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Abstract

Bayesian Determination of the Soil Hydraulic Parameters and the Time Validity of

Philip’s Two-Term Infiltration Equation From Measured Infiltration Data

by

Parakh Jaiswal

Master of Science in Civil Engineering

University of California, Irvine

Associate Professor Jasper A. Vrugt, Chair

The topic of infiltration of water into variably saturated soils has received much

attention in the soil physics literature in the past decades. Many different equations

have been proposed to describe quantitatively the infiltration process. These equations

range from simple empirical equations to more advanced deterministic descriptions

of the infiltration process and semi-analytical solutions of Richards’ equation. The

unknown coefficients in these infiltration functions signify hydraulic properties and

must be estimated by curve fitting to measured cumulative infiltration data, Ĩ(t).
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From all available infiltration functions, the two-term equation, I(t) = S
√
t+ cKst of

Philip [1957] has found most widespread application and use. This popularity has not

only been cultivated by detailed physical and mathematical analysis, the two-term

infiltration equation is also easy to implement and admits a closed-form solution

for the soil sorptivity, S (L T1/2), and multiple c (−) of the saturated hydraulic

conductivity, Ks (L T−1). Yet, Philip’s two-term infiltration function has a limited

time validity, tvalid (T), and consequently, measured cumulative infiltration data, Ĩ(t),

beyond t = tvalid (T) should not be used to estimate S and Ks (among others). The

theoretical treatise in Philip [1957] provides a closed-form solution for the maximum

time validity, t+valid, of the two-term infiltration equation. It is not particularly easy to

experimentally corroborate these theoretical findings as this demands prior knowledge

of c, S and Ks. What is more, the maximum time validity, t+valid may not characterize

properly the actual time validity, tvalid. In this paper, we introduce a new method to

determine simultaneously the values of the coefficient c, hydraulic parameters, S and

Ks, and time validity, tvalid, of Philip’s two-term infiltration equation. Our method is

comprised of two main steps. First, we determine independently the soil sorptivity,

S, and saturated hydraulic conductivity, Ks by fitting the semi-implicit infiltration

equation of Haverkamp [Haverkamp et al., 1994] to measured cumulative infiltration

data. This step uses the DiffeRential Evolution Adaptive Metropolis (DREAM)

algorithm of Vrugt [2016] and returns as byproduct the marginal distribution of the
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parameter β in Haverkamp’s infiltration equation. In the second step, the maximum

likelihood values of S and Ks are used in Philip’s two-term infiltration equation, and

used to determine the optimal values of c and tvalid via model selection using the

Bayesian information criterion. To benchmark, test and evaluate our approach we

use cumulative infiltration data simulated by HYDRUS-1D [Simunek et al., 2008]

for twelve different USDA soil types with contrasting textures. This allows us to

determine whether our procedure is unbiased as the inferred S and Ks of the synthetic

data are known before hand. Results demonstrate that the estimated values of S and

Ks are in excellent agreement with their ”true” values used to create the artificial

infiltration data. Furthermore, our estimates of c and tvalid are dependent on soil

texture and fall within the ranges stipulated in the literature.
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Chapter 1

Introduction

Infiltration of water into variably-saturated soils is one of the most important and well

studied processes in hydrology. Infiltration reduces (among others) flood risks, boosts

water storage in the variably-saturated zone, replenishes reservoirs (aquifers), and

helps alleviate land subsidence problems in areas that rely heavily on groundwater

pumping as primary water source. Farmers in the Central Valley of California, for

example, rely heavily on infiltration to maintain an adequate soil moisture status of

the root zone in pursuit of an optimal crop yield.

If the supply rate of water to the soil surface is greater than the soil’s ability to allow

the water to enter, excess water will either accumulate on the soil’s surface or runoff

elsewhere following topographical gradients. Infiltrability is a term native to soil
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physics and hydrology that defines the maximum rate at which rain or irrigation

water can be absorbed by a soil under given conditions. The infiltration rate thus

determines how much water can enter the soil and which proportion of the rainfall

or irrigation is expected to pond and end up as runoff or overland flow in lakes,

streams, or rivers. Indeed, the infiltration rate of a soil exerts a large control on

water availability and processes such as percolation, drainage, surface runoff, and

evapotranspiration.

After the top soil has absorbed only some of the rainfall (or irrigation), the water

moves further downward under the influence of gravity and/or capillary action soaking

and/or filling up the pore space, replenishing the root zone, and possibly, seeping

into rocks through cracks. In the past decades, a large number of models have

been developed in the soil hydrology literature that describe quantitatively water

infiltration into variably-saturated soils. These models or functions can be classified as

empirical, semi-empirical or mechanistic. Empirical infiltration models are functions

that were crafted by trial-and-error with the sole purpose of matching a laboratory

of field measured time series of cumulative infiltration data. The resulting function

may be viewed as a black-box relationship between cumulative infiltration, I (cm)

and time t (h), which offers no insights into the underlying infiltration process nor

provides evidence why the function would accurately portray the measured data. As
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a result, the parameters of empirical infiltration models are simply fitting coefficients

whose values are difficult to interpret and relate to the underlying physical properties

of the soil. Examples include the infiltration equations of Kostiakov [Kostiakov, 1932],

Huggins and Monke [Huggins and Monke, 1966], modified Kostiakov [Smith, 1972], and

Collis-George [Collis-George, 1977]. Semi-empirical infiltration models lie somewhere

between deterministic infiltration models and their empirical (black box) counterparts.

Such models enforce principles of mass balance (continuity equation), but the flux-

concentration relationship that defines the connection between the infiltration rate, i

(cm h−1), and cumulative infiltration, I (cm), is often hypothesized. Examples include

the models of Horton [Horton, 1941], Holtan [Holtan, 1961], Singh [Singh and Yu,

1990], and Grigorjev [Grigorjev and Iritz, 1991]. Finally, the third and last group

of infiltration models use a physically-based, reductionist, approach to describe the

infiltration process. These models rely on mass conservation and Darcy’s law to

describe macroscopically soil water flow and storage. This includes the mechanistic

models of Green and Ampt [Green and Ampt, 1911], Philip [Philip, 1957, 1969], Mein

and Larson [Mein et al., 1971, Mein and Larson, 1973], Smith [Smith, 1972], Smith

and Parlange [Smith and Parlange, 1978] and semi-implicit solution of Richards’

equation of Haverkamp and coworkers [Haverkamp et al., 1994]. These models vary

in complexity, depending in part on the resolved dimensionality, and choice of flow

dynamics, unsaturated soil hydraulic conductivity function (hydraulic conductivity -
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capillary head (or moisture content) relationship), soil water characteristic (retention

function), and initial and boundary conditions.

