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Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential 
component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling 
open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, 
mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, 
the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, 
abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals 
(endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade- 
off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
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Introduction
(Written by Nancy A. Eckardt, Editor)

Proteolysis is Nature’s way of keeping house. While some peo-
ple can function quite happily in a house full of disorganized piles 
of a lifetime of accumulated stuff, an organism’s ability to thrive 
and reproduce depends on highly functioning proteolytic systems 
to keep the “stuff” (i.e. proteins) in check. More than just “house-
keeping,” proteolytic systems serve as “house managers”—not 

only degrading proteins to prevent their overaccumulation and 

recycle amino acids but also carrying out regulatory processing 

of proteins to alter or fine-tune critical pathways in growth, devel-

opment, and responses to environmental signals. Regulation of 

protein half-life, as well as proteolytic processing as a post- 

translational modification, is a prevalent mechanism that modu-

lates protein function and ensures proper protein stoichiometries 
throughout the proteome.
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Proteolytic processing occurs through a wide range of mecha-
nisms in eukaryotic cells. In addition to a plethora of individual 
peptidases located in different cellular compartments, major 
routes for protein turnover include the ubiquitin-proteasome sys-
tem (UPS), which operates principally in the cytosol and nucleus, 
and the delivery of proteins, protein complexes, and organelles to 
the vacuole for degradation. The two major routes of delivery of 
cellular components to the vacuole are autophagy and endocyto-
sis. Chloroplasts and mitochondria also maintain independent 
degradation systems (van Wijk 2015). There are numerous associ-
ated pathways for targeting and delivering proteins, protein com-
plexes, and whole organelles bound for degradation to the 
appropriate destination. In this commentary, researchers working 
on different aspects of plant proteolysis address major open ques-
tions in their field of expertise. We acknowledge that the topics 
covered represent only a small fraction of the proteolytic events 
taking place in plant cells, and we apologize to readers whose fa-
vorite proteases or proteolytic systems were left out.

Questions addressed

Proteolysis and cell biology

• What is the role of the F-box protein FBL17 in the G1/S-phase 
transition in Arabidopsis?

• What is the role of autophagy in the plant DNA damage 
response?

• How do proteolytic networks regulate mitochondrial 
function?

N-terminal signals for degradation pathways

• What is the effect of N-terminal acetylation on protein 
half-life?

• The Arg/N-degron pathways of protein turnover: Boutique or 
bulk?

• What are the degrons and molecular players in the chloro-
plast N-degron pathway?

Roles of proteolysis in developmental and metabolic 
signaling

• How do plants use ubiquitin-mediated proteolysis to regulate 
photomorphogenesis?

• How does proteolysis of core signaling components occur in 
different subcellular locations to modulate the abscisic acid 
(ABA) pathway?

• How does the D14 receptor function as both receptor and en-
zyme, linking hormone perception to protein degradation?

• Who takes the lead in the intricate dance between autophagy 
and sugar metabolism?

• What is the role of proteolysis in fruit ripening regulation?

Roles of proteolysis in plant responses to biotic/abiotic 
signals

• How does endoplasmic-reticulum-associated degradation 
(ERAD) function in model plants and crops?

• How is chloroplast-associated protein degradation 
(CHLORAD) regulated in response to developmental and envi-
ronmental cues?

• How does autophagy contribute to drought tolerance?
• How does the fine-tuning of proteasome regulation impact the 

trade-off between growth and defense?
• Why are there so many peptidases in plants, particularly in 

the subtilase family?

The UPS
The UPS tags and delivers proteins to the 26S proteasome, an 
ATP-dependent, multi-catalytic protease complex that degrades 
proteins in both the cytoplasm and nucleus (Raffeiner et al. 
2023). A specialized pathway of the UPS, ERAD, minimizes the ac-
cumulation of damaged or misfolded proteins in the endoplasmic 
reticulum (ER). Entry to the UPS begins when a protein is modified 
by the attachment of Ubiquitin (Ub), a 76 amino acid protein that 
is highly conserved in all eukaryotes. Target proteins are ubiquity-
lated through the combined activity of E1 Ub-activating enzymes, 
E2 Ub-conjugating enzymes, and E3 Ub-ligases. The E3 ligase rec-
ognizes and binds the target protein. The E1 binds Ub in an 
ATP-dependent manner and transfers it to an E2. The E2 binds 
the E3 ligase and transfers Ub to the target protein directly or, 
for some E3s, Ub is transferred to the E3 and then to the target. 
Ubiquitylation of a target protein marks it for degradation via 
the 26S proteasome (Ciechanover et al. 2000). Ub may be attached 
to a target protein as a monomer or as a linear ubiquitin chain, 
formed by linkages between one of seven conserved lysine resi-
dues. Polyubiquitylation through Ub lysine residue 48 (K48) is 
one of the main recognition signals for the UPS.

Well over 1,000 E3 ligases have been identified in plants 
(Al-Saharin et al. 2022; Saxena et al. 2023). Single subunit E3 
ligases can be classified into three or four types: HECT 
(Homologous to E6AP C-Terminus), RING finger (Really 
Interesting New Gene), U-box (sometimes classified as a subset 
of the RING-type), and RBR (Ring-Between-Ring). Cullin-RING E3 
ligases (CRLs) constitute a single large family of multi-subunit 
E3 ligases. Plants include all of these types, but the largest family 
is the CRLs. CRLs are further divided into several different types 
depending on the cullin (CUL) scaffold (Li et al. 2023b). The largest 
CRL grouping is the Skp1/Ask1-Cullin1-F-box (SCF) complex, com-
posed of an F-box protein (FBP) that functions in target recognition 
and three core subunits (CUL1 as the major scaffold unit; RBX1, 
which binds the E2 Ub-conjugating enzyme; and Skp1/ASK1/2, 
which recognizes and binds the FBP). The FBP protein defines 
the SCF complex, and the large number of SCFs is due to the diver-
sity of FBPs. The FBP family represents one of the largest families 
of regulatory proteins in plants, with many species including hun-
dreds of FBP-encoding genes. For example, the Arabidopsis 
(Arabidopsis thaliana) and rice (Oryza sativa) genomes encode 
∼700 and 970 FBPs, respectively (Saxena et al. 2023).

N-degron pathways
In general, substrate proteins carry a degradation signal known as 
a degron that is sufficient for recognition and degradation by the 
proteolytic machinery. Degrons are heterogeneous sequences 
that can be located anywhere in the protein, can act in a cis or trans 
mode, and can also be generated by post-translational modifica-
tions to specific amino acid residues. N-terminal degrons 
(N-degrons) are the most studied. They are formed by N-degron 
pathways, previously referred to as “N-end rule pathways.” 
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Plants have several different N-degron pathways; some of the best 
studied are the Arg/N- and Ac/N-degron pathways, involving the 
creation of an N-degron through arginylation or acetylation of 
the N-terminal residue, respectively (Holdsworth et al. 2020). 
N-degrons are recognized by other proteins, called N-recognins, 
specific to each route of degradation. Many N-recognins are Ub 
E3 ligases, targeting proteins for degradation via the UPS, but links 
between N-recognins and autophagy have also been reported 
(Holdsworth et al. 2020).

Vaculoar degradation
Vacuolar degradation takes place in the large central vacuole 
called the lytic vacuole, which typically occupies up to 90% of 
the plant cell volume (Stefan et al. 2013). Proteins and other cargo 
molecules are transported to the lytic vacuole via multiple routes; 
the major routes of delivery are autophagy of cytoplasmic cargo 
(Marshall and Vierstra 2018; Tang and Bassham 2018) and endocy-
tosis of plasma membrane proteins (Valencia et al. 2016). In 
plants, there are two main types of autophagy: microautophagy 
and macroautophagy. Macroautophagy is the best understood 
and involves the formation of a membrane structure called a 
phagophore around cargo proteins, which develops into a double- 
membrane autophagosome. The autophagosome outer mem-
brane fuses with the tonoplast and releases the cargo into the 
vacuole for degradation. In microautophagy, cytoplasmic compo-
nents are taken up by the vacuole through the invagination of the 
tonoplast. A third type, known as mega-autophagy (also called au-
tolysis), occurs when vacuolar hydrolases are released directly 
into the cytoplasm (often the final stage of programmed cell 
death). In addition to its role in the UPS, Ub is involved in autoph-
agy: whereas K48-linked polyubiquitylation targets proteins for 
the UPS, K63-linked polyubiquitylation is known, among other 
functions, to mark cargo for degradation by autophagy 
(Raffeiner et al. 2023).

Endocytosis regulates the turnover of plasma membrane pro-
teins (such as receptors and transporters), transporting cargo 
through the endomembrane system in single-membrane vesicles 
for delivery to the vacuole or recycling back to the plasma mem-
brane (Fan et al. 2015). There is also substantial overlap between 
these pathways, for example, cross-regulation between the UPS 
and autophagy pathways (Su et al. 2020b) and between autophagy 
and endocytosis (Zhuang et al. 2015; Zhang et al. 2019a).

Peptidases for limited proteolysis
In addition to the proteasome, hundreds of peptidases function in 
all compartments of the cell including the extracellular matrix, 
and play roles in almost every aspect of plant development and 
in the interaction of plants with their biotic and abiotic environ-
ment. Among the most abundant peptidases are cysteine, serine, 
and aspartic proteases, which are named for the amino acid resi-
due that serves as the nucleophile for catalysis, and metallopro-
teases, which use a polarized water molecule for nucleophilic 
attack of peptide bonds (van der Hoorn 2008). Some peptidases 
contribute to protein turnover by nonselective degradation and 
others perform limited proteolysis of substrate proteins at highly 
specific sites. Limited proteolysis may result in a loss, gain, or 
change in activity; it may affect protein assembly and subcellular 
targeting, and as part of the maturation process, controls the ac-
tivity of enzymes, regulatory proteins, and signaling peptides 
(Schaller et al. 2018; Stührwohldt and Schaller 2019). Because pep-
tidases irreversibly modify the structure and function of cognate 
substrate proteins, their activity is tightly regulated at multiple 

levels (Fernández-Fernández et al. 2023). Diversification with re-
spect to substrate proteins, cleavage site recognition, and mecha-
nism of regulation may have contributed to the present-day 
abundance of peptidases in plants, as discussed below for subti-
lases, one of the largest families of serine peptidases.

Proteolysis and cell biology: the cell cycle, 
DNA damage response, and mitochondrial 
function
FBL17: a proteolytic engine for the G1/S-phase 
transition?
(Written by Pascal Genschik and Sandra Noir)

Progression through the cell cycle phases depends on cyclin- 
dependent kinase (CDK) activity (Budirahardja and Gönczy 
2009). In plants, this activity is conferred by A- and B-type CDKs, 
which are activated by multiple cyclins to permit DNA replication 
and mitosis (Harashima et al. 2013). CDKA; 1 is the main regulator 
of the G1/S transition, whereas CDKBs are necessary for mitosis 
(Polyn et al. 2015). At mitotic exit, CDK activity drops and stays 
low in G1, enabling the licensing of replication origins. This is 
achieved by several mechanisms working collaboratively, includ-
ing the selective degradation of mitotic cyclins by the UPS 
(Mocciaro and Rape 2012). Ubiquitylation of mitotic cyclins is 
mediated in all eukaryotes by the conserved anaphase-promoting 
complex or cyclosome (APC/C) Ub E3 ligase (Pesin and Orr-Weaver 
2008; Genschik et al. 2014; Willems and De Veylder 2022). CDK ac-
tivity is also inhibited by the binding of cyclin-dependent kinase 
inhibitor (CKI) proteins (Besson et al. 2008). In plants, two classes 
of CKIs carrying distinct functions have been described, called 
KIP-RELATED PROTEINS (KRPs) and SIAMESE-RELATED proteins 
[SMRs (Churchman et al. 2006; Acosta et al. 2011)]. It was proposed 
that KRPs mainly play a role in the G1 checkpoint by inhibiting 
CDKA; 1–CYCD complexes, whereas SMR members play a promi-
nent role during endoreplication (Van Leene et al. 2010; Kumar 
et al. 2015).

To re-enter the S-phase and release CDK activity, cells need to 
decrease the level of CKI proteins. In mammals, the UPS plays a 
fundamental role in cell cycle control and the DNA damage re-
sponse (DDR) by destroying CKIs. Two families of mammalian 
CKIs (INK4 and CIP/KIP) play distinct cellular functions and are de-
graded by diverse types of E3s in both the nucleus and cytoplasm 
(Starostina and Kipreos 2012). One of them is the SCFSkp2 complex, 
which plays a prominent role in cell cycle control (Carrano et al. 
1999; Sutterlüty et al. 1999; Frescas and Pagano 2008). The F-box 
protein Skp2 recognizes many substrates involved in cell cycle 
control and the DDR (reviewed in Frescas and Pagano 2008). Not 
surprisingly, with such a repertoire of substrates, Skp2 is involved 
in multiple aspects of different human cancers and is defined as 
an oncogene (Chan et al. 2010).

With hundreds of publications describing the elaborate multi- 
task functions of mammalian Skp2, one may wonder whether 
such a crucial Ub E3 ligase would be conserved in the green line-
age. Here we discuss the Arabidopsis F-box protein FBL17, which 
shows many similarities with mammalian Skp2 (Table), but for 
which much work is still required to fully grasp its cellular func-
tions. FBL17 was initially identified as an essential gene needed 
for male germ cell division in Arabidopsis, with a phenotype sim-
ilar to the loss of function of CDKA; 1 (Kim et al. 2008; Gusti et al. 
2009). FBL17 appears to function in the degradation of KRPs, sup-
ported by the stabilization of KRP6 in fbl17 single germ cells (Kim 
et al. 2008), whereas different krp mutations at least partially 
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rescued the fbl17 pollen phenotype (Gusti et al. 2009; Zhao et al. 
2012). The function of FBL17 is however not restricted to germ 
cells.

FBL17 is expressed in the S-phase in synchronized plant cell 
cultures (Menges et al. 2003; Trolet et al. 2019). In line with this ex-
pression pattern, FBL17 is a direct transcription target of E2Fa-DPa 
(a transcription factor associated with cell proliferation) and is re-
pressed by the binding of RETINOBLASTOMA-RELATED 1 (RBR1), 
an Arabidopsis homolog of the Retinoblastoma (Rb) proteins in 
mammals, to its promoter [Gusti et al. 2009; Zhao et al. 2012
(Fig. 1)]. Viable fbl17 null mutant plants were identified at very 
low frequency, and their molecular and cellular characterization 
revealed major cell cycle defects (Noir et al. 2015). In particular, 
FBL17 loss of function drastically reduced cell proliferation and 
also fully suppressed endoreplication (Noir et al. 2015). Such a 
phenotype could potentially be explained by a strong accumula-
tion of KRPs that can block S-phase CDK activity (Verkest et al. 
2005b), and would be consistent with the phenotypic resemblance 
of fbl17 and cdka; 1 null mutant plants (Nowack et al. 2012; Noir 
et al. 2015). Accordingly, the KRP2 protein steady-state level was 
found to increase in fbl17 mutants (Noir et al. 2015). Another 
study, using Arabidopsis plants in which FBL17 function is inhib-
ited by an inducible microRNA, also provided evidence for a deg-
radative role during G2 of the F-box protein in the turnover of 
free, but not chromosomal bound, KRP4 proteins (D’Ario et al. 
2021). Interestingly, meristems with inhibited FBL17 had abnor-
mally large cells, suggesting that excess free KRP4 disrupts cell 
size homeostasis. This raises the question of whether FBL17 
loss-of-function phenotypes could be explained solely by an im-
paired degradation of KRPs. The answer is likely no. Strong 
KRP2-overexpressing lines not only resemble flb17 mutant plants 
in many respects, but also show significant differences. The upre-
gulation of numerous cell cycle and DNA damage genes observed 
in fbl17 (Noir et al. 2015; Gentric et al. 2020), also suggests that like 
mammalian Skp2, FBL17 has a broader range of substrates and 
functions.

In line with this assumption, it was found that fbl17 mutants 
are hypersensitive to double-strand break (DSB)-induced geno-
toxic stress (Gentric et al. 2020). Note that while in mammals 
the Rb-related protein p130 is degraded by SKP2 (Tedesco et al. 
2002), whether FBL17 also targets plant RBR1 remains unknown. 
Even in the absence of genotoxic stress, fbl17 mutants exhibit a 
higher frequency of DNA lesions and increased cell death in the 
root meristem. It was further shown that FBL17 colocalizes with 
RBR1 at DNA damage sites, but its substrates and function at 
this subcellular location remain unknown (Gentric et al. 2020). 

It is noticeable that in response to DSBs, mammalian Skp2 is 
required for the activation and recruitment of the Ataxia- 
telangiectasia mutated (ATM) kinase to DNA damage foci via non- 
proteolytic K63-dependent ubiquitylation (Wu et al. 2012). FBL17 
was also recently implicated in DNA replication stress, as it was 
found that the hypersensitivity to hydroxyurea of a null mutant 
of the ATM and Rad3-related (ATR) kinase can be suppressed by 
the fbl17 mutation (Pan et al. 2021b). Importantly, this study re-
vealed that WEE1, a conserved kinase induced by ATR during rep-
lication stress (De Schutter et al. 2007), directly phosphorylates 
FBL17 and promotes its polyubiquitylation and subsequent degra-
dation by the proteasome (Pan et al. 2021b; Fig. 1). Interestingly, 
human Wee1 is also able to phosphorylate and destabilize Skp2 
at least in a human cell line, supporting the conservation of this 
mechanism (Pan et al. 2021b). It was later shown that FBL17 is 
ubiquitylated by the APC/CCDC20 E3 (Pan et al. 2023) and that 
WEE1 not only phosphorylates FBL17, but also the APC10 subunit 
of this Ub E3 ligase, enhancing the interaction between the APC/C 
substrate adaptor, CDC20, and FBL17. As the chemical inhibition 
of the APC/C also stabilizes FBL17 in the absence of replication 
stress (Pan et al. 2023), it seems that this Ub E3 ligase plays a 
broader role in the post-translational control of FBL17.

Among the ∼700 Arabidopsis F-box proteins known to date, 
FBL17 is the closest functional homolog to the mammalian Skp2 
(Gagne et al. 2002). FBL17 shares with Skp2 many characteristics 
(Table). Both are direct targets of E2F/DP for a periodic expression 
during G1/S, both are required for entry in S-phase likely via their 
ability to degrade CKI proteins, both appear to be phosphorylated 
by WEE1 and to be substrates of the APC/C, and finally, both are 
involved in the DDR. Altogether, this makes FBL17 a fascinating 
protein for further studies of the plant cell cycle and also beyond.

