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NO INFINITE SPIN FOR PLANAR TOTAL COLLISION

RICHARD MOECKEL AND RICHARD MONTGOMERY

Abstract. The infinite spin problem concerns the rotational behavior
of total collision orbits in the n-body problem. It has long been known
that when a solution tends to total collision then its normalized config-
uration curve must converge to the set of normalized central configu-
rations. In the planar n-body problem every normalized configuration
determines a circle of rotationally equivalent normalized configurations
and, in particular, there are circles of normalized central configurations.
It’s conceivable that by means of an infinite spin, a total collision solu-
tion could converge to such a circle instead of to a particular point on
it. Here we prove that this is not possible, at least if the limiting circle
of central configurations is isolated from other circles of central config-
urations. (It is believed that all central configurations are isolated, but
this is not known in general.) Our proof relies on combining the center
manifold theorem with the  Lojaseiwicz gradient inequality.

1. Introduction

Consider the planar n body problem with masses mi > 0, positions qi ∈
R
2 and let q = (q1, . . . , qn) ∈ R

2n The motion is governed by Newton’s
equations of motion

miq̈i = ∇iU(q)

where

(1) U(q) =
∑

i<j

mimj

rij
rij = |qi − qj|

and ∇i is the partial gradient with respect to qi. The translation symmetry
of the problem implies that we may assume without loss of generality that
the total momentum is zero and that the center of mass is fixed at the origin,
that is

(2) m1q1 + . . .+mnqn = 0 m1v1 + . . .+mnvn = 0.

A solution q(t) has a total collision at time T if all of the positions qi(t)
converge to the same point as t→ T . This collision point must be the center
of mass so we have q(t) → 0 ∈ R

2n. Let

I(q) =
∑

i

mi|qi|2
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2 RICHARD MOECKEL AND RICHARD MONTGOMERY

be the moment of inertia with respect to the origin. We can think of I(q) as
the square of a mass norm on R

2n and write I(q) = ‖q‖2. Then the quantity

r(q) =
√

I(q) = ‖q‖ is a convenient measure of the distance to collision. The
unit vector q̂ = q/‖q‖ is the corresponding normalized configuration. Taking
into account the center of mass condition, the normalized configurations
form a sphere S ≃ S

2n−3.
A classical result of Chazy [3] about total collision solutions asserts that

their normalized configuration curve q̂(t) converges to the set of normalized
central configurations as t→ T , the total collision time.

Definition 1. A point q ∈ R
2n is a central configuration or CC if

(3) ∇iU(q) + λmiqi = 0

for some constant λ > 0.

This means that the gravitational acceleration on the i-th body is −λqi
which points toward the origin and is proportional to the distance to the
origin. If we release the masses at a central configuration q0 with initial zero
velocity we obtain a simple example of a total collision solution of the form
q(t) = f(t)q0 where f(t) > 0 is a scalar function with f(t) → 0 as t → T .
There are many other less obvious examples of total collision but always the
limit points of q̂ are CCs.

A normalized CC is just a CC with I(q) = ‖q‖ = 1, that is, q ∈ S. If we
think of λ as a Lagrange multiplier, then (3) can be viewed as the equation
for critical points of the Newtonian potential U(q) restricted to the unit
sphere S. The problem of infinite spin arises due to the rotational symmetry
of the n-body problem. Any configuration q = (q1, . . . , qn) 6= 0 determines
a circle of symmetrical configurations R(θ)q = (R(θ)q1, . . . , R(θ)qn) where
R(θ) ∈ SO(2) is a 2 × 2 rotation matrix. If q is a CC, then so is every one
of its rotates R(θ)q ∈ SO(2)q. In other words, there are circles of critical
points for U(q) on S. Now pass to the (2n−4)-dimensional quotient manifold
S/SO(2) which is diffeomorphic to the complex projective space CP(n− 2).
Write the quotient map S → CP(n − 2) as q 7→ [q]. Write [q] 7→ U([q]) for
the function on CP(n− 2) induced by U . A famous conjecture about CCs is
that there are only finitely many of them up to symmetry, or equivalently,
that U([q]) has only finitely many critical points. This is known to be the
case for n = 3, 4 and for generic masses when n = 5. Whether or not the
conjecture holds, we call q an isolated CC if [q] is an isolated critical point
of U([q]) and a nondegenerate CC if it is a nondegenerate critical point of
U([q]). (Nondegenerate CCs are necessarily isolated CCs.)

If q(t) is a total collision solution we can form the curves q̂(t) ∈ S and
[q̂(t)] ∈ S/SO(2). It follows from Chazy’s result that [q̂(t)] converges to
a compact subset of the set of critical points of U([q]) as t → T . If the
limit set of [q̂(t)] contains an isolated critical point [q0] then it must be
that [q̂(t)] → [q0] as t → T . It follows that q̂(t) ∈ S converges to the
corresponding circle of normalized critical points in S and it is natural to
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wonder if q̂(t) converges to a particular CC or to a nontrivial subset of the
circle. For example it’s easy to imagine that by undergoing infinite spin it
might converge to the whole circle. The main goal of this paper is to show
this can’t happen.

Theorem 1. Suppose q(t) is a solution of the planar n-body with q(t) → 0
as t → T and suppose its reduced and normalized configuration [q̂(t)] ∈
S/SO(2) converges to an isolated CC. If θ(t) is an angular variable on the
corresponding circle of CCs in S, then θ(t) converges as t → T and so q̂(t)
converges to a particular CC in the circle.

This theorem was proved by Chazy under the assumption that the limiting
CC is nondegenerate [3] so the problem is really to handle degenerate cases.
Wintner mentions this as an open problem and it appears as problem 5 in
a list of open problems in celestial mechanics [1]. Here we are solving the
planar case with an isolated limiting CC.

