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Abstract 
 

Overcoming data privacy and data gravity challenges in bioinformatics research 
 

By 
 

James Casaletto 
 
Next-generation sequencing technologies have generated a massive amount of DNA, RNA, 

and protein sequences since their inception.  However, data privacy policies often restrict 

sharing such data for the risk of re-identifying individuals from whom the sequences were 

generated.  Even when all the data from a sequencing experiment is available, it is often 

insufficient for statistical power or training machine learning models.  Despite the lack of data, 

sometimes the data sets are ironically too large to realistically share with researchers.  In this 

thesis, I explore methods to overcome challenges of data privacy and data gravity in 

bioinformatics research.   

 

In collaboration with QIMR Berghofer and the Riken Center for Integrative Medical Sciences, 

we used federated methods to analyze genomic data from the BioBank Japan in situ to 

classify variants of uncertain significance while preserving privacy.  With the Department of 

Laboratory Medicine and Pathology at the University of Washington, we developed a 

statistical model that demonstrates how using responsibly shared clinical evidence alone can 

classify variants of uncertain significance which occur at the rate of 1 in 100,000 people 

within just a few years.  With researchers from McGill University, we reviewed the state of the 

art in federated computing technologies and how well they satisfy the privacy restrictions from 

the General Data Protection Regulation. With researchers from NASA, Amazon, and Intel, we 

developed a federated learning framework to run between terrestrial and space-borne 

compute infrastructure, laying the groundwork for subsequent experiments which preclude 

the need to transfer large datasets across astronomical distances. Finally, at NASA, we used 
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a causal inference machine learning ensemble to infer robust correlation between mouse 

liver gene expression and a corresponding lipid density phenotype in space-flown mice. 
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Chapter 1: Introduction 

Bermuda Principles 

In February 1996, leaders of the Human Genome Project (HGP) met in Bermuda where they 

decided that all human genomic sequence information should be placed in the public domain 

within 24 hours of being generated. The so-called "Bermuda Principles" were drafted to 

encourage research and development and to maximize the HGP’s benefits to society. These 

principles redefined an entire industry and established pre-publication data release as the norm in 

genomics and other research fields.  Craig Venter, then CEO of Celera Genomics, declined to be 

a part of this agreement, arguing that the HGP was over-budget and inefficient. Conversely, 

members of the HGP questioned Venter’s business ethics.  For them, pharmaceutical 

development based on genomic research represented a public good, and that open data and 

commercial products are mutually beneficial. Indeed, recent financial analyses suggest that 

genomic sequences in the public domain brought about more commercialization and profitable 

drug development than did data from the restricted business model from Celera Genomics. 1 2 

Professor David Haussler of the University of California, Santa Cruz, said of the first draft of the 

human genome: “There it was, going out into the whole world. Before the Human Genome 

Project, there had not been a serious discussion about data sharing in biomedical research. The 

standard was that a successful investigator held onto their own data as long as they could.”  3  

AMP vs Myriad Genetics 

Patenting genetic data on the BRCA1 and BRCA2 genes was an integral part of Myriad 

Genetics’s business model until June 2013 when the United States Supreme Court unanimously 

decided Assn. for Molecular Pathology v. Myriad Genetics Inc., ruling that isolated naturally 

occurring sequences of DNA cannot be patented. Opponents argued that these patents would 
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hinder innovation by preventing others from conducting cancer research, would restrict the 

options available to cancer patients seeking genetic testing, and that the patents are not valid 

because such sequences are not invented but rather produced by nature. 4 

Since the Supreme Court ruling in 2013, major advances have been made in the field of breast 

cancer research.  In 2013, the four major subtypes of breast cancer (HR+/HER2, HR-/HER2, 

HR+/HER2+, and HR-/HER2+) were identified.  In 2017, the Food and Drug Administration (FDA) 

approved the first biosimilar drug - trastuzumab-dkst - for breast cancer treatment.  In 2019, 

trastuzumab deruxtecan was approved by the FDA and was very effective in treating 

metastasized or irremovable HER2+ breast cancer.  In 2020, the drug sacituzumab govitecan-

hziy was approved by the FDA for treating metastatic triple-negative breast cancer for people who 

don’t respond to other treatments.  And most recently, in October 2021, the FDA approved the 

drug abemaciclib for patients with HR+/HER2- early breast cancer which constitutes about 70% 

of all breast cancers.  

Fortunately, Myriad has recently reversed its historical company culture by agreeing to submit 

variants detected by its hereditary cancer risk test, including variants in BRCA1 and BRCA2 

genes, to ClinVar starting in the spring of 2023. 

 

HIPAA and GDPR 
 
The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy Rule protects 

personally identifiable information (PII) and protected health information (PHI) stored or 

transmitted by health organizations. The Safe Harbor provision of HIPAA guides researchers by 

prescribing how to redact data for public sharing. For example, the provision requires removing 

explicit identifiers (such as name, address, and other personally identifiable information), 

reporting dates in years, and reducing some or all digits of a postal (or ZIP) code. It is not clear 

that this is sufficient: perhaps a research participant may still be re-identified even when the data 

adhere to this standard. In 2014, HIPAA was amended to grant people access to their clinical test 
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results, including genomic data. Putting research data into laypeople’s hands leaves many 

scientists and policy makers uncomfortable, since research data could lack analytic validity, 

clinical validity, and/or clinical actionability. 5 

In the European Union, the GDPR regulates the use of identifiable personal data: data relating to 

a person which is identified or identifiable. For data to be considered identifiable, there must be a 

means by which a person may be re-identified. 6 This is not the case if re-identification is 

practically impossible on account of the fact that it requires a disproportionate effort in terms of 

time, cost and man-power, so that the risk of identification appears in reality to be insignificant.  If 

the data controller and proximate third parties do not have a mechanism enabling the re-

identification of the concerned individual that is “likely reasonably to be used” 7, then the  data are 

considered to be anonymized and therefore not regulated by the GDPR.  

Data Sharing Models 

The quality of scientific research is judged, in large part, on its reproducibility which requires that 

the methods and data be made publicly available.  The National Institute of Health (NIH) recently 

mandated that all the data generated from the research it be made publicly accessible. Through 

programs such as Big Data to Knowledge (BD2K), Global Alliance for Genomic Health (GA4GH), 

and The Cancer Genome Atlas (TCGA), the NIH is investing in making its data findable, 

accessible, interoperable, and reusable (FAIR). But in one sense, data sharing may open a 

Pandora's box.   Defining responsible data sharing is difficult because it’s difficult to future-

proof.  What constitutes “sufficiently private” today may one day become insufficient due to 

advances in technologies and more data availability. For example, Sweeney et al were able to re-

identify 90% of the participants in the Personal Genome Project using publicly available 

demographic data.   Gymrek et al succeeded in correlating variants on the Y chromosome with 

surnames. Wheeler et al were able to infer predisposition to Alzheimer’s disease despite data 

masking. And Homer et al demonstrated that allele frequency bias could reveal the presence of a 
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target in the case group. Making large amounts of data widely available for a long period of time 

and re-usable by third-parties involves substantial human and infrastructural resources. Who will 

support it? And who will guarantee the privacy of patients and research participants? What 

methods will engender trust? 8 

 

There are essentially four models that describe how data is shared: public, controlled-access, 

clique, and upon-request. 9 10 Public data sharing occurs when data are made available without 

restrictions, providing the lowest barrier to entry for researchers to re-use the data. The BRCA 

Exchange Web portal publicly aggregates and shares BRCA variants, including variants expert-

classified by members of the Evidence-based Network for the Interpretation of Germline Mutant 

Alleles (ENIGMA) variant curation expert panel (VCEP), and supports a community for 

collaborative variant interpretation and curation. Other examples of public data sharing include 

ArrayExpress (microarray gene expression data) and the Gene Expression Omnibus 

(GEO).  NASA has published several datasets from randomized controlled experiments using 

model organisms at GeneLab. 

Controlled-access sharing occurs when data may be used if certain criteria are met, such as a 

review of protocols, a commitment to use data only for health-related research, or other elements 

that affect how one obtains and uses the data. This imposes a modest barrier to entry for reuse 

efforts and is currently the preferred approach for de-identified genomics data that pose 

significant reidentification concerns. The UK Biobank and dbGaP are examples of controlled-

access data sharing. This allows dataset developers to verify that adequate oversight is in place 

for research that could potentially lead to reidentification of a study participant. 

Clique sharing and sharing upon request occur when researchers form a consortium or make 

individual agreements to share data, respectively. The researchers within the clique or who own 

the datasets can select which requesters to whom they grant access. Data made available upon 

request are not widely shared in practice: the data sharing decisions are left to individual 
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scientists. The data from BIOBANK Japan we used in our first aim follows the clique-sharing 

model.  

Federated Methods 

Federated learning is a paradigm with a recent surge in popularity as it holds great promise on 

learning with fragmented or sensitive data. Instead of centralizing training and testing data into 

one location, it enables training a shared global model with a central server while keeping the 

data in local institutions where they originate. Federated learning is promising for healthcare data 

analytics: the sensitive patient data can stay either in local institutions or with individual 

consumers without privacy leakage. Each participating site is sent a copy of the model to train on 

their local data. Once the model has been trained locally over some number of iterations, the 

sites send only their updated version of the model parameters (aggregated, non-private 

information) to the central aggregator and keep their individual-level data. The aggregator uses 

some form of statistical aggregation (e.g. mean or median) on the contributions from all the sites 

and updates the global model. The updated parameters of the global model are shared again with 

the other sites, and the process repeats until the global model converges. 11 12 

The Intel Federated Learning (OpenFL) library is a Python3 platform for federated learning. It 

enables disparate organizations to train models without sharing privacy-sensitive information or 

having to move large quantities of data over long distances.  The library is composed of two 

components: the collaborator which learns model parameters based on local data and shares 

them with the aggregator; and the aggregator which takes the model updates from each of the 

collaborators and combines them to form the global model.  The aggregator is agnostic of the 

learning framework, and the collaborators can use any deep learning framework such as 

Tensorflow and PyTorch which supports a periodic callback mechanism.  We leverage OpenFL in 

Chapter 5. 
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Not all federated methods involve machine learning or multiple nodes.  In fact, in Chapter 2, we 

deploy a single federated container to perform genomic analysis. 

Statistical Modeling 

All models are wrong, but some are useful. Despite the fact that abstraction implies 

misrepresentation, it permits defining model parameters and interpreting model results within 

these parameters. Abstractions are inevitably made for every biology experiment in each 

laboratory around the world. The use of in vitro cell lines and in vivo rodent experiments are, for 

example, by definition, abstractions of human bodies in very complex dynamic environments. 

These wet lab experiments are similar to their mathematical, dry lab counterparts in that they 

permit scientists to test hypotheses. The key for any model, be it mathematical, biological, or 

otherwise, to succeed is to combine data-driven modeling with model-driven experimentation, to 

the extent possible. The models inform the experimenters about which parameters seem relevant 

as explanatory of the response. Computer simulations of statistical models that are based on 

limited data are merely visualizing plausible trajectories forward in time. Predictions could then be 

made by analyzing multiple potential trajectories using multiple plausible parameter 

combinations.  We trust mathematical models and accept their inherent prediction uncertainties 

for forecasting weather conditions, for example, because it’s a common, well understood 

phenomenon. Similarly, when using statistical models in other domains like biology, it is 

mandatory to clearly communicate what models can and cannot do. For clinical purposes, 

predictive models may not need to accurately describe the complex landscape of genomic variant 

classification, but to help inform decision making, often upon binary decisions. 13 

Model Organisms 

Humans have been traveling to space since the 1960s. We’ve accumulated years of 

extensive analysis of the effects of these missions on astronauts. Studies reveal that 
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multiple systems are influenced by the conditions associated with spaceflight, including 

microgravity, exiting and returning to Earth’s atmosphere, confinement in a closed 

environment, space radiation, changes in gas composition, and an altered diet, all of 

which may contribute to the observed health effects. Historically, rodent research plays 

an essential role in understanding of human disease and the ability to evaluate new 

therapeutics. Similarly, experimentation with rodents in space gives scientists the 

opportunity to  comprehensively evaluate physiologic changes associated with 

spaceflight, as well as potential mitigation strategies, that exceeds what is possible with 

human studies. Rodent research has enabled scientists to study the effects of the space 

environment on health and disease in bone, circadian rhythm, cardiology, 

ophthalmology, metabolism, the microbiome, and behavior. 14 

After a rodent experiment, the investigator may have a hypothesis about a likely human response 

to the same conditions, after having considered differences in body weight, exposure, etc. The 

prediction that the hypothesis entails must then be tested on humans to be verified or falsified in 

the light of such human data. In essence, the use of animals to generate a hypothesis is not itself 

predictive. While physics deals with controlled environments upon which reductionism can be 

practiced, biology does not usually have that luxury. While biological systems are consistent with 

the laws of physics, biology is not physics. There are properties consequent upon internal 

organization, epigenetic and epistatic effects, and other factors rooted in evolutionary history 

which are not found in physics. This means that providing the same intervention to two different 

biological samples may result in wildly different responses, and humans are no exception.  At the 

very least, using animal models such as rodents informs scientists about where to investigate 

further, or conversely, where to stop investigating. 15 
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Chapter 2: Federated analysis of BRCA1 and BRCA2 
variation in a Japanese cohort 
 

Authors: James Casaletto1, Michael Parsons2, Charles Markello1,Yusuke Iwasaki3, Yukihide 

Momozawa3, Amanda B. Spurdle2, Melissa Cline1 

Contributions: 

In this research, I implemented all the co-occurrence logic in Python, containerized the logic in a 
Docker container, published the container to GitHub and Dockstore, wrote WDL scripts to launch 
the container, organized and led all the meetings and email communications with our 
collaborators and publisher, and wrote the manuscript.  I also created a poster which I presented 
at the GA4GH 9th Plenary. 
 

Affiliations: 

1. UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, 1156 

High Street, Santa Cruz, CA 95064, USA. 

2. QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston QLD 4006, 

Australia. 

3. Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 

1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan 

Summary 

More than 40% of the germline variants in ClinVar today are variants of uncertain significance 

(VUS).   These variants remain unclassified in part because the patient-level data needed for their 

interpretation is siloed.  Federated analysis can overcome this problem by “bringing the code to 

the data”: analyzing the sensitive patient-level data computationally within its secure home 

institution and providing researchers with valuable insights from data that would not otherwise be 

accessible.  We tested this principle with a federated analysis of breast cancer clinical data at 

RIKEN, derived from the BioBank Japan repository. We were able to analyze these data within 

RIKEN’s secure computational framework, without the need to transfer the data, gathering 

evidence for the interpretation of several variants. This exercise represents an approach to help 
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realize the core charter of the Global Alliance for Genomics and Health (GA4GH): to responsibly 

share genomic data for the benefit of human health.  

 

 

Figure 1. Graphical abstract of data flow 

Introduction 

One obvious and well-studied example of how genetic variation can impact human health is the 

risk of cancer presented by pathogenic variation in the BRCA1 and BRCA2 genes.  Pathogenic 

BRCA1/2 variants greatly increase the risk of female breast and ovarian cancer (as reviewed) 16, 

and also confer significant risk of pancreatic, prostate and male breast cancer (as reviewed) 16. 

Genetic testing that identifies a pathogenic variant in these genes enables individuals and their 

families to better understand their heritable cancer risk, and to manage that risk through 

strategies such as increased screening, cascade testing of family members, and risk-reducing 

surgery and medication (as reviewed) 16.  However, these risk-reducing strategies are not 
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available to an individual found to carry a variant of uncertain significance (VUS), a rare variant 

for which there is insufficient evidence to assess its clinical significance.  While individually rare, 

these VUS are collectively abundant.  As of May 2021, ClinVar 17, the world’s leading resource on 

the clinical significance of genetic variants, reports that 8,592/25,028 (34.3%) of BRCA1/2 

variants therein are designated as VUS, while an additional 1,204 (4.8%) have conflicting 

interpretations.  In other words, roughly 40% of BRCA1/2 unique variants in ClinVar have no clear 

clinical interpretation.  Meanwhile, there are many more variants that have been observed in 

individuals but are not yet in ClinVar: the Genome Aggregation Database (gnomAD) 18 includes 

an additional 35,635 BRCA1/2 variants compiled from genomic sequencing research cohorts.   

Patients of non-European ancestry are significantly more likely to receive a VUS test report from 

BRCA1/2 testing 19, a disparity that stems largely from historical biases in genetic studies 20 21. 

  

The VUS problem persists in large part because VUS are rare variants; no single institution can 

readily gather a sufficient set of observations for robust variant classification.  Data sharing would 

seem to be the natural solution, but it faces logistical challenges.  Variant interpretation often 

requires some amount of case-derived information: clinical observations of the variant in patients 

and their families together with their cancer history.   However, case-level data is sensitive and 

private, and can rarely be shared directly due to regulatory, legal and ethical safeguards 22.  Yet 

sharing data on rare genetic variants is critical for the advancement of precision medicine, as 

advocated by organizations including the GA4GH 23, the American College of Molecular 

Geneticists 24 and the Wellcome Trust 25.  Fortunately, most variant interpretation does not 

require the case-level data per se, but rather variant-level summaries of information derived from 

those data. The ACMG/AMP Guidelines for variant interpretation 26, which specify forms of 

evidence for interpreting genetic variants, indicate use of variant-level summary evidence 

including population frequencies (BA1, BS1, PM2), segregation of the variant and the disorder in 

patient families (PP1, BS4), case-control analysis (PS4), and observations of the VUS in cis and 

in trans with known pathogenic variants (PM3 and BP2, depending on the disorder).   What is 
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needed is an approach to derive this variant-level evidence from siloed case-level datasets 

without the need for direct access.  

 

Federated analysis offers such an approach. Rather than an institution sharing its case-level data 

with external collaborators, those collaborators share an analysis workflow with the institution.  

The institution runs the workflow on their cohort, generating variant-level data that is less 

sensitive and can be shared more openly. This can yield valuable evidence for variant 

interpretation without the sensitive data leaving the home institution 27.  Container technologies 

support this approach by bundling the software and all its dependencies into a single module for 

straightforward installation and deployment on a collaborator’s system 28.  These technologies 

include Docker 29, Singularity 30, and Jupyter 31.  Containers and workflows can be shared on the 

Dockstore platform 32 so that multiple institutions can execute the same software, promoting 

reproducibility.   

 

We developed analysis workflows to mine tumor pathology, allele frequency, and variant co-

occurrence data for BRCA1 and BRCA2 from breast cancer patient cohorts at RIKEN, derived 

from BioBank Japan 33 34. This analysis allowed the assessment of new variant interpretation 

knowledge from a cohort that would not otherwise be accessible.  In addition to generating new 

knowledge on these genetic variants, this yielded new knowledge on the genetics of the 

Japanese population, which is underrepresented in most genetic knowledge bases.  Moreover, 

we’ve generalized our container approach to work with any genotype-phenotype combinations of 

data. 

Design 

In principle, one could share access to a protected genomics dataset by transferring that data to a 

trusted third party, such as a secure cloud, but a dataset which contains personally-identifiable 

information generally cannot or should not be moved from its secure source location.  Indeed, the 
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BioBank Japan data is prohibited from anonymous export.  Federated analysis leaves the data 

securely in place and instead moves the analytic software (which tends to be many orders of 

magnitude smaller in size than a research cohort) to the data host institution.  We designed our 

federated analysis software to be transparent, modular, and extensible.  The analysis software 

creates multiple reports that capture data quality, associated phenotype, allele frequency, and 

variant co-occurrence.   

 

Any researcher analyzing a dataset must first ensure that the data values are interpreted 

correctly; this is especially true when the researcher cannot interact with the data locally.  The 

first report is the data quality report which addresses that need by providing basic statistics (such 

as minimum, maximum, mean, mode, and median) and reporting any missing or unexpected data 

values.  For this report, we provide a JavaScript Object Notation (JSON) configuration file which 

defines each of the fields of interest, here as exemplified for the content of the tumor pathology 

file. The report could be used to check data quality for any delimited file, with or without a header. 

This data quality report represents a general solution which can be reused for other data sets.  

The Supplemental Information section includes two full examples with a data quality report. 

 

The second report we generate is the genotype-phenotype report.  This report is optional and can 

only be run when there exists both the variant VCF file as well as a phenotype TSV file.  The 

purpose of this report is the associate a sample’s genotype and phenotype directly in the same 

record.  The Supplemental Information section includes two full examples with a genotype-

phenotype report. 

The third and last report is the variant frequency and co-occurrence report.  It was written to 

summarize the variant counts stratified by patient group (affected vs. control) for estimating allele 

frequencies; and to report on variants of uncertain significance (VUS) which co-occur in trans 

either with known pathogenic variants in complex heterozygous genotypes, or with themselves as 

homozygous genotypes.  The program takes as input a VCF file and outputs JSON files with the 
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variant counts and the co-occurring variant information.  If associated phenotype data is provided, 

then our software will intersect those phenotype data with the genotype data in the VUS reports. 

This requires using a tab-separated file with the string ‘ID’ as the primary key of this table whose 

values match those in the VCF file.  The Supplemental Information section includes three full 

examples of variant frequency and co-occurrence reports. 

To extend on the reporting functionality and generalizability, we provide the ability to integrate 

and call a custom, domain-specific report which can be leveraged to identify data anomalies in a 

known domain.  This report is optional.  In our research, we leveraged this feature to implement a 

tumor pathology report in which we calculate the number and proportion of triple-negative breast 

cancers of all breast cancers for which ER, PR, and HER2 test results are available. This 

pathology report reads a tab-delimited file which is indexed by the sample identifier. Even though 

these sample identifiers are anonymized, we did not want to risk exposing any identifier in the 

results. Our tumor pathology report takes as input that same tumor pathology file, and for each 

pathology feature outputs a summary of the number and proportion of patients stratified by 

pathogenic variant status, with an odds ratio, confidence interval, and Fisher’s exact p-value for 

the comparison. Additionally, the report includes a comparison of mean age at diagnosis (and 

entry) for the different patient groups.  This can be extended to measure the statistics for any 

stratification of gene and pathology data.  Importantly, this optional custom report can be 

independently used to validate that the researcher and the collaborator are reading and 

interpreting the data equivalently.  In federated computing, the researcher never has direct 

access to the data, so any anomalies in the data could be identified if the researcher and 

collaborating institution agree to independently generate the same report and then compare the 

results.  Indeed, we used this pathology report to validate our federated approach and to verify 

that there were no data anomalies that would preclude our analysis. 

