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Abstract 12 
  13 
Sequence variation is used to quantify population structure and identify genetic determinants of 14 
phenotypes that vary within species. In the human microbiome and other environments, single nucleotide 15 
polymorphisms (SNPs) are frequently detected by aligning metagenomic sequencing reads to catalogs of 16 
genes or genomes. But this requires high-performance computing and enough read coverage to 17 
distinguish SNPs from sequencing errors. We solved these problems by developing the GenoTyper for 18 
Prokaytotes (GT-Pro), a suite of novel methods to catalog SNPs from genomes and use exact k-mer 19 
matches to perform ultra-fast reference-based SNP calling from metagenomes. Compared to read 20 
alignment, GT-Pro is more accurate and two orders of magnitude faster. We discovered 104 million 21 
SNPs in 909 human gut species, characterized their global population structure, and tracked 22 
pathogenic strains. GT-Pro democratizes strain-level microbiome analysis by making it possible to 23 
genotype hundreds of metagenomes on a personal computer. 24 
 25 
Software availability: GT-Pro is available at https://github.com/zjshi/gt-pro. 26 
 27 
Introduction 28 
  29 
Microbial species harbor extensive genetic variation, including single nucleotide polymorphisms (SNPs), 30 
structural variants (SVs), and mobile genetic elements. SNPs in particular are useful for population 31 
genetic analyses1, such as tracking transmission of strains between environments or locations, 32 
reconstructing strain phylogenetic relationships, resolving mixtures of genotypes within a host, and 33 
depicting population diversity or structure along environmental gradients. Additionally, SNPs can result 34 
in changes in protein function. For example, a single SNP in the Dadh gene of the human commensal 35 
Eggerthella lenta can predict activity of levodopa, the primary medication used to treat Parkinson’s 36 
disease2. Quantifying intra-species genomic variation in the human microbiome is a prerequisite to the 37 
potential application of microbiome genomics to precision medicine.  38 
 39 
Several approaches exist for identifying SNPs in microbiomes. The gold standard3 is to sequence 40 
individual isolate genomes and identify mismatches in whole-genome alignments. In contrast, 41 
metagenomes are a rich source of strain level diversity for uncultivated taxa. In a landmark study, 42 
Schloissnig et al4. discovered 10.3 million SNPs for 101 human gut species by aligning short reads from 43 
shotgun metagenomes to reference genomes. This approach is known as “metagenotyping” and has since 44 
been featured in several tools, including Constrains5, MIDAS6, metaSNV7, DESMAN8 and StrainPhlAn9. 45 
While algorithms for read alignment have improved, the approach is still computationally costly. Exact 46 
matching algorithms such as Kraken10, CLARK11 and bfMEM12, have been developed as a more efficient 47 
solution to the read mapping problem, achieving speedups by orders of magnitude. However, these tools 48 
have thus far been used to quantify the abundance of microbiome taxa, rather than identify intra-species 49 
genetic variation. Genotyping by exact matches between reads and short sequences covering SNPs was 50 
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implemented in the method LAVA13 for human whole-genome sequencing data. Our goal was to extend 51 
this approach to metagenomes by addressing the challenges presented by complex mixtures of species and 52 
strains within microbiome samples, while also making software that could run on a personal computer.  53 
  54 
Results 55 
 56 
A novel framework for in silico genotyping of microbiome species 57 
 58 
We introduce the GenoTyper for PROkaryotes (GT-Pro), which is a novel computational pipeline that 59 
utilizes an exact matching algorithm to perform ultra-rapid and accurate genotyping of known SNPs from 60 
metagenomes. Our proof-of-principle initial implementation of this approach focuses on the human gut 61 
microbiome. We created a reference database of 104 million common SNPs that we identified using 62 
112,904 high-quality genomes from 909 human gut microbiome species. Then we used this catalog to 63 
perform reference-based SNP calling for 25,133 publicly available metagenomes, providing insight into 64 
strain variation across individuals and geographic regions. Our results demonstrate the feasibility of 65 
