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Abstract 

 

Electrification of mobility on-demand vehicle services: infrastructure and fleet design, 
operations, and policy recommendations 

by 

Gordon Scott Bauer 

Doctor of Philosophy in Energy and Resources 

University of California, Berkeley 

Professor Daniel M. Kammen, Chair 

 
 
 
To avert catastrophic climate change, society must rapidly shift to decarbonized forms of 
transportation; recent reductions in the cost of batteries has made battery electric vehicles 
(BEVs) a promising alternative. Meanwhile, mobility on-demand vehicle (MODV) services have 
grown explosively in recent years, in some cases threatening targets for local air pollution and 
global carbon emissions. Mobility on-demand is a novel form of transportation that represents a 
shift from private ownership to commodification, in which users request transportation services 
for individual trips via smartphone apps. Despite evidence that these services are ripe for 
electrification, adoption of BEVs in fleet applications has been even slower than in the private 
market. In this dissertation, I combine agent-based simulation with empirical methods to identify 
pathways for rapidly electrifying MODV services, including requirements for charging 
infrastructure and battery range, routing strategies, and regulatory tools. 
 
In Chapter 1, using taxi trip data from New York City, I develop an agent-based model to predict 
the battery range and charging infrastructure requirements of a fleet of shared automated electric 
vehicles (SAEVs) operating on Manhattan Island. I also develop a model to estimate the cost and 
environmental impact of providing service, and I perform extensive sensitivity analysis to test 
the robustness of my predictions. I estimate that costs will be lowest with a battery range of 50-
90 miles, with either 66 chargers per square mile rated at 11 kilowatts or 44 chargers per square 
mile rated at 22 kilowatts. I estimate that the cost of service provided by such an SAEV fleet will 
be $0.29-$0.61 per revenue mile—an order of magnitude lower than the cost of service of 
present-day Manhattan taxis and $0.05-$0.08/mi. lower than that of an automated fleet composed 
of any currently available hybrid or internal combustion engine vehicles (ICEVs). I estimate that 
such an SAEV fleet drawing power from the current NYC power grid would reduce GHG 
emissions by 73% and energy consumption by 58% compared to an automated fleet of ICEVs.  
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In Chapter 2, I build on this analysis to study the electrification of ridesourcing services (also 
known as transportation network companies, or TNCs) in the U.S. in the present day. 
Ridesourcing/TNC fleets present an opportunity for rapid uptake of battery electric vehicles 
(BEVs), but adoption has largely been limited to small pilot projects. Lack of charging 
infrastructure presents a major barrier to scaling up, but little public information exists on the 
infrastructure needed to support ridesourcing electrification. With data on ridesourcing/TNC 
trips for New York City and San Francisco, and using agent-based simulations of BEV fleets, I 
show that given a sparse network of three to four 50kW chargers per square mile, BEVs can 
provide the same level of service as ICEVs at lower cost. This suggests that the cost of charging 
infrastructure is not a significant barrier to ridesourcing/TNC electrification. With coordinated 
use of charging infrastructure across vehicles, I also find that fleet performance becomes robust 
to variation in battery range and charger placement. My analysis suggests that mandates on 
ridesourcing/TNCs, such as the California Clean Miles Standard, could achieve electrification 
without significantly increasing the cost of ridesourcing services. 
 
In Chapter 3, I shift to look at real-world barriers to MODV electrification based on empirical 
data. Leveraging over two weeks of high-resolution GPS and battery data from almost 20,000 
EVs in the all-electric Shenzhen taxi fleet, I analyze the potential to improve fleet-wide 
operations by optimizing both the location and timing of vehicle charging. I construct machine 
learning models to predict travel time, queuing time at charging stations, and charge 
consumption by time of day. Contrary to the emphasis on charging station siting in the literature, 
I find that optimizing charging locations would have a relatively limited impact. Instead, 
providing drivers with better real-time information about queuing times at charging stations, and 
enabling flexibility in battery charge during shift changes could reduce down-time per vehicle by 
over 30 minutes per day, while increasing the number of economically viable charging stations 
by over 50%. Moreover, taking full advantage of break periods and nighttime to charge could 
reduce downtime per vehicle by over one hour per day, reducing revenue losses due to charging 
by roughly 90%. These results are verified with evidence from real-time charging station data 
and driver shift-change data.  
 
Contributions:  
This dissertation contributes to the knowledge of sustainable transportation engineering through 
advances in theory, methodology, and empirical results that can help guide MODV 
electrification policy and implementation world-wide. Previous literature has claimed that 
MODV services are hard to electrify due to challenges with battery range and charging. In 
particular, operations research literature has used rigid models that either do not accurately 
reflect real-world constraints or require BEVs to operate in the same way as ICEVs. I 
hypothesize that allowing vehicles to charge during short windows in between trips and 
relocating to new areas to anticipate demand can greatly increase BEV fleet performance. To test 
this hypothesis, in Chapter 1 I develop a novel agent-based modeling method in the field of 
operations research, including a new theoretical approach to fleet rebalancing based on the 
equivalence between efficient demand forecasting and retrospective assignment. I hypothesize 
that by having vehicles “look back in time” to relocate to areas with unmet demand and to 
charging stations in the present, the model can evaluate minimum requirements for fleet size, 
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battery range, and charging infrastructure with a fraction of the computational cost of other 
approaches. To test this hypothesis, I also developed a fleet rebalancing framework based on 
demand forecasting and show that the retrospective approach returns equivalent results in much 
less time.  
 
As a result, I show that BEVs can provide MODV service at scale and at lower cost than 
gasoline vehicles with present-day technology, while resulting in more rapid reductions in air 
pollution and greenhouse gas (GHG) emissions than comparable investments in private vehicle 
electrification. By maximizing flexibility in the design, this method also enables application to 
new environments, as explored through the development of a national scale model at the end of 
Chapter 1, and a TNC-specific model in chapter 2.  
 
Previous studies and pilot projects have found that there is insufficient charging infrastructure to 
support TNC electrification, in part because this infrastructure is prohibitively expensive. I 
hypothesize that the cost of charging is largely driven by usage rates, such that efficiently 
operated TNC fleets can drive down the cost of public fast charging for all users. To test this 
hypothesis, in Chapter 2 I develop a simple theoretical approach to estimating requirements for 
TNC charging infrastructure based on driver wage rates, driving speeds, and relocation times. I 
then adapt the model developed in Chapter 1 to show that drivers do in fact have sufficient idle 
time to charge, and that charging infrastructure is relatively cheap given reasonable usage rates. 
 
Finally, chapter 3 applies these analyses to current BEV taxi operations in Shenzhen, China, 
where drivers have complained of lost revenue and long queues at charging stations. Based on 
my previous findings, I hypothesize that simple strategies to improve operations could greatly 
reduce these problems. Whereas previous studies have conducted analyses based on incomplete 
vehicle data, I integrate qualitative methods from in-person interviews (n=30) with quantitative 
insights from analysis of multiple detailed datasets, web scraping and machine learning in an 
interdisciplinary approach. I hypothesize that such a mixed-methods approach would result in 
more nuanced findings than any one method could provide on its own. I show that reduced 
revenue from BEVs results from irrational charging behavior that can be mitigated by simple 
software and policy interventions. In turn, I find that real-time data collection and analysis efforts 
are crucial to efficient MODV electrification.  
 
Policy recommendations from this dissertation include establishing firm electrification targets to 
catalyze investment in fast-charging infrastructure; establishing citywide open data platforms to 
integrate real-time data on vehicle trajectory, battery charge, and charger availability; and 
providing drivers and companies with training on best charging practices. Such capabilities may 
also require labor policy reform to incentivize fleet operators to manage their drivers’ charging 
behavior. In turn, digitization enabled by fleet electrification holds the potential to enable a host 
of smart urban mobility strategies, including integration of public transit with innovative 
transportation systems and emission-based pricing policies. As a number of cities worldwide 
move toward fully electrified MODV fleets, this analysis has large-scale implications for 
decarbonized, cleaner urban areas. 
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Limitations and directions for future research: This dissertation does not explore how 
changes in vehicle supply and cost may impact trip demand. I have conducted a variety of 
sensitivity analyses to ensure my results are robust to changes in trip demand, but this is a topic 
that deserves further examination in the future. Similarly, I have not analyzed how changes in 
fleet operation or trip demand might impact congestion, which was critical to enabling 
computational efficiency and geographic flexibility. I have made a variety of conservative 
assumptions to counteract this omission, such as slightly increasing travel times and giving trip 
requests a 10-minute buffer, but future work should address this topic more thoroughly. Future 
work should also expand geographic scope, especially focusing on issues specific to suburban 
and rural settings. I have not closely examined the impact of vehicle charging on the power grid 
or potential benefits coordinated charging might provide. Future work should also seek to 
incorporate charging activity by other types of BEVs, such as private vehicles and taxis, while 
further exploring behavioral factors that influence charging decisions, such as availability of rest 
places and food, opportunities to meet friends and other drivers, and range anxiety.  
 
Finally, this study does not deeply analyze impacts on social equity, which deserves further 
analysis in future research. Academics, social justice advocates, and policymakers must work to 
ensure these new technologies help redress past and present injustices rather than exacerbating 
them or merely maintaining the status quo. 
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Introduction 
 
In the following section, I provide an overview of the challenges and policies regarding 
transportation electrification. I then discuss the emergence of mobility on-demand vehicle 
(MODV) services, and the potential synergies with electrification. Finally, I provide a brief 
introduction to each subsequent chapter, including previous studies and key contributions. 
 
 

Transportation electrification 
 
Transportation is entering a period of transformative change. Transportation represents the 
fastest-growing source of the world’s greenhouse gas (GHG) emissions, with passenger cars 
accounting for close to a sixth of carbon dioxide emissions,1 and car sales set to more than 
double by 2050.2 To meet the 2-degree and 1.5-degree targets established in the Paris 
Agreement, transportation must shift rapidly to low-carbon technologies.2,3 In the U.S., 
transportation recently became the single largest source of GHG emissions. Emissions have 
grown by over 20% since 1990, while emissions from almost all other sectors have decreased or 
remained constant.4 
 
Battery electric vehicles (BEVs) have emerged as a market-ready technology with the potential 
to reduce the carbon intensity of private transportation,5,6 and costs are falling to the point where 
BEVs may become cheaper than internal combustion engine vehicles (ICEVs) for private use 
within the next five to ten years.1 BEVs could reduce transportation-related carbon emissions and 
urban air pollution,6,7 but despite years of strong public support, several barriers have slowed 
adoption.8,9 BEVs typically have higher upfront cost than similar conventional and hybrid 
vehicles, and they provide a shorter driving range.10,11 Consumers worry about the safety and 
reliability of new technologies like batteries and electric motors.8,9 Charging infrastructure incurs 
additional cost, and the vast majority of public charging infrastructure consists of Level 2 
chargers,12 which require several hours to fully recharge longer range BEVs. Public DC fast 
charging requires much less time (providing 60–80 miles of range in 20 minutes),13 but relatively 
few fast-charging stations are available, and low utilization increases charging costs.  
 
Meanwhile, car ownership and vehicle-miles traveled (VMT) are projected to increase several 
fold by 2050, potentially leading to massive increases in energy consumption.14 My previous 
research has suggested that providing incentives for personal BEVs may lead to significant 
rebound effects in both vehicle ownership and usage.15  
 
Furthermore, focusing on electrifying privately owned vehicles ignores the fundamental 
inequities of this system. While low-income neighborhoods are often burdened with greater air 
pollution, BEVs are disproportionately owned and driven by residents of higher-income 
neighborhoods.  
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In California in particular, there has been increasing focus on improving accessibility of BEVs to 
low- and moderate-income groups. Low-income customers are eligible for an additional $2,500 
rebate when trading in an older car for an EV. In addition, SB350, which established the zero-
emission vehicle (ZEV) mandate for 2030, also required that the California Air Resources Board 
study ways to overcome barriers to ZEV access for low-income customers. A 2018 executive 
order from Governor Jerry Brown also expanded ZEV incentives for low-income groups, 
including targeted investment in charging infrastructure. 
 
But resolving transportation inequity will also require shifting away from a system based 
primarily on private vehicle ownership. For many households, ownership represents a major 
financial burden, but today’s transportation system often makes owning a vehicle a prerequisite 
to accessing jobs, education, healthcare, and food. As shown in Figure 1, travel by private 
vehicles dominates across all income groups, but lower levels of vehicle ownership lead to 
greatly reduced travel among low income households. Yet, due to fixed costs that make up a 
large proportion of the cost of vehicle ownership, low-income households that own vehicles 
spend a higher fraction of their income on transportation and each mile they drive costs more (as 
shown in Figure 2). 
 
 
 

 
Figure 1. Mode share and distance traveled by mode and annual household income group (low < $35,000, middle 
$35,000 - $75,000, high > $75,000). Data from the 2017 National Household Travel Survey (NHTS).16 
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Figure 2. Financial burden and cost per mile of vehicle ownership and operation by cost component and income 
group (same boundaries as in Figure 1). Analysis based on data from NHTS, Kelley Blue Book,17 and Consumer 
Expenditures Survey.18 

 

Mobility on-demand and the “three revolutions” 
Meanwhile, the market for personal mobility is changing rapidly. Innovative mobility concepts 
and strategies, from bikesharing and carsharing systems to innovative demand response bus and 
shuttle services, are providing travelers with new, flexible, and tailored transportation options. 
The widespread adoption of smartphones has enabled the rise of a new form of transportation, 
the “mobility on-demand” (MOD) platform, in which users order transportation services for an 
individual trip via smartphone apps.19–23 MOD is based on the transformation of transportation 
modes and trips into interchangeable commodities with comparable costs and benefits, including 
price, trip duration, wait time, and comfort. In other words, MOD converts transportation into a 
marketplace where companies match vehicles and drivers with consumers in need of travel; this 
can also include e-commerce. This marketplace requires system operators, which can lend itself 
to implementation of various transportation demand management strategies to improve social 
outcomes such as equal access and reducing traffic congestion.24  
 
Arguably, early versions of MOD have existed for decades in the form of carsharing25 and 
carpooling26 services, but it has gained increased traction and attention since the advent of 
transportation network companies (TNCs), also known as ridesourcing and ridehailing,1 which 
typically leverage digital marketplaces to connect travelers to drivers who provide prearranged 
and on-demand transportation services in private vehicles for compensation.22 TNCs entered the 
mainstream with the launch of Lyft and Sidecar in San Francisco around 2012, and they have 
since spread around the globe, providing service similar to taxis but eclipsing them in many 
markets. More recently, MOD has expanded to include shared micromobility – i.e., shared bikes 

 
1 Note that the term ridehailing was coined by the media and does not clearly distinguish between taxis and 
TNCs/ridesourcing, so these latter two terms are preferred and will be used exclusively in subsequent sections. 

fuel 
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insurance 
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and scooters – and microtransit, a technology-enabled transit service that typically uses shuttles 
or vans to provide on-demand or fixed-schedule service with either dynamic or fixed routing.22,27 
These latter services have gained rapid adoption: as of May 2018, there were almost 50,000 
shared bicycles in the United States.28 Especially with the advent of the COVID-19 pandemic, 
they may become an important feature of urban transportation in the future – for example, and 
the collapse of public transit ridership may lead to an increased use of microtransit in some 
places to provide a more flexible service model. Also, there are early indications that shared 
micromobility may be growing in part due to its ability for travelers to maintain social 
distancing. The global pandemic may also be contributing to longer shared micromobility trips, 
enabling new use cases. 
 
Similarly, goods delivery services such as Amazon, UPS, along with grocery and restaurant food 
delivery services like Uber Eats and Instacart, have become an increasingly important element of 
the MOD ecosystem. As people make fewer trips and remote work facilitates more suburban and 
rural living, goods delivery will likely continue to grow rapidly in the coming decades. 
Meanwhile, advances in automation technology and drone delivery will likely further increase 
the affordability and “on-demand” nature of these services.29  
 
This diversity of on-demand transportation modes has given rise to a related by separate concept 
called mobility as a service (MaaS) in which travelers can access a range of different modes 
through a single platform and subscription.28 MaaS will likely be an important part of the 
sustainable transportation future, but it falls outside the scope of this dissertation. 
 
In this dissertation, I focus on a subset of MOD services using automobiles, which I term 
“mobility on-demand vehicle” (MODV) services, to distinguish from MOD services without 
automobiles, such as shared micromobility. These services include both TNCs and e-hail for 
taxis, as well as microtransit. Furthermore, while many of the insights also apply to goods 
delivery services, the focus of my work is on passenger transportation services. 
 
Although MODV services currently represent a relatively small share of all vehicle miles 
traveled, the sector has experienced explosive growth in recent years,30 largely due to advances 
in technology, changes in consumer patterns, and a combination of other economic, 
environmental, and social forces.28 Some forecasts expect the global market to increase almost 
three-fold by 2030.22,31 In some emerging economies with low labor costs such as India and 
South Africa, these services already represent over 10% of vehicle kilometers traveled (VKT). In 
several megacities in emerging economies, MODV services represent over one third of VKT (see 
Table 1 for sources and calculations). With urban areas expected to add 2.5 billion people by 
2050, urban sustainability will be a defining challenge of the 21st century, and MODV services 
will represent a key element.32 While the ongoing COVID-19 pandemic has drastically reduced 
MODV ridership, this trend has been partially offset by increases in demand for delivery 
services,33 and ridership will likely rebound as the pandemic subsides.  
 
Another technology on the horizon that could disrupt this trend and enable MODVs to dominate 
the transportation market is vehicle automation.34,35 Automation could lead to a series of 
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cascading impacts on transportation and urban form, like allowing many consumers to sell their 
personal vehicle and rely on MOD services, and the conversion of parking spaces to increase 
network capacity or access for non-motorized modes; conversely, increased comfort of travel 
could increase suburban sprawl as people become willing to move further from their work.36 
Over a dozen pilot projects are underway in the U.S. exploring the use of automated vehicles in 
MODV fleets. All of these projects operate only within a restricted geographic area, and most 
require safety drivers in the vehicles at all times, but the technology could progress rapidly in 
coming years.28  

 

Table 1. Summary of data used to determine fleet VKT proportion in select locations. 

