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Abstract

Speech perception requires ongoing perceptual category learn-
ing. Each talker speaks differently, and listeners need to learn
each talker’s particular acoustic cue distributions in order to
comprehend speech robustly from multiple talkers. This pho-
netic adaptation is a semi-supervised learning problem, be-
cause sometimes a particular cue value occurs with informa-
tion that labels the talker’s intended category for the listener,
but other times no such labels are available. Previous work has
shown that adaptation can occur in both purely supervised (all
labeled) and purely unsupervised (all unlabeled) settings, but
the interaction between them has not been investigated. We
compare unsupervised with (semi-) supervised phonetic adap-
tation and find, surprisingly, that adult listeners do not take ad-
vantage of labeling information to adapt more quickly or effec-
tively, even though the labels affect their categorization. This
suggests that, like language acquisition, phonetic adaptation in
adults is dominated by unsupervised, distributional learning.
Keywords: Cognitive Science, Linguistics, Psychology, Lan-
guage understanding, Learning, Speech recognition

Introduction
Everyone speaks differently. In order to deal with this vari-
ability, listeners need to adapt to each new talker they meet,
learning how they produce each phonetic category. For in-
stance, in order to tell whether a talker intended to produce
a /b/ or /p/, a listener needs to first learn that talker’s /b/ and
/p/ distributions of phonetic cues like voice onset time (VOT).
We refer to this distributional learning as phonetic adaptation.

Like all perceptual category learning, phonetic adaptation
can be supervised or unsupervised. In supervised learning,
each observed VOT value is labeled with information that
tells the listener whether the talker intended to produce /b/ or
/p/. Such labeling information might come from, for instance,
the surrounding word (bash vs. ∗pash), or from visual cues
to articulation. In unsupervised learning, however, no such
labeling information is available. This is the case during lan-
guage acquisition (e.g., Vallabha, McClelland, Pons, Werker,
& Amano, 2007) but it can also occur in adult language adap-
tation when a VOT value occurs in a novel word, or a word
that could have either /b/ or /p/, like beach/peach. In general
unsupervised learning is harder: in addition to figuring out
the distribution of VOTs for each category from limited ob-
servations, listeners also have to figure out how each of those
observations should be categorized. Each of these depends
on the other: how to categorize VOTs depends on the dis-
tributions for each category, while the distributions for each
category depend on which VOTs are thought to belong to that
category.

Both supervised and unsupervised phonetic adaptation
have been observed in experiments. The earliest findings of

phonetic adaptation were from supervised paradigms. For in-
stance, after repeatedly hearing an ambiguous /f/-/s/ sound
spliced into words that can only end in /f/ (e.g., sheriff ), lis-
teners classified more items on an /f/-/s/ continuum as /f/, and
vice-versa when the ambiguous /f/-/s/ was spliced into /s/-
final words (e.g., Norris, McQueen, & Cutler, 2003; Kraljic
& Samuel, 2005).

A small number of recent studies have demonstrated that
phonetic adaptation can occur in an unsupervised context as
well. Both Clayards, Tanenhaus, Aslin, and Jacobs (2008)
and Munson (2011) had listeners listen to /b/-/p/ minimal pair
words (e.g., beach/peach) with different VOTs, and click on
a picture to indicate the word they heard. Across trials, the
VOTs were drawn from a bimodal distribution with a low and
a high VOT cluster. Listeners learned these distributions, as
reflected in how they classified the VOT continuum, both the
location and slope of their category boundary.

Such unsupervised adaptation requires that listeners com-
bine the cue distributions they actually observe with their
prior knowledge about what distributions are typical across
talkers (Kleinschmidt & Jaeger, 2015). If a listener hears
words with VOTs that cluster around 0 ms and 40 ms, they
can infer that the mean VOT for /b/ is 0 ms and for /p/ is
40 ms, and that their classification should switch from /b/ to
/p/ around 20 ms. In the absence of labels, each cue value is
in principle ambiguous, and listeners need to observe enough
different cue values to infer the underlying clusters.