performing large-scale metagenotyping without need for high-performance computing.  66 
 67 
To overcome the low throughput, sensitivity and species coverage of current alignment-based 68 
metagenotyping methods, we developed the GT-Pro framework (Fig. 1). Our key innovations are (i) 69 
capturing the majority of common variation found in microbiome genomes with a compact database of 70 
SNP covering k-mers (sck-mers), (ii) selecting highly species-specific sck-mers, overcoming high false 71 
positives associated with k-mer exact-matching methods, and (iii) developing and optimizing algorithms 72 
and data structures for exact matching of metagenomic sequencing reads to these sck-mers, enabling 73 
SNPs to be detected rapidly and accurately in microbiome samples. Building a version of GT-Pro for a 74 
given environment involves 1) discovering common SNPs in assembled genomes for each species, 2) 75 
optionally identifying linkage disequilibrium (LD) blocks and “tag” SNPs that capture most variation 76 
within each block, and 3) designing species-specific sck-mers. We focus on common SNPs) because this 77 
allows us to create a virtual genotyping “array” that is a data structure small enough to fit in computer 78 
memory while stll capturing the majority of prevalent genetic variation for each of many species.  79 
 80 
A database of common SNPs for bacterial species in the gut microbiome 81 
 82 
As a case study, we applied GT-Pro to the human gut microbiome due to the large number of microbial 83 
genomes from this environment and its important role in human health. To construct a SNP catalog, we 84 
used 112,904 high-quality genomes (>= 90% completeness and <= 5% contamination14) from 909 species 85 
(minimum = 10 genomes, median = 35 genomes) that we downloaded from the Unified Gastrointestinal 86 
Genomes (UHGG) resource15 (Fig. S1, S2 and Table S1). These include both metagenome-assembled 87 
genomes16–18 (i.e. MAGs, 94.1%) as well as cultivated isolates (5.9%) and were derived from 88 
geographically and phenotypically diverse human subjects. We performed whole-genome alignments for 89 
each species, revealing 104,171,172 common, core-genome SNPs (minor allele frequency >= 1%, site 90 
prevalence >= 90%), the vast majority of which (93.4%) were bi-allelic (Fig. 2a, S3a and S4). An 91 
extremely low fraction of SNPs (<0.2%) either disrupted a stop codon or introduced a premature one, 92 
which is one indicator of false positives (Fig. 2a). For context, this catalog is 10-fold larger than the one 93 
established by Schloissnig et al. and 1.22-fold larger than the catalogue of all human SNPs19 (Fig. S1). 94 
Consistent with previous reports4, SNP density, nucleotide diversity, and the rate of nonsynonymous 95 
versus synonymous mutations (pN/pS) varied across species and phyla (Fig. 2b and Fig. S5-8), which 96 
may reflect differences in selective pressures, population sizes, or transmission modes.  97 
 98 
We hypothesized that the SNP database could be greatly compressed by clustering SNPs into linkage 99 
disequilibrium (LD) blocks that co-vary across reference genomes (Fig. S9) and selecting a single "tag" 100 
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SNP per LD block. A similar strategy is commonly used when designing genotyping arrays in human 101 
genetics. Using single-linkage clustering (R2 > 0.81), the 104 million SNPs were clustered into 6.8 102 
million LD blocks, representing a >15-fold reduction in database size and revealing a remarkable degree 103 
of local genomic structure. Our choice of R2 is motivated by thresholds used for high confidence SNP 104 
imputation in other species and the fact that discovery of LD blocks stabilizes in this range for gut species 105 
(Fig. S10). On average LD blocks spanned ~4.3Kbp and ~23.5 SNPs, though the number and size of LD 106 
blocks varied considerably across bacterial species (Fig. 2c, S5c and S11a and b). As expected, linkage 107 
between SNPs decayed with increasing genomic distance (Fig. 2d-f), though decay rates differed 108 
substantially across species (Fig. 2d-e). Altogether, these differences in genetic diversity and structure 109 
across species likely reflect variation in recombination rates and/or the number and relatedness of 110 
sequenced genomes. 111 
 112 
Species-specific kmers enable accurate and efficient identification of SNPs 113 
 114 