Important questions to tackle in the future include the follow-
ing. First, and slightly provocative, are KRPs really direct targets of 
FBL17? Several observations support this conclusion (see above), 
but to date, none of the krp mutations have been reported to sup-
press the sporophytic phenotype of FBL17 loss of function. This 
could be tested with higher-order krp mutant combinations. 
Also, biochemical evidence to demonstrate the direct role of the 
SCFFBL17 in KRP turnover is missing. A fully reconstituted ubiqui-
tylation assay would be valuable. To understand how KRPs are 
recognized by the Ub E3 ligase is also of great interest. It was 
shown that the stability of some KRPs, such as KRP2, depends 
on phosphorylation by CDKs (Verkest et al. 2005a), but whether 
FBL17 binds a phospho-degron and requires the Cks1 cofactor as 
Skp2 is currently unknown. Obtaining structural data on the in-
teraction of FBL17 with its substrate would significantly advance 

Table. Comparison of characteristics of mammalian Skp2 and Arabidopsis FBL17

Skp2 (mammals) Characteristic FBL17 (Arabidopsis)

Yes Expression during S-phase Yes
Yes Transcription targets of E2F/DP Yes
Viable (mouse) Loss of function Gametophyte lethal (with sporophytic escapees)
Reduced cell proliferation Cell cycle defects in mutants Reduced cell proliferation
Increase in ploidy Ploidy in null mutants Suppressed endoreduplication
p21, p27, p57 CKI as targets KRPs
Cyclins D1 and E, Cdt1, Orc1, Rbl2/p130, E2F Other cell cycle targets ?
Yes Phospho-degron ?
Yes Requirements of Cks1 cofactor ?
K48, K63, … Ub chain topology ?
Cdk2, Atk, Wee1 Phosphorylation WEE1
APC/CCdh1 Degradation APC/CCDC20

ATM kinase activation and DNA DSB repair Role in DDR Replication stress and DSBs
Brca2, Nbs1, … Targets in DDR ?

2934 | The Plant Cell, 2024, Vol. 36, No. 9



the field. The ubiquitylation site on KRPs and the topology of Ub 
chains should also be addressed.

Second, as Skp2 is reported to target more than a dozen sub-
strates (Frescas and Pagano 2008), we might ask how large is the 
substrate repertoire of FBL17? Addressing this question is chal-
lenging. For instance, if FBL17 recruits its substrates through a 
phospho-degron, a simple yeast-two-hybrid screening approach 
to identify new targets may fail. Searching for substrates by either 
pulldown or proteomics approaches may also be challenging. 
Since FBL17 expression is mainly restricted to meristematic tis-
sues, interacting substrates may be of low abundance and difficult 
to detect. In addition, interactions between F-box proteins and 
their substrates have been described as versatile, often with low 
affinity for the substrate (Pierce et al. 2009). Therefore, other tech-
niques such as Ub ligase trapping or proximity labeling should be 
considered (Iconomou and Saunders 2016).

Finally, it will be necessary to explore the regulation of FBL17 at 
both transcriptional and post-translational levels. Given the fea-
ture of the G1/S transition as a critical cell cycle checkpoint where 
multiple signaling pathways are converging, FBL17, by regulating 
the stability of a number of important players during this transi-
tion phase, appears undeniably in a good position to act as a key 
regulatory node.

Is autophagy a key process in the plant DNA 
damage response?
(Written by Poyu Chen, Maren Heese, and Arp Schnittger)

The DNA of plant cells, like the DNA of any other organism, is 
constantly damaged in various ways, including DNA double-strand 
breaks (DSBs) and DNA cross-links. Upon the detection of damage, 
a cell launches a specific response called the DNA damage re-
sponse, which depends on the type and level of the damage 

experienced as well as on the developmental context and the phys-
iological state of a cell (Chen et al. 2019; Szurman-Zubrzycka et al. 
2023). If the DNA is mildly damaged, the DDR usually triggers an ar-
rest of cell proliferation (although DNA replication and cell growth 
can sometimes continue; Adachi et al. 2011), and a DNA repair pro-
gram is launched. If the DNA is severely damaged and/or if very lit-
tle damage is tolerated due to developmental constraints, such as 
in stem cells (Fulcher and Sablowski 2009), terminal differentiation 
or death of the damaged cell will be induced (Chen et al. 2019). 
These cellular responses rely on a specific transcriptional response 
in which the NAC transcription factor SUPPRESSOR OF GAMMA 
RADIATION1 (SOG1) plays a central role by inducing the expression 
of, for instance, genes repressing cell division, such as the 
CYCLIN-DEPENDENT KINASE inhibitors SIAMESE-RELATED 
PROTEINS 5 and 7 (SMR5 and SMR7), and genes involved in the ac-
tual mending of DNA, such as the recombinase RADIATION 
SENSITIVE 51 (RAD51) and CYCLINB1; 1 (CYCB1; 1), which both 
are involved in homologous recombination (HR) repair (Bleuyard 
et al. 2005; Yoshiyama et al. 2009; Yi et al. 2014; Weimer et al. 
2016; Ogita et al. 2018).

However, targeted degradation of proteins also plays a pivotal, 
yet so far not well-studied role in the DDR of plants. In general, the 
removal of specific proteins can be executed by two different sys-
tems: (1) the proteasome, present in the nucleus and the cyto-
plasm, and (2) selective autophagy, i.e. degradation via lytic 
compartments such as the vacuole in plants and the lysosome 
in animal cells, executed in the cytoplasm (Fig. 2). Previously, 
proteasome-mediated protein degradation has been implicated 
in the DDR of Arabidopsis; for example, the transcriptional re-
pressor MYB3R3, which is involved in cell cycle arrest after DNA 
damage, is blocked from proteasomal degradation under DNA 
damaging conditions (Chen et al. 2017b). Conversely, the mitotic 
regulator CDKB2; 1 becomes degraded in a proteasome- 
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dependent manner upon DSB induction (Adachi et al. 2011). In 
contrast, it was not known until recently whether autophagy, 
which in plants is subdivided into the three forms of microautoph-
agy, macroautophagy, and mega-autophagy (Marshall and 
Vierstra 2018), is involved in a plant’s response to DNA damage.

Autophagy has emerged as an important regulatory mecha-
nism of cellular homeostasis in many, if not all, eukaryotes and 
for animals, there is evidence that different types of autophagy 
are also involved in the DDR. However, the picture is still frag-
mented, and the identity of the specific autophagy targets re-
mains for the most part enigmatic (Juretschke and Beli 2021). 
Recently, macroautophagy was identified to play a central role 
in plant DDR, i.e. during DNA cross-links repair in Arabidopsis, 
where it was shown to be required for the selective removal of a 
repressor of HR (Chen et al. 2023b). HR in plants is usually re-
pressed during somatic growth and development by the action 
of the RTR complex, homologous to the BLOOM syndrome com-
plex (BTR complex) in animals. The central components of this 
complex are a RECQ-type helicase and the topoisomerase 
TOP3alpha attached to a scaffolding protein named RMI1 
(Hartung et al. 2008). To allow for elevated HR after DNA cross- 
link induction, RMI1 was now shown to be removed in a 
macroautophagy-dependent manner (Chen et al. 2023b).

K63-linked polyubiquitylation (in contrast to K48 polyubiquitin 
chains that mark proteins for proteasome-dependent degrada-
tion) is known, among other functions, to mark cargo for degrada-
tion by autophagy (Tan et al. 2008; Nathan et al. 2013). KNOTEN1 
(KNO1) of Arabidopsis, a nuclear protein previously implicated in 
the DDR (Bouyer et al. 2018), was now found to be required for the 
attachment of K63-linked polyubiquitin to RMI1, which subse-
quently leads to RMI1 degradation in the cytoplasm in a lytic 
compartment-derived manner [Chen et al. 2023b (Fig. 2)]. 
Interestingly, KNO1 itself is also a target of selective protein turn-
over and was found to be degraded under non-DNA damaging 

conditions by the proteasome (Chen et al. 2023b). Thus, proteaso-
mal and vacuolar degradation systems appear to be tightly inter-
connected and collaborate during DDR.

Notably, the impact of macroautophagy on DDR likely goes far 
beyond the regulation of RMI1. Macroautophagy relies on a group 
of autophagy-related (ATG) proteins that regulate the formation 
of autophagosomes and promote their delivery to the vacuole 
(Su et al. 2020a). Analysis of Arabidopsis mutants of the central 
autophagy components ATG2, ATG5, and ATG7 revealed that all 
three mutants are not only sensitive to the DNA cross-link induc-
ing agent cisplatin but also to drugs that cause other types of DNA 
damage, i.e. hydroxyurea (HU), which interferes with DNA repli-
cation and produces single-stranded DNA, as well as zeocin, 
which induces DNA double-strand breaks (Chen et al. 2023b). 
Since mutants in KNO1 are particularly sensitive to DNA cross- 
linkers, but not to HU or DNA double-strand inducing drugs 
(Bouyer et al. 2018), it seems likely that KNO1 independent routes 
exist, that target proteins to macroautophagy after DNA damage 
and that several proteins are removed by macroautophagy during 
the DDR. Autophagy has been found to function not only in a pro- 
survival (Torii et al. 2016) but also in a cell death-promoting man-
ner in humans (Liu et al. 2018b) and plants (Kabbage et al. 2017; 
Üstün et al. 2017). Thus, it seems possible that autophagy in 
plants is also involved in a wider context of DDR, e.g. possibly by 
controlling the cell death response.

How do proteolytic networks regulate 
mitochondrial function?
(Written by Abi S. Ghifari and Monika W. Murcha)

Mitochondria are central organelles, responsible for vital bio-
chemical pathways, including aerobic respiration and biosynthe-
sis of amino acids, lipids, and redox cofactors, among many other 
functions (Spinelli and Haigis 2018). These pathways rely on the 
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homeostasis of thousands of mitochondrial proteins that are 
maintained through continuous transcription and translation of 
nuclear and mitochondrial genomes, protein import, assembly, 
and finally, degradation of damaged and aggregated proteins 
(Vazquez-Calvo et al. 2020). Proteolysis plays a role at all stages 
of mitochondrial biogenesis, from the onset, with regards to pro-
tein synthesis and assembly, to protein turnover and degradation 
(van Wijk 2015; Ghifari and Murcha 2022). Evidence suggests that 
there is a network of proteases with overlapping activities in or-
ganelles (van Wijk 2015; Majsec et al. 2017). These proteolytic net-
works regulate protein function and abundance to maintain 
protein homeostasis across various mitochondrial compartments 
and functions (Fig. 3).

What role do proteases play in protein import and maturation? 
Most proteins destined for mitochondria are synthesized with 
cleavable N-terminal targeting peptides that initiate protein 
translocation through the Translocase of the Outer Membrane 
(TOM) complex (Fig. 3; Pfanner et al. 2019). Upon import, proteins 
are matured by various peptidases, such as the mitochondrial 
processing peptidase (MPP), octapeptidyl peptidase 1 (OCT1), 
and intermediate cleavage peptidase 55 (ICP55) to cleave the 
N-terminal targeting peptides and any subsequent unstable resi-
dues (Carrie et al. 2015; Huang et al. 2015; Gomes et al. 2017). A dis-
tinguishing feature of plant mitochondria is that the a and b 
subunits of MPP are also integral components of the cytochrome 

bc1 complex (Complex III) of the respiratory oxidative phosphory-
lation (OXPHOS) system (Emmermann et al. 1993; Glaser et al. 
1994). The enzymatic activity of MPP/bc1 is independent of elec-
tron transfer (Eriksson et al. 1996) and recent structural studies 
of Complex III2 have shown that the a and b subunits of 
MPP form a large cavity allowing for presequence binding 
(Maldonado et al. 2021). The distinctive dual function of MPP in 
plants may be a mechanism of regulating protein import with 
the requirement for substrates, particularly the subunits of the 
electron transport chain. Proteases have also been implicated in 
maintaining the abundance of the protein import machinery, 
which in turn regulates protein uptake rates (Lister et al. 2007; 
Wang et al. 2012). For example, immunoprecipitation experi-
ments have identified Tim17-2, the inner membrane transporter 
channel protein as a substrate of Filamentous Temperature 
Sensitive-H 4 (FTSH4) in Arabidopsis (Opalinska et al. 2018).

The initial cleavage via MPP generates peptides with the 
potential to disrupt membrane integrity and inhibit protein 
import (Zardeneta and Horowitz 1992; Hugosson et al. 1994). 
Mitochondrial targeting peptides are further degraded in a multi- 
step peptide processing pathway by numerous matrix-located 
proteases with overlapping specificity such as the presequence 
peptidase (PREP) and organellar oligopeptidase [OOP (Bhushan 
et al. 2005; Ståhl et al. 2005; Kmiec et al. 2013)]. Single amino acids 
are recovered from short peptides by various aminopeptidases 
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[AP (Waditee-Sirisattha et al. 2011; Kmiec et al. 2018b; Ghifari et al. 
2020)]. Plant mitochondria contain at least 15 individual pepti-
dases involved in the process of removing the targeting signal 
and processing it into single amino acids (Ghifari et al. 2019). 
Interestingly, most of these peptidases are dually targeted to 
both mitochondria and chloroplasts, demonstrating a common 
bacterial-derived peptidolytic network (Kmiec et al. 2018b), along-
side distinct protein import mechanisms. The activities of the 
dual-targeted intermediate peptidases PREP and OOP are most 
strikingly observed in chloroplasts whereby functional losses of 
these peptidases led to an accumulation of peptides of chloroplast 
origin (Kmiec et al. 2018a; Rowland et al. 2022). However, the effect 
may be more subtle in mitochondria and has yet to be observed.

What proteases are involved in maintaining mitochondrial pro-
tein quality control (PQC)? General mitochondrial proteolytic net-
works primarily composed of ATP-independent proteases such as 
degradation of periplasmic protein (DEG) and rhomboid-like (RBL; 
García-Lorenzo et al. 2006) and ATP-dependent such as members 
of the ATPase-associated with various cellular activities (AAA+) 
family, which includes FTSH proteases, caseinolytic proteases 
(CLP), and LON (long filamentous phenotype) proteases [Puchades 
et al. 2020; Heidorn-Czarna et al. 2022 (Fig. 3)]. Mitochondrial inner 
membrane proteins are maintained by the matrix-facing (m-AAA) 
FTSH3 and FTSH10 and the intermembrane space (IMS)-facing 
(i-AAA) FTSH4 and FTSH11 (Kolodziejczak et al. 2007, 2018, 
Janska et al. 2010; Heidorn-Czarna et al. 2018; Maziak et al. 2021). 
Matrix-located AAA+ proteases, such as CLPP2 and LON1, are 
active toward both soluble matrix and matrix-facing membrane- 
bound proteins (Li et al. 2017; Petereit et al. 2020). OMA1 (overlap-
ping activity with m-AAA protease-1) primarily maintains the outer 
membrane (OM) and the IMS proteins (Migdal et al. 2017; Gilkerson 
et al. 2021).

How are OXPHOS complexes turned over? OXPHOS complexes 
are large, multi-subunit, dynamic complexes of the inner 
membrane capable of forming larger supercomplex structures 
(Schlame 2021). Composed of both nuclear- and mitochondrial- 
encoded subunits, OXPHOS complexes require intricate coordina-
tion, assembly, and regulation (Vercellino and Sazanov 2022; 
Ghifari et al. 2023b). Furthermore, individual subunits are differ-
entially susceptible to oxidative damage exhibiting distinctive 
protein turnover rates (Li et al. 2017; Szczepanowska et al. 2020). 
This suggests that submodules and domains are disassembled 
and degraded in a modular fashion. A recent study demonstrated 
that the ATPase domain of FTSH3 promotes the disassembly of 
the Complex I matrix arm domain (Ivanova et al. 2021) by directly 
interacting with a specific Complex I subunit (Ghifari et al. 2023a). 
Structures of FTSH3 homologs revealed that this domain can rec-
ognize and bind elongated peptides for degradation (Puchades 
et al. 2017, 2019). When damaged or misfolded, proteins expose 
their N-terminal peptide, which serves as a degradation signal 
that can be recognized by the ATPase domain of AAA+ proteases 
(Rampello and Glynn 2017).

This function of FTSH3 has only so far been associated with 
Complex I, yet all OXPHOS complexes are continually undergoing 
disassembly and turnover. The challenge lies ahead in discovering 
the mechanisms of substrate recognition and disassembly. 
Furthermore, the interconnectivity and how the protease func-
tions are coordinated remains unknown. One of the biggest chal-
lenges in using single loss-of-function mutants is that often these 
knockout plants display mild phenotypic change and subtle bio-
chemical changes, due to overlapping functions or gene duplica-
tion (Kmiec et al. 2014; Petereit et al. 2020). Whilst a functional 
interconnection between proteolytic and peptidolytic degradation 

has been well demonstrated in chloroplasts (Rowland et al. 2022), 
the interconnectivity of mitochondrial proteolytic networks needs 
further experimental confirmation. Identification of substrates, 
interactors, and proteins in proximity using mass spectrometry- 
based methods can also provide a more comprehensive view. 
Trapping approaches, whereby the catalytic function of protease 
is nullified to trap the protein substrate, have revealed potential 
substrates and specific activities of various proteases (Opalińska 
et al. 2017; Heidorn-Czarna et al. 2018; Rei Liao and van Wijk 
2019). Proximity-based techniques, such as biotinylation and 
chemical crosslinking in yeast have also revealed that the prohib-
itin/m-AAA protease complex is in proximity to both translation 
machinery and protein import complexes, demonstrating its im-
portance in determining the fate of newly synthesized and newly 
imported proteins (Singh et al. 2020; Kohler et al. 2023). A combi-
nation of these techniques may provide a more comprehensive 
view and a better understanding of the modulation and intercon-
nectivity of proteases in plant mitochondria.

N-terminal signals for degradation 
pathways
To destroy or not to destroy? What is the effect of 
N-terminal acetylation on protein half-life?
(Written by Daniel J. Gibbs)

Protein N-terminal (Nt-)acetylation (NTA) involves the 
transfer of acetyl moieties from acetyl-coenzyme A to the 
α-amino group of Nt-amino acid residues by enzymes called 
Nt-acetyltransferases [NATs (Ree et al. 2018; Aksnes et al. 2019; 
Giglione and Meinnel 2021)]. This modification occurs on 60% to 
80% of all proteins in eukaryotes and is assumed to be irreversible, 
since no Nt-deacetylases are known (Giglione and Meinnel 2021). 
Until recently, NTA was thought to be exclusively and constitu-
tively imprinted during mRNA translation by ribosome-tethered 
NATs and unlikely to play a significant regulatory role in protein 
function and signaling. However, recent studies in plants have 
shown that NTA can occur post-translationally within plastids 
and that the activities of certain NATs are linked to abiotic, biotic, 
and cellular stress responses (Linster et al. 2015; Bienvenut et al. 
2020; Huber et al. 2020; Huber et al. 2021). Dual NTA and internal 
Lysine-acetylation activities have also been reported for some 
acetyltransferases, broadening our knowledge of acetylation 
complexity and crosstalk (Bienvenut et al. 2020). By neutralizing 
the positive charge of the α-amino group, NTA bestows new bio-
chemical properties that can directly affect protein folding, avid-
ity for protein-interaction partners, subcellular targeting, and 
protein stability. Here I discuss current knowledge on the complex 
relationship between NTA and proteolysis via the UPS, with a par-
ticular focus on seemingly contradictory findings as well as key 
open questions in the field.

