given protein. It is also common for I-Tasser to identify a conserved structural fold in an 

otherwise diverged protein. It is important to consider the proportion of the query and target 

models that overlap in the structural homology prediction (calculated as “cov” or coverage 

by I-Tasser) when inferring a functional annotation from these data. The ab initio software 

incorporated in the I-Tasser suite is still able to predict a putative structure for the non-

overlapping regions of the query protein, but of course these will not contribute to the 

structural homology prediction. In addition to simple metrics to assess the similarity of the 

query to a structural homologue, these software packages also produce several composite 

“confidence” scores. In the case of I-Tasser, this includes a TM-score metric (computed by 

TM-align), which provides a confidence value based on the RMSD, amino acid similarity 

and coverage and other metrics, producing a normalized value between 0 (low) and 1. Per 

Roy et al. (2010), a TM-score about 0.5 is considered to represent a level of structural 

similarity between the predicted protein and its nearest solved structural homologue that is 

beyond chance (i.e., biologically informative).

The specific metrics provided by I-Tasser are useful for assessing the quality and reliability 

of the predicted structure, as well as the functional information that can be derived from its 

nearest structural homologue. Although Roy et al. (2010) provide advice on quality 

thresholds for these metrics based on extensive modelling of human proteins, parasites are 

often highly diverged from model organisms and particularly humans, especially for the 

deep-branching G. intestinalis, and the suitability of human-benchmarked quality thresholds 

is unclear. Using a machine learning algorithm (Random Forest Classifier), Ansell et al. 

(2019) sought to develop an organism in-dependent method to assign a confidence score to 

protein structural homology predictions. In this approach, Ansell et al. (2019) selected 

Giardia proteins with identifiable conserved protein domains based on Interproscan analysis. 

The Random Forest Classifier was provided each I-Tasser output metric (e.g., RMSD, TM-

Score, % amino acid similarity and % coverage) and assessed these for their agreement with 

the domain comparisons, producing a weighted score that could split into “high” (those 

query and target proteins that had good domain agreement) and “low” (those that did not) 

confidence predictions. The Random Forest Classifier (RFC) then applied this weighted 

scoring system to Giardia proteins for which no a priori protein domain data were 

identifiable, separating these predictions in “high-confidence like” and “low-confidence 

like” categories.

Using the RFC approach, high-confidence functional annotations were assigned to hundreds 

of hypothetical proteins for which no function data had previously be available (Ansell et al., 

2019). Some of these novel annotations include what appear to be key players in critical 

redox stress systems within the parasite (Ansell et al., 2019), including a novel ortholog of 

Entamoeba histolytica NADPH-dependent oxidoreductase 1, which in the latter species is 
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implicated in metronidazole activation (Jeelani et al., 2010). Others include putative, novel 

epigenetic modifiers, that may be important in post-transcriptional or post-translation 

regulation (Fig. 1). Importantly, I-Tasser functions based on the knowledge that proteins 

with similar 3D structure tend to have similar functions. However, “function” can include a 

protein’s molecular (i.e., as a kinase, transporter or structural protein) or biological function 

(e.g., involvement in a specific metabolic or signalling pathway). I-Tasser assigns Gene 

Ontology classification data based on shared molecular and biological functions of the 

nearest structural homologues for each prediction. However, in our experience, predicting 

biological function from structural data alone is unreliable and should be undertaken with 

caution. As we discuss below, supplementing structural homology prediction data with 

additional evidence of biological function (e.g., using transcriptomic, proteomic or protein 

localization data) is advisable.

In silico prediction can be used also to classify and infer functions for non-coding space. 

RepeatModeller (Tarailo-Graovac and Chen, 2009) and Tandem Repeats Finder (Benson, 

1999) are widely used to identify transposable elements and other repetitive sequences. 

Programs such miRanda (Enright et al., 2003) and PITA (Kertesz et al., 2007) can predict 

the coding genes regulated by a specific miRNA. PromoterInspector (Scherf et al., 2000) and 

TRED (Zhao et al., 2005) can model promoter regions and sequence motif modellers, such 

as DREME (Bailey, 2011), can be used to identify potential transcription factor binding 

sites. However, most of these in silico predictive methods, aside from repeat finding, have 

high false discovery rates and should be used with caution or supplemented with additional 

data. Largely, researchers interested in non-coding regulatory features of the Giardia genome 

are likely better served by “omics” applications, which are discussed below.

4.2 Applying systems biology to function studies

In silico methods provide substantial guidance for researchers interested in Giardia 
molecular biology, but are a starting point to guide empirical experiments. This empirical 

work includes target-based (e.g., through gene silencing or knockout, or protein over-

expression and localization) and systems-based (e.g., through transcriptomic, proteomic or 

other, similar and broad-spectrum methods) interrogation. This section will focus on 

systems-based functional study.

To date, transcriptomics and proteomics are the most broadly accessed systems-based 

approaches for Giardia. Franzén et al. (2013) provided the first RNAseq data for G. 
intestinalis, including the only available data to date for an assemblage B (GS) or E (P15) 

isolate. This work indicated significant sense and antisense transcription in Giardia and the 

authors postulated that Giardia’s transcription may be quite “leaky”. This observation, 

coupled with the few transcription factors identified in the genome, suggests Giardia exerts 

little transcriptional level. Despite this, G. intestinalis mounts specific transcriptional 

responses to external stimuli, including ER and starvation stress (Spycher et al., 2013), heat, 

oxidative-stress and sublethal metronidazole exposure (Ansell et al., 2016) and NO-induced, 

oxidative-stress and other interactions with host-cells (Ma’ayeh et al., 2015, 2017, 2018).

