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ABSTRACT OF THE THESIS

Modeling and Control of Ibuprofen Crystal Growth and Size Distribution

by

Anh Tuan Tran

Master of Science in Chemical Engineering

University of California, Los Angeles, 2015

Professor Panagiotis D. Christofides, Chair

In this work, we focus on multiscale modeling and control of aseeded batch crystallization

process used to produce ibuprofen crystals. For the modeling of the crystal growth process, we

consider kinetic Monte Carlo (kMC) simulations comprisingof molecule adsorption, desorption,

and migration type microscopic surface events. To account for growth rate variability, we propose

a model for growth rate dispersion (GRD), based on availableexperimental data, which will be

applied at the individual crystal growth level in the kMC simulations. Finally, a model predictive

controller (MPC) is developed in order to control the crystal size distribution of ibuprofen in the

batch crystallization process and the MPC closed-loop performance is compared against constant

temperature control (CTC) and constant supersaturation control (CSC) policies. The proposed

MPC is able to deal with the constraints of the control problem, in addition to minimizing the

spread of the crystal size distribution in a superior fashion compared to the other control method-

ologies, which improves the crystal product quality at the end of the batch.
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Chapter 1

Introduction

Crystallization is a key separation process in the pharmaceutical industry which is estimated to be

over a $1 trillion per year industry. It is used for drug purification, separation, and pre-formulation.

A key consideration in crystallization is that in order to achieve desired crystal product quality,

the process environment must be controlled appropriately.Otherwise, the target drug could lose

purity, stability, and bio-availability.

Simulation techniques are valuable tools that can be used incrystal growth modeling which

usually consist of equilibrium Monte Carlo (MC) and kineticMonte Carlo (kMC) simulations, as

well as molecular dynamics (MD) simulations [23]. A well-written book by [8], in addition to a

review by [36], go into detail about the development of thesesimulation techniques. In regards to

crystallization, MD simulations are quite helpful when looking at how molecules move and how

they are incorporated into the crystal, however, the lengthand time scales of MD simulations make

them difficult to use for process modeling [23]. On the other hand, kMC simulations allow for

more realistic length and time scales by using rate equations that describe different microscopic

phenomena. To this end, kMC simulation methods have been widely used to simulate molecular-

level phenomena like crystal nucleation, growth, and aggregation [1, 4, 5, 12, 13, 33, 34, 42,

14, 18, 20, 19, 16]. Furthermore, kMC simulation methods have been successfully applied to

compute the net crystal steady-state growth rate accounting for the dependence of the desorption
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and migration rates on the local surface micro-configuration. For that reason, we look to investigate

the batch crystal growth process of ibuprofen, one of the most widely used non-steroidal anti-

inflammatory drugs (NSAID), via kMC simulations in this work. Due to the lack of availability of

primary nucleation rate data, we will consider a seeded batch crystallization process and keep the

supersaturation at low enough levels that the impact of nucleation and crystal fines formation will

be minimal compared to the amount of crystals seeded to the system.

Ibuprofen works by reducing prostaglandins, which are the hormones causing inflammation

and pain in the body. These are usually referred to as local hormones since they only act close to

the location where they are produced. Although they are helpful initially since swelling will restrict

injured areas and increased blood flow will assist in healing, longer term pain is undesirable. Thus,

many different types of painkillers are used, where ibuprofen is one of the most common and

widely available choices. In the US, ibuprofen brand Advil was the top over the counter (OTC)

brand by revenue in 2013 with just over $490 million.

More specifically, we first model the ibuprofen crystal growth process. In order to do this,

we investigate the growth rates of the (001) and (011) faces via a kMC simulation model. To

account for variability in experimental crystal growth rate data, we develop a model for growth

rate dispersion (GRD) since this phenomenon is known to affect ibuprofen crystal growth rates

and this model is applied at the individual crystal level. After that, a seeded batch crystallizer

will be considered, requiring the development of mass and energy balances for the modeling of

the continuous-phase variables and this macroscopic modelis combined with the microscopic

crystal growth model. Finally, the crystal size distribution will be controlled by a model predictive

controller (MPC) and compared against classical control strategies used in industry.
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Chapter 2