Theorem 1 will follow from another result about solutions in a blown-up
and rotation-reduced phase space. The modern approach to studying total
collision uses McGehee’s blow-up technique which involves introducing the
size coordinate r and a set of coordinates on the unit sphere S as well as
suitable velocity variables and a new timescale τ [8, 9]. In these coordinates
{r = 0} becomes an invariant total collision manifold. There are restpoints
in the collision manifold associate to the normalized CCs. Orbits which
previously experienced total collision as t ր T now converge to a compact
subset of the set of restpoints in the collision manifold as τ → +∞. In the
next section, we will introduce such coordinates together with an angular
coordinate θ and reduced coordinates corresponding to the quotient space
S/SO(2). In the end we obtain a blown-up and rotation reduced problem
together with an integral formula for the angle θ. Then we will show

Theorem 2. For the blown-up and rotation reduced problem, total collision
solutions which converge to isolated CCs have finite arclength with respect
to a natural Riemannian metric.

This will imply Theorem 1 since the finite arclength implies that the
integral giving the change in θ as τ → ∞ is finite.

Several previous works have claimed to solve this problem by estimating
the rotational component of the velocity. But this does not take into account
the “falling cat” phenomenon where rotation is produced by changes in shape
even though the rotational component of the velocity is zero. We have
included an Appendix which contains a fuller discussion of this issue. Our
approach is based on combining a study of the flow on the center manifold
of a degenerate restpoint with an integral formula for the change in angle. A
recent preprint based on power series expansions for the flow on the center
manifolds claims to solve the spin problem for one-dimensional and some
two-dimensional center manifolds [16].
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2. Reduced Planar n-Body Problem and the Spin Angle

Assume that the center of mass is at the origin and the total momen-
tum is zero. We can parametrize the (2n − 2)-dimensional center of mass
subspace, W, by a linear map q = Pz, P : R

2n−2 → W ⊂ R
2n where

z = (z1, . . . , zn−1) ∈ R
2n−2, zi ∈ R

2. For example, we could use relative
positions zi = qi − qn with respect to the n-th body or generalized Jacobi
variables.

No matter how these coordinates are chosen, the mutual distances will be
expressible in terms of z and (1) determines an analytic function U(z) on
R
2n−2 \ ∆ where ∆ = {z : rij = 0 for some i 6= j}. −U(z) is the Newtonian

potential energy function. The moment of inertia and squared mass norm
I(q) =

∑

imi|qi|2 will become

I(z) = ‖z‖2 = zTMz

where M is the (2n − 2) × (2n − 2) positive-definite symmetric matrix
P T diag(m1,m1, . . . ,mn,mn)P .

Let ζ = ż be the corresponding velocity variables. Then since q̇ = Pζ the
kinetic energy K = 1

2

∑

imi|q̇i|2 becomes

K(ζ) =
1

2
‖ζ‖2 =

1

2
ζTMζ

Then the translation-reduced problem can be viewed as a Lagrangian system
on the tangent bundle T (R2n−2 \∆) with Lagrangian L = K(ζ)+U(z). The
Euler-Lagrange equations are

ż = ζ

ζ̇ = M−1∇U(z)

and the total energy of the system is

K(ζ) − U(z) =
1

2
‖ζ‖2 − U(z) = h.

Next we will introduce new coordinates which represent the size, rotation
angle and shape of the configuration. To describe these, it’s convenient to
view the positions and velocities as complex numbers, so we have z, ζ ∈
C
n−1. We will introduce a Hermitian mass metric on C

n−1

〈〈v,w〉〉C = vTMw v,w ∈ C
n−1 ≃ R

2n−2

where v is the complex conjugate of v. The real part 〈〈v,w〉〉 = re〈〈v,w〉〉C will
be called the mass inner product. The corresponding norm is just our mass
norm ‖v‖. The imaginary part im〈〈v,w〉〉C, a nondegenerate antisymmetric
bilinear form, will also be useful below.

Let r = ‖z‖ and define the normalized configuration ẑ = z/r ∈ S
2n−3.

Then we will have

(4) ‖ẑ‖ = 1 〈〈ẑ, ζ̂〉〉 = 0
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where ζ̂ = ˙̂z. To introduce an explicit rotation angle, restrict to the open
subset of S2n−3 where ẑn−1 6= 0 and introduce polar coordinates such that
ẑn−1 = keiθ where k > 0. Note that the angle is chosen so that θ = 0
represents a state with zn−1 in the positive real axis. This represents a
choice of a local section for the rotation group action. Different choices for
the angular variable would differ only by a constant shifts on each rotation
group orbit and would not affect the question of convergence.

Define new variables si = zi/zn−1 = ẑi/ẑn−1. Then

ẑ = keiθ(s1, . . . , sn−1, 1) = keiθ(s, 1) s ∈ C
n−2.

Since ‖ẑ‖ = 1 we have k = ‖(s, 1)‖−1 and our coordinate change is given by
ψ : R+ × S

1 × C
n−2 → C

n−1

(5) z = ψ(r, θ, s) = r eiθ
(s, 1)

‖(s, 1)‖ .

Differentiating, we compute that

(6) ż = (ṙ + k̇r + iθ̇r)eiθk(s, 1) + reiθk(ṡ, 0)

where we continue to use k = ‖(s, 1)‖−1 from which the chain rule yields

k̇ = − G(s, ṡ)

‖(s, 1)‖3 , and G(s, ṡ) = 〈〈(s, 1), (ṡ, 0)〉〉.

