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ARTICLE

Using genetic algorithms to systematically improve
the synthesis conditions of Al-PMOF
Nency P. Domingues 1, Seyed Mohamad Moosavi1,2, Leopold Talirz1,3, Kevin Maik Jablonka1,

Christopher P. Ireland1, Fatmah Mish Ebrahim1,4 & Berend Smit 1✉

The synthesis of metal-organic frameworks (MOFs) is often complex and the desired

structure is not always obtained. In this work, we report a methodology that uses a joint

machine learning and experimental approach to optimize the synthesis conditions of Al-

PMOF (Al2(OH)2TCPP) [H2TCPP = meso-tetra(4-carboxyphenyl)porphine], a promising

material for carbon capture applications. Al-PMOF was previously synthesized using a

hydrothermal reaction, which gave a low throughput yield due to its relatively long reaction

time (16 hours). Here, we use a genetic algorithm to carry out a systematic search for the

optimal synthesis conditions and a microwave-based high-throughput robotic platform for

the syntheses. We show that, in just two generations, we could obtain excellent crystallinity

and yield close to 80% in a much shorter reaction time (50 minutes). Moreover, by analyzing

the failed and partially successful experiments, we could identify the most important

experimental variables that determine the crystallinity and yield.
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For the last two decades, metal-organic frameworks (MOFs)
have been an extensive object of study1–3 thanks to their
high porosity4–7 and extensive spectrum of applications,

including gas storage and separation, sensing, catalysis, and drug
delivery8–17. MOF synthesis consists of the self-assembly of
organic ligands and metal components into a periodic network18.
Several methods have been developed for such purposes including
solvothermal, electrochemical, mechanochemical, microwave,
and ultrasound-based methodologies8,16,19–21. In all these pro-
cedures, the synthesis parameters play a major role in deter-
mining the crystal structure that forms, as different conditions
might stabilize different (meta)stable (intermediate) states22.

There are a considerable number of parameters that can
influence the reaction and its outcome (i.e., solvents, pH, reagents
concentration, reaction time, temperature, pressure, etc.)23,24, and
the optimization of these conditions for new or established MOFs
is often laborious, expensive and time-consuming25,26. While
conventionally, the optimization of these parameters rests on the
chemical intuition of individuals, novel approaches are needed to
tackle the extensive diversity in the chemistry of MOFs27.
Therefore, data-driven approaches have been developed to
accelerate such optimization processes28–37. Moosavi et al.28

combined a genetic algorithm (GA) with machine learning (ML)
to optimize the synthesis of MOFs. They illustrated their
approach with the synthesis of HKUST-138 using a microwave-
based robotic platform, to find the synthesis conditions of
HKUST-1 that yielded high-quality crystals with the highest
surface area reported up to date28. This approach not only aims to
find the optimal reaction conditions, but also to learn the most
important experimental variables from analyzing both successful,
partially successful, and failed experiments.

In this work, we applied the Synthetic Conditions Finder
(SyCoFinder)39, which is the web application based on the
methodology developed by Moosavi et al.28, to find the optimal
synthesis conditions of Al-PMOF (Al2(OH)2TCPP) [H2TCPP=
meso-tetra(4-carboxyphenyl)porphine], a porphyrin-based MOF
first synthesized by Fateeva et al.40. Publications of porphyrin-
based MOFs have been exponentially increasing in the past 20
years41 as this organic ligand has interesting characteristics and
versatile functions, which makes it suitable for a wide range of
applications. Thanks to their high visible-light absorption and
energy transfer properties, porphyrins are very often used in solar
cells, fluorescence imaging, and molecular probe applications42.
The structure of Al-PMOF relies on one-dimensional chains of
Al(III) running along the b-axis connected by the TCPP units
through the carboxylate groups (Fig. 1a, b). The high surface area
of this MOF and the stacks of the porphyrin ligand along the b-
axis make this structure suitable for CO2 capture in a wet
environment, typical of flue gas from a coal-fired power station43.