Having constructed a large SNP catalog of the gut microbiome, we next used GT-Pro to identify k-mers 115 
that could unique identify each SNP from shotgun metagenomes. We empirically determined that length 116 
k=31 ensured high specificity while limiting compute and memory requirements. Of the ~13.3 billion 117 
candidate 31-mers that overlapped a SNP (124 per SNP), we identified 5.7 billion that were unique. These 118 
kmers overlapped 51% of the 104 million SNPs for 65% of LD blocks (mean 108 sck-mers per SNP, >1 119 
sck-mer for 97% of species, Fig. S1 and S12). We refer to these as species-specific, SNP-covering kmers 120 
(sck-mers). Species with few or no SNPs that can be genotyped with this strategy include those with a 121 
very close relative and are most common within Actinobacteria (Fig. 2g and S3b). While only 50% of 122 
SNPs were tagged by a sck-mer, they capture 83% of the within species variation compared to whole-123 
genome average nucleotide identity, and achieve a much higher level of resolution compared to individual 124 
taxonomic markers (Fig. S13). Due to the large scale of the database, GT-Pro uses a highly efficient data 125 
structure to store the sck-mers, requiring only 13 GB of RAM and permitting GT-Pro to run on most 126 
modern personal computers (Fig. S14 and S15). We also created a low memory version of the GT-Pro 127 
database (< 4 GB RAM) which just stores sck-mers for a single "tag" SNP per LD block (Methods) and 128 
still captures the majority of within species variation (Fig. S13). 129 
 130 
Optimized k-mer exact matching accelerates metagenotyping 100-fold  131 
 132 
To search for exact matches between billions of k-mers among metagenome reads and billions of sck-133 
mers in the GT-Pro database, it is crucial to have a highly efficient search algorithm with low RAM and 134 
I/O requirements. To this end, we developed an exact match algorithm that leverages data structures 135 
optimized for this specific application (Fig. S16). Our approach is similar to a multi-index search with 136 
three main steps operating on bit encoded k-mers (2 bits per base) (Fig. S16a). After generating all k-mers 137 
in each metagenomic sequencing read, GT-Pro uses a l-bit Bloom filter on the first l<k bits of each k-mer 138 
to quickly rule out the vast majority of read k-mers that have no chance to match database sck-mers 139 
because they do not share an l-mer. For the k-mers that pass through the l-bit filter, the algorithm recruits 140 
an m-bit (last m bits of encoded k-mer) index to serve as secondary filter that locates a bucket of pre-141 
sorted sck-mers in the database containing all possible exact matches to the full k-mer. Finally, the 142 
algorithm invokes a sequential search for exact matches between the full k-mer and these only the sck-143 
mers in this bucket.   144 
 145 
We next evaluated GT-Pro computational performance. First, we measured both speed and peak RAM 146 
use while tuning the values of l and m, two parameters derived from the l-bit and m-bit filter that are 147 
expected to have a large impact on performance due to their direct relationships with query speed and 148 
peak RAM use. In general, both performance metrics increase with higher values of l and m (Fig. 3a). 149 
Within the range of the tested parameters, we found best speed and peak RAM use with l = 30 and m = 35 150 
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in the laptop environment (26.5GB RAM) and the with l = 32 and m = 36 on a server (56.55 GB RAM). 151 
In a boundary case (l = 30 and m = 36) on the laptop where the peak RAM use hit the hardware limit, 152 
speed drops >87%. These results demonstrate that the values of l and m should be carefully chosen based 153 
on the hardware for optimal performance, which is handled automatically by GT-Pro.  154 
 155 
We then compared the computational performance of GT-Pro to traditional read alignment method as 156 
baseline (Fig. 3b). We arbitrarily selected a total of 40 stool metagenomes from a Tanzanian cohort20 157 
(Table S7) for the evaluation. For alignment, SNPs were called mapping reads to database from GT-Pro 158 
and an independent one (metaSNV7). Although GT-pro had a larger peak RAM use than alignment 159 
method (<10GB), was 100x faster on a server and 10x faster on a laptop where peak RAM use was 160 
26.5GB (Fig. 3b). 161 
 162 
 163 
Accurate identification of SNPs from simulated metagenomes 164 