From all work on infiltration, the work of Dr. John Philip (1927-1999) has probably

received most attention and acclaim worldwide. While, he was recognized internation-

ally for his contributions to the understanding of the movement of water, energy and

gases, he is perhaps most known for his work on infiltration. His deep intuition of

physical processes and excellent mathematical skills enabled him to make fundamental

advances to the theory of infiltration. In his 1957 paper, Philip introduced the theory

for one-dimensional infiltration into variably-saturated soils. In this paper he describes

the cumulative infiltration, I(t), as a finite (convergent) series as follows

I(t) = a1t
1/2 + a2t+ a3t

3/2 + . . .+ adt
d/2

=
d∑
i=1

ait
d/2, (1.1)

where a1 (L T−1/2) to ad (L T−d/2) are soil dependent coefficients of the d > 3 expansion

terms. Philip [1957] demonstrated that coefficient a1 equates to the soil sorptivity,

S (L T−1/2), and a2 (L T−3/2) is an unknown multiple, c (−), of the saturated soil

hydraulic conductivity, Ks (L T−1). Note that equation (1.1) is linear in its coefficients,

ai; i = (1, . . . , d). Consequently, we can use linear regression to determine in a single

step the least squares values of the d coefficients and their underlying estimation

uncertainty from measured cumulative infiltration data. Philip [1969] expressed the
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soil sorptivity as follows

S =

∫ θs

θi

λ(θ)dθ, (1.2)

where θi (L3 L−3) is the initial water content of the sample at the start of the infiltration

experiment, θs (L3 L−3) signifies the volumetric moisture content at saturation, and

λ(θ) (L T−1/2) is the Boltzmann variable

λ(θ) = Z(θ, t)t−1/2, (1.3)

where Z(θ, t) is a so-called characteristic function which expresses the relationship

between the depth, Z (L), in the soil column and the value of the volumetric water

content, θ, at time t ≥ 0 during an infiltration event under gravity-free conditions,

where θi ≤ θ ≤ θs.

In his seminal infiltration paper, Philip [1957] postulated that for d ≥ 3 the coefficients,

ad, must satisfy

ad
S
>
(a2
S

)d−1

. (1.4)

This condition promotes significance of the higher-order terms, but possibly at the

expense of an erroneous approximation of I(t) at large t. This is also known as

Runge’s phenomenon (polynomial wiggle) and cautions against the use of large d.

The most popular variant of equation (1.1) uses only d = 2 expansion terms

I(t) = St1/2 + cKst. (1.5)
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This two-term formulation is easy to implement and use and has enjoyed widespread

application and use among researchers and practitioners. This use is inspired in

part by detailed physical and mathematical analysis of equation (1.5) by Philip and

others. Nevertheless, the use of d = 2 expansion terms has a profound side-effect.

As the higher-order expansion terms of equation (1.1) are discarded, Philip’s two-

term equation cannot describe adequately the infiltration at later times when the

higher-order terms have an increasingly larger impact on the cumulative infiltration.

In other words, Philip’s two-term equation has a limited time validity, tvalid (T),

and consequently, measured cumulative infiltration data, Ĩ(t), beyond t = tvalid (T)

should not be used to estimate the (least squares) values of S and Ks. Philip [1957]

does provide a closed-form solution for the maximum time validity, t+valid (T), of the

two-term infiltration equation,

t+valid =

(
S

Ks −Ki

)2

, (1.6)

at which gravity has the exact same impact on infiltration as capillary action. If d > 2

then Philip [1957] stipulates that t+valid increases with a factor of four. Philip [1957]

coined this the characteristic time of the infiltration process, although we refer to it

now as time validity, t+valid. Practical experience suggests, that it is not particularly

easy to experimentally corroborate Philip’s theoretical findings as this demands prior

knowledge of c, S and Ks. What is more, the maximum time validity, t+valid may not
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characterize accurately the actual time validity, tvalid.

In this paper, we introduce a new method to determine simultaneously the values of

the coefficient c, hydraulic parameters, S and Ks, and time validity, tvalid, of Philip’s

two-term infiltration equation. Our method is comprised of two main steps. First, we

back out the soil sorptivity, S, and saturated hydraulic conductivity, Ks by fitting the

semi-implicit infiltration equation of Haverkamp [Haverkamp et al., 1994] to measured

cumulative infiltration data using the DiffeRential Evolution Adaptive Metropolis

(DREAM) algorithm of Vrugt [2016]. The infiltration equation of Haverkamp is not

particularly easy to use, but does not suffer a limited time validity, and instead can

be used to simulate cumulative infiltration over the entire duration of the infiltration

experiment. Our analysis, returns as byproduct the marginal distribution of the

parameter β in Haverkamp’s infiltration equation. This coefficient is directly related

to the coefficient c in Philip’s two-term infiltration equation according to c = (2−β)/3.

In the second step, the maximum likelihood values of S and Ks are used in Philip’s

two-term infiltration equation, and used to determine the optimal values of c and

tvalid via the Bayesian information criterion, or BIC. This information theoretic metric

helps determine an optimal balance between the quality of fit of Philip’s two-term

infiltration equation and the length of the infiltration experiment. The BIC encodes a

natural preference for simpler models. This parsimony principle is often attributed to
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William of Ockham (1287-1347), an English Franciscan friar, scholastic philosopher,

and theologian, but traceable to the works of philosophers such as Aristotle (384-322

BC) and Ptolemy (circa AD 90 to circa AD 168). and consistent with requirements

of falsifiability in the scientific method of Popper [1992].