Unlike HKUST-1, our knowledge of alternative synthesis
conditions of Al-PMOF is limited. Some reports mention its
synthesis using different reaction temperatures and aluminum
precursors in a DMF:H2O= 1:3 [v/v] solvent mixture44,45.
However, the yield of these reactions is not reported. Moreover,
the original hydrothermal synthesis gives a relatively low yield
(ca. 40%) with a reaction time of 16 h40, and these factors present
a bottleneck to scale-up the synthesis for CO2 capture from wet
flue gas. It is therefore important to investigate whether the yield
and time of the reaction can be further optimized. In addition, it
will give us some insights into whether the approach developed
by Moosavi et al. can be extended to other MOF systems.

Results
Experimental variables. The reported Al-PMOF synthesis is in
pure water at a relatively high temperature (i.e., 180 °C)40. We
have carried out some attempts to synthesize Al-PMOF at a lower
temperature or in pure dimethylformamide (DMF), which easily
dissolves the ligand, but at these conditions, we do not produce
the MOF. If we repeat the synthesis in pure water, we obtained
variable yields (40–90%) (see Supplementary Note 1 for detailed
yields obtained). It is therefore interesting to systematically
explore the synthesis conditions. For this purpose, we used our
high-throughput microwave-based robotic platform (see Supple-
mentary Note 2 for experimental setup).

We start our first set of experiments (first generation) which
aims at giving the most diverse set of experimental synthesis
conditions. We explored the following set of five variables:

1. Power of the microwave, by changing the power of the
microwave we can influence the time it takes the reaction
solution to reach the required temperature;

2. Solvent composition, our solution has a fixed composition:
80% water and 20% of organic solvent. The solvent
composition was chosen to better solubilize all precursors
(in particular porphyrin), which would help us achieve a
high yield and crystallinity and minimize the amount of
hazardous organic solvents used in the reactions. Pre-
liminary results on the solvothermal synthesis of Al-PMOF
showed more reproducible yields and good crystallinity
with an 80% H2O:20% DMF solvent mixture (see
Supplementary Note 3, Table S2 and Fig. S2). As solvents
are deemed to be a critical factor in MOF synthesis as they
can have a significant impact on the crystallization pathway
and/or on the final product obtained20,46, we studied a total
of five organic solvents with different boiling points (i.e.,
ethanol (EtOH), 1-propanol, dimethylformamide (DMF),
dimethylacetamide (DMA) and dimethyl sulfoxide
(DMSO)), which covered a wide range of temperatures

Fig. 1 Ball-and-stick representation of Al-PMOF. a View along the c-axis. b View along the b-axis. Color code: C (brown), O (red), N (blue), H (light pink),
Al (green).
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from 75 to 190 °C. This provides an additional degree of
flexibility and parameters to study in our work.

3. Reaction time, which is the total time our vial was in the
microwave (including both: the time required to reach the
temperature at which the reaction takes place (<1 min) and
the reaction time itself);

4. Reaction temperature, the temperature at which the
reaction is carried out;

5. Concentration of the reactants, the aluminum to porphyrin
ratio was constant and set as in the hydrothermal
synthesis40. Concentrations 1 and 2 possess the same
amount of solvent but different amounts of precursors,
while concentrations 2 and 3 possess the same amount of
precursors but different volumes (see Supplementary Note 4
for experimental details). This systematic approach would
allow us to assess the influence of both factors: concentra-
tion and pressure in the reaction vial.

The ranges of these variables were based on our experience
with the solvothermal synthesis of Al-PMOF and are detailed in
Table 1. In contrast to our previous work, where we treated
solvents as a categorical variable described using a numeric array
(so-called one-hot encoding in which the presence of a solvent is
indicated with a 1 and absence with a 0), we describe solvents
with their boiling points here. The boiling point is a critical factor
when choosing solvents for a solvothermal synthesis20. Using a
chemically motivated descriptor for solvents can help the
machine learning model better interpolate between different
solvent types, leading to better predictions and interpretations.
Finally, for the new synthesis conditions suggested by the genetic
algorithm, we choose the solvent with the closest boiling point.