Introduce velocity variables ζ = ż, ρ = ṙ, ω = ṡ. Also introduce

Ω(s, ω) = im〈〈(s, 1), (ω, 0)〉〉C
and write ‖ω‖ instead of ‖(ω, 0)‖. Then simplifying we get the Lagrangian
to be

L =
1

2
ρ2 +

1

2
r2θ̇2 +

r2‖ω‖2
2‖(s, 1)‖2 − r2G(s, ω)2

2‖(s, 1)‖4 +
r2θ̇Ω(s, ω)

‖(s, 1)‖2 +
1

r
V (s)

where

V (s) = ‖(s, 1)‖U(s, 1).

The first five terms of the Lagrangian L are just the kinetic energy 1
2‖ζ‖2

rewritten in terms of our new variables. The formula relating V and U
follows from the rotation invariance and homogeneity of the potential:

U(z) = U

(

reiθ(s, 1)

‖(s, 1)‖

)

) =
‖(s, 1)‖

r
U(s, 1)

The last step of the reduction uses that the Lagrangian is independent of
θ to eliminate (θ, θ̇). First compute the angular momentum and solve for θ̇:

(7) µ = Lθ̇ = r2θ̇ +
r2Ω(s, ω)

‖(s, 1)‖2 θ̇ =
µ

r2
− Ω(s, ω)

‖(s, 1)‖2 .
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Then the reduced Lagrangian or Routhian is Rµ = L− µθ̇ where θ̇ is to be
eliminated in terms of µ. Carrying out this computation gives

Rµ =
1

2
ρ2 +

r2‖ω‖2
2‖(s, 1)‖2 − r2G(s, ω)2

2‖(s, 1)‖4 − 1

2

(

rΩ(s, ω)

‖(s, 1)‖2 − µ

r

)2

+
1

r
V (s).

A classical result shows that total collision is possible only when µ = 0 and
from now on we will concentrate on this case. Then the Routhian becomes

R(r, ρ, s, ω) =
1

2
ρ2 +

r2

2
‖ω‖2FS +

1

r
V (s)

where

(8)

‖ω‖2FS =
‖(s, 1)‖2‖(ω, 0)‖2 − |〈〈(s, 1), (ω, 0)〉〉C |2

(‖(s, 1)‖2)2

=
‖ω‖2

‖(s, 1)‖2 − G(s, ω)2 + Ω(s, ω)2

(‖(s, 1)‖2)2
.

We will also use the notation F (s, ω) = ‖ω‖2FS . It is the local coordinate
representation of the square of the Fubini-Study norm on the complex pro-
jective space CP(n− 2) induced by the mass norm on C

n−1. There is also a
corresponding Fubini-Study metric.

Since we are using local coordinates we have a Lagrangian system on the
tangent bundle of R

+ × C
n−2 \ ∆ or R

+ × R
2n−4 \ ∆. Reverting to real

coordinates, we can write the Fubini-Study norm as F (s, ω) = ωTA(s)ω
where A(s) is a positive-definite (2n − 4) × (2n − 4) matrix. Then we have

(9)

ṙ = ρ

ρ̇ = rF (s,w) − 1

r2
V (s)

ṡ = ω

ω̇ =
1

r3
A−1(s)∇V (s) − 2ρω

r
+

1

2
A−1(s)∇F (s, ω) −A−1(s)Ȧ(s)ω

where ∇ denotes the Euclidean gradient or partial gradient with respect to
s. The total energy of the system is

1

2
ρ2 +

r2

2
F (s, ω) − 1

r
V (s) = h.

The last equation in (9) follows from the Euler-Lagrange equation (Rω)· =
Rs. We have Rω = r2A(s)ω so

(Rω)· = r2A(s)ω̇ + r2Ȧ(s)ω + 2rρ (A(s)ω).

The equation for ω̇ can be written more concisely if we make use of gradi-
ents and covariant derivatives with respect to the Fubini-Study metric. Let
∇̃ = A−1(s)∇ denote the gradient or partial gradient with respect to the

Fubini-Study metric and let D̃t denote the covariant time derivative of a
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vectorfield along a curve s(t). Then we have

D̃tω = ω̇ − 1

2
A−1(s)∇F (s, ω) +A−1(s)Ȧ(s)ω

= ω̇ − 1

2
∇̃F (s, ω) +A−1(s)(DA(s)(ω))ω

and the last Euler-Lagrange equation simplifies to

(10) D̃tω =
1

r3
∇̃V (s) − 2ρω

r
.

Even though we eliminated the angle θ, we want to study its behavior for
solutions approaching the total collision singularity. Although the angular
momentum is zero, θ(t) need not be constant. In fact we have

(11) θ̇ = − Ω(s, ω)

‖(s, 1)‖2 .

It’s conceivable that as the shape s(t) changes, the integral of θ̇(t) could
diverge producing “infinite spin’ (see the Appendix for a fuller explanation).
We will show that this does not happen.

3. Collision Manifold and Center Manifold

To study orbits converging to total collision we will use McGehee’s blowup

method. Namely, introduce rescaled velocity variables v =
√
rρ,w = r

3

2ω

and a new time variable τ such that ′ = r
3

2
·. The blown-up differential

equations are

(12)

r′ = vr

v′ =
1

2
v2 + F (s,w) − V (s)

s′ = w

D̃τw = ∇̃V (s) − 1

2
vw

where

D̃τw = w′ − 1

2
∇̃F (s,w) +A−1(s)(DA(s)(w))w.