Not only do transcriptomic data indicate Giardia is capable of mounting stress-specific 

responses (Spycher et al., 2013) and differentiating physiological versus xenobiotic sources 
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of these stress stimuli (Ansell et al., 2016), transcription responses differ among Giardia 
isolates. A recent study (Ansell et al., 2017) followed the transcriptional changes of G. 
intestinalis WB, 713 and 106, preceding and upon development of metronidazole resistance, 

identifying dynamic balancing between oxidative stress responses and metabolic activity, but 

also finding major differences among isolates. Metronidazole resistance in G. intestinalis 
WB and 713 appears to centre around up-regulation of oxidative stress response coupled 

with downregulation of the glycolytic system and reliance on arginine metabolism. This shift 

seems to come at a substantial fitness cost that manifests, particularly in G. intestinalis WB, 

as a reduced in vitro growth rate. In contrast, the transcriptional response to metronidazole 

resistance by G. intestinalis 106 appears focused on changes in nitroreductase activity, 

including a shift from metronidazole activating, nitroreductase-1 (NR1) transcription, to 

metronidazole deactivating, nitroreductase-2 (NR2) transcription. Proteomic data for these 

isolates show that transcriptional changes lead to dynamic responses at the protein level 

(Emery et al., 2018). Emery et al. (2018) also found that proteomic changes associated with 

G. intestinalis 106 were stable after 24 weeks of passage in in vitro in the absence of 

metronidazole. In contrast, most likely owing to an increased fitness cost, metronidazole 

resistance rapidly decayed of the same in vitro selection experiments when either G. 
intestinalis WB or G. intestinalis 713 isolate was tested, as has been described for these 

isolates elsewhere (Ansell et al., 2015b).

Transcriptomic and proteomic datasets supports Giardia’s coding gene models and improves 

mapping of gene boundaries, UTRs, splice junctions and other regulatory features. 

Numerous “omics” based approaches are available to expand on this knowledge, refining our 

understanding of the overall genomic and epigenetic regulation in Giardia, and supporting 

identification of novel players in important regulatory, signalling, stress response, metabolic 

and myriad other essential cellular functions. Many of these methods are available, but yet to 

be applied to Giardia. For example, further studies employing the targeted 

immunoprecipitation of AGO and other RNA-interacting proteins (e.g., per DICER: Saraiya 

et al., 2014) could greatly improve understanding of the importance of small RNAs in 

Giardia biology and identify their specific target genes. Chromatin-immunoprecipitation 

(ChIP) sequencing (Park, 2009) can be used to better understand the role of specific histone 

modifications in chromatin-level regulation in the cell cycle, during encystation/excystation 

and antigen switching, and following drug exposure or in vitro selected resistance.

Clearly, there are a variety of circumstances in which transcriptomic and proteomic 

approaches can be further employed to dissect parasite behaviour. Similarly, although 

several studies have indicated an important role for protein methylation, phosphorylation and 

acetylation (e.g., in encystation or drug resistance; reviewed in Ansell et al., 2015b), there 

are as yet no broad-scale studies of these modifications in Giardia. Metabolomics presents a 

considerable and as yet almost entirely untapped method to explore functional biology of 

Giardia, and would further open up more quantitative proteomic technologies (e.g., SILAC). 

However, metabolomics research is most powerful in its application in quantifying the rate 

of change (i.e., flux) in metabolites over time. This requires a defined media that can be 

altered to include radioactively labelled carbon, nitrogen or phosphorous, which is currently 

not available for Giardia.
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As “omics” resources are developed for Giardia, it becomes possible to leverage their 

combined value in integrative analyses either combining datasets of the same (e.g., 

transcriptomics) or multiple origins (e.g., transcriptomics, proteomics and metabolomics 

data). R-language scripts, such as voom (Law et al., 2014), support identification and 

removal of systematic biases or batch effects between studies (this is essential for accurate 

analysis). Methods such as weighted-gene co-expression network analysis (WGCNA: 

Langfelder and Horvath, 2008) support identification of genes that strongly correlate in their 

transcriptional or expressional behaviour across a variety of complex conditions (e.g., stage 

differentiation, stress responses, cell division, etc.). Such tightly correlated genes are often 

co-regulated and tend to have related biological functions. These approaches can be used to 

infer novel functions for genes even with no a priori knowledge of their biology, for 

example, based on their co-regulation with multiple well annotated genes.

In-direct methods provide powerful, systems-level tools to explore the molecular biology of 

non-model organisms, such as Giardia intestinalis. They are, of course, a starting point for 

detailed functional research and can greatly assist development of specific, direct 

experiments for further exploration. Advances in tools for direct empirical study of gene 

function in Giardia are discussed in the next section.

5. Direct, targeted-based assessment of gene function

As most parasites are unculturable and genetically intractable, much of the functional 

biology is understood through in-direct inference by in silico modelling and, more recently, 

“omics” and systems-based research. These are powerful tools, but are most valuable when 

they are used to guide empirical interrogation of gene function through direct, target-based 

studies. For many years, Giardia was proposed as a model parasite because of its ready in 

vitro cultivation, but significant challenges in its genetic manipulation confounded this 

potential and stymied critical efforts to better understand the parasite. Recent major 

advances in the application of functional genetic tools to Giardia will open up exciting 

pathways for research in the coming years. These advances are discussed here.

5.1 Transfection vectors in Giardia and their use in studies of Giardia biology and 
pathogenesis

The first report of transient DNA transfection of Giardia was published in 1995 by Yee and 

Nash (1995). The plasmids were of bacterial origin and based on the pGEM (Promega) 

backbone containing the luciferase (luc) gene driven by 82bp upstream sequence of the 

glutamate dehydrogenase (gdh) gene, the first 18 gdh codons fused to luc and 129bp of 

downstream sequence of gdh, including the polyadenylation signal (Yee and Nash, 1995). 

Expression of luciferase required 50 μg of pure plasmid DNA in the transfection, and 

optimal expression was seen after 6h, decreasing to 13% after 24h (Yee and Nash, 1995). 