Ibuprofen Crystal Growth

2.1 Kinetic Monte Carlo Modeling and Simulation

In the present work, we will use kinetic Monte Carlo (kMC) simulations in order to model the

growth rates of ibuprofen crystal faces since crystal growth is a non-equilibrium process. Un-

like equilibrium Monte Carlo simulations, kMC simulationsadd an element of time by using rate

equations representing different microscopic phenomena.Furthermore, this allows modeling the

dependency of the crystal growth rates on the surface micro-configuration, in addition to the ability

to consider individual crystals, thereby allowing for a more realistic model for growth rate disper-

sion. Ibuprofen has unit cell parameters ofa= 14.397Å, b= 7.818Å, c=10.506Å, andβ = 99.70◦

with four molecules per unit cell [38, 39]. For this work, we will consider anN ×N lattice with

one molecule per lattice site and periodic boundary conditions. The types of microscopic events we

consider in our kMC simulations in order to model the crystalgrowth are adsorption, desorption

and migration. Nearest neighbor lists will be used to aide the computational efficiency when cal-

culating the total rates for each of the microscopic phenomena [3]. The rate equations considered

in this work are set up similar to that of Durbin and Feher for lysozyme [7], however, they have

been modified to account for available growth rate data of ibuprofen on the (001) and (011) faces

[24]. Cano et al. [2] reported data for all three faces (i.e.,(001), (011), and (100)), however, they
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conducted their experiments at very low supersaturation (σ = 0.013) which is much lower than

the supersaturation range of our study (0.68≤ σ ≤ 1.20), and thus, we were not able to use their

data for comparison purposes in the present study. If more data becomes available in the future for

the (100) face, then the dynamics of the (100) face can easilybe integrated into the present kMC

simulation model.

2.2 Rate Equations

The per-site adsorption rate is defined as:

ra = Kaσ , (2.1)

whereKa is the adsorption coefficient andσ is the relative supersaturation of the system defined

by Eq. 2.2 below:

σ =
I
E − I∗

E
I∗
E

, (2.2)

whereI is the ibuprofen content,E is the ethanol content, andI
∗

E is the solubility. The solubility

will be taken from [28, 29] and is defined as

I∗

E
= 0.497+0.001026T2, (2.3)

with temperatureT defined in degrees Celsius. Since we consider anN×N lattice model, the total

rate of adsorption is simply

Wa = N2ra. (2.4)

Unlike adsorption, the rates of desorption and migration will be dependent on the local environment

at each lattice site (i.e., number of nearest neighbors to this site). When a particle has a high number

of nearest neighbors, a lower desorption/migration rate will be associated with this site due to the

fact that the particle is more stable in its current location. Likewise, when a particle has very few

4



or no nearest neighbors, that particle will have a higher desorption/migration rate. Thus, we will

use an Arrhenius type equation for the per-site rate of desorption,rd , which is defined as follows:

rd (i) = Kd exp

(

−i
Epb

kBT

)

, (2.5)

whereKd is the desorption coefficient,i is the number of nearest neighbors for the current lattice

site ranging from zero to four (N, S, E, W directions),Epb is the binding energy per bond,kB is the

Boltzmann constant, andT is the temperature in Kelvin. In order to find the total rate ofdesorption,

we sum over the entire lattice. This can be done in a simple wayby taking advantage of the fact

that there are five different types of local environments, rather than checking each individual lattice

site requiring an O
(

N2
)

calculation. Thus, the total rate of desorption is

Wd =
4

∑
i=0

Wdi; Wdi = Mird (i) , (2.6)

whereWdi is the total rate of desorption for lattice sites withi nearest neighbors andMi is the

number of lattice sites withi nearest neighbors. Migration works in an analogous way and is

defined as follows:

rm (i) = Km exp

(

−i
Epb

kBT

)

, (2.7)

Wm =
4

∑
i=0

Wmi; Wmi = Mirm (i) , (2.8)

whererm is the per-site rate of migration,Km is the migration coefficient,Wm is the total rate of

migration, andWmi is the total rate of migration for lattice sites withi nearest neighbors. Lastly,

the amount of time elapsed when an event occurs is defined in the following way:

∆t =− ln(1−ζ )/Wtot, (2.9)

whereζ is a uniform random number, i.e.,ζ = [0,1), andWtot =Wa +Wd +Wm.