 165 
We next evaluated the accuracy of SNP calling with GT-Pro compared to alignment using simulated 166 
metagenomes. Towards this goal, we generated Illumina sequencing reads in silico from 978 human gut 167 
isolates21 and identified the ground truth set of SNPs based on whole-genome alignment. We first 168 
simulated reads from individual isolates with sequencing coverages ranging from 0.001x to 15x (Table 169 
S2). In this simplified scenario, genotyping errors can result from sequencing errors, insufficient 170 
coverage, or incorrect read or k-mer mapping. Across isolates and coverage levels, the false discovery 171 
rate (FDR) of genotypes was on average lower for GT-Pro (median= 0.7%, IQR=1.1%) compared to read 172 
alignment (median= 2.2%, IQR=4.7%) (Fig. 4a) while the median sensitivity of GT-Pro tended to be 173 
consistently higher (4.1-17.6%) at all coverages (Fig. 4b). While read alignment methods typically use a 174 
minimum coverage threshold to avoid false positives from sequencing error (e.g. >10x), that would have 175 
further decreased the sensitivity in this experiment.  176 
 177 
Next, we simulated metagenomes containing pairs of conspecific isolates to evaluate performance on 178 
samples with strain mixtures, exploring a range of coverage ratios from 0.001x to 15x, where one strain is 179 
always at 15x coverage and the other varying (Table S3 and S4). In terms of detecting heterozygous sites 180 
(strains with different alleles), the false discovery rate (FDR) of GT-Pro (median= 0.9%, IQR=0.7%) was 181 
slightly higher compared to alignment (median= 0.3%, IQR=0.6%) (Fig. 4c), however, median sensitivity 182 
was higher (50.5-81.6%) for GT-Pro at all coverage ratios (Fig. 4d). A higher FDR for GT-Pro is likely 183 
caused by sequencing errors that match the alternative allele by chance, which also could cause a slightly 184 
lower sensitivity for GT-Pro at homozygous sites (Fig. S17). 185 
 186 
To evaluate genotype calls imputed from tag SNPs, we found low FDR<5% comparing to true genotypes 187 
for the vast majority of isolates (>95%) (Fig. 4e). SNPs belonging to an LD block were 5 times more 188 
likely to be detected (non-zero read count) when their tag SNPs were also detected than when they were 189 
not (Fig. S18). To show that GT-Pro is highly quantitative, we compared average coverage at SNPs in the 190 
GT-Pro output to the known genome coverage using metagenomes we simulated from individual isolates 191 
and pairs of conspecific isolates. Even at low sequencing coverage (<1X), GT-Pro was able to accurately 192 
estimate the true coverage of each species (Fig. 4f) and the ratio between two strains (Fig. 4g). These 193 
results suggest that GT-Pro allele calls and counts could be used to impute genotypes and estimate 194 
relative abundances of species and strains accurately.  195 
 196 
Accurate metagenotyping and gene imputation from gut metagenomes 197 
 198 
To compare GT-Pro to existing approaches, we metagenotyped gut metagenomes16,20,22,23 (Table S5-10) 199 
with alignment and compared the number of genotyped SNPs plus estimates of allele frequencies and 200 
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genetic distances. We found that GT-Pro genotyped more species and SNPs per metagenome (Fig. S19a-201 
c), despite being limited to species with ³10 genomes. This is likely due to GT-Pro having better 202 
sensitivity for low coverage species and using a human gut focused database (comparing to metaSNV). 203 
For species genotyped by both methods, within-sample heterozygosity (Fig. S18) and across-sample 204 
allele presence and frequency (Fig. 5a-d) were highly correlated. For high coverage species, alignment 205 
method detected some SNPs absent from the GT-Pro database, whereas GT-Pro detected more sites as 206 
polymorphic in medium and low coverage species (Fig. 5a-d). Despite these differences in genotyped 207 
sites, GT-Pro and alignment produce highly similar estimates of pairwise genetic distances (Jaccard 208 
index) between samples, likely because rare variants missed by GT-Pro but with sufficient coverage to be 209 
genotyped with alignment-based methods represent a small fraction of overall genetic diversity. For 210 
comparison, we repeated this analysis using only SNPs in the 16S gene and observed much lower genetic 211 
differences between samples (Fig. S21), emphasizing that GT-Pro provides strain resolution close to that 212 
