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Total-Body Quantitative Parametric Imaging of Early Kinetics
of 18F-FDG
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Ramsey D. Badawi4,6, Simon R. Cherry4,6, and Terry Jones6

1UIH America Inc., Houston, Texas; 2United Imaging Healthcare, Shanghai, China; 3Zhongshan Hospital, Fudan University,
Shanghai, China; 4Department of Biomedical Engineering, University of California Davis, Davis, California; 5Imperial College
London, London, United Kingdom; and 6Department of Radiology, University of California Davis Medical Center, Davis, California

Parametric imaging has been shown to provide better quantitation
physiologically than SUV imaging in PET. With the increased

sensitivity from a recently developed total-body PET scanner,

whole-body scans with higher temporal resolution become possible

for dynamic analysis and parametric imaging. In this paper, we
focus on deriving the parameter k1 using compartmental modeling

and on developing a method to acquire whole-body 18F-FDG PET

parametric images using only the first 90 s of the postinjection scan
data with the total-body PET system. Methods: Dynamic projec-

tions were acquired with a time interval of 1 s for the first 30 s and a

time interval of 2 s for the following minute. Image-derived input

functions were acquired from the reconstructed dynamic se-
quences in the ascending aorta. A 1-tissue-compartment model

with 4 parameters (k1, k2, blood fraction, and delay time) was used.

A maximum-likelihood–based estimation method was developed

with the 1-tissue-compartment model solution. The accuracy of
the acquired parameters was compared with the ones estimated

using a 2-tissue-compartment irreversible model with 1-h-long data.

Results: All 4 parametric images were successfully calculated using
data from 2 volunteers. By comparing the time–activity curves ac-

quired from the volumes of interest, we showed that the parameters

estimated using our method were able to predict the time–activity

curves of the early dynamics of 18F-FDG in different organs. The
delay-time effects for different organs were also clearly visible in the

reconstructed delay-time image with delay variations of as large as

40 s. The estimated parameters using both 90-s data and 1-h data

agreed well for k1 and blood fraction, whereas a large difference in
k2 was found between the 90-s and 1-h data, suggesting k2 cannot

be reliably estimated from the 90-s scan. Conclusion: We have

shown that with total-body PET and the increased sensitivity, it is
possible to estimate parametric images based on the very early

dynamics after 18F-FDG injection. The estimated k1 might potentially

be used clinically as an indicator for identifying abnormalities.
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Conventional PET imaging makes widespread use of SUVs
for semiquantitative analysis, especially in measurements of 18F-

FDG uptake in tumors (1). However, SUV depends on the time of

measurement and many other factors (2,3), which makes reliable

quantitation a challenging task. On the other hand, kinetic analysis

in PET has more direct physiologic meaning than does SUV and

can be a more robust approach for quantifying 18F-FDG uptake

and use (4,5).
Compared with volume-of-interest (VOI)–based kinetic analy-

sis (6,7), parametric imaging enables the acquisition of voxel-level

dynamics of tracer uptake by applying kinetic modeling for each

individual voxel (8,9). Conventional graphical methods, including

Logan analysis (10) and Patlak analysis (11), have been used for

parametric imaging because of their linear properties and simplic-

ity in acquisition protocols. Improved lesion contrast and detect-

ability have been demonstrated by many studies (12,13). With the

assumption that the dynamic activity can be described using ex-

ponentials as impulse responses, the basis function provides a

possible approach for nonlinear model fitting (14,15). Recently,

whole-body parametric imaging using the Patlak model has been

proposed using a multipass acquisition protocol (16,17).
Even with the many added benefits of kinetic modeling, parametric

imaging techniques and dynamic protocols are not widely used in
clinical studies, especially in oncology (17). In some studies, the
requirement for invasive arterial blood sampling for the input func-
tion makes the scan protocol impractical. Even with image-derived
input functions (18,19) or population-based input functions (20,21),
a minimal scan time of 30 min is often required to reveal dynamic
information using Patlak analysis. Compared with state-of-the-art
whole-body SUV scans, which take around 20 min and sometimes
less than 10 min, the increased scan time and more complex pro-
tocol have proved to be one of the major practical factors that
hinder the clinical use of dynamic analysis with whole-body
imaging.
The study of early dynamics, such as first-pass studies (22,23), on

the other hand, may enable much shorter scan protocols and—with
18F-FDG studies—may enable the estimation of k1, which represents
the rate of 18F-FDG transport from the arterial plasma to the intra-
cellular space. In some studies in the literature, 18F-FDG k1 was
found to be an indicator for identifying tumor subgroups (24), gene
expressions (25), and chemotherapy response (26) and could be used
to assess tumor blood flow (22). 18F-FDG k1 was found to be a
valuable parameter for applications other than oncology. In the work
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by Sarkar et al. (27), the authors found that the k1 value is helpful for
quantifying liver inflammation in nonalcoholic fatty liver disease.
With the recently developed total-body PET system, a dramatic

improvement in sensitivity has made it possible to acquire PET

images with reasonable quality in scan times of 60 s or less (28,29).