This system was further developed to a stable transfection system by insertion of a gdh 
regulated puromycin-N-acetyltransferase gene (pac) in to the transient transfection vector 

(Singer et al., 1998). Stable transfectants could be obtained after selection in 100μM 

puromycin (current standard concentrations for stable transfection of Giardia using pac 
containing plasmids is 50 μg/ml) and the plasmids were shown to be episomal (Singer et al., 
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1998). Later studies showed that the plasmid localized randomly to one of the two Giardia 
nuclei for up to 1 year during selection in puromycin (Yu et al., 2002). An integration vector 

was constructed using fragments of the triose phosphate isomerase (tpi) gene and integration 

was shown to be more effective in the assemblage B isolate GS than in the assemblage A 

isolate WB (Singer et al., 1998). This study also showed that the green fluorescent protein 

can be used as a reporter gene in Giardia (Singer et al., 1998). Another study showing stable 

transfection of Giardia using bacterial neomycin phosphotransferase (neo) as selectable 

marker in the pGEM plasmid was published by Sun et al. (1998) at the same time. The neo 

gene was driven by regulatory fragments from the giardial RAN gene and 150 μg/mL G418 

was used in the selection. An increase of the amount of neomycin in the medium from 150 

to 1200 μg/mL G418 increased the copy number of the plasmid, and it was shown that the 

plasmid remained in the cells for up to 50 days without selection (Sun et al., 1998).

The replication of external DNA fragments without selection has been seen in several later 

publications (Ebneter et al., 2016; McInally et al., 2019). The pac-gdh cassette was 

transferred to the pBlueScriptII KS(+)(Stratagene) vector and a deletion study was 

performed on the encystation-specific promoter of glucosamine-6-phosphate isomerase 

(Gln6PI-B) using luciferase as reporter (Knodler et al., 1999). This showed that only 50bp 

upstream of the start codon of Gln6PI-B is needed for developmental regulation, with this 

region later shown to bind the encystation-specific transcription factor Myb2 (Sun et al., 

2002). The RAN-neo cassette was moved into the pBlueBcript vector by Hehl et al. and they 

could show that cyst wall protein 1 (CWP1) is regulated by a 110bp upstream sequence 

(Hehl et al., 2000). Importantly, they also showed, by using CWP1-GFP fusions, the 

mechanism by which cyst-wall material is transported in encystation-specific vesicles 

(ESVs) out to the emerging cyst-wall in encysting cells (Hehl et al., 2000). Thus, gene 

regulatory fragments and protein localization signals can be studied in Giardia since year 

2000. Other inducible systems in Giardia including use of promoters of CWP-1 and −2 have 

later been used (Ebneter et al., 2016) and a tetracycline controlled gene expression system 

(Sun and Tai, 2000). Nonetheless, there is a need for new inducible gene expression systems 

in Giardia since both the tetracycline system is not very tightly controlled, and the CWP-

system dependent on encystation induction. A new system for rapid triple-hemagglutinin 

(3HA) tagging and integration of Giardia genes into their endogenous regions was developed 

by Gourguechon and Cande (2011) and it was shown that blasticidin (75 μg/mL) can be used 

as a third selectable marker in Giardia by using a blasticidin resistance gene from the 

plasmid pBOSH2BGFP (Clontech).

The need to over-express and purify specific Giardia proteins for further characterization in 

vitro, as well as purify protein complexes, sparked the development of a suite of cassette-

based expression vectors (Jerlstrom-Hultqvist et al., 2012). These vectors contain N- and C-

terminal streptavidin binding peptide-glutathione S-transferase (SBP-GST) tags for 

production of recombinant proteins and N- and C-terminal Strep II-FLAG-tandem affinity 

tags for tandem affinity (TAP) purification of protein complexes (Jerlstrom-Hultqvist et al., 

2012). The Giardia virulence factor arginine deiminase (ADI) and the proteasome complex 

were purified as proofs of concept. This suite of vectors has multiple cloning sites for 

cloning of genes of interest and have been modified to contain 3HA, 6 × His and the 

tetracycline regulatory system (Einarsson et al., 2016a).
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In addition to over-expression, targeted gene repression or knockout is a major step in 

understanding protein function. However, Giardia is a tetraploid organism with two diploid 

nuclei (Bernander et al., 2001; Yu et al., 2002). This makes it difficult to genetically deplete 

proteins for functional analyses. The development of molecular genetic tools for gene 

knockout in Giardia has lagged behind that of other parasitic protists (DiCarlo et al., 2013; 

Hwang et al., 2013; Mali et al., 2013; Wang et al., 2013) or other polyploid organisms 

(Bedell et al., 2012; Clark et al., 2011). A rudimentary understanding of transcription factors 

and promoters (Davis-Hayman and Nash, 2002) and a limited number of selectable markers 

(Bedell et al., 2012; Clark et al., 2011; Gourguechon and Cande, 2011) have contributed to 

the slow pace of tool development. The giardial Cre/loxP system was used by Ebneter et al. 

(2016) to generate the first true knock-out mutants of Giardia lacking one to four copies of 

the CWP-1 gene. Knocking out one or two of the four copies did not create any detectable 

phenotypes, but trophozoites with one or no CWP-1 gene copy did not produce viable cysts 

and had impaired transport of CWP-2 in ESVs (Ebneter et al., 2016). Disc and flagellar 

disassembly and nuclear division still occurred, generating pseudocysts (Ebneter et al., 

2016). The generation of the first knock-out mutants was major step in Giardia research, but 

this approach is onerous in that it has to be done sequentially with recycling of selectable 

markers, and it takes a long time to generate parasites with all four alleles knocked-out. 

Strategies beyond gene knockout are critical when assessing the functions of unknown 

proteins (Qi et al., 2013). Knockouts of genes in essential metabolic pathways or processes 

such as cell division can be lethal (Hardin et al., 2017), and require alternative strategies 

such transcriptional repression or translational blocking are also useful tools for determining 

protein function.