To benchmark, test and evaluate our approach we use cumulative infiltration data

simulated by HYDRUS-1D [Simunek et al., 2008] for twelve different USDA soil types

with contrasting textures. This allows us to determine whether our procedure is

unbiased as the exact values of S and Ks are known before hand. The remainder of

the paper is organized as follows. Section 2.1 introduces the measured cumulative

infiltration data used herein to evaluate, test and benchmark our proposed two-step

procedure. In Section 3 we detail the building blocks of of our methodology. Here, we

are especially concerned with a description of Haverkamp’s semi-implicit infiltration

equation, the DREAM algorithm and the BIC for determination of the time validity,

tvalid and the parameters c, S and Ks in Philip’s two-term infiltration equation. This is

followed in Section 4 with a preliminary discussion of the main results of our method.

Finally, section 4.3 concludes the paper with a summary of our main findings.
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Chapter 2

Materials and Methods

2.1 Measured infiltration data

To benchmark, test and evaluate the proposed method we need cumulative infiltration

data and corresponding estimates of the sorptivity, S, and the saturated hydraulic

conductivity, Ks of the soil column. These two hydraulic properties are of paramount

importance in the present study as we are seeking an infiltration analysis method

that provides accurate and unbiased estimates of S and Ks. Unfortunately, practical

experience suggests that it is not particularly easy to accurately measure the soil

sorptivity. This necessitates infiltration measurements under gravity-free conditions

when water flow is largely controlled by capillary adsorption or desorption. This

requires considerable experimental effort, particularly if we wish to evaluate our



CHAPTER 2. MATERIALS AND METHODS 13

method for a large cohort of soils with contrasting textures. Therefore, we resort

to synthetic infiltration data derived from numerical solution of Richards’ equation

using the Mualem-van Genuchten (MVG) [Mualem, 1976, Van Genuchten, 1980] soil

hydraulic functions.

We used HYDRUS-1D [Simunek et al., 2008, 2016] to simulate cumulative infiltration

into a homogeneous soil column of 200 cm depth for a period of 240 hours using a

constant pressure head at the soil surface and free drainage condition at the bottom

boundary of the profile. Table 2.1 lists the values of the MVG soil hydraulic parameter

values that were used to create an infiltration data set for each USDA textural class.

These parameter values originate from the HYDRUS-1D soil catalog [Carsel and

Parrish, 1988].

As soil column discretization may affect the numerical results of HYDRUS-1D,

simulated cumulative infiltration from a suite of different discretized profiles were

compared against an analytic solution for infiltration without gravity, which is based

on the Boltzmann transform. For each discretized profile, we plotted the simulated

water content distribution in the soil column against the Boltzmann variable λ in

Equation (1.2). A discretized profile is deemed accurate if the (θ, λ) relationships at

many different simulation times coalesce in one single curve. The highest simulation

accuracy was achieved for a discretized profile comprised of 401 nodes with a top
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Table 2.1 Values of the Van Genuchten [1980] soil hydraulic parameters for the twelve
USDA textural classes derived from Carsel and Parrish [1988]. The last two columns

list the unsaturated soil hydraulic conductivity, K̃s, and sorptivity, S̃, which are of
main interest in the present study. The tilde operator is used for both variables
to signify ”measured” values. The value of S̃ is computed with Eq. (1.2) using
HYDRUS-1D simulated soil moisture values for a horizontal infiltration experiment.

Parameters
θr θs θr α nVG mVG K̃s S̃

cm3 cm−3 cm−1 - - cm h−1 cm h−0.5

Clay 0.068 0.380 0.271 0.008 1.09 0.083 0.200 1.02
Clay loam 0.095 0.410 0.150 0.019 1.31 0.237 0.260 1.45
Loam 0.078 0.430 0.088 0.036 1.56 0.359 1.040 2.19
Loamy sand 0.057 0.410 0.057 0.124 2.28 0.561 14.592 6.20
Sand 0.045 0.430 0.045 0.145 2.68 0.627 29.700 9.21
Sandy clay 0.100 0.380 0.170 0.027 1.23 0.187 0.120 0.78
Sandy clay loam 0.100 0.390 0.111 0.059 1.48 0.324 1.310 1.60
Sandy loam 0.065 0.410 0.066 0.075 1.89 0.471 4.421 3.83
Silt 0.034 0.460 0.090 0.016 1.37 0.270 0.250 1.34
Silt loam 0.067 0.450 0.104 0.020 1.41 0.291 0.450 1.65
Silt clay 0.070 0.360 0.266 0.005 1.09 0.083 0.020 0.35
Silty clay loam 0.089 0.430 0.197 0.010 1.23 0.187 0.070 0.52

node of 10−6 cm and gradually decreasing spatial resolution downward in the soil

column up to 1 cm depth for the bottom node.

To negate numerical errors and promote accuracy of the simulated cumulative infil-

tration curves, the internal interpolation tables of (θ, h) and (h,K) were disabled

and the default initial time step of HYDRUS-1D was adjusted to satisfy convergence

criteria for all different USDA soils. What is more, a modified MVG model with

air-entry value of -2 cm was used for soils with nVG < 1.2 to avoid unrealistically large

changes in the hydraulic conductivity near saturation [Schaap and Van Genuchten,
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Figure 2.1 Given cumulative infiltration as a function of time for twelve USDA soils.

2006, Vogel and Cislerova, 1988, Vogel et al., 2000].

The infiltration data from the HYDRUS for the 12 USDA soils was for 240 hours.

The time interval for the soils were different for different for each one. The total

time interval was divided into 100 time points which were logarithmically distributed

between 0 and 240 hours to maintain consistency. Figure 2.1 presents the infiltration

curves for all soils with uniform time interval distribution. It is clear from the plots

that amount of infiltration for the same time period varies significantly depending on

the soil type. Cumulative infiltration in sand for 240 hours is 7130.4 cm while in clay
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it is 50.6 cm for the same time interval. Silty clay has lowest sorptivity and saturated

hydraulic conductivity and thus the infiltration for the same amount of time is as low

as 7.2 cm.

The infiltration data obtained was pre-processed as follows. For all the 12 soils

the infiltration data was extracted up to 5 cm of infiltration. 5 cm was taken as

the maximum infiltration here. 5 cm was used for all soils as it is the average

minimum time for all the soils to give good estimate of the soil parameters. The data

was then linearly interpolated to get a set of 100 data points. The corresponding

time was interpolated which varied for different soils as different soils have different

infiltration rates. This processed data will be used further for the estimation of the

soil parameters.