With this increase in sensitivity, parametric imaging with high tem-

poral resolution becomes feasible, which in turn may allow accurate

parametric imaging using only the early phases of the tracer dy-

namics. We have developed a method to acquire whole-body para-

metric images using data acquired from the total-body PET system

with a temporal resolution of 1–2 s. With the much improved tem-

poral resolution, the delay time of the input function has been

shown to be an important factor in VOI-based analysis (30). In this

paper, the delay time is included as a voxel-specific parameter that

is jointly estimated.

MATERIALS AND METHODS

Parametric Image Reconstruction

For 18F-FDG, a 2-tissue-compartment irreversible (2Ti) model with

4 rate constants (k1, k2, k3, and k4) is often used to model its tracer

dynamics. In the 2Ti model, k1 and k2 describe the forward and back-

ward transport of 18F-FDG from plasma to tissue. k3 and k4 model the

phosphorylation and dephosphorylation process. The accuracy of the

measured kinetic parameters in dynamic analysis can be estimated by

calculating the sensitivity of the model with respect to each kinetic

parameter (31). Zuo et al. (32) suggested that k3 and k4 cannot be

accurately estimated using only the first few minutes of a scan because

of the low identifiability of these parameters at early times. Therefore,

a 1-tissue-compartment (1T) model was used in this study. The time–

activity curve for a specific voxel can be expressed as. . .

CðtÞ 5 vbCbðtÞ1 ð1 2 vbÞ
�
k1expð2k2tÞ5CpðtÞ

�
; Eq. 1

where vb is the blood fraction in the tissue, CbðtÞ is the time–activity
curve for the whole blood, CpðtÞ is the plasma input function, and CðtÞ
is the concentration of 18F-FDG in the tissue. 5 represents the convo-

lution operation. In the above equation, the whole-blood time–activity

curve is used for the blood fraction because the intravascular activity

includes that from both plasma and blood cells.
With higher temporal resolution and whole-body coverage, the

delay time for different regions becomes an important factor. With the
inclusion of delay time, the measured time–activity curve is. . .

CðtÞ 5 vbCbðt 2 tdÞ1k1expð2k2tÞ5Cpðt 2 tdÞ; Eq. 2

where td is the voxel-dependent delay time. For easier computation,

the parameter k1 5 ð1 2 vbÞk1 is used and estimated instead of k1.
Because of the very high temporal resolution used in this study,

the time–activity curve for an individual voxel is still expected to be

noisy despite the much-increased sensitivity of the scanner. There-

fore, it may be beneficial to develop a maximum-likelihood estima-

tion approach that specifically models the noise of the reconstructed

dynamic image. Studies in the literature indicate that the voxel

values in the image approximately follow a scaled Poisson distribu-

tion (33). With this assumption, the log-likelihood function can be

derived as. . .

Lðk1; k2; vb; tdÞ 5 +
t

2CðtÞ1 xt logðCðtÞÞ 2 logðxt!Þ; Eq. 3

where xt are the reconstructed dynamic images and are treated as a
known measurement in this case. The update equation for k1, k2; and

vb can be derived by maximizing the likelihood in the above equation

(Supplemental Eqs. 1–5 show the derivations; supplemental materials
are available at http://jnm.snmjournals.org):
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ĈpðtÞ

p1 1
2 5 p

2

+
t

tkp1
�
exp

�
2 p

2t
��
5Cpðt 2 tdÞ

+
t

tkp1
�
exp

�
2 p

2t
��
5Cpðt 2 tdÞCðtÞ

Ĉ
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FIGURE 1. VOIs used for parameter estimation.

FIGURE 2. Image-derived input function for first 90 s after injection.