Design of the experimental protocols with the SyCoFinder.
Based on the range of the variables given in Table 1, we used the
SyCoFinder39 to generate a set of 25 most diverse experiments,
which covers the space of experimental variables as widely as
possible (see Supplementary Note 4, in particular, Table S4 for the
synthesis conditions of samples from generation 1). To better
initiate these experiments, we weighted the exploration of dif-
ferent synthesis variables with their importance quantified in our
previous work using a machine learning model for the synthesis
of HKUST-128. Notably, in our previous work, we found that this
chemical intuition (i.e., the importance of variables) is transfer-
able to the synthesis of new materials. In addition, this chemical
intuition matches our human chemical intuition based on our
previous experiences with solvothermal synthesis. The weights for
each variable are listed in Table 1. Hence, we assign the type of
solvent (i.e., boiling point) as the most important variable.
Reaction temperature, time, and concentration were thought to
play a slightly less important role, and power the least important
of all the variables studied (see the “Methods” section for the
details of diverse set generation and the genetic algorithm).

The 25 reactions suggested by the SyCoFinder were then
carried out utilizing the microwave and robotic platform (Fig. S1).
After synthesis, each sample was collected individually by
centrifugation, washed with the organic solvent used for the
reaction itself, followed by acetone, and finally dried overnight in
a ventilated oven at 60 °C. In some cases for which it seemed that
some unreacted ligand was still present, DMF was also used.
Working up the material with this type of solvent should help in
the removal of unwanted products, in particular, the recrystallized
porphyrin as it is more soluble. Moreover, the crystallinity of the
materials should always be assessed via powder X-ray diffraction
(PXRD) measurements to address the purity of the structure and
avoid the presence of any additional phase.

Crystalline structure and yield. The resulting reactions produce
vastly different results; a number of experiments yielded little or
no powder, and many experiments yielded amorphous products.
The PXRD pattern was collected, showing very distinct crystal-
linity for the best and worst samples (Fig. 2). Seven reactions from
the first generation yielded a PXRD pattern characteristic of Al-
PMOF. The crystallinity was ranked on a scale of 1–10, where 1
was used for samples that did not yield a powder, 2–5 was for
samples that were amorphous or had poor crystallinity, while
higher numbers were given to powders that presented better
crystallinity. Distinctions between 9 and 10 were made for those
which presented additional peaks or fully matched the Al-PMOF
predicted pattern without any additional phase or impurities,
respectively.

Each PXRD pattern was analyzed individually and ranked
qualitatively, depending on which pattern would match best the
calculated XRD from the CIF of Al-PMOF. Evaluating the PXRDs
by eye allows us to look at the spectrum as a whole rather than
individual peaks and can give good insights into the crystallinity
of the structure. Automatically ranking PXRD patterns using
computer software could also be considered an objective measure
that would allow for a more systematic analysis of the data
obtained. However, it is highly complex to develop robust
software which would take into account all experimental artifacts
that could be misleading in some cases (e.g., amorphicity,

Table 1 Experimental variables investigated in this study.

Variable Range Exploration weight

Power [W] 200–300 0.2
Temperature [°C] 175–200 0.7
Time [min] 20–60 0.7
Concentration [–] 1–3 0.8
Boiling point [°C] 80–190 1.0

The table shows the synthetic variables, ranges, and exploration weight factor, normalized to 1
for the most important variable (i.e., boiling point). The concentration was given discrete
variables: 1, 2, and 3 corresponding to high, medium, and low concentration, respectively (see
Supplementary Note 4 for experimental details).

Fig. 2 PXRD patterns of samples obtained in generation 1 for each
categorical score ranging from 1 to 8. PXRD of the best and worst samples
produced from the first generation of experiments, with the calculated XRD
from the CIF of Al-PMOF. The categorical score was given on a scale from 1
(worst) to 10 (best) in terms of crystallinity.
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unreacted ligand, etc.). Further work to assess the correspondence
among PXRD patterns with a more accurate, systematic, and
quantitative measure could be done. An example of how this
could be implemented is thoroughly described in ref. 47.

The ranking from the first generation (Fig. 3) was used to
further optimize the synthesis by generating the second
generation of experiments with the genetic algorithm of
SyCoFinder (Table S5). Again, after synthesis, the PXRD patterns
were gathered and the experimental results were ranked.
Interestingly, in this second generation, all of the material
synthesized proved to be crystalline and matched the PXRD
pattern of Al-PMOF (Fig. 4).