Location Fleet VKT Total automobile VKT % fleet Sources 

Nations 

China 142B taxi km/yr + 48.8B pkm Didi 
* 2 km/pkm = 236B km/yr 

15k km/yr/veh * 250M veh =  
3.75T km/yr 

6 37 38 39 
40 

India 1.3B TNC trip/yr * 4 total/TNC * 7 
pkm/trip * 2 km/pkm = 73B km/yr 

12k km/veh/yr * 33M veh =  
396B km 

16 41 42 43 
44 

South 
Africa 

450k R/yr/veh * 20 R/mi * 200k 
veh * 2 km/pkm = 14B km/yr 

17M hh * 0.3 veh/hh * 16600 
km/veh/yr = 83 B km/yr 

14 45 46 47 

Germany 56k vehicles * 50k pkm/veh * 2 
km/pkm = 5.6B km/yr 

14k km/yr/veh * 64M veh =  
893B km/yr 

0.6 48 49 

England 62mi/p/yr * 56M ppl * 2 
total/passenger * 2 (TNC + 
taxi)/taxi = 22B km/yr 

38M vehicles UK * 7k mi/yr * 
56M ppl England/66M ppl UK = 
370B km/yr 

6 50 51 

USA 38B pkm/yr * 2 km/pkm 3.2T km/yr 2 30 

Cities 

Delhi 150k veh * 100k km/yr = 15M 
km/yr 

3M veh * 10k km/yr = 30M km/yr 33 52 

Beijing 100k veh * 100k km/yr = 10M 
km/yr 

6M veh * 10k km/yr = 60M km/yr 14 53 

Mexico City 140k taxi * 100k km/yr * 2 
total/taxi = 28M km/yr 

5M veh * 10k km/yr = 50M km/yr 36 54 

Bangkok 140k taxi * 100k km/yr * 2 
total/taxi = 28M km/yr 

5M veh * 10k km/yr = 50M km/yr 36 55 

Cairo 80k taxi * 100k km/yr * 2 total/taxi 
= 16M km/yr 

2M veh * 10k km/yr = 20M km/yr 44 56 

 
 
Meanwhile, recent studies have shown that ridesourcing can increase both GHGs57 and 
congestion.58 Without rapid decarbonization, the corresponding growth in transportation 
emissions could easily offset carbon reductions in other sectors. Local governments are 
increasingly concerned by ridesourcing’s adverse emissions impacts,59 and BEVs offer a 
potential solution.  
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As shown in Table 2, several countries have enacted policies to pursue MODV electrification. 
California has set a timeline to set target reductions in TNC emission intensity,60 and India has 
announced a ban on sales of new fossil-fuel vehicles for use in commercial fleets after 2026.61 In 
California, the public utility commission is tasked with establishing targets for emissions 
reductions for ridesourcing companies,62 Uber has announced that all its vehicles in London will 
be electric or hybrid by 2025,63 and Lyft has set a goal of 1 billion autonomous electric rides per 
year by 2025.64 In addition, 15 countries have announced sunset dates on new fossil-fuel vehicle 
sales.65 
 
Table 2. Summary of on-demand automotive fleet electrification policies around the world. 

Location Policy Year Notes Source 
Oslo, Norway Electrification 

mandate 
2023 100% taxi fleet electrification 66 

Amsterdam, 
Netherlands 

Electrification 
mandate 

2025 100% taxi fleet electrification 67 

Washington D.C., 
USA 

Pilot project 2019 127 EV drivers, many complaints 68 

New York City, USA Electrification 
mandate 

2013, 
2020 

Conducted pilot project with 5 BEVs in 2013 
and planned to electrify one-third of taxi fleet 
by 2020; no progress made 

69 

India Electrification 
mandate 

2026 All new commercial vehicle sales must be 
electric, 40% of TNC fleets 

61 

Nagpur, India Pilot project 2018 200 drivers given EVs, planned 50 charging 
piles at four locations but only 12 built. Most 
drivers reverted to fossil-fuel vehicles 

70 

Costa Rica Electrification 
mandate 

2035, 
2050 

70% bus and taxi electrification by 2035, 
100% by 2050 

71 

London, UK Electrification 
mandate, 
emissions fee 

2018-
2025 

New taxis must be electric starting in 2018, 
emission-based congestion zone expanding in 
2021, Uber plans to be fully electric by 2025 

72 

Medellin, Colombia Electrification 
mandate / pilot 
project 

2022 1,500 of 20,000 taxis will be electric 73 

California, USA Emissions 
mandate 

2020-
2023 

Establish baseline for TNCs in 2020, establish 
targets by 2021 deadlines every two years 
starting in 2023 

60 

Bogota, Colombia Electrification 
mandate 

2025 50% electric taxis (progress not updated since 
pilot project in 2015) 

74 

 
Previous studies have suggested that MODVs represent a ripe market for the adoption of battery 
electric vehicles (BEVs), with the potential to overcome the barriers and inequities discussed 
above and drive a step-change in transportation electrification. Vehicles used for MODV 
services accumulate mileage more quickly than vehicles used for personal purposes only, such 
that BEVs used for ridesourcing can provide greater benefits to vehicle owners due to lower 
costs per mile,75,76 and they provide better returns on public electrification investments in terms 
of reduced carbon emissions and air pollution per vehicle.77 My previous research has suggested 
that due to higher utilization and more rapid vehicle turnover, a complete shift to shared electric 
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fleets could have a greater impact on cumulative emissions reductions from transportation than 
complete electrification of the personal vehicle market combined with rapid grid 
decarbonization.78 This impact does not include the potential for shared fleets to increase 
penetration of renewable energy sources on the power grid by shifting load to different times of 
day. 
 
In addition, because ridesourcing vehicles are typically driven in urban cores, ridesourcing BEVs 
could increase public health benefits, especially in disadvantaged communities, while exposing 
many consumers to the technology, which might increase private BEV sales.79,80 The focus on 
dense urban areas and short trips can also help overcome barriers related to limited battery range 
and long charging times.8,75,81,82  
 
MODV services also offer a new potential pathway to providing ZEV access to low-income 
groups, through electric shared mobility services offered by ridesourcing companies. Previous 
studies have shown that taxis can improve access for low-income families without cars,83,84 but 
at great expense. Ridesourcing services have been shown to serve more diverse groups than 
taxis,23,85 and low-income groups are much more likely to use ridesourcing than to own a BEV, 
adopting pooled ridesourcing at similar rates to other income groups.86 However, barriers still 
remain, including access to smartphones and electronic finance, distrust of outsiders,84,87 and 
other non-monetary factors.88,89  
 
The convergence of automation, ridesourcing, and electrification has been coined the “three 
revolutions,”90 resulting in a new form of transportation called shared automated electric vehicles 
(SAEVs).91 Previous studies have estimated that SAEVs deployed in 2030 could reduce GHG 
emissions per mile by more than 90% relative to privately owned conventional vehicles while 
substantially reducing cost.75 It is possible that such cost savings will increase overall vehicle 
miles traveled as a result of induced demand, but some studies have predicted that the efficiency 
gains would outweigh any resulting potential increases in emissions.81  
 
But the nature and magnitude of these impacts is hardly inevitable. In particular, without 
effective policies, these technologies could do little to change the status quo, leading to a future 
where ever-increasing travel offsets any improvements in efficiency, resulting in worse 
congestion and pollution. In this dissertation, I propose to study the social and environmental 
impacts of shared fleets, as well as the barriers stopping the use of electric vehicles in taxi and 
ridesourcing fleets today. I test the hypothesis that if electrified and operated in a coordinated 
way, taxi fleets hold the potential to overcome these barriers and drive dramatic increases in 
transportation electrification.  
 

Outline and key contributions 
Chapter 1: 
My initial research focuses on a future where advances in automation technology have enabled 
the use of shared automated electric vehicles (SAEVs).92 SAEVs would offer on-demand 
transportation in electric and self-driving cars similar to the service provided by current 
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transportation network companies such as Uber and Lyft but likely at much lower cost and 
carbon intensity. Because each SAEV need only have enough seats (known as “right-sizing,” see 
below for details) and battery range for the trip requested, and charging can be split over many 
short periods in between trips, they could enable the use of smaller cars with shorter battery 
range, overcoming the barriers of slow charging speed and high capital cost.75,93 

 
Several previous studies have employed agent-based modeling techniques to explore the 
feasibility of a fleet of automated taxis operating in an urban environment.92,94–100 Building on 
these results, I develop an agent-based model to predict the system costs of a fleet of SAEVs 
operating in New York City (NYC). Manhattan is a good test case because it is likely one of the 
world’s best-suited cities to implement an SAEV fleet. With 1.6 million people living in an area 
of 23 square miles, it is also the most densely populated region in the U.S. Car ownership in 
Manhattan is both challenging and expensive; average household vehicle ownership in 
Manhattan is about 0.3 vehicles,101 compared with 1.9 in the U.S. as a whole.102 As a result, taxi 
usage is relatively high—taxi trips currently represent about 8% of all daily trips taken by 
Manhattan residents.103 

 
Previous studies have shown that electric taxi fleets are viable options under certain 
circumstances. However, those studies have chosen fixed values for various fleet parameters. To 
my knowledge, ours is the first study that explores a variety of vehicle, operational, and 
infrastructure parameters to identify the fleet configuration with lowest cost, and the 
corresponding environmental and energy impacts. In contrast to previous work, my analysis also 
assumes that taxis can relocate to charge whenever they are idle, which may reduce both the 
required battery range and overall cost as well as the impact of the vehicle fleet on the power 
grid. Furthermore, instead of assuming that batteries will be replaced on a fixed schedule, I study 
the optimal battery replacement schedule by investigating the impact of battery degradation on 
the number of taxis required to serve demand. Including this flexibility in my model allows me 
to make substantive recommendations regarding how SAEV fleets should be designed, the 
greatest barriers facing implementation, and how the impact of this technology might differ from 
adoption of personal BEVs.  
 
Results: I estimate that costs will be lowest with a battery range of 50-90 miles, with either 66 
chargers per square mile rated at 11 kilowatts or 44 chargers per square mile rated at 22 
kilowatts. I estimate that the cost of service provided by such an SAEV fleet will be $0.29-$0.61 
per revenue mile—an order of magnitude lower than the cost of service of present-day 
Manhattan taxis and $0.05-$0.08/mi. lower than that of an automated fleet composed of any 
currently available hybrid vehicle or ICEV. I estimate that such an SAEV fleet drawing power 
from the current NYC power grid would reduce GHG emissions by 73% and energy 
consumption by 58% compared to an automated fleet of ICEVs. 
 

Key contributions:  

Theoretical – Current notions in business, policy, and research contend that BEVs require long 
battery range and fast charging, both of which lead to higher costs. On the contrary, I 
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hypothesize and test in the MODV context, more efficient operations enable shorter battery 
range and slower charging, such that BEVs can serve demand at lower cost than ICEVs with 
present-day technology. In particular, because MODV services are dominated by short-distance 
trips and fleets are sized to meet peak demand, I hypothesize that each vehicle may only need 
enough battery range to serve a single trip and often will have time to recharge in between trips.  

Previous studies in operations research have looked at the performance of BEV fleets using 
agent-based models, but these models have failed to simulate efficient fleet operating strategies, 
employing only rigid and simplistic fleet rebalancing strategies. For example, Chen et al. (2016) 
and Loeb et al. (2018) only allowed vehicles to charge when they did not have enough range to 
serve a trip, while Bischoff and Maciejewski (2014) only allowed vehicles to charge while 
waiting at a taxi stand. Hu et al. (2018), Yang et al. (2017), and Jia et al. (2018) assumed each 
BEV must serve the same trajectory as a present-day ICEV, and that charging would only occur 
when the taxis currently had idle time.  

These simplistic assumptions have resulted in the false conclusion that BEVs inevitably will 
increase cost. In part these models’ simplicity comes from constraints on computational 
resources. I hypothesize that a more flexible modeling structure can enable simulating efficient 
fleet operation at low computational cost, and so reveal the true potential for MODV 
electrification. 

Methodological – I develop a novel agent-based modeling framework, employing 
“retrospective” rebalancing to efficiently assign a fleet of shared vehicles to serve mobility 
demand, and show that this method is equivalent to an efficient demand forecasting algorithm. I 
apply this new modeling framework to study the case of electrifying taxi operations in 
Manhattan. I also couple the simulation with a model to evaluate cost and environmental impact, 
along a model predicting battery degradation. Finally, I develop a method for optimizing fleet 
size and battery capacity to minimize total cost, given that battery lifetime is determined by the 
amount batteries are oversized relative to minimum required range, which in turn is a function of 
fleet size. 

Empirical – I find that given efficient operations, BEVs can serve demand at lower cost than any 
ICEV or hybrid vehicle, while greatly reducing cost, GHG emissions, and air pollutants. 

 

Chapter 2: 
The results of Chapter 1 beg the question, why aren’t MODV fleets already electrifying? In 
particular, in this chapter I focus on modeling pathways to ridesourcing electrification. Early 
efforts at ridesourcing electrification have experienced mixed results. In a London pilot project, 
Uber found that over 80% of BEV drivers lacked access to home charging, and insufficient 
public infrastructure prevented drivers from serving as many rides as they could with ICEVs.79 
Elsewhere, ridesourcing BEV drivers have reported declining rides because their vehicles lacked 
sufficient charge as well as losing revenue owing to time spent charging and looking for 
charging stations.104,105 In a pilot in South Korea, BEV taxis provided a much lower benefit-to-
cost ratio compared with natural-gas-powered taxis because of limited charging infrastructure 
and battery range.106 In China, electric taxi drivers exhibit significant range anxiety, driving 
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relatively short distances between charging events.107 In Beijing, researchers found that EV taxis 
with 130 to 160 km of battery range travel only 118 km per day, compared to 250 km for 
conventional vehicles, suggesting that they do not earn nearly as much revenue.108 In Hong 
Kong, surveys with taxi drivers and owners revealed that both the location of chargers and 
charging time are two of the most important factors affecting perception of BEV adoption.109 In 
India, the TNC company Ola launched a highly publicized pilot with BEVs in the city of Nagpur 
but ended the project prematurely due to driver strikes arising from long queues at charging 
stations and lost revenue.70 
 
While it is thus evident that ridesourcing electrification will require convenient and inexpensive 
public fast-charging charging infrastructure, there is limited public information regarding 
optimal infrastructure design and BEV fleet operation. Wood et al. (2018) built an optimization 
model of a hypothetical ridesourcing fleet in Columbus, Ohio, based on GPS data from cell 
phones.110 However, these data did not distinguish ridesourcing trips from trips taken by other 
modes, and the authors assumed that all drivers have access to home charging, whereas 
ridesourcing electrification in major cities likely will depend on public charging as discussed 
above. Ke et al. (2019) developed an optimization model to study scheduling of charging 
sessions in an electric ridesourcing fleet but did not base their analysis on real-world data and did 
not incorporate spatial constraints in the model.111 Tu et al. (2019) analyzed current trajectories 
of ridesourcing vehicles in Beijing and found that ubiquitous Level 2 charging at all driver 
homes and dwell locations would be required to electrify 90% of the fleet, but the authors did not 
account for the possibility that BEVs could have different trajectories than ICEVs.112 
 
This study builds on the work discussed in Chapter 1 by extending the agent-based model to 
present-day ridesourcing fleets in San Francisco and New York City, which incorporates 
flexibility as to when drivers relocate to charge. Previous studies have determined charging and 
trip assignment separately, leading to much less flexibility in the timing of charging than if the 
two are determined simultaneously. Also, most previous studies have only allowed vehicles to 
charge when battery range falls below a threshold, and they have required vehicles to remain 
charging until at full capacity.96,98,113,114 I hypothesize that flexibility both in terms of when to 
charge and the extent of charge may be even more important for ridesourcing than for other BEV 
applications, because the vehicles return to the drivers’ homes at the end of shifts, where 
charging stations may not be available. This hypothesis is consistent with Keskin and Çatay 
(2016), who found that allowing partial-charge sessions improves electric fleet performance.115 
 
Results: I show that given a sparse network of three to four 50kW chargers per square mile, 
BEVs employed in TNC fleets can provide the same level of service as ICEVs at lower cost. 
This suggests that the cost of charging infrastructure is not a significant barrier to ridesourcing 
electrification. With coordinated use of charging infrastructure across vehicles, I also find that 
fleet performance becomes robust to variation in battery range and placement of chargers. 
 
Key contributions:  

Theoretical – Previous studies and industry reports have argued that TNC operations are 
challenging to electrify due to the lack of fast charging infrastructure, and that drivers lose 
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revenue when they go to charge. On the contrary, I hypothesize that due to the nature of TNC 
operations: a) TNC drivers have sufficient time in between trips to charge without losing 
revenue; and b) cost of charging is largely dependent on usage rates, and MODV services can 
provide sufficient charging demand to fund the development of public fast-charging 
infrastructure.  

Methodological – To test the above hypothesis, I develop an approach to estimating charging 
infrastructure requirements and the opportunity cost of charging based solely on wage rates, 
driving speed, and relocation distances. I then apply and extend the modeling framework 
developed in Chapter 1 to analyze the cost and barriers to electrifying present-day TNC 
operations in both New York City and San Francisco. This effort includes integration of survey 
data regarding driver earnings, shift lengths, and commute distances. I also develop new methods 
for modeling different charger siting strategies and fleet operational capabilities. 

Empirical – I find that electrification does not necessarily result in increased cost, and that long 
charging times do not inevitably lead to revenue losses given that drivers only spend a fraction of 
their shift serving trips. I find that providing drivers with information regarding charger 
availability and future demand reduces requirements for both charging infrastructure and battery 
range. 

 
Chapter 3: 
Naturally, simulation can never capture all of the barriers experienced in real-world 
implementation. In this final chapter, I turn my focus to Shenzhen, China, where the taxi fleet 
has already been completely electrified. To build a sustainable roadmap for taxi electrification 
that can be adapted and adopted elsewhere, the Shenzhen electric fleet must provide the same 
level of service as a conventional fleet at low cost and with significant carbon benefits. Local 
interviews conducted with drivers and reports in the media suggest, however, that time spent 
charging – in some cases over three hours per day – results in lost revenue, compounded by 
problems with queuing at popular charging stations.116 
 
In this chapter, I use over two weeks of GPS and battery state of charge (SOC) data from about 
20,000 electric taxis in Shenzhen to evaluate the potential of different interventions to the 
problems described above. The data come from January, May, and June 2019, and they consist 
of snapshots taken every five minutes from each vehicle. Using these data, I develop several 
machine learning models to predict operational characteristics of the taxi fleet and present a 
framework for how this modeling platform can be implemented in practice.  
 
In particular, I analyze the impact of four proposed interventions that could reduce the charging 
burden: 1) optimizing the location of charging stations to minimize travel time to charging 
stations, 2) optimizing the dispatch of vehicles to charging stations to minimize both travel and 
queuing times, 3) shifting more daytime charging to early morning hours when demand for taxi 
trips is low, and 4) shifting charging to times when vehicles are idle. I conduct simulations to 
estimate and compare the potential impact of these various interventions on fleet performance, 
driver revenue, and charging infrastructure use. Finally, using one day of driver shift-change 
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data, I compare the performance of groups of drivers with different charging patterns to verify 
the simulation results.  
 
Results: Contrary to the emphasis on charging station siting in the literature, I find that 
optimizing charging locations would have a relatively limited impact. Instead, providing drivers 
with better real-time information about queuing times at charging stations, and enabling 
flexibility in battery charge during shift changes could reduce down-time per vehicle by over 30 
minutes per day, while increasing the number of economically viable charging stations by over 
50%. Moreover, taking full advantage of break periods and nighttime to charge could reduce 
downtime per vehicle by over one hour per day, reducing revenue losses due to charging by 
roughly 90%. These results are verified with evidence from real-time charging station data and 
driver shift-change data. 
 