Now we have discussed the measured infiltration data, we are left with estimation

of the ”true” soil sorptivity, S, for each USDA textural class. Unlike the saturated

hydraulic conductivity, Ks, the soil sorptivity is not a parameter that is used in

the MVG model. Rather, the sorptivity is a byproduct (e.g. function) of the MVG

parameters θs, θr, α, nVG and Ks listed in Table 2.1 and the initial moisture content,

θi, of the 200 cm soil column. In theory, we can compute the value of S from the values

of the MVG parameters. Yet, in practice this approach may not necessarily provide

an accurate value of the sorptivity. Therefore, we resort to the formal definition of the
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sorptivity in Equation ((1.2)) and estimate the value of S using numerical integration

of the λ(θ) curves simulated by HYDRUS-1D for infiltration without gravity. The

last column in Table 2.1 reports the values of the sorptivity for each USDA textural

class considered herein. This concludes the description of our data set.

Figure 2.2 and 2.3 display in a triangle plot the sorptivity and hydraulic conductivity

values of the 12 USDA soils. These two figures show that Ssand >Ssilt >Sclay and

Ks sand Ks silt >Ks clay. As the hydraulic conductivity varies form 0.02 to 29.7 cm h−1,

we plot the logarithmic value of the hydraulic conductivity on the textural triangle.

This will help make evident variability in the hydraulic conductivity values of the

different soils.

Before we proceed to the next section, we store the HYDRUS-1D simulated cumulative

infiltration data for each soil in a n-vector, {Ĩ1, . . . , Ĩn} with corresponding (print)

times {t̃1, . . . , t̃n} and measured values of the sorptivity and saturated hydraulic

conductivity, S̃ and K̃s, respectively. Thus, in the remainder of this paper, the tilde

symbol is used to denote measured quantities.
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Figure 2.2 Soil Classification using true sorptivity(S) values.
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Figure 2.3 Soil Classification using true hydraulic conductivity(logKs) values.
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Chapter 3

Theory

In this section we describe the building blocks of our two-step procedure to determine

the time validity, tvalid (L), of Philip’s two-term infiltration equation (1.5) and the

values of the unitless coefficient, c, soil sorptivity, S (L T1/2) and saturated hydraulic

conductivity, Ks (L T−1).

3.1 Step 1: Haverkamp’s semi-implicit

infiltration equation

In a paper published in 1994 in Water Resources Research, Randel Haverkamp derived

a quasi-exact analytic solution of Richard’s equation to describe three-dimensional
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infiltration into variably-saturated soils [Haverkamp et al., 1994]. For a soil at uniform

initial soil moisture content, Ki (L T−1), Haverkamp’s equation can be used to predict

vertical infiltration as follows

(Ks −Ki)
2

S2
(1−β)t =

(Ks −Ki)I

S2
− 1

2
log

{
1

β
exp

[
2β(Ks −Ki)I

S2

]
+
β − 1

β

}
, (3.1)

where β is a unitless parameter that primarily affects the shape of the simulated

cumulative infiltration curve, I(t), at late times, and t denotes time (T). The value

of β is defined as follows [Haverkamp et al., 1994]

β = 2− 2

θs∫
θi

(
K−Ki

Ks−Ki

)(
θs−θi
θ−θi

)
Dw(θ)dθ

θs∫
θi

Dw(θ)dθ

, (3.2)

where θ (L3 L−3) is the soil moisture content of the sample at time t after the start of

the experiment, θi ≤ θ ≤ θs, and Dw(θ) (L2 T−1) is the so-called soil water diffusivity

function.

A theoretical treatise of three-dimensional infiltration from a disc infiltrometer by

Smettem et al. [1994] established a mathematical relationship between the coefficient

a2 in Philip’s cumulative infiltration expansion of equation (1.1) and the pressure head,

h0 (L) and radius, r0 (L), of the disc infiltrometer, and the hydraulic conductivity,

K(h0) of the surrounding soil at h0 as follows

a2 =
(2− β)K(h0

3
− γS2

r0(θ(h0)− θi)
, (3.3)
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where γ is a unitless proportionality constant assumed to be in between 0.6 and 0.8,

and θ(h0) (L3 L−3) is the volumetric moisture content at h0. The work of Smettem

et al. [1994] also confirmed that coefficient a1 in equation (1.1) equates to the soil

sorptivity, S.

Past publications by Haverkamp and co-workers have shown that their semi-implicit

solution of Richards’ equation in (3.1) is in excellent agreement with measured

cumulative infiltration data from a range of different soils. What is more, unlike

Philip’s two-term formulation in equation (1.5), the so-called Haverkamp equation

does not suffer a limited time validity. Instead, equation (3.1) is valid over the entire

duration of the infiltration experiment. The excellent fit to experimental data and

long-term validity of equation (3.1) are desirable qualities, nonetheless, this did not

convince soil hydrologists to adopt Haverkamp’s equation for infiltration data analysis

and interpretation in lieu of Philip’s two-term equation. The explanation is as simple

as discouraging. As Haverkamp’s equation is a semi-implicit solution, most researchers

and practitioners experience problems with numerical solution of I(t). This is evident

if we study in detail equation (3.1). At each time t, the value of the cumulative

infiltration I needs to be determined iteratively so that the left-hand-side of equation

3.1 matches exactly the value on its right-hand side.

To simplify the application of equation (3.1), Haverkamp et al. [1994] derived three
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explicit solutions for the cumulative infiltration at very short (VS), short (S), and

long (L) times, respectively. The resulting equations are listed below

IVS(t) = S
√
t (3.4a)

IS(t) = S
√
t+

[(
2− β

3

)
∆K +Ki

]
t (3.4b)

IL(t) = Kst+
1

2(1− β)

S2

∆K
log

(
1

β

)
. (3.4c)

Time limits for the approximate validity of the three different equations were developed

by Lassabatere et al. [2009], including their dependency on soil textural class. Yet,

these time limits cannot be calculated analytically, and instead we must resort to

numerical computation. In the same paper, Lassabatere et al. [2009] demonstrated

that the use of a soil specific β value, estimated from soil textural data, can improve

simulation accuracy of the infiltration process and hence the estimation of Ks and S

from infiltration data.

The three explicit solutions listed in equations (3.4a) - (3.4c) are of great practical

value for simulating vertical infiltration. Yet, this demands prior knowledge of the

sorptivity, S, saturated hydraulic conductivity, Ks and β value of the soil column.