In the early 2010s, several studies in yeast and mammals dem-
onstrated that NTA can directly target proteins for degradation, 
via an acetylation-dependent branch of the N-degron pathway 
(Ac/N-degron pathway) (Hwang et al. 2010; Shemorry et al. 2013; 
Gibbs et al. 2014; Park et al. 2015). Here, the N-termini of 
Nt-acetylated protein substrates are recognized and ubiquitylated 
by E3 ligases called Ac/N-recognins, which include DOA10/TEB4 
and NOT4. A diverse but constrained set of Ac/N-degron pathway 
substrates was identified, and crucially it was shown that Ac/ 
N-degrons are conditional, since they are usually shielded by pro-
tein folding or through intermolecular sequestration (Shemorry 
et al. 2013). Thus, it was proposed that Ac/N-degrons might 
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contribute to protein quality control by allowing the recognition 
and rapid elimination of misfolded proteins or excess subunits 
of multi-protein complexes (Fig. 4A; Nguyen et al. 2018). In con-
trast to this view, loss of NTA on yeast ribosomal proteins was 
shown to reduce overall ribosome thermostability, leading to an 
increase in subunit degradation via the UPS (Guzman et al. 
2023). This raises a key question as to whether NTA indirectly in-
fluences protein turnover through its effects on protein–protein 
interaction affinities (Fig. 4B).

There are several reports of plant proteins that are directly de-
stabilized due to NTA, implying potential conservation of the Ac/ 
N-degron pathway in this lineage. This includes a particular 
Nt-variant of the immune receptor SNC1 that is acetylated by 
NATA (Xu et al. 2015b), as well as OsHYPK in rice, itself a sub-
strate, interaction partner, and potentiator of NATA activity 
(Gong et al. 2022). In neither case was the cognate E3 ligase iden-
tified. A recent study investigated potential roles for putative 
Arabidopsis DOA10 homologs as Ac/N-recognins but found no 
clear connection between DOA10 function and the turnover of 
Nt-acetylated proteins (Etherington et al. 2023). As such, E3 ligases 
that recognize Nt-acetylated N-termini in plants await discovery. 
Interestingly however, cross-species analyses did show kingdom- 
specific differences in the effect of NATs on the stability of the 
same protein target through indirectly promoting protein turn-
over, perhaps through influencing other E3 ligases or the 
proteasome.

Paradoxically, NTA has also been directly linked to increased 
stability of specific plant proteins, including SIB1, a positive regu-
lator of salicylic acid–induced cell death, and an alternative 
N-terminal variant of SNC1 targeted by NATB (Xu et al. 2015b; Li 
et al. 2020b). This latter finding is particularly intriguing as it high-
lights how NTA of two different Nt-variants of the same protein 
can either increase or decrease protein half-life (Gibbs 2015; Xu 

et al. 2015b). Larger scale studies in yeast, mammalian cells, 
and plants have also revealed that NATA-mediated NTA is 
broadly associated with proteome stabilization (Mueller et al. 
2021; Gibbs et al. 2022; Guzman et al. 2023). Loss of NATA or 
HYPK function in Arabidopsis and rice led to increased turnover 
rates of NATA substrate proteins, which was accompanied by a 
compensatory increase in translation rates of the same proteins, 
mediated via the target of rapamycin (TOR) kinase (Linster et al. 
2022; Miklankova et al. 2022). This points to the presence of 
“non-Ac/N-degrons” that are exposed only when NATA activity 
is downregulated, for example during drought (Fig. 4C; Linster 
et al. 2015). As such it was posited that regulation of protein 
NTA might be crucial for rapid proteome turnover to replenish 
protein pools in response to certain stresses that impact NAT 
function.

How this might occur is yet to be determined, but the concept of 
“N-degron complementarity” was previously proposed, whereby 
obstruction of one pathway can redirect a substrate to a different 
pathway (e.g. a lack of NTA might instead allow targeting via the 
Arg/N-degron pathway) (Park et al. 2015; Nguyen et al. 2018). 
Indeed, this was recently demonstrated for different NATB and 
NATC substrates in mammals, where NTA was shown to prevent 
degradation by the Arg/N-degron pathway E3 ligase UBR4 (Guedes 
et al. 2023; Varland et al. 2023). A study in yeast also showed that 
NTA can stabilize proteins independent of their ubiquitylation, 
suggesting that additional proteolytic pathways must be consid-
ered (van de Kooij et al. 2023). Moreover, different mechanisms 
are probably at play in different eukaryotic kingdoms. For exam-
ple, the IAP E3 ligases shown to bind non-acetylated NATA protein 
substrates in mammalian cells are not found in plants (Mueller 
et al. 2021).

Despite its prevalence, NTA remains a somewhat enigmatic 
modification without a single defined effect on protein stability, 

Figure 4. The relationship between NTA and protein stability. A) The conditionality of Ac/N-degrons and their link to protein quality control. 
Acetylated (Ac) N-termini are often shielded through internal protein folding (i) or protein–protein interactions (ii) but can be exposed through protein 
misfolding or if there is an excess of a particular protein complex subunit. This leads to exposure of the acetylated N-terminus, which can act as a 
specific degron for proteasomal degradation via the Ac/N-degron pathway (Shemorry et al. 2013). B) Hypothetical indirect effects of NTA on protein 
stability. NTA can increase protein-interaction affinities, to create more stable complexes. A lack of NTA can lead to reduced thermostability, complex 
breakdown, and the consequent degradation of non-bound and potentially misfolded subunits via then UPS (e.g. as has been shown for cytosolic 
ribosomes in yeast; Guzman et al. 2023). C) NATA-mediated NTA (potentiated by HYPK in plants and mammals) was shown to promote broad proteome 
stabilization in diverse eukaryotic taxa. In plants, drought-induced downregulation of NATA activity leads to reduced NTA of NATA substrates and an 
increase in their degradation via exposed “non-Ac/N-degrons” (Linster et al. 2015, 2022). This suggests that NATs may integrate stress signals to control 
proteome turnover.
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although there is increasing evidence that the “default” effect is to 
promote stability, while still being able to trigger degradation of a 
more restricted set of specific proteins. Thus, NTA seems to influ-
ence protein half-lives in a substrate and context-specific man-
ner. Several key questions linked to the study of NTA and its 
effects on proteolysis remain: (1) Does NTA influence protein half- 
life co-translationally, post-translationally, or both? (2) Are 
NTA-mediated effects on protein stability direct or indirect, and 
can different NATs have contrasting effects on substrate turn-
over? (3) Does NTA catalyzed by other NATs (in addition to 
NATA) also trigger large-scale protein stabilization in plants, 
and is this linked to shielding against the Arg/N-degron pathway? 
(4) Does the partial acetylation observed for some substrates act 
as a switch to flexibly control protein half-lives? (5) Does NTA 
have a broader role to play in nascent proteome remodeling in re-
sponse to signals that affect NAT function? (6) What is the signifi-
cance of post-translational NTA in plastids, and does it contribute 
to protein degradation in these or other organelles? By focusing on 
these questions, the stage is set to provide new insight and further 
clarity into roles for this widespread protein modification in cellu-
lar proteostasis.

The Arg/N-degron pathways of protein turnover: 
boutique or bulk?
(Written by Frederica L. Theodoulou and Hongtao Zhang)

The Arg/N-degron pathway was first defined in the context of 
arginylation, but now effectively refers to all non-acetylated 
N-degrons (Varshavsky 2019). Intriguingly, evidence to date indi-
cates that in plants, Arg/N-degron pathways predominantly tar-
get short-lived regulatory proteins with unacetylated N-termini, 
whereas a much wider range of cellular/proteostatic functions 
has been reported for animals and yeast. Moreover, whilst a semi-
nal study quantifying the half-lives of artificial reporter proteins 
in yeast established the concept of “stabilizing” and “destabiliz-
ing” Nt residues, it is now evident that all 20 proteogenic amino 
acids can potentially act as Nt degradation signals (N-degrons) 
in non-plant systems (Bachmair et al. 1986; Varshavsky 2019). 
This raises the question of how many undetected substrates and 
processes are regulated by the Arg/N-degron pathways in plants 
and how these contribute to plant physiology.

Do we know all the players?
Arg/N-degrons are revealed by proteolytic cleavage, or created by 
a subsequent enzymatic modification to produce destabilizing 
N-termini that are recognized by Ub E3 ligases (known as 
N-recognins) and targeted for proteasomal degradation (Fig. 5). 
Plastids and mitochondria do not have an internal UPS but 
are proposed to house discrete N-degron pathways employing 
the Clp AAA+ protease system (Bouchnak and van Wijk 2019; 
see next section by van Wijk). The architecture of the nuclear- 
cytosolic Arg/N-degron pathway and destabilizing residue identi-
ties are broadly conserved between yeast, mammals, and plants 
but plants have a unique complement of N-recognins (Garzón 
et al. 2007; Graciet et al. 2010). Mammalian N-recognins have 
overlapping specificity for different classes of destabilizing resi-
dues (Type 1, basic; Type 2, aromatic, bulky) and act semi- 
redundantly (Tasaki et al. 2005). They share a Ub amino-end rec-
ognizing (UBR) box but also contain additional motifs involved in 
substrate recognition and different E3 ligase domains: RING in 
UBR1 and 2, HECT in UBR5, and a non-canonical hemi-RING E3 do-
main in UBR4 (Tasaki et al. 2005; Barnsby-Greer et al. 2024).

In contrast, the Arabidopsis homolog of UBR1/2, 
PROTEOLYSIS6 (PRT6) targets Type 1 N-termini but lacks the 
ClpS-like domain of UBR1/2 that acts as a recognition domain 
for Type 2 residues (Garzón et al. 2007). This function has 
been replaced in the green plant lineage by PROTEOLYSIS1 
(PRT1), a unique protein with two RING fingers and a ZZ domain 
(Potuschak et al. 1998; Till et al. 2019). Although this suggests 
that separating turnover of Type 1 and 2 substrates could 
have adaptive value in plants, BIG, an Arabidopsis homolog of 
UBR4, has recently been implicated in the degradation of 
substrates with both basic and aromatic N-termini (Zhang et 
al. 2024a). Plant genomes lack a UBR5 homolog, and it is 
clear from protein stability reporter studies that further 
N-recognins remain to be identified, including the elusive 
Nt-Leu/Ile recognition component(s) (Garzón et al. 2007; 
Graciet et al. 2010). Whilst genetic evidence strongly supports 
a role for PRT6 and BIG as N-recognins, biochemical character-
ization of these very large proteins is challenging and E3 activity 
has only been formally demonstrated for PRT1 (Stary et al. 2003; 
Mot et al. 2018).

An important related question is how N-recognins partner with 
different E2 enzymes and whether they assemble different Ub 
linkages, potentially with different cellular outcomes (Brillada 
and Trujillo 2022; Orosa-Puente and Spoel 2022). Here, reconstitu-
tion of the pathway in yeast has provided valuable first insights 
(Kozlic et al. 2022) and the molecular basis of substrate recogni-
tion and ubiquitylation will also be informed by advances in struc-
ture determination and predictions (Pan et al. 2021a; Sherpa et al. 
2022; Jeong et al. 2023; Barnsby-Greer et al. 2024). Structural stud-
ies may also shed light on Arg/N-degron pathway-proteasome 
complexes recently identified by biochemical approaches 
(Oh et al. 2020b; Zhang et al. 2024a).

Do we know all the substrates?
Thus far, only a handful of Arg/N-degron pathway substrates 
have been identified in plants (Holdsworth et al. 2020). This is in 
stark contrast to animals and yeast, where the Arg/N-degron 
pathways participate in cytosolic protein quality control, includ-
ing degradation of misfolded proteins, mistranslocated proteins, 
and retrotranslocated organellar proteins, as well as the control 
of protein subunit stoichiometry (Varshavsky 2019). At present, 
there is little evidence for this in plants.

The majority of substrates confirmed in planta are 
Met-Cys-initiating proteins, comprising Group VII ETHLENE 
RESPONSE FACTOR transcription factors (ERFVIIs), the polycomb 
repressive complex 2 subunit, VERNALIZATION2 (VRN2), and the 
LITTLE ZIPPER 2 (ZPR2) transcription factor (Gibbs et al. 2011, 
2018; Licausi et al. 2011; Weits et al. 2019). Following co- 
translational cleavage of Met1 by aminopeptidases, Cys2 may be 
converted to Cys-sulfinic acid by PLANT CYSTEINE OXIDASE 
(PCO) enzymes (Weits et al. 2014; White et al. 2017), rendering 
the protein susceptible to arginylation and PRT6-mediated pro-
teasomal degradation (Fig. 5). Recent evidence suggests the poten-
tial presence of further enzymes contributing to complete Nt-Cys 
oxidation (Zubrzycki et al. 2023). Thus, oxygen-dependent turn-
over of regulatory proteins by the Arg/N-degron pathways plays 
a central role in environmental and developmental hypoxia sens-
ing (Holdsworth et al. 2020). Characterization of prt6 and ate mu-
tant plants has revealed further functions of the Arg/N-degron 
pathways in a/biotic stress responses and development; interest-
ingly, the majority of these are attributable to the regulation of 
ERVIIs (Holdsworth et al. 2020).
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Nevertheless, other substrates must exist: PRT6-dependent, 
ERFVII-independent control of hypoxia-responsive genes has 
been reported (Zubrzycki et al. 2023), and conservation of 
arginyl-tRNA-transferase and Nt amidase specificity in plants im-
plies the existence of PRT6 substrates that are not Met-Cys pro-
teins [Fig. 5 (Graciet et al. 2010; Vicente et al. 2019)]. However, 
these cannot easily be predicted. An N-degron comprises not 
only the Nt residue but also appropriately positioned Lys residues 
for Ub conjugation, which must both be sufficiently accessible to 
N-recognins (Varshavsky 2019). Accordingly, not all Met-Cys pro-
teins are N-degron pathway substrates (Gibbs et al. 2011; Bäumler 
et al. 2019; Kozlic et al. 2022), nor are all proteins with other Nt de-
stabilizing residues revealed through endopeptidase cleavage (e.g. 
RIN4; Goslin et al. 2019; Kozlic et al. 2022).

Mutants impaired in Arg/N-degron function grow like wild- 
type plants under non-stressed conditions (except for big alleles 
which are pleiotropic), implying that phenotypes- and substrates- 
may be cryptic. Proteases act as gatekeepers of the Arg/N-degron 
pathway and offer a largely unexplored route to substrate identi-
fication through protein N-terminome (“degradome”) analysis 
(Perrar et al. 2019; Bogaert and Gevaert 2020). Plant genomes en-
code hundreds of proteases, including metacaspases which are 
predicted to reveal potential destabilizing residues (Rawlings 
et al. 2018). Given the conditional nature of proteolytic cleavage, 
proteomic analyses and other strategies to identify substrates 
may need to compare N-degron pathway mutant alleles under 
different environmental conditions to reveal cryptic degrons 
and also incorporate subcellular fractionation to access low 
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abundance targets. Cell and tissue specificity is also a key consid-
eration for future studies.

Who regulates the regulators?
The Arg/N-degron pathways do not operate in isolation and a ma-
jor outstanding question is how they intersect with other signaling 
pathways. This may be complex, for example, the activity of mas-
ter regulator substrates such as ERFVIIs is subject to modulation 
by transcription factors, kinases, membrane association, degron 
masking, and additional E3 ligases (Licausi et al. 2011; Papdi 
et al. 2015; Lin et al. 2019; Liu et al. 2021; Fan et al. 2023). 
Furthermore, it is not yet fully understood to what extent different 
N-terminal modifications compete to influence protein fate in 
plants (Kats et al. 2018; Linster et al. 2022), and it remains to be ex-
plored whether plant Arg/N-degron pathways intersect with auto-
phagic pathways as in mammals (Heo et al. 2023). Thus, whilst the 
importance of plant Arg/N-degron pathways in controlling the 
lifetime of regulatory proteins is well established, to what extent 
they contribute more widely to protein turnover and quality con-
trol remains an open question.

What are the degrons and molecular players in 
the chloroplast N-degron pathway?
(Written by Klaas J. Van Wijk)

N-degrons are major determinants of protein stability in the cy-
tosol of bacteria and eukaryotes (Dissmeyer et al. 2018; 
Varshavsky 2019; Holdsworth et al. 2020; Weits et al. 2021) 
and likely also chloroplasts and non-photosynthetic plastids 
(Bouchnak and van Wijk 2019, 2021). Systematic mass spectrom-
etry (MS) analysis of the N-termini of stromal-exposed proteins 
using N-terminal tagging (with a technique named TAILS; 
Rowland et al. 2015) showed enrichment of canonical stabilizing 
residues A, V, T, and S (often in N-α-acetylated form) and avoid-
ance of charged (D, E, R, and K) and large hydrophobic residues 
(e.g. W, F, Y, and L) that serve as primary or secondary degrons 

in bacteria and eukaryotic cytosol (Rowland et al. 2015). We there-
fore postulated that an N-degron pathway exists in chloroplasts 
and other plastid types [Rowland et al. 2015; Bouchnak and van 
Wijk 2019 (Fig. 6)].

N-degron pathways in eukaryotes, including plants, typically 
involve polyubiquitylation and the proteasome (Perrar et al. 
2019; Holdsworth et al. 2020; Weits et al. 2021). In contrast, the 
prokaryotic N-degron pathway depends on the adaptor ClpS 
(also named N-recognin) for the recognition and delivery of 
N-degron-bearing substrates to Clp chaperone-protease systems. 
The first step involves N-degron recognition of hydrophobic resi-
dues through a hydrophobic pocket in ClpS followed by docking 
of the ClpS-substrate complex on the N-domain of the ClpA or 
ClpC AAA+ chaperone (Kim et al. 2022). The ClpS-substrate com-
plex is then “pulled” into the ClpA/C pore in an ATP-dependent 
fashion (requiring ATP hydrolysis), and the resulting distortion 
of the ClpS structure allows release of the substrate inside the 
ClpA/C pore. ClpS is subsequently released from ClpA/C, and 
the unfolding and degradation of the substrate by the Clp protease 
ring is completed (Kim et al. 2022).