Our initial aim was to screen for both crystallinity and yield.
As already after the first generation we obtained a near-perfect
score on crystallinity, we could already rank our reaction
conditions based on yield. An accurate calculation of the yield
would require thermogravimetric analysis (TGA) and elemental
analysis (EA). In this study, as a high-throughput approxima-
tion, we determined it by dividing the amount of powder
obtained by the amount of porphyrin ligand used in the
synthesis. Interestingly, a number of conditions gave excellent
results, with a high yield and good crystallinity (Figs. 3 and 4).

For carbon capture applications it is important that the pore
structure is the same as the one obtained via hydrothermal
synthesis. As a high-throughput technique, we determined the
surface area from a nitrogen (N2) isotherm at 77 K for the

Fig. 3 Parameters and results of optimization for each synthesis of generations 1 and 2. Each experimental variable studied (i.e., microwave power,
reaction temperature, time, concentration, and solvents) selected for each Al-PMOF synthesis are depicted by circles, while the bar graphs illustrate the
ranking of each reaction in terms of crystallinity and yield. The color code is given for the worst (brown) and best (dark green) samples. Generation 1 was
ranked in terms of the crystallinity of each sample, while the success of generation 2 was determined by the yield as all samples proved to be highly
crystalline. This proves the success of the GA in providing good crystallinity of all samples in just one generation. The PXRD patterns and N2 isotherms at
77 K can be visualized at https://www.cheminfo.org/flavor/zenodo/index.html?id=&id=7186602.

Fig. 4 Best and worst PXRD patterns obtained in generation 2. PXRD of
the best (highest crystallinity and yield) and worst crystallinity produced
from the second generation of experiments, as well as the calculated XRD
from the CIF of Al-PMOF.
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highest-ranked materials (samples 4 and 15 from generation 2,
G2S4 and G2S15, respectively). From these isotherms (see
Supplementary Note 5, Fig. S3), we obtained surface areas (1024
and 1226 m2 g−1, respectively) comparable to that previously
reported with a hydrothermal synthesis (i.e., 1400 m2 g−1)40,
which indicates it is likely that the robot synthesized material
has retained the pore structure of the MOF, and so, it should be
suitable for CO2 capture applications. This highlights the
importance of the SyCoFinder in optimizing synthesis condi-
tions. The methodology learns from failed and partially
successful experiments and discards conditions that do not
yield the desired product. A failed or successful synthesis is
judged on criteria defined by the ultimate goal of the study: if
one is seeking good crystallinity, high yield, or surface area
(among other characteristics), a MOF that does not fulfill those
requirements would be ranked worst and similar synthesis
conditions would less likely be suggested in the following
generations. This would lead us toward the completion of our
goal of synthesizing a MOF with the characteristics of our
interest. In our case, as the crystallinity and yield were
sufficiently high and the surface area similar to what was
previously obtained, there was no need for a third generation of
experiments, as we would only expect minor improvements. Al-
PMOF can thus be efficiently synthesized in a microwave by
inserting AlCl3⋅6H2O (0.099 mmol, 24 mg) and TCPP
(0.051 mmol, 40 mg) in a solution of H2O/EtOH (80%/20%)
(2 mL). The vial is then sealed and inserted in the microwave
for a 50 min reaction at 190 °C with 250W of power.

Reproducibility and large-scale MOF synthesis. The reprodu-
cibility of the highest-ranking synthesis condition (i.e., G2S4) was
also tested with the robotic platform set up to run 16 reactions
over a 24-h period. We synthesized five sets of 8 reactions each.
After the syntheses, each set was combined into a single vial (i.e.,
batch) (see Supplementary Note 6 for experimental details). The
powder was collected by centrifuge, and then washed with solvent
and dried overnight. All PXRD patterns matched Al-PMOF
(Fig. S4a), and the BET surface area and pore volume of the large
sample determined from an N2 isotherm at 77 K were also
comparable (i.e., 1264 and 0.628 cm3 g−1, respectively (Fig. S4b)).
We then tested the microwave-synthesized material for CO2

capture and obtained an uptake of 3.5 mmol g−1 at 1 bar
(Fig. S4c), which is very similar to the hydrothermally synthesized
Al-PMOF (i.e., ca. 4 mmol g−1 at 1 bar). Continuously synthe-
sizing using the platform this way can generate gram amounts of
powder that can be used for further applications such as CO2