The Giardia genome contains conserved components of the RNA interference (RNAi) 

machinery, yet RNAi, a powerful tool for gene silencing in many organisms, is inefficient in 

Giardia (Krtkova and Paredez, 2017; Marcial-Quino et al., 2017). Other transcriptional 

repression methods, such as the overexpression of long double-stranded RNAs or 

hammerhead ribozymes (Chen et al., 2007; Dan et al., 2000), also have been used in Giardia 
with limited success and reproducibility. Morpholino oligonucleotides, which act by 

blocking translation, have been used most extensively for gene knockdown (Dawson et al., 

2007; Hoeng et al., 2008; House et al., 2011; Paredez et al., 2011; Woessner and Dawson, 

2012). However, although morpholino knockdowns can be robust in Giardia, morpholinos 

are expensive, and are thus less applicable for genome-wide functional screens (Krtkova and 

Paredez, 2017). Morpholinos can also lack complete penetrance and are transient, lasting 

less than 48h after electroporation. These limitations make them less than optimal for the 

characterization of infection dynamics in animal hosts (see below and Barash et al., 2017).

5.2 Creating robust and stable gene knockdown strains with CRISPR interference

CRISPR/Cas9 gene editing provides a potentially transformative technology for Giardia 
research. However, the use of CRISPR/Cas9 in Giardia was stalled by the parasites lack of a 

non-homologous end-joining (NHEJ) pathway (Morrison et al., 2007) and a defined sexual 

cycle (Poxleitner et al., 2008), as well as problems with nuclear localization of Cas9 using 

standard nuclear localization signals (SV40 NLS: Ebneter et al., 2016). Nonetheless, 

CRISPR/Cas technology has revolutionized genome editing in eukaryotes, and CRISPR/
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Cas-mediated knockout strategies have recently been implemented for several parasitic 

protists (Ren and Gupta, 2017). Beyond their utility for gene knockout, Cas proteins have 

been exploited for their ability to bind to target nucleic acid sequences and recruit a variety 

of effector proteins, including transcriptional repressors and activators, epigenetic modifiers 

and fluorophores for imaging (Larson et al., 2013; Pickar-Oliver and Gersbach, 2019). In 

both eukaryotic and bacterial model systems, CRISPR interference (CRISPRi) has been 

shown to be a robust alternative to RNAi-mediated gene silencing for knockdown of gene 

expression (Kampmann, 2018; Larson et al., 2013).

CRISPRi is a modification of the CRISPR/Cas system using a catalytically inactive, or 

“dead”, Cas protein (dCas) to promote stable, inducible, or reversible gene knockdown in 

human cell lines and yeast (Larson et al., 2013) and diverse bacteria (Kaczmarzyk et al., 

2018; Larson et al., 2013; Liu et al., 2017; Tao et al., 2017; Zhang et al., 2016; Zuberi et al., 

2017). Like Cas proteins, inactive dCas proteins are directed to precise genomic targets 

using a complementary guide RNA (gRNA). Rather than catalysing double-stranded breaks 

in DNA, the inactive dCas/gRNA complex prevents transcription initiation and/or elongation 

upon binding (Larson et al., 2013). CRISPRi is as effective as RNAi in transcriptional 

silencing, and fewer off-target effects have been reported (Larson et al., 2013). Thus 

CRISPRi directly and stably inhibits transcription, and offers significant advantages over 

RNAi or morpholino knockdown (Larson et al., 2013). CRISPRi does not interfere with 

endogenous microRNA expression or function (Larson et al., 2013), and because CRISPRi 

acts at the DNA level, Giardia noncoding RNAs (Saraiya and Wang, 2008), microRNAs (Li 

et al., 2011; Zhang et al., 2009), antisense transcripts (Elmendorf et al., 2001), and 

polymerase III transcripts (Hudson et al., 2012) could be targeted for repression.

CRISPRi was recently adapted to repress both exogenous and endogenous genes (McInally 

et al., 2019) in Giardia. CRISPRi does not require Giardia host or viral factors as is required 

for antisense (Rivero et al., 2010b) or hammerhead ribozyme-mediated transcriptional 

repression (Chen et al., 2007; Dan et al., 2000). In Giardia, targeting of the Streptococcus 
pyogenes Cas9 or dCas9/gRNA DNA recognition complex to both nuclei required the 

addition of a native Giardia nuclear localizing sequence (NLS) (McInally et al., 2019). A 

CRISPRi episomal vector (dCas9g1pac) was then created that includes cassettes for the 

expression of dCas9 and a gRNA, as well as a marker for puromycin resistance for positive 

selection in Giardia (Fig. 2). Giardia gRNAs are designed using the CRISPR Guide RNA 

design tool at Benchling [Biology Software] (Benchling, 2019) or the Eukaryotic Pathogen 

CRISPR guide RNA/DNA Design Tool (EuPaGDT) (Peng and Tarleton, 2015) at GiardiaDB 

(giardiadb.org), and are chosen based on predictions of gRNA efficiency and the results of 

on- and off-target analyses. Complementary gRNA oligonucleotides are then annealed and 

cloned into the CRISPRi vector using a one-step digestion/ligation reaction. gRNA design 

and cloning can be accomplished in a week, and CRISPRi strains are obtained 10–14 days 

after electroporation of constructs into Giardia trophozoites.

Stable, precise and robust CRISPRi-based gene regulation of single or multiple genes will 

transform the study of molecular and cellular biology and pathogenesis in this widespread 

intestinal parasite. The modular design of the Giardia gRNA expression cassette allows for 

the concatenation of more than one gRNA to target multiple sites in one target gene, or more 
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than one Giardia gene or gene family. Once imported into the nuclei, the dCas9/gRNA 

complex is targeted to a specific genomic locus where it sterically interferes with RNA 

polymerase or transcription factor binding or with transcriptional elongation, as has been 

shown in bacteria or other eukaryotes (Larson et al., 2013). dCas9 expression and overall 

penetrance is quantified through the use of anti-Cas9 antibodies to score dCas9-positive 

trophozoites. The use of FACS and other methods to enrich for trophozoites that strongly 

express dCas9 could increase knockdown penetrance, as has been seen in other CRISPRi 

systems (Gilbert et al., 2013).