Chloroplast ClpS1, a structural and functional homolog of bac-
terial ClpS, directly interacts with the ClpC chaperones 
(Nishimura et al. 2013; Nishimura and van Wijk 2015). ClpS1 affin-
ity experiments in Arabidopsis identified several interacting 
chloroplast proteins, including glutamyl tRNA reductase 1 
(GluTR) a key enzyme in tetrapyrrole biosynthesis (heme and 
chlorophyll) (Nishimura et al. 2013). Follow-up experiments 
showed that dark-induced degradation of GluTR indeed requires 
the Clp system (Apitz et al. 2016; Richter et al. 2019). The interac-
tion between ClpS1 and these candidate substrates was depend-
ent on the conserved substrate-binding residues in ClpS1 
(Nishimura et al. 2013). However, N-degrons in these substrates 
have not been identified and no obvious canonical N-degrons 
were found. In vitro ClpS1 affinity assays with selected recombi-
nant N-degron reporters demonstrated that ClpS1 has a restricted 
N-degron specificity (Montandon et al. 2019a). Furthermore, a 
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Figure 6. Schematic view of the N-degron pathway for degradation by the chloroplast Clp chaperone-protease system. Proteins can be converted into 
substrates for the Clp system by various events including protein complex disassembly and aggregation, different stresses such as heat and radical 
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Clp proteolytic chamber resulting in the release of degradation products in the form of small peptides. However, the in vivo nature of these chloroplast 
N-degrons is yet to be determined. Elucidation of these N-degrons and the molecular players involved in their generation and recognition is a major 
challenge to be addressed.
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high-resolution structure (2 Å) for Arabidopsis ClpS1 showed that 
the N-degron binding pocket of ClpS1 is slightly enlarged com-
pared to that of Escherichia coli ClpS (Kim et al. 2021). In addition, 
amino acid replacement from Val (in E. coli) to Ala in ClpS1 caused 
a reduction in hydrophobic interactions with Leu N-degrons (Kim 
et al. 2021). Peptide array experiments with recombinant ClpS1 
showed that N-terminal acetylation prevented the binding of such 
N-termini to ClpS1 (Aguilar Lucero et al. 2021). Collectively, these 
in vitro and in vivo data suggest a unique N-degron pathway in 
chloroplasts. Recent studies show that bacterial ClpS can also rec-
ognize non-canonical N-degrons including degrons a few residues 
downstream of the N-terminus (Gao et al. 2019a; Jin et al. 2021); 
hence this scenario should also be considered for chloroplasts.

ClpF was identified as an interactor of ClpS1 and it was shown 
that ClpF and ClpS1 mutually stimulate their association with 
ClpC in vivo (Nishimura et al. 2015). Identified interactions between 
ClpF, ClpS1, and GluTR suggested a ternary complex, and a testable 
model was proposed in which ClpS1 and ClpF form a binary adaptor 
for selective substrate recognition of GluTR (and perhaps other pro-
teins) and delivery to ClpC (Nishimura et al. 2015). Whereas ClpF is 
a direct interactor to ClpS1 as well as ClpC1, the mechanistic role of 
ClpF in the N-degron pathway is not understood.

To identify additional Clp substrates, an in vivo ClpC1 substrate 
trap with a C-terminal STREPII affinity tag was expressed in 
Arabidopsis. This ClpC1-trap has mutated critical glutamate res-
idues (E374A and E718A) in the two Walker B domains of ClpC1 re-
quired for ATP hydrolysis [ClpC1-TRAP (Montandon et al. 2019b; 
Rei Liao et al. 2022)]. Based on homology to non-plant ClpB/C 
chaperones, it is predicted that interacting substrates are not re-
leased; i.e. they are trapped (Rei Liao and van Wijk 2019). 
Affinity purification of the ClpC1-TRAP resulted in more than 50 
highly enriched proteins compared to affinity-purified wild-type 
ClpC1 (Montandon et al. 2019b; Rei Liao et al. 2022). These in-
cluded >20 small proteins with unknown function/domains and 
several metabolic enzymes some of which were also identified 
as ClpS1 interacting proteins or over-accumulated in clp mutants 
(Nishimura et al. 2013). These enriched proteins likely represent 
Clp protease substrates, some possibly with N-degrons, and/or 
new adaptors.

Despite the significant support for a unique N-degron pathway 
in chloroplasts that involves ClpS1, and perhaps also ClpF, in vivo 
demonstrations for ClpS1-dependent substrate selection and de-
livery to the Clp chaperone-protease system are lacking. For in-
stance, whereas in vitro peptide binding assays for Arabidopsis 
ClpS1 showed a clear affinity for hydrophobic N-terminal amino 
acids (in particular, F, W, and Y), the ClpS1 protein interactome 
data with stromal proteins (e.g. for GluTR) failed to suggest a can-
onical N-degron. Furthermore, a direct positive correlation be-
tween chloroplast protein N-termini and ClpS1-dependent 
degradation has not been shown. Key questions about chloroplast 
N-degron pathways that need to be resolved include: (i) does gen-
eration of chloroplast N-degrons involve post-translational mod-
ifications (e.g. acetylation, phosphorylation, oxidation, or amino 
acid transfer), and are there specific enzymes involved in creating 
these modifications? (ii) are N-degrons for ClpS1 generated by 
N-terminally truncation of upstream proteases as has been sug-
gested in E. coli (Humbard et al. 2013)? (iii) are N-degrons confined 
to the very N-terminal residue of the substrates or are there more 
downstream signals (non-canonical N-degrons)? (iv) is ClpS1 
aided by co-adaptors such as ClpF? (iv) is there competition be-
tween ClpS1 and other adaptors/anti-adaptors—to influence sub-
strate selection and regulation of rates of proteolysis? Novel and 
innovative in vivo chloroplast tools and approaches are needed 

to determine the molecular details of ClpS1-dependent mecha-
nisms of N-degron substrate selection and delivery to the Clp 
chaperone-protease system in chloroplasts.

Roles of proteolysis in developmental 
and metabolic signaling
How do plants use ubiquitin-mediated proteolysis 
to regulate photomorphogenesis?
(Written by Ning Wei and Giovanna Serino)

Light signals perceived by photoreceptors are transduced to 
guide plant growth and development in a process known as photo-
morphogenesis. Dark-grown etiolated seedlings undergo dramat-
ic changes after exposure to light, including inhibition of 
hypocotyl elongation, unfolding of the apical hook, expansion of 
cotyledons, and maturation of chloroplasts (Kendrick and 
Kronenberg 1994). Genetic screens for Arabidopsis mutants exhib-
iting longer hypocotyls in the light led to the identification of pho-
toreceptor mutants such as long hypocotyl 3/phytochrome B [hy3/ 
phyB] and long hypocotyl 4/cryptochrome 1 [hy4/cry1], and hy5, a mu-
tant of a positive regulator of photomorphogenesis (Koornneef 
et al. 1980). Genetic screens for mutants with short hypocotyls 
and open cotyledons in the dark identified the constitutively photo-
morphogenic/de-etiolated/fusca (cop/det/fus) mutants (Chory et al. 
1989; Deng et al. 1991; Wei and Deng 1992). As it turned out, all 
of the corresponding gene products function via the UPS, under-
scoring its importance in photomorphogenesis, as they encode 
components of E3 Ub ligase complexes CRL4COP1-SPA (Ponnu and 
Hoecker 2021), CRL4C3D (C3D: COP10-DDB1-DET1-DDA1), and of 
a CRL regulator, the COP9 Signalosome (CSN). The CSN complex 
regulates all CRLs by de-neddylation, i.e. removing the Nedd8/ 
RUB1 modification of the cullin subunit (Schwechheimer et al. 
2001; Qin et al. 2020). Mounting evidence shows that CRLs play 
key roles in photomorphogenesis, as they regulate the stability 
of many components of light signaling, from photoreceptors to 
transcription factors (Fig. 7).

Regulating photoreceptor stability
Photoactivated phyA (Seo et al. 2004; Saijo et al. 2008; Debrieux 
et al. 2013), phyB (Jang et al. 2010; Lu et al. 2015; Sheerin et al. 
2015), and both CRYs (Chen et al. 2021c; Miao et al. 2022) are 
ubiquitylation targets COP1-SPA. In addition, under strong red 
light, phyB is recruited to the CUL3-based ligases CRL3LRBs 

through LIGHT-RESPONSE BRIC-A-BRAC/TRAMTRACK/BROAD 1 
AND LIGHT-RESPONSE BRIC-A-BRAC/TRAMTRACK/BROAD 2 
(LRB1, LRB2) to be ubiquitylated (Christians et al. 2012; Ni et al. 
2014). In the same fashion, CRL3LRBs also mediate the degradation 
of cryptochrome 1 (CRY1) and CRY2 under high blue light or low 
temperature (Ma et al. 2021; Chen et al. 2021c; Miao et al. 2022). 
By lowering the level of phytochromes and cryptochromes, 
CRL3LRBs serve to prevent over-stimulation and maintain light- 
signaling homeostasis. In addition, CRL3NPH3 targets protein degra-
dation of the phototropin Phot1, a blue light-sensing photoreceptor 
mediating phototropic responses (Roberts et al. 2011; Fig. 7).

Regulating phytochrome interacting factor (PIF) 
stability
The stability of PIFs, which play essential roles in etiolation (sko-
tomorphogenic development in darkness), as well as in shade 
avoidance and temperature responses under light conditions, is 
tightly controlled by the UPS. Light exposure results in rapid deg-
radation of PIF proteins to induce de-etiolation. In this process, 
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PIF3 is phosphorylated in response to photoactivation of phyB and 
then ubiquitylated by CRL1EBF1/2 for subsequent degradation 
(Dong et al. 2017). PIF3, together with phyB, is also a ubiquitylation 
target of CRL3LRBs (Ni et al. 2014); however, this co-degradation oc-
curs specifically under higher light intensity (Dong et al. 2017). 
Thus, the two different Ub ligases play opposite roles in phyB sig-
naling in different light environments: CRL3LRBs attenuate light 
signaling under high light irradiation, while CRL1EBF1/2 promotes 
photomorphogenesis, especially during de-etiolation.

PIF4 plays an important role in plant responses to shade, ele-
vated temperature, and diurnal cycle. CRL3BOP2 has been shown 
to mediate PIF4 ubiquitylation and degradation, and indeed the 
bop1 bop2 double mutant is hypersensitive to high temperature- 
mediated hypocotyl elongation (Zhang et al. 2017). In addition, 
PIF4 is phosphorylated by the brassinosteroid (BR) signaling kin-
ase BRASSINOSTEROID-INSENSITIVE 2 (BIN2), resulting in its deg-
radation during the diurnal cycle (Bernardo-García et al. 2014). It 
is probable that PIF4 is also modulated by other E3 ligases, yet to 
be identified, that are sensitive to PIF4 phosphorylation. Last but 
not least, light-induced degradation of PIF1 (Zhu et al. 2015), 
PIF5 (Pham et al. 2018), and PIF8 (Oh et al. 2020a) has been shown 
to involve the CRL4COP1-SPA complex, arguing for a dual role of 
COP1 in light signaling.

Open questions: how does COP1 achieve multifaceted 
roles within the complexity of light signaling?
There are several open questions as to how UPS regulates light sig-
naling. For example, specific E3s regulating PIF stability in a time-, 

space- and signal-dependent manner are still to be identified. 
Here, we focus on mechanisms centered around COP1 and its 
dual role in light signaling. The COP1-SPA complex acts as a cen-
tral photomorphogenic suppressor by targeting myriad positive 
regulators of light signaling, such as HY5, LONG HYPOCOTYL IN 
FAR-RED LIGHT1 (HFR1), B-BOX DOMAIN PROTEIN4 (BBX4), pho-
toreceptors, and many more, in dark or dim light conditions 
(Ponnu and Hoecker 2021; Fig. 7). However, some of these ubiquity-
lation targets are also stabilized by COP1 under different conditions. 
For example, while COP1 targets HY5 degradation in the dark, it sta-
bilizes it during UV-B-mediated photomorphogenesis (Oravecz 
et al. 2006). While COP1 (as well as DET1) stabilizes PIFs in darkness 
to ensure etiolated development (Bauer et al. 2004; Dong et al. 2014; 
Gangappa and Kumar 2017; Ling et al. 2017), it also facilitates 
de-etiolation through CRL4COP1-SPA-mediated light-induced degra-
dation of several PIFs (see above). Indeed, cop1 seedlings not only 
have reduced PIF levels in darkness, but they also show defects in 
light-induced PIF degradation (Zhu et al. 2015; Pham et al. 2018).

Studies from the last 10 years have also revealed that light 
signals inactivate COP1 by altering the composition of COP1- 
associated complexes. UV-B irradiation causes dissociation of 
COP1-SPA from the CRL4 core complex (Huang et al. 2013) and 
the subsequent formation of a COP1-UVR8 complex (Rizzini 
et al. 2011; Wang et al. 2022). The binding of monomeric UVR8 
to the VP substrate–recognition interface of COP1 dislodges 
COP1 substrates such as HY5, allowing them to accumulate and 
thus stimulating downstream light responses (Huang et al. 2014; 
Lau et al. 2019; Wang et al. 2022). Likewise, photoactivated 

?

?

Figure 7. Regulation of light-signaling components through the UPS. Photoreceptors, various light-promoting transcription factors (inside the yellow 
circle on right), and light repressors (inside the blue circle on left) are regulated by UPS through indicated CRL E3 ligase complexes.
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phytochromes and cryptochromes promote the physical separa-
tion of COP1 and SPA proteins (Lian et al. 2011; Zuo et al. 2011; 
Lu et al. 2015; Sheerin et al. 2015; Ponnu et al. 2019). Thus, disas-
sembly of the CRL4COP1-SPA complex and blocking of the COP1 
substrate-binding sites seem to be a general strategy in the light- 
dependent switch of COP1 activity. Similar to those 
photoreceptor-directed actions, CSU2 suppresses COP1 activity 
also by binding to the COP1 coiled-coil domain, which interferes 
with COP1 dimerization and the assembly of COP1-SPA com-
plexes (Xu et al. 2015a).

However, how COP1 and DET1 stabilize PIFs in the dark re-
mains an outstanding open question (Bauer et al. 2004; Dong 
et al. 2014; Gangappa and Kumar 2017; Ling et al. 2017). In the 
absence of COP1 or DET1, PIFs cannot accumulate. Since COP1 
has been shown to target EBF1/2 to degradation (Shi et al. 
2016), the F-box proteins that mediate ubiquitylation of PIF3 
and EIN3 via CRL1EBF1/2 ligase, it is possible that cop1 mutant 
may accumulate EBF1/2, which would lead to PIF3 destabiliza-
tion. Additional mechanisms likely exist, and more rigorous in-
vestigations are needed to elucidate how COP1 and DET1 
stabilize PIFs.

On the other hand, while it is clear that COP1-SPA serves as a 
substrate-recognition component in CRL4 COP1-SPA, it remains ob-
scure whether it can function as a stand-alone E3 ligase through 
the COP1 RING domain. COP1 function also requires CSN and 
DET1 (Qin et al. 2020; Cañibano et al. 2021), but the physical and 
functional interactions between COP1- and DET1-associated com-
plexes require further clarification. The CSN complex has pleio-
tropic functions beyond light signaling, as it regulates most CRL 
ligases. In light signaling, CSN-mediated de-neddylation of CUL1 
is necessary for loading the PIF3-EBF1 complex onto the CRL1 li-
gase, thus assembling the CRL1EBF1 holocomplex during light- 
induced PIF3 degradation (Dong et al. 2024) (Fig. 7). Dissecting 
the functions and dynamic interactions of COP1-, DET1-, and 
CSN-associated complexes remain highly challenging in the com-
ing years.

How does proteolysis of core signaling 
components occur in different subcellular 
locations to modulate the ABA pathway?
(Written by Pedro L. Rodriguez)

ABA is perceived by a family of ABA receptors known as 
PYRABACTIN RESISTANCE 1 (PYR1)/PYR1-like (PYL)/regulatory 
components of ABA receptors (RCAR), which leads to inhibition 
of clade A protein phosphatases type-2C (PP2Cs) and subsequent 
relief of inhibition of subfamily III Snf1-related protein kinases 2 
(SnRK2s; Cutler et al. 2010). Additionally, B2/B3-type RAF-like 
MAP3Ks are required to phosphorylate and activate the above 
SnRK2s (Lin et al. 2021). Proteolytic targeting mediated by E3 Ub 
ligases is a central component of all phytohormone signaling 
pathways, including ABA (Blázquez et al. 2020). Pioneering work 
on E3 ligases that regulate protein levels of transcription factors 
associated with ABA signaling, such as ABSCISIC ACID 
INSENSITIVE3 (ABI3) and ABI5, established a link between the 
UPS and modulation of ABA signaling (reviewed by Stone 2019).

Further work served to identify E3 ligases that regulate protein 
levels of other core components of ABA signaling, i.e. ABA recep-
tors, PP2Cs, and SnRK2s (reviewed by Ali et al. 2020; Coego et al. 
2021). ABA signaling in Arabidopsis involves 14 ABA receptors 
and 9 PP2Cs, as well as 3 SnRK2s. This is mirrored in the high num-
ber of E3 ligases that target these proteins (Ali et al. 2020; Coego 
et al. 2021). Because these E3 ligases are located in different cell 

compartments, the connection between plant cell biology and 
the regulation of ABA signaling is an emerging question for re-
search (Fig. 8). Processing at the plasma membrane (PM) leads to 
cargo degradation into the lytic vacuole, via the endocytic path-
way and autophagy (Saeed et al. 2023). Moreover, PM signaling 
nanodomains might be physiologically connected with the endo-
cytic pathway and E3 ligases targeting ABA signaling components 
(Yu and Xie 2017; Chen et al. 2023c). The RBR-type E3 ligase RSL1 
targets ABA receptors in the PM and promotes their endosome- 
mediated vacuolar degradation (Bueso et al. 2014). Given that 
ABA signaling at the PM is critical for the regulation of ion and 
water transporters, E3 ligases anchored in the PM through trans-
membrane domains, myristoylation, or as peripheral proteins 
might contribute to K63Ub-mediated targeting of core signaling 
components to the endovacuolar pathway (Bueso et al. 2014; 
Belda-Palazon et al. 2019; Pan et al. 2020). K63-linked Ub chains 
not only act as a signal for endocytosis but also might contribute 
to the autophagic clearance of cargo proteins that act in ABA sig-
naling (Sirko et al. 2021; Saeed et al. 2023).

Proteolytic targeting of all the players in ABA signaling, includ-
ing ABA receptors, PP2Cs, SnRK2s, and TFs in the nucleus, has 
been reported, affecting ABA transcriptional regulation and likely 
long-term ABA-induced changes in chromatin arrangement. 
Multimeric CRL4 E3 ligases regulate ABA receptor and OST1 pro-
tein levels in the nucleus through different substrate adaptor 
modules, involving DDA1 and HOS15, respectively (Irigoyen 
et al. 2014; Ali et al. 2019). On the other hand, the CRL3BPM or 
the RING-type COP1 E3 ligases regulate nuclear PP2C protein lev-
els (COP1 also in the cytosol) and affect stomatal function (Julian 
et al. 2019; Chen et al. 2021a). ABA induces chromatin remodeling 
in many cell types, affecting, for example, the root, the guard cell, 
and the mesophyll cell epigenome (Seller and Schroeder 2023). 
SnRK2s and PP2Cs orchestrate a phosphorylation-based switch 
to control the SWI/SNF chromatin-remodeling ATPase BRAHMA 
activity, which might be sensitive to developmental and environ-
mental signals that regulate their protein levels (Peirats-Llobet 
et al. 2016). A possible memory effect of proteolysis on chromatin 
remodeling in response to abiotic stress deserves further 
investigation.