While our research focuses on VUS in BRCA1 and BRCA2 genes and associated tumor 

pathologies, the software was written to work with any genotype-phenotype combinations of data.  

In the Supplemental Information section, we provide an illustration of how one might assess 
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genetic variation in cardiomyopathy by evaluating VUS in the MYH7 gene along with associated 

cardiac phenotype data. All the configuration is passed as command-line options to the program 

to define such parameters as gene name, whether the data are phased, and which human 

genome version to use as genomic coordinates.  Moreover, all the Python libraries required to run 

this code are included in the Docker container.   

Methods 

The dataset 

Our analysis revolved around case-control association study data of individuals of Japanese 

ancestry 33 34.  These data reside at RIKEN and cannot be accessed outside of that institution.  

The dataset reports the variants in coding regions of 11 genes associated with hereditary breast, 

ovarian, and pancreatic cancer syndrome, including BRCA1 and BRCA2.  Additionally, the 

dataset reports the tumor pathology of the breast cancer patients, including ER, PR and HER2 

status. The controls within this cohort are individuals who were at least 60 years old when 

sequenced and who have neither personal nor family history of cancer.  The variant data were 

stored in a Variant Call Format (VCF) file and the associated phenotype (pathology) data were 

stored in a tab-delimited file.  No other files were required for this analysis. 

Variant interpretation evidence 

We developed Docker containers to collect data for two forms of evidence (ACMG code/s 

designated in parenthesis): allele frequencies (BA1, BS1) and variant co-occurrences (BS2). In 

addition, we estimated in silico predictions of variant pathogenicity (BP4, PP3) using the 

BayesDel method for annotation of predicted missense substitutions and insertion-deletion 

changes 35.  

Allele frequencies 

By the AMCG/AMP standards, the frequency of a variant in a large, outbred population can offer 

three different forms of evidence for variant interpretation.  First, when the variant is observed at a 
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far greater frequency than expected for the disorder in question, this is such a strong indicator of 

benign impact (BA1) that the variant can be considered benign without any further evidence. 

Second, when the variant’s frequency does not meet the BA1 threshold but is still greater than 

expected for the disorder, the frequency represents strong evidence (BS1) that can contribute to 

a benign interpretation.  Third, when the variant is absent from controls or reference population 

datasets, its absence represents moderate evidence (PM2) that can contribute to a pathogenic 

interpretation 26.  While gnomAD is commonly used as source of population frequencies, gnomAD 

3.1 contains data from only 2,604 East Asian genomes 18 while gnomAD 2.1 contains data from 

9,977 exomes. Similarly, gnomAD 2.1 contained 76 Japanese exomes, while the number of 

Japanese genomes in gnomAD 3.1 is unknown. Therefore, a Japanese biobank with tens of 

thousands of samples might plausibly contain additional evidence not available through gnomAD.  

When considering population frequencies, one must consider the source of the samples and 

whether individuals affected by the disorder are likely to be present in the dataset 36.  Accordingly, 

we evaluated the non-cancer subset of gnomAD and the control samples from BioBank Japan.  

Each ClinGen Variant Curation Expert Panel (VCEP) determines the precise rules for applying 

the ACMG/AMP standard to the genes and diseases under their purview, including the population 

frequency thresholds for BA1 and BS1 evidence. By the proposed rules of BRCA ClinGen Variant 

Curation Expert Panel (VCEP), the threshold for BA1 evidence is an allele frequency of greater 

than 0.001 while the BS1 frequency threshold is 0.0001.  

in silico prediction 

By ACMG/AMP standards, if multiple lines of computational evidence predict that a variant will 

impact either protein function or RNA splicing, that observation can contribute to a pathogenic 

interpretation (PP3).  Conversely, if multiple lines of computation evidence predict that the variant 

will have no functional impact, that observation can contribute to a benign interpretation (BP2).   

We estimated the probability that the variant would impact protein function with BayesDel 35, a 

meta-predictor that has been shown to outperform most others 37.  By the proposed rules of the 
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BRCA ClinGen VCEP, a BayesDel score of less than 0.3 predicts a benign interpretation while a 

BayesDel score of greater than 0.3 predicts a pathogenic interpretation. 

in trans co-occurrence 

In fully penetrant diseases with dominant patterns of inheritance, if one observes a VUS in trans 

(on the opposite copy of the gene) with a known pathogenic variant in the same gene in an 

individual without the disease phenotype, that observation represents evidence of a benign 

impact.  For BRCA2 (and more recently BRCA1), co-occurrences of two pathogenic variants in 

the same gene are associated with Fanconi Anemia, a rare debilitating disorder characterized by 

deficient homologous DNA repair activity, bone marrow failure, early cancer onset and a life 

expectancy that rarely extends past 40 38.  Consequently, when an older individual is observed 

with a BRCA1 or BRCA2 VUS as either a homozygous genotype or a compound heterozygous 

genotype (in trans with a pathogenic variant in the same gene), that observation suggests a 

benign interpretation for the VUS.  One caveat is that most clinical sequencing does not report 

phase; any single co-occurrence of two variants might be in trans or in cis.  However, if a VUS co-

occurs with two different pathogenic variants in two different patients, one can assume that at 

least one of those co-occurrences is in trans 39.  Based on these clinical observations, VUS 

homozygosity or compound heterozygosity with a known pathogenic variant in an individual 

known or inferred to be without Fanconi Anemia features provides strong evidence against 

pathogenicity (BS2) 37 38. 

Collaboration details 

In advance of developing the containers, the authors communicated to determine which data 

were available and in which format the data were stored.  In our research, the variant data were 

stored in a single VCF (Variant Call Format) file with anonymized sample identifiers, and the 

pathology data were stored in a single TSV (tab-separated values) file indexed by the same 

sample identifiers.  The data were already prepared in these files in the research that generated 

the data in the first place, so no additional data preparation steps were required.  RIKEN provided 
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a pair of files (one VCF file and one tumor pathology TSV file) with bogus data to preserve 

privacy but simultaneously allow the UCSC researchers to develop their containers.  As 

previously mentioned, the UCSC team initially developed the container to generate a tumor 

pathology report.  When the UCSC team finished preparing the container for that report, they 

notified the team at RIKEN to download the container code and run it against the data set. .  The 

instructions for running the container are straightforward and are well-documented in the software 

repository. After a few iterations and email communications, the reports generated by each team 

were found to match exactly, thereby validating that accurate analysis could be performed on this 

data using a federated approach.  Subsequently, the UCSC team developed the container to 

create the co-occurrence and allele frequency report along with the intersection and data quality 

report. Once those reports were generated, they were sent to the QIMR team to analyze for 

variant interpretation.  In all, the total amount of interaction required to collaborate was minimal, in 

part because the QIMR team had previously collaborated with the RIKEN team using this same 

data. 

Analysis approach 

We created our Docker containers with Python 3.73 code which (a) collects observational 

statistics on tumor pathology, (b) gathers variant counts for estimating allele frequencies and (c) 

identifies VUS which either co-occur with a known pathogenic variant in the same gene, or which 

co-occur with themselves (i.e. homozygous VUS).  When reporting co-occurrences, we also 

reported the age of the patient, to review data against expectations of age at presentation of 

Fanconi Anemia.  To identify VUS, we checked the classifications provided by ClinVar and 

validated against the ClinGen-approved ENIGMA expert panel in BRCA Exchange 25.  If the 

clinical significance was ‘Unknown’, or if the variant did not appear in BRCA Exchange, then we 

labeled the variant a VUS.  We applied this container to the BioBank Japan samples.  We 

identified BRCA1 or BRCA2 variants which appeared as homozygotes and/or co-occurred with a 

known pathogenic variant in the same gene.  Sequencing data was not phased, but details on the 
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co-occurring variant/s were provided to aid inference of whether a VUS was in cis or in trans. 

Results 

We describe here an example of how federated analysis can add information of value for variant 

interpretation.  We analyzed a case-control study of Japanese individuals whose case-level data 

resides at RIKEN 18,26.  Since these data are not accessible to external researchers, the UC 

Santa Cruz team developed analysis software, in the form of a Docker container, and shared it 

with the RIKEN team.  The RIKEN team applied the container to analyze this cohort in situ, within 

their secure institutional environment, generating variant-level summary data that contained no 

personal information and can be shared more openly.  The QIMR Berghofer team then applied 

these data to variant interpretation. 

As an initial quality control exercise, we replicated a table from a previous publication on these 

data 18, using the tumor pathology data.  This table contrasts the patients with or without 

pathogenic variants in terms of factors including family history of seven types of cancer; estrogen, 

progesterone and herceptin receptor status; and age at diagnosis.  We were able to replicate this 

table precisely, indicating that we were able to process the data accurately.  This exercise also 

demonstrated that our container can be used to generate scientifically meaningful results.  While 

this step was not mandatory for our analysis, we recommend it for the reasons just stated. 

Subsequently, we applied the Docker container to analyze the complete patient cohort.  We 

observed 19 BRCA variants that have not yet been interpreted by the ClinGen BRCA1/2 expert 

panel. For each VUS, we reported its allele frequency in the controls, and any observations of the 

VUS co-occurring with a known pathogenic variant in the same gene (Table 1). We also 

annotated variants for single-submitter curations in ClinVar. 

Eleven VUS met the standard for stand-alone evidence of benign impact (BA1) on the basis of 

the allele frequencies in the BioBank Japan controls; all of these VUS were predicted 

bioinformatically to have benign impact (BP4).  All eleven VUS will meet the standard of benign 

interpretation on the basis of their frequency evidence from the Japanese cohort. Additionally, two 
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of these variants (BRCA1 c.4729T>C;  BRCA2 c.964A>C) were observed to co-occur with at 

least two different pathogenic variants in the same gene, evidence sufficient to apply the BS2 

criterion. Of these eleven VUS, four have single-submitter classifications in ClinVar as Benign or 

Likely Benign, five have conflicting interpretations, and two are designated by ClinVar as VUS.  

Based on observations currently in gnomAD 3, seven of these variants would have met the BA1 

criterion, three would have met the BS1 criterion, and one was absent (meeting the PM2 

criterion).  For each of the variants present in gnomAD, East Asian was the continental population 

with the greatest allele frequency at the 95% confidence level (popmax) 30, a fact that itself adds 

confidence to the BioBank Japan observations. While seven of the variants could have been 

interpreted as benign using data in gnomAD, the federated analysis supported the interpretation 

of four additional variants.  This greater sensitivity in the BioBank Japan results reflects the 

greater cohort size: while gnomAD contains 2,604 East Asian genomes and 9,977 East Asian 

exomes, the BioBank Japan control group contains 23,731 Japanese individuals.   

Five VUS showed strong evidence of benign impact (BS1) based on their BioBank Japan allele 

frequencies, and evidence predictive of benign impact according to BayesDel (BP4).  These five 

VUS meet the standard of likely benign interpretation based on their frequency and bioinformatic 

evidence combined. Additionally, two of these VUS had a single co-occurrence with a pathogenic 

variant in control individuals; while one should not put too much weight on any single 

homozygous observation, together with the BS1 and BP4 evidence, the data present a consistent 

picture of benign interpretation supported by multiple lines of evidence.  One of these five variants 

is classified in ClinVar as likely benign, while the other four are classified as VUS. Four of these 

VUS would reach the BS1 evidence standard based on their gnomAD population frequencies 

while a fifth is absent from gnomAD.   The BioBank Japan analysis supports reclassifying five 

variants, only four of which could be reclassified using data in gnomAD. 

Finally, three additional variants were each observed in a single heterozygous co-occurrence and 

have BayesDel scores predictive of benign impact (BP4).  With one co-occurrence observation 

apiece, we cannot predict whether the co-occurrence is in trans or in cis, so these observations 
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are not themselves sufficient for evidence of benign impact.  However, these co-occurrences 

could contribute to benign evidence when and if the same VUS are observed to co-occur with 

other pathogenic variant(s) in another cohort.  These VUS are rare variants absent from gnomAD 

and have either conflicting or VUS interpretations in ClinVar. 

Discussion 

With this demonstration of federated analysis, we analyzed a protected cohort that we would not 

have been able to access directly, and we gathered knowledge on Japanese genetics to further 

the interpretation of BRCA1/2 variants.  Of 19 variants currently tagged as VUS by the ClinGen 

BRCA expert panel, 12 were VUS or conflicting in ClinVar. The suggested interpretations based 

on bioinformatic and frequency analysis assign a Benign or Likely Benign classification for 16 

variants, and highlight the value of extending data capture to a subpopulation not yet well 

represented in gnomAD. We also demonstrated the federated collection of variant co-

occurrences and age at presentation; these data together provided further evidence supporting 

the Benign and Likely Benign variant interpretations.  This analysis would not be feasible with the 

existing population frequency resources.  For example, gnomAD, the resource selected by 

ClinGen as its standard, does not yet have a large Japanese cohort, and now shares variant co-

occurrences but without the patient age information that is needed for ruling out Fanconi Anemia 

under ENIGMA’s variant interpretation rules.  These samples had been analyzed previously by 

the RIKEN and ENIGMA teams 18,26, a fact that explains why an analysis of nearly 30,000 

samples revealed only 19 VUS. This federated analysis allowed us to revisit these data with 

updated classification criteria, as well as collecting new evidence on variant co-occurrences. 

Further, by developing a tumour pathology report, we provide proof of principle that federated 

analysis can be designed to capture other clinical features relevant for variant interpretation.  

These additional data types are generally provided only in summary level data presentations from 

published cohorts, at best.   Additionally, this method can be applied to any other phenotype-

genotype relationship that could benefit from otherwise siloed datasets.  
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We have also demonstrated that there are international sequencing projects that contain valuable 

information that could be applied today to variant interpretation but are not yet represented in 

major population data repositories. This is illustrated by the number of Japanese samples 

analyzed in this study (7,104 cases plus 23,731 controls) versus the size of gnomAD’s East Asian 

cohort (2,604 genomes plus 9,977 exomes). In principle, the gnomAD and the related population 

genomics resources will grow with time to comprehensively represent all global populations.  In 

practice, due to the high cost of processing external sequence data, gnomAD mostly imports data 

from cohorts that were sequenced at the Broad, where sequencing data is processed to a 

common standard (H. Rehm,  personal communication,  October 4, 2021).   For these reasons, 

capturing global genetic diversity can benefit from gathering evidence from international sources.  

Because traditional data sharing is blocked by barriers including laws that prohibit exporting 

genomic sequences, federated analysis can advance data sharing by limiting the scope of data to 

be shared to the information most needed.   

In this instance, the data sharing was simplified by the fact that the RIKEN team had already 

assembled a case-control dataset on breast cancer, and in doing so, had already reduced the 

complex phenotypic data to a set of simplified terms.  In a typical variant interpretation scenario, 

the situation is more involved.  In genetic testing, the phenotypic data is often absent, or provided 

in unstructured text fields that must be curated manually prior to any analysis - traditional or 

federated.  Where phenotypic data is available in a structured, electronic form, federated analysis 

can be viable.  The cancer diagnosis (or lack thereof) can be represented through Human 

Phenotype Ontology (HPO) terms 27, with Disease Ontology 28 terms representing the tumor 

pathology.  For example, if the phenotype file had represented the disease phenotype with HPO 

terms rather than the simplified representation, one might distinguish between cases and controls 

in the genotype-phenotype report by recognizing breast cancer cases with the HPO term 

HP:0003002 (Breast Carcinoma), or potentially the less specific HPO term HP:0100013 

(Neoplasm of the Breast).  Similarly, if the phenotypic data were associated with cardiomyopathy, 

one could use the HPO term HP:0001639 to represent hypertrophic cardiomyopathy as a 
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phenotype, or the more general HPO term HPO:0001639 to represent cardiomyopathy.  

Structured models for phenotypic and genomic data exchange, such as Phenopackets 29, 

increase the opportunity for federated approaches by improving the data interoperability.  With 

the growth in standards developed by the GA4GH and other organizations, and increasing 

adoption of electronic data standards worldwide 29, this federated analysis model can be 

generalized and extended into more areas within genomics.  Emerging GA4GH technologies 

including Beacon V2, Matchmaker Exchange and Data Connect can suggest the presence of 

samples of interest in remote, siloed cohorts, such as cases with rare monogenic disorders.  This 

federated analysis approach complements such approaches by allowing further analysis of these 

samples while safeguarding patient privacy. 

While gnomAD is a comprehensive source of allele frequency data in genomic research 26, our 

federated solution does not, per se, require using it.  Any database deemed more appropriate for 

a particular use case or cohort may be used as the source of allele frequencies if the data are 

formatted in a VCF sites file.  Similarly, we used ClinVar as our source of ground truth for variant 

classification, and the ClinVar database may be substituted with another classification database if 

the data is formatted properly.  These data formats are discussed in the Supplementary 

Information section. 

Limitations of the study 

Federated computing is being widely adopted, but it does present its own challenges in data 

privacy and system security.  Docker containers are, to an extent, “black boxes”.  In order to 

ascertain whether the analysis is truly both secure and privacy-preserving, an auditor would need 

to carefully inspect the Dockerfile definition of the container as well as all the software that runs in 

the container. We mitigated this risk by writing our reports to local text files which could be 

examined by the RIKEN team before being shared externally.  Additionally, we published the 

software as open source so it may be directly inspected by collaborators. A second, related 

problem is that one cannot readily determine whether software might damage or compromise the 
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security of the system on which it runs.  One promising solution to this problem is certification.  

Within the emerging field of applications security testing, there are software platforms that can 

dynamically assess the system accesses of the software under test. While the current platforms 

are commercial, there will likely be an open-source version in time.  Eventually, this may become 

an element of the GA4GH Cloud Testbed, currently under development.  This testbed 

infrastructure will initially serve as a platform for testing compliance with GA4GH standards and 

will extend to encompass performance benchmarking. In the future, this platform could potentially 

report activity that suggests a security risk, such as the details of outgoing network or disk traffic; 

and publishing these certification results could fit well within the framework of container libraries 

such as Dockstore.  As an immediate solution to this problem, collaborating institutions should 

run such otherwise unsecured containers in a virtual machine sandbox environment which is 

completely isolated from their internal network. 

Another limitation of our approach is that it requires getting data into the format that our software 

recognizes, namely tab-separated files and VCF files.  In other words, the software is not 

agnostic of the file format.  Moving forward, we will be able to generalize this approach by 

leveraging the data standards under development by the GA4GH, which will allow methods to 

compute over generalized data representation models rather than restricting their input to specific 

file formats.  In particular, the standards of the GA4GH Cloud Workstream are already making it 

easier to leverage software methods across many different computing platforms.  Further 

development will facilitate the streamlined execution of containerized workflows, the 

representation of phenotypic data, and the sharing of genetic knowledge. 
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Gene BRCA2 BRCA2 BRCA2 BRCA1 BRCA2 BRCA2 BRCA2 

Variant (cDNA HGVS) c.6325G>A c.7052C>G c.943T>A c.4729T>C c.4365A>G c.6131G>T c.964A>C 

Variant (Protein 

HGVS) p.A2351G p.A2351G p.C315S p.S1577P p.A2351G p.G2044V p.K322Q 

ClinVar Classification 

(May 1, 2021) B/LB B/LB B/LB B/LB LB Conflict Conflict 

gnomAD 2.1.1 Exome 

Frequency (EAS) 2.55E-03 1.87E-03 5.30E-03 2.65E-04 Absent 4.52E-04 4.31E-04 

gnomAD 3.1.1 

Genome Frequency 

(EAS) 2.39E-03 2.02E-03 5.03E-03 2.02E-04 2.01E-03 4.52E-03 2.41E-03 

ACMG/AMP Code 

from gnomAD BA1 BA1 BA1 BS1 BS1 BA1 BA1 

Biobank Japan 

Frequency (Controls) 1.46E-02 3.16E-03 1.56E-03 1.14E-02 4.64E-04 3.29E-02 2.31E-03 

ACMG/AMP Freq 

from BioBank Japan BA1 BA1 BA1 BA1 BS1 BA1 BA1 

BayesDel Score -0.61 -0.24 -0.41 0.03 -0.52 -0.16 -0.08 

Bioinformatic Code BP4 BP4 BP4 BP4 BP4 BP4 BP4 

ACMG/AMP Class 

based on Frequency 

and Bioinformatics B B B B LB B B 

        

Gene BRCA1 BRCA1 BRCA2 BRCA2 BRCA2 BRCA2  

Variant (cDNA HGVS) c.154C>T c.811G>A c.5969A>C c.3395A>G c.9733T>G c.5660C>T  

Variant (Protein 

HGVS) p.L52F p.V271M p.D1990A p.K1132R p.S3245A p.T1887M  
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ClinVar Classification 

(May 1, 2021) Conflict Conflict Conflict VUS VUS VUS  

gnomAD 2.1.1 Exome 

Frequency (EAS) 1.36E-03 1.32E-03 0 Absent Absent 1.13E-04  

gnomAD 3.1.1 

Genome Frequency 

(EAS) 4.03E-04 1.21E-03 4.03E-04 0.000201 Absent Absent  

ACMG/AMP Code 

from gnomAD BA1 BA1 BS1 BS1 PM2 BS1  

Biobank Japan 

Frequency (Controls) 6.78E-03 6.28E-03 2.61E-03 3.75E-03 1.01E-03 1.69E-04  

ACMG/AMP Freq 

from BioBank Japan BA1 BA1 BA1 BA1 BA1 BS1  

BayesDel Score 0.14 0.06 -0.08 -0.2 -0.47 -0.29  

Bioinformatic Code BP4 BP4 BP4 BP4 BP4 BP4  

ACMG/AMP Class 

based on Frequency 

and Bioinformatics B B B B B LB  

        

Gene BRCA2 BRCA2 BRCA2 BRCA2 BRCA2 BRCA2  

Variant (cDNA HGVS) c.2672T>A c.587G>T c.8040C>G c.358G>A c.3983G>A c.6637T>C  

Variant (Protein 

HGVS) p.V891D p.S196I p.D2680E p.V120M p.S1328N p.S2213P  

ClinVar Classification 

(May 1, 2021) VUS VUS VUS Absent Conflict Conflict  

gnomAD 2.1.1 Exome 

Frequency (EAS) Absent 1.78E-04 Absent Absent 0 Absent  
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gnomAD 3.1.1 

Genome Frequency 

(EAS) Absent Absent 0.000202 Absent Absent Absent  

ACMG/AMP Code 

from gnomAD PM2 BS1 BS1 PM2 PM2 PM2  

Biobank Japan 

Frequency (Controls) 9.69E-04 4.64E-04 9.69E-04 0 0 0  

ACMG/AMP Freq 

from BioBank Japan BS1 BS1 BS1 PM2 PM2 PM2  

BayesDel Score -0.05 -0.22 -0.05 -0.48 -0.57 -0.06  

Bioinformatic Code BP4 BP4 BP4 BP4 BP4 BP4  

ACMG/AMP Class 

based on Frequency 

and Bioinformatics LB LB LB VUS VUS VUS  

 

Table 1. Summary of the variant data.  The HGVS terms reflect the NM_007294.3 transcript for 
BRCA1 and NM_000059.3 for BRCA2. Variants are designated as B (Benign), B/LB (Benign or 
Likely Benign), LB (Likely Benign), Conflict (Conflicting Interpretations), VUS (Uncertain 
Significance) or Absent (Not Found). All variants scored against the BayesDel in silico predictor 
with a score of less than 0.3, within the BP4 scoring range.  Additionally, two variants were 
observed to co-occur with two more more pathogenic variants in the same gene, indicating that at 
least one of these co-occurrences must be in trans, which meets the standards of BS2 evidence.  
In BRCA1, we observed co-occurrences of c.4729T>C with c.1518del and c.188T>A, and in 
BRCA2, we observed co-occurrences of c.964A>C with c.6952C>T, c.5645C>A and c.6244G>T.  
While these VUS had sufficient evidence for classification on allele frequencies only, these co-
occurrences add further support to benign classification.  We further observed co-occurrences of 
BRCA2 c.5660C>T with c.1261C>T and c.4365A>G with c.7480C>T, evidence which could 
support a benign classification if these variants are observed in co-occurrences with different 
pathogenic variants in other patient cohorts. 
 

