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Abstract Mental Models. For such relational reasoning problems,

In recent years a lot of psychological research efforts have j[he.re exist several emplrlca_lly vallda_ted effects in reaso
been made in analyzing human spatial reasoning. Psychol- iNg: the number of models (indeterminacy effect), the form
ogists have implicitly used few spatial cognitive models, i.e. of premises (figural effect), the wording of conclusion and

models of how humans conceptualize spatial information and ; _
reason about it. But only little effort has been put into the the preference effect. These effects are explained by men

task of identifying from an algorithmic point of view the con-  tal model theory KIMT) (Johnson-Laird & Byrne, 1991;
trol mechanism and complexity involved in spatial relational ~ Johnson-Laird, 2001). According to théMT, linguistic

reasoning. In this paper we extend the SRM model (Ragni, : ;
Knautff, & Nebel, 2005; Ragni & Steffenhagen, 2007) by new processes are relevant to transfer the information from the

specifications and formalization of Baddeleys Working' mem- ~ Premises into a spatial array and back again, but the reason-
Olry_ model. Ey th(f% resulting rrp?dem?&ﬁwetaref ablet't? ex- ing process itself fully relies on model manipulation ondy.

plain a number of new psychological effects of spatial repre- : : : : .
sentation and reasoning by the number of mental operations mental mOdeI.IS an mFemaI represent{?\tlon of objects and rela
involved in solving these tasks. The discussion includes con- tions in spatial working memory, which matches the state of
sequences of the formalization for the role of the central exec- affairs given in the premises. The semantic theory of mental
utive in spatial relational reasoning. _ _ models is based on the mathematical definition of deduction,
Keywords: Spatial Reasoning; Computational Modelling i.e. a propositional statemefitis a consequence of a set of
premisegP, written? = ¢, if in each modelq of 2, the con-

Introduction clusiond is true.

The ability to deal with spatial and temporal information is . . — o .
one of the most fundamental skills of any intelligent system Without having an algorithmic formalization of a cognitive
y 9 Y model, the task of testing and improving this model seems

a_md |mpor_tant In our e.veryday. I|v¢s. When routg de;crlp-to be rather difficult, whereas the transfer of such cogaitiv
tions are given, spatial information is usually containethie

description. While in engineering or physics it is most com models to Al systems seems to be even harder. Only a pre-
ption. ngt g or pnysics it cise computational model, which defines parameters and op-
mon to represent spatial information quantitatively, aug- . - )
: i o ) erations, makes testable predictions. Furthermore, gusi
ing coordinate systems, human communication mainly use . e
o L . o ST mpirical data, formally specifying the role of the subsyss
a qualitative description, which specifies qualitativetieln-

ships between spatial entities. But how is this informationOf a cognitive model, i.e. its store systems, it is possible t
P P ) identify the necessary abilities of a computational model.

processed? Where is the focus of cognitive attention in pro- . . -
In this paper we formalize and analyze a combination of

. T N .
f(-:i:ilgr?awsgfglr\]/ii mf?g&itrfg .eln the following we foars the preferred mental model theory and Baddeleys working
9p €. memory model. Then we show how this model (i) is able

(1) Thered caris to the left of the yellow car. to solve relational reasoning tasks, (ii) explains emplirie-
The yellow car is to the left of the orange car. sults in the literature by the number of mental operatigiii}, (
The yellow car is to the left of the green car. report an experiment, which tests a new prediction made by
The green car is to the left of the blue car. the CROS, and (iv) finally give an idea how theR®OS can

Is the blue car (necessarily) to the right of the orange car? help in specifying the role of the central executive (CE).