In every CRISPRi system (Larson et al., 2013), the choice of gRNA target site has been 

shown to impact the degree of transcriptional repression. In contrast to human cells (Gilbert 

et al., 2013; Qi et al., 2013), targeting gRNAs close to the transcriptional start site (TSS) 

results in stronger repression in some bacterial systems. To determine how gRNA 

positioning influenced the magnitude of transcriptional repression in Giardia, 11 different 

gRNAs were systematically designed to target the transcriptional start site and the coding 

region of the bioluminescent NanoLuc (NLuc) gene in 50-bp increments (McInally et al., 

2019). There was no correlation between gRNA position and the magnitude of repression; 

however, in general, more repression was observed with gRNAs that targeted the first 200bp 

of the coding region. Because gRNAs targeted the coding region rather than the promoter 

sequence used for NLuc expression, it is likely that efficient transcriptional repression 

occurred via the inhibition of transcriptional elongation, rather than inhibition of 

transcriptional initiation (Larson et al., 2013). For successful gene repression in Giardia, 

several gRNAs should be tested for each target, as has been suggested for CRISPRi in 

human cells (Gilbert et al., 2013). The ability to direct dCas9 to both nuclei in Giardia could 

enable the modulation of transcriptional networks not only by repression, but also by 

differential expression or overexpression through the fusion of dCas9 to Giardia-specific 

transcription factors, enhancers, or other native transcriptional elements (Kampmann, 2018).

Giardia’s dynamic microtubule cytoskeleton is of critical importance throughout both stages 

of its life cycle (Dawson, 2010; Nosala and Dawson, 2015). CRISPRi-mediated stable 

transcriptional repression was also used recently to knock down the expression of three 

endogenous cytoskeletal proteins, highlighting the versatility of CRISPRi to interrogate 

Giardia microtubule functioning in flagellar motility and disc-mediated attachment 

(McInally et al., 2019). Specifically, 2 of the 24 Giardia kinesin motor proteins (kinesin-2a 

and kinesin-13) and one ventral disc protein (DAP16343) were targeted for CRISPRi 

knockdown. The heterotrimeric kinesin-2 motor is required for assembly of external regions 

of axonemes (Dawson et al., 2007; Hoeng et al., 2008). Kinesin-13 regulates flagellar length 

in all Giardia axonemes through the promotion of microtubule disassembly at the distal 

flagellar tips (Dawson et al., 2007). Overexpression of dominant negative kinesin-2 or 

kinesin-13 thus results in aberrant flagellar lengths of all of the eight flagella (Dawson et al., 

2007; Hoeng et al., 2008). Similar length defects were observed with the CRISPRi-based 

knockdowns of kinesin-2a and kinesin-13, supporting the essential roles of these two 

kinesins in flagellar length regulation in Giardia.

Over 90 proteins compose Giardia’s ventral disc. Prior transient morpholino-based 

knockdown of the disc-associated protein DAP16343 (median body protein, or MBP) 
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resulted in discs with an open and flattened conformation and significant attachment defects 

(Woessner and Dawson, 2012). Stable CRISPRi-mediated knockdown of MBP resulted in 

the same “open” and “flat” disc phenotype observed with morpholinos (Woessner and 

Dawson, 2012), again confirming the use of CRISPRi as a genetic tool to affect disc 

structure and attachment. In contrast to morpholino-based knockdowns, the MBP 

knockdown strain is stable over time and phenotypes are 60–100% penetrant in Cas9+ cells. 

As noted previously, the degree of CRISPRi knockdown of cytoskeletal genes was 

contingent upon the targeting position of the gRNA and the degree of expression of dCas9 in 

the nuclei. More severe phenotypes were associated with dCas9 positive cells, with overall 

population-level transcriptional knockdowns ranging from 10 to 60%. Rather than a deficit, 

the variations in knockdown levels highlight the overall tunability of this system for 

knockdown of endogenous genes in contrast to transient morpholino knockdown. The ability 

to examine cells with varying degrees of knockdown and to reduce the severity of 

phenotypes by selecting gRNAs with less than complete transcriptional repression are 

critical toward the evaluation of essential Giardia genes. Furthermore, this work 

demonstrated the ability to knock down two different genes simultaneously with the 

concatenation of gRNAs targeting both kinesin-13 and MBP. This is a key technology for 

evaluation of the redundant functions of genes in a gene family or pathway.

5.3 Using CRISPRi to study basic and pathogenic aspects of Giardia biology

CRISPRi will rapidly change how we study basic cell biology, development, and 

pathogenesis of Giardia. CRISPRi would be an inexpensive and fruitful strategy to identify 

essential genes associated with key aspects of Giardia’s life cycle, such as attachment 

(Nosala et al., 2018), motility (Dawson and House, 2010), or encystation (Einarsson et al., 

2016c; Pham et al., 2017). The ability to rapidly create stable knockdown strains will 

facilitate the functional identification of genes involved in pathogenicity (e.g., motility or 

attachment) that can then be screened to identify druggable targets. Genomes and genetic 

tools are available for the assemblage A strain WBC6 (Morrison et al., 2007) and the 

assemblage B strain GS (Davis-Hayman and Nash, 2002); however, no genetic tools have 

been developed for other sequenced assemblage A strains such as DH (Adam et al., 2013), 

or for other human clinical A and B assemblage isolates (Hanevik et al., 2015). Thus, 

ongoing work should also aim to develop genetic tools in other Giardia strains of clinical 

relevance.