STAR methods 
REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Sequence and 
phenotype data 

Japanese Genotype-Phenotype 
Archive 

JGAS00000000140 
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Software and algorithms 

Co-occurrence 
GitHub repository 

This manuscript https://github.com/BRCAChallenge/f
ederated-analysis 

Co-occurrence 
Dockstore 
repository 

This manuscript https://dockstore.org/my-
workflows/github.com/BRCAChallen
ge/federated-analysis/cooccurrence 

Python 3.7.3 Python Software Foundation https://www.python.org 

Scikit-allel 1.3.1 Miles et al31 https://scikit-
allel.readthedocs.io/en/stable/ 

Pandas 1.3.2 Pandas development team32 https://pandas.pydata.org/ 

Bcftools 1.10.2 Danecek et al33 https://github.com/samtools/bcftools 

Pyensembl 1.8.5 N/A https://github.com/openvax/pye
nsembl 

Table 2.  Key resources table. 
 
Resource availability 
Lead Contact 
Further information and requests for resources should be directed to and will be fulfilled by the 

lead contact for this study, James Casaletto (jcasalet@ucsc.edu). 

Materials availability 
There are no materials that were generated in this study. 

Data and code availability 
• This paper analyzes existing data from BioBank Japan. The accession number for 

the dataset is listed in the key resources table. 

• All original code has been deposited at GitHub and Dockstore and is publicly 

available as of the date of publication. URLs are listed in the key resources table.  

• Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request.  

Method details 

To run our container, Docker must be installed in the runtime environment at the institution where 

the data are stored. We tested our container on Docker versions 18.03 and 19.03.  The container 

also requires the appropriate ClinVar VCF file (for GRCh37 or GRCh38) which can be 
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downloaded from their HTTP or FTP site (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/).  We used the 

bcftools command to reduce the size of this file to include only the genes of interest. Last, the 

container requires the gnomAD sites VCF file which can be downloaded from their HTTP site 

(https://gnomad.broadinstitute.org/downloads).  Again, we used the bcftools command to 

reduce the size of this file to include only the genes of interest.  

We created a variant co-occurrence and allele frequency report for BRCA1 and BRCA2, but our 

software has been generalized to find co-occurrences on other genes.  Users can specify which 

version of the human genome (37 or 38), the chromosome and the gene on which to find VUS co-

occurring in trans with themselves or with known pathogenic variants.  The software runs on both 

phased and un-phased data, though inferring the genotype phase from un-phased data requires 

VCEP expertise.   

To determine variant classification, users must provide a delimited file with the following fields: 

Clinical_significance and Genomic_Coordinate_hg37 (or 

Genomic_Coordinate_hg38).   Genomic coordinates must have the form of this example 

variant: “chr13:g.32314514:C>T”, where this represents the variant on chromosome 13, position 

32314514 which changes a C nucleotide to a T nucleotide.  If the Clinical_significance 

field is defined as “Pathogenic”, “Likely pathogenic”, “Likely_pathogenic”, or 

“Pathogenic/Likely_pathogenic”, then we interpret that variant as being pathogenic.  Similarly, if 

the Clinical_significance field is defined as “Benign”, “Likely benign”, “Likely_benign”, or 

“Benign/Likely_benign”, then we interpret that variant as being benign.  We interpret any other 

value in the Clinical_significance field as being of uncertain significance.  

To successfully mine co-occurrence data, our code performs the following steps. 

1. Read VCF files 

The genomic variants are defined in a VCF file which our application reads using the 

read_vcf() method of the Python scikit-allel package.  We store the variants in a 

Python dictionary which contains the chromosome, position, reference allele, and 
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alternate allele along with the genotype. The variant classifications are defined in a VCF 

file which our application reads using the read_csv() method of the Python pandas 

package.  We store these classifications in a Python dictionary which contains 3 sets: 

one for pathogenic variants, one for benign variants, and one for VUS.  Last, the allele 

frequencies are defined in a VCF sites file which our application reads using the 

read_csv() method of the Python pandas package.  We store these allele frequencies 

in the same Python dictionary as the genomic variants. 

2. Find variants per sample 

Our application uses multi-threading in Python to parallelize the construction of 3 lists of 

variants per cohort sample: benign variants, pathogenic variants, and VUS.  The 

classification of variants is determined using the ClinVar VCF file. 

3. Intersect variants with phenotype data 

The phenotype data are defined in a tab-delimited file and are read using the 

read_csv() method from the Python pandas package.  The ID field of the phenotype 

file is used to match keys in the dictionary of variants per sample.  In this way, any 

phenotypic data can then be associated directly with those variants and not with the 

samples themselves.  

4. Find and annotate co-occurring VUS 

Our application examines the dictionary of variants per sample and the associated 

genotypes to determine if those VUS co-occur in trans with themselves (homozygous) or 

with known pathogenic variants (heterozygous).  We use the pyensembl Python package 

to annotate the variants with information such as whether it is exonic or intronic, and 

whether the variant falls within the known boundary of the gene of interest. Our 

application then generates the reports which contain the homozygous co-occurring VUS, 

VUS co-occurring with known pathogenic variants, any associated phenotype data per 

VUS, and the allele frequency data.  
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Chapter 3: Modeling the impact of clinical data sharing 
on variant classification 
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ABSTRACT 
Objective: Many genetic variants are classified, but many more are variants of uncertain 

significance (VUS). Clinical observations of patients and their families may provide sufficient 

evidence to classify VUS. Understanding how long it takes to accumulate sufficient patient data to 

classify VUS can inform decisions in data sharing, disease management, and functional assay 

development. 

 

Materials and Methods: Our software models accumulation of clinical evidence (and excludes 

all other types of evidence) to measure their unique impact on variant interpretation.  We illustrate 

the time and probability for VUS classification when laboratories share evidence, when they silo 

evidence, and when they share only variant interpretations.  

Results: Using conservative assumptions for frequencies of observed clinical evidence, our 

models show the probability of classifying rare pathogenic variants with an allele frequency of 

1/100,000 increases from less than 25% with no data sharing to nearly 80% after one year when 

labs share data, with nearly 100% classification after 5 years. Conversely, our models found that 
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extremely rare (1/1,000,000) variants have a low probability of classification using only clinical 

data.  

Discussion: These results quantify the utility of data sharing and demonstrate the importance of 

alternative lines of evidence for interpreting rare variants.  Understanding variant classification 

circumstances and timelines provides valuable insight for data owners, patients, and service 

providers.  While our modeling parameters are based on our own assumptions of the rate of 

accumulation of clinical observations, users may download the software and run simulations with 

updated parameters. 

Conclusion: The modeling software is available at 

https://github.com/BRCAChallenge/classification-timelines.  

OBJECTIVE 
Genomic testing is now widely used for patients to determine if their genetics put them at 

increased risk of heritable disorders and to enable them to manage this risk clinically.  For 

example, a patient with a known pathogenic variant in BRCA1 or BRCA2 should be screened 

more often for breast, ovarian, and pancreatic cancer. 40 Similarly, asymptomatic patients with 

familial cardiomyopathy might consider certain lifestyle changes such as losing weight, reducing 

stress, and sleeping well. 41  

The American College of Medical Genetics (ACMG) and the Association for Molecular Pathology 

(AMP) define qualitative, evidence-based guidelines for classifying genetic variants. Evidence for 

variant classification can come from many sources including clinical data, functional assays, and 

in silico predictors. Clinical data, typically derived through genetic testing reports, includes family 

history, co-segregation, co-occurrence, and de novo status. When sufficient evidence is present, 

a variant curation expert panel (VCEP) may classify the variant as Likely Benign (LB), Benign (B), 

Likely Pathogenic (LP), or Pathogenic (P) using the ACMG/AMP rules for combining evidence. 

Variants with little or no evidence to support classification, called Variants of Uncertain 
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Significance (VUS), create stress for patients and may lead to improper care. Because VUS do 

not yield medically actionable information, patients with VUS do not benefit from clinical 

management of their heritable disease risk. Ultimately, the significance of a variant remains 

uncertain until there is sufficient evidence to classify it. Although computational and functional 

predictions are helpful, some clinical data linking genotype and phenotype is usually needed to 

classify most variants. 42 However, there is no centrally available repository of clinical data that 

can be used for variant classification. Molecular testing laboratories and sequencing centers are 

the largest source of variant data. Many, but not all, clinical laboratories and sequencing centers 

actively share variant interpretations through ClinVar; however, they hold most of the clinical data 

they collect privately, due in large part to patient privacy and regulatory concerns. The shared 

interpretations for many genetic variants vary or even conflict between laboratories depending on 

the amount and nature of the evidence provided. 43 

One solution to these problems is for clinical laboratories to develop approaches to centrally 

share their clinical data associated with specific variants. Widespread sharing of variant 

pathogenicity evidence would lead to more rapid variant interpretation, greater scientific 

reproducibility, and novel discoveries. 43 44 Indeed, the National Institutes of Health recently 

mandated the sharing of all data for the research which it funds.  

While there is no question that data sharing would lead to expedited variant interpretation, and 

better patient outcomes by extension, under what circumstances is data sharing the most 

impactful? We have addressed this question by developing open-source software to model the 

probability of variant classification over time under various forms of data sharing.    

The output of our model not only quantifies the value of sharing clinical patient data, the 

understanding of likely timelines and mechanisms of classification that this modeling illustrates 

could guide genetics organizations in prioritizing their efforts, inform strategies for functional 

assay development, improve variant classification guidelines, and enable healthcare providers to 
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develop better strategies for managing specific patients with VUS. Further, the model serves as a 

platform for testing hypotheses on factors including the rates of gathering clinical evidence on the 

variant interpretation timeline.  While we have informed the model with data according to the 

scientific literature and our own clinical experience, these factors are modeling parameters that 

can be modified easily as new evidence emerges, or to test the impact of clinical assumptions on 

the variant classification rate. 

MATERIALS AND METHODS 
This section outlines a statistical model that combines clinical information from multiple 

sequencing centers to create an aggregate, pooled center so that VUS may be classified faster. 

Combining multiple forms of variant classification evidence 
The evidence that the ACMG/AMP uses to classify variants encompasses several sources of 

data, including the type of variant (e.g. nonsense or frameshift), in vitro functional studies, in trans 

co-occurrence with a pathogenic variant, co-segregation in family members, allele frequency, and 

in silico predictions.  They are divided into four levels of strength:  "Supporting" (or “Predictive”), 

"Moderate", "Strong", and "Very Strong". For example, PP1, which represents co-segregation of 

the disease with multiple family members, is considered “Supporting” evidence for a Pathogenic 

interpretation. Another form of evidence called BS4 represents the lack of segregation of the 

disease with the variant in affected family members. The BS4 evidence is considered "Strong" 

evidence for a Benign interpretation. 45 Tavtigian et al 46 showed that the rule-based ACMG/AMP 

guidelines can be modeled as a quantitative Bayesian classification framework. Specifically, the 

ACMG/AMP classification criteria were translated into a naive Bayes classifier, assuming the four 

levels of evidence and exponentially scaled odds of pathogenicity. While the ACMG/AMP 

guidelines define rules for the combinations of evidence which lead to variant classifications, the 

Bayesian framework assigns points to each form of evidence.  These points are summed and 

compared to thresholds to determine the variant’s pathogenicity. We leverage this Bayesian 

framework to model calculating odds of pathogenicity conditioned on the presence of one or more 



 35 

pieces of evidence for a given variant. For more detail regarding the combination of evidence, see 

Equations S1-S3 in the supplementary material. 

To model the impact of clinical data sharing on variant classification, we exclude all other forms of 

evidence besides clinical evidence, as described in the following sections. For each variant, our 

model calculates two odds of pathogenicity: the odds of a VUS being benign and the odds of a 

VUS being pathogenic, both of which are conditioned on statistically sampled evidence. 

Selecting categories of variant evidence for model 
Some sources of variant classification evidence are not impacted by data sharing, such as in 

silico prediction scores and functional assay scores. We will not use those categories of evidence 

in our model so we can specifically quantify the unique contribution of cumulative clinical data to 

variant interpretation.  

Several sources of clinical case and family information will contribute to variant classification over 

time. As clinical databases grow and data is shared more effectively across institutions, more 

variants will be classified. Increased clinical information is the major source for variant 

reclassification as well. 47 We selected the following categories of clinical pathogenic evidence for 

our model:  

● de novo variants without paternity and maternity confirmation (PM6)  

● co-segregation in family members affected with the disease (PP1) 

● de novo variants with both paternity and maternity confirmed (PS2) 

Similarly, we selected the following categories of benign evidence criteria that relate to clinical 

information:  

● in trans co-occurrence with a known pathogenic variant (BP2) 

● disease with an alternate molecular basis (BP5) 

● lack of segregation in affected family members (BS4) 
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The more evidence that is gathered over time, the sooner and more likely a VUS will be 

classified. However, not all the evidence that is gathered over this time will be concordant. 48 

Patients who have a pathogenic variant may occasionally present evidence from one or more 

benign categories, for example, lack of segregation in affected family members due to disease 

heterogeneity. This presentation of conflicting evidence for a given variant occurs at a low, non-

zero frequency. Therefore, we use a combination of pathogenic and benign evidence in the 

classification of every VUS. 

Parameters affecting clinical observations 
To model the accumulation of clinical evidence, we defined certain modeling parameters 

according to the literature and to our own clinical experience. While the values that we have 

assigned to these parameters constitute well-informed assumptions, these values can be 

modified to test hypotheses, or as new knowledge emerges over time. In our software, these 

parameters are encapsulated in a single JSON file, so rerunning the model with revised 

parameter values requires modifying only one file. 

Frequency distribution for evidence 

Tavtigian et al calculated the corresponding odds of pathogenicity for each category of evidence 

and showed that the numerical-based odds are consistent with the rule-based ACMG/AMP 

guidelines for combining evidence.  Those odds are shown in the “Pathogenicity odds of 

evidence” column of Table 3.  Specifically, they determined that, for pathogenic evidence, the 

odds for "Strong" evidence is 18.7, for "Moderate" is 4.3, and for "Supporting" is 2.08. For benign 

evidence, the odds for "Strong" evidence is 1/18.7, for "Moderate" it’s 1/4.3, and for "Supporting" 

it’s 1/18.7. We derived the estimates for the evidence frequencies from the literature. 49 50 51 52 

 

Evidence 
category 

Estimated benign 
evidence frequency 
(low, medium, high) 

Estimated pathogenic 
evidence frequency 
(low, medium, high) 

Pathogenicity 
odds of evidence  
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PS2 (0.0001, 0.0015, 0.005) (0.0006, 0.003, 0.02) 18.7 

PM6 (0.0007, 0.0035, 0.01) (0.0014, 0.007, 0.025) 4.3 

PP1 (0.005, 0.01, 0.0625) (0.05, 0.23, 0.67) 2.08 

BS4 (0.025, 0.1, 0.4863) (0.0001, 0.001, 0.17) 1/18.7 

BP5 (0.038, 0.099, 0.36) (0.00002, 0.0001, 
0.00215) 

1/2.08 

BP2 (1.0 * f, 1.0 * f, 1.0 * f) (0.001 * f, 0.005 * f, 0.02 * 
f) 

1/2.08 

Table 3. Odds and frequency estimate confidence intervals per ACMG/AMP category per clinical 
data evidence category.  The variable f represents the frequency of the variant itself.   
Table 3 depicts the odds and estimated frequency confidence intervals for the ACMG/AMP 

evidence categories that correspond only to clinical evidence.  There may be pathogenic 

evidence observed for benign variants and benign evidence observed for pathogenic variants, 

though such observations generally occur at a low rate. For example, the frequency of BP2 for 

pathogenic variants is very unusual, except in tumors or in the case of rare diseases such as 

Fanconi anemia. Conversely, we assume that the frequency of BP2 evidence for benign variants 

is quite common and so occurs at the same rate (f) as the variant itself. 

 

Thresholds for odds of pathogenicity 

Tavtigian et al defined four threshold ranges for the odds of pathogenicity for each of the four 

ACMG/AMP variant classifications (Benign, Likely Benign, Likely Pathogenic, Pathogenic). 

Classification Threshold for odds of pathogenicity 

Benign (-∞, 0.001) 
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Likely Benign [0.001, 1/18.07) 

Uncertain significance [1/18.07, 18.07] 

Likely Pathogenic (18.07, 100] 

Pathogenic (100, +∞) 

Table 4. Odds of pathogenicity per ACMG/AMP classification 

These thresholds from Table 4 correspond to the values from Table 3 and are consistent with the 

ACMP/AMP rules for combining evidence.  For example, having one piece of strong evidence 

(e.g. BS4) and one piece of supporting evidence (e.g. BP2) is sufficient to classify a variant as 

“Likely Benign”. 

Data from participating sequencing centers 

For generating simulated clinical data, we define three categories of sequencing centers: small, 

medium, and large as shown in Table 5. 

Center type Current number of patients tested Tests per year 

Small 15,000 3,000 

Medium 150,000 30,000 

Large 1,000,000 450,000 

Table 5. Current number of tests in database and testing rate per center type 

 

We estimated the large database size and testing rate from the online publications of relatively 

large sequencing labs, 53 54 and we estimated the small database size and testing rate based on 

our own experience at the University of Washington Department of Laboratory Medicine (a 

relatively small laboratory). We estimated the medium database size and testing rate by 

interpolating between the large and small database values.  Our model permits that these 



 39 

estimated sizes be replaced with other hypothetical or real sizes to predict outcomes under 

different scenarios.  In relatively rare circumstances, the same patient may be tested at multiple 

facilities.  In our model, we are assuming that each center has entirely distinct patient 

populations. 

Ascertainment bias 

Healthy people from healthy families are underrepresented in many forms of genetic testing. 55 

Accordingly, patients with pathogenic variants are observed (or ascertained) more often than 

those with benign variants, and the forms of evidence that support a pathogenic interpretation 

accumulate more quickly. How much more likely a person is to present pathogenic evidence than 

benign evidence is captured in our model as a configurable real-valued constant. We 

conservatively estimated this term to be 2 based on our experience at the University of 

Washington Department of Laboratory Medicine. 

Prior odds of pathogenicity 

The Bayesian prior odds of a variant’s pathogenicity represents all other criteria that are not 

clinical and do not change much, if at all, over time. For this implementation, we sampled a 

random value from a uniform distribution between 1/18.07 and 18.07 which is the lower and 

upper bound of the odds of pathogenicity for VUS. 

Paradigms for sharing 

There are 3 sharing paradigms which we use in our model: sharing nothing, sharing 

classifications, and sharing evidence.  Of the three, we anticipate that sharing nothing will make 

variant classification most protracted and least probable.  The paradigm of sharing classifications 

is what ClinVar currently enables, and we anticipate that sharing classifications will lead to shorter 

timelines with higher probabilities of variant classification than sharing nothing.  Last, the essence 

of this research is to model the impact of sharing clinical evidence on the timeline of variant 
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interpretation.  We anticipate that sharing clinical data will lead to the shortest timelines with the 

highest probabilities of classification. 

Implementing the simulation 
Our statistical model contains one variable: the allele frequency of the VUS of interest. 

Parameters of the simulation software include the number and types of each of the participating 

sequencing centers and the number of years for which to run the simulation. Because the variant 

is of uncertain significance, we gather evidence for both benign and pathogenic classifications 

simultaneously. 