The statements are callptemises, the cars are thierms, and

the question refers to a putatigenclusion. A premise of the State of the Art
form “The red car is to the left of the yellow car” consists
of (two) objects, and a (usually binary) relation like “tceth
left of”. More precisely, the first object (red car) is the "to . )
be localized object”(LO), which is placed according to the &N assumptions of mental model theawT) and Badde-

relation (left of) of the second object (yellow éxrwhich is Ie)f'rshWorkm? lMen"éorl){[rl:Aodel (BWMM)'th tthe h
the “reference object” (RO) (Miller & Johnson-Laird, 1976) . € mental modet theory assumes that th€ human reason-
ing process consists of three distinct phases: mbeel gen-

1in the following he objects are abbreviatedRyY, O, G andB eration phase, in which a first model is constructed out of

Psychological Background. For joining spatial reasoning
and representation, it is necessary to specify and workheut t
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tial reasoning uses mental models (Byrne & Johnson-Laird,
1989). The mental models can be located in the WMM in
the visuo-spatial sketchpad, where the construction and ma
nipulation of the mental models can be located as well. The
PHONOLOGICAL VISUOSPATIAL model in the VSSP is manipulated by a special device which
in e v vt o is called focus. The PL uses some dynamic memory alloca-
tion like the first-in-first-out principle (Vandierendonekal.,

Figure 1: Baddeleys (1999) Working Memory Model ~ 2004; Baguley & Payne, 1999).
Phonological
Loop

Rehearsal Rehearsal

Premises

B is right of A
Cisrightof A
D is belfad C

the premises, aimspection phase, in which the model is in-
spected to check if a putative conclusion is consistent witt
the current model. In thealidation phasg, finally, alternative
models are generated from the premises that refute this pu-
tative conclusion. In our example presented above, thetexac
relation between “Y” and “G” is not specified and leads to
multiple-model cases like RY O GBor RY G O B. This

is caused by the indeterminacy effect and is mainly responsi
ble for human difficulty in reasoning (Johnson-Laird, 2001)
The classicaMMT is not able to explain a phenomenon en-
countered in multiple-model cases, namely that humans gen-
erally tend to constructpreferred mental model (PMM). This
model is easier to construct, less complex, and easier t@-mai
tain in working memory compared to all other possible mod-
els (Knauff, Rauh, Schlieder, & Strube, 1998). The prireipl

of economicity is the determining factor in explaining huma
preferences (Manktelow, 1999). This principle also expai Figure 2: TheC® 0S-Model
that a model is constructed incrementally from its premises

Such a model construction process saves working memory computational Models. A first computational model for
capacities because each bit of information is immediatelynental models was presented 1991 (Johnson-Laird & Byrne,
processed and integrated into the model (Johnson-Laird &991). This model is mainly able to insert objects into an ar-
Byrne, 1991). In the model variation phase, this PMM is var-ray and to generate a mental model. This model simulates and
ied to find alternative interpretations of the premises Refu  explains experimental results of three-term problems. The
al., 2005). From a formal point of view, however, this theory most general model in reasoning with relations is the UNI-
has not yet been formalized and is therefore not fully specicORE model (Bara, Bucciarelli, & Lombardo, 2001). This
fied in terms of necessary operations to process such simpjgodel is able to explain several effects on relational reaso
problems described above. In other words, the use, CORStrUfhg (e.g. figural effect), but so far it does not model the vari
tion, and inspection of mental models have been handled in gjon phase or include any representation of human memory.
rather implicit and vague way (Johnson-Laird, 2001; Bagule A first approach to specifying a computational model for the
& Payne, 1999; Vandierendonck, Dierckx, & Vooght, 2004). preferred mental model theory has been the SRM presented
BWMM assumes a central executive, which is responsiby (Ragni et al., 2005). This model consists of an input d&vic
ble for monitoring and coordinating the operations of twofor the premises, a two-dimensional spatial array in whigh t
subsystems, theghonological loop (PL) and thevisuo-spatial mental model is constructed, inspected, and varied, and a fo
sketchpad (VSSP) (Fig. 1). The first subsystem, the phono-cus, which performs these operations. The application of a
logical loop, stores information in a language-based formstandard cost measure was able to explain empirical results
The second subsystem, the visuo-spatial sketchpad, whidBut this model still contains some limitations. Complex re-
is independent from the PL in terms of limits, stores visuallations, defined by the number of dimension and sources of
and spatial information. Both subsystems are controlled byariations that are related (Halford1, 1998), are not défa
a Central Executive which is able to store and manipulate There is no working memory representation and the model
information in both subsystems. For combining the PMMT variation phase is not specified.
and BWMM, the following questions have to be answered:
In which subsystem and how does the reasoning takes place? The CROS Mode
Which limits do the subsystems and the control process havezach computational model is based on assumptions and ab-
These questions are answered by results, which can be foustractions depending on its aim. Tl#R OSs-Model (Cog-
in the literature: The deduction process in relational spanitive Relational Operating System) which formalizes the