5.4 In vivo bioluminescent imaging of Giardia infection dynamics in small animal models

The molecular and cellular mechanisms underlying Giardia’s colonization and 

differentiation into cysts in the gastrointestinal tract remain unclear. Mammalian hosts ingest 

Giardia cysts that excyst and release motile trophozoites as they transit into the 

gastrointestinal tract (Einarsson et al., 2016b). The excysted trophozoites then attach and 

extracellularly colonize the epithelium of the small intestine. Later, trophozoites detach and 

encyst and these cysts are disseminated in faeces (Adam, 2001). Most studies of Giardia’s 
pathogenesis have relied on in vitro models of giardiasis that may not be adequate proxies 

for infection within the host or may not accurately reflect in vivo parasite physiology. In 

vivo studies of giardiasis have been limited by the inaccessibility of the intestinal tract; thus, 

indirect quantification methods have been used to assess in vivo parasite burden, 
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differentiation, and physiology, including the isolation of cysts from faeces or the isolation 

and enumeration of parasites from the intestines of euthanized study animals (Bartelt et al., 

2013; Solaymani-Mohammadi and Singer, 2011). The inaccessibility of the site of Giardia 
colonization in the gut has restricted tracking temporal infection dynamics in a single animal 

throughout the course of infection, and instead necessitated the use of cohorts of animals for 

each experimental time point for adequate experimental rigour and reproducibility (Barash 

et al., 2017). Furthermore, Giardia colonization of the small intestine overlaps with 

ecological niches inhabited by commensal microbiota, yet in vivo Giardia-microbiome 

interactions have largely been ignored in models of pathogenesis (Bartelt and Sartor, 2015).

The adhesive disc of Giardia is a unique cytoskeletal structure containing more than 100 

proteins (Hagen et al., 2011). In order to study putative adhesive disc proteins, identified by 

sub-cellular fractionation and proteomic analyses, the Dawson lab developed a ligation-

independent high-throughput cloning method (Gateway cloning) for C-terminal GFP or 

mNeon green (NG) tagging of Giardia proteins (Hagen et al., 2011). This system has been 

used to determine the subcellular localization of selected Giardia proteins that lack 

homology or have limited similarity to proteins in other organisms (www.Giardiadb.org). 

The ORFs plus 200bp of upstream sequence containing the native promoter were PCR-

amplified from genomic Giardia DNA to create Gateway entry clones and subsequently 

cloned into the Gateway expression vector pcGFP1F.pac (Hagen et al., 2011) to create C-

terminal GFP fusion strains. Until now ~600 proteins have been localized in Giardia using 

this system and the data is available at Giardia DB.

Recently developed methods for bioluminescent imaging (BLI) using integrated luciferase 

bioreporter strains now allow real-time quantitative visualization of the temporal and spatial 

dynamics of Giardia infections in the gastrointestinal tracts of small animal (Barash et al., 

2017). BLI has been used previously to monitor parasitic infection dynamics for malaria, 

leishmaniasis, trypanosomiasis, and toxoplasmosis (D’Archivio et al., 2013; Reimao et al., 

2013; Saeij et al., 2005), as well as bacterial colonization of the intestine (Hutchens and 

Luker, 2007). In general, BLI enables sensitive quantification and real-time reporting of 

metabolic activity via imaging of the transcriptional activity of promoter-luciferase fusions 

or imaging of protein expression through the expression of native proteins fused to 

luminescent proteins such as NanoLuc (Luo et al., 2006; Weissleder and Ntziachristos, 

2003; Welsh and Kay, 2005). Non-invasive in vivo BLI relies on the external detection of 

light produced internally, and signal intensity may be limited by the overall level of 

luciferase expression, the oxygen tension within relevant tissues, pigmentation of organs and 

skin, or any background signal from the animal (Andreu et al., 2011). However, the gut is 

sufficiently oxygenated to permit signal detection. Importantly, although animal tissues 

exhibit relatively high background levels of autofluorescence, they have nearly nonexistent 

levels of autoluminescence, which facilitates bioluminescent signal detection even at low 

signal strength (Andreu et al., 2011; Foucault et al., 2010; Rhee et al., 2011).

In vivo models of infection are needed to help define the complex interactions between 

Giardia and the gastrointestinal tract of the mammalian host. Zoonotic Giardia strains have 

varied physiologies and assemblage A (strains WBC6 and DH) and assemblage B (strains 

GS and HS) (Ankarklev et al., 2015; Sprong et al., 2009) are the only assemblages identified 
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in human infections. Animal models of giardiasis have used adult (Byrd et al., 1994; Singer, 

2016) or suckling mice (Mayrhofer et al., 1992) or adult gerbils (Rivero et al., 2010a) 

infected with either human isolates of Giardia assemblages A (strain WBC6) or B (strains 

GS or H3), or murine G. muris isolates (Aggarwal and Nash, 1987). Assemblage B strain H3 

cysts have been used to establish animal infections (Bartelt et al., 2013), yet strain H3 

currently lacks a genome sequence, and cannot be transfected or otherwise genetically 

manipulated. Variation in the degree or timing of experimental infections have been noted 

with the use of isolates from different assemblages or the use of different animal models, 

and mirrors variability in human giardiasis (Watkins and Eckmann, 2014). Such variation 

can confound the interpretation of infection dynamics from experimental cohorts and 

underscores the need for additional methods of evaluating Giardia infections in animal 

models.

In vivo BLI offers both real-time and longitudinal monitoring of infection dynamics in small 

animals such as mice or gerbils. Infection with recombinant Giardia strains containing 

integrated bioluminescent proteins such as firefly luciferase fused to physiological or 

encystation-specific promoters or genes (commonly termed “bioreporters”) has permitted 

the temporal and spatial imaging and quantification of parasite colonization, metabolism and 

differentiation (Barash et al., 2017). As the WBC6 (assemblage A) strain is genetically 

tractable, three transcriptional bioreporter strains have been created for in vivo and ex vivo 

BLI by integrating firefly luciferase driven by either endogenous metabolic or encystation-

specific promoters (Barash et al., 2017). Infections with the integrated constitutive 

glutaraldehyde dehydrogenase (GDH) bioreporter (PGDH-FLuc) strain allow the 

quantification of in vivo infection dynamics including parasite density and metabolism. 