This equates to an inverse problem wherein the measured cumulative infiltration

curve is used to back out the values of the three soil parameters. Yet, as there is no

direct way of determining the time validity of the three listed expressions, we should

use instead the semi-implicit solution of equation (3.1). We resort to a root finding
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algorithm to automatize the solution of I(t). At each time, t, we can use Newton’s

method to solve for the cumulative infiltration, I. Appendix A provides a MATLAB

recipe of our root finding procedure. This code uses as input arguments a n-vector

of time values and a 1× 3 vector of parameter values, S, Ks and β and returns to

the user a n × 1 vector with simulated cumulative infiltration values according to

Haverkamp’s infiltration equation 3.1.

In the past few years, Haverkamp’s infiltration equation has steadily received more and

more interest in the vadose zone community. As equation 3.1 can describe accurately

measured cumulative infiltration curves, and is valid over the entire duration of the

infiltration experiment, we use it herein to back out the values of the soil sorptivity,

S, saturated hydraulic conductivity, Ks and β. This amounts to inverse modeling

and necessitates the use of a parameter estimation algorithm.

Before we proceed to a description of the DREAM algorithm we first revisit Haverkamp’s

infiltration equation. If we make the convenient assumption that the hydraulic con-

ductivity, Ki, at the initial moisture content, θi, equates to zero, then equation (3.1)

simplifies to(
Ks

S

)2

(1− β)t =
KsI

S2
− 1

2
log

{
1

β
exp

[
2βKsI

S2

]
+
β − 1

β

}
, (3.5)

This reduces the number of unknown parameters to three, namely, S, Ks and β. This

simplification is not given in by limitations of our parameter estimation algorithm
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as the Bayesian approach used herein can easily handle a very large number of

parameters. A comparison of the marginal distribution of each parameter with its

prior distribution would convey the amount of available information in the cumulative

infiltration data to constrain each parameter. Instead, we use equation 3.5 as we

anticipate that in most cases we may not know exactly the initial moisture content,

θi of the sample, let alone its corresponding hydraulic conductivity. Nevertheless, the

use of equation 3.5 should be acceptable for infiltration experiments with an initially

dry sample. Then, θi is rather small and K(θi)� Ks and close to zero.

This paper is not the first attempt to inversely estimate the values of S, Ks and

beta in Haverkamp’s infiltration equation. For example, Latorre et al. [2015] used

equation 3.1 to estimate the soil sorptivity, S, and saturated hydraulic conductivity,

Ks from measured cumulative infiltration curves. But they set β = 0.6 based on

recommendations in Haverkamp et al. [1994]. they d Dohnal et al. [2010] simulated

infiltration curves in which he used the Haverkamp et al. [1994] and Zhang [1997]

model to get sorptivity and hydraulic conductivity and then used it to get the

infiltration curves from the Philip [1957]'s model.
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Table 3.1 DREAM ZS prior information of parameters.

Parameters Minimum Maximum

S cm h−0.5 0 10
Ks cm h−1 0 50
β 0 5

3.2 Step 1: The DiffeRential Evolution Adaptive

Metropolis (DREAM) algorithm

To estimate the parameters in Haverkamp’s infiltration equation (3.5) we use Bayesian

inference with the DREAM algorithm. A detailed description of this method appears

in Vrugt [2016], and interested readers are referred to this paper for more information.

The DREAM algorithm is a general-purpose parameter estimation algorithm which

has found widespread application and use in fields ranging from physics, chemistry

and engineering, to ecology, hydrology, and geophysics. In the present application we

assume uniform prior distributions for the parameters S, Ks and β with ranges listed

in Table 3.1.

Note, that equation (3.2) implies a maximum value of β of two. In our prior

distribution listed in Table 2, we allow for values of β larger than two. This may

seem awkward but is done purposely to test the robustness of our procedure. As we

will show later, the value of β is larger than two for the sandy clay loam and silty
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clay loam soils. Despite this apparent inconsistency, the values of S and Ks of those

soils appear in close agreement with their ”measured” counterparts.

A Gaussian likelihood function was deemed appropriate to determine the posterior

distribution of the parameters

L(x|̃I) ∝

(
n∑
j=1

(
Ĩ(t̃j)− I(x, t̃j)

)2)−n
2

, (3.6)

where x = {S,Ks, β } is our 1 × 3 vector with parameter values of equation (3.5),

Ĩ(t̃j) denotes the measured cumulative infiltration at the jth measurement time and

I(x, t̃j) signifies the predicted cumulative infiltration with equation 3.5 at time t̃j

using the parameter values, x. The posterior density now equates to the product of

the prior density and the likelihood. Note, that the term within the brackets equates

to the sum of squared residuals used commonly in curve fitting. Convergence of the

sampled chain trajectories to the posterior distribution is monitored with a suite of

different convergence statistics. We use the last 25% of the samples in each chain to

summarize the posterior distribution of the parameters.
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3.3 Step 2: Estimation of c and tvalid in Philip’s

two-term equation

The posterior distribution of the soil sorptivity, S, saturated hydraulic conductivity, Ks

and coefficient β in Haverkamp’s infiltration model serves as input to our second step.

We isolate the maximum likelihood solution from the Markov chains sampled with

the DREAM algorithm, and use these values ”as is” in Philip’s two-term infiltration

equation. This leaves us with two unknowns for each soil, the unitless coefficient c

and the time validity, tvalid of equation 1.5. As Philip’s two-term equation is linear

in c, we can use linear regression to determine its optimal value for any subset of

cumulative infiltration measurements. Once this value is known we can compute the

likelihood of c using equation 3.6. For each soil we follow the following procedure to

determine the time validity, tvalid

1. Take the maximum likelihood values of S and Ks derived from the DREAM

algorithm and enter those in equation (1.5).

2. Start with the third measured cumulative infiltration value, j = 3

3. Determine the least squares value of c via linear regression.

4. Compute the likelihood of c using equation (3.6)
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5. Compute the BIC metric.

BIC(k, j) = −2 log
(
L(c|̃I)

)
+ k ln j, (3.7)

where k = 1 is the number of parameters that is estimated in Philip’s two-term

infiltration equation.