RV o

Semantic Interpreter

)\
Control
Process

Dynamic Memory Allocation

First-In-First-Out Principle
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meaning of the input has to be interpreted. In linguistiss, a

Table 1: The instruction set of ek 0S. well as in psychology, the existence of@mantic interpreter

Control process operations . : . .

readnext() read the next premise from SI and save values (SI) IS aSSUmEd, which in our model _maps SyntaCtlca!ly_ana-

to the variables LO, RO, and REL lyzed texts to the formal representation. The semantic-inte
SubSystem(sys) change sub system the central process is : H . :

working on: ys can be the PL or the SA pretat|on.|s not part of th|s_ paper. Wg simply assume a parser

Control Flow that provides the correct interpretations to the systenm-If

if val then test whether val is true and determinacy occurs, information about other possible fsode
{instr. block} process first instruction block b d. Si | del i |
[else {instr. block }] | else 2nd block is processed qut e store - Ince a mental model Is only a represen-
while val do process instr. block as long as tation, information of other models must be held in another
{instr. block} val <> 0 e i - - ;

Operations on Phonological Loop subsystgm. Thls mformayon is psychologically modgled by
writep(prem) Write premise mto loop annotating objects (Vandierendonck et al., 2004). Since we
annotate(o.(z)) annotate object o Wigh{j do not now how humans encode such information, we use
annotations(o return annotations of objects o . . .
annotated(o) return true if o is annotated the fU” premise as anpotgtlon. The ap'p'roprla'te mempry 'sys—

Focus Operations tem in the WMM for this kind of propositional information is
§n103?5d> move ”1110 f(}’f“S ;0 direction dt ol the PL. This is consistent with neuropsychological evigenc
rea read cell where rocus 1s on, return ralse .

if cell is empty ’ (Knauff, Mulack, Kassubek, Salih, & Greenlee, 2002). The
fwrite(o) write object o to cell where focus is on PL is managed by a dynamiC memory allocation System like
newLayer() | create new empty layer FiFo or least-recently-used strategy (LRU), which allohes t
Complex Sub-Programs ) . X
shift (o, d) shift object o to direction of d mOde“ng of activated ObJeCts-
exchange(o,rel,concl) e)fchange obje.ctato direction Since both Systems, the SA and the PL, are Only mem-
of rel generating a new model .
fmoveto(o) move focus to object o ory systems and the focus manipulates only the Séora
inverse(rel) compute inverse relation to rel trol process, which manages thé€R 0S, is needed, managing
layer(o) returns the layer of object o, th b t d trols the f ti the SA
merge(l1, l2) merge layer 11 and I € subsystems and controis the Tocus operations on the .