In actual experience, however, phonetic adaptation is rarely
purely unsupervised or supervised, with a mix or labeled and
unlabeled observations. This raises the question: do listeners
take advantage of extra information provided by labeled ob-
servations in phonetic adaptation? Work on domain-general
semi-supervised category learning suggests that learners can
leverage labeled trials to make learning from unlabeled tri-
als even more effective (Gibson, Rogers, & Zhu, 2013). Ex-
isting phonetic adaptation paradigms do not directly answer
this question, being purely supervised or purely unsuper-
vised. Moreover, it’s possible that what appears to be su-
pervised learning in phonetic adaptation actually reflects a
combination of cue-combination and unsupervised learning
(Kleinschmidt & Jaeger, 2011, 2015). In this paper, we in-
vestigate the effect of adding some labeled trials to an other-
wise unsupervised phonetic adaptation paradigm. This allows
us to compare unsupervised and semi-supervised adaptation
in the same paradigm, and thus directly assess the role that
labeling information might play in phonetic adaptation.
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Figure 1: Stimuli distributions for unshifted condition in Ex-
periment 1. The implied category boundary is at 20ms

Experiment 1
Methods

Subjects We recruited 124 subjects via Amazon’s Mechan-
ical Turk, who were paid $2.00 for participation, which took
about 20 minutes. We excluded subjects whose accuracy at
0 ms and 70 ms VOT—as extrapolated via a logistic GLM—
was less than 80% correct. 10 subjects were excluded for this
reason, leaving 114 for analysis.

Stimuli Following Clayards et al. (2008), subjects heard
spoken words, all members of /b/-/p/ minimal pairs
(beach/peach, bees/peas, and beak/peak) synthesized with
VOTs ranging from−20 ms to 90 ms. The actual VOT values
that subjects heard were drawn from a bimodal distribution.
The baseline, unshifted distribution (Figure 1) had a mean of
0 ms for /b/ and 40 ms for /p/ with an implied /b/-/p/ boundary
at 20 ms. Subjects heard either this unshifted distribution, or
a version that was shifted up by 10 ms VOT, with an implied
category boundary at 30 ms VOT.

Procedure On each trial, two pictures (target + distractor)
were shown, and subjects were instructed to click on the pic-
ture that matched a spoken target word (e.g., beach). There
were two kinds of trials. On unlabeled trials, the distractor
picture was the minimal pair neighbor of the target word (e.g.,
a peach, Figure 2a), meaning that listeners had no additional
information besides the VOT about whether the word started
with a /b/ or a /p/. On labeled trials, the onset of the distrac-
tor picture’s name was a minimal pair neighbor of the target
word, but the rest was unrelated (e.g., bees, Figure 2b). This
meant that the end of the word served as a label for the initial
segment, and hence labeled the VOT value as either /b/ or /p/.

Subjects were randomly assigned to one of two conditions.
In the unsupervised condition, all trials were unlabeled. In
the supervised condition half were labeled and half unla-
beled. In the supervised condition, each possible VOT was
either always labeled, or always unlabeled (Figure 1). Specif-
ically, the modal VOTs for /b/ and /p/ (0 ms and 40 ms in
the unshifted condition) were always labeled, the stimulus at

(a) Unlabeled trial with minimal pair distractor “peach”.

(b) Labeled trial with non-minimal pair distractor “peas”.

Figure 2: Example trial displays for the target word “beach”

±10ms VOT from the modal values (−10 ms, 10 ms, 30 ms,
and 50 ms in the unshifted condition) were always unlabeled,
and other stimuli were always labeled (−20 ms, 20 ms, and
60 ms).

Results
People used the labels for classification On labeled trials
in the supervised condition, listeners responded consistently
with the label 98% of the time. This means that the response
options available did, as we intend, effectively label the per-
cept.

