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Abstract

Human genetic variation affects the gut microbiota through a complex combination of 

environmental and host factors. Here we characterize genetic variations associated with microbial 

abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with 

matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). 

We identified 567 independent SNP–taxon associations. Variants at the LCT locus associated with 

Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels 

of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted 

blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in 

the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis 

indicated a potential causal effect of Morganella on major depressive disorder, consistent with 

observational incident disease analysis. Overall, we identify and characterize the intricate nature of 

host–microbiota interactions and their association with disease.
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Humans have coevolved with the microbial communities that colonize them, resulting 

in a complex assembly of thousands of microbial species mutualistically living in their 

gastrointestinal tract. A fine-tuned interplay between microbial and human physiologies 

can impact multiple aspects of development and health to the point that dysbiosis is often 

associated with disease1,2. As such, increasing evidence points to the influence of human 

genetic variation on the composition and modulation of their gut microbiota.

Past genetic studies have collectively revealed important host– microbe interactions3–13. 

Previous twin studies detected substantial heritability signal from the presence and 

abundance of only a few microbial taxa, such as some Firmicutes14, suggesting a strong 

transientness and variability in gut microbial composition, as well as an important 

influence from external factors5,14–17. Nonetheless, a well-described association between 

Bifidobacterium levels and LCT-MCM6, governing the phenotype of lactase persistence 

throughout adulthood in Europeans, was uncovered in 2015 (ref. 3) and subsequently 

replicated by later studies5,6,8–11, suggesting a very strong influence of the evolution 

of dairy diet in modern humans on their gut bacteria. Additionally, genes involved in 

immune and metabolic processes8 but also disease18 were also associated with gut microbial 

variation. Despite several promising findings, reproducibility across studies varying in 

sampling and methods is generally poor, and most previously reported associations 

lose significance after multiple testing correction19. The individual gut microbiota is 

largely influenced by environmental variables, mostly diet and medication20–22, which 

could explain a larger proportion of microbiome variance than identifiable host genetic 

factors8,9. Biological factors could also influence the cross-study reproducibility of results. 

Genome-wide association studies (GWASs) would typically not reproducibly identify 

genetic associations with taxa harbouring microbial functions potentially shared by multiple 

unrelated species23,24. Indeed, a certain degree of functional redundancy has been observed 

in human gut microbial communities24, which is believed to play a role in the resistance 

and resilience to perturbations25–27. However, both assembly and functioning in human 

gut microbial communities seem to be driven by the presence of a few particular and 

identifiable keystone taxa28, which exert key ecological and modulatory roles on gut 

microbial composition independently of their abundance29,30. Such taxa are relatively 

prevalent across individuals and thought to be part of the human ‘core’ microbiota29,30, 

which makes them potentially identifiable through GWAS.

Increasing sample size in studied populations could yield novel and robustly associated 

results, and alleviate the effect of confounding technical or biological factors. This could be 

achieved either by performing meta-analyses of GWASs conducted in various populations11, 

or by using larger cohort datasets. In this study, we used a large single homogenous 

population cohort with matching human genotypes and shotgun fecal metagenomes (N 
= 5,959; FINRISK 2002 (FR02)) to identify genome-wide associations between human 

genotypes and gut microbial abundances (Extended Data Fig. 1). We further leveraged 

additional and extensive health registry and dietary individual data to investigate the effects 

of diet and genotype on particular host–microbial associations, and to predict incident 

disease linked to gut microbial variation.
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Results

Genome-wide association analysis of gut microbial taxa.

Genome-wide association tests were applied to 2,801 microbial taxa and 7,967,866 human 

genetic variants from 5,959 individuals enrolled in the FR02 cohort (Supplementary Table 

9), which includes all taxa discovered to be prevalent in >25% of the cohort (Methods). 

Using a genome-wide significance threshold (P < 5.0 × 10−8), a total of 471 distinct Genome 

Taxonomy Database (GTDB) taxa, which represented 17% of all tested taxa and included 

11 phyla, 19 classes, 24 orders, 62 families, 146 genera and 209 species, were found to be 

associated with at least one genetic variant (Fig. 1 and Supplementary Table 1). Conditional 

analysis found 567 independent SNP–taxon associations at genome-wide significance in 

411 loci (Supplementary Table 1). Heritability across the 2,801 taxa ranged between h2 

= 0.001 and 0.214, with the highest values observed for taxa belonging to the Firmicutes 
and Firmicutes_A GTDB phyla, both of which encompassed half (237 of 471, 50.3%) of 

all associated taxa with genetic variation (Extended Data Fig. 2). There was no difference 

in SNP heritability between groups of associated or nonassociated taxa at genome-wide 

significance (P = 0.23). Adjusting for antibiotic prescription did not change any study-wide 

significant associations, and only 32 of 567 genome-wide associations moved slightly 

above P = 5 × 10−8, which is likely by chance given inclusion of any additional covariate 

(Supplementary Table 10). After adjustment, beta estimates were highly correlated (Pearson 

r > 0.999).

Three loci were strongly associated with microbial variation at study-wide significance, as 

shown on a Manhattan plot showing the lowest resulting P value for each SNP tested against 

each of the 2,801 taxa (Fig. 1 and Supplementary Table 1). There was no evidence of excess 

false positive rate in the GWAS (median genomic inflation factor (λGC) = 1.0051) (Fig. 

1b and Supplementary Table 9). After conditional analysis, the strongest association by far 

(P = 5.0 × 10−35) involved members of class Actinobacteria and rs3940549, a variant in 

the LCT-MCM6-ZRANB3 locus region which is in high linkage disequilibrium (LD) (r2 = 

0.87) with the well-described LCT variant rs4988235, causing lactase persistence in adults 

of European ancestry (Extended Data Fig. 3). In total, 29 taxa were associated with the LCT-
MCM6 region, including 18 below study-wide significance (Fig. 1 and Supplementary Table 

1). These involved Bifidobacterium-related Actinobacteriota and three taxa from the GTDB 

Firmicutes_A phylum which included two uncultured species defined from metagenome-

assembled reference genomes (UBA3855 sp900316885 and CAG-81 sp000435795). The 

association of these three Firmicutes_A with LCT was still genome-wide significant after 

adjusting for Bifidobacterium abundances, as were 11 other taxa associated with the LCT-
MCM6 region (Supplementary Table 2). Additionally, the abundance of these LCT-MCM6-

associated taxa were not, or very weakly, associated with the Bifidobacterium abundances. 

A variant in ABO (rs545971), expressing the histo-blood group ABO system transferase, 

was strongly associated (P = 1.1 × 10−12) with levels of Faecalicatena lactaris. There was 

evidence for a second independent signal at ABO associated with the Collinsella genus 

(chr9:133271182; P = 2.5 × 10−8). rs187309577 and rs143507801 in MED13L, expressing 

the Mediator complex subunit 13L, were found to be associated with genus Enterococcus (P 
= 1.8 × 10−12) and the Enterococcus faecalis species (P = 7.26 × 10−11), respectively.
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Details on the replication of previously reported microbiome GWAS signals in our study are 

included in the Supplementary Note.

Gut microbial keystone taxa associate with genetic variation.

In total, we identified 31 distinct genetic variants associated (P < 5.0 × 10−8) with 

39 microbial taxa related to identified keystone species as listed by Banerjee et al. 

(2018)28,31, which included the Actinobacteria class, Helicobacter pylori, Bacteroides 
stercoris, Bacteroides thetaiotaomicron, Ruminococcus bromii, Klebsiella pneumoniae, 

Proteus mirabilis, Akkermansia muciniphila and the archaeon Methanobrevibacter smithii 
(Fig. 1c and Supplementary Table 1). Keystone species are defined as members of a 

microbial community exerting selective modulation and not broad effects on microbiome 

composition variation. Only one documented keystone species from Banerjee et al., 

Bacteroides fragilis, was not associated with genetic variation in our study28. Although a lot 

of computationally identified keystone species remain to be experimentally verified32,33, this 

observation suggests that they would generally associate with human genetic variation. This 

would indicate an intimate association with the human gut niche in line with their reported 

key ecological roles in microbiome modulation and functioning. Our work highlights human 

genotypes associating with keystone taxa (Supplementary Table 1), which could further 

improve our understanding of their ecology.