6. As long as j is smaller than n, set j = j + 1 and go back to step 3. Otherwise,

stop

Now we can inspect the n− 2 values of BIC to determine the time validity of Philip’s

two term infiltration equation. The ”model” with minimum value of the BIC is

preferred statistically. Thus, we pick the length of the data set, j that has the smallest

value of the BIC. The corresponding time defines the value of tvalid. As the length of

the time series is increased incrementally, we have to use a metric such as the BIC to

determine the time validity of equation (1.5).
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Chapter 4

Results

4.1 Results from Haverkamp's equation

The results for the twelve soils are presented in the Table 4.1. This shows the optimum

values of the three parameters S, KS and β from the DREAM ZS. As seen in the

table the estimates are pretty close to the ”true” values for all the three parameters.

Figure 4.1 and 4.2 show the posterior distribution of S and Ks from DREAM. We

can see that the posterior is well defined and the standard deviations are low for all

the soils. The red cross denotes the optimum values for each soil.

Table 4.2 lists the statistics of the DREAM posterior. The 95% credible values for

clay soil lies between 1.0281 and 1.0319 which is a reasonable estimate given a uniform
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Table 4.1 DREAM ZS optimum results for the parameters.

Parameters
S̃ K̃s β

cm h−0.5 cm h−1

Clay 1.0308 0.2101 1.5219
Clay loam 1.4789 0.2938 1.3584
Loam 2.2458 0.9496 1.3922
Loamy sand 6.2492 15.0777 0.7550
Sand 9.2280 31.2837 0.6115
Sandy clay 0.7914 0.1336 1.2541
Sandy clay loam 1.7859 1.2705 2.4816
Sandy loam 3.8653 4.3761 0.9548
Silt 1.3702 0.1935 1.6050
Silt loam 1.6895 0.3642 1.5533
Silt clay 0.3503 0.0204 1.5793
Silty clay loam 0.5930 0.0631 3.8077

Table 4.2 Statistics of DREAM posterior for twelve soils.

Soils
S (cm h−0.5) Ks (cm h−1)

2.5% Mean Median 97.5% 2.5% Mean Median 97.5%

Clay 1.0281 1.0305 1.0313 1.0319 0.2097 0.2102 0.2102 0.2107
Clay loam 1.4748 1.4779 1.4780 1.4802 0.2858 0.2909 0.2930 0.2949
Loam 2.2444 2.2467 2.2470 2.2484 0.9477 0.9513 0.9515 0.9540
Loamy sand 6.2363 6.2428 6.2417 6.2489 15.0167 15.0334 15.0264 15.1249
Sand 9.2017 9.2296 9.2326 9.2548 31.0992 31.2836 31.2905 31.4710
Sandy clay 0.7870 0.7895 0.7892 0.7 936 0.1284 0.1327 0.1327 0.1376
Sandy clay loam 1.7556 1.7844 1.7839 1.8082 1.2668 1.2703 1.2705 1.2734
Sandy loam 3.8569 3.8765 3.8739 3.9201 4.3414 4.3937 4.3912 4.4809
Silt 1.3688 1.3705 1.3705 1.3721 0.1902 0.1929 0.1928 0.1955
Silt loam 1.6880 1.6906 1.6910 1.6929 0.3634 0.3668 0.3667 0.3703
Silt clay 0.3471 0.3516 0.3516 0.3567 0.0195 0.0205 0.0198 0.0217
Silty clay loam 0.4995 0.5363 0.5273 0.5930 0.0555 0.0596 0.0589 0.0633
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Figure 4.1 Histogram of DREAM derived posterior distribution of Sorptivity.

prior from 0 and 10 cm h−0.5.

Figure 4.3 represents the accuracy of the estimated and ”true” parameters. This

plot shows the ”true” and estimated values of S and KS. A line of unity is drawn to

see the accuracy of the estimation. The values lie on the line of unity. This scatter

plot verifies that the estimated parameters are close to the ”true” values and we can

estimate the parameters accurately from cumulative infiltration data up to 5 cm using

the Haverkamp's equation.

The β parameter predicted lies within zero and two for all the soils except sandy clay
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Figure 4.2 Histogram of DREAM derived posterior distribution of Hydraulic
conductivity.

Table 4.3 Correlation table.

Parameters S,Ks Ks,β β,S

Clay 0.8137 0.9642 0.9347
Clay loam 0.8699 0.9574 0.9737
Loam 0.8508 0.9651 0.9557
Loamy sand 0.8414 0.9533 0.9632
Sand 0.8214 0.9265 0.9742
Sandy clay 0.8384 0.9570 0.9579
Sandy clay loam 0.5955 0.9877 0.6995
Sandy loam 0.8276 0.9530 0.9562
Silt 0.9021 0.9710 0.9774
Silt loam 0.8760 0.9659 0.9689
Silt clay 0.8473 0.9691 0.9486
Silty clay loam 0.6553 0.9869 0.7538
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Figure 4.3 Scatter plot of true and estimated S and Ks using Haverkamp's equation
with 5 cm of infiltration.

loam and silty clay loam. When we bound the parameters to two the sorptivity and

hydraulic conductivity are also affected by the change and they estimate slightly lower

values than the ”true” parameter values. The correlation is later shown in the table

4.3 for the three parameters. The values for these two soils show that the correlation

between Ks and β is higher as compared to the correlation between Ks and S or the

correlation between S and β. Thus, changes in the β values for these two soils will

most likely affect the estimation of the hydraulic conductivity values.

To check that the estimated parameters can be used in Eq. 3.1, we plot Figure

4.4 which shows the predicted infiltration from the Haverkamp's equation using the
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Figure 4.4 Cumulative infiltration as a function of time using Haverkamp's equation
with estimated values of S and Ks.

DREAM estimated S, Ks and β. The predicted infiltration values are compared with

the original infiltration data up to 5 cm. Figure 4.4 shows that the predicted values

are a good match for all the soils. The only slight deviation is in the silty clay loam.

Further analysis was done to see the textural relation of the shape parameter β.

Figure 4.5 shows the estimated β values plotted on soil textural triangle. The β

values for sandy clay loam and silty clay loam are higher than all other soils. The

β values for these two soils are higher than two. Previous literature presents that

the β value should be less than 2 but for these two soils the estimated β values are
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Figure 4.5 Inferred value of β on textural triangle.
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greater than two. As we do not restrict the parameter β to 2, we see that for these

two soils the β value is an outlier. In general it is noted that the β values for sandy

soils are lower than the β values for clay. This confirms the hypothesis presented by

Lassabatere et al. [2009] that finer soils have higher β values.