Optical imaging with this constitutive strain directly correlates with qPCR-based measures 

of parasite density (Barash et al., 2017). Luciferase expression from the GDH promoter 

continues at significant levels for at least 24h after the PGDH-FLuc strain is transferred to 

encystation medium; therefore, BLI of constitutive metabolic genes could be used as a proxy 

for in vivo Giardia abundance even during encystation. BLI of infections with the 

constitutively expressed PGDH-FLuc strain confirm that maximal infection occurs at 

approximately 7 days, consistent with prior studies of experimental Giardia infections in 

mice (Byrd et al., 1994). In vivo Giardia physiology and encystation in cohorts of mice or 

gerbils have been monitored non-invasively for at least 21 days. Longitudinal BLI of the 

same study animal provided a robust method to estimate variance within infections, which is 

essential for determining statistically informative study animal numbers. Additional in vivo 

bioreporter strains could include those associated with parasite stress response, physiology, 

or excystation. In vivo parasite protein expression could also be monitored if Giardia 
proteins were fused to bioluminescent proteins such as NanoLuc (Stacer et al., 2013), which 

could be particularly informative for the in vivo quantitation of secreted Giardia proteins.

Ex vivo BLI of tagged Giardia strains has enabled the spatial quantification of colonization 

and parasite differentiation in the GI tract of mice and gerbil animal models. After live 

imaging, study animals are euthanized, and the GI tract is excised and imaged again with 

BLI to provide greater spatial resolution. Quantitative ex vivo BLI of the constitutive 

bioreporter PGDH-FLuc in both mice and gerbils showed that rather than uniformly 

colonizing throughout a region of the GI tract, Giardia colonizes the proximal small intestine 
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non-uniformly in discrete high-density foci. Such BLI-based anatomical sampling strategies 

facilitate the precise identification of regions of the gastrointestinal tract associated with 

high or low densities of colonizing or encysting parasites. In this way, ex vivo spatial 

localization of bioreporter signals can be used to correlate discrete areas of Giardia 
abundance and encystation in the gastrointestinal tracts of study animals with spatially 

defined histological analyses or transcriptional profiling of the same discrete Giardia foci 

(Pham et al., 2017).

Trophozoites are believed to be induced to encyst after receiving biochemical cues from a 

specific gastrointestinal anatomical site (Gillin et al., 1987; Lujan et al., 1997). Encystation 

can be induced in vitro by lowering the pH or adjusting the concentrations of other 

components of the medium, particularly bile (Gillin et al., 1988; Lujan et al., 1996). Parasite 

commitment to encystation and excystation are key highly regulated transitions in Giardia’s 

life cycle (Einarsson et al., 2016c). Hallmarks of the developmental commitment to 

encystation include the significant transcriptional upregulation of genes encoding the cyst 

wall proteins CWP1 and CWP2, and the appearance of encystation specific vesicles (ESVs) 

that transport the cyst wall proteins (e.g., CWP1 and CWP2) to build the cyst wall (Hehl et 

al., 2000; Lujan et al., 1995).

To monitor the temporal and spatial dynamics of in vivo encystation with BLI, two 

integrated encystation-specific bioreporters (PCWP1-FLuc and PCWP2-FLuc) have also been 

developed (see Fig. 3). By imaging encystation-specific bioreporters, it was observed that 

encystation initiates shortly after inoculation and continues throughout the entire duration of 

infection. Using ex vivo BLI, encystation initiation was reported to occur in discrete foci 

within the proximal and distal small intestine, rather than uniformly throughout a particular 

region of the gut. Thus Giardia BLI has uncovered that parasites colonize and encyst in the 

gastrointestinal tract of both mice and gerbils with a localized or “patchy” distribution 

(Barash et al., 2017), as has been observed for many other pathogens of the gastrointestinal 

tract or other organs (Contag et al., 1995; D’Archivio et al., 2013; Foucault et al., 2010; 

Reimao et al., 2013; Saeij et al., 2005). To discriminate between encysting and non-

encysting parasites in ex vivo samples, dual reporter bioluminescent Giardia strains using 

two spectrally different bioluminescent tags (such as firefly luciferase and red-shifted firefly 

luciferase) could be used to simultaneously image and quantify metabolically active (GDH-
FLuc) and encysting (CWP1-RLuc) parasites (Branchini et al., 2007; Cevenini et al., 2014; 

Maguire et al., 2013).

Ultimately, the use of single or dual spectra bioreporters of additional metabolic genes will 

provide a more comprehensive understanding of the in vivo interactions of Giardia with the 

host or with the microbiome. Giardia trophozoites produce no known toxin, and colonization 

does not elicit a robust inflammatory reaction (Bartelt and Sartor, 2015; Cotton et al., 2015). 

Although it has been speculated that Giardia infection results in intestinal epithelial damage, 

changes in the ultrastructure of the small intestine that are sufficient to cause clinical 

symptoms have not been consistently observed (Robertson et al., 2010). With BLI-directed 

ex vivo sampling of foci of colonization, one can precisely correlate trophozoite abundance 

and metabolism with host pathology in the same anatomical region.
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The ability to create stable CRISPRi knockdowns in the luciferase bioreporter strains used 

for bioluminescent imaging (BLI) will be essential toward understanding the cellular roles of 

Giardia proteins during colonization and encystation in the host (Barash et al., 2017). 

Combined with BLI, CRISPRi will enable the examination of fitness, colonization, or 

encystation differences in knockdown Giardia strains. BLI has also been validated for the 

analysis of anti-Giardia drugs by the demonstration that metronidazole, the standard of care 

anti-Giardia drug that targets parasite metabolic activity (Tejman-Yarden and Eckmann, 

2011), reduced in vivo bioluminescence of the constitutively-expressing PGDH-FLuc 
bioreporter strain. As it has been used extensively to evaluate the efficacy of anti-parasite or 

anti-bacterial drugs (Xu et al., 2016), BLI will be valuable as an alternative and real-time 

method to evaluate anti-Giardia drugs in relevant animal models of giardiasis.