Learning was good overall Figure 3 (top) shows the ag-
gregate classification functions (averaged over subjects) for
each third of the experiment. To evaluate how well listen-
ers learned the distributions of VOTs they were exposed to,
we analyzed the classification responses on unlabeled tri-
als1 using a mixed-effects logistic regression model. This
model included fixed effects for stimulus VOT, supervised
vs. unsupervised condition, distribution shift condition (0 ms
or 10 ms), trial, and all interactions thereof. We used the max-
imal random effects structure for this design, with by-subject
random intercepts and slopes for all the within-subject vari-
ables (trial, VOT, and their interaction). Table 1 shows the
fixed effect coefficient estimates for this model and describes
the details of how each variable was coded.

Figure 3 (bottom) shows the predictions of these fixed ef-
fects (i.e., the fitted classification functions) for each condi-
tion at the midpoint of each third of the experiment. We eval-
uated learning as the location of the /b/-/p/ category boundary,
or where the fitted classification functions crossed the 50%
/p/-response line.

Listeners learned well overall, and their classifications re-
flected the implied category boundaries of 20 ms and 30 ms
within 2 ms.

1In the unsupervised condition, we only analyzed trials that
would also have been unlabeled in the supervised condition.
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Figure 3: In Experiment 1, listeners’ classification of unlabeled trials (lines) closely matches the implied category boundaries
(open circles) for the unshifted (red) and 10 ms shifted (blue) distributions, but there is no difference between supervised and
unsupervised learning (solid vs. dashed lines). Learning appears as the differences between 0 ms and 10 ms shifts (red vs.
blue) and increasingly steep category boundaries (left to right). Top lines are raw average responses, and bottom lines are fitted
logistic classification functions and 95% CIs on fixed effects (see Table 1).
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Figure 4: Stimuli distributions in Experiment 2, unshifted
condition.

Supervision had no effect on learning Because labels re-
duce the difficulty of the distributional learning problem, we
expected that learning would be faster or better overall in the
supervised condition. Contrary to these expectations, learn-
ing in the supervised condition was neither faster, nor more
complete, than in the unsupervised condition: the estimated
category boundaries differ by less than 1 ms VOT between
conditions.

Experiment 2
One of the shortcomings of the design of Experiment 1 is
that in the supervised condition, listeners never heard exactly
the same stimulus with and without a label. This means that
the apparent inability or unwillingness of listeners to use the
labels for learning might reflect stimulus-specific learning, as
might be predicted by an episodic model of speech perception
(Goldinger, 1998; Johnson, 1997). The sparse distribution
of unlabeled trials may also reduce the statistical power by
reducing the resolution with which the classification bound-
ary can be estimated. Experiment 2 varies the design slightly

to determine whether labels affect adaptation when the same
stimuli occur as labeled and unlabeled, and when unlabeled
test trials occur over a broader range of VOTs.

Methods
The design was identical to that of Experiment 1, except for
the following modifications. First, we modified the super-
vised condition, spreading out labeled and unlabeled trials
more evenly (see Figure 4). Across trials, many VOT val-
ues occurred as both labeled and unlabeled trials, unlike in
the supervised condition of Experiment 1 where each VOT
value only occurred as labeled, or only occurred as unlabeled.
Second, we only ran this modified supervised condition, and
compared it to the unsupervised condition of Experiment 1.

Subjects We recruited 62 subjects via Amazon’s Mechani-
cal Turk, who were paid $2.00 for participation, which took
about 20 minutes to complete. 2 subjects were excluded for
failing to reliably classify the continuum, and 2 were ex-
cluded from analysis because they had already participated
in Experiment 1, leaving 58 subjects for analysis.

Results
As in Experiment 1, on labeled trials listeners used the labels
to guide their responses, responding consistently with the la-
bel 98% of the time.