The control process has a limited instruction set (Fig. &y-S
eral instructions directly control read/insert/move @iens
WMM and PMMT consists of: A conceptualization of the of the focus, statements to branch or loop the control flow,
WMM (with subsystems), enanipulation device for the men-  and simple test instructions. With this set of instructicals

tal models, a (relational) language describing object -posigorithms for all three reasoning phases can be defined and
tions, and asemantic interpreter, interpreting the language. different insertion strategies can be tested and compaies.
The central place where models are located is the VSSP. Theemises are read and interpreted iterativeley by the @ll, an
VSSP is a spatial array (SA) of two-dimensional grids, chlle the control process inserts the new encountered informatio
layer, in which the models are generated and manipulated bimmediately into the model by moving the focus in the SA
a device calledocus. The focus can perform a small num- and adding indeterminacy information to the PL. The focus
ber of operations like moving, reading, and inserting. Forhas the ability to create new layers for premises that cannot
example for 'A left B’ and 'C right D', there are two possible be constructed into one layer .

submodels, each placed in its own layer, so that submiiglel | the following we present the algorithms for the construc-
would be in the first an€D in the second layer. Formally, tion, inspection and variation on the basis of problem (thwi
the CROS is a 6-tuple [, S, A F,PL,C) with: abbreviated initial letters for the car objects.
I': the input device Model construction The algorithm for the model con-
o ) ) struction has to distinguish five types of premig€sg,r,Oy)
SI: the semantic interpreter; interprets the input.of to place the objects of the premises: (@JA) = 0 (first

premise), (2)01 € w(A) and O, ¢ w(A) or vice versa, (3)
01,02 € w(A), (4) A(O1) # A(O2) (connecting two layers),
(5) A(O1) = A(O) (additional knowledge).
F: the focus working on the spatial array, able to perform The construction process begins with the first premise and
move (L,R,B,F,No-Move), group, and shift operations.  an empty layer. First the RO is placed, then the focus moves
in the direction of the relation and places the LO to the next
free cell. In our exampl¥ is inserted first, the focus moves
C: a control process, which uses the instructions of Fig 1.1 the left and insert&. The algorithm (Fig. 3) checks the
type of each new premise and inserts the object(s) according
Problems related to the ambiguity of spatial relations ardo the specific case. For premises of type 2 only one object
not accounted. The model interprets the string “A is left ofwill be inserted into the model according to the already con-
B” as: both objects are in the same line and A is to the leftained object. If the new object cannot be placed as a direct
of B. The relations “right”, “front”, and “behind” are equav  neighbor, the model structure is indeterminate, so the con-
lently defined. When processing natural language strings, thtrol process annotates the object by inserting the relation

A: a spatial array containing the layers. We sefA) the
objects held by arragp; A(O): the layer of objecO.

PL: the PL, a memory for storing verbal information.
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information as a proposition into the PL, and the focus dace fo?,‘ii;iii?f{f)ﬁ (LO, rel , RO):
the present object according to the fff-principle (firsefre). while fread != LO do
For premises of type 3, where neither of both objects are con-  © {755 o e,
tained in the model, a new layer is generated, and both @bject =~ return true j
will be placed as seen in the beginning of the model constru

tion. If both objects are contained in different layers &y,
both layers have to be merged according to the relation of
the premise. Premises of type 5 specify additional knowl-
edge for two objects contained in the same layer. They arg\m (in which the putative conclusion holds). The algo-
processed by a model variation step, trying to check if the inyithm checks if one of the objects in the conclusion is anno-
verse premise holds in all variations of the actual moded. If i5ta4. Annotations on objects specify the positional iefat
counter-example exists, itis a model containing the aoloti 1 reference objects, which we refer toamghor. If the anno-
knowledge. The second and third premise are of type 2 beuions on one of the objects include the relation and theroth
cause¥ is already in the model, S0 andG are inserted to the  gpiact of the putative conclusion then the putative coriofus
right of Y according to the fff-principle. Becaus&cannotbe  po|gs. The same argument holds if none of the conclusions’
placed adjacent t¥ it is annotated with right Y". The next  gpiects is annotated because then the positions of thetsbjec
processed premise is also of type 2 and obidhat is not 516 determined. If there is an annotation only one of the ob-
?n the model, is inserted directly to the right®f Becausés ~ jects, as in the example conclusi@is to the right ofO’ (see

is annotatedB has to be annotated too. Now the construcnon,:ig_ 6), the only object of the conclusion which is to be moved

phase is complete and the resulting model is shown in the fir§t g and noto. This goes along with the use of annotations,