6. Concluding remarks

Giardia has proven a tantalizingly close but frustratingly distant model eukaryote and 

genetically tractable parasitic species. Its ready culturability and early discoveries in its 

regulatory biology, as well as its status as an early diverging branch of the eukaryotic tree 

and cause of significant disease in humans and animals, has piqued interest in the species for 

many years. However, its binucleate cell, tetraploid genome and limited acceptance of 

seemingly attractive genetic tools, such as RNA interference and conventional gene 

knockout, have stymied research and limited opportunities for researchers to slake their 

interest. These limitations appear largely over-come and Giardia is poised to take its place as 

a model system that can be studied both as a significant infectious organism and as an early 

glimpse into evolution of eukaryotic biology, metabolism and regulatory systems. Advances, 

particularly in the demonstration of CRISPr-based methods for genetic manipulation, will no 

doubt shape the field for many years to come. Some challenges still remain, particularly in 

the ability to generate stable gene knockouts and the need for a defined culture media to 

support label-based proteomic and metabolomic studies. Yet, the primary tools are now in 

place, the genomic and systems-based resources established, and the limitations to its 

exploration now appear readily surmountable. The field is poised to enter a new and exciting 

era of biology discovery, in which we, and no doubt our many colleagues, are eager to take 

part.
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Fig. 1. 
Novel functional annotations for Giardia proteins based on 3D structural homology. 

Examples of high-confidence models with potential and novel roles in post-transcriptional 

and post-translation regulation in Giardia include (A) Several homologues of human α-

tubulin acetyltransferase 1 (PDB ID: 4GS4; red). Protein model includes overlay of G. 
intestinalis WB C6 (GL50803) coding genes GL50803_16348 (gold), GL50803_117391 

(blue), GL50803_117392 (purple) and GL50803_117393 (green). Inset (dotted border) 

shows expanded view of the α-tubulin binding pocket containing an acetyl-CoA (black). 

Sequence alignment shows conserved residues among all models. Red circles in the 

alignment depict core catalytic residues required by human αTAT1 for acetylating α-tubulin. 

(B) A Giardia homologue [GL50803_22338 (blue)] of human mRNA cap guanine N7-

methyltransferase [5′ m7g MTase; PDB ID: 3BGV (red)], showing S-Adenysl-L-

Homocysteine in the RNA-binding pocket; (C) Two homologues [GL50803_100887 (blue) 

and GL50803_103058 (grey)] of yeast cap methyltransferase 1 (red), showing S-adenosyl-L-

methionine (purple) and 7N-Methyl-8-Hydroguanosine-5′-Triphosphate (yellow) in RNA-

binding pocket, and (D) one homologue [GL50803_17308; (blue)] of yeast Cet1 mRNA 

guanine-N7 capping guanylyltransferase [PDB ID: 3KYH (red)]. Data from Ansell, B.R.E., 
Pope, B.J., Georgeson, P., Emery-Corbin, S.J., Jex, A.R., 2019. Annotation of the Giardia 
proteome through structure-based homology and machine learning. Gigascience 8, giy150.
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Fig. 2. 
The Giardia CRISPRi plasmid includes a Giardia-specific nuclear localization signal (NLS) 

to localize dCas9 to both nuclei. The schematic of the Giardia CRISPRi vector dCas9g1pac 

indicates the catalytically inactive dCas9 with a C-terminal Giardia-specific 2340NLS and a 

3XHA epitope tag (A). dCas9 expression is driven by the Giardia malate dehydrogenase 

promoter (PMDH), and a puromycin resistance marker (pac) allows positive selection in 

Giardia. The dCas9g1pac plasmid also includes inverted BbsI restriction sites for cloning of 

specific gRNA target sequences (g1 or g2) upstream of the gRNA scaffold sequence (SCF). 

The Giardia U6 spliceosomal RNA pol III promoter is used to express the gRNA cassette 

(g1+SCF); a non-specific gRNA is expressed unless the sequence between the BbsI sites is 

replaced with annealed oligomers targeting a specific genomic region. The SacI site can be 

used to add additional gRNA cassettes in tandem. Anti-Cas9 immunostaining of a Giardia 
strain carrying dCas9g1pac shows that a Giardia-specific native 34-amino acid C-terminal 

NLS from the Giardia protein GL50803_2340 (2340NLS) is necessary for the localization 

of 2340GFP to both nuclei (B). Over 50% of cells express dCas9 in both nuclei. In this 

strain, the microtubule cytoskeleton is visualized by expression of an integrated N-terminal 

mNeonGreen-tagged beta-tubulin gene selected with neomycin (mNGbtubneo). Scale bars = 

5 μm.
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Fig. 3. 
Bioluminescent imaging enables quantitative evaluation of temporal and spatial infection 

dynamics in the gastrointestinal tracts of small animals. Transcriptional upregulation of the 

Giardia cyst wall protein 2 (CWP2) is a genetic indicator of the initiation of encystation. 

Representative in vivo (A) and ex vivo (B) bioluminescent images are shown for three mice 

infected with the PCWP2-FLuc strain and euthanized at 7 days post-infection (A). High 

bioluminescent signal is indicated for the distal small intestine (dsi) in animal 1 and for the 

proximal small intestine (psi) in animals 2 and 3. Photon flux or radiance (p/s/cm2/sr) for 

each intestinal segment is shown and has been normalized to the maximal ex vivo 

bioluminescence signal on the radiance scale, yielding the percent total signal per segment. 

These values are represented graphically on the grey scale maps below each ex vivo image 

(clear = 0–10% and black = 75–100%, with values between 10% and 75% indicated as 

shades of grey). The regions of the gastrointestinal tract (psi = proximal small intestine, dsi 

= distal small intestine, cec = cecum, and li = large intestine) are noted on the ex vivo 

images (B). The stomach (stm = stomach) is shown for orientation but lacks 

bioluminescence.
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