Key contributions:  

Theoretical – BEV taxi drivers in Shenzhen have complained of lost revenue and long queues at 
charging stations, leading the media to report that BEVs are not ready for widespread adoption in 
MODV services. Based on my previous findings, I hypothesize, test, and demonstrate that simple 
strategies to improve operations (i.e., showing drivers accurate estimates of queue times at each 
charging station and encouraging drivers to charge during breaks and nighttime) could greatly 
reduce these problems. I also hypothesize, test, and demonstrate that such strategies will require 
a mixed-methods approach combining insights from both qualitative and quantitative research 
methods. I employ a range of qualitative and quantitative methods to demonstrate this: semi-
structured interviews, big data analysis, web scraping, machine learning, and simulation. 
 
Methodological – I integrate driver interviews (n=30) with web scraping, data analysis and 
machine learning techniques to conduct a mixed-methods analysis of barriers to taxi 
electrification in Shenzhen, China, and evaluate the impact of potential solutions. 

Empirical – I find that simple software and policy interventions could greatly reduce revenue 
losses currently caused by electrification, decreasing queue times at charging stations while 
shifting charging activity to times of day when vehicles are currently sitting idle. In turn, I find 
that real-time data collection and analysis efforts are crucial to efficient MODV electrification. 
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Chapter 1:  
Simulation of Shared Automated Electric Vehicle (SAEV) fleets 
serving urban mobility 
 

1.1. Introduction 
 
In both the literature and public discourse, common perception holds that BEVs are currently 
inferior to conventional vehicles because a) the high cost of batteries leads to limited range and 
higher upfront cost, and b) relatively slow re-charging times make usage in high-mileage 
contexts infeasible.8,117 My collaborators at LBNL and I hypothesize that with shared fleets, 
these barriers can be overcome because a) vehicles need only enough battery range to serve 
individual trips, which are typically less than 10 miles, and b) vehicles can use idle time between 
trips to re-charge. To test this hypothesis, I built an agent-based simulation framework to route 
shared vehicles to serve trips and to charge, and tested the performance of a variety of fleet 
scenarios using real-world data from Yellow Cabs in Manhattan. 
 
Several previous studies have employed agent-based modeling techniques to study taxi fleets, 
but most focus on self-driving cars, and few have modeled BEVs.94,95,99 Of those that do consider 
BEVs, the charging relocation strategy is typically either absent or simplistic. Chen et al. (2016) 
and Loeb et al. (2018) only allowed vehicles to charge when they did not have enough range to 
serve a trip, while Bischoff and Maciejewski (2014) only allowed vehicles to charge when at taxi 
stands. Hu et al. (2018) studied the feasibility of electrifying Yellow Taxis in NYC, defining 
“feasibility” as able to serve 99% of the same trips as an ICEV. They found that only 7% of the 
fleet could be electrified with current charging infrastructure, and half of the fleet could be 
electrified by installing approximately 400 additional charging stations. However, the authors did 
not consider charging congestion or relocation times after charging. They also placed several 
restrictions on when the vehicles could charge, such as being within half a mile of the nearest 
station. Yang et al. (2017) simulated electrification of taxis in Beijing to determine optimal 
charging siting, but they assumed charging would only occur when the taxis currently had idle 
time, i.e., they did not allow for relocation to charging stations. Similarly, Jia et al. (2018) used 
this data to simulate trip chains of distance equal to electric taxis’ assumed range (150km), and 
used the end points of these chains to estimate optimal locations for charging stations. 
  
Fagnant and Kockelman94 developed an agent-based model of self-driving conventional taxis on 
a 10 mi. by 10 mi. grid network (16 km by 16 km), and found that shared vehicles could serve all 
trips with roughly one-tenth of the number of vehicles, and only 10% additional miles from 
vehicle relocation, resulting in GHG savings of about 5%. In a subsequent study, the group used 
MATsim to model a more realistic grid network based on the Austin, Texas metropolitan area, 
and obtained similar results.95 Chen et al. extended this model to look at the impact of 
electrifying this self-driving taxi fleet, and found that taxis with a battery range of 80 miles  
(129 km) could replace about three vehicles each, while increasing the battery range to 200  
miles (322 km) resulted in a replacement ratio of over five to one.92 A deeper analysis of this 
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model determined that shifting from Level 2 (240V, AC, 7 kW) to Level 3 charging (480V, DC, 
50 kW) increases vehicle replacement to 5:1 and 7:1, respectively.96 It was estimated that this 
electric fleet would cost between $0.40-$0.50/mi. ($0.25-$0.31/km) to operate, and capture as 
much as a third of overall travel mode share.96 
 
Meanwhile, Bischoff and Maciejewski97 used the MATSim framework to model 50 electric taxis 
serving 5% of inner city travel demand in a small city in Poland, with 50 kW fast chargers at 
each taxi stand. They found that electric taxis can serve demand just as well as conventional 
vehicles during normal demand conditions, but may incur negative impact during periods of high 
demand. Building on these results, they developed a cost model to determine the feasibility of a 
fleet of electric taxis in Berlin, assuming one charger for every 10 taxis, all charging at 50 kW 
(i.e. level 3 DC fast charging), and battery replacement every second year.98 Their main finding 
was that under these circumstances, electric taxis could only become cost-competitive with 
conventional vehicles if the cost of electricity falls below 0.20€/kWh or battery warranties 
improve. 
 
Burns et al.103 used three case studies to investigate the environmental and travel impacts of 
shared automated mobility systems, including a study of New York City taxis. They found that 
customer wait time and empty vehicle miles decrease exponentially with fleet size, such that a 
fleet of 9,000 shared automated vehicles (about two-thirds the size of the current taxi fleet) could 
serve all Manhattan yellow taxi trips with a mean wait time of less than one minute. 
 

1.2. Methods 
 
1.2.1 Taxi trip data 
All trip data for my analysis were downloaded from the NYC OpenData 2015 database of yellow 
taxi trips. For most of my simulation runs, Wednesday, February 4, 2015 was used as a typical 
weekday (415,249 total trips) during the winter months when demand is at its highest. To test for 
stability over time as well as the impact of higher demand on two consecutive weekends, the 
simulation was also run with trip data for a 10-day period, February 6-15, 2015. To test the 
impact of fluctuations in seasonal demand (taxi demand is somewhat lower during summer 
months), this longer-period simulation was repeated using data from August 7-13, 2015. Figure 3 
shows the total daily number of NYC taxi trip requests for all of 2015, whereas Figure 4 shows 
the number of trip requests by hour across an average week. Table 3 summarizes descriptive 
statistics of baseline simulation results. 
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Table 3. Summary statistics of simulation results over 24 hours 
 

Minimum Lower 
quartile 

Median Mean Upper 
quartile 

Maximum 

Number of charging events per vehicle 2 11 13 13.13 16 29 
Number of trips served per vehicle 4 22 26 25.48 29 47 
Relocation time per charging event 
(min) 

0 3 4 4.95 5 32 

Relocation distance per charging event 
(mi) 

0 0.3 0.4 0.79 0.6 14 

Relocation time per trip (min) 0 0 0 2.414 4 51 
Relocation distance per trip (mi) 0 0 0 0.33 0.4 17.9 
Trip durations (min) 0 7 11 12.64 17 59 
Trip distances (mi) 0 1 1.5 1.9 2.4 21.9 
Duration of charging events (mi) 1 3 7 16.55 18 299 
Time spent charging per vehicle (min) 0 175 215 213.4 259 437 
Trip distance served per vehicle (mi) 24.4 91.3 101.1 99.9 110 153.7 
Time spent serving trips per vehicle 
(min) 

163 644 700 681 740 892 

Distance relocated per vehicle (mi) 5 21.7 26.1 26.44 30.7 56.7 
Time spent relocating per vehicle (min) 39 161 184 184.4 209 315 
Wait times (min) 0 0 0 2.148 4 10 

 

 
Figure 3. Number of taxi trips by day of the year. 
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Figure 4. Demand profile during each hour of the day, for each day of the week. 

 
As with current pilot projects,120 automated vehicles will likely need to remain within a defined 
geo-fenced area for the foreseeable future (i.e., level 4 automation),121 so, for both realism and 
computational simplicity, the data set was restricted to trips that both started and ended on 
Manhattan Island. Trips outside of Manhattan would presumably be served by a different fleet 
entity, as they largely are today by Green Cabs.122 Removing trips falling outside these 
boundaries on my representative day left me with 349,026 trips or 84% of total demand. Other 
potential limitations of level 4 automation (inclement weather, accidents, road construction, etc.) 
fall outside the scope of this study. 
 

 

 
Figure 5. Snapshots of simulation activity at three different times of day. Red dots show vehicles serving trips, blue 
dots show empty vehicles, and green circles show charging stations with the size denoting the number of vehicles 
charging there. An animation of a 48-hour taxi trip simulation model run can be found at 
https://youtu.be/gQgIjuN2gDY.  
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The data retrieved from NYC OpenData contain starting and ending trip times, geolocations, and 
distances for all taxi trips, but do not include times and distances that taxis traveled between 
drop-offs and pickups. To estimate these data, Google Maps API was used to retrieve 
bidirectional times and distances for a 498-point set of points of Manhattan (248,004 point pairs), 
which were then used to interpolate values for a total of 4,482 points approximately representing 
each street corner. To account for congestion, Google Maps was used to estimate times and 
distances for a subset of 50 points (2,500 point pairs) at every hour of the day, which were then 
used to extrapolate delays for the rest of the data set. This data was verified by running 
simulations with random error based on correlation to trip times and distances in the taxi dataset, 
and found my estimates to be conservative. 
 
As shown in Figure 6, of the three data sources I used for relocation times, Google Maps with 
traffic prediction had the best correlation with times taken from the taxi trip data, with an r-
squared value of 0.62 and a standard deviation of 5 minutes. Distance predictions were 
somewhat better, with an r-squared value of 0.85 and a standard deviation of 0.6 mi. Both 
distances and times predicted by Google were slightly longer on average than those reported in 
the taxi dataset (0.2 mi. and 2 minutes, respectively), which I considered conservative because 
SAEVs will likely drive less aggressively than NYC taxi drivers.  

To test the impact of this error on results, I performed several simulations in which relocation 
datasets were multiplied by an error distribution matrix with a mean of one and standard 
deviation of 0.3 (equivalent to the 5-minute standard error shown above). As shown in Table 4, 
both normally distributed and gamma-distributed errors consistently produced fleets that were 
10-15% smaller than simulations with the baseline relocation matrix. I hypothesize that this 
result stems from the fact that trip assignment prioritizes the closest taxi, and multiplying by 
error matrices increases the likelihood that some taxi will be more close by (others will be further 
away, but this does not affect the result). In turn, reducing relocation times reduces the over 
number of vehicles required to serve demand. Thus, I consider my baseline results to provide 
conservative estimates of cost of service. Note that the smaller fleet sizes resulted in significantly 
more empty miles, as taxis tend to be further from trip requests (distance error was not correlated 
with time error, since error in times was assumed most likely due to congestion).  
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Figure 6. Distributions of the difference between travel times predicted by Google Maps API and OSRM, and those 
given for passenger trips in the actual taxi dataset. 

 

Table 4. Simulation results with modifications to relocation matrix 

Relocation error Battery 
range (mi.) 

Chargers Charging 
stations 

Charging 
power (kW) 

Fleet size Empty 
miles (% of 

total) 
Baseline 100 2000 500 7 6553 20 
Normal 100 2000 500 7 5709 35 
Normal 100 2000 500 7 5689 35 
Normal 100 2000 500 7 5711 35 
Gamma 100 2000 500 7 5981 23 
Gamma 100 2000 500 7 5980 23 

  

 

1.2.2 Taxi routing model description 
Using the R coding platform version 3.3.3, I developed an agent-based model to simulate the 
movement of taxis around Manhattan throughout the day. This model has since been named 
Routing and Infrastructure for Shared Electric vehicles (RISE), and has an open-source license 
through Lawrence Berkeley National Laboratory. Agent-based modeling is well-suited to my 
research question because as compared to other analysis techniques, it allows for more realistic 
interaction between vehicles, passengers and charging stations, and easy modification of various 
assumptions such as strategies for charging, trip assignment, and vehicle relocation.123  
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The model proceeds chronologically, assigning taxis to trips in each minute throughout the day. 
Trip timestamps are used to represent the time when the trip was requested via a smartphone app, 
and priority is given to the first trip requested within the minute. The model assigns to each trip 
the closest available taxi that has at least enough range to both serve the trip and then make it to 
the closest charging station. In cases where more than one taxi meets these criteria, the model 
assigns the taxi with the greatest battery range. Given that Uber has already become the single-
largest taxi service in NYC,124 and industry experts predict that automation will give further 
monopoly power to large fleets,125 I assume that all trip assignments are managed by a single 
operator. 
 
To assess a constant level of service across all model runs, I chose 10 minutes as the maximum 
amount of time a passenger would be willing to wait between trip request and pickup. If no taxi 
is able to reach a trip request within this window, a new taxi is created to serve the trip. As such, 
the simulated taxi fleet grows gradually over the course of the day, and the simulation is 
designed to produce the minimum number of taxis required to serve the demand given 
constraints in battery range and charging infrastructure. It is assumed that “created” taxis 
represent vehicles that had been idle up until that point in the day. 
 
To manage vehicle relocation between trips, I assumed that the fleet operator would have a well-
trained algorithm to predict the spatial distribution of future trip demand and efficiently route 
taxis between trips when necessary, to ensure vehicles are located within a 10-minute radius of 
trip requests whenever possible. Assuming perfect foresight, in cases where no taxi can reach a 
trip request within 10 minutes, the model allows taxis to start relocating as soon as they ended 
their previous trips. For example, a taxi that had been idling for five minutes could, within the 
10-minute tolerance window, reach trips requests up to 15 minutes away. This assumption was 
verified with simulations that managed vehicle relocation based on historic trip data, and I 
explore the impact of changing relocation algorithms in my sensitivity analysis (see below for 
details). In reality, relocation times will be stochastic, such that some trips will not be served 
within the 10-minute threshold. In this study I use 10 minutes merely as a benchmark for 
comparison between different fleets; real-world fleet operators must weigh the value of 
decreasing wait times against the cost of increasing fleet size.  
 
 
1.2.3 Charger routing simulation 
In between trips, taxis must also decide whether or not to drive to a charger. Again assuming 
accurate demand prediction, in each minute, each taxi identifies the charging locations where it 
could have driven and spent enough time charging to at least replenish the energy expended to 
get there. It is assumed that chargers are automated (either wireless or employing a robotic arm), 
such that vehicles begin to charge as soon as they arrive at a station. Each vacant charging point 
accepts the closest feasible taxi that has not already been assigned and is then designated as 
occupied until the taxi either accepts a trip request or its battery is fully charged. Note that this 
method differs significantly from previous models because it allows taxis to charge for very short 
periods in between trip requests instead of waiting to run out of charge and then remaining at a 
charger until the battery is fully charged. My hypothesis is that this method allows for greater 
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flexibility in charging, thus allowing the system to adjust to both shorter battery ranges and 
dynamic electricity pricing. In my simulations, the empty miles that taxis spent relocating to 
charge and to pick up passengers represented about 20-25% of passenger miles, or about 25 
miles per vehicle per day. While this is significantly more than that found by other studies, over 
half of trips are served by vehicles less than 0.1 mi. away, so I expect that increased empty miles 
are an artifact of the short average distance of Manhattan taxi trips (1.9 mi.; see below for more 
details). Simulations of a fleet of ICEVs suggest that empty miles are almost the same as for an 
electric fleet, so I do not expect that electrifying Manhattan’s taxi fleet would increase 
congestion.  
 

 
Figure 7. Schematic describing original RISE vehicle routing algorithms. 

 
1.2.4 Charger distribution model  
To rationally populate my model with a network of chargers, I used an elimination method, 
starting with all possible charging points and iteratively removing the location whose absence 
caused the least impact on the system. In an initial simulation, taxis charged whenever idle, no 
matter where they were located. This initial iteration was run with several different battery 
ranges, and it was found that the charger distributions produced with 20-mile battery range 
resulted in the smallest fleet sizes. For each location, the algorithm then calculated the total 
amount of charging time that would be lost if all the taxis at that point were forced to relocate to 
the next nearest point with chargers, and the charging location with the lowest loss was removed. 
The chargers at that location were transferred to the next nearest point and the process was 
repeated. By removing the lowest-loss location in each iteration, this algorithm runs the risk of 
missing a globally optimal solution that could entail a different combination of removal steps. To 
protect against falling into a locally optimal but globally suboptimal solution, 100 points were 
randomly added back each time the algorithm had removed 500.  
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After synthesizing each distribution of charging locations, I ranked the importance of each 
individual charger by calculating the amount of time for which it was occupied on the simulated 
day. When limiting the number of individual chargers, chargers were removed in order of 
occupancy time, from least to most.  
 
As shown in Figure 8, I compared the simulation results from four different strategies for 
synthesizing the charging network, using two dichotomies: whether the charging infrastructure 
synthesis algorithm described in the methodology was applied to the charging locations or to 
each station individually, and whether the initial network was obtained from a simulation using a 
battery range of 20 miles, or 100 miles. Based on these results, in order to minimize the number 
of taxis, I ran all simulations using the charging network based on a 20-mi. range fleet with the 
network selected by locations. Six of these distributions are displayed in Figure 9. 
 

 
Figure 8. Comparison of simulation results from four different charging networks using different rules to rank 
charging stations. Numbers show the cost of the fleet in cents per mile served. 
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Figure 9. Distributions of charger stations with varying number of locations (first number) and total stations (second 
number). Size represents the absolute number of charging stations at a given point, while color represents the 
number relative to other points in the distribution. 