Other E3 ligases that target PP2Cs are located near or associated 
with the PM, such as PUB12/13 and LOG2/AIRP3 specifically tar-
geting ABI1, or RGLG1/5 for PP2CA (Kong et al. 2015; Wu et al. 
2016; Pan et al. 2020). Only in the case of RGLG1 has the subcellu-
lar localization of the PP2CA-RLG1 interaction been investigated, 
and interestingly, it was found that ABA modifies the PM localiza-
tion of RGLG1 and promotes nuclear interaction with PP2CA 
(Belda-Palazon et al. 2019). ABA enhances the interaction of the 
E3 ligase and its target, and elucidation of this ABA-dependent 
translocation represents an area for further research. In the 
case of PUB12/13, the ubiquitylation of ABI1 in vitro requires exog-
enous ABA and the presence of ABA receptors. This suggests that 
some E3 ligases can recognize the PP2C-Receptor complexes, 
whose formation requires ABA for the dissociation of dimeric re-
ceptors and the assembly of highly stable forms (both for dimeric 
and for monomeric receptors). This model also applies to RGLG1, 
which forms nuclear complexes with PP2CA and monomeric re-
ceptors, such as RGLG1-PP2CA-PYL8 (Belda-Palazon et al. 2019).

However, in another example, ABA protects the PYL8-ABA re-
ceptor from degradation (Irigoyen et al. 2014). Thus, when ABA 
levels increase, the CRL4DDA1 complex cannot promote the degra-
dation of PYL8, establishing a positive feedback loop for 
PYL8-dependent signaling. It is not known whether the assembly 
of the CRL4DDA1 complex is impaired by ABA or if PYL8-ABA-PP2C 
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complexes are resistant to degradation by CRL4DDA1. Finally, the 
activation of SnRK2 degradation by ABA is postulated to be a neg-
ative feedback loop when SnRK2s are phosphorylated by B2/ 
B3-type RAF kinases (Lin et al. 2021), as well as the post- 
translational modification of ABA receptors can accelerate recep-
tor degradation (Castillo et al. 2015; Yu et al. 2019). This suggests 
that some E3 ligases might be sensitive to post-translational mod-
ifications of their targets, but the precise mechanism is unknown.

In summary, the interaction of different E3 ligases with core 
components of ABA signaling has been reported in the PM, cytosol, 
and nucleus, and additionally, the endosomal trafficking pathway 
plays a key role in the turnover of ABA receptors that have been 
ubiquitylated at the PM (Belda-Palazon et al. 2016; Yu et al. 
2016; Garcia-Leon et al. 2019). ABA plays signaling roles, or its lev-
els are increased, in other subcellular compartments in response 
to abiotic stress, such as mitochondria or endoplasmic reticulum 
(Han et al. 2020; Postiglione and Muday 2023). This suggests that 
ABA perception and regulation of the half-life of certain core sig-
naling components might occur in particular cell regions, and reg-
ulation of the local concentration of the core signaling network 
might be achieved by yet-to-be-discovered E3 ligases. The degra-
dation of key repressors of the ABA pathway (i.e. PP2Cs) is not 
the only mechanism to activate signaling because of the alterna-
tive biochemical inhibition of their activity by ABA receptors 
(Cutler et al. 2010). This poses unique questions to fully under-
stand ABA signaling open for further research. For example, 
how is biochemical (reversible) inhibition of PP2Cs intertwined 
with their proteolytic degradation, either when they are free or 

in ternary complexes with ABA and ABA receptors? And from a 
global perspective, is proteolytic degradation involved in signal-
ing, desensitization, or resetting of the ABA pathway?

The complexity of the strigolactone signaling 
pathway: how does the D14 receptor function as 
both receptor and enzyme, linking hormone 
perception to protein degradation?
(Written by Angelica M. Guercio, Malathy Palayam, and Nitzan 
Shabek)

Strigolactones (SLs), initially identified as root exudates from 
cotton [Gossypium hirsutum (Cook et al. 1966)], were first described 
to have a role in hormone signaling in the control of shoot branch-
ing (Gomez-Roldan et al. 2008; Umehara et al. 2008). Over the 
years, SLs have been further characterized, and the cohort of di-
verse processes controlled by SLs is still expanding. SLs can im-
pact plant-environment interactions such as initiating symbiosis 
with mycorrhizal fungi and stimulating the germination of para-
sitic plants (Bouwmeester et al. 2003; Akiyama et al. 2005, 2010; 
Yoneyama et al. 2010; Gutjahr et al. 2015). Endogenously, SLs reg-
ulate various aspects of plant growth and development, including 
shoot branching, leaf growth, leaf senescence, secondary stem 
thickening, the formation of adventitious roots, lateral roots, 
and root hairs (Brewer Koltai and Beveridge 2013; Ruyter-Spira 
et al. 2013; Bennett and Leyser 2014; Smith and Li 2014). 
Research on the extensive crosstalk between SL signaling and oth-
er phytohormones continues to unveil a comprehensive network 

Figure 8. Proteolysis of core ABA signaling components occurs in different subcellular compartments. The inset shows that ABA is perceived through 
dimeric or monomeric receptors (blue), which triggers the formation of ternary complexes with clade A PP2Cs (red), and relief of inhibition of SnRK2.2/ 
2.3/2.6 (pink) kinase activity. Nuclear, cytosolic, and PM targeting pathways of core components are indicated. RSL1 illustrates the targeting of ABA 
receptors at the PM, which promotes endosome-mediated vacuolar degradation via the ESCRT machinery, whereas PUB12 and AIRP3 might target 
PP2Cs in the proximity of the PM and follow either cytosolic or vacuolar degradation pathways. Nuclear degradation of ABA receptors, PP2Cs, and OST1 
involves the multimeric CRL3, CRL4, and RING-type COP1 E3 ligases, among others (see text for details). Nuclear and cytosolic 26S proteasomes and the 
vacuole participate in the degradation of core signaling components, which might influence signaling, desensitization, or resetting of the ABA pathway. 
The lytic vacuole also receives cargo for degradation via autophagy but data linking ABA with autophagy are limited. The figure was created using 
BioRender (https://biorender.com).
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of cross-hormone regulation and diverse effects in plant 
physiology.

The crossroads of plant hormones and the Ub system
Similar to other hormone signaling pathways in plants, SL signal-
ing relies on regulated turnover through the UPS (Jiang et al. 2013; 
Zhou et al. 2013a; Tal et al. 2020). Before the identification of the SL 
receptor, the F-box protein MORE AXILLARY GROWTH 2 (MAX2) or 
DWARF3 (D3) in rice, a component of the SCF (Skp1/Ask1- 
Cullin1-F-box) type E3 Ub ligase, was recognized as a key player 
in SL-related pathways (Stirnberg et al. 2007). max2 mutant plants 
exhibited phenotypes similar to those with mutations in SL bio-
synthesis pathways. However, unlike other SL mutants, max2 
phenotypes could not be rescued with SL treatment, indicating 
the involvement of MAX2 in SL signaling. Later, the SL receptor 
was discovered through mutant analysis (Arite et al. 2009), and 
similar to GA signaling, the receptor is an α/β hydrolase commonly 
referred to as D14 (DWARF14). It was hypothesized that D14, 
bound to SL, initiates complex formation with the SCFMAX2/D3 

which subsequently recruits and orchestrates the polyubiquityla-
tion and proteasomal degradation of the target proteins such as 
D53 (DWARF53 in rice) or SMXL6/7/8 (SUPPRESSOR OF MAX2 
LIKE 6, 7, and 8) (Jiang et al. 2013; Zhou et al. 2013a; Bennett and 
Leyser 2014; Wang et al. 2015). D53/SMXLs have a weak homology 
with class I Clp ATPase family proteins and have been shown to 
regulate SL response genes via their EAR motifs, but their precise 
functions and transcriptional targets remain elusive (Jiang et al. 
2013).

Decoding the dual role of the SL receptor D14
The SL receptor D14 has a dual role as both a receptor and an en-
zyme, capable of hydrolyzing SL (Hamiaux et al. 2012). Structural 
biology has played a vital role in unraveling the intricate mecha-
nisms behind SL perception. Crystal structures of D14 from vari-
ous plant species have shown a common α/β hydrolase fold with 
a deep ligand-binding pocket formed by a V-shaped lid comprised 
of four α-helices (Hamiaux et al. 2012; Kagiyama et al. 2013; 
Guercio et al. 2023). The bottom of the ligand-binding pocket con-
tains a conserved serine catalytic triad, highlighting the hydrolase 
activity that has been preserved throughout plant evolution 
(Bythell-Douglas et al. 2017). Studies have further examined the 
evolutionary history of these receptors, and the co-evolution of 
the residues lining the ligand-binding pocket to provide specificity 
for diverse SL molecules (Guercio et al. 2023).

Yet, an open question centers on the necessity of SL hydrolysis 
for propagating SL signaling. While it was initially proposed that 
hydrolysis induced conformational changes in D14, allowing it 
to interface with D3 (Yao et al. 2016), recent research has chal-
lenged this view. Mutants of D14 incapable of catalyzing SL hy-
drolysis were shown to bind SL and rescue d14 mutant 
phenotypes in an SL-dependent manner, indicating that SL bind-
ing, rather than hydrolysis, can initiate the signaling cascade (Seto 
et al. 2019). The different states of intact SL binding and SL hydrol-
ysis may convey distinct signals, with MAX2 directing the rate of 
SL hydrolysis, interactions, and the proteasomal degradation of 
D14 and SMXLs (Shabek et al. 2018; Marzec and Brewer 2019).

Mounting complexity: dynamics of E3 Ub ligase 
influence substrate degradation
Evidence to date demonstrates that D14 binding to MAX2/D3 is re-
quired to mediate the degradation of the target substrate. 
However, the reported crystal structures containing the D14–D3 

complex introduce additional complexity. One such structure re-
veals a significant conformational change in D14 when complexed 
with D3, presumably in a post-SL hydrolysis state (Yao et al. 2016). 
This observation is supported by the identification of a covalently 
linked intermediate molecule (CLIM) formed during SL hydrolysis, 
indicating that hydrolysis and conformational change play roles 
in D14–SL–D3 complex formation.

Another crystal structure unveils a stable form of D14 in com-
plex with the C-terminal helix (CTH) of D3. Furthermore, it was 
demonstrated that D3 exists in multiple functional conforma-
tions, characterized by a flexible, highly conserved CTH (Shabek 
et al. 2018). This CTH plays an essential role in directly binding 
D14–SL as a dislodged form, leading to allosteric inhibition of SL 
hydrolysis. The dislodged state of MAX2/D3 can be triggered by 
a small molecule like citrate by binding to the D-pocket of the 
MAX2/D3 protein, displacing the C-terminus D720 and inducing 
a conformational switch. This regulatory action of citrate is cru-
cial for modulating the spatial arrangement of the D14–D3 com-
plex during SL perception and hydrolysis, as evidenced by 
augmented inhibition of SL hydrolysis by D14–D3 when treated 
with citrate (Tal et al. 2022). The D3/MAX2 open conformation 
provides a new interface for the recruitment of D53/SMXLs and 
their subsequent ubiquitination and degradation by SCFMAX2/D3 

(Fig. 9). Despite its weak binding affinity, citrate’s regulatory role 
is significant due to its dynamic cellular concentrations, influ-
enced by environmental cues, and its potential impact on the fine- 
tuning of plant developmental processes and responses to stress.

The link between endogenous SL allocations, phosphate-poor 
soils, and the overproduction of citrate suggests a complex inter-
play between SL signaling and organic acid metabolism 
(López-Bucio et al. 2000; Brewer et al. 2013; Saeed et al. 2017; 
Liu et al. 2018a; Tahjib-Ul-Arif et al. 2021). Moreover, domain anal-
ysis of D53 illustrates four major domains (N, D1, M, and D2 do-
mains) also featured by other AAA+ ATPase family members. It 
was revealed that the rice D53 D2 domain independently estab-
lishes a stable complex with D3–D14 and undergoes degradation 
through the UPS, suggesting that the D2 domain alone is 
competent for hormone-induced protein turnover catalyzed by 
D14-SL-SCFMAX2/D3 complex (Shabek et al. 2018). Subsequently, 
other studies have utilized the D2 domain as the best proxy to fol-
low SL signaling and D53/SMXL-dependent degradation, in a cell- 
free system, in planta, or as a Strigo-D2 biosensor (Shabek et al. 
2018; Song et al. 2021; Tal et al. 2022).

Outlook: receptor turnover and SL catabolism tug of 
war
The SL receptor D14 undergoes ubiquitylation and degradation by 
the 26S proteasome in an SL-dependent manner, creating a nega-
tive feedback mechanism (Chevalier et al. 2014; Hu et al. 2017). SL 
induces the rapid degradation of D53 within a few minutes, subse-
quently regulating the expression of SL-responsive genes while el-
evating D53 expression after about 1 to 2 h (Hu et al. 2017). 
However, the SL-induced degradation of D14 begins approxi-
mately 1 h after exposure and reaches its peak at around 3 to 4 
h, indicating that precise feedback loops operating at different 
time intervals effectively modulate the duration and strength of 
SL signaling (Fig. 9). While further studies are needed to elucidate 
the precise mode of action of D14 degradation, it is hypothesized 
that upon SL hydrolysis, structural changes of the D14 fold occurs 
while bound to MAX2/D3, enabling the mediation of ubiquityla-
tion and degradation of D14 (Chevalier et al. 2014; Hu et al. 
2017; Shabek et al. 2018; Tal et al. 2022). The control of D14 levels 
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and, subsequently, cellular SL levels hold promise as an intriguing 
new area of research to better understand the interplay between 
SL signaling and the UPS.

While D14 can hydrolyze SLs, it acts as a relatively slow enzyme 
in the regulation of SL depletion and/or inactivation. Recently, 
carboxylesterase CXE15 and CXE20 were found in Arabidopsis to 
effectively deplete SL levels (Roesler et al. 2021; Xu et al. 2021). 
Therefore, it is possible that the role of D14 in breaking down 
SLs is insignificant compared to carboxylesterase activity, and 
the SL hydrolysis process may solely aim to precisely tune up dis-
tinct conformational states of the enzyme and contribute to the 
regulation of the SL complex.

In conclusion, the perception and signaling cascade of strigo-
lactone is characterized by its dynamic and complex nature, dif-
fering molecularly from other well-characterized phytohormone 
signaling pathways. The multifaceted processes governing strigo-
lactone perception and signaling regulation through proteasomal 
degradation represent another evolving phytohormone field in 
the intricate world of plant hormones.

Who takes the lead in the intricate dance between 
autophagy and sugar metabolism?
(Written by Tamar Avin-Wittenberg)

Autophagy is a vital mechanism for recycling nutrients, miti-
gating the impact of starvation (Takeshige et al. 1992; Meijer and 
Codogno 2004). The initial studies characterizing autophagy- 
deficient (atg) Arabidopsis mutants underscored their sensitivity 
to carbon and nitrogen starvation (Doelling et al. 2002; Hanaoka 
et al. 2002). Despite the connection between cellular carbon status 

and autophagy and the reciprocal influence of autophagy on me-
tabolite availability, the interplay between carbon-containing me-
tabolites, particularly sugars, and autophagy remains unclear. I 
will outline the known factors, persisting uncertainties, and chal-
lenges in exploring this issue.

Several groups have conducted metabolic profiling of atg mutant 
plants under both favorable and starvation conditions (Izumi et al. 
2013; Masclaux-Daubresse et al. 2014; Avin-Wittenberg et al. 2015; 
Barros et al. 2017; McLoughlin et al. 2018; McLoughlin et al. 2020). 
Most studies reported changes in amino acid levels, aligning with 
autophagy’s role as a protein degradation mechanism (Fig. 10). 
However, some studies also observed alterations in sugar levels. 
For instance, slight sucrose accumulation was observed in 
Arabidopsis and maize (Zea mays) atg mutants under favorable 
conditions (Masclaux-Daubresse et al. 2014; Barros et al. 2017; 
McLoughlin et al. 2018). Additionally, Raffinose family oligosac-
charides (galactinol, raffinose, and stachiose) accumulated in atg 
mutants under favorable and carbon starvation conditions 
(Masclaux-Daubresse et al. 2014; Avin-Wittenberg et al. 2015; 
McLoughlin et al. 2018).

Defining a consistent “sugar fingerprint” for autophagy defi-
ciency proves challenging, as many of the changes in sugar levels 
are experiment-specific. Starch is also important in the context of 
carbon supply, as autophagy was suggested to function in starch 
breakdown in Arabidopsis (Wang et al. 2013b), and a cross be-
tween starchless and atg mutants increased cell death under 
short-day conditions (Izumi et al. 2013). Interestingly, maize 
atg12 mutants demonstrated increased starch breakdown under 
carbon starvation (McLoughlin et al. 2020), while Arabidopsis atg 
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Figure 9. Regulation of SL signaling through protein degradation: (i) SL (light pink) is perceived by the receptor D14 (blue). (ii) The activated SL receptor 
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mutants exhibited starch accumulation under carbon starvation 
(Barros et al. 2017), suggesting that autophagy-starch regulation 
is more complex (Fig. 10).

Several factors could explain the variations in sugar pheno-
types observed in atg mutant experiments. First, two plant species 
were analyzed in the aforementioned studies, and the differences 
might point to species-specific roles of autophagy. As the study of 
plant autophagy expands to more species, additional data may re-
veal common factors in autophagy and metabolism. Secondly, the 
variability in Arabidopsis plant age during experiments adds com-
plexity, potentially influencing metabolomics results. The varia-
bility may imply that autophagy could assume distinct roles at 
different stages of plant development, influencing sugar metabo-
lism. Finally, the setup of carbon starvation may trigger a differen-
tial metabolic response. Previous studies have demonstrated 
that individual-leaf darkening induces leaf senescence, while 
whole-plant darkening inhibits it (Weaver and Amasino 2001). 
Moreover, a different metabolic response has been observed in 
both scenarios (Law et al. 2018). It is plausible that autophagy op-
erates differently under these carbon starvation conditions, re-
sulting in diverse metabolic outcomes (Fig. 10).