A coarse-grained model could be adequate for the purpose of computing the crystal growth
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rate. However, the kMC simulation is employed to compute thenet crystal growth rate accounting

for the dependence of surface migration and detachment rates on the surface micro-configuration.

Furthermore, the evolution of the crystal shape, which is represented by the ratio between the

heights in the direction of the (011) and (001) faces, is modeled through the kMC simulation.

Lastly, the kMC simulation can be used to predict the crystalgrowth dynamics at the operating

conditions where experimental data are not available.

2.3 Growth Rate Dispersion

Growth rate dispersion (GRD) is a well-known phenomenon where crystals of the same type,

undergoing seemingly the same conditions, grow at different rates. More specifically, growth rate

dispersion is defined as the variation in growth rates under fixed thermodynamic and hydrodynamic

conditions. The growth of crystals is mainly caused by the transfer of solute molecules from the

bulk to the kink sites on the crystal surfaces. Therefore, the growth rates of the different crystals

are determined by the interplay between the mechanism of kink site formation and the transport

of solute molecules to the crystal surface, both of which arestochastic processes. Furthermore,

the densities of kink sites and their evolution are functions of the temperature and supersaturation

but also functions of the surface micro-configurations. [9,45, 17, 26, 11, 25]. Previous models

that describe this process include the constant crystal growth (CCG) model [9, 22], the random

fluctuation (RF) model [26], and the fast growers, slow growers (FGSG) model [6, 37, 10]. In

the CCG model, a distribution of crystals has a distributionof growth rates and individual crystals

adhere to a specific growth rate from that distribution during the entire period of growth [22]. The

RF model requires individual crystal growth rates to fluctuate around an average value. Lastly, the

FGSG model states that small crystals will grow at lower growth rates compared to the larger ones.

In the present work, we account for GRD in a way that is similarto the constant crystal growth

(CCG) model by randomly giving each crystal a uniform randomnumber,ζGRD, at the start of the

simulation of each crystal growth process, which will be used to calculate the GRD factor for each

6



crystal. More specifically, GRDf for each crystal will be computed separately in the following way:

GRDf = 2
CGRD

σ
ζGRD+

(

1−
CGRD

σ

)

, (2.10)

whereCGRD is the GRD constant and will be calculated to fit experimentaldata of ibuprofen

crystal growth rate dispersion. It is noted that GRDf is dependent onσ due to the fact that error

bars became too small at lower supersaturation values and too large at higher supersaturation values

when fitting to experimental data without having this dependence. The results of this fit is presented

in the next subsection. The GRD factor will affect the rate ofadsorption (i.e., each crystal will have

a slightly different rate of adsorption depending on theζGRD assigned to that crystal at the start of

the simulation). This will allow for variation in the growthrates in a manner consistent with the

experimentally computed values and it will be explicitly defined in the following way in this work:

σGRD = σGRDf . (2.11)

It is noted that in order for this change to take place,σGRD will replaceσ in Eq. 2.1 to give

ra = KaσGRD. (2.12)

We used the kinetic Monte Carlo model to describe the crystalgrowth rate process determined

by surface mechanisms such as solute molecule adsorption, migration, and desorption processes.

Then, this microscopic model is integrated with the macroscopic model such as mass and energy

balance equations for the crystallizer to construct the multiscale process model which is used to

simulate the batch crystallization process. Within this context, the minor fluctuation in the protein

solute concentration and the temperature in the crystallizer due to Brownian motion is disregarded.

In the future, by adopting a molecular level approach, we could directly model the growth rate

dispersion in the crystallizer at a molecular level. Comprehensive reviews on multiscale modeling

can be found in [44, 43, 3, 35].
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2.4 Fitting the kMC Model Parameters to Experimental Re-

sults

For a given set of simulation conditions comprised of temperature, ibuprofen content, ethanol

content, and water content, the kMC simulation methodologyand GRD model described earlier in

this section result in growth rate values of ibuprofen for the (001) and (011) faces over a range of

supersaturations. In Fig. 2.1, ibuprofen crystal growth rates are modeled at 95% ethanol,I
E = 2,

and a relative supersaturation range of 0.68. σ . 1.20. The growth rates at each point in the

kMC are produced by averaging 640 independent crystal runs with the error bars representing

the standard deviation. Results are compared to experimental growth rates at 95% ethanol from

[24], as well as a best fit line given by [30] which has the equation G = kGs, wherekG = 15 and

s = I
E − I∗

E . While [30] gives an overall growth rate for the crystals, [24] presents the growth rate

data in the direction of the (001) and (011) faces separately.