of alignment and greatly exceeding that of marker gene approaches. Altogether these results are 213 
consistent with our simulations and underscore the high sensitivity of GT-Pro. 214 
 215 
Next, we sought to determine if GT-Pro SNPs could be used to infer the presence of nearby genes or 216 
operons, thereby serving as biomarkers for structural variants. As a case study, we used GT-Pro SNPs in 217 
flanking genes to predict presence/absence of toxicity controlling genes in Clostridium difficile (C. 218 
difficile). We used the GT-Pro SNPs from two 5’ (CD2601 and CD2602), one 3’ (trpS) gene and 219 
intergenic region to train a Random Forest classifier to predict the presence of the genomic region 220 
(CdtLoc) of three toxin genes (CD196_cdtA, CD630_cdtAB and cdtR) in a set of C. difficile isolate 221 
genomes downloaded independently from NCBI (Fig. S22a and S23a). In another example, we 222 
demonstrated that SNPs (cdd2, cdu1, and intergenic) flanking a pathogenicity locus (PaLoc) region could 223 
predict its presence (Fig. S22b and S23b). Next we applied these models to GT-Pro metagenomes from 224 
7,459 samples (Fig. 5e and f). Our predictions of CdtLoc and PaLoc region presence were highly 225 
correlated with estimated presence based on read alignment to the C. difficile genome, especially in 226 
metagenomes where this species was more abundant, and weaker predictions were made when not all of 227 
the genes in CdtLoc or PaLoc were present (Fig. S24a and b). These results show that GT-Pro can detect 228 
structural and strain variants when they are in high LD with flanking common SNPs.  229 
 230 
Depicting novel and global intra-species genetic structure with GT-Pro 231 
 232 
To evaluate the commonality of SNPs in GT-Pro database and how GT-Pro perform in metagenotying 233 
unknown metagenomes. We next used GT-Pro’s common SNPs to perform dimension reduction on the 234 
genomes in the database as well as metagenomic samples from a North American IBD cohort24 (n=220; 235 
Table S11) that did not contribute genomes to the GT-Pro database. Looking for evidence of subspecies 236 
genetic structure, we observed that for most species the metagenomes clustered with the genomes (Fig. 6a 237 
and b), suggesting that GT-Pro’s database represents the common diversity across diverse metagenomes. 238 
For a few species, however, we observed clusters comprised only of metagenomes (Fig. 6c and d), 239 
demonstrating that novel subspecies genetic structure can be discovered using GT-Pro common SNPs.  240 
 241 
Having shown GT-Pro is faster and at least as accurate as alignment-based methods for genotyping 242 
common SNPs from metagenomes, we leveraged GT-Pro metagenotypes to conduct the most 243 
geographically diverse intra-species genetic variation meta-analysis to date, encompassing 51.8 million 244 
SNPs for 881 species found in 7,459 gut samples from 31 locations across six continents (Table S13). 245 
Consistent with prior studies4,6,9, we observed much less allele sharing between hosts (median=0.03, 246 
IQR=0.05) than within a host over time (median=0.38, IQR=0.4), and that intra-host allele sharing varies 247 
greatly between species and hosts (Fig. S25). Inter-host allele sharing differed across countries and 248 
continents (Fig. S26a and b), generally decreasing with geographic distance (Fig. S26a and b and S27a 249 
and b) and varying across species (Fig. S28). Our results also show clear associations with degree of 250 
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industrialization as well as relatedness of hosts (e.g., hosts within villages in Fiji share more alleles than 251 
unrelated hosts in North American cities) (Fig. 6e). To identify gut species with high levels of inter-252 
continental population differentiation, we calculated FST for 78 prevalent and well-detected (see 253 
methods) species and observed large differences in the degree of differentiation across species (Fig. 6f). 254 
Species with high FST show distinct clusters of hosts, some but not all of which correlate with geography 255 
(Fig 6g), consistent with lifestyle and environment playing a role in which strains colonize a host. In 256 
contrast, hosts do not cluster as clearly based on species relative abundance (Fig 6h), emphasizing that 257 
metagenotypes may reveal microbiome-host associations missed in abundance analyses.   258 
 259 
 260 
 261 
Discussion 262 