AU 5 arbitrary units.
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where p is the iteration number and Ĉ
pðtÞ 5 vpb Cbðt 2 tdÞ1 kp1e

2kp
2
t5

Cpðt 2 tdÞ are the estimated dynamic images. Ĉ
p
is the matrix version

of Ĉ
p
; the same is true for the other symbols as well. The multiplicative

update equations imply positive constraint for k1, k2; and vb, which is
reasonable on the basis of the model. The multiplicative factors for k1
and vb are similar to that from a conventional maximum-likelihood
expectation maximization approach to image reconstruction, as is the

reciprocal of k2 ’s update factor. This similarity makes the implementa-
tion straightforward.

A maximum-likelihood gradient-descent approach is used for the

estimation of td (Supplemental Eq. 6 shows the derivations):

tp1 1
d 5 tpd 1 s

@Lðk1; k2; vb; tdÞ
@td

; Eq. 5

where @Lðk1 ; k2 ;vb ; tdÞ
@td

5 +
t

ðvbC0
bðt 2 tdÞ 2 k1expð 2 k2tÞ5C

0
pðt 2 tdÞÞ�

xt
Ĉ
pðtÞ 2 1

�
, and s is the step size of the update. Since the range of

delay times is expected to be less than 1 min

based on known circulation times, to ensure
convergence the absolute update for the delay

time was set to a fixed value for all voxels in

this paper, that is, s 5 Dt=

����@Lðk1 ; k2 ;vb ; tdÞ@td

����. The
update value Dt was set to be 2 s in the first

few iterations and reduced to 0.2 s in later
iterations.

In this study, the dynamic images were first
reconstructed by applying 3 iterations with 20

subsets using time-of-flight information. The
reconstruction voxel size was 4 · 4 ·
2.89 mm, and attenuation, scatter, randoms,
and normalization corrections and point-

spread-function modeling were also included
during image reconstruction. A 3-dimensinal

gaussian filter of 6 mm in full width at half
maximum was used for noise suppression in

the reconstructed dynamic image. An alter-
nate update approach was used to estimate

the 4 parameters. In total, 18 main iterations
were used. Within each iteration, k1 and vb
were first updated with fixed k2 and td using
9 subiterations, k2 was updated with fixed k1,

vb, and td using 1 subiteration, followed by

FIGURE 3. Maximum-intensity projection of reconstructed parametric images vb and k1 acquired using proposed approach.

FIGURE 4. Coronal plane of reconstructed k1, 1, vb , and td parametric images using proposed

method from volunteer 1, together with SUV image.
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the update of td with fixed k1, vb, and k2 using 3 subiterations. The

same gaussian smoothing filter was used after every 6 main iterations
for the delay-time image and k1 for better control of noise. With the

acquired k1 and vb image, the k1 image was also generated and com-

pared with k1.
To study the accuracy of the estimated parameters, they were

compared with VOI-based analysis. Nine regions were selected (gray
matter, white matter, lung, liver, kidney cortex, myocardium, spleen,

arm, and thighs; Fig. 1). A 2Ti model was also applied on 1-h-long
data to compare the estimated k1 values. In the 2Ti model, the same

delay time as estimated using the 1T model was used because the
extended time is less likely to contain information on the delay time.

Patient Data and Scan Protocol

Two healthy volunteers with an injected activity of about 220 MBq
were scanned using the uExplorer PET scanner (United Imaging

Healthcare) with the approval of the Ethics Committee of Zhongshan

Hospital and after giving informed consent. One volunteer was
injected in the leg, and the other was injected in the arm. The image data

obtained during the first 90 s after injection were used in this study for
1T model analysis.

To obtain an image-derived input function, VOIs over the ascending
aorta and the left ventricle (Supplemental Fig. 1) were manually

drawn on the PET/CT image and the time–activity curves were ac-
quired. It has been suggested that the best location for image-derived

input function is the ascending aorta (34), as it is less affected by
respiratory and cardiac motion. The left ventricle is another widely

used location because of the relatively large blood pool size (18). The
diameter of the ascending aorta VOI was 16 mm, and the height was

40 mm. The boundaries in the left ventricle were excluded from the
left ventricular VOI to reduce the effect of respiratory motion, and the

total volume was about the same as for the ascending aorta VOI.

Whole-blood–to–plasma correction was applied on the time–activity

curve CbðtÞ to estimate the plasma input function CpðtÞ. The correc-
tion equations and values are based on the method and parameters

published in the literature (Eq. 2 of Wahl et al. (35), where the he-

matocrit is 0.42 and the equilibration time constant is 0.23 min21).