The model parameters used for the kMC simulations are listedin Table 2.1. Additionally,CGRD

was found to be 0.07 resulting in an average coefficient of variation (CV) for the kMC simulation

data to be 0.14, compared to 0.12 given in [24]. Also, the kMC growth rate data for the (001) and

(011) faces were fit using a least squares linear regression model which will be used later in the

model predictive controller. The results of this fit are

G001= 24.843σ −15.564, (2.13)

and

G011= 24.412σ −7.2772. (2.14)

It is noted that size effects of the lattice were considered and results fromN = 15 and larger were

consistent and showed no change in results. So, for this workN was set to 20 in order to ensure

consistency without being too large, thereby causing an exponential increase in required simulation

time. In this work, the effect of lattice size used in the kMC simulation on the crystal growth rate

8



is minimal in comparison to the effect of lattice sized used in the kMC on the surface roughness of

the crystal surface (a variable that is not of interest in thepresent work; the interested readers may

find more information in [15]). Therefore, we can disregard the finite size effect of the lattice size

on the growth rate.

0.6 0.8 1 1.2
supersaturation (σ)

0

5

10
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20

25
gr

ow
th

 r
at

e 
(µm

/m
in

)
001 face (kMC)
011 face (kMC)
001 face (Nguyen et al.)
011 face (Nguyen et al.)
Rashid et al.

Figure 2.1: Growth rate versus supersaturation for the (001) and (011) faces for the kMC model.
Additionally, the experimental results from Nguyen et al. [24] and the trendline from Rashid et al.
[30] are shown.

Parameter Value Units

Epb/kB (001) 17.47 K

Epb/kB (011) 125.20 K

Ka 380 sec−1

Kd 270 sec−1

Km 300 sec−1

Table 2.1: Parameters for faces (001) and (011) atI
E = 2.
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Chapter 3

Batch Crystallization

3.1 Energy and Mass Balance Equations

The energy and mass balance equations which calculate the change in temperature,T , and ibupro-

fen content,I, are given by the following ordinary differential equations:

dT
dt

=−
ρc∆Hc

ρslurryCpVslurry

dVc

dt
−

U jA j

ρslurryCpVslurry

(

T −Tj
)

, T (0) = T0, (3.1)

dI
dt

=−ρc
dVc

dt
, I (0) = I0, (3.2)

whereρc is the density of the crystal phase,∆Hc is the enthalpy of crystallization,ρslurry is the

density of the slurry phase,Cp is the specific heat capacity,Vslurry is the volume of the slurry phase,

Vc is the total volume of all the crystals,t is the time,U j andA j are the overall heat transfer coeffi-

cient and area between the jacket stream and the crystallizer, respectively, andTj is the temperature

of the jacket stream. Additionally,T0 andI0 are the starting temperature and ibuprofen content of

the batch system, respectively. The values for these parameters are given in Table 3.1. Adding an

energy balance equation in order to take into account the jacket temperature dynamics would not

significantly modify the practical implementation of the controller.
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Parameter Description Value Units

ρc crystal density 1030 mg/cm3

∆Hc enthalpy of crystallization -112.95 kJ/kg
ρslurry slurry density 485-510 mg/cm3

Cp specific heat capacity 1.85-2.0 J/gK
A j surface area of crystallizer wall 0.25 m2

U j heat transfer coefficient of crystallizer wall 1800 kJ/m2hK

Table 3.1: Parameters for faces (001) and (011) atI
E = 2. Please note that the ranges are given for

the slurry density and specific heat capacity since they are calculated by composition of the slurry
throughout the entire simulation. The model parameters adopted from [40, 24].