 
 

1.2.5 Battery degradation model 
 
As shown in Equation 1, degradation is composed of two parts: calendar loss, and cycle loss.126  

𝑄!"##,% = 𝑘&𝑒'!(𝐴ℎ + 𝑘)𝑒*+" ,-⁄ 𝑡
#
!    (1) 

 
The parameters k1 and k2 are quadratic functions of temperature (approximately 0.0008 and 0.4 at 
20°C, respectively), while k3 is a constant equal to 14,876 days-0.5. Ah is charge throughput 
(expressed in cumulative ampere-hours), I is current (expressed in C-rate, the fraction of total 
capacity discharged per hour), Ea is the activation energy (24.5 kJ/mol), R is the ideal gas 
constant (8.314 J/mol/K), and t is time in days. For temperature (T), I made the simple 
assumption that battery temperature is held constant at 20°C while driving to optimize 
performance, and used an overall average of 15°C to calculate calendar loss, given that 
temperature will fall when the vehicle is idling (about half the time), and the annual average 
temperature in New York is 10°C.  
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Using the Nissan Leaf as a model, where each battery cell has a voltage of around 4 V, I 
assumed that charge throughput is equal to energy throughput divided by 4 (energy throughput is 
equal to miles traveled multiplied by vehicle efficiency in kWh/mi.). I converted EPA drive 
cycle data127 to power using Equation 2, 
 

𝑃/0 =
1$%&
2
= 𝐹𝑣 = (𝑚𝑎 + 𝐹3/4)𝑣/𝜂 = 2𝑚 ∆6

∆7
+ &

8
𝐶9𝜌𝐴𝑣85 𝑣/𝜂  (2) 

 
where P is power, a is acceleration, F is total force, Fair is force required to counter air 
resistance, v is velocity, η is engine efficiency, m is the mass of the vehicle (assumed to be 1100 
kg plus 7 kg per kWh of battery capacity, derived from correlations between weight and battery 
size of currently available vehicles), CD is the drag coefficient, assumed to be 0.3, A is the frontal 
area of the vehicle, assumed to be 0.66 m2 (both based on published numbers for currently 
available EV models) and ρ is the average density of air, 1.225 kg/m3.   
 
Assuming that η is independent of speed, since I know the total energy consumption over the 
driving cycle, I can calculate the relative energy consumption of the vehicle in each second, 
removing η from the equation. To get the C-rate, I then divide this rate of energy consumption by 
the battery capacity. Figure 10 shows the C-rate profile for a range of battery capacities in the 
EPA drive cycle for New York City. 

 

 
Figure 10. Estimated current profiles over the course of the EPA driving cycle for New York City, expressed as the 
fraction of total capacity discharged in an hour (C-rate). 

The original model assumed current was identical during charging, so to include degradation 
from charging, I took the mean of charging and discharging degradation on each day, assuming 
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the same amount of charge throughput for each. Figure 11 shows capacity loss over time for a 
range of battery sizes, assuming a fleet size of 7,000 taxis serving February demand. 
 
Note that this model assumes degradation proceeds linearly with charge throughput throughout 
the battery’s lifetime. Other studies have found that, depending on the charge rate, battery 
capacity begins to fall off exponentially after reaching a tipping point.128 In my sensitivity 
analysis, I explored the impact of both eliminating battery degradation from the cost model, as 
well as accounting for non-linear degradation. I found that non-linear degradation becomes 
significant at higher charging powers, but does not significantly change my main results. 
 
Instead of choosing an arbitrary interval at which to replace the batteries, I assumed that batteries 
would be replaced when the fleet could no longer satisfy constraints placed on maximum wait 
time, in this case 10 minutes. Because larger fleets need less battery capacity to satisfy demand, 
this assumption means that the fleet operator must add vehicles to increase battery lifespan, 
creating a trade-off between vehicle purchase cost and battery replacement costs. Taking results 
from the fleet sizing model, I used exponential fits to interpolate the minimum required fleet size 
at any battery range. I then swept through a range of fleet sizes to find the least-cost combination 
of fleet size and battery replacement rate; as shown in Figure 12, there is a simple convex 
relationship between fleet size and cost with a global minimum. As shown in Figure 13, as 
battery range increases, the least-cost fleet size approaches the minimum number of vehicles 
required to serve demand, while the lifespan of the battery and the amount of range remaining at 
the end of the battery’s life increase.  

 

 
Figure 11. Loss of battery capacity over time for various battery ranges, assuming that each taxi drives 128 mi. per 
day (approximately the distance driven by each taxi in a fleet of 7,000). 
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Figure 12. Net present value of the taxi fleet by number of vehicles and battery range. Decreasing the number of 
taxis increases the distance traveled by each vehicle, and reduces the lifespan of both vehicles and the battery. If no 
extra taxis are added over the minimum fleet size, due to capacity loss the batteries must be replaced almost 
continuously to meet demand. This situation creates a tradeoff between vehicle purchase, vehicle lifespan, and 
battery lifespan, such that each battery range leads to a distinct optimal fleet size. 
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Figure 13. Change in battery replacement time, the final capacity, and the optimal number of buffer taxis as battery 
range increases. 

 
1.2.6 Greenhouse gas emissions model 
 
In order to estimate the environmental and energy impacts of my simulated fleets, I calculated 
the life-cycle production of greenhouse gas emissions, air pollution, and energy. Components of 
each of these calculations are shown in Table 5, and Table 6 provides a more detailed breakdown 
of the components that went into the air pollution calculation. 
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Table 5. Summary of emissions model components 

 
  

Component Value  
(tons CO2-eq) 

Sources 

BEV vehicle production 6.5/vehicle Based on 129,  
assuming medium-sized BEV 

BEV battery production 0.11/kWh 130 

BEV end of life 0.6/vehicle 129 

ICEV vehicle production 5.2/vehicle 129 

ICEV end of life 0.5/vehicle 129 

Electricity consumption 0.280/MWh Carbon intensity of electricity 
consumed in New York City in 2015 

(131) 

Gasoline consumption 0.012/gallon Life-cycle impact of conventional 
gasoline (132) 

BEV charging infrastructure 0 Life-cycle impact is comparable to 
that of refueling infrastructure for 
ICEVs, so net impact is negligible 

(133) 

Parking 0 Assume conversion from existing 
spaces 
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Table 6. Air pollution emissions data 

 
Note: NYC’s electricity mix is about 48% natural gas, 42% nuclear, 8% renewables, 1.5% 
petroleum, and less than 1% coal.131 
 
  
1.2.7 Cost model 
The taxi service’s cost per mile was estimated using a model with the components summarized 
in Table 7. As shown in Equation 3, where CRF represents the capital recovery factor and ci 
represents the annual cost of the ith component in the cost model, levelized cost of service was 
found by dividing total net present value (NPV) of costs by NPV of passenger miles. I used a 
discount rate of 5% and a system time horizon of 20 years, assuming constant costs and demand 
throughout this period. In my sensitivity analysis, I varied the cost of each of these components 
to study the impact that different future cost trajectories would have on my conclusions. Note 
that vehicle lifetimes were significantly shorter than the 20-year system time horizon, about 8.2 
years for the cost-optimal configuration. This life-span is longer than that of current taxis 
because I expect electrification and automation will result in lower maintenance requirements, 
and because my simulated vehicles travel significantly fewer miles searching for passengers. 
 

𝐶𝑜𝑠𝑡	𝑜𝑓	𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 	 :1;'$(&
:1;)*+,(

= ∑ =*∙=,?*
∑@3##A0BA4	D/!A#∙=,?

   (3) 

	

𝐶𝑅𝐹 = 	
1 − 1.05*8E

0.05 ≈ 12.5 

 
 
 
 

 
VOC CO NOx PM2.5 SO2 Source 

ICEV tailpipe (g/mi) 0.2 2.9 0.1 0.0 0.0 134 

ICEV upstream (g/mi) 0.1 0.1 0.2 0.0 0.1 134 

ICEV manufacture (kg) 34.2 23.8 9.7 2.3 24.7 134 

BEV manufacture (kg) 34.0 24.1 9.4 2.2 27.9 134 

BEV battery 
manufacture (g/kWh) 

50.6 94.9 224.2 101.1 1025.2 Based 
on 134 

NYC electricity (g/kWh) 0.4 0.1 0.3 0.1 0.2 131, 135 

HEV tailpipe (g/mi) 0.1 2.9 0.1 0.0 0.0 134 

HEV upstream (g/mi) 0.1 0.1 0.2 0.0 0.1 134 

HEV manufacture (kg) 34.5 26.7 10.4 2.4 35.2 134 
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Table 7. Summary of cost model components 

Component Value Source 

Vehicle purchase $20,000/vehicle Based on 99, 100 
Vehicle lifetime 300,000 mi. Based on 75, 103 

Automation $10,000/vehicle 96, 136 
Battery cost $200/kWh plus 30% fleet discount 137, 100 
Battery lifetime Rate of degradation estimated using  

semi-empirical model (see methods section 
for more details) 

126, 127,128 

Charging infrastructure $700/charger/kW + $15/charger/kW/year + 
$10000/location 

Based on 138, 34, 100 

Electricity consumption $0.12/kWh 139 
Vehicle efficiency 0.25 kWh/mi. +  

0.0006 kWh/mi. per kWh  
battery capacity a 

98, 117 

Parking $300/space-month b Based on 140, 141 
Insurance $600/vehicle-year + $0.05/mi. 142, 96, 103 

Maintenance $0.04/mi. 143, 34 
Administrative overhead $2.50/vehicle-day Based on 103, 34 

a) When calculating the cost of electricity, I corrected vehicle efficiency for the additional weight of the battery.  
b) Although I recognize that it is unclear who will pay for SAEV parking, I included the total cost to society of 
providing parking so that I could compare the total cost of various fleet configurations. It was assumed that the 
operator would need to buy a parking space to store all idle vehicles at the point of lowest demand, or about 90% of 
the total fleet size. 
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1.3. Results and Discussion 
 
1.3.1 Fleet-sizing simulation results 
As shown in Figure 14, I found that the minimum fleet size required to serve all trips within 10 
minutes of requests decreases asymptotically with increasing battery range and number of 
chargers, ultimately falling to 6,470 vehicles at battery ranges of 70 mi. and greater. This 
minimum fleet size requires at least 2,000 chargers rated at 7 kW (88 chargers per square mile, 
or one for every 3.2 vehicles), but adding more chargers beyond this point has diminishing 
returns, especially at higher battery ranges. Increasing the number of charging locations has a 
much smaller effect than increasing battery range or number of chargers; this effect becomes 
negligible once battery range exceeds 50 mi. 
 

 
Figure 14. Required fleet size by battery range and charging network. Lines represent exponential fits for simulation 
results, which were collected at 10-mi. intervals in battery range. 

In multi-day simulations, I obtained similar results to those displayed above, with a slightly 
higher minimum fleet size of 6,510 vehicles, and at least 2,000 Level 2 chargers. I also found 
that higher charging speeds can reduce both the number of chargers and the battery range 
required to reach the lower limit of required fleet size. Increasing charging power to 11 kW 
reduced the battery range required to 50 mi and the number of chargers to 1,000 (44 per square 
mile, or one for every 6.5 vehicles), and increasing to Level 3 charging (50 kW) allowed fleets 
with around 6,500 vehicles and over 80-mi. battery range to meet demand with only 200 
chargers (9 per square mile, or one for every 32.5 vehicles). 
 
These results suggest that the main challenge to introducing SAEV fleets is not battery range—
currently available models like the Nissan Leaf more than suffice for meeting demand in 
Manhattan. The greater challenge may be building out sufficient charging infrastructure. In 
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contrast with the scenarios of thousands of chargers considered above, according to the charger 
database ChargePoint, there are currently only 456 chargers in Manhattan, including many 
proprietary stations only accessible by Tesla owners.144 
 
1.3.2 Cost model results 
Given the results of the fleet-sizing simulation, I can see that there are several trade-offs between 
different fleet parameters. Increasing battery range, charging speed, and the density of chargers 
can decrease the number of vehicles required, but also increases other costs. For example, Level 
3 chargers reduce the number of chargers required, but cost on the order of ten times as much as 
Level 2 chargers138, and also increase battery degradation. As shown in Figure 15, taking all 
these trade-offs into account, I identify a lowest-cost configuration at a battery range of 90 mi., 
1,500 chargers, and a charging power of 11 kW, with an estimated cost of service of $0.42 per 
revenue-mile. As shown in Figure 16, when paired with the appropriate charging infrastructure, 
all battery ranges between 30 mi. and 150 mi. result in costs of less than $0.45/mi. As battery 
range increases beyond the point at which fleet size reaches a plateau, cost continues to fall 
briefly because batteries can degrade further before being replaced. After battery range surpasses 
90 miles, however, the cost of battery purchase becomes the dominant factor, and overall cost 
begins to rise again.  
 
While these costs may seem optimistic, it should be noted that they do not include cost 
reductions from improvements in battery technology or charging agreements, improvements in 
BEV efficiency, right-sizing (see below for details), dynamic ride-sharing,100 bulk purchasing 
contracts, or optimal trip assignment algorithms, and so could be considered conservative. These 
cost estimates are also consistent with Burns et al.’s finding that a fleet of conventional SAVs 
could replace Yellow Cab trips on Manhattan with a cost of $0.50/mi.,103 as well as Chen et al.’s 
estimate that an SAEV fleet could serve taxi demand in Austin, Texas at a cost of $0.40-
$0.50/mi.96  
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Figure 15. Estimated cost per mile of simulated taxi fleets with a given charging network and battery range. 
Numbers represent the number of chargers that returned the least cost for each combination of battery range and 
charging speed. 

 
Figure 16. Breakdown of cost of service by component. The outlined column, representing results for a fleet with 
90-mi. battery range, represents the lowest-cost configuration. Numbers represent the lowest-cost charging power 
(top), and number of chargers (bottom) for each battery range. 
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Looking at the breakdown of cost by component, I find that the cost of vehicle purchase varies 
only slightly with battery range, despite a large difference in the number of vehicles required. 
This result arises from the assumption that vehicle lifespan is based on distance traveled (taxis 
are replaced after 300,000 miles), rather than being based on a fixed amount of time. Because 
each additional taxi added to the fleet reduces the average daily distance traveled by all taxis, 
each new taxi extends the lifespan of the fleet as a whole, such that the net present cost of each 
additional taxi purchase of only about $10,000. If taxis were instead replaced on a fixed-time 
schedule, my results would become more sensitive to fleet size. At the same time, each 
additional taxi has associated costs: insurance (estimated at $600/vehicle/year plus mileage), 
administrative overhead ($2.50/vehicle-day), and parking ($300/vehicle-month). Together, these 
costs add close to $60,000 of NPV per vehicle, shifting the overall cost structure in favor of the 
smallest possible fleet size.  

 
1.3.3  Comparison with conventional taxi fleets 
Comparison with a hypothetical fleet of conventional vehicles reveals that, unless both fuel 
prices and conventional vehicle purchase prices fall dramatically, a battery electric vehicle fleet 
will be cheaper. Simulation results show a minimum fleet size of 6,469 conventional vehicles, 
slightly less than the lowest result for a fleet of battery electric vehicles. The lack of relocation to 
chargers also reduces the total distance traveled by 1.4%. To determine the cost of service of this 
hypothetical fleet, I used a similar cost model to that for electric vehicles but with a maintenance 
cost of $0.06/mi and no costs for electricity, batteries, or charging infrastructure. As shown in 
Figure 17, I then calculated the cost for a range of combinations of vehicle cost and fuel cost and 
compared them with estimates for four commercially available models: Toyota Prius, Chevrolet 
Volt, Smart Fortwo, and Toyota Corolla. As with the electric vehicles in my earlier analysis, I 
added $10,000 to the purchase price to account for the cost of automation. In each case, even 
when using the cheapest model configuration and the cheapest U.S. gasoline price ($2.15 in 
June, 2017), all four of these models would cost significantly more than a comparable fleet of 
electric vehicles. Using mean values, the cost increase ranges from $0.05/mi. for the Prius to 
$0.08/mi. for the Volt.  
 
Relative to the current cost of Manhattan taxis—median fare was $5.42/mi. in August, 2015145—
our estimated cost for the operation of an SAEV fleet represents roughly an order of magnitude 
reduction (assuming about 10% profit margin). Aside from savings due to electrification, the 
elimination of driver labor reduces cost by roughly $1.30/mi,34 with the remainder of the savings 
coming from the increased efficiency of a single-operator, smartphone-based system (fleet size is 
reduced by half), and the lack of medallion fees. 
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Figure 17. Comparison of estimated fleet costs for four different models of conventional vehicles. Ellipses represent 
ranges in manufacturer suggested retail prices and gas prices across the U.S. in June, 2017. 

  

Using data cited elsewhere,129–135 I can also project the energy, GHG and air pollution emission 
savings that would result from taxi fleet electrification. As shown in Table 8, SAEV fleets result 
in significantly lower impact in every case except for sulfur dioxide emissions, which would 
increase by 10% due to high emissions from battery production with the current power grid. 
Naturally, the air pollution caused by electric vehicles comes from manufacturing facilities and 
power plants that tend to be located in relatively rural areas, and so will likely result in much 
lower health impacts than emissions from ICEVs.146,147 Meanwhile, NYC plans to reduce the 
carbon intensity of its electricity mix by half by 2030,148 which would further reduce the GHG 
emissions of electric vehicle fleets by a third, and substantially reduce air pollution as well. 
Serving the same trips with personal electric vehicles driven 15,000 miles per year and 300 miles 
of battery range would lead to 74,000 tons CO2-eq per year, meaning that replacing personal 
vehicles with short-range SAEVs could reduce GHG emissions by more than half. Table 9 and 
Table 10 show more detailed results. 
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Table 8. Comparison of energy, GHG, and air pollution emissions 

tons/yr, unless noted otherwise BEV ICEV 
(BEV % savings) 

HEV  
(BEV % savings) 

Energy (GWh/yr) 205 460 (55) 280 (27) 
GHG (ktCO2-eq/yr) 33 122 (73) 76 (57) 
Carbon monoxide 43 932 (95) 922 (95) 
Nitrogen oxides 40 101 (60) 96 (58) 
Particulate matter 11 20 (45) 20 (45) 
Volatile organic compounds 70 132 (47) 104 (33) 
Sulfur dioxide 78 71 (-10) 70 (-11) 

 
Table 9. Fleet air pollution emissions results 

Type of 
vehicle 

Pollutant Total 
emissions 

(kg/yr) 

Vehicle 
manufacture 

(kg/yr) 

Battery 
(kg/yr) 

Fuel/ 
electricity 

Percent reduction 
from electrification 

ICEV VOC 131688 40557 — 91131 46.7% 

HEV VOC 103605 40826 — 62779 32.3% 

BEV VOC 70141 40725 1578 27838 — 

ICEV CO 931841 28223 — 903619 95.4% 

HEV CO 921788 31670 — 890118 95.3% 

BEV CO 42902 28856 2961 11084 — 

ICEV NOx 101254 11472 — 89781 60.2% 

HEV NOx 95986 12280 — 83706 58.0% 

BEV NOx 40275 11270 6990 22014 — 

ICEV PM2.5 19758 2747 — 17011 44.8% 

HEV PM2.5 19866 2855 — 17011 45.1% 

BEV PM2.5 10904 2613 3153 5137 — 

ICEV SO2 71288 29300 — 41988 -9.2% 

HEV SO2 69905 41688 — 28217 -11.4% 

BEV SO2 77860 33375 31971 12514 — 
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Note: Air pollution emissions from BEVs are essentially flat with respect to battery range 
because as battery size increases, increased emissions from production are offset by increased 
lifespan in the baseline battery degradation model. 
 

Table 10. Fleet energy consumption. 
 