Several studies investigated autophagy and sugar excess. 
Arabidopsis atg mutant seedlings are less sensitive to elevated 
glucose and sucrose, but not fructose levels, displaying reduced 
inhibition of root growth upon high sugar treatment (Huang 
et al. 2018; Laloum et al. 2022). Surprisingly, this reduced inhibi-
tion of root growth is not attributed to changes in sugar metabo-
lism or accumulation. Instead, it is connected to reduced 
reactive oxygen species (ROS) accumulation in the roots and the 
persistence of auxin levels in atg mutants, possibly due to reduced 
pexophagy, allowing for reduced inhibition of root growth [Fig. 10
(Huang et al. 2018)].

There is another point to consider when studying metabolism 
in knockout mutants. The metabolic phenotype may not arise 

solely from the absence of autophagy but could also stem from 
the pleiotropic effects of the mutation. Additionally, the role of au-
tophagy in nutrient remobilization from source to sink tissues 
adds further complexity to the analysis. For instance, sucrose ac-
cumulation was observed in atg12 mutant maize seeds (Barros 
et al. 2023) and ATG4-RNAi tomato (Solanum lycopersicum) fruit 
(Alseekh et al. 2022). However, whether this accumulation is a 
consequence of autophagy deficiency in the source or sink tissue 
remains uncertain. Reciprocal crosses between wild-type and atg 
mutant Arabidopsis plants did not reveal significant differences in 
sugar and lipid levels (Erlichman et al. 2023). This suggests that 
autophagy primarily functions in nitrogen remobilization rather 
than carbon remobilization. Thus, it is speculated that sucrose ac-
cumulation may result from localized autophagy effects rather 
than carbon remobilization from the source.

How are sugar levels involved in the regulation of autophagy? 
Two key kinase complexes, target of rapamycin (TOR) and 
Snf1-related protein kinase 1 (SnRK1), play a crucial role in nu-
trient sensing (Janse van Rensburg et al. 2019). TOR promotes 
plant growth and inhibits autophagy, while SnRK1 induces au-
tophagy in response to starvation. SnRK1 activation of autophagy 
can occur either through TOR inhibition or direct activation. TOR 
is activated by various signals, including cellular glucose levels, 
though the specific details of this activation remain unknown 
(Mugume et al. 2020). SnRK1 senses energy and nutrient levels 
through adenine nucleotides (ATP, ADP, or AMP) or sugar phos-
phates. Trehalose 6-phosphate (T6P) acts as a negative regulator 
of SnRK1, representing cellular sucrose levels (Jamsheer et al. 
2021). Recent research also revealed a connection between three 
glycolytic enzymes and autophagy inhibition. These enzymes 
bind to ATG101, a regulatory subunit of the kinase ATG1, to re-
strict its activity (Lee et al. 2023).

Recent findings indicate that sugars can induce autophagy. The 
stress-related sugar trehalose accumulates in Arabidopsis during 

Figure 10. Interplay between carbon-containing metabolites and autophagy. The figure was created using BioRender (https://biorender.com).
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carbon starvation (Barros et al. 2017), and its buildup during des-
iccation in the resurrection plant Tripogon loliiformis led to autoph-
agy activation (Williams et al. 2015). Additionally, inhibiting 
trehalose degradation in maize activated autophagy and en-
hanced plant biomass [Sun et al. 2022 (Fig. 10)]. These results align 
with a growing body of evidence linking autophagy enhancement 
with increased plant performance (Minina et al. 2018).

In summary, the complex relationship between autophagy 
and sugar metabolism poses challenges in distinguishing cause 
and effect. The development of innovative tools, including 
inducible mutant lines and tissue-specific downregulation, is es-
sential to mitigate the pleiotropic effects of knockout mutants. 
Furthermore, uncovering novel sugars that regulate autophagy 
and understanding their mode of action will contribute to a better 
understanding of this elaborate co-regulation.

What is the role of proteolysis in fruit ripening 
regulation?
(Written by Sergey Mursalimov and Simon Michaeli)

Humans and other animals benefit from the ability of plant or-
gans to survive detached while temporarily maintaining their taste, 
scent, and nutritional values. However, the lifespan of harvested 
leaves, roots, tubers, and fruits is limited without the continued 
supply of water and nutrients. Hence, their existence is, by default, 
subject to stressful conditions of energetic deprivation and dehy-
dration. Moreover, due to trade and consumer requirements, fresh 
plant produce will experience extreme temperature and humidity 
fluctuations and be subjected to mechanical damage (Pedreschi 
and Lurie 2015; Al-Dairi et al. 2022). The latter further accelerates 
the appearance of biotic stressors, mostly fungi (Prusky and 
Romanazzi 2023). Changes in oxygen and CO2 levels during storage 
can affect respiration and also lead to oxidative damage (Pedreschi 
and Lurie 2015). These stressors may trigger protein misfolding and 
aggregation (Liu and Howell 2016), negatively affecting fresh pro-
duce’s quality and shelf-life. Food loss and waste is estimated at 
around 40% worldwide (Porat et al. 2018) and is accompanied by 
economic damage and carbon footprint. Therefore, increasing 
plant-based food security requires both increasing crop yields 
and decreasing food loss waste (Foley et al. 2011).

Proteolysis pathways are pivotal in plant development, senes-
cence, and stress responses and, as such, may prove to be efficient 
targets for plant-based reductions in food loss waste. The post-
harvest research field is vast. Here, I will focus on climacteric fruit 
ripening. Climacteric fruits, such as bananas, mangos, apples, and 
tomatoes, can ripen postharvest, and their ripening is accompa-
nied by respiration and ethylene bursts (Cherian et al. 2014).

The UPS in ripening
The UPS is essential in ripening, primarily due to its involvement 
in the tight regulation of phytohormones, including auxin, ABA, 
and ethylene (Fenn and Giovannoni 2021). Notably, UPS compo-
nents identified as hormone modulators in Arabidopsis were later 
found necessary in fruit ripening. For example, Ethylene- 
Insensitive 3 (EIN3)-Binding F-box (EBF) proteins are known to 
target EIN3, a key transcription factor in ethylene signaling, for 
proteasomal degradation (Guo and Ecker 2003; Potuschak et al. 
2003). More recently, the role of EBFs in tomato and pear ripening 
(Yang et al. 2010; Deng et al. 2018; Wang et al. 2023a) and carna-
tion petal senescence (Zhu et al. 2023) was demonstrated. The 
UPS may also regulate fruit traits independently of hormonal 
crosstalk. Fruit color has ecological and postharvest implications, 
affecting animal-borne seed dispersal and retail consumption.

In some fruits, such as tomatoes and bananas, color is used to 
assess the ripening stage and is determined by the ratio between 
two plastid types, chloroplasts and chromoplasts (Morelli et al. 
2023). With ripening progression, chlorophyll-containing chloro-
plasts are gradually transformed into carotenoid-containing chro-
moplasts (Fig. 11). In Arabidopsis, SUPPRESSOR OF PPI1 LOCUS1 
(SP1), a RING-type ubiquitin E3 ligase was found pivotal in the 
CHLORAD pathway (the section by Fang, Peixoto, and Jarvis here-
in). Recently, the tomato homologs SP1 and SP1-Like 2 (SPL2) were 
proposed as instrumental for chloroplast-to-chromoplast transi-
tion, suggesting that regulation of the plastid protein import ma-
chinery is vital for this plastid reformation (Ling et al. 2021).

Beyond the UPS: autophagy in ripening
Autophagy is another crucial cellular quality control and recy-
cling mechanism involved in senescence and plant responses to 
stress. Therefore, it is a candidate target for the shelf-life exten-
sion of any of the fresh produce types. Autophagy is generally in-
duced during cellular reprogramming (Rodriguez et al. 2020). 
Considering the dramatic cellular transformation during ripening 
(Fig. 11), it is surprising how little we know about autophagy`s role 
in this process. Recently, autophagy activity was shown to fluctu-
ate during pepper and strawberry ripening (López-Vidal et al. 
2020; Sánchez-Sevilla et al. 2021), and it was suggested to promote 
the ripening of the latter. Both these fruits are non-climacteric, 
meaning that their ripening is not associated with ethylene and 
respiration bursts (Perotti et al. 2023). On the other hand, in the cli-
macteric tomato fruits, we have shown that autophagy restricts 
ripening by repressing ethylene production (Kumaran et al. 
2023). It is tempting to speculate that the disparate function of au-
tophagy in climacteric and non-climacteric fruits results from the 
differential role of ethylene between these two fruit types. It fur-
ther highlights our insufficient knowledge of the interaction of au-
tophagy with phytohormones (Liao et al. 2022). Transmission 
electron microscopy of tomato fruit pericarp cells suggests the va-
cuolar degradation of plastids during ripening (Fig. 11, C and E). 
Nonetheless, it still needs to be determined whether this is medi-
ated via a macro- or microautophagy process (Izumi et al. 2017).

Proteolysis in postharvest regulation
Proteolysis pathways are highly selective toward specific targets 
within an explicit spatiotemporal environment (Clavel and 
Dagdas 2021), ideal for targeting individual traits. Can proteolysis 
pathways be harnessed for postharvest trait regulation and fresh 
produce shelf-life extension? To answer this, we first need to 
know whether there are applicable ways to induce or repress spe-
cific proteolysis pathways postharvest, avoiding fitness costs dur-
ing the plant life cycle. For example, the constitutive knock-down 
of tomato Autophagy-related 4 (ATG4) resulted in early leaf senes-
cence and a considerably low fruit yield (Alseekh et al. 2022). 
However, when the same silencing was employed in a ripening- 
specific manner, these phenotypes were absent, and instead, the 
role of autophagy in ripening repression was revealed (Kumaran 
et al. 2023). This highlights the necessity of examining proteolysis 
pathways specifically within a postharvest context, and further, 
raises the challenge of uncovering and editing genetic segments 
that may be exclusively functional during postharvest. An alter-
native for genetic manipulation may be using compounds target-
ing proteolysis pathways that will be applied to fresh produce. 
Such compounds would need to be both human- and eco-friendly.

In conclusion, proteolysis pathways are pivotal for fresh produ-
ce’s quality and shelf-life. Understanding the mechanisms 
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governing these processes during postharvest may advance our 
ability to reduce food loss and waste and help ensure access to 
high-quality and nutritious produce.

Roles of proteolysis in plant responses to 
biotic/abiotic signals
How does ERAD function in model plants and 
crops?
(Written by By Qian Chen, Qi Xie, and Feifei Yu)

Abiotic and biotic stresses can trigger misfolded protein accu-
mulation in the ER, causing ER stress. The unfolded protein re-
sponse (UPR), ER-associated degradation (ERAD), and autophagy 
are three main mechanisms for relieving ER stress (Liu and Li 
2014). Among them, ERAD involves the ER-located Ub modifica-
tion system and the cytosolic proteasome degradation system 
for protein degradation (Romisch 2005). Traditionally, ERAD is re-
sponsible for identifying misfolded proteins in the ER lumen or 
membrane and facilitating their degradation (Romisch 2005). 
Recent studies have expanded the role of ERAD in the homeostasis 
of functional PM and cytoplasmic proteins to modulate various 
plant biological processes (Pan et al. 2020; Zhang et al. 2021; 
Li et al. 2023a, 2023b; Wang et al. 2023b). Here, we focus on prog-
ress in the study of ERAD in plant development and stress re-
sponses, broadening insights from model plants to crops.

The role of ERAD in plant abiotic stress response has primarily 
been studied in Arabidopsis (Fig. 12A). A key ERAD component, 
UBC32, an ER membrane-anchored Ub-conjugating enzyme (E2), 
is transcriptionally induced by salt and drought stresses 
(Cui et al. 2012). UBC32 plays a role in the brassinosteroid 

(BR)-mediated salt stress response. Park et al. (2018) showed that 
the soluble ERAD component, ERAD-mediating RING finger protein 
(AtEMR), forms a complex with UBC32, negatively regulating salt 
stress resistance. Additionally, UBC32 cooperates with the 
RING-type E3 ligase Rma1 as an E2–E3 pair, enhancing plant 
drought tolerance by facilitating the degradation of aquaporin 
PIP2; 1 (Chen et al. 2021b). UBC32, together with its homologs 
UBC33 and UBC34, also participates in ABA signaling by degrading 
the phosphorylated ABA transporter NITRATE TRANSPORTER 1.2/ 
PEPTIDE TRANSPORTER 4.6 (NRT1.2/NPF4.6) (Zhang et al. 2021). 
Since ABA is crucial in plant drought response, it is still an open 
question whether UBC32 responds to drought via ABA signaling. 
Another E2, UBC27, an ortholog of the yeast ERAD component 
Ubc1p, interacts with ABA-INSENSITIVE RING PROTEIN 3 (AIRP3). 
The UBC27-AIRP3 interaction is enhanced by ABA which leads to 
ubiquitylation and degradation of ABA co-receptor 
ABA-INSENSITIVE 1 (ABI1), thus activating ABA signaling and im-
proving drought tolerance (Pan et al. 2020). These findings from 
Arabidopsis indicate that ERAD plays crucial roles in stress-related 
hormone signaling and plant adaptation to environmental stress.

Although significant progress has been made in understanding 
ERAD in model plants, our understanding of ERAD in crop stress 
response and growth is limited. In Medicago falcata, plant-specific 
E3 ligase MfSTMIR participates in the ERAD pathway via interact-
ing with MtUBC32 to relieve ER stress under salt stress (Zhang 
et al. 2019b). This finding underscores the significance of ERAD 
pathways in crop salt stress response. However, further studies 
are required to explore their roles in other stress conditions.

Recent studies have highlighted the role of ERAD in biotic stress 
resistance in a few crops (Fig. 12B). In rice, overexpression of 

Figure 11. Fruit plastid evolution along ripening progression and their possible delivery to vacuoles. A to E) Transmission electron micrographs of 
ultrathin sections of tomato pericarp cells from three ripening stages as indicated. A) Chloroplast (arrow). B) Chromoplast (arrow). C) Vacuoles contain 
structures likely to be plastids (arrowheads) by judging the electron density of the cytoplasmic plastids in their vicinity (arrows in the inset). D) A 
chromoplast with signs of internal degradation (arrow). E) Vacuolar inclusions of what appear to be plastids remain (judging the internal 
plastoglobules). C, Cytoplasm. V, Vacuole lumen. Image credits: S. Mursalimov, A. Upcher, S. Michaeli.
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OsUBC45, the ortholog of Arabidopsis UBC32, exhibited improved 
resistance to rice blast and bacterial leaf blight by promoting the 
degradation of OsPIP2; 1, which attenuates disease resistance by 
mediating the translocation of H2O2 from the cytosol to the apo-
plast (Wang et al. 2023b). The ERAD-related RING-type E3 Ub li-
gase Decreased Grain Size 1 (DGS1) improved resistance to rice 
blast, by forming an E2–E3 pair with OsUBC45 to enhance the deg-
radation of OsPIP2; 1 (Wang et al. 2024). In foxtail millet (Setaria 
italica), the overexpression of the ERAD-related RING-type E3 Ub 
ligase Small Grain and Dwarf (SGD1) also increased blast resist-
ance, though the mechanism remains undefined (Tang et al. 
2023). Whether SiUBC32 in millet also contributes to disease re-
sistance needs to be further explored.

Significant advances have been made in understanding the 
crucial role of ERAD-related E2–E3 in grain yield in graminaceous 
cereals (Fig. 12B). In rice, SMALL GRAIN 3 (SMG3), the other name 
of OsUBC45, works together with E3 ligase DGS1 to positively reg-
ulate grain size by facilitating the degradation of the misfolded BR 
receptor BRI1 (Li et al. 2023a). Intriguingly, the same E2–E3 pair 
OsUBC45/SMG3-DGS1 also enhances rice yield by targeting 
GLYCOGEN SYNTHASE KINASE 3 (OsGSK3), a negative compo-
nent in BR signaling, for ubiquitylation-dependent degradation 
(Gao et al. 2019b; Wang et al. 2023b). In millet, the SGD1– 
SiUBC32 pair also boosts yield by strengthening BR signaling. 
They catalyze Ub attachment to BRI1 but lead to an accumulation 
of functional BRI1 rather than its degradation (Tang et al. 2023). 
Additionally, the role of SGD1 in regulating seed size is also con-
served in wheat (Triticum aestivum) and maize (Tang et al. 2023). 
These studies in crops demonstrate that this specific E2–E3 pair 
could contribute to crop yield by enhancing BR signaling through 
regulating both positive and negative components involved in BR 
recognition and signal transduction. Further efforts should ex-
plore the role of DGS1 orthologs in wheat and maize disease 

resistance and determine whether the SMG3/OsUBC45/ 
SiUBC32-DGS1/SGD1 pair acts as an E2–E3 pair, targeting different 
substrates to improve both yield and disease resistance in staple 
crops. Moreover, OsUBC11 in rice, the ortholog of AtUBC7 in 
Arabidopsis, which encodes ERAD components, is implicated in 
root development at the seedling stage by affecting auxin signal-
ing (Han et al. 2023), implying the potential roles of other ERAD 
components in crop development.

ERAD components play a significant role in phytohormone sig-
naling, including ABA, BR, and auxin pathways, and crosstalk 
among these hormones has been known to balance plant develop-
ment and stress response (Wang et al. 2020; Zhang et al. 2021; Song 
et al. 2023; Tang et al. 2023; Li et al. 2023a, 2023b; Wang et al. 2023b; 
Yu and Xie 2024). It is important to note that although the function 
of ERAD is largely conserved across eukaryotes, there may be dif-
ferences between model plants and crops. For instance, the mu-
tants of UBC32 in Arabidopsis show minimal impact on plant 
growth and seed size (Cui et al. 2012), whereas its orthologs in 
rice and millet are essential factors for both growth and yield (Li 
et al. 2023a; Tang et al. 2023; Wang et al. 2023b), which may be par-
tially explained by the distinct BR signaling between Arabidopsis 
and rice. Therefore, it is crucial to reveal the specific role of other 
ERAD components, such as the E3 Ub ligase HRD1 and DOA10 in 
crop growth and environmental stress interaction, which will pro-
vide us the possibility of utilizing them in crop breeding.