For the first year of our simulation, all the evidence that is assumed to be currently present at 

each of the individual testing centers is initialized and aggregated. We use the Poisson 

distribution sampling method when determining how many times the variant is observed, given 

the VUS frequency. For each year in the simulation, we generate new observations for variants 

assumed to be benign and assumed to be pathogenic at each sequencing center. We aggregate 

those observations across participating centers into a single collection to simulate the sharing of 

data. 

We ran simulations as described above 1,000 times to simultaneously generate data points for 

VUS which occur at the rate of one in every 100,000 people (1e-05), combining data from 10 

small centers, 7 medium centers, and 3 large centers generated over 5 years. We then ran 

simulations for a VUS of frequency 1e-06 (one in every 1,000,000 people) in the same grouping 

of centers.   

We created histograms and scatter plots that show the distribution and progression of the 

evidence over time. For each year, we plot the probability that each center classifies the variants 

individually using siloed data or if they collectively pool their data. We calculated the probability of 

a variant being classified at any sequencing center using the inclusion-exclusion principle in 

probability 56 assuming all centers would share all variant interpretations. This is a conservative 
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estimate: not all sequencing centers share all their variant interpretations. We performed a 

sensitivity analysis to show the impact that each of the evidence types has on the probability of 

being either benign or pathogenic.  

RESULTS 
In this section, we discuss the results of our simulation with variants over the course of 5 years at 

20 participating sequencing centers.  We first examine the histograms of the evidence for 

pathogenic and benign variants after 5 years of observations.  Second, we examine the trajectory 

of evidence over the course of 5 years in scatter plots. Third, we examine the probability scatter 

plots over the course of 5 years.  Fourth, we analyze the sensitivity of our results with respect to 

each type of evidence.  These four sets of results were generated using a variant of 1e-05 

frequency. Last, we examine the probability scatter plots over the course of 5 years for a 1e-06 

(one-in-a-million) variant. 

 

Histogram plots of variants occurring at 1e-05 frequency 
The distribution of evidence gathered individually and combined across all sequencing centers is 

plotted in Figure 2. As expected, increasing the number of classification data points for the many 

different variants results in wider Gaussian distributions that increasingly separate from the null 

assumption of no clinical evidence. More evidence provides more certainty in classifications as 

evidence exceeds the classification thresholds for an increasing number of variants. 
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Figure 2  Histograms of cumulative log odds for classifying each of 1,000 simulated variants 
present at a 1e-05 frequency in the population. Classification thresholds are demarcated as 
vertical hash lines.  Benign variants are shown in blue and pathogenic variants are shown in red. 

Trajectories of evidence for variants at 1e-05 frequency 
The classification trajectory for individual variants can vary depending on which observations are 

made and when those are made. Although data accumulation increases the likelihood of 

classification and the likelihood of correct classification for variants as a group, evidence for 

individual variants may rise and fall. Figure 2 plots a subset of 20 classification trajectories (10 

benign and 10 pathogenic) at a small, medium, and large sequencing center as compared to the 

combined data across all sequencing centers assumed to be sharing evidence. Trajectories in 

these scatter plots mimic real-world phenomena: variants may accumulate contradictory 

evidence; and long time periods may pass with insufficient evidence. 
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Figure 3  Classification trajectories for 20 randomly selected variants at 1e-05 frequency in the 
population. Classification thresholds are demarcated as horizontal hash lines in the timeline plots. 
Benign variants are shown in blue and pathogenic variants are shown in red. 

Probabilities of classifying variants at 1e-05 frequency  
Figure 3 shows the probability of classifying a variant which occurs at 1e-05 frequency in the 

population over the course of 5 years under different sharing paradigms. We show a small, 

medium, and large sequencing center not sharing anything as compared to two forms of sharing: 

centers sharing their all their variant interpretations but none of their clinical data (labeled 

"sharing classifications"); and centers sharing all their clinical data (labeled "sharing evidence"). 

From these graphs, we see that any data sharing increases the likelihood of variant classification.  

We also see that sharing evidence rather than sharing classifications makes variant interpretation 

more certain by moving “Likely Benign” variants into the “Benign” classification and similarly 

moving “Likely Pathogenic” variants into the “Pathogenic” classification. Moreover, sharing 
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evidence rather than sharing classifications reduces the amount of time required to classify 

variants.   

 

Figure 4 Classification probabilities over the course of 5 years. The y-axis of these plots is the 
probability of classifying the variant, converted from the aggregated likelihoods of pathogenicity 
generated in the simulations. Year 0 constitutes the time just before the sequencing centers 
share their data and all the variants are unclassified. Year 1 constitutes the moment just after the 
sequencing centers share their data. As time progresses and more evidence becomes available, 
some of the variants which were LB get “promoted” to B, and similarly some of the variants which 
were LP get “promoted” to P. 

In the supplement, we explore changing the distribution of sequencing centers and the number of 

years sharing data. In supplementary Figure S1, we see that after 20 years of data sharing, 

almost all benign and pathogenic variants are classified using clinical data alone. In 

supplementary Figure S7, we see that reducing the number of participating sequencing centers 
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from 10, 7, and 3 (small, medium, and large) to 5, 3, and 1 significantly reduces the probability of 

classifying variants using clinical data alone. 

 

Sensitivity analysis for variants at 1e-05 frequency 
We estimated conservative confidence intervals around the evidence observation frequencies 

defined in our model to determine how sensitive the probabilities of classification were to each 

type of ACMG/AMP evidence. We held all other parameters constant (equal to their expected 

values) while changing one frequency at a time to the low and high value in their respective 

interval to determine how sensitive the model is to changes in the frequencies observing different 

types of clinical data. Based on the assumptions of our experiments, classification of pathogenic 

variants is most sensitive to BS4 and PP1 evidence criteria (Figure 5a). Classification of benign 

variants is most sensitive to BS4 and BP5 evidence criteria (Figure 5b). Classifications were not 

affected by the change in BP2 evidence frequencies for either Benign or Pathogenic variants. 

Pathogenic variant classification was not affected by changes in BP5 evidence frequency and 

was therefore dropped from Figure 5a. 

 

Figure 5 Sensitivity of variant classification to the frequency of observing ACMG/AMP evidence 
criteria.  These “high” and “low” values are taken from the confidence intervals in Table 3.  a.) 
Tornado plot for the sensitivity of Pathogenic and Likely Pathogenic variants. b.) Tornado plot for 
the sensitivity of Benign and Likely Benign variants. 
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Probabilities of classifying variants at 1e-06 frequency 
For comparison, we evaluated the probability of gathering data for a one-in-a-million variant 

through data sharing. Figure 6 shows the probability of classifying a 1e-06 variant over the course 

of 5 years.   

 

Figure 6 Probabilities of classifying variants at 1e-06 frequency plotted over the course of 5 
years. The y-axis of these plots is the probability of classifying the variant, converted from the 
aggregated likelihoods of pathogenicity generated in the simulations. Year 0 constitutes the time 
just before the sequencing centers share their data and all the variants are unclassified. Year 1 
constitutes the moment just after the sequencing centers share their data.  

In addition to these probability plots, we also performed analysis of 1e-06 variants to generate 

cumulative odds histograms (supplemental Figure S2) and classification trajectories 

(supplemental Figure S3). These illustrate similar results. To further explore variant classification 

timelines for 1e-06 variants, we evaluated classification over 20 years of data sharing 

(supplemental Figures S4-S6). Sharing evidence is predicted to help classify a minority of 1e-06 

variants even after 20 years of data sharing.  
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DISCUSSION 
These simulations illustrate that clinical data sharing reduces the time and increases the certainty 

in classifying VUS. Sharing only variant interpretations rather than clinical data, however, results 

in longer timelines and lower certainty. For example, the same variant could be interpreted as 

Likely Pathogenic at one laboratory and as a VUS at a different laboratory based on evidence 

seen at the two respective laboratories. Similarly, the simulations show that evidence for a given 

variant can, at times, be contradictory. As defined in the ACMG/AMP classification standards, 

evidence of pathogenicity may be presented for benign variants (and vice versa), though less 

frequently than for pathogenic variants. Importantly, our simulations demonstrate that discordant 

evidence resolves more quickly and with higher certainty when centers share their clinical data 

rather than only sharing their variant interpretations. These are critical results:  mis-classified 

variants mis-inform healthcare providers and may lead to disastrous patient outcomes. 57 Variants 

originally classified as Likely Pathogenic or Likely Benign more readily become classified as 

Pathogenic and Benign, respectively, when data is shared.  

Our simulations show that, using clinical evidence alone, classifying pathogenic variants has a 

higher probability and quicker timeline than for classifying benign. Those ACMG/AMP evidence 

criteria and classification guidelines that rely on patient clinical data, which we have modeled, 

require more evidence for benign classification 45 which results in longer timelines. Models 

indicate that improved guidelines could balance pathogenic or benign evidence categories, or 

alternatively create a new “lack of pathogenic evidence despite sufficient observations” category 

of benign evidence.  

Additionally, our model can guide functional assay developers as to which variants they should 

include in their panels. Very rare variants for which we expect insufficient clinical data under any 

sharing model will need a functional assay to classify it. Functional assays are expensive and 

require expert interpretation, and this information can maximize the impact of those efforts by 
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identifying variant frequencies and sharing scenarios in which data sharing by itself is insufficient 

for classification.   

We see that highly rare variants (one-in-a-million or less) may be unlikely to be classified by 

aggregating clinical information alone. Because most variants are highly rare, 58 it's essential that 

we invest in strategies for the interpretation of highly rare VUS. One strategy is additional 

investment in cascade testing for highly-rare variants in high-penetrance genes. This is an 

effective strategy because the variant may be rare in the general population but can still be 

enriched in the family. 47 Moreover, cascade testing is part of the PP1 and BS4 classification 

categories, and Figure 5 indicates that both benign and variant classifications are quite sensitive 

to those categories. Another effective strategy is investment in large-scale functional assays, 

such as MAVEs (Multiplexed Assays of Variant Effect), which can assay thousands of variants at 

once. 59 

Most importantly, variant classification timelines will guide prevention, diagnosis, and treatment 

decisions for patients and their healthcare teams. For example, a patient with a known 

pathogenic variant in BRCA1 or BRCA2 may elect to have a prophylactic mastectomy which, 

according to the National Cancer Institute, reduces the risk of breast cancer in women who carry 

a pathogenic BRCA1 variant by 95%. [26]  A patient with a BRCA1 VUS, on the other hand, may 

choose to wait if their variant is likely to be classified in the near-term (e.g. within 2 years) but 

seek alternative options, such as family co-segregation analysis, if that variant will not likely get 

classified for another 10 years or more. More than half of the variants in the BRCA1 and BRCA2 

genes are VUS, even though these are two of the most widely studied genes in the human 

genome. Other Mendelian diseases with highly penetrant alleles have a significantly larger 

proportion of VUS, so understanding timelines and probabilities of variant classification will have 

an even higher impact for those genes. 
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With sufficient clinical data from cooperating sequencing laboratories, these estimates enumerate 

tangible outcomes that may result from data sharing. It is clear that more variants will be 

classified and patients will benefit with robust data sharing.  This is particularly important over 

longer time horizons (see supplementary data for 20-year modeling). There are several mature 

privacy mechanisms that may be leveraged to share data responsibly; differential privacy, secure 

multi-party computation, homomorphic encryption, blockchain, and federated computing are 

approaches that have matured and are available today to protect the privacy of those individuals 

who have shared their data as well as protect the business interests of the institutions which own 

the data. 60 61 62 63 

CONCLUSION 
It is assumed that sharing clinical patient data should improve variant interpretation using the 

ACMG/AMP variant classification guidelines. Our research provides a framework to explicitly 

quantify how much and under what circumstances it improves. We have built and made available 

a model that simulates the generation and sharing of clinical evidence over time. The software 

provides graphical results to compare sharing clinical data with sharing only interpretations and 

sharing nothing. Our experiments were based on data estimates from the literature and from our 

own experience, but readers can define their own values for the frequencies of observations of 

various ACMG/AMP evidence criteria and experiment with different combinations of centers, 

different sizes and testing rates, and with different allele frequencies. 
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Abstract 
Continued advances in precision medicine rely on the widespread sharing of data that relates 

human genetic variation to disease.  However, data sharing is severely limited by legal, 

regulatory, and ethical restrictions that safeguard patient privacy.  Federated analysis addresses 

this problem by transferring the code to the data: providing the technical and legal capability to 

analyze the data within its secure home environment rather than transferring the data to another 

institution for analysis. This allows researchers to gain new insights from data that cannot be 

moved, while respecting patient privacy and the data stewards’ legal obligations.  Because 

federated analysis is a technical solution to the legal challenges inherent in data sharing, the 

technology and policy implications must be evaluated together.  Here we summarize the technical 

approaches to federated analysis along with a legal analysis of their policy implications.   

 
Introduction 
Most diseases have a genetic component 64. While clinical genetic testing now offers individuals 

greater opportunities to understand and manage their heritable disease risk, 65 66 its impact is 

limited by the many gaps in our understanding of human genetic variation.  This is seen in the 
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significant missing heritability of most diseases, with family history predicting disease risk more 

accurately than genetics. 67 64 It is also seen in the high rates of  “Variant of Uncertain  

Significance” (VUS) in clinical testing, with recent studies reporting VUS results in roughly 20% of 

the patients tested with cancer susceptibility gene panel tests. 68 69 70 Patients of non-European 

ethnicities have a significantly higher rate of VUS test results than their European counterparts, 

resulting in greater mortality from heritable disorders. 71 72   These problems could be addressed 

by data sharing, particularly global data sharing.  However, sharing human genetic data is limited 

by a complex network of legal, ethical and regulatory restrictions that aim to protect patient 

privacy 73 or national 74,75 data sovereignty. 76,77  As a result, most human genetic data remains 

siloed, and is inaccessible to most researchers and those making clinical inferences.  

 

Yet often, these regulations permit the sharing of aggregated, non-identifiable data, which can 

advance research.  For example, ACMG/AMP variant interpretation guidelines 45 include 

summary statistics that describe the enrichment or lack of disease in patients with a given genetic 

variant, but do not directly require individual observations of those patients.  If one can share the 

capabilities to generate these summary statistics, one can share knowledge without transferring 

the sensitive patient data. 

 

Data federation achieves such sharing through a decentralized architecture, in which a network of 

data providers maintains full control over the data within a secure computing environment while 

enabling access to the data by external collaborators. 78 Federated analysis is a form of data 

federation in which collaborators “bring the code to the data” to analyze data in situ, within the 

data providers’ computing environment (see Figure 7).  
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Figure 7. Illustrating the logic of “bringing the code to the data”, either because the data is much 
larger relative to the analytical code f(D) or due to restrictions of exporting the data across 
organizational boundaries. 
 

When federated analysis generates non-identifiable results from patient-level data, those results 

can be shared externally, where the original patient-level data cannot.  Federated analysis 

balances the needs of data stewards to restrict access to regulated data with the needs of the 

scientific and clinical community to gain new insights from data that cannot be transferred for 

legal, ethical, or technical reasons.  Achieving this vision requires technologies that allow 

researchers to reliably analyze data that they cannot directly access, coupled with privacy 

safeguards that allow data stewards to assess the risks inherent in such analyses.  In short, 

federated analysis offers technical solutions to legal restrictions on data use and data sharing. As 

such, to understand its potential and limitations, one must consider the technical and legal 

aspects of the situation together. 

 

This article begins with a discussion of privacy in genomics, and how that privacy can be 

compromised. Next, we discuss the central concepts underpinning the General Data Protection 

Regulation (GDPR), the principal legal framework that regulates the use of personal data in the 

European Union (EU) and European Economic Area (EEA). The GDPR has been selected 
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instead of other national and international data protection and privacy norms because it is 

amongst the strictest and most influential data protection laws in the world. The conclusions of 

the manuscript are nonetheless generalizable to ensure compliance with most other national data 

protection norms, such as the Health Insurance Portability and Accountability Act (HIPAA) of the 

United States. We next summarize approaches to federated analysis, presenting examples of 

successful applications and evaluating both the technical approaches and legal implications.  

Finally, we review areas for further progress on both the technical and legal fronts, presenting 

overall recommendations for the technical and organizational implementation of federated data 

analysis. 

Privacy and Privacy Attacks 
 
The sequencing of the human genome enabled unprecedented opportunities for the biomedical 

research community to make discoveries that are actionable in human health and precision 

medicine. It used to be that preserving the privacy of participants in biomedical research equated 

to maintaining the confidentiality of personally identifiable information (PII)  and protected health 

information (PHI) by either publishing aggregated data or by removing PII and PHI. However, 

over the years, researchers have found ways to uncover protected information from such 

datasets.  In 2008, the Wellcome Trust and the NIH removed access to genomic datasets after it 

was shown that people could be re-identified from data aggregated from GWAS experiments.  

For some organizations, removing PII and PHI, or only publishing aggregate data, were not 

sufficient to protect the privacy of research participants. 79 

 

Privacy threat model. A privacy threat model defines the most probable attacks on private data, 

the actors perpetrating the attack, and how the actors would carry out the attack.  The actors in a 

privacy threat model are those entities (people, groups, or organizations) that have some form of 

access to the data. It’s impossible to protect against every attack, so it is necessary to focus on 

either the most likely or the most detrimental attacks.  



 55 

 

In a federated environment where the upstream data contributors, the data custodians, and the 

downstream data users belong to different organizations, the threat model becomes more 

complex because the system could be threatened by participants in any of these organizations.  

One cannot assume that all participants are 100% reliable. Yet one might assume that some of 

the participants are reliable, as otherwise there would be no incentive to participate in the system. 

In short, the safest assumption is that some entity within the system is a potential threat.   

 

A few privacy threat models have been developed and proposed, including the Cloud Security 

Alliance (CSA), European Network Information and Security Agency (ENISA), and Linkability, 

Identifiability, Non-repudiation, Detectability, information Disclosure, content Unawareness, and 

Non-compliance (LINDDUN). 80 Where the CSA does not have specific details for how to 

preserve privacy, ENISA and LINDDUN, while comprehensive, require a significant investment in 

time and training to understand and incorporate into a secure, privacy-preserving framework.  

More purpose-designed approaches such as Cloud Privacy Threat Modeling (CPTM) may be 

better-suited for designing, implementing, and deploying federated solutions where time and 

resources are not abundant. 81 

 

Cyber attacks. Cyber attacks are attempts to read, modify, or delete information through 

unauthorized access to computer systems. They put the integrity or availability of an otherwise 

trusted system at risk.  For example, a denial-of-service attack is one in which the attacker runs a 

workload against a service which renders some or all the service either compromised or 

unavailable.  Man-in-the-middle (MITM) attacks involve an unknown third party which can 

intercept network communications between two otherwise honest entities and impersonate one or 

both of them. One of the most common and severe cyber attacks is called SQL injection, in which 

malicious or malformed SQL code is inserted in a Web form that is subsequently unwittingly 

processed by a SQL service on the backend of the Web form. Such attacks can obtain 
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unrestricted access to databases with sensitive information, resulting in identity theft, loss of 

information, and fraud. 82 

 

In the context of federated computing, cyber attacks can be largely mitigated by following 

common-sense IT security protocols.  Federations should require all members to belong to the 

same virtual private network to block outside traffic. They should use public key cryptography and 

sufficient authorization requirements within the federation to prevent any leakage of PII and PHI 

data between federation members.  And they should leverage other security measures such as 

firewalls and multi-factor user authentication across the federation and on a per-host basis.   

 

There are more subtle forms of attack, however, that can be levied within federated environments 

or in the models that are built and published from federated environments, as described in the 

following sections.  

 

Re-identification attack. Some privacy attacks require some external data source which 

contains overlapping data or metadata such that the datasets may be joined to provide a more 

comprehensive description of an entity such as a person.  The ability to join data from multiple 

sets on some common identifier is called linkability, and the attacks that exploit it are called 

linkage attacks. Such an external data source might not be available today yet might become 

available in the future.  A re-identification attack occurs when data that have been anonymized or 

pseudonymized become personally identifiable, an example of which is the re-identification of 

Massachusetts Governor William Weld in 1997. 83  This re-identification attack required having full 

ZIP codes, complete birth dates, and gender specified in both health plan data and voter 

registration data; this linkage enabled the connection between Governor Weld’s identity in the 

voter registration data and his medical records in the health plan data.  This attack could be 

prevented by masking ZIP codes to 2 digits and using only birth year, for example.  If those 

covariate data do not contribute to the utility of the shared dataset, then they should be omitted 
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entirely.  This illustrates the principle of data minimization, a fundamental principle of 

computational data privacy 84. 

 

Reconstruction attack. A reconstruction attack is the ability to partially or entirely reconstruct 

private data from published aggregate data. In this scenario, a trained model or aggregated 

dataset was produced from data which contain potentially sensitive information and shared; 

subsequently, attackers attempt to infer or reconstruct the sensitive information.  This broad form 

of attack includes membership inference and property inference. 

 

A membership inference attack exploits the ability to determine whether a person comes from a 

source dataset.  Methods by which membership attacks may be leveraged are well documented 

by Shokri and colleagues 85.  One example of membership inference is the attack proposed by 

Homer et al., in which they demonstrate that it is possible to determine if a person’s genomic data 

were used in the creation of published statistics in a GWAS 86.  Given knowledge of the allele 

frequencies in the population, the allele frequencies in the GWAS mixture and the genotype 

information of the person of interest, the attacker calculates how “far” the person of interest is 

from the reference population and the GWAS mixture using the allele frequencies.  The further 

the person is, the higher the confidence in the membership inference becomes. In another 

example 87, researchers demonstrated that an attacker who possesses a person’s genomic 

sequence can determine that person’s membership in a Beacon, including Beacons that relate to 

disease, and in this way the Beacon network could leak some of that person’s PHI.  