Lassabatere et al. [2009] has mentioned that the equations did not apply to the silty

clay soil as the hydraulic properties did not fulfill the conditions for the quasi-exact

formulation. Table 4.3 presents the correlation between the parameters S, Ks and

β. For most of the soils we can see that the parameters are highly correlated with

values being as high as 0.97. The DREAM posterior shows that all the parameters

are positively correlated. Thus any change in one will be reflected in the values of

the other parameters. The correlation between S and Ks make sense as the soil with

finer texture will have lower sorptivity and hydraulic conductivity than the soil with

coarser texture.

4.2 Results from Philip's equation

As the Philip's equation is widely used, the estimated parameters from Haverkamp's

equation were then used to find out the c and the time up to which the Philip's

equation is valid.

Figure 4.6 shows the contour plot of the BIC criterion for different sets of c and tvalid.
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Figure 4.6 Contour plot for the Bayesian Information Criterion for the twelve USDA
soils.

The contour plot gives clear optimum values. The red cross shows the optimized

values of thecand t valid which which indicate the minimum point of the BIC.

Figure 4.7 and 4.8 show the cPhilip and tvalid plotted on textural triangle. The cPhilip

is higher for sand as compared to clay soil. Sand has higher infiltration in a given

time period compared to the other soils so from the Philip's two term equation it can

be inferred that the cPhilip would be higher. The first term, S
√
t, at the right-hand

side of Eq. 1.1, dominates at early times when infiltration is largely determined by
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Figure 4.7 Optimized value of cPhilip on textural triangle for the twelve USDA soils.
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Figure 4.8 Optimized value of tvalid on textural triangle for the twelve USDA soils.
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Table 4.4 Optimized results for the parameters for Philip's equation.

Parameters
cPhilip tvalid tchar

hours hours

Clay 0.25 6.2032 26.0100
Clay loam 0.28 4.7842 31.1021
Loam 0.30 1.9950 4.4343
Loamy sand 0.53 0.2453 0.1805
Sand 0.56 0.1159 0.0962
Sandy clay 0.31 7.4915 42.2500
Sandy clay loam 0.16 1.1552 1.4918
Sandy loam 0.45 0.6383 0.7505
Silt 0.21 7.9703 28.7296
Silt loam 0.23 4.1833 13.4444
Silt clay 0.20 30.6717 306.2500
Silty clay loam 0 43.0141 55.1837

capillary forces. The second term, cKst, increases steadily in magnitude as time

elapses and the infiltration front progresses through the soil column. The time up to

which the Philip's two term equation is valid will be shorter for sand as compared to

clay soil.These inferences are verified by the textural triangle plots as they reflect the

correlation between texture of soil and it's parameters

Table 4.4 lists the optimized values of cPhilip and tvalid. As we can see that cPhilip lies

between zero and one and with most of them not going beyond one-third. Only the

soil silty clay loam has a c value of zero. This is an exception as this would state that

the hydraulic conductivity does not have an affect on the infiltration. Even though

the hydraulic conductivity of this soil will be very low but it cannot be zero. So
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Figure 4.9 Comparison of true and two term Philip's equation using Haverkamp's S
and Ks with optimized c values and tvalid

the method does not predict well for silty clay loam even though the estimation of

hydraulic conductivity and sorptivity was accurate. The tgrav in the table is more

than the tvalid for most of the soils as predicted by Philip [1957] that the two term

equation would converge with t ≤ tgrav.

To test the equations we plot the ”true” infiltration with the simulated infiltration

values from the Philip's equation using the estimated values of S, Ks, c and tvalid.

Figure 4.9 shows the predicted infiltration up to the valid time of the equation. As

seen from the figures the observed infiltration values match the predicted infiltration
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Figure 4.10 Scatter plot of β values optimized from Haverkamp's equation and from
β = 2 - 3 * cPhilip

quite well up to the valid time. The only exception is the silty clay loam which

overestimates for a brief period of time. We can see the discrepancy in the prediction

of c value also as previously noted was coming out to be zero.
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For further analysis on the β value, we compare the estimated value from DREAM

and from the formula given by Moret-Fernández et al. [2017] Figure 4.10 when we

know the value of c in the Philip's equation. Figure 4.10 shows the β estimated from

the DREAM and the beta calculated from the optimized c values from the Philip's

equation using the formula c = (2-β)/3 so β = 2 - 3c. The plot shows that the β

from the cPhilip and DREAM have a linear relationship. The only two outliers are for

sandy clay loam and silty clay loam soil. These two soils had β values more than two

when the maximum beta value was set as 5. The outliers were tested by restricting β

values at two. Both the values lie on the boundary (1.998 and 1.996) and the value

of hydraulic conductivity and sorptivity were also affected because of correlation

between parameters.
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4.3 Summary and Conclusions

Estimation of the soil's sorptivity, S, and the saturated hydraulic conductivity, Ks ,

from infiltration experiments is typically obtained by fitting Philip [1957] two-term

equation to measured infiltration curves. However, different estimation approaches

may lead to different values of S and Ks for the same experimental infiltration

data. There is strong correlation between S and Ks which makes it difficult for the

estimation from the Philip's equation given that c and valid time for the Philip's

equation are also unknown. Therefore, we used the quasi-exact formulation for

cumulative infiltration [Haverkamp et al., 1994] combined with DREAM package[Vrugt,

2016] to estimate the S, Ks and β. We used HYDRUS-1D to simulate infiltration

curves for soils with different textures ranging from sandy to clayey soils. We found

that employing DREAM to estimate S and Ks from Haverkamp's equation provided

accurate predictions of Ks and S when tested against numerically generated infiltration

curves that were truncated to 5cm. The S and the Ks were also used for the Philip's

equation to get the c and the time up to which the Philip's equation is valid. Then

this Philip's equation was tested against the infiltration curves and we found that it

provided accurate predictions for the cumulative infiltration. Further research needs

to be done to get better estimates of β for sandy clay loam and silty clay loam soil as

these two soils were the outliers for β value. Nevertheless the S and the Ks were well
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predicted for these soils. New efforts can be done in the direction of resolving the

issues with the silty clay loam soil.
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Appendix A