capture at a large scale.
For the large-scale MOF synthesis, since the reactions run

sequentially one after the other, the first reaction mixtures are
left at room temperature in the mother solution for very
different times, whose longest could reach 16 h. It is therefore
important to assess the stability of Al-PMOF in slightly acidic
conditions for an extended amount of time as the hydrolyzed
aluminum salt makes the solution slightly acidic. In its original
publication40, it is demonstrated that this structure is stable
under acidic solutions (i.e., pH= 5). Moreover, Oliver T.
Wilcox, et al.48 have also reported Al-PMOF after loading it
with different acids (hydrochloric acid (HCl) and formic acid)
for 16 h, confirming the remarkable stability of the MOF under
acidic conditions. We are therefore confident that leaving the
MOF in the mother solution overnight would not have a large
effect on its crystallinity and pore structure. For other MOFs,
however, this may be a factor that should be considered. In the
case of robotic synthesis, one possibility would be to automate a
filtration and washing step of the sample after synthesis.

Discussion
Analysis of the experimental variables. In Fig. 3, we have
summarized the results of this study and in Fig. 5 we show,
through analysis of the failed and partially successful experiments,
the relative importance of the experimental variables in obtaining
(a) high crystallinity, and (b) high yield. From our analysis, we see
that the changes in the concentration of reactants followed by
changes in the solvent have the most impact on crystallinity.
While for the yield, by far the most important criterion is the
solvent type.

Influence of the solvent. The standard hydrothermal procedure
for the synthesis of this MOF shows that, although synthesized in
pure water, a higher temperature (i.e., 180 °C) is required to
dissolve the porphyrin and allow it to react with the aluminum
precursor. Using a mixture of water and another organic solvent
could help the porphyrin to dissolve, whilst retaining the high
heat capacity of water which seems to be required to form the
MOF. Solvothermal reactions with different H2O:DMF ratios (i.e.,
20:80%, 50:50%, and 80:20%) were carried out (see Supplemen-
tary Note 3 for experimental details) and the optimal results were
obtained with an 80:20% H2O:DMF ratio (Table S2 and Fig. S2).
DMF is a common solvent for MOF synthesis49, due to its high
dielectric constant and relatively high boiling point. It is inter-
esting to look in some detail at the second generation of experi-
ments that were proposed by SyCoFinder’s algorithm. In the first
generation, DMF was included as an additional organic solvent,
yet the second generation of reactions did not include any
experiments with DMF. This is due to the fact that the crystal-
linity of samples with DMF is poor, and the other solvents yielded
higher crystallinity. The analysis of the data shows that the sol-
vent type, which we characterize by the boiling point, is one of the
key variables that determine the crystallinity. The data also show
that although the type of solvent is important, the quality of the
crystals does not correlate with the boiling point. The yield may
be better described by this factor: higher boiling point solvents
(e.g., DMSO) show a much lower yield, while lower boiling point
solvents (e.g., EtOH, 1-propanol) show a higher one (Fig. 3). This
suggests that pressure favors the crystallization of the MOF.
However, this may not be the only descriptor that correlates with
the results. Future work on the influence of the solvent in the
outcome of the reaction could be performed for a better under-
standing of the crystallization process of Al-PMOF. For a more
detailed analysis, one would need to use multiple descriptors for
the solvent (e.g., polarity, proticity, etc.) and run several experi-
ments to accurately draw conclusive explanations.

Influence of the concentration. The concentration of the pre-
cursors was also studied: Al-PMOF was obtained with the same
metal-to-ligand ratio except for different amounts of solvent,
which also leads to a change of the pressure inside the reaction