Figure 4: Pseudo code for the inspection algorithm.

line of Fig. 6. i.e. in the construction process an annotation is creatgd on
o comstraetiodel ()] for indeterminate objeqt positions. If the object whichdde
readnext () moved has an anchor, it may be necessary to move the anchor
ffl‘l‘lgv‘iz i(ffgz',rse (REL)) first. To provide an exampleB cannot be moved becau€g
fwrite (LO) the anchor 0B, is a direct neighbor dB. Thus, the algorithm

while readnext () do

T iE type2 then first exchanges the anchor to the left@fwhich is possible
{ fmove focus to comtained obj sinceG is the anchor of¥. Now the counter-example can be
fmove focus generated by exchangigjbeyondO because the anchor of

while not placed do

{ if fread() then
annotate missing obj
else
fwrite missing object
placed = true} }
if type3 then
{ 1 = newLayer ()
fwrite (LO); fmove(inverse (REL))
fwrite (RO) }
if typed then
merge (layer (LO), layer(RO))
if typeb5 then
{ newModel=valConcl (LO, inverse (REL) ,RO)
if newModel then
writeModel () }}

Figure 3: The construction algorithm.

Model inspection After model the construction, thim-

B can be placed to the left @, so false is returned. If both
objects are annotated, then first the LO of the putative con-
clusion is exchanged. LO is moved into the direction of RO
until its anchor is reached. If this results in the generatid

an inconsistent model, the algorithm stops, and returise fal

Itis possible that the anchor object is between LO and RO, so
LO is exchanged until it reaches the anchor. Then the anchor
object is exchanged recursively towards the RO. If no furthe
exchanges to RO are possible, the exchange process starts to
exchange the RO into the direction of LO.

Psychological Results

There are several psychological experiments investigatin
spatial relational reasoning. The findings vary from the-cla

spection phase searches for new information (cp. Fig. 4) that sical question determinacy/indeterminacy (Byrne & Johnso
was not specified by the premises. The focus moves to theaird, 1989), the wording of conclusion to questions which
first given object (RO) and from there it inspects the modelinvestigate the role of relational complexity. What do adish
according to the relation in order to find the second objectlifferent effects have in common? The measure of effects can
(LO). The search process terminates af¢n) steps, since be explained by one general concept: The number of “mental

the model is bounded by the number of objects.

Model variation The model variation comes into play if

operations” necessary to perform the tasks is sufficientto e
plain the results. We analyze the role of tentral Executive

a conclusion must be verified or if additional knowledge of Wt rélational complexity and the model variation phase.

two already contained objects must be processed during the Relational Complexity and Oper ations. The influence of
model construction process. The focus starts in the variarelational complexity in the model generation phase isistlid
tion process with the PMM and varies the model with localby (Goodwin & Johnson-Laird, 2005). Participants had to
transformations to generate a counter-example to theipaitat infer the relative starting positions of 4 runners on 5 laines
conclusion. The variation process starts from the gengratea race, given by:

1418



validateConclusion (Model, concl ): problem (1) with relationseft of or above. They consisted
{if layer(LO) != layer (RO)

return false of fruits (kiwi, mango, pear, apple, peach). The participan
if o “h;“];'“‘"““) read the four premises self-paced in a sequential ordeh Eac
return alse . . . .
if conclusion in annotations(Model) premise was displayed in the center of the screen and disap-
or inverse(concl) in annotations(Model) peared before the next premise was shown. For each problem
if LO not in objects(annotations) one of six models (written out fruit names) was presented,
or RO not in objects (annotations) three valid and three invalid one. The participants weredsk
if not exchange(RO,relation , concl) to decide whether the offered model was a consistent model
poturn false of the previous premises. The models were designed in dif-
if not exchange(LO,rev(relation), concl) ferent ways: (1) to (3) are consistent models, which are con-

return false
return true }

(1) RYOGB (4 ROYGB

Figure 5. Model variation algorithm. The exchange method g; Eiggg Eg; Esggg

exchanges an object according to the given premise and con-
clusion to find a counter-example. The object is exchanged ) ) )
until the *anchor’ object is reached, ¢ from there it recets Figure 7: Models presented in experiment.
proceeds with the anchor and so on.