Combined effect of genetics and diet on LCT-associated taxa.

We compared the abundances of four bacterial taxa strongly associated with the 

LCT locus (Bifidobacterium genus, Negativibacillus genus, UBA3855 sp900316885 and 

CAG-81 sp000435795) in individuals with different rs4988235 genotypes and dairy diets 

(Fig. 2a). The abundance of Bifidobacterium in individuals producing lactase through 

adulthood (rs4988235:TT) was unaffected by dairy intake. However, lactose-intolerant 

individuals (rs4988235:CC) self-reporting a regular dairy diet had a significant increase 

in Bifidobacterium abundance (P = 1.75 × 10−13; Wilcoxon rank test). An intermediate 

genotype (rs4988235:CT) was linked to an intermediate increase in Bifidobacterium 
abundance (Fig. 2a). This trend did not seem to be affected by age34 (Extended Data 

Fig. 4). Additionally, we observed a moderate negative correlation between Bifidobacterium 
abundances and age in rs4988235:CC individuals reporting a regular dairy diet (Spearman’s 

⍴ = −0.17, P = 1.9 × 10−6) and in rs4988235:CC individuals reporting a low-lactose or 

lactose-free diet (⍴ = −0.19, P = 0.002). Furthermore, the Spearman correlation between the 

Bifidobacterium residual abundance and dairy diet was still significant (⍴ = −0.22, P = 2 

× 10−12) in rs4988235:CC individuals. This indicated that the associations with age were 

consistent in individuals with and without regular dairy intake, and did not confound the 

association between Bifidobacterium and dairy diet.

An inverse pattern was observed for the abundance distributions of Negativibacillus and 

uncultured CAG-81 sp000435795, for which abundances decreased in lactose-intolerant 

individuals reporting dairy intake, as compared with rs4988235:TT individuals consuming 

dairy products (Fig. 2a). Levels of UBA3855 sp900316885 were unaffected by a dairy diet 

in lactose-intolerant individuals but were surprisingly lower in rs4988235:TT individuals 

who reported dairy intake (P = 8.23 × 10−5). These opposite and contrasting effects of dairy 

Qin et al. Page 5

Nat Genet. Author manuscript; available in PMC 2023 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on associated bacterial abundances in lactose-intolerant individuals could reflect competition 

for lactose in the gut. CAG-81 abundances were the most negatively correlated with those of 

the other LCT-associated taxa (Extended Data Fig. 5), which suggests that this competition 

could be strong and prevalent enough to drive coassociation at the LCT locus, possibly 

mediated by lactose intake (Fig. 2b).

Functional profiling of carbohydrate-active enzymes (CAZymes) in 11 Bifidobacterium 
species.

Of all 11 Bifidobacterium species prevalent enough in our study population to be included 

in the GWAS, only Bifidobacterium dentium was not associated with the LCT locus (P = 

1.70 × 10−2), nor was it coabundant with any other Bifidobacterium species (Extended Data 

Fig. 6a). B. dentium has previously been suggested to have different metabolic abilities35. 

A clustering of CAZyme profiles from reference genomes of all 11 Bifidobacterium 
species revealed that B. dentium clustered apart from the ten other species, which grouped 

consistently with their coabundance patterns (Extended Data Fig. 6b). B. dentium harbored 

more genes encoding CAZyme families with preferred fiber/plant-related substrates (GH94, 

GH26, GH53) than other Bifidobacterium species, which seemed to harbor more milk 

oligosaccharide-targeting CAZyme families (GH129, GH112) than B. dentium (Extended 

Data Fig. 6b), which could relate to the observed association differences. This suggests that 

bacterial metabolic abilities can be strong drivers of coabundance, and of association with 

human genetic variation.

Impacts of genotype and fiber intake on ABO-associated taxa.

A variety of bacteria metabolize blood antigens, with potential applications in synthetic 

universal donor blood production36,37. Gut bacteria are particularly exposed to A- and 

B-antigens in the gut mucosa of secretor individuals38. Our associations of F. lactaris (P = 

1.10 × 10−12) and Collinsella (P = 2.59 × 10−8) with ABO suggest a possible metabolic 

link with blood antigens. A comparison of CAZyme profiles across a set of reference 

genomes revealed three CAZymes with blood-related activities in F. lactaris (GH110 (ref. 
39), GH136 (ref. 40), CBM32 (ref. 41)), but none in any of nine Collinsella species (Fig. 

3). More mucus-targeting and fewer fiber-degrading enzymes were found in F. lactaris than 

Collinsella, suggesting distinct functions in the gut.

As previously reported4, neither ABO blood types nor secretor status had an impact on 

alpha- and beta-diversity (Extended Data Fig. 7a). However, we observed that the effects 

of ABO genotypes on F. lactaris levels, underlying the association, were largely driven by 

secretor status, with increased abundances in secretor individuals from genotype groups 

rs545971:CT and rs545971:TT, A and AB blood type groups, but not in rs545971:CC 

genotype, or B and O blood type individuals (Fig. 4a). Levels in nonsecretors did not 

vary across ABO genotypes or blood types. Despite a slight increase in blood type A 

secretors, Collinsella only remained minimally affected by secretor status or blood group 

(Extended Data Fig. 7b). Taken together, this suggests that the secretion of soluble A- and 

B-antigens strongly affects F. lactaris in the gut, possibly through reduced opportunity to use 

them as substrate. Levels of both F. lactaris and Collinsella were significantly higher when 
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individuals were predicted to secrete A-, B- and AB-antigens in their gut mucosa (Extended 

Data Fig. 7c).

A high-fiber diet is thought to induce a metabolic transition from mucus-degrading to fiber-

degrading activities in the colon, as carbohydrates from fiber are more easily metabolized42. 

The increase in F. lactaris abundances in A/B/AB-secretors (defined as secreting A-, 

B- and AB-antigens) compared with non-A/B/AB-secretors remained strongly significant 

irrespective of fiber intake (P = 1.15 × 10−9 in the low-fiber diet group, and P = 4.4 

× 10−3 in the high-fiber diet group), suggesting that F. lactaris has a strong affinity for 

secreted A/B/AB-antigens, does not efficiently degrade dietary fiber or will not easily 

switch to it as an energy source (Fig. 4b). F. lactaris levels were increased in non-A/B/

AB-secretors with a high-fiber diet compared with a low-fiber diet, implying a switch to 

fiber degradation or interaction with fiber-degrading bacteria (Fig. 4b). Collinsella variation 

in both A/B/AB-secretors and non-A/B/AB-secretors with high- and low-fiber diets was 

similar to the compounded abundances of 13 major mucin-degrading species in the human 

gut43, suggesting a similar ecological response in stark contrast with F. lactaris (Fig. 4b,c).

MED13L-associated E. faecalis as a putative link with colorectal cancer (CRC).

The allele frequency of the MED13L rs143507801 variant (A > G), associated with levels 

of E. faecalis (P = 7.26 × 10−11), was low (minor allele frequency = 0.0111), consistent 

with reported allele frequencies in the gnomAD database44. In our study population, 131 

individuals carried rs143507801:G allele, 130 being heterozygous (GA) and only one being 

homozygous (GG). We observed that E. faecalis levels were increased in heterozygous 

rs143507801:GA individuals (Fig. 5). E. faecalis is a gut commensal, but also an opportunist 

pathogen believed to play a role in CRC development, possibly through direct damaging of 

colorectal cells45–47. MED13L and MED13 encode for Mediator transcriptional coactivator 

complex modules associating with RNA polymerase II (ref.48), and as such specifically 

interact with cyclin-dependent kinase 8 (CDK8) modules described for their oncogenic 

activation of transcription during colon tumorigenesis49. Consequently, we observed slightly 

higher levels of E. faecalis (P = 0.014) in 14 individuals enrolled in FR02 with a history of 

CRC at the time of sampling (Fig. 5). Groups of individuals segregated by allelic variant and 

CRC status could not be compared robustly due to small sample size. Taken together, these 

results suggest a possible link between E. faecalis and CRC through the MED13 activation 

of CDK8 in colorectal tumors, which will need to be investigated further.