How is chloroplast-associated protein 
degradation (CHLORAD) regulated in response to 
developmental and environmental cues?
(Written by Jun Fang, Bruno Peixoto, and R. Paul Jarvis)

Chloroplasts are essential plant organelles, not only for photo-
synthesis but also for the biosynthesis of many important primary 

Figure 12. The role of ERAD in plant growth, crop yield, and stress response. A) The role of ERAD in stress response and phytohormone signaling in 
Arabidopsis. The leucine-rich repeat receptor-like kinase (LRR-RLK) CEPR2 phosphorylates ABA importer NRT1.2/NPF4.6, inhibiting its ability to import 
ABA. The phosphorylated NRT1.2/NPF4.6 is then transported to the ER for ubiquitylation and degradation, mediated by UBC32 and its homologs UBC33 
and UBC34. ABA inhibits the CEPR2-mediated phosphorylation of NRT1.2/NPF4.6. ABA receptor PYL recognizes ABA and initiates the transduction of ABA 
signaling. UBC27 and AIRP3 act as an E2–E3 pair to activate ABA signaling and enhance drought tolerance by promoting the ubiquitylation and degradation 
of ABI1. Moreover, UBC32 collaborates with AtEMR1 to facilitate the degradation of misfolded BRI1, thereby influencing BR signaling under ER stress 
conditions. During drought stress, Rma1 and UBC32 work together to enhance drought tolerance by promoting the degradation of phosphorylated 
aquaporin PIP2; 1. B) The role of ERAD in crop yield and disease resistance. The ERAD-related E2-E3 pair, OsUBC45/SiUBC32-DGS1/SGD1 in rice and millet, 
enhances yield by regulating BR signaling via distinct mechanisms. They enhance BR signaling by reducing the protein level of misfolded BR receptor BRI1 
(in rice) or increasing the protein level of folded BRI1 (in millet). Additionally, the E2–E3 pair also promotes the Ub-dependent degradation of OsGSK3, a 
negative regulator of BR signaling. Under fungi attack, OsPIP2; 1 facilitates the translocation of H2O2 from the cytoplasm to the apoplast, negatively 
regulating pattern-triggered immunity (PTI). OsUBC45 and DGS1 promote the degradation of OsPIP2; 1, enhancing rice resistance to disease.
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and secondary metabolites (Lopez-Juez and Pyke 2005; Sun and 
Jarvis 2023). Chloroplasts originated through endosymbiosis 
from an ancient cyanobacteria-like photosynthetic prokaryote 
(Reyes-Prieto et al. 2007), and the modern organelles retain a func-
tional genome with roughly 100 protein-coding genes. However, 
most endosymbiont genes were transferred to the host nuclear ge-
nome during evolution. Consequently, >90% of the ∼3,000 differ-
ent chloroplast proteins are nucleus-encoded and must be 
imported following synthesis as precursors in the cytosol (Li and 
Chiu 2010; Shi and Theg 2013; Sun and Jarvis 2023).

Import of these precursors into chloroplasts requires translo-
cons in the outer and inner chloroplast envelope membranes 
(TOC and TIC, respectively). The TOC complex exists in different, 
client-specific subtypes (Li and Chiu 2010; Shi and Theg 2013). The 
main TOC subtype, comprising the receptors Toc33 and Toc159 
and the channel Toc75, preferentially imports precursors of the 
photosynthetic apparatus. In contrast, a minor TOC subtype 
with a different complement of receptors (Toc34, Toc132, and 
Toc120) tends to import non-photosynthetic, housekeeping pre-
cursors (Kessler and Schnell 2009; Li and Chiu 2010). The TOC ma-
chinery acts as the gateway controlling entry of the desired types 
of precursors. The guardian that regulates the TOC machinery is 
the so-called chloroplast-associated protein degradation 
(CHLORAD) system. CHLORAD is an arm of the UPS, and it targets 
TOC proteins for ubiquitylation and degradation, thereby control-
ling the import of precursor proteins. A separate system proteo-
lytically removes unimported precursors to prevent their 
cytosolic accumulation (Lee et al. 2009, 2016; Grimmer et al. 
2020), although whether or how this system is coordinated with 
CHLORAD is not known. The CHLORAD system is composed 
of the RING-type E3 Ub ligase SUPPRESSOR OF PPI1 LOCUS1 
(SP1), an Omp85-type β-barrel protein SP2, and a cytosolic 
AAA-ATPase motor CDC48 (Ling et al. 2012; Ling et al. 2019). As 
we summarize below, CHLORAD plays important roles both de-
velopmentally and under stress conditions. However, there are 
major outstanding questions concerning how CHLORAD is regu-
lated by different developmental and environmental cues 
(Fig. 13).

Chloroplasts are the best-known type of plastid, but there are 
several other plastid types in non-green plant tissues. A remark-
able feature of these different plastid types is their ability to inter-
convert in response to developmental or environmental signals. 
Such plastid-type interconversions involve the remodeling of the 
plastid proteome, which is controlled at least in part by differen-
tial regulation of protein import, particularly at the TOC machi-
nery (Jarvis and López-Juez 2013; Nellaepalli et al. 2023). 
CHLORAD degrades TOC proteins to facilitate their replacement 
by others, thereby controlling plastid protein import, the organel-
lar proteome, and plastid transitions.

Work in Arabidopsis showed that loss of SP1 leads to delayed 
de-etiolation and leaf senescence, whereas overexpression of 
SP1 promotes these processes by accelerating plastid transitions 
(i.e. etioplast-to-chloroplast and chloroplast-to-gerontoplast 
transitions, respectively). Such functions of CHLORAD appear 
well-conserved among plant species, as its manipulation similarly 
affects leaf senescence in tomato, as well as fruit ripening during 
which chromoplast formation occurs (Ling et al. 2012; Ling et al. 
2021). Recently, two homologs of SP1, namely SP1-like1 (SPL1) 
and SPL2, were shown to regulate CHLORAD in an antagonistic 
manner (Mohd Ali et al. 2023). While SPL2 exhibits partial redun-
dancy with SP1, SPL1 negatively regulates SP1 potentially through 
competitive interaction with other factors (Ling et al. 2021; 
Mohd Ali et al. 2023). Both SPL proteins are important for leaf 

senescence, like SP1. However, it remains unclear how 
CHLORAD perceives developmental signals, and how it selectively 
degrades different TOC components during different develop-
mental phases.

Different TOC subtypes are regulated transcriptionally in dif-
ferent plant tissues and developmental stages (Demarsy et al. 
2014). In contrast, the SP1 and SP2 genes show comparable expres-
sion profiles across different tissues and stages (Ling et al. 2019). 
Therefore, it is likely that SP1 and SP2 are regulated post- 
translationally. Studies have shown that TOC receptors can be 
phosphorylated in vitro and in vivo, and such phosphorylation 
may inhibit TOC complex assembly, GTP binding, and precursor 
binding (Demarsy et al. 2014). For example, physiological analyses 
suggested that phosphorylation at residue S181 reduces Toc33 ac-
tivity and impairs chloroplast biogenesis at early developmental 

Figure 13. Possible mechanisms of regulation of chloroplast-associated 
protein degradation. CHLORAD is a UPS pathway that selectively 
degrades chloroplast-resident proteins, including the TOC apparatus 
that is responsible for protein import. The SP1 Ub E3 ligase recruits E2 
Ub-conjugating enzyme [via its RING finger (RNF) domain] to direct the 
ubiquitylation of TOC proteins, which are then degraded through the 
combined action of the SP2 retrotranslocation channel, the CDC48 
ATPase motor, and the cytosolic 26S proteasome (26SP); in this, the 
activity of SP1 is modulated by the action of SP1-like components (SPLs). 
Thus, CHLORAD exerts important control over protein import and the 
organelle’s proteome and functions. Such control is responsive to 
developmental and environmental cues through unclear mechanisms. 
Under different conditions, phytohormone, Ca2+, or reactive oxygen 
species (ROS) signaling might regulate the activity of CHLORAD, and 
this is possibly mediated through post-translational modification of the 
CHLORAD machinery or its TOC apparatus targets, and/or through 
retrograde signaling and stress-responsive proteins. Post-translational 
modifications that are potentially involved in such regulation are 
indicated.

The lowdown on breakdown: open questions in plant proteolysis | 2953



stages, but not later growth (Aronsson et al. 2006; Oreb et al. 2007). 
A kinase at the outer chloroplast membrane (KOC1) phosphory-
lates the A-domain of Toc159 in vitro and contributes to efficient 
protein import and chloroplast biogenesis during de-etiolation 
(Zufferey et al. 2017). Differential phosphorylation of Toc159 has 
also been described when the carbon-sensing kinase SnRK1 (su-
crose nonfermenting 1-related protein kinase 1) is genetically ma-
nipulated, with SnRK1α1 gain-/loss-of-function lines showing 
higher/lower levels of phosphorylated Toc159, respectively 
(Nukarinen et al. 2016; Cho et al. 2016a). Moreover, phosphoryla-
tion of Toc159 family proteins by SnRK2, and reduced import effi-
ciency in an ABA biogenesis deficient mutant, implies crosstalk 
between ABA signaling and protein import regulation (Zhong 
et al. 2010; Wang et al. 2013a). There is presently no information 
on whether CHLORAD components undergo differential phos-
phorylation at different developmental stages, although SP1 and 
SP2 are predicted to have 18 and 15 phosphorylation sites, respec-
tively (Chen et al. 2023a). Phosphorylation may regulate E3 ligase 
activity, substrate recognition, or substrate/ligase interaction 
(Hunter 2007).

Besides its developmental role, CHLORAD is also critically im-
portant for abiotic stress tolerance in plants (Ling and Jarvis 
2015). Under stress conditions, chloroplasts overproduce reactive 
oxygen species (ROS), harmful photosynthetic byproducts 
that can oxidize macromolecules and affect organellar 
structural and functional integrity (Li and Kim 2022). During 
stress, CHLORAD degrades TOC proteins to limit the import of 
photosynthesis-related proteins, thereby suppressing photosyn-
thetic activity and reducing ROS production and photo-oxidative 
damage (Ling and Jarvis 2015). In addition to their toxicity, ROS 
also function as signaling molecules via the redox modification 
of specific amino acid residues, for example, at cysteine thiol 
groups (Li and Kim 2022). Evidence suggests that conserved cys-
teines in TOC components may be regulated by redox modifica-
tion, thereby influencing protein import (Kessler and Schnell 
2009; Balsera et al. 2010). Interestingly, Toc75 was found to be oxi-
dized at C219 within its polypeptide transport-associated (POTRA) 
domain, after hydrogen peroxide treatment (Doron et al. 2021). 
While SP1, SPL1, and SPL2 share several conserved cysteines, it 
is currently unknown whether these cysteine residues are essen-
tial for the function or involved in redox-mediated regulation 
(Ling et al. 2012; Ling et al. 2021). It will be interesting to investi-
gate whether the CHLORAD apparatus is regulated by redox mod-
ification directly or by altered affinity toward redox-modified/ 
unmodified TOC proteins. This might enable rapid limitation of 
the import of photosynthesis proteins and further ROS 
production.

Aside from such direct effects, ROS also induce stress- 
responsive gene expression changes by transmitting signals 
from chloroplasts to the nucleus. This is referred to as retrograde 
signaling, and it plays important roles in maintaining cellular ho-
meostasis and acclimation to stressful environments (Li and Kim 
2022). For example, singlet oxygen (1O2) oxidizes β-carotene to 
produce β-cyclocitral, which induces detoxification-related nu-
clear genes via the SCARECROW-LIKE 14 (SCL14) transcription 
factor, or salicylic acid (SA)-responsive genes through a chloro-
plast SA-synthesis enzyme, isochorismate synthase1 [ICS1 
(Lv et al. 2015; D’Alessandro et al. 2018)]. Chloroplast-resident 
EXECUTER1 (EX1) protein is also oxidized by 1O2 at its W643 resi-
due, inducing 1O2-responsive gene expression (Dogra et al. 2019). 
Thus, the question arises: Does ROS-induced retrograde signaling 
play a role in regulating CHLORAD? One possibility is that the ex-
pression of SP1 and SP2 is regulated under abiotic stresses. 

However, differential expression of these genes was not observed 
under several abiotic stresses (Hruz et al. 2008; Coolen et al. 2016; 
Garcia-Molina and Pastor 2023). Another possibility is that 
CHLORAD is a target of stress-responsive proteins regulated by 
retrograde signaling, for example, proteins involved in stress- 
related phytohormone signaling or ROS-triggered responses 
(Li and Kim 2022).

In addition to ROS, cytosolic calcium, various phytohormones 
including ABA, and diverse kinase subfamilies such as type 2C 
protein phosphatase (PP2C), SnRK2, SnRK1, and mitogen- 
activated protein kinases (MAPKs) also play major signal trans-
duction roles during abiotic stress (Belda-Palazón et al. 2020; 
Zhang et al. 2022). Therefore, it is conceivable that CHLORAD per-
ceives stress signals transduced from the PM or cytosol as part of 
an integrated cellular stress response. The CALCINEURIN B-LIKE 
10 (CBL10) protein, a member of the CBL family that perceives 
and transmits Ca2+ signals to CBL-interacting protein kinases, 
was found to interact with Toc34 and negatively regulate its 
GTPase activity (Cho et al. 2016b). As mentioned above, ABA sig-
naling can influence the phosphorylation of Toc159 family pro-
teins. Thus, emerging evidence suggests possible crosstalk 
between Ca2+ and hormone signaling and protein import regula-
tion, although whether CHLORAD plays any role in this is un-
known. It is clear that post-translational modification of 
substrate proteins, such as acetylation, phosphorylation, and 
SUMOylation, can alter substrate recognition by RING E3 ligases 
(Metzger et al. 2014). In this regard, it is noteworthy that the E2 
SUMO conjugase SCE1 is implicated in the SUMOylation of TOC 
proteins to promote their degradation, possibly through 
CHLORAD activity (Watson et al. 2021). However, it is unclear 
whether SUMOylation affects substrate recognition by SP1 or 
some other step such as CDC48 recruitment.

Many important questions remain concerning CHLORAD ac-
tion and the regulation of chloroplast protein import. We look for-
ward to seeing significant new light shed in this intriguing area in 
the future. Because of its importance for plastid development and 
plant stress responses, a greater understanding of CHLORAD reg-
ulation may prove invaluable in efforts to improve crop perform-
ance concerning yield, quality, and stress resilience.

How does autophagy contribute to drought 
tolerance?
(Written by Diane C. Bassham)

Autophagy, a pathway leading to the degradation of cellular 
components in the vacuole, is activated by numerous abiotic 
stresses, including drought (Agbemafle et al. 2023). The activities 
of two major kinases are responsible for regulating autophagy 
under many conditions: the Target of Rapamycin (TOR) complex, 
a negative regulator, and SnRK1, a positive regulator. 
Downstream of these kinases, a suite of ATG (autophagy-related) 
proteins function in the de novo production of double-membrane 
vesicles termed autophagosomes that enwrap the cargo to be de-
graded. The cargo is delivered into the vacuole, degraded by va-
cuolar hydrolases, and the degradation products are recycled 
into the cytoplasm (Agbemafle et al. 2023). Disruption of autoph-
agy by mutating core autophagy genes or by using inhibitors de-
creases drought tolerance (Liu et al. 2009). Overexpression in 
Arabidopsis of ATG genes derived from crop species leads to im-
proved drought tolerance (Li et al. 2019, 2015; Fu et al. 2020; 
Chen et al. 2022; Yue et al. 2022), as does overexpression of 
ATG18 and ATG8 homologs in apple (Sun et al. 2018; Jia et al. 
2021). These data indicate a critical function for autophagy in 
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survival during drought, including in economically important 
crop species, but the mechanisms by which autophagy acts to al-
low survival remain an open question.

Several pathways by which plants activate autophagy during 
the drought have been identified, although how they work togeth-
er remains unclear (Fig. 14). In a number of plant species, ATG 
genes are upregulated by drought, and autophagy activity in-
creases (Tang and Bassham 2022; Agbemafle et al. 2023); several 
transcription factors have been identified that can control the ex-
pression of these ATG genes during drought (Agbemafle et al. 
2023). As for other stresses, TOR and SnRK1 kinases are critical 
in activating autophagy during drought, with repression of TOR 
activity and increased SnRK1 activity leading to activation (Pu 
et al. 2017; Soto-Burgos and Bassham 2017; Chen et al. 2017a). It 
is becoming clear that sulfide signaling also regulates stress re-
sponses such as autophagy (Jurado-Flores et al. 2023). The core 
autophagy protein ATG4 is persulfidated and inactivated upon os-
motic stress or ABA treatment, leading to a downregulation of au-
tophagy (Laureano-Marín et al. 2020), potentially preventing 
over-activation and cell death.

While it is well established that autophagy is activated during 
drought and aids in drought tolerance, major questions remain 
about the pathways by which autophagy contributes to tolerance. 
Several distinct mechanisms have been proposed, but which ones 
predominate and how these mechanisms are integrated is not yet 
known, and are crucial topics for future research.

Degradation of oxidized and/or aggregated proteins
Several reports indicate that autophagy is important for clearing 
aggregated or oxidized proteins during drought and other stresses 
(Zhou et al. 2013b; Sun et al. 2018) and that the activities of anti-
oxidant pathways correlate with autophagy activity (Li et al. 
2019; Jia et al. 2021). This potentially could relieve cytotoxic stress 
caused by the accumulation of damaged proteins and other 
macromolecules.

Regulation of aquaporin activity
Aquaporins are channels that control the flux of water and other 
small molecules across membranes. In both Medicago (Li et al. 
2020a) and Arabidopsis (Hachez et al. 2014), PM aquaporins are 
recognized by selective autophagy receptors and degraded during 
drought, although the receptors in each species are distinct. This 
degradation is proposed to reduce water loss from cells and im-
prove drought tolerance.

Regulation of stomatal dynamics
Interesting recent findings implicate autophagy in stomatal dy-
namics, which are critical to prevent loss of water in conditions 
of water deficit. Reactive oxygen species signal in response to en-
vironmental stress to inhibit stomatal opening and/or promote 
closing; ROS homeostasis in guard cells therefore may be impor-
tant for drought tolerance. Autophagy is required for maintaining 
basal levels of ROS, and Arabidopsis mutants defective in autoph-
agy have high ROS levels in guard cells, with defects in stomatal 
movement (Yamauchi et al. 2019). Interestingly, ABA responses, 
guard cell opening, and ROS homeostasis have all been linked to 
regulation by protein persulfidation, suggesting that the integra-
tion of drought responses may involve sulfide signaling 
(Jurado-Flores et al. 2023).

Regulation of growth
The transcription factor BES1 controls growth in response to bras-
sinosteroid signaling. During drought, BES1 is degraded by selec-
tive autophagy via the DSK2 receptor, leading to decreased 
growth and increased drought tolerance (Nolan et al. 2017). In 
general, water use efficiency (i.e. the ratio between water used 
by the plant and that lost by transpiration) is correlated with 
leaf area, but unexpectedly not with stomatal density or ABA lev-
els, suggesting a complex relationship between plant size, water 
use, and drought tolerance (de Ollas et al. 2023). This is demon-
strated in the case of Arabidopsis cost1 (constitutively stressed) 
mutants, which have greatly reduced growth, constitutive au-
tophagy, and are highly drought tolerant (Bao et al. 2020). The 
drought tolerance requires active autophagy, and COST1 inhibits 
autophagy by interacting with the autophagy machinery. During 
drought, COST1 is degraded, releasing the inhibition of autophagy 
and increasing drought tolerance. Intriguingly, recent work 
showed that cost1 mutants are drought tolerant because they 
use less water due to their extreme dwarfism and that when 
grown together in the same pot, no drought tolerance is observed 
(Ginzburg et al. 2022). However, the cost1 drought tolerance phe-
notype can be rescued by blocking autophagy, but the growth phe-
notype cannot, indicating that plant size and drought tolerance 
can be uncoupled in this mutant (Bao et al. 2020).