The energy equation is

1

2
v2 +

1

2
F (s,w) − V (s) = rh.

The collision manifold {r = 0} is invariant. The equilibrium points are of

the form P = (r, v, s, w) = (0, v0, s0, 0) where ∇̃V (s0) = 0. The last equa-
tion, which is equivalent to ∇V (s) = 0, characterizes the reduced central
configurations. If q(t) is a total collision solution with t ր T then the cor-
responding solution γ(τ) = (r(τ), v(τ), s(τ), w(τ)) converges to a compact
subset of the set of equilibrium points in some level set v = v0 < 0. The en-
ergy equation shows that v0 = −

√

2V (s0). Since r′ = vr and v(τ) → v0 < 0,
it follows that r(τ) converges to 0 exponentially.
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Suppose P is an isolated equilibrium point with v0 < 0 which is one of
the limit points of such a total collision solution, γ(τ). Since P is isolated
we have γ(τ) → P as τ → ∞. We want to show that the Fubini-Study
arclength L(s) is finite, where

(13) L(s) =

∫

‖s′(τ)‖FS dτ =

∫

‖w(τ)‖FS dτ.

The linearized differential equations at P have matrix








δr′

δv′

δs′

δw′









=









v0 0 0 0
0 v0 0 0
0 0 0 I

0 0 D∇̃V (s0) −1
2v0I

















δr
δv
δs
δw









.

Since ∇V (s) = 0, it follows that that D∇̃V (s0) = D(A−1(s)∇V (s)) =
A−1(s)D∇V (s).

The tangent space to the energy manifold is given by v0δv = hδr so
the upper left 2 × 2 block gives rise to a single eigenvalues v0 < 0. This
corresponds to the exponential convergence of r(τ) to 0. Let B be the
lower right (4n− 8)× (4n− 8) block, representing the linearized differential

equations within the collision manifold. If δs satisfies D∇̃V (σ0)δs = c δs
then (δs, δw) = (δs, λ±δs) is an eigenvector of B with eigenvalue

λ± =
−v0 ±

√

v20 + 16c

4
.

Since v0 < 0, it follows that any nonreal eigenvalues are unstable. Also
reλ+ > 0 and we have λ− = 0 if and only if c = 0.

If the matrix D∇V (s0) is nonsingular, then the corresponding restpoint
P is hyperbolic and therefore isolated. Any solutions approaching P as
τ → ∞ are in the stable manifold and converge exponentially fast. From
this, it follows that the integrand of the arclength integral (13) converges to
0 exponentially and therefore L(s) < ∞. Since the angular momentum is
zero, the spin angle θ(τ) satisfies

(14) θ′ = − Ω(s,w)

‖(s, 1)‖2 .

This admits an estimate of the form |θ′| ≤ K‖w‖FS so θ(τ) also converges
to a limit as τ → ∞. This proves Theorems 1 and 2 when the omega limit
set contains a nondegenerate CC.

Suppose now that there is a degenerate CC with corresponding restpoint
P in the limit set. By choice of local coordinates, it’s possible to assume
that s0 = 0 ∈ R

2n−4. This is equivalent to choosing the unreduced coor-
dinates z ∈ C

n so that the coordinates of the chosen central configuration
are of the form z0 = (0, . . . , 0, zn), which is easily arranged by a change of
complex basis. We will need to use the center manifold and center-stable
foliation for which we refer to [2, 6, 17]. Modify the differential equations
by introducing a cutoff function so that the new differential equations are
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linear outside of some neighborhood of the origin. The modified equations
have invariant center-stable, center-unstable and center manifolds, tangent
to the corresponding subspaces. These are unique but depend on the choice
of cutoff function. However, the solutions of interest will be contained in the
center-stable manifold no matter how the cutoff is done. Furthermore, the
center-stable manifold W cs is foliated over the center manifold W c so that
solutions in W cs approach the corresponding solution in W c exponentially.

The rest of the proof will focus on estimating the arclength of solutions
γ(τ) which start close to P and lie in the center manifold W c(P ). Later
it will be straightforward to handle solutions in the center-stable manifold.
One technical problem is that center manifolds may only have finite smooth-
ness even though the original differential equations are real analytic.

4. Flow on the Center Manifold

From the discussion of eigenvalues above, the center subspace is

E
c = {(δr, δv, δs, δw) = (0, 0, δs, 0) : D∇V (s0)δs = 0}.

Let K ⊂ R
2n−2 be the kernel of D∇V (0). Suppose it has dimension k > 0

and suppose the s-coordinates are chosen so that K = R
k×{0}. Then write

s = (x, y) ∈ R
k ×R

l, l = 2n− 4− k and similarly split w as w = (ξ, η). The
center manifold will take the form of a graph

(15) y = f(x) ξ = φ(x) η = ψ(x)

where f(0) = 0,Df(0) = 0 and similarly for φ,ψ. Since the collision man-
ifold and energy manifolds are invariant we can assume that our center
manifold also satisfies

r = 0 v(x) = −
√

2V (s(x)) − ‖w(x)‖2.
Since the center manifold is invariant, the parametrization (15) can be

used to pull-back the restriction of the blown-up Euler-Lagrange equations
(12) to get a first-order differential equation on some neighborhood U of the
origin in R

k. If x(τ) is a solution of this pull-back equation then

s(τ) = (x(τ), f(x(τ))) w(τ) = (φ(x(τ)), ψ(x(τ)))

is a solution of (12). It follows that

x′ = ξ = φ(x) y′ = η = ψ(x) = Df(x)φ(x).

These are to hold along every solution curve x(τ) but since there is a solution
curve through every point x ∈ U , they can be regarded as functional equa-
tions satisfied by f, φ, ψ. In particular, our pull-back differential equation is
just x′ = φ(x).