RESULTS

Figure 2 shows the first 90 s of the image-derived plasma input
function for volunteer 1 using the reconstructed dynamic images
of the ascending aorta VOI and the left ventricular VOI. Image
voxel values were applied directly without calibration of activity
concentrations using a well counter. The calibration scale factor
cancels out in the analysis and therefore is not needed. The time–
activity curves were almost identical except for the 1-s delay time.
With the added delay time modeling, the results are expected to be
the same with the left ventricle as the input function. The time–
activity curve from the ascending aorta was used for the input
function.
Figure 3 shows the acquired maximum-intensity projection from

the reconstructed k1 and vb images. The reconstructed parametric
images vb; k1; k2; and td from volunteer 1 are shown in Figure 4.
The k1 image was also calculated using vb and k1. The SUV image
acquired from the same periods (0–90 s) is also shown for compar-
ison. vb represents the plasma volume fraction in the tissue, which
was clearly visible in the blood pool of the heart and in the aorta.
The visual difference between k1 and k1 was generally small, ex-
cept for the myocardium region. High k1 values were observed in
the spleen and kidneys. Moderate k1 values were observed in the
liver and myocardium. A high k1 was also observed in some blood
vessels (mostly veins), likely the result of dispersion of the plasma

TABLE 1
Estimated k1 and Delay Time (Relative to Ascending Aorta) in Different Organs

Parameter Gray matter White matter Myocardium Liver Kidney cortex Spleen Lung Arm Thigh

k1 (min−1) VOI

analysis

0.08 0.05 0.56 0.39 0.75 0.92 0.02 0.02 0.06

k1 (min−1)

parametric

image

0.09 ± 0.02 0.06 ± 0.01 0.45 ± 0.10 0.33 ± 0.04 0.54 ± 0.08 0.73 ± 0.13 0.02 ± 0.02 0.02 ± 0.01 0.06 ± 0.03

Cb VOI analysis 0.020 0.01 0.02 0.006 0.08 0.006 0.12 0.0004 0.0

Cb parametric

image

0.020 ± 0.01 0.007 ± 0.005 0.05 ± 0.04 0.003 ± 0.005 0.11 ± 0.03 0.03 ± 0.02 0.12 ± 0.03 0.0009 ± 0.001 0.004 ± 0.01

Delay time (s) 3.9 3.7 −1.2 13.1 4.7 3.1 −3.8 10.8 8.6

FIGURE 5. Estimated k1, k2, and vb for 9 VOIs using 1T model with 90 s of data (y-axis) and 2Ti model with 1 h of data (x-axis).
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input function in these vessels. The abnormal signal in the veins
near the injection site suggested possible retrograde pooling in the
veins. Very large k2 values were also observed in some blood
vessels for the same reason. Large delay times were observed in the
liver (.10 s) and extremities (;30 s) when compared with the
delay time in the lungs. The large delay time in the liver region
was likely caused by the dual blood supply from both the hepatic
artery and the portal vein (36), and the algorithm approximated the
portal vein input function with the arterial input function by means
of a delay time. The delay-time image could also be used for the
illustration of the circulatory system. In volunteer 1, 18F-FDG was
first injected into a leg vein and then traveled to the right ventricle.
From there the tracer was moved into the lungs and back to the left
ventricle, where the tracer was pumped via the arterial system to
other organs. The measured delay times (relative to the ascending
aorta), k1, and vb for different organs are given in Table 1.
Using VOI analysis, the estimated k1, k2, and blood fraction vb

using the 1T model with 90 s of data were compared with the same

parameters calculated using the 2Ti model with 1-h-long data.
Figure 5 shows the relationships of the estimated values. For k1
and vb, both approaches yielded similar results (coefficient of de-
termination of linear fitting was 0.97 for k1 and 0.95 for blood
fraction). Some large differences were observed in k2, suggesting
that k2 cannot be accurately estimated from the 90-s data. The
estimated k1 using VOI-based analysis was also compared with
the k1 acquired from the parametric image and is given in Table 1.
For most VOIs, the differences in k1 were small. k1 was underesti-
mated in VOIs in the myocardium and kidney cortex, likely because
of application of the gaussian filter, which introduced additional
partial-volume effects and affected the quantitative values within
these relatively small structures.
Figure 6 shows the time–activity curves for myocardium, brain,

liver, and lung. The average parameters within the VOI were used
to estimate the fitted curves. Because the ascending aorta was used
as the input function, a positive delay time was observed in the liver
and a negative delay time in the myocardium and lung, with

FIGURE 6. Time–activity curve measured from dynamic frames (blue dots) and fitted curves using proposed method, and fitting based on time–

activity curve from VOI in 4 different organs: myocardium, brain, liver, and lung. For better illustration of delay time, corresponding blood fraction in

time–activity curve was also plotted. AU 5 arbitrary units.
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a minimal delay time in the brain. The difference between the
curves from averaged voxel-based parameters and from the VOI-
based parameters was relatively small, indicating a small bias from
the voxel-based analysis. Even though the model used in this paper
was generally able to predict the time–activity curve from different
organs with high temporal resolution, discrepancies could be ob-
served in some organs such as the liver.