BEV ICEV HEV Sources 
Vehicle energy consumption (kWh/mi) 0.25 1.2 0.72 149 

Production efficiency (%) 43 80 80 150,151 

Energy intensity (kWh/mi) 0.58 1.5 0.9  
Usage energy consumption (GWh/yr) 184 449 270  
Vehicle manufacturing (GWh/yr) 13 10 10  
Battery manufacturing (GWh/yr) 7.8    
Total consumption (GWh/yr) 205 460 280  
Energy savings from electrification (%) 

 
55 27  

  

Note: Production efficiency calculation for BEV fleet based on NYC generation mix. 

 
1.3.4 Sensitivity analysis 
To test the robustness of my results, I performed a variety of sensitivity analyses. First, I ran a 
subset of my simulations for a full 10 days, and found that this increases the minimum required 
fleet size from 6,500 to 7,000, as well as increasing the lowest-cost battery range by 10 miles. 
This result suggests that as demand increases, if the taxi operator wishes to maintain the same 
level of service, costs must rise, and battery range may need to increase moderately. Of course, if 
taxi fares were to actually fall by an order of magnitude as predicted here, demand might shift 
dramatically, and so I do not expect that these results more accurately represent reality than those 
based on a single day of data. 
 
Second, I conducted simulations with naïve relocation algorithms to test the impact of my 
assumption regarding perfect foresight. If taxis do not relocate until they are assigned a trip, I 
found that the number of taxis required increased to more than 10,000, and cost of service 
increased to around $0.50/mi., but fleet size became less sensitive to battery range so that the 
lowest-cost battery range at 7-kW charging decreased from 110 mi. to 70 mi. The effect of 
assuming taxis cannot predict when they should relocate to charge is the opposite: overall cost 
does not increase significantly, but battery range becomes more critical, with a lowest-cost 
battery range of 140 mi. Thus, any errors in my assumptions regarding the two relocation 
algorithms have counterbalancing effects, suggesting that my results are robust to inaccuracies in 
my relocation assumptions. Given that the taxi operator has information on the location and state 
of charge of all taxis at any point in time, most likely charging availability will be easier to 
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predict than trip demand. In turn, this means that my result for battery range represents an upper 
bound, while that for cost of service represents a lower bound. 
 
Next, I tested the effect of restricting chargers to a few locations, using the algorithm described 
in the methods section. Given the challenges of obtaining permits and property, SAEV charging 
might take place primarily in a few discrete parking garages that each have a large number of 
chargers. However, I found that with an efficient charging algorithm, results for fleet size and 
battery range do not change appreciably until the number of locations falls below 50. Given that 
there are already charging stations at over 100 locations in Manhattan,144 I expect the impact of 
constraints on charging locations to be minimal. 
 
Finally, as summarized in Table 11, I tested the sensitivity of my results to a variety of changes 
in cost components, including cost of parking, vehicles, batteries, and electricity. These 
scenarios result in cost of service estimates ranging from $0.29/mi. to $0.61/mi. and a lowest-
cost battery range of 50 - 90 mi. This result contrasts with current trends in electric vehicle 
development to expand battery range until it equals the travel range of ICEVs, i.e., more than 
300 mi. My study shows that battery range will not be the main obstacle for SAEV fleets. 
Currently available ranges more than suffice, and significant cost savings could result from 
reducing battery range from current levels.  
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Table 11. Summary of results of cost model sensitivity analyses 

Scenario Explanation Changes to cost model Minimum cost 
of service 

($/mi.) 

Lowest-cost 
fleet 

configuration 

Baseline See methodology section None $0.423 90 mi. battery 
1500 chargers  

11 kW 

Dynamic 
electricity 

rates 

Power utility bases electricity 
rates on time of use to reduce 

peak system load. 

Electricity: 
$0.17/kWh on-peak 
$0.11/kWh off-peak139 
 
No change in charging 
patterns 

$0.427 90 mi. battery 
1500 chargers  

11 kW 

Cheap 
batteries, 
expensive 
vehicles 

Cost of batteries falls quickly, 
but automation costs are more 

than expected. 

Vehicle: 
$50,000 with 
automation 
200,000 mi. lifespan 
 
Battery: 
$100/kWh to buy 
$50/kWh to sell 

$0.608 90 mi. battery 
1500 chargers  

11 kW 

Cheap 
vehicles, 

expensive 
batteries 

Effective battery capacity is 
reduced by cold weather and 

aggressive driving, but vehicle 
cost is reduced by right-sizing 

and cheap automation. 

Vehicle: 
$17,500 with 
automation 
50% reduction in 
parking and insurance 
 
Battery: 
$250/kWh to buy 
$0 to sell 

$0.294 70 mi. battery 
1000 chargers  

22 kW 

No battery 
degradation 

Battery technology improves 
so that degradation becomes 

negligible 

Batteries replaced 
when vehicles reach 
300,000 mi. (no 
battery resale value) 

$0.419 50 mi. battery 
1500 chargers  

11 kW 

Nonlinear 
battery 

degradation 

Batteries degrade non-linearly 
after reaching cut-off 128 

  $0.428 70 mi. battery 
1500 chargers  

11 kW 

No parking 
costs 

Society bears the cost of 
parking, providing it for free to 

the taxi operator 

No parking costs $0.339 90 mi. battery 
1500 chargers 

11 kW 

2

arg

5
4.0

AhLoss
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The following sections provide more details on the sensitivity analyses. Unless specified 
otherwise, all of the following simulations were performed with a charging network of 4,000 7-
kW chargers distributed across 1,000 locations. 
 
a) Variable taxi demand 
To test the impact of changing demand, I also ran a subset of simulations for a full 10 days (see 
Figure 18 and Figure 20). Similar to the single-day results, the results of the one-week 
simulations showed diminishing returns to increasing the number of chargers beyond 2,000. 
Adding more charging nodes allows the fleet to reach minimum size with a range of 10 miles 
less, while requiring the fleet to meet weekend demand increases this benchmark by 10 miles, 
and also increases the minimum fleet size by about 500 taxis, from 6,500 to 7,000. On the other 
hand, decreasing the number of chargers below 2,000 had a much larger effect in the one-week 
simulation, since the fleet cannot keep up with demand day after day unless it has adequate 
charging. With 1,500 chargers, fleet size does not plateau until battery range reaches 120 miles, 
while with only 1,000 chargers, fleet size is twice as large even with a battery range of 140 
miles. I also ran 1-week simulations using data from August 7-14, 2015, and found that the lower 
level of demand results in a required fleet size of only about 6,000 taxis, but the impact of 
charging stations and battery range is similar. Finally, as shown in Figure 19, I ran a single-day 
simulation with 80 miles of battery range and 1500 11kW chargers on every day of January, 
when demand is greatest. On no day did fleet size surpass 7,500, and on most days it fell below 
5,000.  
 
 

 
Figure 18. Evolution of the taxi fleet over the course of the 10-day simulation, at varying battery range (4,000 
chargers at 7 kW). 
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Figure 19. Fleet size required to serve demand with 80 miles of battery range and 1500 11kW chargers on each day 
of the month of January, 2015. 

However, it would not be profitable for the fleet operator to size the fleet such that it can serve 
all trips within 10 minutes even on days with highest demand. For example, on weekend nights 
customers would likely be willing to wait somewhat longer than during weekday commutes. If I 
relax the requirement that all trips be served within 10 minutes, I find that a smaller fleet 
designed for weekday peak demand can also serve demand on weekends with a reasonable level 
of service. As shown in Table 12, using a fixed fleet of 6,571 vehicles, i.e. the fleet generated 
with 80 mile battery range and 1500 chargers at 11kW, I find that even on Saturdays with high 
demand, mean wait time is still less than 7 minutes, and less than 10% of all trips must wait 
longer than 10 minutes.  
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Table 12. Distribution of wait times from fixed fleet simulations 

 Percentage of total trips 
Wait times 

(min) 
Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

0 52 53 54 54 52 50 45 
1 8 8 7 7 8 9 11 
2 6 4 4 4 4 5 5 
3 11 10 10 10 10 10 9 
4 9 9 8 8 8 8 8 
5 5 4 4 4 4 4 5 
6 2 2 2 2 2 2 3 
7 2 2 2 2 2 2 2 
8 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 
10 4 6 6 5 5 3 3 

>10 0 0 0 1 3 4 8 
Mean (min) 2.0 2.1 4.9 3.9 6.0 3.6 6.5 

 
 

 
Figure 20. Comparison of the number of taxis required to serve demand by battery range and charging 
configuration. Dashed lines represent results from 1-day simulation runs, while solid lines represent results after a 
full week. Note that week-long simulations with 1,000 chargers never converged to the minimum fleet size. All 
simulations assume charging at 7 kW. 
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b) Abundance and distribution of charging stations 
As one might expect, the result of my simulation is contingent on having adequate access to 
charging. As implied by Figure 20, at 7 kW charging power, reducing the number of chargers 
from 4,000 to 2,000 increases the lowest-cost battery range by 10 miles. With only 1,500 
chargers, the cost minimum shifts out at least 20 miles more, while with only 1,000, it may shift 
out to larger than 200 miles. 
 
A similar effect can be observed by restricting the number of charging locations. If the regulatory 
environment does not allow for charging stations dispersed throughout Manhattan, it is possible 
that fleet charging would be restricted to only a few locations, with several hundred charging 
stations at each location. As shown in Figure 21, if one reduces the number of available charging 
locations below 50, the required fleet size for taxis with 100-mi. range begins to increase 
significantly. At less than 10 locations, the same effect spreads to a simulated fleet with 125mi-
range.  
 

 
Figure 21. Simulation results with severe restrictions on the number of charging locations shows that such a 
situation may favor longer battery range (assuming charging at 7 kW). 

In turn, these restrictions on charging will result in a higher system-wide cost. In addition to 
higher battery costs, concentrating charging stations at a few locations could result in much 
greater costs for electricity and charging infrastructure. This restrictive distribution would require 
massive charging garages with several hundred charging stations each, with power demands on 
the order of a few megawatts. Few such charging centers currently exist, but I know that this 
power demand is about the same as a large office building, which typically require custom-
designed transformers, along with a full-time team of electrical engineers for maintenance (P. 
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Phanivong, pers. commun., 2017). Such charging centers will be difficult to convert from 
existing garages, and so will require either greenfield space (essentially non-existent in dense 
city centers like Manhattan), or demolition of existing structures, followed by construction from 
the ground up. 
 
c) Relocation algorithms 
I considered the possibility that my assumption of perfect demand prediction is too optimistic. 
To test the impact of this assumption, I conducted simulations with various battery sizes both 
with and without predictive relocation, and determined that my assumption does not significantly 
bias my results. In simulations without foresight, taxis never move unless they are the best taxi to 
serve a trip and can drive to the pickup location within 10 minutes. As shown in Figure 22, 
excluding relocation significantly increases the number of taxis needed to serve all trips, but the 
change is largely uniform across battery sizes. Meanwhile, because relocations requiring 
foresight are relatively rare events, representing less than 10% of all taxi relocations, eliminating 
prediction only decreases the total distance traveled by each taxi by 1-2 miles per day. Due to 
Manhattan’s high density, over half of trips were served by taxis at the same point (requiring no 
relocation), while over 90% were served by taxis less than a mile away. 
 
The results for simulations without demand foresight predict a lowest-cost battery range of 
around 80 miles, so it is possible that my model overestimates range requirements. However, I 
also looked into the effect of removing all foresight in relocation to charging stations 
(represented by the purple and blue lines in Figure 22), and found the opposite effect. If taxis 
only move to charging stations after the stations become available, and never take into account 
whether or not there is enough time to make it worth the trip, the lowest-cost battery range shifts 
out to closer to 150 miles, with similar cost per mile to that when charging foresight is included.  
These opposing results suggest that inaccuracies in my assumptions to some extent will cancel 
each other out, such that true fleet activity may be closer to that predicted by my model. 
Removing demand foresight does increase the cost of providing service by about 15%, so it is 
possible that I have slightly underestimated the cost per mile. However, all of the costs included 
in my model will likely continue to fall in the future, counteracting this error. Furthermore, as 
machine learning and artificial intelligence (AI) continue to improve, demand forecasting will 
become more and more accurate. By the time the first commercial SAEV fleet picks up its first 
ride, with the combined computing power of several thousand automated vehicles, the difference 
between perfect foresight and that obtained by an efficient AI algorithm may become negligible. 
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Figure 22. Results of simulations for battery ranges between 10 and 250 miles, varying relocation strategies and 
time horizon. Data labels show the estimated cost of the taxi service, in cents per mile.  

 
To further test my relocation algorithm, I developed a more rigorous model that determines when 
idle vehicles should relocate to charge or serve trip demand using trip data from the week before. 
In each minute, after completing trip assignment, the model runs forward in time, using trip data 
from the week before to assign vehicles to hypothetical trips. Idle vehicles assigned to 
hypothetical trips further than 10 minutes away (i.e. when no closer vehicle is available) are 
ordered to begin relocating to that point. Vehicles that are predicted to remain idle for long 
enough to relocate to a charger and replenish the energy expended to get there are ordered to 
relocate to charge. The model continues to progress into the future in this way until any vehicle 
could have made it to any hypothetical trip request. When the model progresses to the next 
minute, vehicles are again assigned to trips using the real trip data from the simulated day. If 
there are trip requests which no available taxi can reach within 10 minutes, relocating vehicles 
that could make it to the trip within 10 minutes are allowed to be reassigned. Vehicles relocating 
between two points are assumed to move at a constant rate, and the distance and time from their 
current position to a new destination are calculated using the law of cosines, as shown in Figure 
23. 
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Figure 23. Schematic of calculation for re-assignment times and distances for relocating taxis. 

 
As shown in Table 13, for both weekdays and weekends, regardless of battery range, this 
forward-looking model with historical data (labeled “Historical”) performs almost as well as the 
backward-looking model described in the methods section (labeled “Perfect”)—fleet size differs 
by 11% at most, and in most cases by much less than that. Empty miles also increase slightly in 
each case, but again the difference is marginal. In each case, the simulation was performed with 
2000 chargers rated at 11kW distributed across 500 locations.  
 
Table 13. Summary of results of forward-looking simulation. 

Relation 
algorithm 

Date Battery range 
(mi.) 

Fleet size %  
change 

Fraction 
empty VMT 

%  
change 

Perfect 2/13 50 7554  0.193  
Historical 2/13 50 7844 3.84 0.206 6.98 

Perfect 2/14 50 8275  0.193  
Historical 2/14 50 8303 0.34 0.206 6.32 

Perfect 2/15 50 6913  0.214  
Historical 2/15 50 7272 5.19 0.226 5.65 

Perfect 2/13 100 7047  0.187  
Historical 2/13 100 6943 -1.48 0.202 8.18 

Perfect 2/14 100 7120  0.192  
Historical 2/14 100 7100 -0.28 0.204 6.28 

Perfect 2/15 100 5549  0.211  
Historical 2/15 100 6192 11.59 0.222 5.04 

Perfect 2/4 100 6553  0.203  
Historical 2/4 100 6635 1.25 0.225 10.46 

 
Finally, I also tested the effect of imposing a constraint that taxis can only charge when they fall 
below 20% of full charge. As shown in Figure 24, this provides a very small benefit to fleets 
with longer battery range, but adversely affects fleets with shorter battery range. Given that 
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longer battery ranges will degrade over the lifetime of the fleet, such that they will behave like 
shorter-range fleets at the end of battery life, I do not expect that introducing this constraint 
would significantly change my results. 

 

 
Figure 24. Effect on fleet size of imposing a constraint that taxis only change when at less than 20% of full charge 
(limited charge), at both 11kW and 50kW charging speeds. 

 
d) Electricity pricing 
In this study, I have assumed a flat rate for electricity, but most likely, electricity rates for 
charging electric vehicles will vary based on the time of the day. Consolidated Edison Company 
of New York (the electricity utility serving Manhattan) offers a time-of-day rate structure for 
electric vehicle home-charging with $0.17/kWh for on-peak use (8am-10pm on weekdays), and 
$0.11/kWh for off-peak use (all other times). As shown in Figure 25, simulated charging station 
use peaks twice—once at night, and again in mid-day—resulting in off-peak charging of about 
46%. This result is stable across a wide range of battery sizes (see Figure 26), and changes only 
marginally with different charging networks, reaching 56% with 4000 charging points at 50 
nodes. It is possible that a fleet with large battery range could save some money on charging by 
shifting all charging activity to the middle of the night. However, compared to my simulation 
with uncontrolled charging, this could only save a maximum of $0.023/kWh, or about $0.006/mi, 
much of which would be offset by increased need for charging infrastructure.  
 
It is possible that in the future, the difference between peak and off-peak electricity rates might 
be much greater than this. However, most of the charging in the simulation occurs in the middle 
of the day, when generation from solar energy will be greatest. Thus, this charging does not 
coincide with net peak electricity demand hours, and could actually provide substantial benefits 
to a grid with greater penetration of intermittent resources such as solar.  
 
Comparing the simulated load profile with that of current New York City electricity demand 
suggests that only a moderate amount of control would be required to shift taxi charging to 
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partial-peak and off-peak hours. The largest peak in taxi charging occurs on weekend mornings, 
after periods of peak activity on Friday and Saturday nights. Conveniently, as shown in Figure 
27, this peak coincides with a period of relatively low demand in the rest of the system. The 
other charging peak, at 5pm on weekdays, does coincide with system-wide peak demand, but it 
quickly drops off as taxis become active during the afternoon rush hour, so it would not be too 
difficult to set stricter limits on charging during this time (e.g. set a maximum state of charge 
above which taxis will not charge between 4-9pm). Meanwhile, the peak power demand for 
charging represents less than 1% increase in the total power demand of the system, and so should 
not require any extreme system upgrades on its own. 
 

 
Figure 25. Charging load profile of simulated taxi fleets with 100mi battery range and varying charging 
distributions, on both weekdays and weekends (charging power = 7 kW). 
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Figure 26. Comparison of charging load profile of simulated taxi fleets by battery range (charging power = 7 kW). 

 
Figure 27. Comparison of simulated charging profiles with actual New York City electricity demand for different 
days of the week and seasons. Note that the taxi charging profiles have been magnified 1000 times in order to show 
them on the same scale as overall electricity demand (each charger rated at 7 kW). 
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e) Vehicle right-sizing 

It is possible that further efficiencies could be gained by varying the number of seats in each 
vehicle. While I conducted the above modeling assuming all vehicles have four seats, this need 
not be the case. Most taxi trips taken in Manhattan have only one or two passengers, and so 
could be served more efficiently by vehicles with less than four seats. In fact, on February 4, my 
base simulation day, 73% of trips had only one passenger, and an additional 12% has only two 
passengers. While this topic deserves further investigation, I present some preliminary results in 
Figure 28 below. I used a similar fleet sizing algorithm as above, creating a new vehicle 
whenever there was a trip that could not be served within 10 minutes, but requiring that this 
vehicle have the same number of seats as passengers in that trip. Each simulation was conducted 
with 100 miles of battery range and 4000 chargers rated at 7kW, using a full week of data. Fleet 
size ranged from roughly 7300 to 7900 vehicles, about a 500-1000 more than simulations with 
only four-seater vehicles. However, the majority of these vehicles had fewer than four seats, 
suggesting significant savings could be achieved by right-sizing the fleet—I estimate that the 
lowest-cost fleet with 1-seat, 2-seat, and 4-seat vehicles would cost $0.40/mile, roughly 10% less 
than a fleet with only four-seat vehicles. In particular, requiring that each vehicle size only serve 
trips with the same number of passengers results in reducing the vehicle size of a much larger 
proportion of the fleet at relatively small cost in increased fleet size (see “strict” scenarios 
below). 