If we introduce the notation g(x) = (x, f(x)) the functional equation for
ψ shows that the parametrization of the center manifold (15) can be written

s = g(x) w = (φ(x), ψ(x)) = Dg(x)φ(x).
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Let x(τ) be any solution of the pull-back differential x′ = φ(x) and let
w(τ) = Dg(x)φ(x)|x=x(τ). Then the chain rule gives

w′(τ) = Dg(x)Dφ(x)φ(x) +D(Dg(x))(φ(x))φ(x)

where x = x(τ) and the covariant derivative in (12) takes the form

D̃τw(τ) = w′(τ) − 1

2
∇̃F (g(x), w(x)) +A−1(g(x))(DA(g(x))(w(x)))w(x)

where w(x) = Dg(x)φ(x) and x = x(τ). Substituting all this into (12) gives
an estimate which will be needed later.

Lemma 1. In a sufficiently small neighborhood U of the origin in R
k, there

are positive constants k1, k2 such that

(16) k1|φ(x)| ≤ |∇̃V (g(x))| ≤ k2|φ(x)|.

Proof. Let x(τ) be any solution of x′ = φ(x) and w(τ) = Dg(x)φ(x). Then
(12) gives

(17) D̃τw = ∇̃V (g(x)) − 1

2
v(x)Dg(x)φ(x)

where v(x) = −
√

2V (g(x)) − ‖Dg(x)φ(x))‖2 and x = x(τ). The equations
for w′(τ) and Dτw(τ) above give a formula for the left-hand side of (17)
in terms of g(x(τ)) and φ(x(τ)). Since there is a solution x(τ) through
any given x ∈ U we can obtain a functional equation in x. Note that
most of the terms on the left-hand side depend quadratically on φ(x) with
one exceptional term depending on Dφ(x)φ(x). Recall that φ(0) = 0 and
Dφ(0) = 0 and observe that the matrix norm |Dg(x)| is bounded. It follows

that given any constant c > 0 we have an estimate of the form |D̃τw| ≤
c|φ(x)| in every sufficiently small neighborhood of the origin.

Since v(x) ≃ −
√

2V (0) < 0, the last term in (17) will satisfy c1|φ(x)| ≤
|12v(x)Dg(x)φ(x)| ≤ c2|φ(x)| for some positive constants c1, c2. Then we
have

(c1 − c)|φ(x)| ≤ |∇̃V (g(x))| ≤ (c2 + c)|φ(x)|.
Working in a sufficiently small neighborhood we can get c < c1 to complete
the proof. QED

The functional equation (17) involves the Fubini-Study gradient ∇̃V (s) in
R
2n−2, evaluated at s = g(x). The next step is to reformulate this equation

in terms of a k-dimensional gradient of the function W (x) = V (g(x)). Let
X denote the projection of the center manifold to configuration space. The
function s = g(x) = (x, f(x)) is an immersion which parametrizes X so
we can use g to pull-back the Fubini-Study metric to a Riemannian metric
on X. Denote the squared norm of this metric by ‖ξ‖2X = F̂ (x, ξ) where

x, ξ ∈ R
k. Then

‖ξ‖2X = F̂ (x, ξ) = F (g(s),Dg(x)ξ) = ‖Dg(x)ξ‖2FS
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where F (s,w) is the squared Fubini-Study norm (8). Explicitly, we have

F̂ (x, ξ) = ξTB(x)ξ where B(x) is the k × k matrix

Â(x) = Dg(x)TA(g(x))Dg(x) Dg(x) =

[

I
Df(x)

]

and A(s) is the matrix for the Fubini-Study metric.
The pull-back metric will determine a covariant derivative which we will

denote by D̂. Now let x(τ) be curve in X and ξ(τ) a vectorfield along
x(τ). There will be a corresponding curve and vectorfield in R

2n−4 given by
s(τ) = g(x(τ)), w(τ) = Dg(x(τ))ξ(τ). Since g is an isometric immersion, it

can be shown that the covariant derivatives D̂τξ in X and D̃τw in R
2n−4

are related by

π(τ)D̃τw(τ) = Dg(x(τ))D̂τ ξ(τ)

where π(τ) is the orthogonal projection from Ts(τ)R
2n−2 → im(Dg(x(τ))

with respect to the Fubini-Study metric. We can also pull-back the potential
function V (s) to the function W (x) = V (g(x)). If ∇̂ denotes the gradient
with respect to the pull-back metric on X, we have

π(τ)∇̃V (s(τ)) = Dg(x(τ))∇̂W (x(τ)).

Let x(τ) be any solution of x′ = φ(x) and let ξ(τ) = x′(τ) = φ(x(τ)).
Then s(τ) = g(x(τ)), w(τ) = Dg(x(τ))ξ(τ) satisfies (17). Applying the
orthogonal projection π(τ) to both sides of (17) gives

Dg(x)D̂τ ξ = Dg(x)∇̂W (x) − 1

2
vDg(x)ξ.

Since g is an immersion, we conclude that x(τ), ξ(τ) satisfies

(18) D̂τξ = ∇̂W (x) − 1

2
vφ(x).

Since ξ′(τ) = Dφ(x(τ))φ(x(τ)), the explicit formula for the covariant deriv-

ative D̂ is

D̂τ ξ = Dφ(x)φ(x) − 1

2
∇̂F̂ (x, ξ) + Â−1(g(x))(DÂ(x)(ξ)ξ

where ξ = φ(x) and x = x(τ). As above, we can replace x(τ) by x and view
this as a functional equation. Then an argument analogous to the proof of
Lemma 1 gives

Lemma 2. In a sufficiently small neighborhood U of the origin in R
k, there

are positive constants l1, l2 such that

(19) l1|φ(x)| ≤ |∇̂W (x)| ≤ l2|φ(x)|.

We can also use (18) to see that the differential equation on the center
manifold is approximately a gradient. This will be the key to ruling out
infinite spin.
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Lemma 3. The differential equation on the center manifold is x′ = φ(x)

where φ(x) = −k∇̂W (x) + γ(x) where k = −2/v(0) > 0 and γ(x) =

o(|∇̂W (x)|).
Proof. The left-hand side of (18) is o(|φ(x)|) so we can rearrange the equa-
tion to get

φ(x) =
2

v(x)
∇̂W (x) + o(|φ(x)|).