Mendelian randomization (MR) highlights possible causal effect of Morganella on major 
depressive disorder (MDD).

Interpreting results of causal inference prediction using bacterial information entails 

particular caution, due to the possibility of multiple and unaccounted confounding 

factors10, but can be useful to highlight potential focus for future research. Here we 

predicted 96 causal effects in both microbe-to-disease and disease-to-microbe directions 

using bidirectional MR. Of these, 34 were from microbial levels as exposure to disease 

as outcome, with a large proportion of causal effects in psychiatric and neurological 

diseases (Supplementary Table 5). For example, MR suggested an increased abundance 

of Faecalicoccus may have a causal effect on anorexia nervosa (odds ratio = 1.8 per 
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s.d. increase in bacterial abundance; 95% confidence interval (95% CI) = 1.3–2.5; P = 

2.0 × 10−4, MR method inverse-variance weighted) (Methods). Other examples included 

increasing abundances of Morganella and Raoultella predicted to have causal effects 

on MDD (Supplementary Table 5). When MR was performed in the reverse direction, 

using disease risk as an exposure and microbial level as an outcome, most predicted 

causal effects involved autoimmune and inflammatory diseases, but the strongest predicted 

causal effect involved type 2 diabetes (Supplementary Table 6). Doubling the genetic 

risk of type 2 diabetes (possibly accompanied by external factors such as hypoglycemic 

medications or metformin intake) was predicted to reduce levels of the uncultured CAG-345 
sp000433315 species (Firmicutes phylum) by 0.14 s.d. (standard error = 0.04, P = 3.0 × 

10−4, MR method inverse-variance weighted). A few other examples included some degree 

of literature validation, such as the higher genetic risk for primary sclerosing cholangitis 

causally impacting levels of the cholesterol-reducing Eubacterium_R coprostanoligenes50. 

Furthermore, a higher genetic risk for celiac disease was predicted to increase abundances in 

four species previously reported to be more abundant in patients with celiac disease than in 

controls51 (Supplementary Table 6). Finally, a higher genetic risk for multiple sclerosis was 

predicted to cause a reduction in the abundance of Lactobacillus_B ruminis, consistent with 

the report that Lactobacillus sp. can reduce symptom severity in an animal model of multiple 

sclerosis52.

The availability in our study dataset of up to 16 yr of electronic health record follow-

up after the initial sampling of the microbiota allowed for observational validation of 

predicted effects using MR. Of all causal predictions identified using MR, only the effect 

of Morganella on MDD could be validated by a statistically significant association with 

incident MDD (n = 181 cases; hazard ratio = 1.11, 95% CI = 1.01–1.22, per s.d. increase 

of bacterial abundance), after accounting for age, sex and BMI (Fig. 6). In our GWAS, 

Morganella variation in the study population associated with a variant (rs192436108; P = 

6.16 × 10−8) in the PDE1A locus, which has previously been linked to depression53,54 and 

psychiatric disorders55. We did not find that the development of MDD could be linked 

to an abnormal incidence of microbiome-related diseases (Supplementary Table 8). Taken 

together, these predicted links between Morganella and MDD suggest more efforts should 

be deployed into exploring the possible roles of this bacterium as part of the brain–gut axis 

metabolic modulation of health.

Discussion

Through GWAS and the subsequent investigation of functional and ecological factors 

contributing to the most robust human–microbe associations, we present a diverse and 

global picture of human– microbe interactions in a single cohort of ~6,000 European 

individuals. We find three genetic loci to be strongly associated with gut microbial 

variation. Two of these loci, LCT and ABO, are well known and very segregated in human 

populations, possibly explaining why our homogenous European cohort identified them as 

being associated so strongly. A third more mysterious association with the MED13L locus 

highlights possible links with cancer while causal inference highlights several diseases as 

being causally linked to gut microbes.
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Lactase persistence, or the continued ability to digest lactose into adulthood, is the most 

strongly selected single-gene trait over the last 10,000 yr in multiple human populations56, 

believed to have spread amongst humans with the advent of animal domestication and the 

culturally transmitted practice of dairying57. In our study, as in previous work3,5,6,10, the 

association of LCT variants with Actinobacteria, more specifically Bifidobacterium, is by far 

the most statistically significant, suggesting a profound interaction between Actinobacteria 
and the human gut, in line with their reported keystone activities29. We reported a strong 

increase of Bifidobacterium levels in genetically lactose-intolerant people reporting a regular 

consumption of dairy products8. This increase was not confounded by age in adults, despite 

Bifidobacterium levels generally decreasing with age in our cohort. While self-reported 

dietary information is not entirely reliable due to various reasons58,59, our study population 

was large and the differences were significant enough to consider this a robust observation, 

which can be explained by the evolutionary adaptation of Bifidobacterium to specifically 

metabolize human and bovine milk oligosaccharides60. In lactase-deficient adults, consumed 

lactose is likely to become available for colonic bacteria as an energy source for which 

to compete. Hints of a possible competitive relationship between Bifidobacterium and 

Negativibacillus were revealed, which could depend upon lactose intake and should be 

investigated in functional studies.

Two considerations stem from our findings. First, the genetic determinants of lactose 

intolerance are known to vary across ethnicity61 and cross-population heterogeneity in the 

LCT–Bifidobacterium association was recently reported11. As more non-European-centric 

genetic studies are conducted worldwide11,62,63, examining this combined interaction 

between dairy diet and Bifidobacterium in different genetic backgrounds could bring 

new insights. Second, despite recent progresses, lactose intolerance is still largely 

underdiagnosed, and genetic prediction rates from large population studies exceed lactose 

intolerance prevalence rates obtained using physical tests61. In our study, we lacked 

information on lactose malabsorption symptoms in lactose-intolerant individuals reporting 

a regular dairy diet. Lactose-free (<0.01% lactose content) or low-lactose (<0.1%) dairy 

products have been available in Finland since 1978 and are popular among people 

experiencing symptoms of lactose malabsorption. Our data did not allow us to make the 

distinction between lactose-intolerant individuals aware of their symptoms and consuming 

low-lactose products as a result, and intolerant individuals unaware of the cause of their 

symptoms while consuming dairy. The latter would either experience discomfort symptoms 

without knowingly implicating their lactose intake, or the ability of a higher concentration of 

Bifidobacterium to degrade lactose in their intestines may alleviate the perceived symptoms 

of discomfort associated with lactose intolerance, therefore encouraging individuals to 

continue consuming indigestible lactose asymptomatically64. This possible probiotic effect 

should be investigated in controlled studies.

The ABO gene expresses a glycosyltransferase in many cell types, which determines the 

ABO blood group of an individual by modifying the oligosaccharides on cell-surface 

glycoproteins. A comparison of humans and nonhuman primates has identified ABO (along 

with the major histocompatibility complex) as harboring ancient multiallelic polymorphisms 

that are maintained across species65,66. Many infectious diseases such as norovirus infection, 

bacterial meningitis, malaria, cholera67 or even more recently SARS-CoV-2 (refs. 68,69) 
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are associated with host blood type and secretor status67, suggesting that infection could 

be a driver of a strong balancing selection that has maintained ABO polymorphisms. 

Furthermore, blood type variation has been linked to various chronic diseases67, such as 

heart and vascular diseases, gastric cancers, diabetes, asthma or even dementia67. As many 

of these chronic diseases are also associated with dysbiosis of the gut microbiota, this 

prompts an interesting but largely unexplored parallel between gut commensals, blood 

types and disease38. Our study confirms previous findings4 that secretor status or blood 

types do not seem to globally affect gut microbial alpha- or beta-diversity. It also confirms 

reports from two very recent studies: first, a meta-analysis across five German cohorts, 

using 16S ribosomal RNA sequencing to characterize the gut microbiota, linked Bacteroides 
and Faecalibacterium to ABO and FUT2 (ref.70). The second study functionally associated 

bacterial lactose and galactose degradation genes to ABO variation in a cohort of 3,432 

Chinese individuals71. Taken together, these findings suggest a broad association of ABO 
polymorphisms with microbial variation in various human populations.