3.2 Volume Calculation

In order to properly calculate the mass and energy balance terms that require volume change in-

formation, we first need to accurately estimate the volume ofthe ibuprofen crystals. In order to

do this, we need to know the height for all three faces (i.e., (001), (011), and (100)), along with

the interfacial angleα. Since we explicitly model the growth rates for the (001) and(011) faces,

we can easily determine the heights of the (001) and (011) faces. On the other hand, for the (100)

face, we will use visual approximation from [27] to estimateits relative height. The results of this

approximation show that the (100) face is roughly 4 to 8 timesslower growing than the (001) face.

Thus, we will assume:

h100
∼=

h001

6
, (3.3)

whereh100 andh001 are the heights of the (100) and (001) faces, respectively. Second, we will

use the images provided in [24] in order to measure the interfacial angle,α, as a function of

supersaturation. Using these images, we found the following relationship:

α =−14.368◦σ +105.41◦. (3.4)
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With the use of Eqs. 3.3 and 3.4, the volume of each crystal (see e.g., Fig. 3.1) can now be

calculated in the following way:

Vcrystal=
4h001

sin
(α

2

)

(

2h011−h001cos
(α

2

))

h100. (3.5)

We used the kMC model to describe the crystal growth rate process at the microscopic level

accounting for surface mechanisms such as solute molecule adsorption, migration, and desorption

processes, as well as accounting for growth rate dispersion. Then, this microscopic model was

integrated with the macroscopic model such as mass and energy balance equations to construct the

multiscale process model which is used to simulate the batchcrystallization process.

Figure 3.1: Geometry of the ibuprofen crystal. Labels show the (100), (001), and (011) faces, as
well as the interfacial angle,α.
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3.3 Model Predictive Control

In the seeded batch crystallization process of ibuprofen, kMC simulations are considered for the

crystal growth process via adsorption, desorption, and migration type microscopic surface events.

The growth rates produced by these simulations are directlyrelated to the supersaturation of the

system, which can be modified by changing the temperature of the jacket which is in contact with

the batch reactor. In this section, a model predictive controller (MPC) is presented for seeded

batch ibuprofen crystallization control. MPC is used in order to provide optimality, robustness,

and constraint handling in the batch crystallization process [40, 41, 20]. In particular, the ob-

jective of the MPC will focus on minimizing the crystal size distribution by computing a set of

optimal jacket temperatures over the length of the prediction horizon. The main reason shape con-

trol is not directly considered in this work is due to the factthat the shape of ibuprofen crystals is

more dependent on the solvent choice rather than the batch temperature. Additionally, an actuator

constraint on the rate of change of the jacket temperature isimposed, as well as a constraint on the

temperature and supersaturation of the system so that crystallization will take place in an appro-

priate environment to avoid damaging the crystal. Furthermore, the growth rates will be modeled

via Eqs. 2.13 and 2.14 in the MPC. Lastly, the energy and mass balance equations are considered

13



(i.e., Eqs. 3.1 and 3.2). The formulation for the MPC developed in this work is as follows:

minimize
Tj,1,...,Tj,i,...,Tj,p

p

∑
i=1

((

Vset−
M1

M0

)

/Vset

)2

subject to
dM1

dt
= GvolM0, M0 = 5×106

G001= 24.843σ −15.564, G011= 24.412σ −7.2772

G100=
G001

6

σ =
I
E − I∗

E
I∗
E

,
I∗

E
= 0.497+0.001026T2

〈Vcrystal〉=
4〈h001〉

sin
(α

2

)

(

2〈h011〉−〈h001〉cos
(α

2

))

〈h100〉

〈hk〉= 〈hk (ti−1)〉+Gk∆

dT
dt

=−
ρc∆Hc

ρslurryCpVslurry

dM1

dt
−

U jA j

ρslurryCpVslurry

(

T −Tj
)