Fig. 5 Pie charts showing the relative importance of each synthesis
variable. a On crystallinity. b Yield. We use SHAP (SHapley Additive
explanations) values to quantify the importance of variables. SHAP values
quantify how each variable influences the outcome of the machine learning
model using a game theoretic approach56,57.
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vessel. As a control, concentrations 1 (high) and 2 (medium),
possess the same volume but different amounts of metal and
ligand, while concentration 3 (low), possesses the same amount of
precursors as concentration 2 but a higher volume of sol-
vent (Table S3). The analysis of the relative importance of
experimental variables shows that concentration plays a major
role in crystallinity. The lowest concentration (i.e., concentration
3, which also presents the largest amount of solvent, and thus the
highest pressure) is not suggested in generation 2, as it leads to
relatively poor crystallinity in generation 1. It seems that the
combination of low concentrations and high pressures in the
reaction vessel is not beneficial for the synthesis of Al-PMOF. On
the other hand, if we compare concentrations 1 and 2, which
possess the same volume, the highest concentration (i.e., con-
centration 1) tends to give better crystallinity overall, which may
be positively correlated to the kinetics of the reaction50 (Fig. 3).

Influence of other variables. The other variables studied (i.e.,
reaction time, temperature, and power of the microwave) were
deemed to be less important for both analyses: crystallinity and
yield of Al-PMOF synthesis (Fig. 5). These were adapted to our
needs (i.e., low reaction time) and had been tuned according to
our knowledge of the hydrothermal synthesis (i.e., reaction
temperature), while the power was limited by our microwave
reactor.

Method applicability and translatability. MOF crystallization is
a complex molecular process, and the synthesis recipes vary
greatly from MOF to MOF. Therefore, it is important that our
screening approach is versatile and easily adaptable to different
synthesis optimization problems. The first step is to define the
chemical space that we want to explore, which can be easily tuned
according to our structure of interest, needs, and the variables
that we want to optimize. Then, in contrast to the conventional
“study one-factor-at-a-time”, here, the SyCoFinder generates the
most diverse set of syntheses conditions, which interestingly leads
chemists to reaction conditions that probably would have never
explored otherwise. Then, GAs and ML iterate the data towards a
successful synthesis which provides us with the best target that
fulfills our requirements (e.g., good crystallinity, high yield, high
surface area, etc.). This is simply a quantified “intuition” devel-
oped by the ML model, which is similar to the intuition developed
by experienced chemists in the lab. The advantage here is that the
software used in this study is open-access and available as a web
application on the Materials Cloud39.

The translatability of the optimized microwave conditions into
a conventional heating procedure was also investigated. Al-PMOF
was therefore solvothermally synthesized with the conditions that
yielded the best-ranked material of generation 2 (i.e., G2S4, see
Supplementary Note 7 for experimental details). The yields
obtained ranged from 50% to 60%. Similar to the microwave
synthesis, also here the yield was calculated by dividing the
amount of MOF powder obtained by the amount of TCPP ligand
used in the synthesis. The PXRD pattern (Fig. S5) confirms the
crystallinity of the structure as it fully matches the calculated
XRD from the CIF. The successful synthesis of Al-PMOF, along
with the relatively high yield obtained, confirms the adaptability
of the microwave-optimized parameters to a different type of
MOF synthesis equipment. This demonstrates the success of
SyCoFinder in optimizing synthetic conditions and the applic-
ability of the method to different materials and equipment.

Similarly, the microwave synthesis of Al-PMOF in pure water
was also tested. The conditions used correspond to the best one
obtained from generation 2 (i.e., G2S4). However, instead of an
H2O:EtOH solvent mixture, pure water was used (see

Supplementary Note 8 for experimental details). The PXRD was
crystalline and matched the calculated XRD from the CIF of Al-
PMOF (Fig. S6). However, the reaction yield was low and out of
the three reactions performed, it only reached a maximum of 13%
yield. These results suggest that the use of a co-solvent strongly
helps in the synthesis of Al-PMOF with high yields.

Conclusions
In summary, we have developed an alternative Al-PMOF synth-
esis method, using a microwave reactor with comparable crys-
tallinity, surface area, and CO2 uptake to the traditional
hydrothermal synthesis of Al-PMOF, but with a higher yield and
a much shorter reaction time.

The other interesting part of this work is the methodology that
we used to find the optimal synthesis conditions: an experimental
design that learns from failed and partially successful experi-
ments. Although we used a robot in this work, the total number
of experiments that were used to find these conditions, only two
generations and a total of 45 reactions, illustrate that the
underlying methodology does not require very large data sets to
be of practical use.