An important research effort aiming to enzymatically produce synthetic universal donor 

blood has driven a push for screening a large diversity of CAZymes, including bacteria, 

revealing substrate affinities for blood antigens across various microbes36,37. Here we 

highlight F. lactaris (formerly Ruminococcus lactaris) as a mucin-degrading commensal 

likely able to digest blood antigens through its predicted GH110, GH136 and CBM32 

CAZyme family genes39–41. F. lactaris is strongly associated with ABO genetic variation in 

our European cohort, and is differentially abundant in people according to their predicted gut 

mucosal secretion of A/B/ AB-antigens. Interestingly, our findings are not consistent with 

F. lactaris switching to a fiber-degrading activity in individuals reporting a high-fiber diet, 

unlike other mucin-degrading bacteria in our study and in the literature42 and Collinsella, 

another ABO-associated taxon. Our work suggests that some gut commensals such as F. 
lactaris appear to be very efficient and adapted metabolizers of A/B/AB-antigens in the gut, 

despite their predicted ability to degrade simpler carbohydrates in fiber. This could be an 

example of ecological niche differentiation in the gut, with impacts on associated F. lactaris 
microbial communities, to which Collinsella, also associated with ABO, may belong.

Although validation of the association is inconclusive because of the low prevalence of 

CRC cases and genetic variation in our study population, the association of MED13L 
rs143507801 variant with E. faecalis suggested a putative link with CRC. It has been 

shown that MED13 could directly link a CDK8 module to Mediator72,73, which is a 

CRC oncogene, amplified in colorectal tumors and activating transcription-driving colon 

tumorigenesis leading to CRC49. This could explain a long-suspected link between E. 
faecalis and development of CRC after having been found in higher concentrations in 

patients with CRC than in healthy individuals46,74. The suspected mode of action of E. 
faecalis on CRC development is currently unclear, but could be linked to extracellular 

free radical production directly leading to DNA breaks, point mutations and chromosomal 

instability in colorectal cells47. Although we saw a trend of E. faecalis being increased in 

abundance in individuals with a history of CRC, and in MED13L variation, more focused 

work including incident CRC and a larger sample size will be required to precisely pinpoint 

a link between this bacterium and CRC through the Mediator complex, if any.
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Besides suggesting a link between gut microbes and autoimmune and inflammatory 

diseases, in line with previous studies75, causal inference analysis highlighted a very 

particular and promising example of interplay between a gut microbe and a complex disease. 

Among other suggested links with psychiatric diseases, we predicted increasing abundances 

of Morganella and Klebsiella (ex-Raoultella76,77) to have causal effects on MDD. Members 

of the Enterobacteriaceae family, such as these two genera, have previously been found 

in higher levels in patients with MDD78. Although caution is required when interpreting 

predictions of causality79, increasing evidence suggests that gut microbes are likely to 

influence host behavior via a systemic modulation of hormones and metabolites along 

the gut–brain axis80–82. Importantly, our MR-based result was consistent with observed 

hazards using follow-up observational data up to 16 yr after sampling. This observation 

supports previous experimental results showing an increase of IgM- and IgA-related 

immune responses against Morganella-secreted lipopolysaccharide in major depression83. 

A recent retrospective cohort study performed on 311 individuals including 156 MDD cases 

highlighted bacterial functions, metabolites and species involved in the interaction between 

the gut microbiome and MDD84. Although Morganella was not specifically highlighted, 

levels of several other Enterobacteriales species were found to significantly differ between 

patients with MDD and healthy controls84. Taken together, our findings highlight the 

intimate influence of the gut–brain axis on humans, with more mechanistic studies required 

to untangle and further interpret these predictions.

Our study highlights the benefits of increasing sample size to increase the statistical power 

for discovery. Although the LCT locus has been reported multiple times to be associated 

with bacterial taxa, to the best of our knowledge, our work is the first to report study-wide 

significant associations in a single cohort, at the strongest significance ever reported. The 

association with Bifidobacterium in our study was even stronger than the recent findings 

that used integrative data from 18,473 individuals in 28 different cohorts11, emphasizing 

the importance of standardized methodology and homogeneity in participant ethnicity 

(especially when studying geographically distributed traits such as lactose intolerance85). 

ABO allelic variation is also notoriously affected by geography86, which could explain 

why some meta-analyses in nonhomogenous populations could miss it. Also, metagenomic 

sequencing with standardized, robust taxonomic definitions87,88 can provide species-level 

characterization of microbial profiles in the gut of individuals, unlike 16S rRNA-based 

studies. An example from our work is the observation that B. dentium was prevalent but 

not associated with the LCT locus similar to all other Bifidobacterium species in the 

population. Observed differences in CAZymes commonly found in other Bifidobacterium 
species may explain this difference35. This should be confirmed in future experiments 

using more deeply sequenced metagenomes unambiguously linking function to particular 

metagenome-assembled genomes. Furthermore, GTDB taxonomic standardization results 

in greater taxon granularity, that is, smaller, more discrete clades of similar phylogenetic 

depth than commonly known lineages or species87,88. In theory, this would increase overall 

accuracy89, as a weak association with a poorly defined lineage may be caused by a strong 

association with a well-defined subset of that lineage, defined as a coherent group using 

GTDB88. Finally, a myriad of microbial taxa that are now solely defined and represented 

by uncultured metagenome-assembled genomes in the GTDB database were found to be 
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independently associated with various loci. Along with recent reports that the more gut 

microbiome diversity is explored, the more novel, unknown species are discovered90,91, this 

suggests that many discoveries are yet to be made in the field of human microbiome studies.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-021-00991-z.

Methods

Study population.

The FINRISK study has been extensively described elsewhere92. FINRISK population 

surveys have been performed every 5 yr since 1972 to monitor trends of cardiovascular 

and other noncommunicable disease risk factors in the Finnish population92,93. The study 

population of this study consists of the participants of the FR02 study, including men 

and women aged between 25 and 74 yr from six geographical areas of Finland92,94,95. 

The sampling was stratified by sex, region and 10-yr age group so that each stratum had 

250 participants. The overall participation rate was 65.5% (n = 8,798). Participants filled 

out a questionnaire, then participated in a clinical examination carried out by specifically 

trained nurses and gave a blood sample on which various laboratory measurements were 

performed. They also received a sampling kit and instructions to donate a stool sample at 

home and mailed it to the Finnish Institute for Health and Welfare in an overnight mail. The 

survey was done in Finland during winter months (January to March 2002), with average 

temperatures well below 0 °C. Special care was additionally taken to ensure that samples did 

not remain sitting in a post office more than 1 d, or over the weekend. Upon reception at 

the Finnish Institute for Health and Welfare (THL), samples were immediately frozen to −20 

°C and kept unthawed until shipped to the University of California San Diego (USA), where 

they were processed and sequenced. The use of antibiotics was recorded from participants in 

the FR02 questionnaire and by linking with prescription registry. In addition, participants in 

each study site were asked whether they had an acute infection and were, as a general rule, 

asked to reschedule their examinations and stool sampling if they had.

The follow-up of the cohort took place by record linkage of the study data with the 

Finnish national electronic health registers (Hospital Discharge Register and Causes of 

Death Register), which provide in practice 100% coverage of relevant health events in 

Finnish residents. For present analyses involving follow-up data, we used a follow-up which 

extended until 31 December 2018.

The study protocol of FR02 was approved by the Coordinating Ethical Committee of the 

Helsinki and Uusimaa Hospital District (Ref. 558/E3/2001). All participants signed an 

informed consent. The study was conducted according to the World Medical Association’s 

Declaration of Helsinki on ethical principles.
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Cohort phenotype metadata and specific dietary information.

The phenotype data in this study comprised demographic characteristics, life habits, disease 

history, clinical measurements, laboratory test results and follow-up electronic health 

records. More specifically, baseline dietary factors were collected. Details of the method 

have been described previously93. To broadly assess diet information within the cohort 

participants, a binary variable was used to indicate whether individuals were self-reporting 

to follow various possible dietary restrictions. Dietary consumption of specific food 

product categories was also reported. Habitual diet was assessed using a food propensity 

questionnaire which contained 42 food items or groups and had choices ranging 1–6 for 

consumption frequency, ranging from ‘Less than once a month’ to ‘Once a day or more 

often’. The consumption frequencies were converted to frequencies per month, ranging from 

0.5 times per month to 30, 45 or 60 times per month. Food items that are rarely eaten more 

than once a day were given the value of 30 times per month. Food items that are often eaten 

multiple times a day such as fresh vegetables, breads, and so on were given a value of 60 

times per month. Food items that fall in between these two groups were given 45 points.