We analyzed learning in the same way as Experiment 1, us-
ing the unsupervised condition from Experiment 1 as a base-
line. Unlike in the analysis of Experiment 1, we considered
all trials from the unsupervised condition, because the labeled
trials in the supervised condition of Experiment 2 covered the
entire continuum. Figure 5 shows the raw data (top) and the
fitted classification functions (bottom) and Table 1 shows the
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Figure 5: In Experiment 2, for both distributions listeners’ classification (lines) closely matches the category boundary implied
by the distributions (open circles), just as in Experiment 1 (compare with Figure 3). Labels still made no difference (solid
vs. dashed lines), even though labeled trials were distributed more evenly over the VOT continuum than in Experiment 1.

fixed effects estimates.
As in Experiment 1, listeners learned quickly and their cat-

egory boundaries were very close to those implied by the dis-
tributions of VOTs they heard. Again, however, learning in
the supervised condition (of Experiment 2) was neither faster
nor more complete than in the unsupervised condition (of Ex-
periment 1): the category boundaries for supervised and un-
supervised were within 2 ms of each other.

Discussion
Even when the same stimuli occur with and without labels,
the availability of labels appears to make little difference in
adapting to a novel talker’s /b/ and /p/ categories. This sug-
gests that the failure to find effects of supervision in Exper-
iment 1 was not due to the fact that labeled and unlabeled
stimuli were acoustically different.

General Discussion
In two experiments we directly compared phonetic adapta-
tion with and without supervision. The presence of informa-
tion that labels an acoustic stimulus as a /b/ makes the task
of learning the distribution of acoustic cues for the /b/ cate-
gory easier, at least in principle. Normative theories that treat
phonetic adaptation as a kind of distributional learning thus
predict that, in general, the availability of labels should make
adaptation faster, more complete, or both (Kleinschmidt &
Jaeger, 2015).

Contrary to this prediction, we did not find any effect of su-
pervision on the distributional learning of cue-category map-
pings in adults. At first glance this contradicts the results of
other studies on supervised phonetic adaptation, which sug-
gest that people do use labeling information to facilitate learn-
ing. For instance, Norris et al. (2003) found adaptation when
listeners heard an ambiguous /s-S/ spliced into words that

consistently labeled it as either /s/ or /S/. However, when
Norris et al. (2003) spliced the same sound in novel words
that provided no labeling information, listeners did not adapt,
suggesting that labeling is crucial for phonetic adaptation.
How can we reconcile these apparently contradictory results?
We briefly discuss four possibilities here: that the kind of la-
bel matters, that learning was too easy, that self-supervision
overwhelms any outside labels in this task, and that our labels
were not sufficiently informative.

What kind of label?

One possibility is that the kind of label matters. In previous
studies on phonetic adaptation where labels are provided, the
labels come either from a visual component of the stimulus
(e.g., a video of a natural production of /aba/, dubbed over
audio of an ambiguous /aba/-/ada/, Bertelson, Vroomen, &
de Gelder, 2003) or from the lexical context (e.g., an am-
biguous /s/-/S/ spliced into the word dino aur, Norris et al.,
2003; Kraljic & Samuel, 2005). In both cases, the label is an
intrinsic part of the (audio-visual) speech signal itself. In our
design, the label comes from the pragmatic context, the avail-
able response choices. It is possible that listeners can use this
sort of pragmatic information to guide their responses, but
that it is nevertheless not available to whatever systems are
responsible for perceptual learning.

A related possibility is that labels that are intrinsic to the
signal affect distributional learning in a purely bottom-up
way. That is, disambiguating visual information (a natural
video of /aba/) might function not at the level of identify-
ing the category that the talker intended to produce, but by
changing the cue that is perceived. Indeed, there is abundant
evidence that cues are combined in this way within and across
modalities, in speech perception (Bejjanki, Clayards, Knill, &
Aslin, 2011; Toscano & McMurray, 2010) and in perception
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more generally (cf. Ernst & Bülthoff, 2004). If adaptation is
driven by distributional learning of the integrated multimodal
percept, rather than the component cues, then what appears to
be sensitivity to category labels in previous adaptation studies
may instead by bottom-up distributional learning of not-fully-
ambiguous multimodal cues (Kleinschmidt & Jaeger, 2011).