 

A property inference attack attempts to infer some aggregate information about the training set as 

a whole, such as the environment where the data were produced or the percentage of the data 

that comes from a particular class (i.e. exploiting skewness). 88 89  It requires that the attacker 

have auxiliary datasets that contain some property of interest.  With these auxiliary datasets, the 

attacker can build “shadow models” for each property of interest, and then create a classifier 



 58 

which compares results from the target model against these shadow models to distinguish 

whether the property in question belongs to the target model.  For example, Humbert, et al., 

demonstrated that certain single nucleotide polymorphisms (SNPs) of family members related to 

Henrietta Lacks could be inferred using (i) available genomic data, (ii) family relationship 

structure, (iii) rules of Mendelian inheritance, (iv) minor allele frequencies of the SNPs, and (v) 

linkage disequilibrium among the SNPs. 90 

 

Model-poisoning attack. In contrast to the types of attacks discussed previously, model-

poisoning attacks may occur within a federation while a model is being built or analysis is being 

performed on private data.  Possible objectives include a denial-of-service attack which simply 

renders the model ineffective for predictions using out-of-distribution data; or “label flipping”, 

which targets a subpopulation of the training data such that model predictions involving that 

subpopulation are erroneous. Yet another, more sophisticated objective of model-poisoning is 

using that information after the model is built to make inferences about the dataset (e.g. property 

or membership inference attacks). 91  

 

The two types of model-poisoning attacks involve either data misconduct or model misconduct. 92 

Model misconduct involves changing how the analysis is performed to alter the outcome, while 

data misconduct requires that the adversary inserts data sufficient to alter the model predictions.  

For example, if a model that classifies images is trained using images available on the Internet, 

then an attacker can poison that model by uploading poisoned images to the Internet.  The ways 

to mitigate this risk include limiting the contribution of any single entity, analyzing the nature of the 

updates to the global model on a per-contributor basis, and performing outlier detection after the 

model is built.  However, models can be poisoned unintentionally as well.  For example, the 

unintentional under-representation of non-European populations in GWAS studies arguably 

poisons GWAS models against these under-represented populations. 93  
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Introducing the General Data Protection Regulation (GDPR) 
 
The GDPR regulates the use of identifiable personal data: data relating to a person which is 

identified or identifiable. For data to be considered identifiable, there must be a “means likely 

reasonably to be used either by the controller or by any other person to identify the [concerned 

individual]”.  This is not the case if re-identification is “practically impossible on account of the fact 

that it requires a disproportionate effort in terms of time, cost and man-power, so that the risk of 

identification appears in reality to be insignificant”. 6  If the data controller and proximate third 

parties do not have a mechanism enabling the re-identification of the concerned individual that is 

“likely reasonably to be used” 7, then the  data are considered to be anonymized and therefore 

not regulated by the GDPR.  

There is an apparent tension between the manner in which the Court of Justice of the European 

Union (CJEU) characterizes this legal test and the manner in which it is articulated in the text of 

the GDPR. 94 The GDPR calls for a contextual assessment of the reasonable likelihood of re-

identification. This suggests that in circumstances in which re-identification is possible, but is 

improbable or impracticable, the data should be considered non-identifiable and therefore not 

regulated. 94 The CJEU, on the other hand, appears to characterize data as identifiable unless re-

identification is nearly impossible. 6 Nonetheless, both appear to confirm a contextual, risk-based 

approach to the evaluation of data identifiability. 95  

The more restrained reading of the GDPR identifiability criteria should be preferred, as this 

interpretation limits the application of the GDPR’s onerous procedural requirements on 

information that poses a material risk of causing individual re-identification, assessed from the 

perspective of the data controller. If too many data are considered regulated personal data 

despite posing a limited risk of re-identification, this could frustrate the functioning of data 

protection legislation. Furthermore, if identifiability is not assessed from the perspective of the 

data controller and data processor, but from the perspective of all third parties, it becomes difficult 

or impossible for regulated parties to determine the boundaries of their legal responsibilities. 6,94,96  
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The broad framing of identifiable personal data is a potentially unfortunate public policy choice. 

GDPR-regulated entities have limited financial, human, and technical resources for ensuring their 

compliance with the data protection regulation. If data identifiability standards are framed to 

capture a broad range of data that has a limited risk of re-identification, this framing could prompt 

regulated actors to scale down their data sharing activities due to the high burden of regulation. It 

also encourages regulated actors to direct their limited compliance resources to the majority of 

the data that these actors process rather than structuring their compliance activities in a risk-

adjusted manner (i.e., directing their legal compliance resources at the data that has the highest 

chance of being re-identified). This could lead to actors performing subpar data protection 

compliance because they lack sufficient resources to ensure appropriate compliance. It could 

also lead to actors reducing their data sharing due to the potential for GDPR non-compliance, 

even in circumstances where the data sharing offers large benefits to society or the individual and 

poses privacy risks that are limited or nonexistent. 97 

If data are identifiable, one must consider the role and the associated legal responsibilities that 

the GDPR ascribes to the actors that use data, or that determine how data are used. The GDPR 

uses the concepts of joint controller, controller, and processor to determine the legal obligations 

of an actor who uses identifiable personal data. Each of these roles bears distinct legal 

responsibilities. The determination of whether an actor is a joint controller, a controller, or a 

processor is left to the supervisory authorities (i.e. national regulators) and courts. This means 

that these roles and responsibilities are not determined by the actor’s choice, but rather the 

manner in which the actor uses data. This determination is left to the national data protection 

regulators, referred to as ‘supervisory authorities,’ and is further adjudicated by national courts 

and the CJEU. 94 

The GDPR defines data processing as “any operation or set of operations which is performed on 

personal data or on sets of personal data, whether or not by automated means''. 94 It goes on to 
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enumerate a non-exhaustive list of examples. In essence, all actions that entail the use or storage 

of identifiable personal data fall within the definition of data processing. 

Controllers determine the purposes and means of personal data processing. Processors perform 

personal data processing activities at the instruction of controllers. In short, data controllers 

decide what will be done with personal data while processors implement these decisions.  

Accordingly, the data controller bears greater legal responsibilities than the data processor. 

In some instances, multiple actors will collaborate in determining the purposes and means of 

personal data processing.  This could be the case, for example, if a central organization 

coordinates and determines the conditions according to which third parties will collect and use 

personal data for their own purposes. 7,94,94   In such instances, the law would categorize these 

multiple actors as joint controllers. The GDPR requires joint controllers to develop contracts to 

establish their respective and overall responsibilities. If the collective joint controllers are held 

liable for some data breach, then each joint controller can be held fully responsible for harms that 

arise from the action of other controllers in the network. The sole ground that enables any single 

controller to not be held liable for the actions of the others is for this controller to “[prove] that it is 

not in any way responsible for the event giving rise to the damage”. 94  

 

Data Protection Implications of Federated Computing 
 
Providing guidance on compliance with the substance of the GDPR lies outside the ambit of this 

article. Rather, we aim to aid health sector data stewards in determining how the structure of their 

federated data analysis networks, from both a technical and an organizational standpoint, 

determine the characterization of their activities according to the GDPR—i.e. whether the GDPR 

would understand them to be controllers, processors, or neither. The characterization first 

considers whether or not the concerned actor is engaged in the processing of identifiable 
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personal data, and then considers whether this actor could be characterized as a controller 

(bearing more responsibilities) or a processor (bearing fewer responsibilities). 

A broader public policy context animates this analysis. The GDPR has been strongly criticized as 

an impediment to the research use of data, to the advancement of precision medicine, and to 

healthcare system functioning in general. 98 Several arguments support this position. Inherent 

ambiguities in the language of the GDPR create difficulties in determining how to ensure 

compliance, even when actors behave in good faith. 99 Determinations regarding the appropriate 

use of data, which are traditionally left to health sector data stewards and research ethics 

committees, are shifted to generalist data protection regulators, who do not necessarily possess 

the specialized, domain-specific knowledge required to apply the standards of the GDPR to the 

health sector. 10 Procedural requirements, such as maintaining data processing reports and 

documenting self-assessments, can overwhelm the limited resources available to many 

institutions. 101 Finally, the consequences of non-compliance, which can include poor public 

perception, administrative fines, and civil liability, can deter health sector institutions from 

exploring data sharing activities. 74 This perverse incentive is especially strong when one 

institution’s participation would greatly benefit the larger network but participating in the network 

would not benefit that institution as greatly.  

Bearing in mind the foregoing critiques of the GDPR, the critical roles in a federated data analysis 

network include the following: 78 

First, there are nodes that are responsible for collecting data from individuals and for contributing 

such data to the network. Second, there are nodes that act as technical data stewards by 

providing the infrastructure that supports the data storage and processing. Third, there are nodes 

that act as institutional data stewards, determining which actors can participate in the network as 

upstream contributors or as downstream recipients of analysis results (and the conditions of such 

participation). Fourth, there are nodes that act as downstream recipients of analysis results, and 

that can submit analysis queries to the network and receive responses.  Since each node that 
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must perform GDPR compliance activities bears compliance costs in entering the network, the 

burden of compliance activities scales in proportion to the number of nodes in the network. 

One principal advantage of federated data analysis is to enable scalable access to larger 

quantities of data. There is a tension between the scalable nature of the federated analysis 

network from a technical perspective, and the inexorable growth of activities required to ensure 

the network’s compliance.   That is, certain legal compliance activities, such as performing Data 

Protection Impact Assessments (DPIAs), retaining records of data processing activities, or 

ensuring the alignment of data processing activities with the principles of the GDPR can require 

intensive and repetitious human effort. This can lead to circumstances in which data processing is 

cost-effective and scalable, but establishing records of their compliance with select formalistic, 

procedural elements of the GDPR is prohibitively cost-intensive. It is advantageous to structure 

networks to reduce the number of regulated data controllers and data processors, to enable more 

streamlined compliance and ensure that the network remains open to a broad range of 

prospective nodes, including those that lack the significant resources required to perform 

burdensome regulatory compliance activities. 

In short, nodes in a federated data analysis network should use technical and organizational 

measures to ensure that the benefits of data analysis are maximized without most network nodes 

engaging in personal data processing, whether as controllers or processors. 102 If the data 

analysis is structured such that most participating nodes do not process potentially-identifiable 

data, using both organizational and technical safeguards, then these nodes will not be required to 

engage in GDPR compliance activities, and the other nodes are not required to consider these 

nodes as part of their own GDPR compliance efforts. This ensures that the compliance of the 

network is cost-effective and simple.   

Data Federation and Privacy mechanisms 
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Most applications run on a single system. A distributed application is written to run across more 

than one system to leverage the compute, memory, and/or storage resources of multiple 

systems. For such applications, the programmer must be provided an abstraction that ignores the 

physical location of the data. 103  Federated computing is a form of distributed computing wherein 

some or all these data are subject to the stewardship of an entity other than that which provides 

and/or runs the application.  That is, the analytical software is transferred to the location where 

the data resides rather than the data being exported for analysis.  It is particularly well-suited for 

those datasets which are either too large or too sensitive to move between organizations. 78,104 

 

There are many forms of federated computing.  In federated learning, for example, models are 

trained over remote datasets in siloed data centers, personal computers, cell phones, and other 

edge devices while keeping data localized. 104 A federated database, by contrast, is a collection 

of databases that operate as if they were a single database from a unified portal. 105  The Gene 

Expression Omnibus (GEO) is a federated database of microarray, next-generation sequencing, 

and other high throughput functional genomics data. 106 Federated analytics, yet another form of 

federated computing, distributes predictive or descriptive analytic tasks over one or more 

systems. 107  In this paper, we will focus on descriptive analytics using genomics data. 

 

Figure 8. Legal entities and their roles in a GDPR data sharing agreement. 
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All federated methods involve cooperation between people and organizations and sharing some 

form of potentially sensitive information. In this section, we discuss different privacy mechanisms 

that may be used within a federation to eliminate any privacy leakage between federation 

members. 

Secure Multiparty Computation (SMC) 
 
Secure multiparty computation (SMC) or multiparty computation (MPC) was originally formulated 

as a research question called the "millionaire's problem" in which there are two or more people 

who are interested in knowing which of them is richer without revealing their actual wealth and 

without the help of a trusted third party. 108,109  The foundation of SMC entails secret sharing 

which leverages zero-knowledge proofs, techniques that enable a “prover” to prove a claim to one 

or more “verifiers” in such a way that they are convinced of its truth without the prover revealing 

the assertion or any party witnessing the interaction. 110  SMC protocols have a correctness 

requirement that guarantees that either the output is correct or the protocol terminates early. The 

number of adversaries (t) that the protocol can tolerate and still be correct (i.e. either terminate 

the protocol or produce correct output) depends on the type of secret sharing.  Using additive 

secret sharing, the protocol can tolerate all but one honest participant (t < n).  Using Shamir 

secret sharing, the protocol can tolerate up to t < n/2 passive adversaries and up to t < n/3 active 

adversaries. Examples of SMC in GWAS analyses include Constable, et al., 111 in iDASH 2015, 

and Cho, et al., 112 on data from the Database of Genotypes and Phenotypes (dbGaP).  

 

SMC is an ideal protocol to leverage in a genomics federation.  It is purpose-built for minimizing 

privacy leakage while maximizing utility among multiple participants operating on local data to 

construct global results. 

Homomorphic encryption (HE) 
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Encryption is the process of encoding data in such a way that it cannot be interpreted without 

decoding.  The stronger the encryption, the less likely the data can be decoded by brute force.  In 

homomorphic encryption, 113 data are encrypted with a public key and sent to an outside 

potentially untrusted source to perform computations.  That party never decrypts the data, but 

instead operates on the data in its encrypted format.  The party sends the encrypted results back 

to the originator who, with a private key, can decrypt the results.   

 

Encryption and decryption are notoriously slow, so performing these large-scale genomic 

analyses on encrypted data has been prohibitive. However, recent work has improved those 

algorithms through parallelization—a programming technique which divides an application 

workload into multiple parts, each of which can be run simultaneously on different systems, 

processors, or cores.  In 2018, the winning team of the iDASH Genomic Privacy Challenge 

implemented a logistic regression approximation for GWAS which was 30x faster than the 

competing SMC solution. 114  They did so by parallelizing the execution of matrix operations, 

efficiently encoding the encrypted data, leveraging approximate arithmetic, and optimizing several 

cryptographic subroutines. These improvements generalize beyond GWAS computation, enabling 

homomorphic encryption solutions in other domains requiring large-scale statistical analyses on 

encrypted data. The following year, the winning team of iDash reduced the time necessary to 

perform imputation on 80,000 SNPs to less than 25 seconds.   

Differential privacy (diffP) 
 
Differential privacy is a privacy mechanism which adds noise to a database query result such that 

the entity submitting the query cannot determine whether any particular individual is a member of 

that database or not.  This addresses membership inference and reidentification attacks.  The 

more noise the mechanism adds, the less likely it is to infer membership, and therefore provides 

stronger privacy guarantees, but stronger privacy guarantees may render the data less useful.  
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The concept of epsilon-differential privacy mathematically formulates the privacy guarantee 

through a parameterized epsilon value which defines an inverse privacy budget—the higher the 

value, the lower the privacy. 115  A study using differential privacy in a GWAS was published by 

Uhlerop, et al.. 116  Their solution advocates for the reasonable release of minor allele frequencies 

for both cases and controls in a way that doesn’t compromise privacy and permits sharing of chi-

squared statistics and p-values for relevant SNPs.  

Controlled access 
 
One form of privacy-preserving technology is a suite of services that permit an end-user to sign in 

at a portal (authentication) and access different federated resources depending on the privileges 

assigned to that user (authorization).  Users who apply for access to controlled data resources 

generally must demonstrate a legitimate research purpose and appropriate qualifications.   The 

controlled access mechanism is how most institutions protect their privacy-sensitive genetics and 

genomics data.  The NIH, for example, mandates that all the data from the research it funds be 

made publicly accessible via controlled access. The Database of Genotypes and Phenotypes  

(dbGaP) is one such collection of NIH data under controlled access. 117  One way to implement 

the controlled access approach is to channel data requests through a Data Access Committee 

(DAC) –  a group of individuals who serve as key institutional data stewards to evaluate access 

requests on a case-by-case basis. It is common for a Data Access Compliance Office (DACO) to 

coordinate the review of data access requests to enable the streamlined and cost-effective 

administration thereof. 118  Cheah et al suggest that a DAC should not only protect privacy but 

should also promote data sharing, motivate data producers, and encourage data re-use with 

transparent, simple, and clear application procedures119. Rahimzadeh et al contend that 

automated decision support (ADS) for data access requests improves the auditability, 

consistency, and efficiency of the data access process and ultimately yields fairer outcomes for 

the research community. 120  The Global Alliance for Genomics and Health Data Use Ontology 
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(DUO) is their implementation of an ADS system for automating the genomics data access 

process. 121 

Computational abstractions 
 
Hardware-assisted secure computation: In most operating systems, there exists a user identity 

called a privileged user which has access to all the data on the system, including data on disk, in 

main memory, and in the processor caches.  If this identity is compromised, then any privacy-

sensitive data on that system is at risk of being compromised too. This is referred to as a back-

door threat. Intel’s Software Guard Extensions (SGX) was first introduced in 2015 with the aim of 

providing a Trusted Execution Environment (TEE) in which applications can protect critical code 

and data against malicious privileged system code. In SGX, the code is divided into a trusted part 

(which processes protected data) and an untrusted part (which does not process protected data).  

Privileged users do not have access to the trusted part of the application when it is running on the 

SGX processor, thereby eliminating this back-door threat. 122   The SGX chip has been leveraged 

to securely run genomics analyses on systems to prevent other applications running on the same 

system from having access to private data.  Two examples include leveraging SGX to protect 

privacy and simultaneously accelerate computational performance in a GWAS study. 123,124 

 

Physical machines, virtual machines, and containers: A physical machine, also known as a 

bare-metal machine, is the collection of hardware components (e.g. disk, CPU, memory) and 

software components (e.g. kernel, applications) dedicated to and managed by a single operating 

system.  By contrast, a virtual machine is an application which runs on a physical machine’s 

operating system, abstracting the physical components to allow multiple operating systems to run 

concurrently on a single physical machine. Containers are “light-weight” virtual machines that only 

abstract those elements of an operating system and application stack that must be provided for a 

given purpose, excluding components of the operating system that are not needed for that 

purpose. For federation, both virtual machines and container architectures allow for software to 
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be distributed readily and portably among federation members. 32  While there are known security 

risks running certain types of container software that expose privileged user access, these risks 

are being reduced via newer container architectures. 125 

 

Local versus cloud computing: On-premise (local) computing is a collection of servers, storage 

devices, networking equipment, power supplies, etc., that operate within the boundaries of an 

organization.  Having dedicated infrastructure in-house entails both the capital expense of 

purchasing the equipment and the operating expense of managing and running it.  Cloud 

computing is infrastructure that organizations can rent.  Cloud consumers still incur the expense 

of renting time, but they do not incur any expense to purchase or manage the equipment.  Cloud 

computing is especially beneficial for small organizations that do not have resources to own and 

run their own computing infrastructure, or for any organization which wants to focus its human 

resources on tasks other than the management of computing infrastructure. Moreover, secure 

cloud platforms are gaining traction in genomics as a mechanism to share controlled access to 

data that cannot move for privacy and technical reasons. 126–128 

 
Federated computing trust architectures 
 
In this review, we consider a federation to be a group of one or more organizations, each with its 

own privacy-sensitive data sets, forming a single network in which those datasets may be shared 

in a legally compliant, privacy-preserving manner.  Apart from the many technical details that are 

required to deploy such a solution, at the core of the federation is the trust that participants will 

comply with the policies set forth to protect the privacy of the individuals who have provided their 

data and the protocols which enforce the integrity of the federation results.  We define three trust 

architectures of federated computing for genomics data: clustered with centralized trust, clustered 

with distributed trust, and non-clustered autonomous trust (see Figure 9). 
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Figure 9. Trust architectures. Figure 9a depicts a centralized trust running external to the 
federation.  Figure 9b depicts a decentralized trust in which any central coordination is distributed 
across the cluster.  Figure 9c depicts a non-clustered environment in which trust is established 
pairwise between the data consumer and each data owner. 
 
Centralized trust 
 
The trusted organization in a centralized trust architecture is an authority that each member of the 

federation relies upon to establish and maintain overall protocol integrity.  In federated learning, 

for example, updates to the global model are periodically aggregated by the central broker and 

distributed to each of the federation members.  In a controlled access environment, the central 

authority issues certificates, stores public keys, and provides identity services to authenticate and 

authorize user access to systems and files. 129  One solution leveraging a centralized trust 

architecture is the Genomics Research and Innovation Network, which consists of a database of 

phenotypes and genotypes federated over three participating hospitals, harmonizing the IRB 

protocols of each participating hospital. 130 This solution requires obtaining the original research 

participants’ consent to use their data in this broader context and to recontact them for further 
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data collection, enrollment in additional studies, and to inform them of potentially medically 

actionable results. 

 

For GDPR compliance, the creation of a centralized trust raises questions regarding the GDPR 

role of each organization. It is imperative to categorize each of the organizations acting as 

network nodes as data controllers, joint data controllers, data processors or non-regulated actors 

not engaged in the processing of identifiable personal data.  For federated analysis, it is optimal 

to structure a centralized trust as follows. Each node (i.e. organization) that contributes personal 

data to the federation should be considered a controller of the personal data that it processes. If 

the identifiable data are processed using third-party hardware or virtual computing resources, the 

third parties should be considered the data processors. 102 The results that each node contributes 

to the central analysis node should not contain personal data. Consequently, once the overall 

federated analysis is synthesized from the organizations acting as network nodes the final output 

should not contain personal data.  