, T (0) = T0

dI
dt

=−ρc
dM1

dt
, I (0) = I0

Tmin ≤ T ≤ Tmax,

∣

∣

∣

∣

Tj,i+1−Tj,i

∆

∣

∣

∣

∣

≤ 2.0◦C/min

σmin ≤ σ ≤ σmax

i = 1,2, . . . , p, k ∈ {001,011,100}

(3.6)

wherep = 10 is the length of the prediction horizon,∆ = 40 is the sampling time in seconds,Vset is

the desired average volume set point,〈Vcrystal〉 is the average volume of the crystal distribution,Tj

is the jacket temperature,Tj,i is the jacket temperature at theith prediction step,〈hk〉 is the average

height on facek, andM0 andM1 are the zeroth and first moments of the crystal size distribution,

respectively.M0 represents the total number of crystals andM1 represents the total volume of the
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crystals. It is noted that since we consider a seeded batch crystallizer without nucleation,M0 will

be constant for this work. If nucleation data was available,then it follows thatM0 would need to

be a variable in the control problem given by Eq. 3.6 and more considerations would be taken to

attempt to minimize the presence of crystal fines. Additionally, Gvol is the volumetric growth rate

and is calculated by finding the change in average crystal volume. Finally, values ofσmin = 0.6,

σmax = 1.3, Tmin = 10◦C, andTmax = 40◦C are used for this work. The set of optimal jacket

temperatures along the prediction horizon is obtained by solving Eq. 3.6 in a receding horizon

fashion with IPOPT, an open source software package for large-scale nonlinear optimization. The

first value,Tj,1, is then applied to the system until the next sampling time when a new set of optimal

jacket temperatures is calculated.

The interested readers may find more detailed analysis and handling of the effect of model

parameter uncertainty on the optimal jacket temperature trajectories in [31, 32, 21].
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Chapter 4

Closed Loop Simulations

For the seeded batch crystallization simulations, we investigate the crystal size and shape distribu-

tions. The same initial conditions, other than starting temperature, are used in every simulation to

ensure consistency. For this work, the initial conditions of the seeded batch reactor areVsolvent=

400mL (95% ethanol),IE =2, Istart=6×105mg, andM0=5×106. Each of the simulations is com-

pleted when the average crystal volume reaches the set point, Vset= (150µm)3 = 3.375×106µm3.

Due to the nature of the batch process and the dependence of the growth rate on the supersatura-

tion and temperature trajectories, the time to finish each simulation will vary. To deal with this,

we will consider a normalized time to compare the different simulations, i.e., 0 at the start of the

simulation and 1 when the batch has reachedVset. Also, it is noted that the kMC simulations are

run with constant batch parameters (i.e., temperature, ibuprofen content, and supersaturation) for

0.333 seconds. At that point, Eqs. 3.1 and 3.2 are calculated, all system parameters are updated,

and this process is repeated until the end of the simulation.

4.1 MPC Performance

In this subsection, we investigate the closed-loop performance of the proposed MPC scheme to

regulate the volume and shape distributions of ibuprofen crystals produced from a seeded batch
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crystallization process. Specifically, we look at the effect of different initial temperatures and

growth rate dispersion on the size and shape distributions of ibuprofen crystals. We consider

starting temperatures ranging from 15◦C to 30◦C with a step size of 5◦C. The crystal volume

distribution for each of the cases is shown in Fig. 4.2. What can be noticed is that the lower

starting temperatures lead to a slightly more narrow size distribution. This is due to the fact that

lower temperatures correspond to higher supersaturation values, and at these higher supersaturation

values the relative effect of the GRD is less compared to the effect of GRD on lower supersaturation

values (see e.g., Fig. 2.1). The differences in each of the starting conditions becomes much more

noticeable in Fig. 4.3 which shows the crystal shape distribution. We define the crystal shape to

be the relative average height of the (011) face to the (001) face since the (100) face is determined

by Eq. 3.3. The crystal shape distribution not only becomes wider as the starting temperature gets

higher, but also it shifts to the right meaning that the crystals become more elongated. Again, when

looking at Fig. 2.1, it is evident that the ratio between the (011) and (001) faces is greater at lower

values of supersaturation (i.e., higher values of temperature) which results in an elongated crystal

shape for the higher starting temperatures in Fig. 4.3. Looking at Fig. 4.1, we can infer a more

detailed view of the dynamics of the batch crystallizer conditions. What is important to notice is

that MPC is able to successfully deal with the constraints ofthe system (e.g.,Tstart= 15◦C or 30◦C

where the supersaturation starts outside of the supersaturation constraint region). Furthermore,