DISCUSSION

This preliminary study showed that the k1 estimated using 90-s
data generally agrees with that derived from a much longer scan (1 h).
The same agreement was not found for k2, indicating that the esti-
mated k2 is less accurate in shorter scans. High k1 values were de-
tected in some venous blood pools, such as in the jugular veins,
venous sinuses, and portal veins, whereas high blood fractions were
observed in arterial blood pools such as the carotid arteries (Fig. 3).
The high k1 values in some blood-pool regions were likely caused
by the dispersion effects modeled by the 1T model (37). This in-
formation may yield further physiologic insights and better kinetic
modeling. For instance, the k1 in the venous blood pools of the brain
may represent the combined effects of the glucose passing through the
brain’s vasculature and the small extraction of tracers within the brain.
The k1 in the portal veins may also be used to develop a more accurate
model for the liver. The modeling of the delay times in the kinetic
model not only enabled better model fitting but also produced a delay-
time image that might provide additional information—for example,
as a biomarker for assessing blood delivery and vessel occlusion.
However, our method did not model the dispersion effects of the

input function for different organs. Another limitation of the
proposed approach is the use of a single model for the whole body.
For instance, the dual blood supplies (portal veins and arteries) in
the liver region (32) were not modeled. The use of a single input
function resulted in some quantitative inaccuracy, and further
studies are required for more accurate parametric imaging. The
image-based input function in this study was also not validated
using arterial blood samples, but the feasibility has already been
proven in the literature (18). Because of the very concentrated and
rapidly changing tracer distribution in the first few seconds after
injection, scatter corrections may not be accurate enough. One
possible example is the low delay time in regions near the injec-
tion site in the delay-time image. Another example is the small
increase in the liver time–activity curve around 20 s after injec-
tion, which we believe was caused by the inaccurate scatter cor-
rection from the very high activity level during the injection.
Two different injection sites were used in our study. Initially the leg

was chosen so that the injection site would be closer to the end of the
gantry, thus requiring a shorter tube connecting the syringe and the
needle; however, a major challenge in leg injection is the difficulty in
finding the appropriate vein. Subsequent to the first patient, we chose
to perform all injections in the antecubital fossa, which follows
conventional practice and has not led to significant difficulties (38).
Although our method was developed using 18F-FDG, the same

methodology can be applied to other tracers as well. More benefit
can be expected for radionuclides with a much shorter half-life, such
as 15O or 82Rb. The acquired 18F-FDG k1 image can also be used to
examine the relationship between blood flow and metabolism, which
may help with diagnosis in some pathophysiologic conditions such as
hyperemic areas of brain tissue after stroke. For 18F-FDG scans, a
practical implementation of the proposed approach can still be chal-
lenging, as 18F-FDG imaging traditionally focuses mostly on the later

period, when equilibrium is reached. Combination with a later scan
may be the solution; however, future studies are required to address
the clinical or technical challenges for that protocol.
Future studies using patient data are required for a better

understanding of the full potential of the clinical significance of
the proposed method.

CONCLUSION

In this study, we demonstrated that with an ultra-high-sensitivity
total-body PET scanner, it is possible to achieve whole-body para-
metric image reconstruction using only the early stage of the scan
(within the first 2 min after injection), for much easier incorporation
into the daily clinical route. However, only fast parameters such as k1
can be estimated using this ultrashort scan duration. We also showed
that with the much-improved temporal resolution due to improved
sensitivity, organ-dependent delay time becomes an important factor
to consider in the analysis of whole-body early-stage dynamics.
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KEY POINTS

QUESTION: Can whole-body first-pass parametric imaging be

achieved using an ultrashort scanning protocol?

PERTINENT FINDINGS: We have demonstrated the possibility of

generating whole-body parametric images such as k1 (a possible

indicator for tumor identification), blood fraction, and delay-time

images that illustrate the circulatory system, from dynamic scans

of as short as 90 s using the total-body PET scanner.

IMPLICATIONS FOR PATIENT CARE: This protocol produces

added value (a potential biomarker for identification of tumors and

other diseases) with minimal added scanner time.
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