 

The result of this structure is that each node is engaged in the processing of the personal data at 

its disposal and must ensure legal compliance for its own personal data processing activities 

alone. No nodes act as joint controllers. The potential liability of each node is therefore limited to 

that which results from the analysis of personal data that it processes. Neither the central node 

nor the recipients of downstream analysis outputs act as data controllers or data processors. 131–

133  To achieve this result, each participating node should create a list of the data elements which 

it processes and determine whether these constitute personal data. Each participating node 

should also create a list of the data elements that it shares with the central analysis node and 

confirm that none of these data elements constitute personal data. The central node should 

confirm that the data elements that it receives do not constitute personal data, alone or in 

combination with one another. The organizations engaged in the federation should ensure that 

the final outputs of the analysis are not identifiable. Each node should separately ensure that it 
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does not have at its disposal a “means likely reasonably to be used” of performing the re-

identification of the concerned individuals, using the available information.  6,7,96 

 

Additional measures that can be implemented to further ensure that the information that a node 

shares with, and receives from, other nodes in the network does not create a risk of re-

identification include the following.  

 

Pre-onboarding trust verification mechanisms can be adopted to ensure that nodes participating 

in a federation can be presumed trustworthy and will not engage in conduct that could create a 

risk of individual re-identification, for example by ensuring that each node has a bona fide 

scientific or clinical purpose for engaging in the federation and engages personnel with the 

necessary technical and scientific training to implement the intended analysis in a manner that 

reduces the risk of individual re-identification. Second, the use of contracts that bind the 

institutions participating in the centralized trust to perform their role in compliance with its policies, 

and to avoid conduct that could lead to individual re-identification. 102  The third critical 

consideration is ensuring that the final federation outputs do not enable the re-identification of the 

research participants that contributed data to the analysis.  One approach is to release the 

outputs in a registered access or controlled access database. Another is to add noise or perform 

other modifications to the data to reduce the risk of individual re-identification. 

 

Decentralized trust 
 
One criticism of the centralized model is that it concentrates power to one single organization.  In 

an inherently distrustful environment (e.g., a federation among industry competitors), this may 

preclude an organization from joining the federation.  Conversely, in an inherently trustful 

environment, there is no need to select a central authority. In a decentralized trust architecture, 

there is no central authority.  Trust and agreement between members of the federation are 
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arrived at variously by peer-to-peer majority voting, zero knowledge proofs, or some other 

distributed consensus protocol.  

 

Swarm learning. Warnat-Herresthal et al introduced swarm learning which achieves 

decentralized trust by exchanging the role of the central federation authority among the federation 

members. 134   Swarm learning still uses a central server, but that server is elected among the 

federation members and changes over the lifecycle of model training.  It is expected that each of 

the federation members shall be an aggregation server at some point over the lifecycle of the 

federation. They leverage blockchain to manage a distributed ledger and smart contract for on-

boarding new federation members, electing the federation authority, and for merging model 

parameters.  Warnat-Herresthal et al use their swarm learning approach to train a classifier on 

transcriptomic data for predicting disease states in COVID-19, tuberculosis, and leukemia. By 

decentralizing the federation, swarm learning keeps large sensitive data in place, requires no 

exchange of raw data (encrypted or plaintext), guarantees secure, transparent, and fair 

onboarding of federation members without a central custodian, allows parameter merging with 

equal rights for all members, and protects machine learning models from man-in-the-middle 

attacks. 

 

Incremental learning. Another variation of federated learning that uses decentralized trust is 

incremental learning. 63 This solution entails a classifier of datasets distributed across multiple 

organizations.  Models are trained at one organization using its local data, after which the model 

parameters are sent to the next organization which updates the model parameters using its local 

data.  The model is passed through all the organizations participating in the federation and is 

updated according to their local data.  The model may cycle through the organizations for multiple 

rounds of training until the model converges or a specified number of rounds is reached. 
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From the perspective of data protection law, similar methods of achieving compliance can be 

recommended for the decentralized trust as for the centralized trust. The centralized trust is 

preferred when one of the participating organizations is a logical candidate to securely aggregate 

local analysis results. In instances in which there is no evident custodial node, a decentralized 

trust might be beneficial. In a decentralized trust, the following distinctions can be relevant in 

assessing and mitigating the risk of individual re-identification, and in assigning respective 

responsibilities among network participants.  

 

The federation members should establish a contractual agreement that defines the commitments, 

organizational measures, and technological precautions that each node must adopt. This can be 

challenging to achieve if there is no central node that bears formal organizational responsibilities 

for data custodianship. That is, often there is no central custodial node that is suitable to bear 

responsibility for ensuring that each other node respects the contractual commitments applicable 

to the nodes in the network.  

 

To resolve this challenge, each federation member can bind itself to a multilateral contract 

between that node and all other participating nodes, establishing the responsibilities of each 

node. This contract can elaborate the categories of organizations and actors that are authorized 

to act as network nodes, and the technical and organizational measures that such nodes must 

implement to ensure that the information shared between nodes remains non-identifiable. 102,132 

The measures described should be sufficient to safeguard against re-identification attacks, model 

poisoning attacks, and other attacks that one or a small number of malicious nodes attempt to 

perpetrate through their participation in the federation. Because there is no central custodial node 

that is responsible for performing the verification of compliance on the part of each federation 

member, it is a best practice to integrate into the multilateral contract a right for each participating 

node to compel an audit of another specified node for compliance. Alternatively, each node could 
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be subject to independent third-party audits of their compliance with the specified technical, 

organizational, and contractual terms at pre-specified intervals.  

 

Autonomous trust 
 
In an autonomous trust environment, there is a distinct trust agreement established between the 

organizations responsible for the stewardship of identifiable personal data, and the downstream 

organizations that request that analyses be performed on such data. Organizations acting as 

stewards of identifiable personal data may well be unaware of one another. An example of an 

autonomous trust federation for processing genomic data is from Casaletto, et al., who developed 

and shared a container with Biobank Japan to run against a genomic variant dataset from a case-

control study of BRCA variants. 135  Due to data protection regulations, the data were not allowed 

to be shared outside the institution.  By running a containerized workflow on the data in situ, they 

were able to classify genomic variants that were previously unclassified. In a second example, a 

team of pediatric cancer researchers from the Treehouse platform shared an RNA-Seq analysis 

container with partner hospitals that were treating pediatric patients with tumors that had proven 

difficult to treat.  While these hospitals were not at liberty to share the RNA-Seq data itself, but 

they were able to share the gene expression calls estimated by the container; through 

comparative gene expression analysis against a larger cancer cohort, the research team was 

able to provide useful new insights for about 70% of these patients. 136 One approach for 

safeguarding autonomous trusts, to test that such containers produce the agreed-upon output 

(and do not leak sensitive data), is for the data steward to create a small test dataset, run the 

container against it, and examine the output.   

 

The autonomous approach may also be used in situations where the data are not necessarily 

sensitive but rather are too large to transfer.  Keeping the data in place and moving analytic code 

to the data is the central theme of the big data paradigm.  The autonomous approach may further 
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be used in situations where the data controller does not have the means to analyze its own data 

and thus engages a data processor to perform the analyses.   

 

For purposes of compliance with data protection law, each node acting as a data steward would 

be considered a data controller, while each third-party service provider that provides 

computational resources to a data steward node would be a processor.   

 

The nodes direct analyses should not be construed as controllers, joint controllers, or data 

processors, since these nodes do not have access to identifiable personal data and do not 

determine any “means and purposes” of the personal data processing. To ensure this, contractual 

agreements should be implemented between each producer node and each user node that 

provides analysis software, establishing that the local nodes act as controllers and that the 

requesting users’ role is to receive non-identifiable anonymized data resulting from the local 

analyses.  

 

The data steward nodes should ensure that none of the outputs shared to analysis recipient 

nodes constitute identifiable personal data. The data steward nodes should further accept formal 

responsibility for selecting, implementing, and/or vetting the analyses that the user nodes submit. 

To ensure that the analysis recipient nodes are not construed as data controllers or data 

processors, technical mechanisms should be used to limit the queries that the analysis recipient 

can submit to the data steward nodes. The data steward nodes should have an organizational 

and/or technical procedure for reviewing and approving the analysis queries that analysis 

recipient nodes submit prior to their implementation. This helps to ensure that the data steward 

nodes continue to act as the sole controllers of the concerned personal data, rather than acting 

as joint controllers in collaboration with the querying analysis recipient nodes. 131,137,138 
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Hybrid architectures 
 
Federated solutions for genomics data can mix different trust models in the same architecture; for 

example, the Canadian Distributed Infrastructure for Genomics (CanDIG) platform. 139 The 

designers of this federated framework explicitly chose to decentralize authentication and 

authorization because members of the federation belong to different provinces in Canada.  

Authentication relies on the identity mechanisms of each of the participating sites. Users log in 

with their home site credentials rather than with a centralized CanDIG identity. Authorization 

decisions are made locally at each site, based on the trusted user identity and the nature of the 

request. In addition to using the decentralized model for authentication and authorization, 

CanDIG also supports controlled access for registered research users. Controlled access is 

explicitly granted by data access committees, and researchers with controlled access credentials 

can access and query datasets. Registered access users sign up and agree to terms of service 

but with very limited querying ability, and only to those datasets that have opted into such access. 

 

Limitations to adopting federated solutions 
 
Common impediments to broader uptake of federated analysis include the absence of data 

standards or limited adherence to existing standards, and often irreconcilable interpretations of 

applicable data protection norms.   

 

A significant rate-limiting factor is that there is not yet clear guidance on best practices for 

regulatory compliance. National regulators and institutions often interpret data protection norms 

differently. Furthermore, clinical sites and research institutions frequently share data on a 

voluntary basis to contribute data to the biomedical data commons and foster its productive 

downstream use; however, the prospect of such contributions entailing legal liability for the data 

contributors can deter voluntary data sharing.  While best practices are starting to emerge 25,140–

142, there is no current standard of practice, so each individual regulator and regulated party 
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determines its own approach to regulatory compliance.  This can lead to fragmented data 

protection compliance emerging in different jurisdictions, and amongst different institutions that 

produce, use, or share data.  Ultimately, what will drive progress is the development of broadly-

accepted policy frameworks, promulgated both by regulators and organizations representing 

regulated parties and civil society. 143 

 

Other impediments to the adoption of federated solutions involve the complexity of designing, 

implementing, and deploying federated solutions that are privacy-preserving.  In particular, the 

lack of software development standards and infrastructure deployment best practices for privacy-

preserving federated solutions impedes organizations from participating in an inter-organizational 

federation. Federated analysis requires that the data a priori meet quality and formatting 

standards, given that the methods developers cannot directly interact with the actual input data.  

While the type of input data varies somewhat by the method, most methods require some form of 

genetic variation data and some form of phenotypic data.  Genetic variants are commonly 

represented in HGVS 144 or VCF 145 nomenclatures, which are well-understood but somewhat 

imprecise.  The GA4GH Variant Representation Specification 146 addresses these issues but is 

not yet widely adopted.  For phenotypic or clinical data, the advent of electronic health records 

has spurred the adoption of the HL7 FHIR standard 147,148, and more recently, the GA4GH 

Phenopacket standard 149, but  where these standards are not yet adopted, mapping unstructured 

electronic health records to a structured data standard remains a hard problem. 150  

Consequently, there is a limited volume of data that meets data standards, with additional data 

following ad hoc standards or remaining unstructured.  Yet this may be a temporary situation.  As 

more software tools emerge that work with data standards, adhering to the standards will 

ultimately become a cost-saving decision. 

 

Conclusion 
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The major impediments to sharing genomic data arise from ambiguous regulatory requirements 

more so than from technological limitations.  Federated analysis can in principle overcome these 

impediments to enable data sharing while respecting data privacy or data sovereignty restrictions.  

While the exact approaches differ, the principle remains consistent: by keeping the sensitive data 

under the control of the data controller and sharing analysis software to execute on the data 

controller’s secure system, federated analysis can distill sensitive information down to information 

that is less sensitive and can therefore be shared more openly, and yet advances knowledge.  

Nonetheless, the uptake of federated analysis approaches has been hindered by uncertainties 

around regulatory compliance, of which the GDPR has been the most noteworthy.  Few 

organizations engaged in complex, consortium-level data sharing activities have the appetite to 

bear significant regulatory risk. These risks can prove considerable for organizations that are 

categorized as data controllers and data processors, as the interpretive ambiguities inherent in 

data protection law create a potential for unintentional non-compliance. For organizations 

categorized as joint controllers, the additional prospect of bearing liability for the activities of other 

collaborating controllers creates heightened compliance risks. These risks can deter data sharing 

altogether. 

 

In essence, by ensuring that any data egress from the controller’s node is non-identifiable, non-

personal data, and that any re-identification of these data is highly unlikely, the practical risks of 

personal data disclosure, and the related risk of data protection law non-compliance can be 

minimized.  Recent advances in computational data privacy have produced a family of 

approaches that are robust against many forms of cyber threats, and some even offer a 

quantifiable level of security; while the computational cost of these methods currently discourages 

widespread adoption, new hardware developments are making these approaches more tractable.  

But while technical, organizational, and contractual privacy safeguards can mitigate risk, they 

cannot eliminate it completely, and the data steward or data controller still bears the largest legal 

compliance burden. In the future, legislators and regulators must implement both laws and 
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regulatory guidance that diminish both the compliance costs and the prospect of liability for data 

controllers and data processors that are engaged in prosocial uses of information to ameliorate 

healthcare and perform research.  
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Abstract 
 
Spaceflight has several detrimental effects on human and rodent health. For example, liver 

dysfunction is a common phenotype observed in space-flown rodents, and this dysfunction is 

partially reflected in transcriptomic changes. Studies linking transcriptomics with liver dysfunction 

rely on tools which exploit correlation, but these tools make no attempt to disambiguate true 

correlations from spurious ones. In this work, we use a machine learning ensemble of causal 

inference methods called the Causal Research and Inference Search Platform (CRISP) which 

was developed to predict causal features of a binary response variable from high-dimensional 

input.  We used CRISP to identify genes truly correlated with a lipid density phenotype using 

transcriptomic and histological data from the NASA Open Science Data Repositories (OSDR).  

Our approach identified genes and molecular targets not predicted by previous traditional 

differential gene expression analyses. These genes are likely to play a pivotal role in the liver 
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dysfunction observed in space-flown rodents, and this work opens the door to identifying novel 

countermeasures for space travel. 

Introduction 
 
Rodent studies demonstrate that spaceflight negatively impacts liver function 151–153.  Astronaut 

studies including the seminal NASA Twins Study also reveal a theme of lipid dysregulation 154,155. 

Despite these findings, there has been relatively little research studying the impact of microgravity 

or space radiation on the liver, with more research emphasis on central nervous system effects 

and carcinogenesis. This is a key knowledge gap considering the disruption of such a critical 

organ could impact astronaut health and jeopardize the success of future long-term space 

missions. Identifying the genetic and molecular mechanisms implicated in spaceflight-induced 

liver dysfunction is required as a first step in precisely mitigating the effects of spaceflight. 

Traditional statistical methods identify correlations which may or may not be spurious, especially 

in high-dimensional, high-throughput data analysis 156.  While randomized controlled trials are 

considered the gold standard for identifying non-spurious, causal relationships between 

dependent and independent variables 157, such experiments can be very expensive and time 

consuming, or logistically infeasible, especially in a spaceflight environment where sample sizes 

are limited. Instead, we turn to new machine learning (ML) approaches to identify genes in 

transcriptomics data predictive of a lipid metabolic response from spaceflight and ground control 

rodent liver samples.  

 

Tools which are commonly used to analyze high-dimensional data, and ML algorithms in general, 

share an intrinsic flaw. They discover those patterns in data which minimize training error, but 

training data are often flawed by selection bias, label bias, capture bias, and negative set bias 158. 

Algorithms which train on biased datasets inherit these data biases. Minimizing training error 

encourages algorithms to indiscriminately absorb all the correlations found in training data, real or 

spurious. Spurious correlations resulting from data biases are unrelated to the true underlying 
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signal 159. Recently, disambiguating true correlations from spurious ones has been studied in the 

context of causal inference.  For this reason, we leverage tools from the causal inference domain 

to identify genes which are robustly correlated with a phenotype. While such genes are putatively 

causal, validating true causality is beyond the scope of this research. In this research, we use 

CRISP – an ensemble machine learning platform developed by the Frontier Development 

Laboratory (FDL) 2020 Astronaut Health team 160 to enhance biological and medical research 

with heterogeneous and high-dimensional observational data 161.  The FDL team used CRISP to 

identify genetic drivers that differentiate two subtypes of colorectal cancer and to implicate 

operational taxonomic units of the associated microbiome. 

 

The algorithms in the CRISP platform are based on the concept of invariance as a proxy for 

causal inference. Invariance is a property of a feature which reflects how well a classification 

algorithm performs using that feature to predict a response invariantly; that is, on data which were 

generated in different environments, under different circumstances, different conditions, or using 

different interventions 162,163.  An algorithm based on invariance can identify those features that 

strongly predict the target label regardless of the background data generating processes that give 

rise to the dataset. The classic example is a machine learning classifier built to distinguish images 

of cows from images of camels 164. A machine learning classifier that is overfit to a particular 

environment may learn that a cow is an animal that lives in green pastures while a camel is an 

animal that lives in beige deserts. Given a cow on a sandy beach, this classifier would likely call it 

a camel (Figure 10).  By contrast, a classifier based on invariance would be optimized to ignore 

the background environment and learn the salient features which truly distinguish a cow from a 

camel, such as the dimensions of the neck and legs and the shape of the face.  
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Figure 10.  A classifier is presented with images of a cow in two different environments, one of 
which is its typical green pasture and the other of which is a relatively rare beige desert.   
 

Classification algorithms which exploit invariance promote learning correlations that are stable 

across training environments, as these are expected to persist on out-of-distribution data (i.e. 

data generated in environments not seen by the algorithm during training) and therefore be 

robustly correlated to and more likely causal of, the response variable 165. 

 

To compare our method with traditional differential gene expression tools, we use EdgeR and 

DESeq2. We also compare our results with those derived from generic machine learning 

classifiers including random forest and empirical risk minimization.  Overall, we find that CRISP 

identifies a biologically relevant set of genes which are uniquely predictive of a high lipid density 

response in space-flown mice.  Gene set enrichment and pathway analyses reveal that the 

dysfunctional regulation of the genes identified by CRISP is implicated in the spectrum of 

  
CLASSIFIER 

COW CAMEL 
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diseases caused by non-alcoholic fatty liver disease (NAFLD).  The mice in the experiment flight 

group were only in space for a maximum of 54 days, yet their gene expression profiles were 

altered significantly enough to manifest markers of NAFLD. Our study provides the first machine 

learning analysis of gene expression predictive of a disease-related response to spaceflight in the 

liver. 

Materials and methods 
 
The data we used for our experiment include transcriptomic and histology data from the liver 

tissue of space-flown and ground-control mice. 

NASA GeneLab data 
 
The NASA GeneLab repository provides AI-ready datasets allowing rapid deployment of machine 

learning algorithms for data mining. This is possible because GeneLab is a FAIR database 

(Findable, Accessible, Interoperable, Reusable) 166,167 with rich metadata providing full context for 

the data and experiments.  This study uses transcriptomic data from four GeneLab datasets: 

GLDS-47 168 (version 11), GLDS-48 169 (version 10), GLDS-137 170 (version 6), and GLDS-168 171 

(version 10). These datasets were generated from three rodent research (RR) missions: RR-1 

CASIS, RR-1 NASA, and RR-3. Two different strains of mice were used: C57 and Balb/C. The 

RR-1 CASIS experiment was designed to study the effects of microgravity of C57 mice on 

muscle degeneration due to spaceflight (GLDS-47). The RR-1 NASA mission was designed to 

validate the experimental hardware and scientific capabilities on the International Space Station 

(GLDS-48). The RR-3 mission was designed to study countermeasures in Balb/C mice for loss of 

mass in muscle and bone that have been observed in spaceflight (GLDS-137 and GLDS-168). 

The GLDS-168 dataset was not based on a separate mission but rather to test the utility of 

External RNA Control Consortium (ERCC) RNA sequencing controls and therefore constitute 

technical replicates in our experiments. These rodent research missions were originally designed 

as randomized controlled experiments, with mice randomly assigned to the groups described in 

Table 6.  



 86 

 

Experimental 
group 

Description 

Basal Housed in standard vivarium cages on Earth, euthanized 1 day after launch. 

Vivarium Housed in standard vivarium cages on Earth, euthanized n days after launch. 

Ground Housed in ISS habitat cages on Earth, euthanized n days after launch. 

Flight Housed in ISS habitat cages on ISS, euthanized n days after launch. 

Table 6. The four experimental groups of mice from the GeneLab datasets. 

We are re-using these data to explore the relationship between the transcriptomes and a 

phenotype, constituting the data as observational in our research. Indeed, the causal inference 

algorithms in the CRISP platform ensemble were designed to run on observational data. 

ALSDA liver phenotype data 
 
Liver tissues used for gene expression were also quantified for lipid density using the Oil red O 

(ORO) staining technique. ORO is a fat soluble, hydrophobic dye that stains lipid molecules red 

172. ORO percent positivity was calculated for each sample from the stained images, providing a 

scalar value that measures the ORO positivity - higher ORO positivity values directly correspond 

to higher lipid densities. ORO positivity is the de facto histological biomarker for diagnosing the 

spectrum of disorders in non-alcoholic fatty liver disease (NAFLD) post mortem.  

 

This histological data and the ORO percent positivity values are available alongside the 

transcriptomic data in the NASA OSDR, which integrates the GeneLab omics data with all other 

spaceflight-relevant data in the Ames Life Sciences Data Archive (ALSDA) 173. Having all 

spaceflight-relevant experimental data curated into a FAIR system demonstrates in this work how 

rapidly one can deploy AI/ML algorithms to gain new knowledge from several datasets, 

something difficult to achieve with standard systems biology approaches.  
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Because OSD-168 are comprised of technical replicates, the ORO positivity data are associated 

with the biological replicates in OSD-47, OSD-48, and OSD-137. 