Self-reporting of lactose-free diet and dietary fiber consumption.

Allelic distribution at the LCT-MCM6:rs4988235 variant responsible for lactase persistence 

in Europeans was as follows in our study population: 1,936 (35%) individuals had the T/T 

allele conferring a lactase persistence phenotype through adulthood, allowing them to digest 

lactose, while 981 (18%) individuals had the C/C allele conferring lactose intolerance. Most 

individuals (n = 2,611, 47%) had the intermediate allele, C/T, making them likely to be able 

to digest lactose. Most individuals reported a regular dairy intake in their diet (n = 5,002, 

89%), while 706 (12.5%) individuals reported a regular lactose-free diet.

A total fiber consumption score was calculated from the questionnaires, reflecting the 

overall consumption of a combination of various fiber sources such as high-fiber bread, 

vegetables (vegetarian dishes, fresh vegetables, and boiled vegetables and legumes) and 

fruits, berries and natural juices. The resulting total fiber index values ranged from 9 (low 

dietary fiber intake) to 48 (high dietary fiber intake), with a median of 33. Comparisons of 

the effects of low- versus high-fiber diets were made between the 1st (n = 1,213) and 4th (n 
= 1,132) quartiles of the total fiber index.

Genotyping, imputation and quality control.

The genotyping was performed on Illumina genome-wide SNP arrays 

(the HumanCoreExome BeadChip, the Human610-Quad BeadChip and the 

HumanOmniExpress) and has been described previously96. Stringent criteria were applied 

to remove samples and variants of low quality. Samples with call rate < 95%, sex 

discrepancies, excess heterozygosity and non-European ancestry were excluded. Variants 

with call rate < 98%, deviation from Hardy–Weinberg equilibrium (P < 1 × 10−6) and 

minor allele count < 3 were filtered. Data were prephased by using Eagle2 v.2.3 (ref. 97). 

Imputation was performed using IMPUTE2 v.2.3.0 (ref. 98) with two Finnish-population-

specific reference panels: 2,690 high-coverage whole-genome sequencing and 5,092 whole-

exome sequencing samples. To evaluate the imputation quality, we compared the sample 

allele frequencies with reference populations and examined imputation quality (INFO 
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scores) distributions. Imputed SNPs with INFO > 0.7 were kept for analysis. Postimputation 

quality control was carried out by using plink v.2.0 (ref. 99). Samples with >10% missing 

rate were removed. Individuals with extreme height or BMI values were further excluded 

(31 individuals with height < 1.47 m, 5 with BMI > 50 were removed). Both genotyped and 

imputed SNPs were kept for analysis if they met the following criteria: call rate > 90%, no 

significant deviation from Hardy–Weinberg equilibrium (P > 1.0 × 10−6) and minor allele 

frequency > 1%. SNP filtering was based on all individuals for which genotype information 

was available (n = 7,280), not on the 5,959 individuals selected subsequently for GWAS 

after quality control. The postquality control dataset comprised 7,967,866 SNPs.

Metagenomic sequencing from stool samples.

Stool samples were collected by participants and mailed overnight to the Finnish Institute 

for Health and Welfare for storing at −20 °C; the samples were sequenced at the University 

of California San Diego in 2017. No special arrangements were made regarding the 

temperature of the samples when they were shipped from the field clinics to the laboratory 

in THL but, as the survey was done in Finland during the winter months (January to 

March 2002), the average temperatures were well below 0 °C. Special care was anyway 

additionally taken to ensure that samples did not remain sitting in a post office over 

the weekend. The gut microbiome was characterized by shallow shotgun metagenomics 

sequencing with Illumina HiSeq 4000 Systems. We successfully performed stool shotgun 

sequencing in n = 7,231 individuals. The detailed procedures for DNA extraction, library 

preparation and sequence processing have been previously described95. Adapter and host 

sequences were removed. To preserve the quality of data while retaining most of the disease 

cases, samples with a total number of sequenced reads lower than 400,000 were removed.

Taxonomic profiling, quality filtering and data transformation.

Taxonomic profiling of FR02 metagenomes was performed as follows: briefly, raw 

shotgun metagenomic sequencing reads were mapped using the k-mer-based metagenomic 

classification tool Centrifuge v.1.0.4 (ref. 100) to an index database custom-built to 

encompass reference genomes that followed the taxonomic nomenclature introduced and 

updated in the GTDB release 89 (refs. 87–89). This implies that unless specified otherwise, 

all taxonomic names in our study refer to their nomenclature in GTDB, which can be related 

to the original National Center for Biotechnology Information (NCBI) nomenclature using 

the GTDB database server: https://gtdb.ecogenomic.org/taxon_history/. The same profiling 

approach has also been used and described in recent studies from our consortium94,95,101. 

Our study present results involving F. lactaris, which is named differently in NCBI and 

subsequent GTDB releases. A particular note on the evolution of this nomenclature can be 

found in the Supplementary Note.

Gut microbial composition was represented as the relative abundance of taxa. For each 

metagenome at phylum, class, order, family, genus and species levels, the relative abundance 

of a taxon was computed as the proportion of reads assigned to the clade rooted at this 

taxon among total classified reads. The relative abundance of a taxon with no reads assigned 

in a metagenome was considered as zero in the corresponding profile. For the purpose of 

this association study and because of reduced accuracy and power when considering rare 
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taxa, we focused on common and relatively abundant microbial taxa, defined as prevalent in 

>25% of studied individuals, and defined with at least ten mapped reads per individual. For 

the purpose of association, and as previous studies have reported that only some microbial 

taxa are inheritable102, we also removed taxa with zero SNP heritability. This filtering 

resulted in a microbial dataset composed of a total of 2,801 taxa, including 59 phyla, 95 

classes, 187 orders, 415 families, 922 genera and 1,123 species.

Taxonomic profiles derived from sequencing data are by nature compositional because of 

an arbitrary total imposed by the instrument103. The compositional data of microbial taxa 

are not independent and can lead to inappropriate use of linear regression. To overcome this 

artificial bias, all relative abundance values were transformed by center-log-ratio (CLR)104. 

More information about data transformation can be found in the Supplementary Note.

When visually comparing relative abundances in groups of individuals throughout the 

manuscript, we used untransformed relative abundances, for better interpretability. Alpha- 

(Shannon index) and beta- (Bray–Curtis distance) diversity were calculated at genus level 

used functions in the R package vegan v.2.5–6. We did not find a correlation between 

sequencing depth and Shannon diversity index (Spearman’s ⍴ = −0.001598, P = 0.90) in n = 

5,959 samples (Extended Data Fig. 8). Additionally, to define CLR-transformed abundances 

of higher taxonomic levels than species, we summed the raw abundances of all taxa (for 

example, species) belonging to a specific higher taxonomic taxon (for example, genus), and 

then applied a CLR transformation. Additionally, we observed that Eastern and Western 

Finnish populations did not have different microbiome diversity, despite having overall 

slightly different lifestyles and mortality rates. To further investigate this, we visualized 

potential geographical effects using a Principal Coordinates Analysis (PCoA) plot on beta-

diversity (Bray–Curtis dissimilarity) from metagenomic profiles of samples used in the 

GWAS from our study (n = 5,959; Extended Data Fig. 9).

Genome-wide association analysis.