 263 
Here, we greatly extended the gut microbiome genomic variation landscape by identifying more than 100 264 
million common core-genome SNPs from 909 bacterial species. As our solution to the bioinformatics 265 
challenge of metagenotyping, GT-Pro avoids computationally costly alignment and overcomes computing 266 
barriers. It performs strain-level analyses of microbiomes with improved accuracy, especially for low 267 
coverage species. Studies of microbiome genetic variation on a laptop or at the scale of human genome-268 
wide association studies will be computationally feasible with GT-Pro. 269 
 270 
It should be noted that our method comes with several limitations. First, the GT-Pro database does not 271 
capture all human gut microbial diversity. While we used 909 species, we could not use the majority of 272 
the UHGG species due to limited availability of high-quality genomes. Second, GT-Pro is analogous to a 273 
genotyping array and hence does not identify novel SNPs, which require other methods, such as 274 
alignment-based SNP calling or single-cell genome sequencing. For some species, the common SNP pool 275 
is expected to expand through additional genome sequencing. Third, a small number of species lacked 276 
species-specific sck-mers due to the presence of highly related species in the genome collection. Separate 277 
strategies such as using longer k-mers or less common SNPs could enable GT-Pro metagenotyping for 278 
these species. Fourth, although we were very selective in the choice of genomes and SNPs used for 279 
building GT-Pro, it is impossible to exclude all imperfections (e.g. incompleteness, contaminations and 280 
species misclassification) in the genome assemblies that could contribute to false SNP calls. Finally, GT-281 
Pro does not directly genotype structural variants, which contribute significantly to intra-species genetic 282 
diversity25. However, we did show that GT-Pro can be used to impute insertions and deletions in high LD 283 
with common SNPs. Despite these caveats, we showed that the GT-Pro framework is general, accurate 284 
and sensitive for identifying genetic variation in metagenomes.  285 
 286 
We envision several directions for future work. First, this study applied the GT-Pro approach to human 287 
gut prokaryotic species, and the framework could easily be expanded to other kingdoms and 288 
environments. Another extension is to develop alignment-free metagenotyping for short indels and 289 
structural variants. This study barely scratches the surface in terms of interpreting microbiome genetic 290 
variation. Towards leveraging microbiomes in precision medicine, it will be critical to comprehensively 291 
identify SNPs that are associated with disease and other traits (e.g. pathogenicity, antimicrobial 292 
resistance, drug degradation). We anticipate that GT-Pro will also be useful for detecting contamination, 293 
recombination, and horizontal gene transfer events, as well as tracking variants or strains over time, host 294 
lifestyle and geography. 295 
 296 
  297 
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 353 
Figure legends 354 
 355 
Figure 1. In sillico metagenotyping framework 356 
Our method starts with a whole genome sequence collection and identifies species with sufficient high-357 
quality genomes to call SNPs. For each species, a representative genome is chosen based on pairwise 358 
Average Nucleotide Identity (ANI) plus assembly quality metrics. SNPs are called per species based upon 359 
whole genome alignment of conspecific genomes to the representative genome. Common (MAF > 1%) 360 
bi-allelic SNPs are selected for genotyping. Up to 4 X k candidate k-mers are extracted per SNP site, 361 
covering both the reference and alternative allele on forward and reverse complementary strands (sck-362 
mers; k=31 in this study). These candidate sck-mers are iteratively filtered through species-specificity 363 
filters of all unique k-mers present in the genomes of every other species, including species with 364 
insufficient high-quality genomes for genotyping. Only SNPs with sck-mers for both the reference and 365 
alternative allele are retained. SNPs are clustered based on pairwise linkage disequilibrium (LD). LD 366 
blocks are detected with a threshold of mean r2 > 0.81, and we select a tag SNP with species-specific sck-367 
mers and the highest LD to other SNPs in the block. Optimized algorithms and compressed 368 