Data preparation 
 
A typical machine learning pipeline includes a data preprocessing step. At the very least, the data 

must be prepared to satisfy the assumptions and requirements of the algorithms which use the 

data. In this section, we discuss how we prepared the data prior to running it through the CRISP 

platform.  CRISP requires that the features be real-valued, that the target be binary, and that the 

environment string be ASCII text, as described in the following sections. 

Binarized target 
 
The ORO positivity scalar values in our dataset range from 0.91 to 26.94, but the CRISP platform 

only permits binary targets (low and high) for classification. We converted the scalar value to a 

binary value using the median value between flight and ground groups as a binary threshold.  We 

calculated a per-mission threshold as the mean between the flight and non-flight group medians, 

shown in the box-and-whisker plot of Figure 11 as a horizontal dashed red line. 

 

Figure 11. Box-and-whisker plots for ORO values based on mission.  The dashed red line is the 
arithmetic mean between the two group medians, and the p-values show that the differences 
between the medians are all significant. 
 

Using the thresholds indicated in Figure 11, a sample was assigned a binary target of 0 if its ORO 

positivity is less than the threshold value and 1 if its ORO positivity is greater than or equal to the 

threshold value. 

12.01 

15.92 
13.88 p=0.00541 

p=0.0001 
p=0.00063 
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Environment string 
 
The environment string is the crux of the invariance approach in the CRISP implementation of 

causal inference. To force the ensemble of classifiers to find features that truly correlate with the 

target across environments, as in the example of identifying key features of cow and camel faces 

in different landscapes, we identify environments within our dataset across which any gene with a 

true correlation to the target should be invariant. For example, in our study, samples are grouped 

into environments based on technical, non-biological differences such as how the RNA libraries 

were prepared or data transformations such as log-scaling.  The models are trained using the 

samples partitioned by environment, and then the models are tested across the other 

environments to see how well they perform on data from other environments. In this study, we 

used the following guidelines in our choice of environment string: 

1. It shall not leak the target 

2. It shall represent known or presumptive interventions or perturbations of the features 

3. It should partition the data into subsets that are each sufficiently large for testing 

4. It should give the highest accuracy and/or most biologically plausible results 

 

Causal inference algorithms which exploit environment invariance theoretically perform better on 

out-of-distribution data when the number of environments used to train the model is high.  

However, if the number of samples in the dataset are small (which is intrinsic to transcriptomic 

experiments), then the environment string must be selected such that there are enough samples 

in each partition to test for significance. 

Feature transformations 
 
There are many types of transformations, including standardization, normalization, log-scaling, 

and outlier removal that are commonly performed on data as pre-processing steps in a machine 

learning pipeline. Some data transformations are more volatile than others.  Gonzalez et al 174 

and others have shown that while data preprocessing is a necessary step in a machine learning 

pipeline, there isn’t much agreement about what the best preprocessing technique is. Moreover, a 



 89 

data transformation may change the data so drastically that it destroys some of the underlying 

signals of interest. This lack of data preprocessing standard exists in transcriptomic data analysis 

as well 175. In our research, instead of choosing one pre-processing method, we used several 

methods, each of which is supported in the literature. Table 7 shows the different types of 

transformations we leveraged in our preprocessing pipeline, including a literature reference 

describing its efficacy as a transcriptomic data transformation. We performed each data 

transformation on the dataset separately, then merged the multiple transformed datasets 

together. This technique of merging differently transformed data into a single dataset is referred 

to as data augmentation and is a common practice in machine learning 176.  Each transformation 

was considered a separate environment across which CRISP must find invariant genes. We 

exploit CRISP’s built-in search for invariance across environments and consider each 

transformation as a perturbation of the data akin to a causal intervention.  

 

 

Transformation Description Reference using 
transformation for 
transcriptomic data 

Log scale Scales values to their log base 2 Quinn et al 27 

Z-score Scales values to their number of standard 
deviations from the mean 

Zwiener et al 28 

Square root Scales values to their square roots Zhang et al 29 

Median of ratios Scales values to account for sequencing 
depth, gene length, and outliers 

Robinson et al 30 

Centered log ratio Transforms data to eliminate over-dispersion Anders et al 31 

Box-Cox Transforms non-normal data into a normal 
shape 

Sun et al 32 

Table 7. Description of and reference for each of the transformations used in the pre-processing 
of the transcriptomic data. 
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Figure 12 shows the original data distribution and the data after having been transformed and 

plotted as (variance vs mean) coordinates in log scale. 

 

 

Figure 12. Scatter plots of variance versus mean for different transformations used in 
preprocessing.  The vertical and horizontal axes are shown in log scale. 
 
The mean-variance plot of the differently transformed data reveals that certain transformations 

change the data significantly while other transformations are relatively mild in effect, compared to 

the original raw data. It also reveals the fact that the variance of the raw data is proportional to the 

means of the counts – a condition known as heteroscedasticity.  This condition results in non-

robust error estimates in linear regression models because the error estimates are less accurate 

where the variance is higher.  In other words, linear regression models built on heteroscedastic 

data are not uniformly reliable across the distribution of the independent variable. Because 

CRISP does not use linear regression for any of the models in the ensemble We used multiple 

transformations which have been demonstrated to specifically address transcriptomic data 

heteroscedasticity in the literature (Table 7).  
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In addition to these transformations, we applied some basic filtering on the input to remove 

transcripts with no ENSEMBL identifiers, don’t code for a protein, or have mostly low or zero 

counts. This filtering produced the final set of 11,854 genes which we subsequently used in all 

downstream analysis. 

Technical batch effects 
 
We examined the dataset for batch effects and found that the type of library preparation of the 

RNA-seq experiments underlying the transcriptomic data clearly separate the samples, as shown 

in Figure 13a.  

 

Figure 13. PCA plots of GLDS datasets colorized by the different covariates, including a.) library 
preparation, b.) dataset name, c.) experimental group, d.) mouse strain, and e.) Rodent Research 
study. 

 

To account for this batch effect, we include the library preparation in the environment string.  We 

also include the data transformation name in the environment string.  

Constructing the environment string 
 
Because the environment is used by CRISP to partition the data into subsets for training and 

testing, the higher the number of values in the environment, the higher the number of partitions 

and therefore the fewer samples used for training and testing.  We already have a limited number 

a.) b.) c.) 

d.) e.) 
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of data points, and having small training and testing sets leads to less reliable results.  Therefore, 

we restricted our choice of environment string to include only known perturbations of the data – 

i.e. transformation and library preparation – and excluded perturbations of unknown effect such 

as mission and strain.  

sample Scd1 Apoa1 C3 Apoe env Oro 
Thresh 

Mmus_C57-FLT_R1F1_boxcox 151.32 18.21 1.49 4282.92 polyA:boxcox 1 

Mmus_C57-FLT_R1F1_clr 0.78 -0.23 0.82 0.94 polyA:clr 1 

Mmus_C57-FLT_R1F1_log 18.25 16.98 18.37 13.66 polyA:log 1 

Mmus_C57-FLT_R1F1_mor 362.52 139.69 32.83 4470.34 polyA:mor 1 

Mmus_C57-FLT_R1F1_zscore 0.08 -0.03 0.01 0.21 polyA:zscore 1 

Mmus_C57-FLT_R1F1_sqrt 602.39 373.71 57.95 66.8.63 polyA:sqrt 1 

Table 8. One fictitious mouse sample’s gene expression data (truncated to 4 genes) after 6 data 
transformations, including environment string (“env”) and ORO threshold (“oro_thresh”). 
 
Table 8 shows a snippet of one sample’s fictitious input data after having performed the 6 data 

transformations.  The environment string (here, called “env”) is a concatenation of the library 

preparation (here, “polyA”) and the transformation name (e.g. “boxcox”).  Only the binary ORO 

threshold (called “oro_thresh”) for the sample remains unchanged across the same sample as 

well as for its respective technical replicates of OSD-168, if they exist. 

Running CRISP experiments 
 
With the data in place, we turn now to how we run the CRISP in silico experiments.  CRISP 

experiments are configured with several parameters in a JSON configuration file. The 

test_val_split parameter defines how much data to leave out for testing and validation. By 

default, 10% is dedicated for testing and 10% is dedicated for validation, leaving 80% for training. 

The max_features parameter defines the number of features each model in the ensemble 

should find as most predictive of the target.  The default value is 20, and that’s the value we used 

in our CRISP experiment.  The data_options define the file location containing the dataset, 

which columns in that dataset are to be used as predictors, which column is the environment 
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variable, and which column is the target variable. There are several other parameters that may be 

configured in this JSON configuration file which get consumed by the machine learning 

algorithms configured in the ensemble.   The JSON configuration we used in our experiment is 

shown in Supplementary Figure 1. 

CRISP ensemble voting 
 
CRISP is an ensemble of machine learning algorithms which perform binary classification.  

Ensembles are used to combine a set of multiple “weak” learners into a single “strong” learner to 

minimize training errors 183.  Each model in the ensemble is trained on the dataset to identify the 

features most predictive of the target.  After training, each model selects the features (20 by 

default) which it found as most predictive of the target.  For the linear models -- linear invariant 

risk minimization (linear IRM) and linear invariant causal prediction (linear ICP) --  the features 

which are most predictive are those coefficients of the linear model with the highest absolute 

values.  For non-linear models -- non-linear invariant risk minimization (non-linear IRM) and non-

linear invariant causal prediction (non-linear ICP) -- the most predictive features are selected 

through sensitivity analysis.    After each model has selected its top-most predictive features, the 

ensemble votes to elect a single set of features to present as the final result of the experiment.  

CRISP attributes the highest weight to the feature that the highest accuracy model gives the 

largest coefficient.  Conversely, the lowest ranking feature from the worst performing model will 

be attributed the lowest weight.   Furthermore, the higher degree of concordance across the 

ensemble (i.e. how many models found the feature in their top 20 list), the higher the weighted 

coefficient of that feature.   In this way, CRISP identifies those features that are most predictive of 

the target from the highest number of best performing models. 

CRISP updates 
 
Accompanying this paper we publish a CRISPv1.1 code release, with the following updates. 

First, the weights of the features each model finds need to be on the same scale in order to 

compare them. To this end, we used the MinMaxScaler() class from the scikit-learn 
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Python package. Second, we updated the linear IRM code to output continuous feature weights 

such that the coefficients are now on the unit interval [0, 1].  Third, we changed the default batch 

size from 128 to 8 due to our small sample size.  Fourth and perhaps most importantly, we 

changed the feature reduction mode of non-linear IRM to use 3 hidden linear layers instead of a 

single hidden linear layer to further address the issue of heteroscedasticity.   

Results 
 
In this section, we show the results of the CRISP experiment.  We validate our findings using 

pathway analysis, gene set enrichment analysis, adverse outcome effect, and a search of 

relevant literature. We show the results of the gene expression analysis using DESeq2 and 

EdgeR to compare the CRISP results with commonly used bioinformatic tools. 

CRISP results 
 
Each of the models in the ensemble trains on the same data set to identify the features which 

best predict the target across all environments.  Figure 14 depicts the accuracy of each model in 

the ensemble, and Figure 15 shows the top 20 genes most predictive of lipid density. 
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Figure 14. Test accuracies for each of the models in the CRISP ensemble, including a dashed 
red line representing 50% accuracy (null model performance).   
 
Empirical risk minimization and random forest are not causal predictors and do not participate in 

CRISP’s selection of the features.  They are included in the experiment only as a basis of 

comparison to the causal predictors (non-linear IRM, linear ICP, non-linear ICP, and linear IRM).  

Figure 14 shows that the random forest (RF) accuracy was the highest (about 90%).  We will 

discuss later in this section that the 20 genes which RF found as most predictive of lipid density 

are most likely spuriously correlated.  Linear IRM has about 80% accuracy and therefore 

contributes the most to the ensemble results.  Conversely, linear ICP performed the worst across 

the ensemble (about 50% accuracy) and therefore contributes the least to the ensemble results.  

 

 
Figure 15.  The top 20 genes and their degree of concordance across the ensemble.  The 
direction of the bar indicates whether higher (up) or lower (down) expression impacts lipid 
density. 
 
The diagram in Figure 15 shows the degree to which each gene across the ensemble is 

predictive of the lipid density response variable.   Based on Figure 15, we see that the Mup22 

4 
3 
2 
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gene was found in the top 20 genes most predictive of lipid density of all 5 models.  By contrast, 

the Trf gene was found in the top 20 genes most predictive of lipid density in 4 of the models. 

The biological functions of the 20 CRISP genes are shown in Table 9.  The functions were 

derived from the information provided in the NCBI Gene tool at 

https://www.ncbi.nlm.nih.gov/gene/.  

gene name function of protein 

Alb Albumin Abundant plasma protein essential for maintaining oncotic 
pressure that functions as a carrier protein for various 
molecules such as steriods and fatty acids in blood 

Apoe Apolipoprotein E Involved in the transport of lipoproteins in the blood 

C3 complement 
component 3 

C3 plays a central role in the classical, alternative and lectin 
activation pathways of the complement system.  

Cat catalase Enables aminoacylase activity and catalase activity. 

Crot carnitine O 
octanoyltransferase 

Plays a role in lipid metabolism and fatty acid beta-oxidation. 

Cyp2e1 cytochrome P450, 
family 2, subfamily e, 
polypeptide 1 

Enables monooxygenase activity. Implicated in several 
diseases, including fatty liver disease. 

Cyp3a41a cytochrome P450, 
family 3, subfamily a, 
polypeptide 41A 

Predicted to enable several functions, including caffeine 
oxidase activity; iron ion binding activity; and monooxygenase 
activity.  

Fabp1 fatty acid binding 
protein 1, liver 

Predicted to be involved in positive regulation of fatty acid 
beta-oxidation.  

Fasn fatty acid synthase Enables fatty acid synthase activity. Involved in lipid 
biosynthetic process. 

Hp haptoglobin Plasma glycoprotein that binds free hemoglobin 

Hpx hemopexin Enables heme binding activity. 

Mug1 murinoglobulin 1 Predicted to enable endopeptidase inhibitor activity and 
protease binding activity.  

Mup19 major urinary protein 
19 

 
 
The MUP family proteins bind to, concentrate, and stabilize 
many volatile scent substances (e.g. pheromones), thereby 
controlling both pheromone transport in circulation and 
pheromone release into the air from urine scent marks 

Mup22 major urinary protein 
22 

Mup3 Major urinary protein 3 
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Orm1 orosomucoid 1 Regulates inflammation and metabolism.  

Saa1 serum amyloid A 1 Acts upstream of or within cholesterol metabolic process and 
response to bacterium. 

Serpina3k serine (or cysteine) 
peptidase inhibitor, 
clade A, member 3K 

Acts upstream of or within response to cytokine and response 
to peptide hormone. 

Trf transferrin Predicted to enable iron chaperone activity; iron ion binding 
activity; and transferrin receptor binding activity.  

Ubc ubiquitin C Predicted to enable protease binding activity; protein tag; and 
ubiquitin protein ligase binding activity.  

Table 9. Mouse genes identified in the CRISP experiment as robustly predictive of the 
thresholded lipid density phenotype. 
 

We will discuss later in this section that some of these 20 genes which CRISP found are not only 

involved in lipid metabolism but also have been implicated in NAFLD.   

Validation using pathway analysis 
We submitted the 20 genes resulting from our CRISP experiment, and as background all 11,160 

genes which were used as features in our CRISP experiment, to the ShinyGO pathway analysis 

tool (http://bioinformatics.sdstate.edu/go/). This tool finds the Gene Ontology pathways which 

overlap with the query gene set as compared to the background gene set. Table 10 shows the 4 

enriched pathways that ShinyGO identified. 

Pathways nGenes Pathway 
genes 

Fold 
enrichment 

Enrichment 
FDR 

Alcoholic liver disease 4 139 21.2 1.6E-03 

Table 10.  Enriched Gene Ontology pathways involving the genes from the CRISP experiment. 

Using the enrichment false discovery rate metric of significance, the only significant pathway 
relating to our gene set is alcoholic liver disease.  
 
Validation using gene set enrichment analysis 
 
We used the 20 genes from the CRISP experiment to perform Gene Set Enrichment Analysis 

(GSEA, http://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) using the Human Molecular 

Signatures Database (MSigDB) ontology gene sets (C5) collection. This tool finds those gene 

ontologies from all ontology gene sets (GO: Gene Ontology and HPO: Human Phenotype 



 98 

Ontology) that have a significant overlap with the query gene set in the mouse genome. Table 11 

shows the top 10 gene sets in the C5 collection that significantly overlap with these 20 mouse 

genes.   

Gene set name Description FDR q-value 

GOCC BLOOD 
MICROPARTICLE 

A phospholipid microvessicle that is derived from 
any of several cell types, such as platelets, blood 
cells, endothelial cells, or others. 

1.73E-14 

GOCC VESICLE LUMEN The volume enclosed by the membrane or protein 
that forms a vesicle. 

2.17E-7 

GOBP MONOCARBOXYLIC 
ACID METABOLIC PRO 
PROCESS 

The chemical reactions and pathways involving 
monocarboxylic acids. 

3.06E-8 

GOBP TRIGLYCERIDE 
METABOLIC PROCESS 

The chemical reactions and pathways involving 
triglyceride. 

3.06E-8 

GOBP LIPID METABOLIC 
PROCESS 

The chemical reactions and pathways involving 
lipids, compounds soluble in an organic solvent 
but not, or sparingly, in an aqueous solvent. 

3.51E-8 

GOBP CELLULAR LIPID 
METABOLIC PROCESS 

The chemical reactions and pathways involving 
lipids 

3.51E-8 

GOBP NEUTRAL LIPID 
METABOLIC PROCESS 

The chemical reactions and pathways involving 
neutral lipids. 

3.52E-7 

GOBP DEFENSE RESPONSE Reactions, triggered in response to the presence 
of a foreign body or occurrence of an injury. 

3.52E-7 

GOBP SMALL MOLECULE 
METABOLIC PROCESS 

The chemical reactions and pathways involving 
small molecules 

3.84E-7 

GOBP ORGANIC ACID 
METABOLIC PROCESS 

The chemical reactions and pathways involving 
fatty acids. 

1.11-7 

 
Table 11.  Gene set enrichment analysis using gene ontology gene sets, showing the false 
discovery rate (FDR) adjusted significance q-value. 
 

Most of these gene sets are directly involved in lipid metabolism.   

Validation from scientific literature 
 
Table 12 shows one research article that implicates each of the 20 CRISP genes in NAFLD. 

CRISP 
genes 

Research implicating gene expression changes in NAFLD 
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Alb Liver-Specific Expression of Transcriptionally Active SREBP-1c is Associated with Fatty Liver and 
Increased Visceral Fat Mass (PMID: 22363740) 

Apoe Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE Mice 
by Activating Autophagy and Reducing ER Stress and Apoptosis (PMID: 33467546) 

C3 Association between complement C3 and prevalence of fatty liver disease in an adult population: a 
cross-sectional study from the Tianjin Chronic Low-Grade Systemic Inflammation and Health 
(TCLSIHealth) cohort study (PMID:25856141) 

Cat Catalase and nonalcoholic fatty liver disease (PMID: 30120555) 

Crot Osthol attenuates hepatic steatosis via decreased triglyceride synthesis, not by insulin resistance 
(PMID: 25206279) 

Cyp2e1 Relevance of CYP2E1 to non-alcoholic fatty liver disease (PMID: 23400921) 

Cyp3a41a CYP3A Activity and Expression in Non-alcoholic Fatty Liver Disease (PMID: 26231377)  

Fabp1 The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPAR-alpha; and 
repressed by C/EBP-alpha: Implications in FABP1 down-regulation in non-alcoholic fatty liver disease 
(PMID: 23318274) 

Fasn Expression of fatty acid synthase in non-alcoholic fatty liver disease 
(PMID:20606731) 

Hp Haptoglobin 2-2 Genotype is Associated with More Advanced Disease in Subjects with Non-Alcoholic 
Steatohepatitis: A Retrospective Study (PMID: 30820874) 

Hpx Non-acoholic fatty liver diease and livler secretome (PMID: 364441472) 

Mug1 Proteome Dynamics Reveals Pro-Inflammatory Remodeling of Plasma Proteome in a Mouse Model of 
NAFLD (PMID: 27439437) 

Mup19 Comparison of hepatic gene expression profiles between three mouse models of Non-alcoholic Fatty 
Liver Disease (PMID: 35005119) 

Mup22 Multi-Omics Characterizes the Effects and Mechanisms of CD1d in Nonalcoholic Fatty Liver Disease 
Development (PMID: 35465315) 

Mup3 Comparison of hepatic gene expression profiles between three mouse models of Non-alcoholic Fatty 
Liver Disease (PMID: 35005119) 

Orm1 Orosomucoid in liver diseases (PMID: 34963738) 

Saa1 Hepatocytes derived increased SAA1 promotes intrahepatic platelet aggregation and aggravates liver 
inflammation in NAFLD (PMID: 33813276) 

Serpina3k PNPLA3 and SERPINA1 Variants Are Associated with Severity of Fatty Liver Disease at First Referral 
to a Tertiary Center (PMID:33804385) 

Trf Iron depletion attenuates steatosis in a mouse model of non-alcoholic fatty liver disease: Role of iron-
dependent pathways (PMID: 33839281) 

Ubc Nutrigenomics of High Fat Diet Induced Obesity in Mice Suggests Relationships between Susceptibility 
to Fatty Liver Disease and the Proteasome (PMID: 24324835) 

 
Table 12.  Research articles implicating the changes in expression of the CRISP-identified genes 
in the spectrum of NAFLD disorders 
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Quite notably, every one of the 20 genes that CRISP identified has previously been implicated in 

the spectrum of diseases associated with NAFLD, suggesting that they may be either potential 

biomarkers or molecular targets for NAFLD. 

Comparing CRISP results to other analyses 
 
In this section, we compare the results of our CRISP experiments with other tools which 

associate features with targets including DESeq2, random forest, and empirical risk minimization. 