structed corresponding to (1) the fff-principle (PMM), (2)
right ¥ right G The first line shows the con- a mixture of the fff- and the ff-principles, and (3) the ff-

ﬂ H structed PMM. The bold principle. The models (4) to (6) are inconsistent models wit
marked objects are varied to an exchange in (4) the second an third term (near exchange),
right Y right G check a conclusion. The second (5) in the second and fourth term (middle exchange) and (6)

ﬂ H H line shows a mix-model, the in the first and last term (far exchange). 21 participantsifro

Y e third a ff-model (first fit), which the University of Freiburg took part in the experiment.
rig rig

occur through the variation
H H H g Errars in percent Reaction time in ms (correct problems)
process.

B0 a0oo

. L. ml —— ] e o
Figure 6: The variation process. o [ a000
a0 T 4000 +—=
i R o ] P 2000 4
(2) Aisleftof CandBis left of A =1 _ﬁ —F
B IS Ieft Of C and D IS |Eﬂ: Of B ’ Ph # 3 1t far middle  near ’ Phibd [ mix 1t far middle  nesr

lu it

A is further away from C than B is from A
Who is closer to the empty lane, B or A?

which results inthe model: DBA C

The third premise yields the allocation to the lanes. They Regyitsand Discussion. We analyzed the accuracy and re-
tested two kinds of the third premise: (i) A is further away action times for the offered models. We summarize only the
from C than B is from D. (i) B is further away from C than D main findings, for a full report see (Ragni, Fangmeier, Web-
is from A. The third premise yields the allocation to the Iane per, & Knauff, 2006b). The participants which had to valiat
The answer in both cases is that A is closer to the empty lang,odels congruent with the fff-principle produced the highe
than B. The difficulty has been explained as the number of innymper of correct answers (92%) and the reaction times were
dividuals to be simultaneously integrated (hence (i) ise2as tne smallest (M = 3797 ms, SD = 1640 ms). There was a de-
than (ii)). The authors introduced tipeinciple of integration  ¢rease in both accuracy and reaction times from those models
to explain this effect. But is this really necessary? Thelltes constructed with thést-principle to the mixed models ti-
can be explained in terms of the number of necessary opergyodels (cp. Fig. 8). ¢ From the construction point of view the
tions. We show the computations of th& OS (for (ii)): First  fff- or the ff-principle makes much more sense with regard to
the distance between D and A (with the focus) is measure@impncity and use of a single strategy compared to the mix-
and stored (dist.:2). Then the focus searches for objectB anyrinciple. For the invalid models there was an increaseén th
then counts the steps to get from B to C. After that the focUsror rates from far to near exchange and the reaction times
moves object C one position to the right. The focus needs {yere also longer for far and middle. As in (Ragni, Fangmeier,
operations more for (ii) than for (i). Webber, & Knauff, 2006a) the results indicate that partici-
Testing the CROS. How does the variation phase work? pants more likely construct MM (fff-principle), because
The CROS predicts a continuous transformation which startsaccuracy and reaction times were significantly better if the
from thePMM. This prediction is now tested empirically. were asked to validate RMM. The results indicate that par-
Material, Procedure, and Participants. We designed ticipants construct first theMM out of the premises (follow-
20 indeterminate 5-term series problems with 4 premises ahg the fff-principle), and since it is easier to construbgn

Figure 8: Experimental results of 5-term series problems.
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