The protocol followed in this study was described elsewhere105. Briefly, a linear mixed 

model (LMM) implemented in BOLT-LMM v.2.3.2 (ref. 106) was used to search for 

genome-wide associations accounting for the individual similarity. Since BOLT-LMM 

only accepts <1 million SNPs in modeling the genetic relationship matrix, SNPs were 

pruned at the threshold of r2 < 0.1 (plink2 (ref. 99), command–indep-pairwise 1000 80 
0.1), resulting in 106,201 independent SNPs. This list of independent SNPs was used to 

estimate heritability using BOLT-LMM. Additionally, BOLT-LMM automatically performs 

leave-one-chromosome-out analysis to avoid proximal contamination. Although the LMM 

accounts for the cryptic relatedness in individuals, there are still large population structures 

that cannot be addressed. Thus, the top ten genetic principal components (calculated by 

FlashPCA v.2.0 (ref. 107) based on the pruned SNPs mentioned above) were included as 

covariates, in addition to age, sex and genotyping batch. We did not adjust for microbiome 

sequencing batch, as we observed that it had no effect on microbiome composition variation 

(Extended Data Fig. 9). As no genetic variant was reported to have a large effect size 

on gut microbiota, statistical estimates were based on infinitesimal model which assumes 

a small nonzero effect for a large number of genetic variants. To identify independent 
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associations, GCTA-COJO v.1.91.3 (ref. 108) was used to conduct approximate conditional 

and joint analysis using individual genetic data. Window size was set to 10 megabases 

(Mb), assuming SNPs on different chromosomes or more than 10-Mb distance apart are 

uncorrelated. The resulting effect size (beta coefficient) indicated the number of standard 

deviation changes of a taxon’s CLR-transformed abundance corresponding to one effective 

allele increase of SNPs. Additionally, for all but two reported SNPs (rs146740485 and 

rs2797225), the effect allele was the reference allele in the GWAS cohort.

As microbes interact nonindependently with each other in the gut, as part of larger 

ecological and functional communities, matSpDlite v.1.0 (refs. 109,110) was used to estimate 

the number of independent tests based on eigenvalue variance—the larger the eigenvalue 

variance, the smaller the number of effective tests. The number of independent tests was 

1,328 for 2,801 tested taxa. We used this information to calculate a Bonferroni-adjusted 

study-wide significance level for significant associations, which was set to 5 × 10−8/1,328 = 

3.8 × 10−11. A genome-wide significance threshold was set as 5 × 10−8. The identified SNPs 

were annotated using ANNOVAR v.2018Apr16 (ref. 111) and grouped into genetic loci using 

200-kilobase windows flanking the top SNPs.

We also examined whether antibiotic prescription before baseline sampling could be an 

important confounder of results. We obtained individual information on the prescription 

of any antibiotic up to 1 month before baseline fecal sampling, corresponding to 250 

individuals of 5,959 (4.2%). We examined whether individual microbial profiles (via 

beta-diversity estimates using Bray–Curtis dissimilarity) were broadly affected by recent 

antibiotic prescription and observed a slight effect along PCoAs with significant variance 

explained (Extended Data Fig. 9c). After repeating the GWAS for all microbial taxa for 

which we initially had found at least one significantly associated locus, this time adjusting 

for previous antibiotic prescription status (‘yes’ versus ‘no’) (Supplementary Table 9), we 

found that recent antibiotic prescriptions had very minor effects on the GWAS association 

results. Adjusting for antibiotic prescription did not change any study-wide significant 

associations and only 32 of 567 genome-wide associations moved slightly above P = 5 × 

10−8 (the largest P value was 3.2 × 10−7), which is likely by chance given inclusion of 

any additional covariate (Supplementary Table 9). In addition, the beta estimates with and 

without the adjustment of antibiotics usage were highly consistent (Pearson r = 0.9999487).

One important association in our study involved F. lactaris abundance and variants in the 

ABO locus. We observed that the distribution of F. lactaris abundance in our GWAS cohort 

(n = 5,959) was slightly bimodal (Extended Data Fig. 10). To investigate whether a logistic 

model gives the same result for this taxon, we arbitrarily coded F. lactaris abundance as ‘1’ if 

the relative abundance was higher than 5 × 10−4 (n = 2,866), and ‘0’ if smaller (n = 3,093). 

Akaike information criterion (AIC) value was smaller for logistic than for linear models 

(AIC = 8,196 versus AIC = 12,463, respectively), and the strongest association was also 

observed in the same top SNP (rs545971, P = 5.5 × 10−18) as when using linear regression 

(rs545971, P = 1.1 × 10−12).

Qin et al. Page 16

Nat Genet. Author manuscript; available in PMC 2023 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Replication of previously reported associations.

To evaluate the reproducibility of our results with previously reported associations, we 

collected GWAS summary results from eight studies published in peer-reviewed journals at 

the time of this work3,6–10,102,112. These studies reported associations between 548 SNPs 

and microbial features. ANNOVAR was used to annotate the reported SNPs to the hg38 

human reference genome111 and we used plink2 (ref. 99) to identify a further 15,427 SNPs 

in high LD (r2 > 0.8, within 5 Mb) with any of these 548 SNPs. To assess replication, 

we first examined whether previously reported associations could be matched in our results 

to identical or linked SNPs, with an association below the Bonferroni-corrected suggestive 

significance threshold, which was set to 0.05/548 = 9.124 × 10−5. More details about 

the replication methods and the use of the GTDB taxonomic system can be found in the 

Supplementary Note.

Prediction of ABO blood groups and secretor status.

SNP-based typing of ABO histo-blood group was performed. A combination of four 

SNPs113 was used for the prediction, and a 98% concordance with phenotypically typed 

ABO histo-blood group has been reported for this method4. For blood group allele A, the 

two different types, A1 and A2, were predicted by rs507666 and rs8176704, respectively. 

Blood group allele B was inferred from rs8176746 and blood group allele O was predicted 

by rs687289. As the combinations of these SNPs are exclusive, no haplotype information 

was needed. To validate the accuracy of prediction, we compared it with the prediction 

using a different combination of SNPs68. The two predictions were highly consistent, with 

over 99.9% concordance. In addition, the distribution of ABO groups was consistent with 

the population distribution found in public databases. Secretor status was predicted by the 

genotype of FUT2 variant rs601338, where AA or AG genotypes are secretors and GG 

genotypes are nonsecretors. A 100% concordance between the variation in rs601338 and 

secretor status was reported in a study on Finnish individuals114.

Bidirectional two-sample MR analysis.

Causal relationships between diseases and gut microbiota were investigated at genus and 

species levels only to maximize interpretability. In total, 213 species and 148 genera 

associated with at least one variant at genome-wide significant level (P < 1 × 10−8) 

were included. GWAS summary results were collected for 46 diseases from MR-Base115 

(Supplementary Table 4). These included 12 autoimmune or inflammatory diseases, 9 

cardiometabolic diseases, 13 psychiatric or neurological diseases, 4 bone diseases and 8 

cancers. For diseases with more than one GWAS record, the record with the largest sample 

size was kept.

Bidirectional causal inference was performed to infer causal effects of microbial abundance 

variation (exposure) on disease risk (outcome), and of disease (exposure) on microbial 

abundance levels (outcome). To select the SNP instruments for microbial exposures in 

our study (Supplementary Table 7), we followed recommendations from a previous study 

showing that associated SNPs below a significance threshold of P < 1 × 10−5 had the 

largest explained variance on microbial features116. For each taxon, GCTA-COJO was used 

to perform a conditional analysis to select independently associated SNPs at P < 1 × 
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10−5. F statistics were calculated to estimate the strength of instruments for each bacterial 

exposure, and were found to be >10 for all exposures (Supplementary Table 5). SNP 

instruments for disease exposures were selected at genome-wide significance threshold (P 
< 5 × 10−8). Subsequently LD-clumping with a strict threshold (r2 < 0.001 in the 1000 

Genomes European data within 10 Mb windows) was conducted to select independent 

instruments with the lowest P values for taxa and diseases, respectively.

Details about the precise methods used for MR inference can be found in the Supplementary 

Note.

Cox proportional hazards regression.

Cox proportional hazards regression was conducted to test the association between baseline 

abundance of gut microbes and incident major depression (16 yr of follow-up, n = 181 

incident events). Microbial abundances were CLR-transformed and standardized to zero-

mean and unit-variance. The Cox models were stratified by sex and adjusted for age and 

log-transformed BMI, with time-on-study as the time scale. Participants with prevalent 

major depression at baseline were excluded. R function coxph() in the R package survival 
v.3.1–8 was used for this analysis.

Profiling of CAZymes in bacterial genomes.