after the MPC has changed the batch temperature from the initial starting temperature, each of

the different simulations follows a path that resembles crystallizer cooling. This is done since

as the crystallization progresses, ibuprofen content willgo from the slurry phase to the crystal

phase causing a decrease in concentration (i.e.,I
E ). In order to balance this effect and keep the

supersaturation from falling to very low values, the temperature is lowered in order to keep the

crystal growth progressing.
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Figure 4.1: Concentration, supersaturation, and temperature versus normalized time for MPC
showing results for starting temperatures 15◦C, 20◦C, 25◦C, and 30◦C. For the temperature plot,
the dotted lines represent the jacket temperature,Tj, for each of the runs.
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Figure 4.2: Crystal volume distribution for MPC showing results for starting temperatures 15◦C,
20◦C, 25◦C, and 30◦C.
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Figure 4.3: Crystal shape distribution for MPC showing results for starting temperatures 15◦C,
20◦C, 25◦C, and 30◦C.

19



4.2 Comparison of MPC Performance With Other Control Strate-

gies

In order to compare the performance of the proposed MPC, we performed additional simulations

using constant temperature control (CTC) and constant supersaturation control (CSC) strategies.

For these simulations, we chose the starting temperatureTstart= 20◦C for CTC, CSC, and MPC

which corresponds to a starting supersaturationσ ∼= 1.2. This starting point was chosen to ensure

both CTC and CSC would be in a valid operating region accounting for the desired supersaturation

and temperature ranges since these control methods are unable to deal with constraints. The crystal

volume distribution can be seen in Fig. 4.5. It is clear that CTC leads to the most broad crystal

size distribution and it can be seen that MPC gives a slightlymore narrow distribution than CSC.

Similar behavior is seen in Fig. 4.6 for the shape distribution where CSC and CTC shift the crystal

shape distribution to the right compared to the MPC. MPC produces the most narrow crystal size

distribution due to the jacket temperature trajectory it chooses and due to its ability to work within a

constrained region. Additionally, the way the MPC goes about minimizing the volume distribution

also happens to produce the most narrow crystal shape distribution.

The differences in each of these policies are highlighted when looking at the dynamics of the

batch reactor in Fig. 4.4. As expected, CTC holds the jacket temperature at 20◦C throughout the

entire simulation, however, it is noted that the supersaturation drops significantly below 1.2 in the

CSC policy. This is due to the actuator constraint onTj thereby limiting the maximum rate of

change and causing the supersaturation to drop. It is also interesting to note that MPC and CSC

take nearly identical pathways in terms of concentration toreach the desired set-point. Overall,

MPC is able to outperform the other techniques since it is able to “plan ahead” and predict what

will happen next which is especially important when there issignificant concentration drop in the

system.

GRD of individual crystal faces, which is modeled as a function of supersaturation by using

the coefficient of variation of the corresponding facet growth rate, decreases with an increase in
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supersaturation. Therefore, when the controller primary objective is to lessen the influence of

GRD on the final CSD (by explicitly penalizing the GRD in the cost function), the ibuprofen batch

crystallization process is operated constantly by the controller in high supersaturation regime. The

operating strategy of such an MPC however is identical to that of the MPC used in the present work

whose primary objective is to achieve the shortest operating time that leads to the desired average

crystal size. Furthermore, in this work, due to the lack of ibuprofen primary nucleation rate data,

the maximum allowable supersaturation level inside the batch crystallizer is determined to be 1.3

in order to minimize the primary nucleation and its impact onthe CSD. It is also worth mentioning

that due to the exponential decay dependence of the GRD of the(001) face on the supersaturation,

the GRD of the (001) face can change significantly with a smallfluctuation in supersaturation.