representations of sck-mer data enable rapid metagenotyping. Further details in Methods and Figure 3. 369 
 370 
Figure 2. Genetic landscape of 909 human gut species. 371 
(a) Summary of common SNP characteristics across all species (from left to right): at most SNPs only 372 
two alleles are observed, bi-allelic SNPs are mostly within protein-coding genes, these are largely 373 
synonymous, and the non-synonymous ones rarely disrupt or introduce a stop codon. (b and c) Phyla 374 
differ in their median SNP density and average LD block size with significant variation in density across 375 
species within each phylum. (d) Rate of LD distance decay across gut bacterial species. (b-e) are colored 376 
by bacterial phylum and share the same color scheme. (e) Examples of LD distance decay for individual 377 
species. From top to bottom are three species (species id: 102446, 101694 and 102831) with increasingly 378 
fast LD distance decay, suggesting higher recombination rates. Curves represent the fitted exponential 379 
decay model. (f) Visualization of two distinct haplotype landscapes from (upper) species Alistipes 380 
putredinis (species id: 101302) and (lower) Bacteroides xylanisolvens (species id: 101345). Base axis 381 
represents and is ordered by genomic coordinate. Color indicates magnitude of LD between pairs of 382 
SNPs. The examples have the same genomic span (10,000 bp). (g) Distribution across species of the 383 
percentage of SNPs that can be genotyped by GT-Pro either directly (“without LD blocks”) or by 384 
imputation using genotyped tag SNPs (“with LD blocks”). For a typical species, ~75% of SNPs can be 385 
genotyped directly and ~95% can be imputed.  386 
 387 
Figure 3. Computational performance evaluation of GT-Pro. 388 
(a) Computational performance of GT-Pro in laptop (left) and server (right) environments across values 389 
for l (Bloom filter size parameter) and m (m-index size parameter). Color gradient: processing speed, 390 
circle size: peak RAM use, black box: optimal l and m for each computing environment. (b) Comparison 391 
of speed (upper) and peak RAM usage (lower) between GT-Pro and alignment-based metagenotyping 392 
(metaSNV and MIDAS; see methods). We ran GT-Pro on both server (green) and laptop (yellow) 393 
environments, while alignment-based methods were run only in the server (grey) environment due to not 394 
being optimized for personal computers. Peak RAM usage exceeds RAM needed to store the database due 395 
to intermediate calculations, such as applying filters.  396 
 397 
Figure 4. Metagenotyping accuracy evaluation of GT-Pro using simulations. 398 
Accuracy comparisons of GT-Pro and alignment-based metagenotyping across species based on reads 399 
simulated from isolate genomes with sequencing error. (a) False discovery rate at a combination of 400 
sequencing coverage ranged from 0.001x to 15x. Each observation is the result from a metagenome 401 
containing reads from one isolate. False discoveries are genotype calls that do not match the genome from 402 
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which reads were simulated. (b) Sensitivity across coverage levels from the simulations in (a). Sensitivity 403 
is the probability of detecting SNPs present in the isolate genome. (c) False discovery rate at 404 
heterozygous sites in metagenomes containing reads from two isolates of each species. A combination of 405 
sequencing coverage ratio between two isolates was simulated by fixing a more abundant isolate at 15x 406 
coverage in all simulations, and varying the other isolate’s coverage from 0.001x to 15x (coverage ratio = 407 
0.001:15 to 15:15). (d) Sensitivity at heterozygous sites in metagenomes from (c). Sensitivity is the 408 
probability of correctly calling the heterozygous genotype of sites that differ between the genomes from 409 
which reads were simulated. (e) False discovery rate of genotypes imputed from tag SNPs based on allele 410 
matching in simulations in (a). Imputation is simply done by selecting the genotype associated with the 411 
observed tag SNP. (f) Sequencing coverage estimated using read counts at GT-Pro genotyped SNPs 412 
correlates with the simulated coverage, even when coverage is <1x. Each observation is the estimate from 413 
metagenomic reads simulated with sequencing error from a single isolate genome.  (g) Sequencing 414 