The standalone run_dbCAN2 v.2.0.11 tool117 (https://github.com/linnabrown/run_dbcan) 

was used to scan for the presence of CAZyme genes in public assembled bacterial genomes 

taken from the GTDB release 89 reference. We used a CAZyme reference database taken 

from the CAZy database118 (31 July 2019 update). In total, we scanned 327 Bifidobacterium 
sp., 2 F. lactaris and 15 Collinsella sp. reference genomes included in GTDB release 

89. Three methods were compared as part of the run_dbCAN2 procedure (HMMER, 

DIAMOND and Hotpep). We considered it a positive detection result when all three 

methods agreed on a CAZyme family identification. Identification of preferred reported 

substrates for the various CAZyme families was done manually from key publications42,119, 

from literature searches and from the CAZypedia website120. Certain CAZyme families have 

a broad range of substrates, many of which are still unknown, which results in our reported 

preferred substrates to be as accurate as possible, but nonexhaustive.

Carbon impact and offsetting.

We used GreenAlgorithms v.1.0 (ref. 121) to estimate that the main computational work in 

this study had a carbon impact of at least 2,660 kg of CO2 emissions (CO2e), corresponding 

to 233 tree-years. As a commitment to the reduction of carbon emissions associated with 

computation in research, we consequently funded planting of 30 trees through a local 

Australian charity, which across their lifetime will sequester a combined estimated 8,040 kg 

of CO2e, or three times the amount of CO2e generated by this study.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Data availability

Complete summary statistics of microbial taxa with genome-wide significant hits are 

publicly available in the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/) from 

accession GCST90032172 to GCST90032644. The metagenomic data from FINRISK 

2002 samples are available from the European Genome- Phenome Archive (study ID: 

EGAS00001005020). The phenotype data contain sensitive information from healthcare 

registers and are not publicly available to avoid compromising research participant 

privacy/consent. They are available through the THL biobank upon submission of a 

research plan and signing a data transfer agreement (https://thl.fi/en/web/thl-biobank/for-

researchers/application-process). Additional databases used in this work include GTDB 

release 89 (https://gtdb.ecogenomic.org/) and CAZy (last accessed 31 July 2019) (http://

www.cazy.org/).

Code availability

Scripts used to analyze nonidentifiable data in this study have been made available on 

Zenodo (https://doi.org/10.5281/zenodo.5641303).

Extended Data

Extended Data Fig. 1 |. 
Study flowchart.
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Extended Data Fig. 2 |. Heritability of SNPs associated with microbial taxa.
(a) Associated SNP heritability (h2) for all 2,801 taxa included in the genome-wide 

association analysis, grouped into their 61 corresponding GTDB phyla, and ordered by 

median heritability per phylum. Red denotes bacterial phyla, and purple denotes archaeal 

phyla. The right panel indicates the number of genome-wide significant associated taxa for 

each phylum. (b) Associated SNP heritability is shown for each associated taxon, grouped 

by its taxonomic rank. Genome-wide significance was defined as a threshold of p < 5 × 

10−8 for all p-values obtained after joint analysis using GTCA-COJO in the GWAS (see 

Methods). For all box plots (A and B), the central line, box and whiskers represent the 

median, interquartile range (IQR) and 1.5 times the IQR, respectively.
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Extended Data Fig. 3 |. LocusZoom plots for three loci with study-wide significant associations (p 
< 3.8 × 10−11).
Associations with top taxa are shown. Top SNPs are indicated in purple diamond. Other 

SNPs are coloured by their linkage disequilibrium (LD) values with the top SNPs. Genes 

covered by the region are indicated in the bottom and the genotyping coverage is indicated 

on top of the plot. (A) Associated SNPs at the LCT locus spans over a 2 Mbp genomic 

region, while they are grouped on a 400 kbp region for both (B) ABO and (C) the MED13L 
loci.
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Extended Data Fig. 4 |. Correlation between individual baseline age and the relative abundance 
of bacteria from the Bifidobacterium genus in lactose intolerant individuals.
Only genetically lactose intolerance individuals (rs4988235:CC) are shown, and coloured 

by dietary dairy habits (blue: self-reported regular consumption of dairy, n = 763; and red: 

self-reported irregular dairy diet or lactose-free diet, n = 253). Best fitted lines and 95% 

confidence intervals are indicated. Two-sided Spearman correlation coefficients are given.
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Extended Data Fig. 5 |. Spearman correlation of relative abundances in 4 taxa associated with the 
LCT locus.
Abundances of the Bifidobacterium, Negativibacillus, UBA3855 and CAG-81 genera are 

compared. Abundances in the entire FR02 cohort is compared to those in a subset of 

genetically lactose-intolerant individuals, and to a subset of genetically lactose-intolerant 

individuals who reported a regular dairy diet. Coloured boxes denote the strength of 

correlation (ranging from −1 in red to 1 in dark blue), while a white square denotes a 

non-significant p-value for the two-sided Spearman correlation (p > 0.05).

Extended Data Fig. 6 |. Co-abundance and carbohydrate-active enzymes (CAZyme) distribution 
patterns in 11 Bifidobacterium species harboured by > 25% of individuals in the FR02 cohort.
(a) Associations between the LCT-MCM6 locus and 11 Bifidobacterium species; (left) 

top association results between variation of 11 Bifidobacterium species and the LCT 
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locus, with study-wide significant associations (with p-values from the joint analysis using 

GTCA-COJO below the p < 3.8 × 10−11 threshold) highlighted in bold; (middle) Two-

sided Spearman coefficients calculated on CLR-transformed abundances; (right) relative 

abundances across the FR02 cohort, ranging from 0 (light green) to 1 (dark blue). (b) 

CAZyme distribution patterns in 327 previously published reference genomes from 11 

Bifidobacterium GTDB species which were included in the GTDB release 89 index used 

to classify metagenomes in this study. The heatmap indicates abundance of corresponding 

CAZyme families in species, corresponding to the total count of detected families for each 

species divided by the number of reference genomes examined for the same species. Values 

<1 (white to light blue) indicate that less than one copy per genome of the corresponding 

CAZyme family was detected for each species, values >1 (light blue to dark blue) indicate 

that more than one copy per genome was detected. Preferred substrate groups are based on 

literature search and descriptions on CAZypedia.org. For all box plots (A), the central line, 

box and whiskers represent the median, interquartile range (IQR) and 1.5 times the IQR, 

respectively. Violin plots represent the distribution density of the data points.
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Extended Data Fig. 7 |. Effect of ABO genotypes, blood type and secretor status on microbial 
diversity and gut levels of ABO-associated taxa.
(a) (left) Alpha diversity represented by Shannon indices; (right) beta diversity, represented 

by Bray-Curtis distances. Alpha and beta diversity were calculated from individual 

taxonomic profiles at the genus level. Individuals were segregated according to their 

predicted blood type and secretor status, both predicted from genotype data. (b) Abundances 

are compared across stratified groups of individuals from the FR02 cohort according to 

(left panel): ABO:rs545971 genotype and predicted secretor status (blue: secretor status 

conferred by FUT2 rs601338:AG/AA genotype; red: non-secretor status conferred by FUT2 
rs601338:GG genotype) and (right panel) according to predicted A, AB, B and O blood 

types, and predicted secretor status. All statistical comparisons denote the p-values of 

Wilcoxon rank test on the distributions. (c) Effect of AB antigen secretion on gut microbial 

relative abundance, using the 2,801 taxa considered for GWAS in our study. Taxa with FDR 

adjusted p value <0.05 are highlighted in red. Red line indicates the expected distribution of 

p values under the null hypothesis. P values were calculated using Wilcoxon rank test. For 

all box plots (A and B), the central line, box and whiskers represent the median, interquartile 

range (IQR) and 1.5 times the IQR, respectively. Violin plots represent the distribution 

density of the data points.

Extended Data Fig. 8 |. Sequencing depth does not influence alpha diversity.
Alpha-diversity (Shannon index) were computed and plotted against the log10 (left) or the 

raw (right) number of sequencing reads for each 5,959 individual gut metagenome in this 

study. No correlation was observed between sequencing depth and Shannon diversity index 

(two-sided Spearman’s ⍴=−0.001598, p = 0.90). Grey shaded area corresponds to the 95% 

confidence interval.
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Extended Data Fig. 9 |. Effect of geographical region of sampling, microbiome sequencing batch 
or antibiotic prescription on overall microbiome diversity.
Beta-diversity (Bray Curtis dissimilarity indices) was calculated using the R package 

vegan, and the 4 top PCoA axes (explaining a combined 25.9% of the total microbiome 

variation) were plotted against each other, with each individual point labelled according to 

geographical sampling (panel A), gut metagenomic sequencing batch (panel B), or whether 

antibiotics were prescribed up to 1 month (n = 250/5959) before baseline sampling.