 
Figure 28. Fleet-sizing simulation results for scenarios allowing for different numbers of seats in each vehicle. 
“Flex” scenarios allowed larger vehicles to serve trips with fewer passengers, while “strict” scenarios required that 
four-seat vehicles serve only trips with at least three passengers. The numbers on each scenario represent the 
alternatives for vehicles allowed in the fleet, e.g. “124” scenarios represent fleets with one-, two-, and four-seat 
vehicles. The number shown at the top of each bar shows results for cost of service.  
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1.3.5 Limitations and directions for future research 
The first limitation to my results arises from my assumption of exogenous demand—if costs fall 
as dramatically as projected in this analysis, demand for taxis will likely skyrocket. More 
research is needed to study the optimal vehicle parameters for a fleet serving the majority of all 
Manhattan trips, as well as those to and from the outlying boroughs. If SAEVs begin to replace 
other modes of travel, empty miles may lead to increased congestion, which also deserves further 
study. 
 
Furthermore, my results apply only to the densest area in the U.S., and it is difficult to generalize 
my conclusions to other areas. Another next step will be to ask: what is the impact of changing 
the geography of the network in which the fleet operates? It will be interesting to apply my 
model to other cities (particularly those of lower density) and compare results. 
 
Accounting for higher demand and less dense geography would both likely require larger fleets, 
and so operating these fleets could cost more than I have estimated in this study. On the other 
hand, I did not consider the possibility of a heterogeneous fleet, in which some chargers have 
higher speeds than others, and some taxis have more or less battery capacity, or different 
numbers of seats. Because the average occupancy of NYC taxi trips is less than two people,40 if 
there is no need to provide space for a driver, then most shared vehicles need have no more than 
two seats. Given that these vehicles will be smaller and rarely get into collisions,136 they might 
also enable significant reductions in weight, leading to substantial reductions in energy 
consumption, cost and GHG emissions 75. 
 
I also have not considered issues of equity in this study, which deserve further analysis in future 
research. My simulated fleet can only serve customers with smartphones, and fleet rebalancing 
based on demand forecasting could lead to worse service in low income neighborhoods. 
However, these issues already exist with services like Uber and Lyft, and smartphone ownership 
is approaching ubiquity in urban areas,152 such that my simulation can still provide useful 
insights as to the future of shared mobility. 
 
  



51 
 

1.3.6 National fleet model 
 
The low cost of automated shared fleets leads to the question, what would happen if such fleets 
served all light-duty vehicle mobility in the US? Working with researchers at Lawrence Berkeley 
National Laboratory, Emerging Futures, LLC, and University of California, Davis, I helped 
developed a convex optimization program to identify the number of vehicles, infrastructure, and 
battery range required to serve mobility demand nationwide. This optimization program included 
a number of parameters that needed to be verified with agent-based simulation modeling, 
including: 
 

• charger distribution factor: ratio between the peak charging occupancy and the total 
number of chargers required. 

• fleet size correction factor: correction to account for the fact that it might not be feasible 
to utilize all vehicles during periods of peak demand. 

• trip deadheading factor: ratio between trip duration and distance and total driving, 
including relocation to pick-up locations. 

• charging deadheading factor: correction to account for time and energy spent 
relocating to charge, resulting in lower effective charging speed and higher energy 
consumption. 

 
 
Whereas the Manhattan study relied on travel times and distances downloaded from Google 
Maps API, issues with computational complexity and data availability arising from simulating 
entire metro areas required estimating times and distances as distributions between zones. 
Building on the simulation work in Manhattan, I ran the simulation on a set of 11 diverse cities 
around the country, leveraging GPS and cell phone data from StreetLight Data, a company that 
aggregates data from cell phones and GPS devices to produce transportation metrics like travel 
times and volumes.  
 
First, I obtained shapefiles from the Census Bureau website with census tracts for a series of 
combined statistical areas. I then uploaded these shapefiles to the StreetLight Data portal, and 
obtained two types of data. "Trip attributes" files contained distances, times and speeds between 
each pair of census tracts. Data was only provided for zone pairs with a significant number of 
trips, as determined by StreetLight Data. "Trip Counts" data contained the volume of trips 
between each census tract origin and every traffic analysis zone (TAZ) with a significant 
volume, again as determined by StreetLight. The data also contained significant trip counts 
between each origin TAZ and destination census tract. 
 
Since Streetlight trip attributes were binned into larger intervals (e.g. percent trips with durations 
between 10-20 minutes, or 5-10 miles), the first processing step was to interpolate distributions 
with increased resolution, binning distributions by 1 min, 0.1 mi, and 1 mile per hour for trip 
duration, distance, and speed, respectively. To interpolate missing values, I found the average 
distributions from the three nearest zones, along with data from the nearest zones in the hour 
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before and after. This process was repeated iteratively until over 99% of all O-D pairs had data in 
all hours for all three attributes. 
 
While this interpolation process introduces a source of error into my model, I consider it 
acceptable for two reasons: all trip data between census tracts comes from zone pairs with actual 
data, and as discussed above, I found that modifying trip relocation times by distributions with 
mean zero did not significantly change my results. Trip counts data was binned by hour, so I 
again interpolated the data to estimate the number of trips starting in each minute. 
 
These pre-processing steps resulted in trip counts for each origin-destination pair by minute, and 
distributions of duration, distance, and speed for each origin-destination pair by hour. I then used 
this data as inputs for RISE simulations similar to those conducted in Manhattan. 
 
The model proceeds chronologically over one day of data, repeating until the fleet’s aggregate 
battery capacity at the end of the day is within 5% of that at the beginning of the day. In each 
minute, trips are assigned to the nearest vehicle, and idle vehicles are routed to charge or 
rebalanced in anticipation of future demand. Travel times and distances between each taxi and 
trip or charging point are imputed by drawing random values from the corresponding distribution 
obtained from StreetLight Data. To ensure a reasonable relationship between time, distance, and 
speed for each trip, distances are re-sorted in order to best match the relationship between draws 
for duration and speed. If a trip can only be served by a vehicle with insufficient battery capacity, 
the vehicle’s range is increased by 50-mi increments until capacity is adequate. If no vehicle can 
serve a trip within a 10-min wait time, a new vehicle is added to the fleet. Thus, both battery 
range and fleet size increase organically over the course of the simulation, providing estimates of 
the minimum values required to serve demand. Vehicles serving trips that end outside the CSA 
are removed from the fleet; trips starting outside the CSA are served by new vehicles that are 
then added to the fleet. 
 
To validate the accuracy of describing relocation times and distances with distributions instead 
of Google Maps predictions as in the original work, I compared results in New York City using 
the same input parameters. I found that using at least one zone per 100,000 inhabitants was 
sufficient to obtain similar results to those obtained with the previous method. I also tested the 
sensitivity of the results to the number of zones in Dallas, and found that using zones six times as 
large as TAZs returned similar results. 
 
Finally, to test the sensitivity of results to correlation between distribution draws made for the 
same vehicle, I divided each zone into 100 parts, and randomly assigned each trip pick-up and 
drop-off and each charging station a grid cell within its corresponding zone; the relative 
Euclidean distance between grid cells in two zones was used to weight the probability 
distributions described above (i.e. cells relatively closer to each other were more likely to receive 
draws from the lower end of distance and travel time distributions, and vice versa). I found that 
this addition to the model increased deadheading predictions by less than 10%, but I retained it 
for the final simulation runs to be conservative. 
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Simulations were conducted for each city with 20k, 40k, 100k, 200k, 400k, and 800k trips, and 
with both 15kW and 50kW charging power. Locations of chargers were determined by k-means 
clustering of trip origins and destinations, which was determined to work as effectively as the 
siting algorithm described above. Simulations were then run with sufficient chargers to recharge 
the fleet assuming 25% empty miles and 50% charger utilization, then again assuming 100% 
charger utilization. In each case, every charger was occupied during peak charging times, so I 
concluded that a charger distribution factor of 1 would be sufficient. 
 
While the simulation ran, I recorded the empty distance and time traveled to each passenger 
pick-up and charging event to determine the average ratios of empty-to-trip ratios for each city. 
These simulations allowed me to estimate the relationship between urban form and a variety of 
fleet parameters, including the empty distance to trips and charging stations. As shown in Figure 
29, I found that deadheading ratios increase roughly with the square root of area per trip. To 
develop correction factors for estimated fleet size and battery ranges, I also compared results 
from GEM and RISE using the same inputs. Using ordinary least squares regression techniques, I 
extrapolated these ratios to all other CSAs and urbanized areas in the country based on 
population and area. Finally, I took population-weighted means to extrapolate from cities to 
determine the average deadheading ratios for rural and urban areas in each census division. 
 
Interestingly, if fleets serve all driving demand, I found these correction factors to have 
consistently low values (e.g. empty miles represent 10% of revenue miles) in most areas of the 
U.S. These values were then used as correction factors to refine a convex optimization program 
to model the operations of the fleet on the national scale, based on data from the 2017 National 
Household Travel Survey (NHTS). Somewhat surprisingly, we found that when we allowed for 
heterogeneous battery range and charging speeds, average requirements did not increase 
dramatically from the Manhattan case, resulting in very low cost of service. This work was 
published in Transportation Research Record in January 2019,153 and the final results integrated 
with a grid dispatch model are currently under review. 
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Figure 29. Relationships between area per trip and deadheading ratios for distance and time to trips in all simulated 
cities (top), along with actual versus predicted values from non-linear regression. 
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Chapter 2:  
Electrifying urban ridesourcing/transportation network company 
(TNC) fleets at no added cost through efficient use of charging 
infrastructure 
 

2.1. Introduction 
The results described in the previous chapter imply that BEV fleets can serve demand at lower 
cost than gasoline vehicles. While the focus was on automated vehicles, many of the same 
advantages and modeling assumptions apply to human-driven vehicles as well, which leads to 
the question, why aren’t fleets already electrifying? 
 
In this chapter, I focus on the electrification of human-driven vehicles in ridesourcing services, 
or Transportation Network Companies (TNCs). I use data on ridesourcing trips and vehicle 
supply in San Francisco (SF) and New York City (NYC) to test the feasibility of meeting 
demand with supply given a variety of different input values, including for battery range and 
charging infrastructure. I show that (1) modest additions of public fast-charging infrastructure 
make urban ridesourcing electrification practical under a range of vehicle battery capacities and 
operating strategies, and (2) the current economics of urban ridesourcing can support vehicle 
electrification and the required charging infrastructure at total costs lower than the costs of the 
ICEV-based ridesourcing system. In addition, the increased utilization of charging infrastructure 
due to ridesourcing BEVs could reduce public charging costs for all BEV users and further 
support large-scale transportation electrification. Therefore, electrifying the urban ridesourcing 
sector could be a cost-effective approach to reducing transportation-related greenhouse gas 
emissions and urban air pollution, and properly designed policies could realize these benefits 
with little or no cost burdens to governments, transportation network companies, or ridesourcing 
drivers. 
 
This chapter will proceed as follows. In section 2, I use fleet-wide average statistics to motivate 
my hypothesis that BEVs employed in ridesourcing fleets have sufficient time to charge, and that 
given reasonable levels of charger utilization, infrastructure cost becomes affordable. In section 
3, I present the methods used to conduct agent-based simulations to verify this hypothesis, results 
of which are presented in section 4. In section 5, I conclude with policy implications and 
directions for future research.  
 
 

2.2. Theory 
Contrary to common perception, simple economic reasoning suggests that ridesourcing drivers 
have adequate time to charge during their shifts, and that—given sufficient utilization—fast-
charging infrastructure could pay for itself. As previous studies have noted,154 the short rider wait 
times that are key to ridesourcing’s value proposition are predicated on having a significant 
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number of drivers waiting for ride requests at any given time. This idle time represents time 
when drivers could charge BEVs without losing revenue. As shown in Equation 4, the amount of 
idle time for drivers (tidle) can be expressed as a relation between driver wage rate (w), the ratio 
of empty miles to passenger miles (deadheading ratio, r) and the rate that could be earned by 
serving trips continuously (f) multiplied by the time period (ttot), minus average refueling time 
(tfuel). 
 
    tidle = ttot * (1 – w/f * (1+r)) – tfuel    (4) 
 
For instance, in NYC, a Uber riders’ fare is determined as the sum of a fixed $2.55 per trip base 
charge, a $1.75 per mile charge and $0.35 per minute charge, with 75% of this total accruing to 
the driver and the remaining 25% to Uber.155 Given an average speed of roughly 12 miles per 
hour and an average trip distance of 3 miles,145 a driver carrying passengers for a full hour would 
serve 4 trips, earning $39.15 (f). Assuming gross driver earnings (w) average $24 per hour,154,156 
and a deadheading ratio (empty miles divided by passenger miles) of 0.25,157 I can estimate that 
drivers in NYC are moving for roughly 46 minutes out of the hour, and have roughly 14 minutes 
in which to recharge the 9.2 miles they traveled. As shown in Figure 30, a 50-kW charger can 
provide this amount of charge in roughly 3 minutes, suggesting that drivers have more than 
enough time to charge during their shift. Based on these assumptions, the average driver would 
have to charge less than once per shift, such that time spent relocating to charge is negligible. 
 
On the other hand, data suggests that, in the U.S., public charging infrastructure is utilized less 
than 10% of the time,158,159 which often makes DC fast charging more expensive than gasoline 
on a per-mile-driven basis. As shown in Figure 31, once utilization surpasses about 15% 
(roughly 3.5 hours per day), the combined cost of infrastructure and electricity becomes less than 
the equivalent cost of gasoline in both NYC and San Francisco (SF), and operational savings 
start to accrue. This suggests that the cost of charging infrastructure is highly sensitive to 
utilization. 
 
These calculations suggest that neither the time required to charge nor the cost of infrastructure 
should pose significant barriers to ridesourcing electrification. This conclusion is based on 
several major assumptions: that charging in between trips does not affect the ability to serve 
demand for rides, that time spent relocating to charge is not significant, and that charger 
utilization greater than 3.5 hours per day is feasible when accounting for relocation time and 
queuing at stations. 
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Figure 30. Distribution of time spent by an average NYC ridesourcing driver, with time cost of charging for both 
DC fast charging (50 kW) and Level 2 charging (22 kW or 7 kW). I assume a vehicle energy consumption of 0.28 
kWh/mile, equivalent to the performance of the 2018 Chevrolet Bolt.160 For relocating to charge, I assume one 
charging session per 8-hour shift and an average relocation distance of 2.5 miles at a speed of 10 miles/hour. 

 
 

 
Figure 31. Relationship between the total cost of charging infrastructure (capital cost, electricity, and demand 
charges) and percent utilization by time. Cost assumptions are shown in Table 15 in the methods section. Note that 
the curves for 50kW and 22kW chargers appear roughly the same because capital costs scale roughly linearly with 
the power rating. 
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2.3. Methods 
To test the assumptions listed above, I developed an agent-based model that routes a fixed 
number of active vehicles to trips, rebalances idle vehicles to match demand, and determines the 
best times for vehicles to charge given a fixed number of charging points and locations. I 
repeated this analysis numerous times for different combinations of the fixed input parameters 
(see Table 16) to determine the minimum charging infrastructure required for BEVs to generate 
at least as much revenue per shift-hour as ICEVs. I conducted this analysis with data for 
ridesourcing trips in both SF and NYC, integrated with data on travel times and distances from 
cell phones and GPS devices, along with driver characteristic data from government records and 
existing surveys.  
 
2.3.1 Fleet modeling 
To route vehicles to trips and charging, I used a modified version of the agent-based model 
originally described in chapter 2. Figure 32 shows a flow-chart of the model process. Basically, 
the model heuristically relocates vehicles between trips to better serve demand and charge 
opportunistically. Proceeding chronologically, the model assigns each trip to the closest available 
vehicle that would have at least enough range to serve the trip, make it to the closest charging 
station, and commute home. Other studies have found that such an approach to trip assignment is 
equivalent to more optimal algorithms when there are enough idle vehicles 161. When more than 
one vehicle meets these criteria, the model assigns the one with the least earnings per hour to 
decrease disparity in earnings between drivers. If no vehicle can serve a trip within 10 minutes, it 
is allowed to be served by an idle vehicle that could have arrived at the pick-up point within 10 
minutes of the request time, assuming it anticipated the demand and started driving in that 
direction immediately after its last drop-off. As discussed above, this “clairvoyant” approach was 
verified to be realistic through sensitivity analysis. I also ran simulations in which vehicles do 
not relocate in between trips, which support my main results. In practice, there is no way to 
guarantee that all trips will be served within 10 minutes of the request time; I merely use this 
threshold as a basis for comparison between simulations.  
 
If a trip request is not served within 15 minutes, it disappears and its revenue is lost. This 
constraint results in less than 4% lost revenue for ICEV fleets in NYC, and no lost revenue for 
ICEV fleets in SF. After trip assignment, idle vehicles are routed to charging stations using the 
following heuristic approach. Vehicles only relocate if they have been idle for enough time that 
they could have made it to the charging station, regained any charge lost in transit, and spent at 
least 15 additional minutes charging. Charging time is also limited by the amount of time 
chargers have been available, and occupied chargers are not available to accept vehicles. 
Assignments are made in order of the amount of energy gained. To test the impact of this routing 
algorithm, I conducted simulations with restrictions on charging (Table 16). The fixed charger 
locations are predetermined using k-means clustering of trip origins and destinations, which 
resulted in equivalent performance to the charger location algorithm described in chapter 2. This 
result is consistent with He et al. (2016),162 who found a similar clustering algorithm to be 
superior to other siting algorithms. In simulations with a fixed number of charging locations, 
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placement of both the locations and chargers were determined with k-means clustering, and then 
each charger was moved to the nearest location.  
 