coverage ratio estimates based on read counts for each allele at GT-Pro genotyped heterozygous sites 415 
correlate with the simulated ratios of two isolate genomes, even when one is much less abundant than the 416 
other (<=1:15). The more abundant isolate is at 15x coverage in all simulations.  417 
 418 
Figure 5. Metagenotyping and gene imputation from gut metagenomes 419 
Comparison of metagenotypes from GT-Pro and alignment with gut microbiome samples from a North 420 
America cohort22 (HMP project; n=358; Table S8). As an example, we show the species Bacteroides 421 
stercoris (species id: 103681). Each point represents a SNP, with color indicating if the genotypes from 422 
the two methods agree (green), both methods return a genotype but the alleles disagree (purple), or only 423 
GT-Pro returns a genotype (black). Disagreements largely occur near 0.5 allele frequency, where small 424 
differences in read counts per allele can “flip” the major and minor alleles. (a) The proportion of samples 425 
in which each SNP is genotyped (prevalence) is similar with both methods. (b) Average allele frequency 426 
across samples varies across SNPs but is highly correlated between the two methods. (c and d) 427 
Comparison similar as (a and b) showing the species GCA_000431835.1 (genus: Succinivibrio, species 428 
id: 100412) from a different Madagascar cohort16 (n=112; Table S9). Prediction of presence/absence of C. 429 
difficile pathogenic gene sets in human gut metagenomes from a mix of cohorts (n=7459) (Table S14) a 430 
random forest classifier built using GT-Pro SNPs from flanking regions in 117 C. difficile isolates 431 
(Figures S23-S24) with 10-fold cross validation. Heatmaps show the predicted (first column) and 432 
observed (based on alignment, second column) presence (black) or absence (white) in each sample 433 
(rows). Barplots show C. difficile relative abundance (left), whole genome sequence coverage (middle), 434 
and number of detected genes from the pathogeneticity locus (right), all estimated by mapping reads from 435 
each sample to a C. difficile representative genome. Random Forest predictions correlate with abundance, 436 
coverage, and number of detected pathogenic genes (Figure S25). (l) CdtLoc genes. (m) PaLoc genes. 437 
 438 
Figure 6. Global genetic structure in 6,452 human gut metagenomes. 439 
 (a-d) Gut species differ in the amount of common SNP genetic diversity already present in sequenced 440 
genomes. Metagenomic samples from a North American IBD cohort24 (n=220; Table S11) (purple) are 441 
visualized in two dimensions alongside the UHGG genomes (green). Each plot is the result of applying 442 
UMAP to a matrix of genotypes at GT-Pro SNPs for one species. Each dot represents a strain of that 443 
species (major allele for heterozygous metagenomes); those closer together in UMAP space have more 444 
similar genotypes. (a) Anaerostipes hadrus (species id: 102528) and (b) Ruminococcus_B faecis (species 445 
id: 100249) are species where metagenomes lie within the diversity previously captured by genomes. (c) 446 
Blautia_A obeum (species id: 100212) and (d) Dialister invisus (species id: 104158) are species where 447 
metagenomes harbor combinations of common SNPs outside the range present in genomes, which may 448 
represent novel subspecies. (e) Heatmap of mean allele sharing scores over all species between 449 
metagenomes from different pairs of countries. Crossed cells indicates missing scores due to insufficient 450 
(< 5000) pairs of samples. (f) Analysis of inter-continental population differentiation (FST) for 78 451 
prevalent species. Each boxplot represents a distribution of inter-continental FST for one species, ordered 452 
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by medians. (g) An example of geographic patterns captured by within-species genetic variation in the 453 
GT-Pro metagenotypes of specific species. Each dot is a metagenomic sample, colored by continents. 454 
Dimension reduction and visualization performed with UMAP. The example is from Agathobacter 455 
rectalis (species id: 102492). Nearby samples in UMAP space have similar abundance profiles; the 456 
absence of distinct groups indicates that relative abundance does not show strong geographic clustering. 457 
(h) UMAP analysis based on the relative abundances of the 881 GT-Pro species in the same samples as 458 
(i).  459 
 460 
 461 
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