Also v(x) = v(0) +O(|∇̂W (x)) +O(|φ(x)|) and |φ(x)| ≤ l2|∇̂W (x)| so

φ(x) = −k∇̂W (x) +O(|∇̂W (x)|2) +O(|φ(x)||∇̂W (x)|) + o(|φ(x)|)
= −k∇̂W (x) + o(|∇̂W (x)|).

QED

The final ingredient is a  Lojasiewicz gradient inequality for W (x).

Lemma 4. In a sufficiently small neighborhood of the origin, the restricted
potential W (x) satisfies

(20) |∇̂W (x)|2 ≥ |W (x) −W (0)|α

where 1 < α < 2.

Proof. Since V (s) is real analytic, it satisfies a  Lojasiewicz gradient inequal-
ity |∇V (s)|2 ≥ C|V (s) − V (0)|α in some neighborhood of s = 0 where

0 < α < 2 and C > 0. Replacing ∇ by ∇̃ would just modify the constant C.
It is no loss of generality to assume 1 < α < 2 since when |V (s)−V (0)| ≤ 1,
increasing the exponent makes the inequality weaker.

Since center manifolds are not necessarily analytic, we can’t immediately
get such an inequality for W (x) = V (g(x)). However, when s = g(x)
we have V (s) − V (0) = W (x) − W (0). It follows from Lemmas 1 and 2

that |∇̂W (x)| ≥ K|∇̃V (g(x))| with K = l1/k2. This gives |∇̂W (x)| ≥
KC|W (x) − W (0)|α and by a further increase of α we can arrange that
KC = 1. QED

 Lojasiewicz used his inequality to show that for analytic gradient differ-
ential equations, solutions converging to a critical point have finite arclength
[7, 4]. The same property holds for our equation on the center manifold.

Lemma 5. Suppose x(τ) is a solution of a differential equation of the form

x′ = −k∇̂W (x)+γ(x) where k > 0 and γ(x) = o(|∇̂W (x)|) and suppose that
W (x) satisfies an inequality of the form (20). Suppose x(τ) is a solution with
x(τ) → 0 as τ → ∞. Then the arclength of the curve x(τ) is finite. Here the
gradient and arclength are taken with respect to some smooth Riemannian
metric.

Proof. Without loss of generality we can assume that W (0) = 0. Given
any constant c > 0 we can work in a neighborhood U of x = 0 where (20)
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holds and such that |γ(x)| ≤ c|∇̂W (x)|. We will assume that c < k. Since
x(τ) → 0 we can assume that x(τ) ∈ U for all τ ≥ 0.

To estimate the arclength, note that since |x′| ≤ k|∇̂W (x)| + |γ(x)| ≤
(k + c)|∇̂W (x)|, it suffices to estimate the integral of |∇̂W (x(τ))|. First
consider W (x(τ)). We have

W ′ = −k|∇̂W |2 + 〈γ, ∇̂W 〉 ≤ −(k − c)|∇̂W |2 ≤ −k2Wα

where k2 = k − c > 0. The first inequality shows that W ′(τ) ≤ 0 and since
W (x(τ)) →W (0) = 0, we must have W (x(τ)) ≥ 0 for all τ ≥ 0. This allows
us to drop the absolute value in (20) to obtain the second inequality.

Integrating this over [0, τ ] gives

(21) W (τ) ≤ W0

(1 + λτ)
1

α−1

where W0 = W (x(0)) and λ = k2(α − 1)Wα−1
0 . Since 1 < α < 2, we have

1
α−1 = 1 + 2ǫ for some ǫ > 0.

Since W ′ ≤ −k2|∇̂W (x)|2 we can use the Cauchy-Schwartz inequality in
a tricky way [4] to find

∫ T

0
|∇̂W (x(τ)| ≤

∫ T

0

√

−W ′/k2 =

∫ T

0

√

−W ′/k2 τ
1+ǫ

2 τ−
1+ǫ

2

≤
(

1

k2

∫ T

0
−W ′ τ1+ǫ

)

1

2
(
∫ T

0
τ−(1+ǫ)

)

1

2

.

It suffices to show that the first integral is bounded. Integrating by parts
gives

∫ T

0
−W ′ τ1+ǫ = W (T )τ1+ǫ|0T + (1 + ǫ)

∫ T

1
W (τ)τ ǫ.

Since W (τ) satisfies (21) with exponent 1+2ǫ, both terms are bounded QED

Putting these lemmas together we get the following description of the flow
in the local center manifold.

Theorem 3. Suppose P is a degenerate restpoint with v0 < 0. Let U be a
sufficiently small neighborhood of P and let W c

U be the local center manifold.
If γ(τ) is a solution in W c

U which converges to P as τ → ∞, then γ has
finite arclength.

5. Completion of the proofs

To complete the proof of Theorems 2, consider any total collision orbit
whose reduced and normalized orbit converges to an isolated CC and let
γ(τ) be the corresponding solution of the blown-up, reduced equations (12).
Then γ(τ) converges to a restpoint P = (0, v0, s0, 0) on the collision mani-
fold with v0 < 0 and with s0 representing the isolated CC. We have already
considered the case where s0 is a nondegenerate critical point so suppose s0
is degenerate. Choose a neighborhood of P where Theorem 3 is valid. We
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may assume that γ(τ) ∈ U for all τ ≥ 0 and it follows that γ(τ) is in the lo-
cal center-stable manifold W cs

U for τ ≥ 0. The center-stable fibration implies
that there will be an associated orbit γc(τ) in the center manifold on the
same fiber. Since the fibers of the center-stable fibration are exponentially
contracting we also have γc(τ) → P as τ → ∞ and Theorem 3 implies that
γc(τ) has finite arclength. To see that γ(τ) also has finite arclength note
that since the distance between γ(τ) and γc(τ) converges to zero exponen-
tially and since both curves are solutions of a smooth first-order differential
equations, the distance between derivatives γ′(τ) and γ′c(τ) also converges to
zero exponentially. It follows that difference of their arclengths is bounded.