Matlab Codes

Code for evaluating Infiltration from Haverkamp's equation

1 f unc t i on [ I ] = Haverkamp Eq3 s ( t , x , maxiter )
2 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %% This func t i on eva lua t e s Haverkamp ’ s i n f i l t r a t i o n equat ion
4 %%
5 %% SYNOPSIS : [ I ] = Haverkamp Eq3 ( t , x ) ;
6 %%
7 %% Input t n x 1 vec to r with time in hours
8 %% x 3 x 1 vec to r with S (cm hˆ(1/2) ) , K s (cm h

ˆ−1)
9 %% and beta (−)

10 %% max iter op t i ona l s c a l a r with maximum number o f
i t e r a t i o n s

11 %%
12 %% Output I = cumulat ive i n f i l t r a t i o n as func t i on o f time , t
13 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14 % Defau l t va lue o f maximum i t e r a t i o n s
15 i f narg in < 3 , maxiter = 20 ; end
16 % Parameter va lue s input by user
17 S = x (1) ; K s = x (2) ; beta = x (3) ;
18 % Defau l t va lue o f i n i t i a l K
19 i f numel ( x ) == 4 , K i = x (4) ; e l s e , K i = 0 ; end



20 dK = K s − K i ; % Compute de l t a K
21 n = numel ( t ) ; % Number o f e lements o f vec to r time
22 i f dK <= 0 , I = nan (n , 1 ) ; return , end ; % I f dK <= 0 , re turn I =

nan
23 I 0 = 0 . 2 ; % I n i t i a l i n f i l t r a t i o n used f o r root

f i nd i n g
24 % Def ine Haverkamp equat ion
25 l h s = @( t j ,dK, S , beta ) (dK/S) .ˆ2 ∗ ( 1 − beta ) ∗ t j ;
26 rhs = @( I , t j ,dK, Ki , S , beta ) dK∗( I − Ki∗ t j ) /Sˆ2 . . .
27 − 1/2∗ l og (1/ beta ∗ exp ( (2∗ beta ∗dK∗( I − Ki∗ t j ) ) /Sˆ2) . . .
28 + ( beta − 1) /beta ) ;
29 opt ions = optimset ( ’ Display ’ , ’ o f f ’ , ’ FunValCheck ’ , ’ o f f ’ ) ; % f z e r o

opt ions
30 % Dynamic part : Compute i n f i l t r a t i o n at each time ,
31 f o r j = 1 : n
32 L = lh s ( t ( j ) ,dK, S , beta ) ; % Compute LHS o f Equation
33 i f j == 1 && t ( j ) == 0 % I n f i l t r a t i o n when time

i s 0
34 I ( j , 1 ) = 0 ;
35 e l s e i f j > 1 && t ( j−1) == 0
36 I ( j , 1 ) = f z e r o (@( z ) rhs ( z , t ( j ) ,dK, K i , S , beta ) . . .
37 − L , I 0 , opt ions ) ;
38 e l s e
39 % Fi r s t t e s t that RHS i s not I n f or imaginary number
40 i f j == 1
41 R = rhs ( I 0 , t ( j ) ,dK, K i , S , beta ) ; % Evaluat ing

RHS
42 e l s e i f j == 2
43 R = rhs (2∗ I ( j −1 ,1) , t ( j ) ,dK, K i , S , beta ) ;
44 e l s e
45 R = rhs (2∗ I ( j −1 ,1) − I ( j −2 ,1) , t ( j ) ,dK, K i , S , beta ) ;
46 end
47 i f abs (R) < 1e10 %&& i s r e a l (R)
48 e x i t f l a g = 0 ; i t e r = 0 ;
49 whi le ( e x i t f l a g ˜= 1)
50 [ I ( j , 1 ) , e x i t f l a g ] = secant (@( z ) . . .
51 rhs ( z , t ( j ) ,dK, K i , S , beta ) − L , I 0 ) ;
52 i t e r = i t e r + 1 ;
53 i f i t e r > maxiter
54 I = 100∗ ones (n , 1 ) ; % re tu rn ing I i f no root

found



55 re turn
56 end
57 end
58 e l s e
59 I = 100∗ ones (n , 1 ) ; r e turn
60 end
61 end
62 end

Code for finding root of a function

1 f unc t i on [ I , e x i t f l a g ] = secant ( fun , x0 )
2 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %% This func t i on c a l c u l a t e s the root o f equat ions us ing secant
method

4 %%
5 %% SYNOPSIS : [ I , e x i t f l a g ] = secant ( fun , x0 ) ;
6 %%
7 %% Input fun func t i on o f which the root i s to be

eva luated
8 %% x0 s t a r t i n g po int
9 %%

10 %% Output I = root o f the func t i on
11 %% e x i t f l a g = check i f the root i s not f i n i t e or r e a l
12 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 n = 3 ;
14 x (n−1) = x0 ; x (n−2) = x0+0.2 ; % s e t i n i t i a l

va lue s
15 x (n) = ( x (n−2)∗ fun (x (n−1) ) − x (n−1)∗ fun (x (n−2) ) ) / . . .
16 ( fun (x (n−1) ) − fun (x (n−2) ) ) ;
17 e x i t f l a g = 1 ;
18 maxit = 20 ; % maximum

i t e r a t i o n s
19 t o l = 1e−10; % s e t t i n g

t o l e r an c e
20 whi le abs ( fun ( ( x (n) ) ) ) > t o l && n < maxit
21 n = n + 1 ; % update counter
22 % implementing secant method



23 x (n) = ( x (n−2)∗ fun (x (n−1) ) − x (n−1)∗ fun (x (n−2) ) ) . . .
24 / ( fun (x (n−1) ) − fun (x (n−2) ) ) ;
25 end
26 I = x (n) ;
27 % check the root f o r i n f i n i t e or imaginary va lue s
28 i f ˜ i s f i n i t e ( fun (x (n) ) )
29 e x i t f l a g = 2 ;
30 e l s e i f ˜ i s r e a l ( fun (x (n) ) )
31 e x i t f l a g = 3 ;
32 e l s e i f ˜ i s f i n i t e ( x (n) )
33 e x i t f l a g = 4 ;
34 end
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