A learning ceiling effect?
Listeners adapted very well to both the unshifted and 10 ms-
shifted distributions, with their classifications matching the
implied category boundaries even in the first third of the ex-
periment. This suggests that learning these distributions may
have been too easy for the labels to make any difference.2 It
remains a question for future work to see whether a more sen-
sitive paradigm can find an effect of labels by, for instance,
using a smaller number of exposure trials to induce adapta-
tion coupled with with a separate pre- and post-test to assess
adaptation.

Self-supervision
Unlike most studies on domain-general semi-supervised
learning, listeners in our studies have a great deal of prior
experience with the categories we are teaching them, at least
as they are produced by other talkers. This makes even our
unsupervised condition partially supervised: listeners’ prior
experience provides a self -supervision signal, or, in Bayesian
terms, a prior (Kleinschmidt & Jaeger, 2015). It thus could
be the case that this prior is sufficiently informative to make
any additional information provided by the labels themselves
redundant.

A related, if more extreme, possibility is that listeners
might decide the first time they hear, for instance, a VOT of
10 ms that it is a /b/, and never change that belief. However,
the fact that the category boundaries grow steeper with more
exposure suggests that this is not correct: if listeners commit-
ted to a categorization of each individual stimulus early, then
their categorization functions should be sharp and constant
throughout the experiment.

How informative is each label?
Previous phonetic adaptation studies that used labels applied
those labels to trials that were acoustically maximally am-
biguous (e.g., Bertelson et al., 2003; Kraljic & Samuel, 2005;
Norris et al., 2003). This makes each label maximally infor-
mative without causing a cue conflict between the label and
how listeners would have classified the cue without a label.
In our design, labels occurred on many different cue values,
many of which listeners would already have classified con-
sistently with the label a priori. Thus, on average, each label
in our design provides substantially less information for the
listener than in previous designs. This may explain the fail-
ure to find any effect of labels on adaptation: listeners simply

2We also investigated larger shifts of 20 ms and 30 ms, for which
adaptation was incomplete. Nevertheless, labels made no difference
and so for the sake of brevity we do not report the detailed results
here.

did not gain enough extra information about the underlying
distributions from the labels we provided them for it to make
a difference in their learning behavior. This possibility seems
the most likely explanation of our results, and calls for further
work using the same kind of labels, but with shorter exposure
where the labels are more informative along the lines of ear-
lier supervised adaptation studies (e.g., Norris et al., 2003).

Conclusion
In two studies, we found that phonetic adaptation was insen-
sitive to label information, even thought those labels changed
listeners’ classifications. Normative theories that see phonetic
adaptation as a sort of statistical inference predict that lis-
teners should use all information available to them in order
to more effectively adapt to novel talkers (Kleinschmidt &
Jaeger, 2015). While our results appear to violate that predic-
tion, there are some important caveats. Most importantly, the
labels we used may not have provided enough additional in-
formation about the underlying distributions, and for the pur-
poses of learning the category distributions may have been
redundant with the statistics of the cues themselves. This
suggests a more nuanced understanding of the predictions of
normative models of adaptation. The combination of prior ex-
perience with other talkers and sufficient observations from a
category might mean that, in many everyday situations, the
availability of labels does not contribute enough extra infor-
mation to change listeners’ behavior. Further modeling and
behavioral work is required to investigate the tradeoff be-
tween prior experience, number of observations, and infor-
mativity of labels in adaptation. Regardless, it is still impor-
tant to note that the same labels may be informative about
how to classify but relatively uninformative about the overall
distribution.
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