The main difference between the model developed for this study and that reported previously is 
that, at each minute, vehicles in the present study were removed or added to the fleet to match 
the time-varying fleet size determined exogenously. Each vehicle was assigned a shift length and 
commute distance (to and from home) randomly selected from a distribution based on survey 
data (see below for details). At the end of the shift, after serving any active trip, vehicles were 
designated as inactive as soon as they had enough range for their commute. When starting a new 
shift, initial vehicle range was selected randomly from the ranges of vehicles already to have 
completed their shifts, and the simulation repeated on the same 24-hour period until the average 
range of all vehicles (both active and inactive) at the end of the day was within 5% of what it was 
at the beginning of the day. Model inputs and outputs can be summarized as follows (see Table 
16 for details): 
 
Inputs: battery range, charging speed, number of chargers, number of charging locations, number 
of active vehicles by minute, driver shift length, driver commute distance, vehicle routing 
algorithms 
 
Outputs: wait time by trip, revenue per shift-hour by vehicle, utilization by charger, deadheading 
distance and time by vehicle 
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Figure 32. Flow
 chart depicting agent-based sim

ulation for B
EV

 fleet operations. 
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2.3.2 Trip data 
I conducted fleet simulations in both SF and NYC. To estimate trip data for NYC, I obtained 
data from the NYC Taxi and Limousine Commission (TLC) on trips taken by Yellow Taxis, 
Green Taxis, and For-Hire Vehicles (FHVs), the latter of which includes all ridesourcing 
vehicles. The taxi datasets included geolocations and timestamps for trip pick-up and drop-off 
points, as well as trip distance, whereas the FHV dataset included only the number of trips by 
pickup zone and hour. To estimate individual trip records, I sampled trips from the combined 
taxi dataset to create a trip record with the same distribution by hour and pickup zone as the FHV 
data from February 2017, with 422,000 trips (the average for a weekday). This method accounts 
for the fact that FHVs tend to serve different neighborhoods, but it assumes that trips within each 
neighborhood are similar to taxi trips, which introduces a potential source of error. Pick-up and 
drop-off coordinates were clustered into cells with radius 250 meters such that the maximum 
difference in travel time would be 1 minute assuming an average speed of 15 miles per hour. 
This clustering resulted in 6,500 total cells. Origin-destination matrices with times and distances 
between each of these cells were estimated using data downloaded from Google Maps API, as 
described in Chapter 2.  
 
Table 14. Summary of city characteristics. 

Parameter San Francisco New York City 
Area (square miles) 47 303 

Number of trips 162,707 422,652 
Average trip distance (miles) and 
duration (minutes) 

2.7 miles 
14 minutes 

3.1 miles 
15 minutes 

Total number of active drivers 14,735 27,275 

Average commute distance (miles) 12.4 10.0 

Average shift length (hours) 4.6 7.0 
Average driver earnings ($/shift-hour) 18.55 24 
Sources San Francisco County Transit 

Authority; 
San Francisco Tax Collector’s 

Office 

NYC Taxi & Limousine 
Commission;  

Hall and Krueger (2018); 
Parrott and Reich (2018) 

 
The SF simulations are based on data obtained from the San Francisco County Transportation 
Authority (SFCTA) for Uber and Lyft trips starting and ending within city limits in November 
and December 2016. The data were aggregated by hour and traffic analysis zone (TAZ), and 
pickup minutes were estimated using LOESS regression, with the number of trips in each minute 
adjusted such that the total number of trips in each hour was equal to that in the original data. To 
estimate times and distances for each trip, I integrated the SFCTA data with data obtained from 
StreetLight Data Inc. based on GPS data from smartphone apps and in-vehicle devices. These 
data include the distribution of times and distances for vehicle trips taken between TAZ pairs by 
hour. While this GPS data is primarily sourced from personal vehicles, I assume that 
ridesourcing trips will have similar distance and time to trips made by personal vehicles between 
the same two points. StreetLight Data metrics were also used to create relocation matrices 
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between each zone pair, similar to the data from Google described above. As shown in Figure 
33, for each unique vehicle-trip and vehicle-charger pair, relocation times and distances are 
drawn randomly from the corresponding distribution provided by the data. 
 

 
Figure 33. Maps showing average travel times between a vehicle in downtown SF (depicted by the taxi icon) and 
every other TAZ in SF. Distributions of travel times to selected TAZ’s are shown in inset histograms; these 
distributions are derived from GPS data provided by StreetLight Data. Note that distributions appear discontinuous 
due to rounding; the distributions they are drawn from are discrete but relatively smooth. 

 
2.3.3 Driver commutes and shift lengths  
In both cities, I used survey data of Uber drivers 156 and NYC TLC data on ridesourcing driver 
working hours 154 to estimate the distribution of shift lengths for drivers. To estimate commute 
distances, in SF I obtained data on the home cities of about 1,000 Uber/Lyft drivers within the 
Bay Area 163, and I used the Google Maps distance from each city to SF to create a sampling 
distribution. Drivers originating outside the Bay Area were excluded, because I assumed they 
would have to charge somewhere in the Bay Area on their way to and from home, such that these 
“super-commuters” would not affect charging infrastructure requirements. Based on the 
distribution for SF, in NYC I estimated commute distances by sampling from a gamma 
distribution with a scale factor of 2 miles and shape factor of 5 miles. 
 
2.3.4 Number of drivers active 
In SF, I obtained data from SFCTA on the average number of drivers active in each hour, then 
used LOESS regression to estimate the number active in each minute. In NYC, I calculated the 
total amount of revenue generated in each minute based on Uber fares,155 and I used this to 
determine the number of drivers that would be active if the average gross earnings were 
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$23/hour, the average of values found in surveys.154,156 I then used LOESS regression to create a 
smooth curve for number of active drivers, adjusted such that the average earnings over the 
entire day were equal to $23/hour. 
 

2.3.5 Cost analysis 
Each component used to estimate the average cost per mile of each scenario is described in Table 
15. The energy costs used are standard rates for small commercial entities, corresponding to the 
power range of charging stations considered. This does not include overhead expenses for a 
charging operator, assuming stations may be either publicly owned or managed by the 
ridesourcing companies themselves. All amortization calculations assume an annual discount 
rate of 5%, a value commonly used to evaluate the cost of long-term projects 164. I ran a cost 
sensitivity using a 10% rate (roughly the long-term average stock market return, see 
MoneyChimp, 2018),165 but found that results for the difference in net revenue between ICEVs 
and BEVs changed by only -$0.07 to +$0.04 per shift-hour, which is a very small percentage of 
total revenue. 
 
Table 15. Cost model components.  

Component Value Source 
Vehicle purchase BEV 238: $29,120 (2019 Chevrolet Bolt after federal 

tax credit; assumed that battery lasts at least as long as 
vehicle) 
ICEV: $23,845 (2019 Toyota Camry)  

17 

Vehicle lifetime 200,000 miles 166 
Vehicle 
maintenance 

BEV: $0.04/mile 
ICEV: $0.06/mile 

143 

Charger installation 7 kW: $5,000 
22 kW: $20,000 
50 kW: $50,000 

138,167 

Electrical 
connection 

Same cost as two additional chargers per location 
(includes cost of transformer upgrades) 

138,167 

Vehicle insurance $150/vehicle-month 168 
Energy costs BEV 

NYC: $0.061/kWh + $30.90/kW 
SF: $0.151/kWh + $15.90/kW 
(per-kW fees represent demand charges on peak power 
usage) 
 
ICEV 
NYC: $0.09/mile ($2.68/gallon, 30 miles/gallon) 
SF: $0.11/mile ($3.27/gallon, 30 miles/gallon) 

169–172 
 
Gasoline prices reflect 5-year 
averages 

 
2.3.6 Simulation runs 
As shown in Table 16, I conducted simulations for a variety of scenarios for vehicle range, 
charging infrastructure, and charging relocation strategy (i.e. the rules that determine when 
vehicles go to charge), for a total of 360 BEV fleet simulations (180 for each city). I also 
conducted an ICEV fleet simulation in each city for comparison. I then determined whether each 
BEV fleet provided equivalent service to the ICEV fleet, defined as earning at least 95% as much 
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revenue per hour, with no more than 5% additional empty miles and average wait times no more 
than 1 minute longer. 
 
Table 16. Description of simulation runs. 

Parameter Values simulated 
Battery range 90 miles (based on 2019 Nissan LEAF with decreased range from 

winter driving or capacity fade), 238 miles (based on 2019 Chevy 
Bolt advertised range) 

Charger utilization 25%, 50%, 75%, 100% 
Charging speed 7.7 kW (present-day Level 2 charging), 22 kW (next-generation 

Level 2 charging),173 50 kW (public DC fast charging) 
Number of chargers Total distance * 1.4 / (Charging rate per hour * 24 hours * charger 

utilization) 
Number of charging locations Unrestricted, 10 locations 
Charger distribution strategy k-means clustering (“optimal”), random point selection after k-

means clustering to 5,000 points (“random”), random point 
selection from bottom 20% of points by total number of trips 
within a 1.5-mile radius (“perimeter”) (tested only with 50% 
charger utilization and 50-kW charging) 

Charging relocation strategy Optimal routing (“opportunity”), optimal when < 20% state of 
charge (SOC) (“threshold”), move to closest available charger 
when < 20% SOC (“baseline”) 

 

2.4. Results & Discussion 
 
2.4.1 Feasibility of ridesourcing electrification by scenario 
As shown in Figure 34, my simulation results suggest that BEVs with 238 miles of range 
(equivalent to the Chevrolet Bolt EV) can provide equivalent service to ICEVs in a range of 
different infrastructure scenarios in both cities. However, the ability of the fleet to serve demand 
is sensitive to both charging speed and charging relocation strategy. Using chargers rated at 
7kW—the most common form of public infrastructure today—does not allow for equivalent 
service in any of my simulations, suggesting that such slow charging is not sufficient for 
ridesourcing electrification. This result is consistent with the analysis summarized in Figure 30. 
Using 22-kW charging works in the “opportunity” relocation scenario in SF and when the 
number of locations is unrestricted in NYC, while using 50-kW charging (DC fast charging) 
allows BEVs to provide equivalent service across a wide range of scenarios. This result suggests 
that DC fast charging infrastructure rated at 50kW is both necessary and sufficient for 
ridesourcing electrification. 

In the “baseline” scenario, in which drivers have no information on when they should charge and 
only have information on which chargers are available when they start moving there, only 50-
kW charging allows for equivalent service in both cities. This scenario represents how BEVs 
currently operate, suggesting that 50kW charging will be necessary to initiate BEV penetration. 
In NYC, 22-kW charging can provide equivalent service if there is no restriction on the number 
of charging locations, but when BEV penetration is low, there will not be enough utilization to 
support more than a few locations. On the other hand, the fact that 22-kW charging works in 
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many cases suggests that 50-kW charging may work even if my model is too optimistic, and 
effective charging speed is lower in practice when accounting for time spent parking and 
plugging in. 

If fleet operators are able to direct vehicles to charge only when they have enough idle time to do 
so (“opportunity” and “threshold” scenarios), the number of 50-kW chargers required decreases 
to two per square mile in NYC (512 total chargers), and three per square mile in SF (175 total 
chargers). In the “threshold” scenario, vehicles are only available to charge once their battery 
range falls below 20%, whereas in the “opportunity” scenario, vehicles are available to charge 
whenever idle. The former scenario performs slightly better in NYC, while the latter performs 
better in SF, likely because the larger area or greater congestion of NYC induces a larger penalty 
for charging frequently. This result suggests that some form of scheduling system for charging 
stations can greatly improve electric vehicle reliability, which is consistent with findings from 
previous studies.174–176  

In some ways, 238-mi. range represents an ideal case; to account for the impact of colder 
temperatures, more aggressive driving, using vehicles with less battery range, and capacity fade 
over time, I also ran each simulation with 90 miles of battery range. As shown in Figure 35, such 
vehicles can also provide equivalent service to ICEVs in both cities with 50-kW charging so long 
as timing of charging is managed efficiently (“opportunity” scenario), suggesting that such a 
capability makes fleet performance insensitive to battery range. In turn, using vehicles with less 
range could decrease operating costs by reducing vehicles’ up-front costs and extending 
batteries’ functional lifetime. 

As shown in Figure 36, fleet performance is also relatively robust to how the chargers are sited. 
Relative to clustering chargers by trip origins and destinations (“optimal” scenario using k-means 
clustering), results remain largely unchanged when chargers are placed semi-randomly 
(“random” scenario, i.e. selecting locations randomly after using k-means clustering to narrow 
down selection to 5,000 points), suggesting that mildly perturbing placement does not affect fleet 
performance. Even if chargers are placed only on the periphery (“perimeter” scenario, randomly 
selecting points from areas with low trip density), revenue remains stable in both cities, and in 
NYC overall service with the “threshold” charging relocation strategy remains comparable to the 
ICEV fleet. If this scenario is modified such that charging at the beginning and end of shifts is 
incorporated into drivers’ commutes (“commute” scenarios), fleet performance in NYC becomes 
equivalent to the “optimal” charger placement scenario. Average wait time remains roughly 3 
minutes longer in SF, but this may be because the trip data does not include trips entering or 
leaving city limits. This result suggests that in some cases, if many ridesourcing drivers come 
from outside the city (e.g. over half in SF),163 placing charging near popular commute routes may 
be sufficient. In summary, it appears that charging placement has relatively little impact as 
compared to coordinated charging management, as the latter enables the use of short-range 
BEVs. A map of each charging distribution is shown in Figure 37. 
 
Figure 38 and Figure 39 show more details related to vehicle activity: the first shows overall 
averages for the amount of time devoted to each activity, while the second shows vehicle counts 
disaggregated by activity and minute in SF. 
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Figure 36. Results for simulation runs with different strategies for charging relocation and charger placement. In 
“optimal” simulations, chargers were clustered based on trip origins and destinations. In “random” simulations, 
charger locations were selected randomly after clustering trip origins and destinations to 5,000 points, and in 
“perimeter” and “commute” simulations, charger locations were selected randomly from points in the lowest 20% of 
trips per square mile. Each simulation was run with three and four 50-kW chargers per square mile for NYC and SF, 
respectively. 
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Figure 37. Maps of distributions of chargers in SF (top) and NYC (bottom) for each placement strategy and for both 
unlimited locations and placement restricted to 10 locations. The color and size both represent the number of 
chargers at each location. 
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Figure 38. Fraction of time devoted to each activity in each city for all simulations resulting in equivalent service to 
ICEV fleets. 

 

 

Figure 39. Vehicle activity by time of day with 7kW charging in San Francisco. 

 
2.4.2 Total costs of ridesourcing electrification 
The results presented above suggest that ridesourcing fleets can provide high levels of charger 
utilization. In both cities, fleets with average charger utilization of over 12 hours per day were 
feasible with both 22-kW and 50-kW charging. With 50-kW charging and some management of 
charging timing (“opportunity” and “threshold” scenarios), fleets in both cities achieved charging 
utilization of up to 20 hours per day while providing equivalent service to ICEVs. These results 
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correspond to about 750 50-kW chargers in NYC, and 175 in SF, with densities of about three 
chargers per square mile in both cities (NYC covers an area roughly five times as large as SF). 
These quantities are roughly equivalent to the total number of gasoline pumps in each city.177 In 
comparison, NYC currently only has 16 public fast chargers, but it plans to build up to 1,000 
more by 2020.178 SF currently has 20 fast chargers spread across 13 locations,179 but there is 
public funding for the installation of several thousand additional chargers (power ratings have 
not been publicly announced).180,181 Based on my results, these existing plans are more than 
sufficient to fully electrify ridesourcing in these cities provided that chargers are rated to at least 
50kW. I find that adding more charging infrastructure beyond this threshold does not 
significantly improve fleet performance, consistent with previous studies that have found 
diminishing returns to adding more charging infrastructure.119,182 
 
As a result of high utilization, I estimate that the cost of installing these fast chargers is quite 
low: $0.07/shift-hour in SF and $0.17/shift-hour in NYC, including demand charges (see Table 
15 for cost model details). In contrast, I estimate that all other ridesourcing BEV expenses fall in 
the range of $3.27–$3.40/shift-hour including both operating costs and amortized capital costs. 
The impact of BEVs on net revenue is either positive or close to zero in all scenarios (Figure 40). 
In other words, even if the charging infrastructure is significantly overbuilt, resulting in only 5-
10 hours of utilization per day (11 and 5 chargers per square mile for SF and NYC, respectively), 
the cost still represents at most 2% of driver earnings and an even lower proportion of total 
revenue. My sensitivity analyses show that—in every case I tested—differences in revenue 
between ICEV and BEV fleets fall within the range of -$0.80 to $0.80/shift-hour, or a few 
percent of total revenue. This comparison assumes that fleets or their drivers pay for charging 
infrastructure; any public infrastructure funding will increase potential savings for ridesourcing 
fleets.  
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Figure 40. Average expenses and net revenue of operating a ridesourcing BEV per shift-hour, broken down by 
component for each city. Dashed lines show comparison to total ICEV cost and net revenue, while red numbers 
show total expenses and black numbers show net revenue after expenses. Error bars show difference between BEV 
scenarios (only 50-kW scenarios that provide equivalent service to ICEVs are shown). 
 

Charging infrastructure could be paid for with less than 1% of revenue from the rideshare tax in 
NYC,183 or less than 4% of the proposed rideshare tax in SF.184 While I do not make any claim 
about the specific levels of utilization required to support charger deployment, these results 
suggest that utilizations as low as 20% may be sufficient. Below this point, the net revenue from 
BEVs will decrease as charging costs per kWh increase exponentially. 

 

2.4.3 Extended simulation results 
 
NYC  
Figure 41 to Figure 46 show results for each city for each measure of fleet performance: demand 
served (and correspondingly driver revenue), average wait times, and deadheading (the ratio of 
empty miles to passenger miles).  
 



73 
 

 
Figure 41. Percent passenger-miles served by BEV fleets in NYC under different charging and vehicle scenarios. 

 

 
Figure 42. Average wait times in NYC by simulation scenario. 
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Figure 43. Ratio of empty miles to passenger miles in NYC by simulation scenario.  
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San Francisco 

 
Figure 44. Percent passenger-miles served by BEV fleets in SF under different charging and vehicle scenarios. 

 

 
Figure 45. Average wait times in SF by simulation scenario. 
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Figure 46. Ratio of empty miles to passenger miles in SF by simulation scenario.  
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2.4.4 Sensitivity analysis 
Figure 47 shows the impact of changing cost assumptions on the difference in net revenue 
between BEV and ICEV fleets in each city, with each scenario described in Table 17. Figure 48 
shows the impact of changing the assumption that idle vehicles rebalance in anticipation of 
future demand. 

 

Table 17. Description of cost model sensitivity analysis scenarios. 

Scenario Description 

base Base scenario, described in Table 15 

low_gas Gas prices decrease by $1/gallon 

hi_gas Gas prices increase by $1/gallon 

low_eff ICEV fuel economy = 25 miles/gallon 

hi_eff ICEV fuel economy = 50 miles/gallon 

nofedsub No federal tax subsidy for BEVs 

parity BEV 238 purchase price is the same as ICEV ($23,845), and BEV 90 price decreases accordingly 

chgsub Cost of charging installation is ignored, assuming it is paid for through public funding 

hiutil Vehicles are used by multiple drivers, increasing vehicle utilization to 20 hours per day 
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Figure 47. Impact of changing cost assumptions on potential savings from switching to BEVs. For more details on 
each scenario, see Table 17. 
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Figure 48. Comparison of simulation results by vehicle routing strategy (“stationary” represents simulations in 
which vehicles never rebalance in between trips to match demand, while “automatic relocation” represents the base 
scenario with clairvoyant rebalancing). Results show that removing clairvoyance decreases vehicle revenue 
somewhat, but the impact of charging relocation strategy and battery range remain the same, with the exception of 
the “baseline” scenario, where longer-range BEVs can no longer serve demand. 