Due to this fact and the operating constraint of how quickly temperature of the crystallizer can

be adjusted, and the fact that larger crystals deplete the solute concentration in continuous phase

faster than smaller crystals, the MPC penalizing GRD explicitly in its cost function becomes more

sensitive to the size of the sampling time interval because aslight change in the supersaturation

level during sampling time can have a significant impact on the value of the cost function. Sim-

ulation data (not reported here for brevity) confirm that changing the cost function to add penalty

on GRD would only make the controller more sensitive to sampling time and more complicated

without leading to a different operational behavior that would reduce CSD polydispersity further.
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Figure 4.4: Concentration, supersaturation, and temperature versus normalized time for CTC,
CSC, and MPC. For the temperature plot, the dotted lines represent the jacket temperature,Tj,
for each of the runs. Additionally, it is noted that both CSC and MPC follow a very similar path in
the concentration plot until the very end.
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Figure 4.5: Crystal volume distribution for CTC, CSC, and MPC at the end of the batch.
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Figure 4.6: Crystal shape distribution for CTC, CSC, and MPCat the end of the batch. Please
note that one bar from CSC has been placed in front of MPC due tothe fact that it was completely
covered by the MPC bars.
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Chapter 5

Computational Performance and Scaling

To close out this section, it is important to note the computational performance and scaling for this

work. In order to make this comparison, we ran the same seededbatch crystallization simulation

and initial conditions with different random seeds on the Texas Advanced Computing Center’s

Stampede cluster. The code was optimized using Message Passing Interface (MPI) over the crystal

growth stage since it was determined to be the bottleneck of this simulation. Specifically, at the

start of the simulation, crystals are assigned to one of the available cores. Next, the growth process

runs while the batch system parameters remain constant until it is time to update the crystallizer

conditions. After these parameters are updated, the crystals will go back into the growth stage on

their assigned core. This process is repeated until the end of the simulation. The results of these

simulations for varying number of cores are shown in Fig. 5.1and the data points are given in

Table 5.1. What can be seen from Fig. 5.1 is that there is a significant decrease in time required

to complete the batch simulation as the number of cores are increased. Looking at Table 5.1, it

is evident that as the number of cores is doubled, the simulation time goes down by about half.

In order to further analyze the scalability of this parallelprocess, it is useful to analyze the strong

scaling behavior, which is defined as:

Sstrong=
t1

ncorestn
, (5.1)
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wheret1 is the time the process takes on 1 core,ncoresis the number of cores, andtn is the time the

process takes onn cores. Strong scaling is good for analyzing systems like this one that are CPU

bound, showing how well the process can be parallelized without adding too much wasted time

in overhead costs. From Table 5.1, it can be seen that the strong scaling stays above 90% when

using 16 or fewer cores and drops down afterwards. This is likely due to the fact that simulations

were run on compute nodes which had 16 cores per node (two 8-core CPUs) and when going

over 16 cores, communication must then take place between multiple nodes, thus adding overhead

costs. Overall, it is clear from both Fig. 5.1 and Table 5.1 that the batch crystallization process of

ibuprofen is greatly benefiting from the use of MPI for the kMCprocess.

cores time (h) speedup (%) Strong Scaling (%)

1 35.82 0.0 100.0

2 17.95 49.9 99.8

4 8.98 74.9 99.7

8 4.50 87.4 99.4

16 2.34 93.5 95.6

32 1.30 96.4 86.2

64 0.75 97.9 74.8

Table 5.1: The time to finish each simulation for varying number of cores and the corresponding
speedup and strong scaling. Please note that the speedup is defined ast1−tn

t1
, wheret1 is the time

the process takes on 1 core andtn is the time the process takes onn cores.
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Figure 5.1: The number of cores versus the average amount of time required to finish the batch
simulation. Error bars are shown as one standard deviation over 10 simulations for each batch run.
The best fit line has equation: time= 33.795cores−0.938 with anR2 = 0.9982.
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Chapter 6

Conclusions

In this work, we studied the seeded batch crystallization process of ibuprofen. First we used kMC

simulations to develop a growth rate model which also accounts for GRD. Next, we proposed an

MPC strategy in order to control the crystal size distribution. Lastly, we compared the proposed

MPC strategy to CTC and CSC policies. We found that the MPC is able to deal with constraints

and a wide variety of starting conditions for ibuprofen crystal growth. Additionally it was found

that MPC produced more narrow volume and shape distributions compared to the other control

strategies which is important because the product quality is directly determined by the final crystal

size and shape distributions. It is important to note that the growth rate dispersion is mainly re-

sponsible for the wide distribution ranges seen in this work. Lastly, we found an extreme benefit

in the use of MPI for this work due to heightened CPU time requirements.
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