Extended Data Fig. 10 |. Distribution of F. lactaris relative abundance in groups of individuals 
with different predicted blood types.
A beeswarm plot is used to visualise the distribution of relative abundances.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Genome-wide association of human genetic and gut microbial variations.
a, Manhattan plot aggregating the top associations with microbial variation. Each SNP was 

tested against each of the 2,801 taxa and the Manhattan plot shows the lowest resulting P 
value for each SNP. Loci with associations above study-wide significance level (P < 3.8 × 

10−11; red dashed line) are annotated with the human locus name and the corresponding 

associated microbial taxa. The blue dashed line denotes genome-wide significance level (P 
< 5 × 10−8). Of all genome-wide significant associations shown on the Manhattan plot, 320 

of 567 (56.4%) involved 265 lead SNPs with MAF between 1% and 5%, and 247 of 567 

(43.6%) involved 185 lead SNPs with MAF > 5%. P values denote significance of the joint 

analysis model using GTCA-COJO. b, The distribution of genomic inflation factor (λGC) 

in 2,801 tested taxa (median(λGC)=1.0051; mean(λGC)=1.0059). c, Tree-based visualization 

of the taxonomic diversity of genome-wide associated microbial taxa. The central root of 

the tree represents the Bacteria domain, the first connected node represents phylum, the 

second connected node class, the third order and the fourth family. Every node represents 

at least one associated taxon in the GWAS at genome-wide significance level. The three 

smaller trees on the right highlight all taxonomic groups containing at least one taxon 

identified as associated with the LCT-MCM6, ABO and MED13L loci (blue edges and 

nodes denote taxa associated at study-wide significance level and purple edges and nodes 

denote taxa associated at genome-wide significance level). The main tree is annotated to 
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indicate phyla harboring >10 distinct genome-wide associated taxa, as well as previously 

described keystone taxa. MAF, minor allele frequency.
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Fig. 2 |. Interaction of human genotype, dairy diet and gut bacterial variation with the LCT 
locus.
a, The four panels present variation in microbial relative abundances (not CLR-transformed) 

for the four taxa associated at study-wide significance level with the LCT locus at P 
< 3.8 × 10−11: Bifidobacterium, Negativibacillus, UBA3855 sp900316885 and CAG-81 
sp000435795. Abundances are compared across stratified groups of individuals from the 

FR02 cohort according to LCT-MCM6:rs4988235 genotype and self-reported dietary lactose 

intake (red, regular dairy diet; blue, lactose-free diet). Sample sizes for groups of individuals 

self-reporting a regular dairy diet: rs4988235:TT (n = 1,786), CT (n = 2,413), CC (n = 

736); self-reporting a nonregular dairy diet or lactose-free diet: TT (n = 150), CT (n = 198), 

CC (n = 245). All statistical comparisons denote the P values of Wilcoxon rank test on the 

distributions of untransformed relative abundances. Only significantly different comparisons 

(P < 0.05) are indicated. For all box plots, the central line, box and whiskers represent the 

median, interquartile range (IQR) and 1.5 times the IQR, respectively. Violin plots represent 

the distribution density of the data points.

b, Host genetics and gut microbes interact in the context of dairy intake and lactose 

intolerance.
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Fig. 3 |. Functional profiling of reference genomes from two bacterial taxa associated with the 
ABO locus.
CAZyme distribution patterns in F. lactaris and Collinsella reference genomes (from the 

GTDB release 89 index used to classify metagenomes in this study). The heatmap indicates 

species abundance in corresponding CAZyme families, corresponding to the total count of 

detected families for each species divided by the number of reference genomes examined 

for the same species. Values < 1 (white to light blue) indicate that less than one copy 

per genome of the corresponding CAZyme family was detected for each species; values 

> 1 (light blue to dark blue) indicate that more than one copy per genome was detected. 

Preferred substrate groups are based on literature search and descriptions on CAZypedia.org.
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Fig. 4 |. Effects of host genetics and dietary fiber intake on gut abundance variation of two 
bacterial taxa associated with the ABO locus.
a, ABO-associated F. lactaris relative abundances (not CLR-transformed) are compared 

across stratified groups of individuals from the FR02 cohort according to (left panel) 

ABO:rs4988235 genotype and predicted secretor status (blue, secretor status conferred by 

FUT2 rs601338:AG/AA genotype; red, nonsecretor status conferred by FUT2 rs601338:GG 

genotype), and (right panel) according to predicted A, AB, B and O blood types, 

and predicted secretor status. Sample sizes for compared groups: secretor status with 

rs545971:C/C (n = 1,538), C/T (n = 2,493), T/T (n = 1,050) and blood group A (n = 

2,178), AB (n = 460), B (n = 900), O (n = 1,543); nonsecretor status with rs545971:C/C (n = 

266), C/T (n = 437), T/T (n = 175) and blood group A (n = 383), AB (n = 80), B (n = 148), 

O (n = 267). b, ABO-associated F. lactaris and Collinsella sp. relative abundances, as well 

as compounded abundances from 13 mucin-degrading species from Tailford et al. (2015)43, 

are compared across stratified groups of individuals from the FR02 cohort according to 

the predicted A/B/AB-antigen secretion status and dietary fiber intake. Secretion status 

was defined to segregate individuals. A/B/AB-antigen secretors were defined as secretor 

individuals from blood types A, AB and B. Non-A/B/AB-antigen secretors were defined as 

nonsecretor individuals and O-antigen secretors. Fiber intake was compared in individual 

groups from the top and bottom quartiles of total fiber score (Methods). Sample sizes for 

compared groups of individuals: A/B/AB-antigen secretors (n = 1,393) following a low-fiber 

diet (n = 723) or a fiber-rich diet (n = 670), or non-A/B/AB-antigen secretors (n = 952) 

following a low-fiber diet (n = 490) or a fiber-rich diet (n = 462). All statistical comparisons 

denote the P values of Wilcoxon rank test on the distributions of untransformed relative 

abundances. For all box plots (b and c), the central line, box and whiskers represent the 

median, IQR and 1.5 times the IQR, respectively. Violin plots represent the distribution 

density of the data points. c, Host genetics and gut microbes interact in the context of fiber 

intake, secretor status and blood types.
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Fig. 5 |. Effect of host genetics and prevalent CRC on gut levels of E. faecalis associated with 
MED13L variation across participants of the FR02 cohort.
Abundances are compared across individuals grouped according to (left panel) 

MED13L:rs143507801 genotype and (right panel) CRC prevalence according to the Finnish 

Cancer Registry. The comparison between E. faecalis variation and MED13L:rs143507801 

reflects the GWAS results (Supplementary Table 1). The comparison of E. faecalis 
abundances in individuals with or without a history of CRC at the time of sampling was 

performed using a Wilcoxon rank test. Sample sizes for compared groups of individuals: 

rs143507801:A/A (n = 5,825), G/A (n = 130) (note: only 1 of 5,959 individuals in our cohort 

was G/G); with CRC (n = 14), without a history of CRC at baseline (n = 5,941). For all box 

plots, the central line, box and whiskers represent the median, IQR and 1.5 times the IQR, 

respectively. Violin plots represent the distribution density of the data points.
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Fig. 6 |. MR-based causal effects and incident depression analysis link Morganella with MDD.
Forest plot (in blue) representing the magnitude of the effect on MDD risk per 1-s.d. 

increase in bacterial abundance. MR analysis was carried out with 28 genetic instruments 

and their effect sizes from FR02 (5,959 samples) and MR-Base summary statistics (173,005 

samples). In red is shown the hazard ratio for incident MDD in the FR02 cohort up to 16 

yr after baseline sampling, using Cox model (Methods). Error bars represent the 95% CIs. 

IVW, inverse-variance weighted.
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