Comparing results from CRISP and DESeq2 
 
We used DESeq2 version 1.34.0 to perform differential gene expression analysis (DGEA) on the 

data on the same set of genes as we used in CRISP to identify which genes are significantly 

differentially expressed between the high and low ORO groups. DESeq2 performs its own filtering 

and normalization steps, so we did not transform the data. Because of the distinct batch effect 

due to library preparation, we added the library preparation covariate to the column data and 

included it in the DESeq2 design formula along with the ORO threshold value. DESeq2 did not 

find any genes that were significantly differentially expressed when setting the FDR-adjusted p-

value cutoff to 0.05. 

Comparing results from CRISP and EdgeR  
 
We used EdgeR version 3.36.0 to perform DGEA on the data on the same set of genes as we 

used in CRISP to identify which genes are significantly differentially expressed between the high 

and low ORO groups. EdgeR performs its own filtering and normalization steps, so we did not 

transform the data. Because of the distinct batch effect due to library preparation, we added the 

library preparation covariate to the column data and included it in the EdgeR design formula 

along with the ORO threshold value. Table 13 shows the 6 differentially expressed genes from 

the EdgeR experiment when setting the FDR-adjusted p-value cutoff to 0.05. 

 

gene name function 

Atp1a2 ATPase Na+/K+ Integral membrane protein responsible for establishing and 
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transporting subunit alpha 2 maintaining the electrochemical gradients of Na and K ions 
across the plasma membrane 

Des Desmin This gene encodes a muscle-specific class III intermediate 
filament. Homopolymers of this protein form a stable 
intracytoplasmic filamentous network connecting myofibrils 
to each other and to the plasma membrane and are 
essential for maintaining the strength and integrity of 
skeletal, cardiac and smooth muscle fibers. 

Hsd3b1 hydroxy-delta-5-steroid 
dehydrogenase, 3 beta- and 
steroid delta-isomerase 1 

Predicted to be involved in several processes, including 
C21-steroid hormone metabolic process; hippocampus 
development; and response to corticosterone.  

Tpm2 tropomyosin 2 This gene encodes beta-tropomyosin, a member of the 
actin filament binding protein family, and mainly expressed 
in slow, type 1 muscle fibers. 

Star steroidogenic acute 
regulatory protein 

Predicted to enable cholesterol binding activity. Acts 
upstream of or within cellular lipid metabolic process; 
glucocorticoid metabolic process; and regulation of steroid 
biosynthetic process.  

Akr1b7 aldo-keto reductase family 
1, member B7 

Predicted to act upstream of or within cellular lipid 
metabolic process. 

Table 13. Gene result set using EdgeR to find differentially expressed genes between low and 
high ORO groups. 
 

Submitting these genes to the GSEA tool, we see that these genes are implicated in hyperplasia, 

abnormal myocardium morphology, reduced systolic function, weakness of facial musculature, 

and areflexia.  The ShinyGO tool finds several pathways overlapping these 6 genes, from 

cardiomyopathy to ovarian steroidogenesis, and various metabolic pathways including galactose, 

cholesterol, fructose, and lipid metabolism.  Given such a wide range of pathways and gene sets 

that affect so many different organs and pathologies, it is not clear what conclusions could be 

drawn from the EdgeR gene result set.   

Analyzing results from the random forest classifier 
 
CRISP includes non-causal algorithms in its ensemble to compare results with causal algorithms. 

While random forest lays no claim to identify features causal of a target, the algorithm is one of 

the best-performing and highly used ML classification algorithms 187.  Similar to its causal 

counterparts, the random forest algorithm calculates a feature importance metric which can be 

used to define confidence in the results.  Among the 20 genes that random forest identified as 
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predictive of the lipid density response, none of them are involved in the lipid metabolic process 

according to the NCBI Gene tool.  Neither the ShinyGO nor the GSEA enrichment tools found any 

overlapping pathways or gene ontologies using these 20 genes as input.  We conclude that the 

random forest classifier found spurious correlations between the expression of those 20 genes 

and the lipid density response.   

Analyzing results from empirical risk minimization 
 
Following the same analysis as with random forest, here we analyze the results from empirical 

risk minimization (ERM). ERM uses the canonical minimization of the sum of the squares of the 

residuals as its unconditional objective function. It does not partition the data into environments 

like IRM. As such, it is perhaps the closest comparison to the linear IRM and non-linear IRM 

results from CRISP.   Among the 20 genes that ERM identified as predictive of the lipid density 

response, none of them are involved in the lipid metabolic process according to NCBI.  Neither 

the ShinyGO nor the GSEA enrichment tools found any overlapping pathways or gene ontologies 

using these 20 genes as input.  We conclude that the ERM classifier found spurious correlations 

between the expression of those 20 genes and the lipid density response.   

Discussion 
 
NAFLD represents a spectrum of metabolic disorders from fatty liver alone to steatohepatitis, 

steatonecrosis, and nonalcoholic steatohepatitis (NASH).  In 2020, it was estimated to have a 

prevalence of 25.24% globally 188.   NAFLD is considered a “first-world” metabolic disorder; it 

results from a sedentary lifestyle which increases insulin resistance and promotes lipid 

accumulation.  Hepatocytes swell, primarily with triglycerides, inducing inflammation and later 

fibrosis.  Insulin-resistant adipose tissue with ectopic fat deposits initiate lipotoxicity, the primary 

driver of hepatocyte injury that ultimately manifests as hepatic, pancreatic, and cardiac 

dysfunction and disease.  Diagnosis of NAFLD in vivo is a negative test that excludes other 

possible causes such as excessive alcohol consumption, drug exposure, and genetic 

predisposition.  Astronauts flying on long space missions are necessarily subject to a sedentary 
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lifestyle in addition to the myriad risks that spaceflight imposes on liver health, yet we still lack a 

specific biological marker that could precisely characterize the condition.  

 

Using a causal inference machine learning ensemble, we’ve identified a set of genes which are 

robustly correlated to lipid density.  These genes are consistent with gene set enrichment and 

pathway analysis tools as well as an abundance of research performed which found each of 

these genes implicated in NAFLD.   On the other hand, machine learning methods such as 

empirical risk minimization and random forest do not distinguish between spurious and non-

spurious correlations.  In our experiment, their top 20 genes are not correlated with lipid 

metabolism, despite the random forest classifier having the highest accuracy (90%) of all the 

models in predicting lipid density.  Our results show that the traditional DESeq2 package did not 

find any genes significantly correlated to our phenotype.  The EdgeR package found 6 genes 

whose expression was significantly correlated to the lipid density response variable.  However, 

gene set enrichment and pathway analysis tools found a wide variety of conditions and processes 

associated with these 6 genes, leaving the results difficult to interpret.  We attribute these 

quantitative and qualitative differences in results to the environment invariance modeling 

approach that the CRISP ML algorithms use.  

The NAFLD pathway was the only pathway significantly enriched by C3, Fasn, Cyp2e1, and 

Fabp1 genes from the CRISP gene result set.  We explored the Bradford-Hill criteria (strength of 

association, consistency, specificity, plausibility, etc) to further establish the causality of these 

genes in the CRISP result set.  For example, the strength of association between these 4 genes 

and the NAFLD pathway is 0.0016 (adjusted for multiple tests) and is well below the 0.05 

threshold of significance.   As noted in Table 8, the literature is consistent in finding these 4 genes 

implicated in experiments on NAFLD. As opposed to the non-specific pathways enriched by the 

EdgeR genes, the CRISP genes uniquely enrich the NAFLD pathway.  And given that these 4 

genes are directly involved in lipid metabolism, it is certainly plausible that they would be causal 

of excessive lipid density. However, our goal in this research is not to establish causality.  
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Instead, our approach is to use causal inference methods to identify stable predictors robustly 

correlated to a response. Causation implies correlation, and the extent to which the genes which 

CRISP found are causal of the lipid density phenotype, they are certainly robustly correlated.   

In this work, we leveraged transcriptomic and histological data from the NASA OSDR. The 

findings presented here are in keeping with previous work from the GeneLab Analysis Working 

Groups (AWGs), hundreds of volunteer scientists who set OSDR data standards and perform 

large meta-analyses with OSDR data. Previous AWG publications identified multi-omic lipid 

dysregulation in space-flown mouse liver 152 and disruption of mitochondrial function in space-

flown mouse and human tissues 155. These studies and the current study demonstrate the power 

of data re-use from publicly available, standardized datasets.  

In our study, we tried to mitigate the small sample size (a typical issue for spaceflight 

experiments) by augmenting the data with different transformations. However, having more 

biological replicates to enrich the underlying gene expression signals would be ideal. Additionally, 

because of the small sample size, we did not create a validation set for validating the model 

selection. We therefore recommend future spaceflight experiments to increase the cohort size 

and make the liver a standard tissue to collect, process, and analyze.  Further, we acknowledge 

one caveat of this study is that the OSD-137 study used Balb/c mouse strain, while the other 

three studies used the C57BL6 strain. These two mouse strains are known to have differing 

responses to spaceflight. 152  Thus, a future study would benefit from further investigating the 

responses of the different mouse strains in larger cohorts.  We include in Supplemental Figures 4 

and 5 the model accuracies and CRISP ensemble gene set results when using strain in the 

environment variable rather than library preparation.  We observe that while the CRISP 

experiments have 50% concordance in their gene sets, using library preparation as the 

environment variable yields more biologically specific and plausible results.  The gene ontologies 

and pathways enriched by the genes that CRISP found when using strain in the environment 

variable are not uniformly related to lipid metabolism and include pathways such as 

cardiomyopathy and thyroid hormone synthesis.  Because the mean lipid density is significantly 
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higher between flight and non-flight groups, we expected the accuracy to be higher in the CRISP 

models predicting the lipid density response when using the condition (flight vs non-flight) in the 

environment variable rather than library preparation.  Indeed, the linear IRM method achieves 

nearly 100% accuracy as shown Supplemental Figure 2.  We conclude that this improved 

accuracy is due to the fact that using the condition in the environment variable leaks the target, 

and such a model would therefore not perform well on out-of-distribution data. 

 

To further validate our findings, one could explore other data associated with these same rodents 

including proteomic and methylation data, as well as leverage existing molecular tests of liver 

function. A future analysis of the gene expression of ground models of NAFLD may help validate 

the genes identified here by CRISP. Future work could focus on randomized controlled 

experiments specifically designed to manipulate the function of each putative gene to verify they 

do, in fact, cause high lipid density in liver tissue. For example, reverse transcriptase PCR or 

quantitative immunohistochemistry studies on liver samples from spaceflown rodents or from 

ground-based rodent or cell culture studies could be key validation studies. Adverse outcome 

pathways (AOPs) related to fatty liver, steatosis, and NAFLD could be explored to identify the 

molecular pathways responsible for the lipid density phenotype and to gain a more complete 

purview of the putative dysfunction.  Additionally, to further elucidate a link to human 

manifestation of NAFLD or similar liver dysfunction, it will be important to address the species 

differences between mouse and human.  

 

In this research, we provide a novel approach to identify robust, non-spurious correlations of gene 

transcripts associated with liver dysfunction during spaceflight.  These gene transcripts constitute 

potential biomarkers of NAFLD for targeted monitoring or therapeutics development in the future 

that would otherwise be more time consuming or impossible to identify with traditional statistical 

or experimental approaches. Given the expense of randomized controlled experiments, having a 

targeted set of genes putatively causal of the response is invaluable. 
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Conclusion 
 
Our results demonstrate that using a causal inference framework based on environment 

invariance has the potential to find features which are robustly correlated with a target. 

Furthermore, our results show that traditional statistical and machine learning approaches which 

do not attempt to disambiguate spurious correlations from non-spurious ones may fail to provide 

meaningful results in high-dimensional, low-sample data sets.  While the results of our research 

robustly correlate gene expression to a lipid dysregulation phenotype in liver tissue, our approach 

can be generalized to other tissues, phenotypes, and even other -omics data.  For NASA to 

embark on longer and more frequent space missions, understanding the impact of spaceflight on 

biological function is paramount.  To this end, there are many data sets in GeneLab left to 

explore, and more are continuing to be published. 
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Chapter 6: Conclusion 
 
Data federation solves the problems many biomedical scientists encounter in which the data they 

wish to research is either too sensitive or too large to export.  Rather than bringing the data to 

where the analytical code resides, data federation decentralizes the solution and leaves the data 

secure in its home institution.  Collaborators can then bring the code to the data and analyze it in 

situ. This is the recurring theme throughout my thesis. 

In Chapter 2, I collaborated with Dr. Cline from UCSC, scientists at the Riken Institute in Japan, 

and a breast cancer gene variant curation expert panel in New Zealand. I containerized co-

occurring variant logic to analyze BRCA variation stored at BIOBANK Japan.  Our collaborators at 

the Riken Institute downloaded our container and ran it against the BIOBANK data to generate a 

list of variants of uncertain significance which co-occur with known pathogenic variants.  Our 

efforts demonstrated that aggregated results from privacy-sensitive, patient-level data can be 

used to classify previously unclassified variants.  We also ran this container on the Seven Bridges 

platform using TCGA data, on the Tera platform using dbGaP data, and on local servers using 

variant data from cardiomyopathy studies at Johns Hopkins, thereby demonstrating the 

generalizability of our approach. There are many other biobanks throughout the world with variant 

data from different genes involved in cancer and other diseases to explore. We published our 

research in Cell Genomics.   

In Chapter 3, I collaborated with Dr. Cline from UCSC and Prof. Brian Shirts from University of 

Washington to ask the question: how long would it take and with what probability would variants 

of uncertain significance get classified if a number of variously sized genomic sequencing centers 

responsibly shared their clinical data?  I modeled the accumulation of clinical evidence from these 

sequencing centers sampling from a binomial distribution and used Tavtigian’s Bayesian 

approach for variant classification to simulate classifying variants using this evidence. We found 

that sharing clinical data as opposed to sharing classifications leads to faster and more likely 

variant classifications for rare variants (i.e. 1 per 100,000 people).  For very rare variants (i.e. 1 
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per 1,000,000 people), clinical data alone is not sufficient, even after 20 years of collecting and 

sharing it among 3 large sequencing centers.  This modeling approach not only quantitatively 

demonstrates the value of clinical data sharing, it also provides a usable tool for geneticists to 

predict how long it will take for a VUS to get classified.  My co-authors plan to use this model on 

real, un-simulated data from large sequencing centers including Ambry Genetics and Invitae for 

making such predictions.  We published our research in the Journal of American Medical 

Informatics Association. 

In Chapter 4, I collaborated with Dr. Cline from UCSC and genomic legal privacy scholars from 

McGill University to ask the question: how well do federated approaches to genomic data analysis 

satisfy strict privacy regulations such as those in the GDPR?  We discussed how various 

technological approaches such as homomorphic encryption, secure multiparty computation, 

differential privacy, and federated computing may both provide sufficient data for biomedical 

research and preserve the privacy of those who contribute their data.  This paper can serve as a 

guide for technological and legal experts who are planning to have multiple institutions 

collaborate to build models or perform other analyses which generate aggregated results from 

privacy-sensitive, patient-level data. Our review will be published in the August 2023 edition of the 

Annual Review of Genomics and Human Genetics. 

In Chapter 5, I collaborated with scientists from NASA to ask the question: which genes are most 

robustly correlated to the high lipid density observed in space-flown mice?  Previous NASA 

rodent research missions observed that the livers in space-flown mice were visibly larger than 

their ground control counterparts.  I leveraged a causal inference machine learning ensemble to 

analyze gene expression data associated with a lipid density phenotype.  The ensemble found 20 

genes, each of which is directly involved in lipid metabolism, that, taken together, significantly 

enrich the non-alcoholic fatty liver disease pathway from the KEGG database.  I also ran 

traditional tools (DESeq2 and EdgeR) and standard machine learning classifiers such as ERM 

and random forest as a basis of comparison.  The traditional tools either didn’t find any genes 

correlated to the lipid density phenotype (DESeq2), or they found several genes which do not 
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have anything to do with lipid metabolism (ERM and random forest).  EdgeR found 6 genes 

significantly differentially expressed between flight and ground control mice, but those genes 

enrich a wide variety of KEGG pathways, including cardiomyopathy, cholesterol, and fructose 

metabolism.  This ensemble platform has been enabled for federated learning, and we have 

already developed and tested the communication protocol to run federated experiments between 

Earth and the International Space Station to determine the effect of spaceflight on female 

reproductive health.  Our research is in review at Nature Portfolio Journal (Microgravity) at the 

time of this writing. 

I look forward to working at NASA and continuing my research into federated methods for building 

models and performing other analyses.  NASA’s Artemis mission is currently underway to build a 

lunar colony with the longer-range vision of sending humans to Mars.  It is critical to the success 

of these missions that we understand and mitigate the negative effects of spaceflight on the 

health of living organisms.  
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Appendix B: Supplement for Modeling the impact of 
data sharing on variant classification 
 
In this section, we provide more detail for how we combine evidence in the Bayesian framework.  

We also provide the graphs for additional experiments run with different configurations, as 

described in the main text. 

Combining evidence 
A single piece of evidence is represented as an odds of pathogenicity. Clinical evidence observed 

for the same variant from unrelated patients is modeled as independent, so the odds from 

multiple observations may be combined multiplicatively. The odds of a variant Vi being 

pathogenic (belonging to the class P) given all the evidence Xj is the product of all the evidence, 

expressed as odds, as shown in Equation S1. 

odds(Vi	 ∈ 	P	|	Xj) = ∏ Xj!
"#$    Equation S1 

We convert the odds of pathogenicity to a log scale as shown in Equation S2. 

log(odds(Vi	 ∈ 	P	|	Xj) = ∑ log(Xj)!
"#$  Equation S2 

For a single variant, we compare this sum to the thresholds for Benign, Likely Benign, Likely 

Pathogenic, and Pathogenic in log scale. The same logic is applied to calculate the odds that the 

variant is Benign (belonging to the class B), as shown in Equation S3. 

log(odds(Vi	 ∈ 	B	|	Xj) = ∑ log(Xj)!
"#$  Equation S3 

 

10 small, 7 medium, and 3 large centers for 1e-05 over 20 years 
 
The following plots show the same collection of sequencing centers we used in the main text for 

an allele frequency of 1e-05 but for a timespan of 20 years instead of 5 years.  These plots show 

that after 20 years of sharing either data or classifications, all the pathogenic variants and almost 
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all benign variants get classified. The difference between the sharing models is how quickly 

variants are classified and “promoted” from “Likely Benign” and “Likely Pathogenic” to “Benign” 

and “Pathogenic”, respectively. 

 

 

Figure S1. Probabilities of classifying variants at 1e-05 frequency plotted over the course of 20 
years at 10 small, 5 medium, and 3 large sequencing centers. On the left, all variant 
classifications and none of the clinical data are shared.  On the right, all the clinical data are 
shared. 

10 small, 7 medium, and 3 large centers for 1e-06 over 5 years 

 

Figure S2. Histograms of cumulative log odds for classifying each of 1000 simulated variants 
present at a 1e-06 frequency in the population for one large sequencing center on the left and for 
all participating sequencing centers on the right over the course of 5 years.  Classification 
thresholds are demarcated as vertical hash lines.  Benign variants are in blue and pathogenic 
variants in red. 
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Figure S3. Classification trajectories over the course of 5 years for 10 randomly selected variants 
at 1e-06 frequency in the population for one large sequencing center on the left and for all 
participating sequencing centers on the right. Classification thresholds are demarcated as 
horizontal hash lines in the timeline plots. Benign variants are in blue and pathogenic variants in 
red. 
 

10 small, 7 medium, and 3 large centers for 1e-06 over 20 years 
 
The following plots show the same collection of sequencing centers we used in the main text for 

an allele frequency of 1e-06 but for a timespan of 20 years instead of 5 years.  These plots show 

that even after 20 years of sharing data, there remains insufficient clinical data to classify variants 

which occur at 1e-06 frequency in the population. 
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Figure S4. Histograms of cumulative log odds for classifying each of 1000 simulated variants 
present at a 1e-06 frequency in the population for one large sequencing center on the left and for 
all participating sequencing centers on the right. Classification thresholds are demarcated as 
vertical hash lines.  Benign variants are in blue and pathogenic variants in red. 

 

Figure S5: Classification trajectories over the course of 20 years for 10 randomly selected 
variants at 1e-06 frequency in the population for one large sequencing center on the left and for 
all participating sequencing centers on the right. Classification thresholds are demarcated as 
horizontal hash lines in the timeline plots. Benign variants are in blue and pathogenic variants in 
red. 

 

 

Figure S6. Probabilities of classifying variants at 1e-06 frequency plotted over the course of 20 
years at 10 small, 7 medium, and 3 large sequencing centers. On the left, all variant 
classifications and none of the clinical data are shared.  On the right, all the clinical data are 
shared. 
 

5 small, 3 medium, and 1 large centers for 1e-5 over 5 years 
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The following plots show the same allele frequency and timespan we used in the main text but 

with a smaller collection of participating centers.  These plots show that sharing clinical data with 

few centers significantly reduces the probability of classifying variants at the same frequency. The 

probability of classifying variants as pathogenic reduces from about 95% to about 60%, and the 

probability of classifying variants as benign reduces from about 60% to about 20%. 

 

Figure S7. Histograms of cumulative log odds for classifying each of 1000 simulated variants 
present at a 1e-05 frequency in the population for one large sequencing center on the left and for 
all participating sequencing centers on the right. Classification thresholds are demarcated as 
vertical hash lines.  Benign variants are in blue and pathogenic variants in red. 

 

Figure S8: Classification trajectories over the course of 5 years for 10 randomly selected variants 
at 1e-05 frequency in the population for one large sequencing center on the left and for all 
participating sequencing centers on the right. Classification thresholds are demarcated as 
horizontal hash lines in the timeline plots. Benign variants are in blue and pathogenic variants in 
red. 
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Figure S9. Probabilities of classifying variants at 1e-05 frequency plotted over the course of 5 
years at 5 small, 3 medium, and 1 large sequencing center. On the left, all variant interpretations 
and none of the clinical data are shared.  On the right, all the clinical data are shared. 
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