This completes the proof of Theorem 2. As explained above, the finite
arclength implies that the integral defining the spin angle θ(τ) converges
which gives Theorem 1.

6. Appendix

We point out an error in previous claims of proofs that total collision
solutions to the N-body problem cannot have infinite spin. See [13] and [5].
Those proofs rely on a configuration-dependent projection of velocity vectors
onto their “rotational part”. See definition 2 below. The authors correctly
prove that the velocities of their colliding solutions have zero rotational part.
(In the case of partial collisions they prove that these “rotational parts” tend
exponentially fast to zero.) The error made is in an implication drawn from
this vanishing. The papers claim that if the velocities have zero rotational
part then the net rotation suffered during the motion must be finite. We
will show through explicit examples that the rotational part of velocity can
be identically zero and that nevertheless the n-body configuration can suffer
infinite rotation, i.e., infinite spin.

A sensible reader might complain: “If the rotational part of a motion is
zero how can the object spin at all, let alone have infinite spin?” If this
object were a rigid body then indeed this complaint is legitimate, such a
body cannot spin at all when the rotational part of its motion is zero. But
our objects are not rigid, rather they are “constellations” – configurations
of n moving points in the plane. Making sense of net rotation or spin for
non-rigid bodies is a rather subtle matter. At the heart of the matter are
ideas from gauge theory as formalized by the theory of principal bundles with
connections as we now describe by reverting to the falling cat. (See [12], [11]
and [10] for more details on this perspective on rotation and re-orientation
of non-rigid bodies and its relation to the n-body problem.)

To set the stage it is important to know that the “rotational part” of our
velocity is zero if and only if the total angular momentum of the motion
is zero. See proposition 1 below. A falling cat, dropped with zero angular
momentum, will perform a net rotation and right itself. Despite the fact
that the rotational part of the velocity of the cat’s configuration is zero,
nevertheless it still spins enough to right itself. The cat cannot change its
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angular momentum (as viewed from its center of mass). Angular momentum
is conserved. It rights itself by changing its shape and taking advantage of
the fact that “angular momentum equals zero” defines a connection with
non-zero curvature.

We think of our moving n-body system as a kind of falling cat. Setting
the total angular momentum to zero defines a connection on the principal
circle bundle S = S

2n−3 → CP(n − 2). (The equation of parallel transport
for this connection is equation (14) in the body of the paper.) The key to
generating infinite spin is that the curvature of this connection is not zero.
As a consequence, we can draw curves on CP(n − 2) which limit in infinite
time to a fixed point s0 but whose horizontal lifts have no limit, but rather
contain the whole fiber over s0 in their closure.

Write R
2n for the planar n-body configuration space. The group G of

translations, scalings and rotations acts on R
2n. These three generating

subgroups of G define three linear subspaces of R
2n which we call (trans-

lation), (scaling), and (rotation). The last two subspaces depend on the
configuration q ∈ R

2n. See below for details on the subspaces. These three
subspaces do not exhaust R

2n if n > 2. The orthogonal complement of
their direct sum represents the rest of configuration space and vectors in
this complement represent “pure shape” deformations so we call that the
pure shape subspace. Altogether then we get the “Saari decomposition” of
velocity space:

(22) R
2n = translation ⊕ scaling ⊕ rotation ⊕ pure shape.

It is essential that we compute the orthogonal complement defining (pure
shape) relative to the mass metric.

〈v,w〉 = Σmava · wa
on R

2n.
Remark. Saari formalized this decomposition in [14] hence his name

became attached to it. The first three subspaces are mutually orthogonal
provided the center of mass of the configuration is zero.

Definition 2. The ‘rotational part’ of a vector v ∈ R
2n is its orthogonal

projecton onto the rotation subspace. The vector is called ‘horizontal’ if it
lies in the pure shape subspace. A curve q(t) ∈ R

2n is called horizontal if its
derivative q̇(t) is everywhere horizontal.

When we fixed the center of mass at the origin we got rid of the transla-
tional degrees of freedom and hence the translation subspace of R2n. Recall
that we identify the center-of-mass zero subspace of R2n with C

n−1 in which
case the Saari decomposition becomes

(23) C
n−1 = scaling ⊕ rotation ⊕ pure shape.

and the mass metric is the real part of the Hermitian mass metric. The
scaling and rotation groups act on this C

n−1 by scalar multiplication, with
scaling acting by z 7→ λz, λ > 0 real, while the rotation group acts by
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z 7→ eiθz, with θ the rotation angle. Differentiating these actions at the
identity, or what is the same, take the tangent space to their orbits at z
yields the scaling and rotation subspace. So the scaling space consists of the
real span of z while the rotation subspace consists of the real span of iz.