These data all indicate an important role for autophagy in 
drought responses, but also raise many questions about the pre-
cise role of autophagy in these responses, the mechanisms by 
which drought is perceived and autophagy is activated, and the in-
tegration of stress, growth, and developmental pathways to allow 

Figure 14. Possible mechanisms by which autophagy regulates drought tolerance. Autophagy is activated by drought stress via the TOR complex, 
SnRK1, and transcriptional pathways. Activation of autophagy may lead to increased degradation of protein aggregates and aquaporins, and decreased 
growth and stomatal aperture, in turn aiding tolerance of drought conditions.
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plant survival. New approaches including the physiological char-
acterization of higher-order mutants in different aspects of the 
drought response, identification of additional factors, for example 
by protein–protein interaction, that link autophagy to drought tol-
erance, and non-targeted approaches such as suppressor screens 
are needed to determine the relationships between identified 
pathways and to clarify direct and indirect contributions of pro-
teins and pathways to drought tolerance. The activity and role 
of autophagy in the phenotypes of known drought-tolerant or sen-
sitive mutants also deserve investigation.

How does the fine-tuning of proteasome 
regulation impact the trade-off between growth 
and defense?
(Written by Suayib Üstün)

Trade-offs, situations when a beneficial change in one feature 
comes with a detrimental change in another, are inherent to life 
(Garland 2014). One of the most prevalent examples is the growth- 
defense trade-off in plant–microbe interactions. Under changing 
environmental conditions, and when resources are scarce, plants 
must decide between growth or defense. Growth-defense trade- 
offs are triggered by changes in the nutrient status and by the 
activation of pathways with contrasting functions, e.g. either pro-
moting or limiting growth. Thus, the trade-off between growth 
and defense has an enormous impact on plant survival, reproduc-
tion, plant fitness, and crop yields (Huot et al. 2014). As such, it is 
not surprising that plant hormones, transcription factors, and 
kinases that sense the nutrient status of a cell, all play roles in bal-
ancing growth-defense trade-offs (Lozano-Durán et al. 2013; Huot 
et al. 2014; De Vleesschauwer et al. 2018; Margalha et al. 2019). 
Proteostasis, the balance between protein biosynthesis and degra-
dation, has a huge impact on the growth-defense trade-off. 
Considering that approximately 80% of protein degradation in 
plants is mediated by the UPS, and given the role of the UPS in 
plant-microbe interactions, cell survival, and growth (Raffeiner 
et al. 2023; Langin et al. 2023a), it is evident that the UPS plays a 
major role in the growth-defense trade-off. How does the protea-
some directly and indirectly influence the trade-off between 
growth and defense?

The role of the UPS in cellular homeostasis
The UPS not only recycles proteins as a housekeeper but also has 
essential roles in controlling developmental processes and stress 
responses by fine-tuning the amount of central regulatory pro-
teins (Raffeiner et al. 2023). Proteasome mutants often display 
pleiotropic phenotypes, perhaps related to the role of the UPS in 
central processes in plant growth and development, such as bal-
ancing cell division and expansion in plants (and see the section 
above by Bednarek), and plant response to environmental condi-
tions, including biotic and abiotic stresses (Kurepa et al. 2009; 
Langin et al. 2023a, and see above section by Bassham).

Mounting evidence suggests that the UPS is involved in degrad-
ing organelle-associated proteins to alleviate stress conditions 
(Clavel and Dagdas 2021, and see above sections by Murcha and 
van Wijk). As chloroplasts are the most essential energy source 
in plants, impairment of proteasome-mediated chloroplast qual-
ity control can be expected to have a dramatic effect on plant fit-
ness. Indeed, severe proteasome stress induced by high 
concentrations of the proteasome inhibitor MG132 inhibits root 
growth (Sheng et al. 2012). However, mild proteasome stress was 
shown to enhance root growth (Sheng et al. 2012) and can also 
have a positive effect on photosynthesis and plant performance 

(Grimmer et al. 2020), suggesting that we are missing some puzzle 
pieces in our understanding of the role of the UPS in the control of 
plant growth.

Why is the proteasome manipulated during 
plant-microbe interactions?
The proteasome might be considered an ideal target for manipu-
lation by microbes to impact as many pathways and compart-
ments as possible (Langin et al. 2020, 2023a). The proteasome 
controls plant immune reactions from pathogen perception to ex-
ecution and thus is a master regulator of plant immunity (Adams 
and Spoel 2018; Langin et al. 2023a). It is known that loss of various 
proteasome subunits leads to increased susceptibility toward 
pathogens (Üstün et al. 2016; Langin et al. 2023a). The inactivation 
of the proteasome seems to be in general beneficial for most 
pathogens, although it leads to growth penalties and developmen-
tal alterations. Thus, various pathogens, from bacteria to viruses, 
directly target and inactivate the proteasome to subvert many cel-
lular processes (Langin et al. 2020).

However, there are also contrasting effects on the proteasome 
during plant-microbe interactions. Although certain pathogens 
suppress the function of the proteasome to cause disease, the 
same pathogens also activate the proteasome to degrade central 
regulators of plant immunity (Langin et al. 2020). How these con-
trasting functions work together to influence the proteasome re-
mains to be understood but inactivation and activation likely 
occur in parallel during pathogen attack. Nevertheless, in a sim-
plified scenario, proteasome activation might be the way to com-
bat disease. Indeed, during various pathogen infections or SA 
treatment, transcription as well as translation of proteasome sub-
units are induced, which can be explained in two ways: (i) Given 
the direct role of some subunits in plant defense reactions 
(Hatsugai et al. 2009; Üstün et al. 2016), proteasome subunits 
are transcriptionally and translationally induced as a form of de-
fense reaction or (ii) pathogens directly induce the expression of 
the proteasome to hijack the proteasome. If we think about the 
scenario, (i) strengthening the proteasome should lead to resist-
ance without affecting growth. Intriguingly, a recent study discov-
ered a natural allele of proteasome maturation factor UMP1, 
displaying enhanced proteasome abundance and activity, leading 
to resistance to multiple pathogens in rice (Hu et al. 2023). While 
pathogen infection is restricted, defense reactions are increased 
without any yield penalty. Taken together, activation of the pro-
teasome circumvents the growth-defense trade-off. Uncoupling 
growth and defense trade-offs have been shown in very rare cases, 
e.g. regulated expression of SA master regulator NPR1 using 
uORF-mediated translational control (Xu et al. 2017). It appears 
that utilizing proteostasis seems to be the key to engineering plant 
disease resistance without fitness costs.

Does proteasome activation balance growth-defense 
trade-offs?
But would proteasome activation always bypass the growth- 
defense trade-off? Activation of the proteasome is governed by a 
chaperone network, including UMP1, that is essential for protea-
some assembly and function. Before this, proteasome subunit 
genes need to be expressed (Marshall and Vierstra 2019). In 
Arabidopsis, two NAC transcription factors, NAC53 and 78, act 
in concert to activate the gene expression of proteasome subunits 
(Gladman et al. 2016). Considering the broad role of NACs in many 
cellular pathways, it is likely that both transcription factors 
might have other targets beyond the proteasome. Indeed, both 
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transcription factors have been found to additionally target and 
repress photosynthesis-associated nuclear genes during proteo-
toxicity affecting the energy status of the cell (Langin et al. 
2023b). The trade-off between proteasome activation and photo-
synthesis downregulation seems to be a general feature as it oc-
curs in response to various environmental and developmental 
cues (Langin et al. 2023b). In this scenario, transcriptional upregu-
lation of proteasome subunits might be considered a defense 
strategy to restrict pathogens by repressing photosynthesis 
when pathogens suppress the proteasome (Fig. 15).

Although the role of the proteasome in growth and defense has 
been extensively studied, many questions remain elusive: (1) Does 
the magnitude of proteasome activation and de-activation decide 
how the growth-defense trade-off is influenced? (2) Does the pro-
teasome act as a trap in plant-microbe interactions leading to 
growth penalties to limit pathogens? (3) How can we explain con-
trasting effects on the proteasome during pathogen infection? (4) 
Can we engineer plants that evade the growth-defense trade-off 
using the transcriptional activation of the proteasome by 
NAC53/78? Addressing these questions in the future will reveal 
how up- and downregulation of the proteasome during plant–mi-
crobe interactions integrates different signals to balance the 
trade-off between growth and defense.

Why are there so many peptidases in plants, 
particularly in the subtilase family?
(Written by Annick Stintzi and Andreas Schaller)

Plants devote a large fraction of their proteome to proteolysis. 
Adding to the proteasome and the multi-component UPS, there 
are several hundred peptidases in plants, for example, 685 pepti-
dases in Arabidopsis (MEROPS database https://www.ebi.ac.uk/ 
merops/). Here, we discuss whether the expansion of peptidase 
families is driven by functional diversification or, more specifi-
cally, by the specialization of peptidases for certain substrate pro-
teins, for specific processing sites, or by distinct mechanisms of 
regulation. We pose these questions for subtilases (SBTs), the S8 

family of serine peptidases and one of the largest and most 
studied peptidase families in plants (Schaller et al. 2018).

Specialization for substrate proteins
Plant-specific SBTs (five of the seven SBT clades in tracheophytes) 
originated from a single event of horizontal gene transfer from a 
bacterial donor to streptophyte algae (Xu et al. 2019). Early gene 
duplication resulted in two copies, one evolving into the SBT2 
clade, the other one ancestral to clade1 and clades 3 to 5. While 
the SBT2 lineage remained well-conserved with low copy numbers 
throughout land plant evolution, the SBT1 and SBT3-5 lineages 
underwent massive expansion (Xu et al. 2019). Interestingly, the 
size of individual clades differs dramatically between angiosperm 
taxa, suggesting that some of the gene duplication events oc-
curred comparatively recently.

The SBT1 clade, for example, is rather small in Arabidopsis with 
only 9 members, compared to 61 in tomato (Solanum lycopersicum) 
and an average of 21.7 across land plants (Taylor and Qiu 2017; 
Reichardt et al. 2018). Many SBT1 genes have been implicated in 
biotic interactions, including symbiotic interactions (e.g. arbuscu-
lar mycorrhiza and nodulation) as well as pathogenic interactions 
with viruses, microbes, insects, and parasitic plants. It was pro-
posed that the SBT1 clade expanded by whole-genome and tan-
dem duplications followed by neo-functionalization in response 
to the selection pressure from interaction partners (Taylor and 
Qiu 2017). This would explain the smaller size of the SBT1 clade 
in Arabidopsis, a non-mycorrhizal and non-nodulating species. 
Neo-functionalization implies the specialization of SBT paralogs 
for substrate proteins specifically involved in the different biotic 
interactions. However, these substrate proteins have yet to be 
identified.

Direct evidence for the diversification of clade 1 SBTs in re-
sponse to pathogen pressure was obtained for the cluster of 10 
monophyletic P69 genes on tomato chromosome 8, with individu-
al paralogs contributing to plant defense against different patho-
gens (Homma et al. 2023; Zhang et al. 2024b). Host immune 

Figure 15. The proteasome influences the growth-defense trade-off. A) The proteasome degrades substrates from various cellular compartments and 
organelles to maintain cell survival and optimal growth. B) Proteins that accumulate due to stress conditions or accumulating preproteins from organelles 
or microbes as well as chemical inhibitors can interfere with proteasome function leading to proteotoxic stress. This will cause growth penalties, impact 
survival, and in the case of microbes cause disease. C) On the one hand, a natural allele of proteasome maturation factor UMP1R2115 results in more 
proteasome abundance and activity improving resistance to multiple pathogens without growth penalties. On the other hand, proteasome activation can 
be achieved by the transcription factor pair NAC53 and NAC78. Whether this transcriptional activation of the proteasome results in resistance to 
pathogens and how it impacts plant growth remains to be discovered. The figure was created using BioRender (https://biorender.com).
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responses rely on P69B which activates the immune protease Rcr3 
(Paulus et al. 2020). Many pathogens produce effector proteins in-
hibiting P69B to suppress immunity (Homma et al. 2023). 
Responding to the resulting selection pressure, paralogs evolved 
within tomato and across related Solanum species that show var-
iation mainly at residues located at the protease/inhibitor inter-
face, thereby escaping effector-mediated P69 inhibition (Homma 
et al. 2023).

Neo-functionalization with respect to substrate specificity is 
apparent in the SBT3 clade, which is much larger in Arabidopsis, 
with 18 members compared to only 2 in tomato (Reichardt et al. 
2018). Many of the Arabidopsis SBT3 copies are found as clusters 
of tandemly arrayed, monophyletic paralogs indicating that they 
originate from tandem duplications in the Brassicales or 
Brassicaceae (Taylor and Qiu 2017). Substrates of clade 3 SBTs in-
clude PROSCOOPs, a large family of phytocytokine precursors. 
PROSCOOP12 and PROSCOOP20 are processed by different SBT3 
members to release the corresponding bioactive SCOOP peptides 
(Yang et al. 2023). Interestingly, the PROSCOOP family is also re-
stricted to Brassicaceae (Gully et al. 2019), suggesting that co- 
evolution with PROSCOOPs may have contributed to the expan-
sion of the SBT3 clade.

Specialization with respect to mechanisms of 
regulation
Proteases must be tightly controlled, due to their irreversible im-
pact on the structure and function of substrate proteins. This is 
achieved by diversification with respect to the developmental 
stage and cell type in which they occur, the subcellular compart-
ments and conditions under which they are active, and the mech-
anisms by which proteolytic activity is terminated. SBTs show 
highly tissue-specific and/or stress-responsive expression pat-
terns, likely resulting from sub- or neo-functionalization at the 
level of gene regulatory elements. They are produced as 
pre-pro-enzymes with an N-terminal signal peptide targeting 
the proteins to the secretory pathway. The prodomain serves 
dual functions, acting as a folding assistant and as an auto- 
inhibitor of enzymatic activity (Meyer et al. 2016). Cleavage of 
the prodomain is critical for enzyme activation and is an autoca-
talytic process. In tomatoes, SBT3 is controlled by pH (Meyer et al. 
2016) and occurs late in the secretory pathway when the pH drops 
in the trans-Golgi, thereby preventing precocious enzyme activa-
tion. Since SBT activity is required also in earlier compartments of 
the secretory pathway, as well as in the apoplast (Stührwohldt 
et al. 2020b), other regulatory mechanisms for prodomain proc-
essing are likely to exist. Some SBTs are kept inactive, even after 
prodomain removal, by a self-inhibitory N-terminal peptide or a 
flexible β-hairpin occluding the active site. These SBTs require fur-
ther processing and homodimerization, respectively, for activa-
tion (Janzik et al. 2000; Ottmann et al. 2009). SBTs also 
diversified with respect to the pH optimum for catalysis, ranging 
from pH 4 to 11. How all these factors relate to physiological func-
tion is still largely unresolved.

Protease activity can be terminated by inhibition, degradation, 
or sequestration. In addition to pathogen-derived inhibitory effec-
tor proteins (Homma et al. 2023), there are also endogenous SBT 
inhibitors that are related in structure and function to the SBT 
prodomain (Hohl et al. 2017). In Arabidopsis, this includes subtili-
sin propeptide-like inhibitor 1 (SPI-1), a potent inhibitor with in-
hibition and dissociation constants in the picomolar range (Hohl 
et al. 2017). However, which SBTs are targeted in vivo, and the 
physiological consequences of SPI-mediated inhibition, remain 

to be identified. The activity of AtS1P in clade SBT7 is regulated 
by the Serpin1 inhibitor (Ghorbani et al. 2016). Whether plant- 
specific SBTs in clades SBT1-5 are inhibited by other members of 
the large serpin family is still unknown. As other means of regula-
tion, tomato subtilase P69B is degraded by two matrix metallopro-
teinases (Zimmermann et al. 2016), and active phytaspase 
(AtSBT3.8) is specifically removed from the apoplast by clathrin- 
mediated endocytosis (Trusova et al. 2019).

Specialization for specific processing sites
An emerging function of plant SBTs is their predominant role in 
the formation of peptide hormones and growth factors, particu-
larly of the post-translationally modified signaling peptides as ex-
tracellular signals for cell-to-cell communication (Stührwohldt 
and Schaller 2019; Stintzi and Schaller 2022). The vast numbers 
of signaling peptides and SBTs in the plant apoplast suggest that 
mechanisms are in place both to prevent unwanted degradation 
of signaling peptides and to ensure the specificity of peptide pre-
cursor processing. Such mechanisms may have arisen by co- 
evolution of the signaling peptide and SBT families.

To ensure the specificity of precursor processing, SBTs evolved 
different modes of cleavage site recognition. Precise processing of 
the IDA precursor (a peptide controlling floral organ abscission) 
depends on multiple residues on either side of the cleaved bond. 
These residues are accommodated in the active site cleft of 
SBT4.13 with low selectivity, and it is the sum of many low-affinity 
interactions that ensures precise recognition of the cleavage site 
(Schardon et al. 2016). In contrast, the precursors of systemin 
and PSK (peptides controlling herbivore defense and flower drop 
in tomato, respectively) display aspartate residues at their proc-
essing sites. Phytaspases recognize these single aspartates in a 
highly specific manner, showing little selectivity for other resi-
dues around the cleavage site (Beloshistov et al. 2018; Reichardt 
et al. 2018; Reichardt et al. 2020). The TWS1 precursor (TWS1 is 
a peptide controlling embryonic cuticle development) is proc-
essed by SBT1.8 and SBT2.4, which act redundantly at the 
C-terminal cleavage site (Doll et al. 2020; Royek et al. 2022). 
Interestingly, SBT1.8 also cleaves at the N-terminus, but only 
when a neighboring tyrosine is sulfated. In this case, post- 
translational modification of this tyrosine marks the cleavage 
site for recognition by SBT1.8 (Royek et al. 2022). The opposite 
was observed for the precursor of CLE40 (a peptide controlling 
stem cell maintenance in the root apical meristem). proCLE40 is 
cleaved by three redundant SBTs at two sites, the first resulting 
in the release of the mature peptide, and the second producing 
an inactive CLE40 fragment (Stührwohldt et al. 2020a). Here, post- 
translational hydroxylation of a neighboring proline prevents 
cleavage at the second site, thereby contributing to the specificity 
of processing and CLE40 biogenesis (Stührwohldt et al. 2020a). In 
these examples, different modes of substrate recognition by the 
proteases, and post-translational modifications of the peptide 
precursors both contribute to the specificity of interaction.

Given the preceding discussion, we can only offer a partial ex-
planation for why there are so many peptidases in plants. Hence, 
the question is still open, awaiting thorough investigations into 
the evolutionary forces that propel the expansion of SBT and other 
peptidase families.
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