We hope that our results encourage authors to publish their
failed and partially successful experiments. The fact that we only
publish the successful recipes creates a bias in the literature, that
makes predictions of the reaction conditions using machine
learning more difficult51. Of course, in our case, as we are using a
robot, publishing the failed and partially successful conditions in
addition to the successful recipe does not create an additional
burden. Jablonka et al.51 outline some ideas on how the burden of
reporting all experimental results can be minimized.

Methods
Synthesis Condition Finder (SyCoFinder). The synthesis condition-finding
procedure is adapted from our previous work28. In this procedure, we initiate our
experiments with a generation of the most diverse set of experiments identified
using the farthest point sampling (i.e., MaxMin diversity). In this approach, to
come up with N trials, we first add a trial chosen randomly. Then, for the other
N−1 trials, we iteratively add the most dissimilar synthesis conditions to the set of
previously selected trials, where we maximize the minimum distance to the cur-
rently selected trials. Here, the dissimilarity metric is the euclidean distance
between two synthesis conditions weighted with an exploration factor that is listed
in Table 1. Synthesis variables with higher weight are explored more.

After this first generation, we use a genetic algorithm (GA), which is a global
optimization algorithm, to explore the synthesis conditions space that we identified
in Table 1. The GA uses genetic operations, including selection, crossover, and
mutation, to generate new offspring from the previous generations. In this
approach, two trials from the previous generation (parents) are selected, and their
synthesis variables (genes) are combined using a crossover operation to generate a
new synthesis trial (offspring). To include a chance to explore beyond the previous
generations, some of the genes can mutate. The ratio between crossover and
mutation balances the exploration vs. exploitation for the optimization. The
synthesis trials with higher scores have a higher chance of being selected to transfer
their genes to the next generation. As we use a ranking-based selection algorithm,
the score function can be easily adapted to any target, e.g., crystallinity, yield, etc.
The details of the genetic algorithm, including the crossover and mutation and the
diverse set computations, are reported in our previous work28.

Chemical synthesis. Detailed synthesis conditions for each Al-PMOF reaction
performed in this study can be found in the Supplementary Information (see
Supplementary Note 4, Tables S4 and S5). The syntheses were carried out in a
microwave synthesis reactor (Biotage, Uppsala, Sweden) which is connected to a
high-throughput robotic platform (Chemspeed technologies, Füllinsdorf, Basel,
Switzerland) (Fig. S1). The microwave is completely automated and executed with
the Chemspeed autosuite software. All chemicals were purchased from commercial
sources and used without further purification.

Characterization. Powder X-ray diffraction (PXRD) patterns of all samples were
collected on a Bruker D8 Advance diffractometer at ambient temperature using
monochromated Cu Kα radiation (λ= 1.5418Å), with a 2θ step of 0.02° with
different 2θ ranges. Simulated PXRD patterns were generated from the corre-
sponding crystal structures using Mercury 3.0.
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The N2 adsorption isotherm measurements were performed at 77 K using a
BELSORP Mini (BEL Japan, Inc.). Prior to measurements, samples were activated
at 180 °C for 12 h under dynamic vacuum. The N2 adsorption isotherm in the p/p0
range 0.06–0.25 was fitted to the Brunauer–Emmett–Teller (BET) equation to
estimate the surface area of the samples.

The CO2 isotherm at 298 K was collected by a gravimetric method using an IGA
system (Intelligent Gravimetric Analyser, Hiden Isochema Ltd., Warrington, UK).

Data availability
All data generated during this study are included in this article and
respective Supplementary Information. The characterization data (including powder X-
ray diffraction (PXRD) patterns, N2 and CO2 isotherms at 77 and 298 K, respectively) are
saved in the electronic lab notebook (ELN)51–53. The spectra are usually stored in
JCAMP-DX format and the sample information with metadata in JavaScript Object
Notation (JSON). The characterization data that supports the findings of this study are
available on Zenodo (https://doi.org/10.5281/zenodo.7186602)54 and can be visualized
through the following view developed with the visualizer library: https://www.cheminfo.
org/flavor/zenodo/index.html?id=&id=718660255.

Code availability
The genetic algorithm and diverse set sampling codes are available via https://www.
materialscloud.org/work/tools/sycofinder.
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