Proposition 1. The rotational part of a velocity vector ζ attached at z is
zero if and only if the total angular momentum J(z, ζ) is zero. Moreover,

J(z, ζ) = im〈〈z, ζ〉〉C
Proof. In order to make the expressions conform more closely to stan-

dard physics usage we will use v for ‘velocity’ instead of ζ. The rotational
part of v = ζ is zero if and only if it is orthogonal to the rotational subspace
which is the real span of iz. So v has zero rotational part if re〈〈iz, v〉〉C = 0.
But re〈〈iz, v〉〉C = − im〈〈z, v〉〉C. Expanding out

− im〈〈z, v〉〉C = −Σma im(z̄ava))

= −Σmaza ∧ va
where in the middle line the wedge denotes the planar version of the cross
product: (x, y) ∧ (a, b) = im(x− iy)(a+ ib) = xb− ya for (x, y), (a, b) ∈ R

2.
This final expression will be recognized as the standard expression for planar
angular momentum:

Σmaza ∧ va = J(z, v).

QED
remark The orthogonal projection of z onto the rotational subspace at

z is iωz where the scalar ω = 1
I(z)J(z, iz).

We rewrite the angular momentum in terms of our variables r, θ, s in-
troduced in the equation (5)): z = rkeiθ(s, 1) with k = 1

‖(s,1)‖ and the

corresponding velocities

ζ = ż = (
ṙ

r
+
k̇

k
+ iθ̇)z + reiθk(ṡ, 0).

It follows that 〈〈z, ζ〉〉C = (( ṙ
r

+ k̇
k

+ iθ̇)r2 + r2k2〈〈(s, 1), (ṡ, 0)〉〉C and from
J(z, ζ) = im〈〈z, ζ〉〉C we get

J(z, ζ) = r2θ̇ + r2k2Ω(s, ṡ), where Ω(s, ṡ) := im〈〈(s, 1), (ṡ, 0)〉〉C.
It follows that

(24) J(z, ζ) = 0 ⇐⇒ θ̇ = − Ω(s, ṡ)

‖(s, 1)‖2

in agreement with equation (7) where the angular momentum was denoted
µ.

It will help in what follows to simplify this last expression, by applying
a linear transformation to the original complex linear coordinates zi which
renders our by applying a Hermitian mass metric in standard form. In these
new variables, which we continue to call zi, we have that 〈〈z, z〉〉C = Σz̄izi.
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We similarly redefine the si as the quotients of the new zi by the new zn−1.
Then with the si similarly redefined:

Ω(s, ṡ)

‖(s, 1)‖2 =
im Σs̄iṡi

Σn−2
i=1 |si|2 + 1

Here then, is the main result of this appendix.

Proposition 2. Given any s0 ∈ CP(n − 2) there are analytic curves c(t)
converging to s0 in infinite time and whose horizontal lifts z(t) to C

n−1 \ 0
have infinite spin.

Horizontal curves all have zero rotational part. The proposition shows that
having zero rotational part does not guarantee finite spin.

Proof. We may take s0 to have affine coordinates si = 0 and so
represented by the point with homogeneous coordinates [0, . . . , 0, 1]. Any
curve whose projection to CP(n− 2) converges to s0 is represented in affine
coordinates by a curve s(t) = (s1(t), . . . , sn−2(t)) with the si(t) → 0 as
t → ∞. Any curve in C

n−1 \ {0} which projects onto this curve has the
form (r(t), θ(t), s(t)) in our coordinates. The curve is horizontal if and only
if θ satisfies the differential equation (24). We integrate this zero angular
momentum equation to find that

θ(t) − θ(0) = −
∫

s([0,t])

Ω(s, ds)

‖s‖2 + 1
.

where we set Σn−2
i=1 |si|2 = ‖s‖2.

In order to achieve the desired curves c(t) of the lemma we only need to
vary the first affine coordinate s1, which is to say, we take curves of the form
s(t) = (s1(t), 0, . . . , 0). For such a curve the integrand occuring in the line

integral is im(s̄1ds1)
|s1|2+1

. For the purposes of the proof, we set

s1 = reiψ

in which case im s̄1ds1 = r2dψ and |s1|2 + 1 = r2 + 1 so that our integrand
is

Ω(s, ds)

|s|2 + 1
=

r2dψ

r2 + 1
.

Now suppose our curve s1(t) lies in the unit disc r < 1 so that 1/(r2 + 1) >
1/2 and that our curve also spirals counterclockwise into the origin of the
s1 plane so that ψ(t) increases monotonically with t. We then get

θ(t) < θ(0) − 1

2

∫ t

0
r(t)2ψ̇dt.

To produce curves c(t) with infinite spin we are left with an easy task:

insure that r(t) → 0 as t → ∞ while the integral
∫ t

0 r(t)
2ψ̇dt diverges to

+∞. As one class of examples, take r(t) = 1√
t

and ψ = ct for any positive

constant c. Then r2ψ̇ = c
t

and the angle θ(t) diverges logarithmically to
minus infinity. QED



18 RICHARD MOECKEL AND RICHARD MONTGOMERY

References

[1] Albouy, A., Cabral, H., Santos, A., Some problems on the classical n-body problem,
Cel.Mech.Dym.Ast., 113, (2012), 369–375.

[2] Bressan, A., Tutorial on the center manifold theorem, in Springer LNM 1911, Hy-

perbolic systems of balance laws (2003) pp. 327-44.
[3] Chazy, J., Sur certaines trajectoires du problème des n corps, Bull. Astron., 35, (1918),

321–389.
[4] Colding, T.H. and Minicozzi, W.P.,  Lojasiewicz inequalities and applications, Surveys

in Differential Geometry, 19 1, (2014).
[5] Elbialy, M. S. Collision Singularities in Celestial Mechanics, SIAM J. Math. Anal,

(1990), 21, no. 6, 1563-1593.
[6] Fenichel, N., Asymptotic stability with rate conditions, Ind.Univ.Math.J.,23, 1109–

1137.
[7]  Lojasiewicz, S., Sur les trajectoires du gradient d’une fonction analytique, Seminari

di Geometria 1982-1983, Università di Bologna, (1984), 115–117.
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