 

2.5. Conclusion 
While my analysis is focused on two cities, it yields some general implications. My analysis 
suggests that ridesourcing fleets can be electrified while maintaining or potentially even 
increasing net revenues. The cost of charging infrastructure is a relatively small fraction of the 
total cost of an electric, ride-sourced trip, indicating that it might be prudent to slightly overbuild 
capacity to ensure high-quality service. For instance, 50-kW chargers placed at a density of 
roughly three to four chargers per square mile would allow the fleet to better serve demand while 
also increasing revenue slightly.  

Efficiently routing vehicles to charge makes fleet performance insensitive to changes in vehicle 
range, which may enable batteries to be used much longer than currently expected, further 
lowering costs. Although short-range BEVs may not readily serve all of drivers’ personal trips, 
leasing or renting vehicles for ridesourcing is already common, and almost two-thirds of 
ridesourcing drivers in NYC report acquiring a new vehicle for the sole purpose of working in 
the ridesourcing industry.154 

From a policy perspective, justification for public intervention has centered on the environmental 
benefits of shared, electric vehicles. However, this analysis suggests that when chargers are 
utilized efficiently switching to BEVs could be achieved without increasing the cost of 
ridesourcing services. A combination of mandates on ridesourcing companies coupled with 
public investments in charging infrastructure can help ensure that ridesourcing companies invest 

stationary 

automatic  
relocation 

 baseline 
 threshold  opportunity 



80 
 

in driver adoption of BEVs while freeing them of concerns related to availability and utilization 
of charging infrastructure. Mandates that require industry to obtain a certain percentage of miles 
from zero-emission vehicles would naturally spur the development of innovative financing and 
leasing strategies for BEVs as well as the development of efficient charging-routing algorithms. 
One of the first instances of such a mandate is the California Clean Miles Standard and Incentive 
program, which sets targets for reduction in emissions per passenger-mile for ridesourcing 
companies beginning in 2023.62 My work is the first to suggest that such policies are not only 
feasible but could deliver emissions reductions at low cost. 

It is important to note that my work can be extended to address the following limitations. First, I 
do not have data regarding actual driver behavior in between trips, so it is possible that the way I 
have modeled deadheading activity and charging behavior could bias my results. For example, I 
assume that drivers never wait at charging stations with their app turned off. In the “opportunity” 
and “threshold” cases, drivers will only relocate to charge when there is a charger available for 
the whole time they wish to charge. In the “baseline” scenario, if there are no available chargers 
when a driver arrives at a station, they are either routed to serve a trip or relocate to the closest 
charging station with available spots. Similarly, I did not have access to actual ridesourcing trip 
data for an entire metropolitan area in either of the cities I analyzed; in each case, data from 
several sources are combined to extrapolate individual trips. In both cities, these data consisted 
of only an average weekday, ignoring variation across days of the year. Future work could 
improve on this approach, especially with access to proprietary data. That said, because I 
modeled the ICEV and BEV fleets consistently, I expect my comparisons to be robust to 
inaccuracies in driver behavior. Given the difficulty of obtaining and publishing analysis of 
proprietary data, my approach for developing insights with limited data may prove useful in 
future work. Regardless, I hope this study shows the value of detailed ridesourcing data and thus 
encourages more data sharing in the future. 

Future work should also seek to incorporate charging activity by other types of BEVs, such as 
private vehicles and taxis. In particular, previous studies have shown that ride-sourcing and taxis 
may provide complementary services,185 so charging activity by electric taxis could either 
increase charger utilization or interfere with ridesourcing charging. 

In addition, future work could incorporate dynamics of a fleet that changes over time with the 
introduction of both electric and automated vehicles. While in this work I focus on currently 
available vehicle models to study present-day ridesourcing fleets, future technology may include 
a variety of different options. For example, it is likely that performance could be further 
improved by using a heterogeneous mix of vehicles with different battery ranges, as shown in 
Sheppard et al. (2019).153 To provide recommendations for managing gradual electrification over 
time, it will also be important to conduct simulations of fleets with both ICEVs and BEVs at 
varying levels of BEV penetration. 

Finally, while I have relied on average literature values for modeling cost components, true costs 
may vary greatly from location to location, especially for charging infrastructure. Future work 
could also incorporate cost components I have ignored, such as the cost of acquiring land and 
maintaining parking spaces at charging stations, and the cost of developing and operating routing 
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software. However, even if I have under-estimated charging infrastructure costs by several fold, 
my main conclusions would not change. 
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Chapter 3:  
Leveraging big data and coordinated charging for effective taxi 
fleet electrification: the 100% EV conversion of Shenzhen, 
China 
 

3.1. Introduction 
China is rapidly pushing toward the adoption of BEVs, and an increasing number of cities have 
set ambitious targets for taxi fleet electrification including: Taiyuan,186 Shenzhen,187 
Guangzhou,188 Chengdu,189 and Beijing.190 Shenzhen, China represents an especially interesting 
case study because it is the first top-tier Chinese city to have fully replaced its taxi fleet of over 
20,000 vehicles with BEVs, using the BYD e6 model with 400 km battery range (80 kWh 
capacity with an average consumption of 0.2 kWh/km).191 
 
To build a sustainable roadmap for taxi electrification that can be adapted and adopted 
elsewhere, the Shenzhen electric fleet must provide the same level of service as a conventional 
fleet at low cost and with significant carbon benefits. Local interviews conducted with drivers 
and reports in the media suggest, however, that time spent charging – in some cases over three 
hours per day – results in lost revenue, compounded by problems with queuing at popular 
charging stations.116 
 
Many studies have developed methods to optimize the siting of charging stations,113,162,192,193 but 
despite the unplanned nature of charging infrastructure siting in Shenzhen, sub-optimal station 
locations may not be the fundamental cause of operational inefficiencies. Drivers report that 
charging activity is concentrated during the afternoon because dayshift drivers feel obligated to 
fully charge their vehicle before delivering it to the nightshift driver – most vehicles are driven 
by two drivers for 12 hours per day each, and most dayshift drivers end their shift between 5 and 
7 PM.194 Some drivers use apps to find available stations, but others go to the same preferred 
station each day near the shift change location, leading to problems with queuing at popular 
stations. In turn, this uncertainty in waiting time means drivers go to charge two to three hours 
before a shift change, long before they typically need to: most drivers go to charge around 50% 
state of charge, and most afternoon charging events take less than one hour (this charging pattern 
is similar between weekdays and weekends). If left with extra time between charging and the end 
of their shift, drivers are often unwilling to accept trips that travel too far from the shift change 
location, reducing revenue opportunities during this period. 
 
In this chapter, I use over two weeks of GPS and battery state of charge (SOC) data from about 
20,000 electric taxis in Shenzhen to evaluate the potential of different interventions to the 
problems described above. The data come from January, May, and June 2019, and they consist 
of snapshots taken every five minutes from each vehicle. Using these data, I conduct simulations 
of four proposed interventions that could reduce the charging burden: 1) optimizing the location 
of charging stations to minimize travel time to charging stations, 2) optimizing the dispatch of 
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vehicles to charging stations to minimize both travel and queuing times, 3) shifting more daytime 
charging to early morning hours when demand for taxi trips is low, and 4) shifting charging to 
times when vehicles are idle. 
 
In addition to my own work described in previous chapters, several previous simulation studies 
have found that optimization strategies could improve the efficiency of electric taxi fleets. Lu et 
al., (2012) showed that having a dispatching strategy for electric taxis in Taipei, Taiwan 
successfully reduces charging wait times.195 Tian et al. (2016) proposed a framework to 
recommend charging station locations to e-taxi drivers in Shenzhen.174 However, the study was 
limited as the SOC data were crudely inferred from estimated charging locations. Tian et al. 
(2017) considered the scenario of a major shutdown of an EV charging station in Shenzhen and 
developed a strategy to re-allocate the charging demand to reduce queuing time and increase the 
usage rate of charging stations.196 Finally, Dong et al. (2018) proposed a real-time framework to 
recommend location and charging time to electric taxi drivers in Shenzhen, and conducted 
simulations that showed significant potential improvements in charging station use and queuing 
times at charging stations.175 
 
No previous study, however, has analyzed impact on revenues or compared the effectiveness of 
multiple interventions. More importantly, no previous study has explored the underlying causes 
of the apparent inefficiencies in fleet operations. In particular, I find that inefficient charging 
behavior may be caused in large part by taxi drivers’ preference for changing shifts at full charge 
in the afternoon, and that changing shifts at partial charge could significantly improve fleet 
operations.  
 
In this study, I develop several machine learning models to predict operational characteristics of 
the taxi fleet and present a framework for how this modeling platform can be implemented in 
practice. I conduct simulations to estimate and compare the potential impact of these various 
interventions on fleet performance, driver revenue, and charging infrastructure use. Finally, 
using one day of driver shift-change data, I compare the performance of groups of drivers with 
different charging patterns to verify the simulation results.  
 

3.2. Methodology 
Our study methodology consists of the following steps employing GPS and charging data. 
Vehicle data for approximately 19,224 electric taxis in Shenzhen were prepared by Aspiring 
Citizens Cleantech (ACC) between May 27 and June 9 and between January 17 to 19, 2019, for a 
total of 17 days of data. Data include snapshots of location, state of charge (% of battery 
capacity), and operation status (hired or available) every five minutes for each taxi while the 
vehicle is turned on. To verify simulation results, ACC also provided vehicle data and driver 
shift change data for July 25, 2019, including timestamps for when each driver logged in or out 
of each vehicle. Finally, ACC also provided summaries of interviews conducted with 
approximately 30 drivers in June and July 2019. These interviews were conducted with drivers 
who were approached at charging stations by ACC or while ACC staff were taking taxi trips. My 
analysis with these data consists of four key methodologies: 1) charging inference; 2) queuing 



84 
 

inference; 3) predictive models; and 4) heuristic optimization analysis focused on four 
intervention strategies: a) charging station location, b) dispatch to charging stations, and c) 
shifting more charging to nighttime and d) shifting more charging to break periods. 
 
3.2.1 Charging inference 
To begin my data analysis, I first inferred charging events by finding locations where the vehicle 
SOC increased by at least 10%. I then performed hierarchical clustering on all of these locations, 
using 200 m as the maximum distance between any two vehicles in the same cluster. To infer 
charging locations, I then took the mean values of latitude and longitude of all points in each 
cluster, and then removed outlier charging events greater than 200 m from the closest charging 
location. To estimate the number of chargers at each station, I found the maximum number of 
vehicles charging simultaneously at the location across the total period in the dataset.  
 
Note that this estimate of the number of chargers at each station does not account for usage aside 
from taxis. To validate these inferred estimates, I collected data on actual charger availability for 
18 charging stations, whose locations match the charging station locations I inferred from the 
taxi data. I collected these data by taking a sequence of screenshots of two different charging 
apps each hour over the course of four days between July 19 to 22, 2019, then using Google 
Vision API 197 to extract the number of available chargers from each screenshot. The estimated 
availability for these 18 charging stations inferred from the taxi data closely tracks the 
availability displayed by the apps, especially during peak charging periods in the early morning 
and late afternoon (see Figure 49). As such, I assume my estimates of the number of chargers at 
each charging station is sufficiently accurate for the simulations conducted in this work. In future 
work, I plan to improve accuracy by expanding data collection from the charging apps and 
integrating it with taxi data more thoroughly. 
 

 
Figure 49. Comparison of total availability at charging stations by time of day between estimates from taxi data 
with actual data collected from charging companies’ smartphone apps. 
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3.2.2 Queuing inference 
For every timestamp, I identified which vehicles were relocating to each charging station (i.e., 
idle vehicles whose next activity was charging). I inferred these vehicles to be queuing, if they 
satisfied the following criteria: 1) the vehicle moved less than 1 km over the previous five 
minutes and was either: a) the closest vehicle to the charging station and within 500 m or b) 
within 100 m of another vehicle queuing at the same station. In other words, after finding the 
closest queuing vehicle to each station, I inferred lines of queuing vehicles by sequentially 
adding the next-nearest queuing vehicle. I define queuing time as the time elapsed between the 
start of a vehicle joining a charging queue and the beginning of the charging event. 
 
3.2.3 Predictive models 
I developed all predictive models with the h2o package using R 3.5.1. I tuned hyper-parameters 
using five-fold cross-validation, and I validated model performance with 10% of the data left out 
of model training for testing purposes. I found the difference in performance between the 
gradient boosting models and other model types to be negative or insignificant, so I only report 
results using gradient boosting for all models.  
 
First, I constructed a model to predict the average queuing time before charging at each charging 
location for 30 minutes into the future. The predictive model includes the following features: the 
number of vehicles queuing at the charging station, the number of vehicles charging, the flows in 
and out of the station and queue, the size and location of the station, fixed effects for each 
station, and a variety of transformations of each of these variables. As reliable prediction requires 
sufficient charging events at each charging station, I only applied the predictive model to 
charging stations with at least 20 inferred chargers, resulting in 93 charging stations accounting 
for over 75% of charging events, for a total of approximately 375,000 observations. The model 
prediction tracks the actual queuing time during peak hours quite well, with a root mean squared 
error of 4.3 minutes. 
 
Second, I also constructed a model to estimate travel time between any two points in the city of 
Shenzhen, using 7.3 million trip durations as training outcomes. I clustered trip origin and 
destination locations into 500-meter grid cells and downloaded travel-time estimates between 
each pair of grid cells from OpenStreetMaps. These travel-time estimates do not account for 
traffic congestion and served as inputs in my model to predict trip durations, along with straight-
line distance, time of day, day of week, and origin and destination locations. Over 85% of 
predictions fall within five minutes of the actual trip duration, with a root mean squared error of 
4.7 minutes. Figure 50 shows comparison of predictions with data for both of these models. 
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Figure 50. Performance of predictive models for queue time at the top 93 charging stations (top) and travel time 
between all locations (right). Dotted lines show five-minute error bounds. 

 
 
3.2.4 Optimization analysis 
 
Relocate charging stations:  
Using the travel time model described above, I identified the detour time required to visit a 
charging station at each point C, defined as the additional travel time from the last drop-off point 
A to the next pick-up point B via the charging station C (tAC + tCB), compared with the travel 
time directly from point A to point B (tAB, see Figure 51 below). 

 

 
Figure 51. Schematic of the calculation of detour time caused by driving to a charging station. 

 
I then used a heuristic approach to analyze the impact of optimally locating charging stations. I 
relocated each existing charging station to a location C that minimized total detour time of all 
charging events taking place there and reassigned each charging event to the charging station that 
minimized detour time, following the objective function shown in Equation 5 below. I repeated 
these two steps until the simulated detour times converged.  

 
min∑ 𝑡F*= +	𝑡=G* − 𝑡F*G*/      (5) 
 

Dispatch to charging stations:  
Using the queuing and travel time models described above, I predicted the average queuing time 
at all stations for the next 30 minutes and assigned vehicles to the station with available chargers 

A 

C 

B 
tAB 

tAC tCB 
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that minimized the total delay (the sum of detour time plus queuing time). Given potential 
inaccuracies in my estimate of the number of chargers available, as a conservative approach I 
only relocated vehicles to a new charging station if I estimated less than 90% of the chargers to 
be occupied. After reassignment, I updated the estimated queuing time and the number of 
available chargers at each station. I repeated these two steps until the simulated queuing times 
converged. This process is described by the objective function and constraints listed in Equation 
6 below, where qC is the estimated queuing time, dC is the travel detour time seen in Equation 5, 
and pC is the number of charging ports at the charging station. 

 
                 	min( 𝑑= + 𝑞=); 

𝑑= = 𝑡F*= +	𝑡=G* − 𝑡F*G*, 
    𝑛HI34B/0B < 0.9 ∗ 𝑝=     (6) 

 
 

Shift more charging to nighttime:  
Based on my analysis and results from the driver interviews, I assumed that charging has a 
negligible opportunity cost between 1 AM and 7 AM on weekdays and between 2 AM and 8 AM 
on weekends due to low trip demand. As such, I argue that the SOC that the nightshift driver had 
at the start of this “zero-cost” period could be interpreted as surplus SOC that the dayshift driver 
did not need to charge before the shift change.  
 
I defined these before-shift-change charging events as the last charging events for each vehicle 
before 8 PM or the first charging event after 8 PM in cases where there was no charging event 
between 10 AM and 8 PM. Based on the average amount of surplus SOC that each vehicle had 
on other days, the time of day, and the starting SOC, I trained a model to predict how much 
surplus SOC a vehicle would have at the start of the “zero-cost” period, if the dayshift driver 
charged to 100% immediately before changing shifts. For each prediction, I then calculated the 
SOC at the shift change that would give the vehicle a 95% and 99% chance of reaching the 
“zero-cost” time without falling below 10% SOC. Based on the average power of the charging 
station selected for the before-shift-change charging event, I then calculated the amount of time 
that could be saved by following my recommendation for the SOC at shift change. This process 
is described in Equation 7 below, where tn,d is the time savings of taxi n on day d, t is time of 
day, and P is the power of the charging station. Figure 52 shows a comparison of predictions 
with outcomes for this predictive model, along with curves representing 95% and 99% 
reliability. 
 

 
𝑡0,J = 𝑓(𝑡, 𝑆𝑂𝐶) ∗ 𝑃     (7) 
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Figure 52. Comparison between predictions and actual data for SOC in early morning hours (1 AM on weekdays, 2 
AM on weekends) based on SOC at the start of the dayshift driver’s last charging event. Red and blue lines show the 
5th and 1st percentile of predictions respectively, representing the lower bounds placed on predictions to ensure high 
levels of reliability. 

 
 

Shift more charging to break times:  
First, I identified break periods for each vehicle, defined as periods when the vehicle was neither 
serving a trip nor charging and the vehicle’s odometer reading did not increase for more than 30 
minutes. Using the queuing and travel time models described above, I estimated the amount of 
time available for charging during each break period, and the maximum amount of SOC that 
could be charged. I then conducted a simulation to determine the potential to satisfy charging 
needs during these break periods by removing all charging events, i.e. assuming the vehicles’ 
SOC did not change during existing charging events. I then added charging during break periods 
incrementally to keep SOC between 0% and 100% and calculated the amount of additional 
charging time needed to maintain SOC above 10% between each break. This process is described 
by the objective function and constraints listed in Equation 8 below. 
 

𝑚𝑖𝑛(𝑆𝑂𝐶ADA4B) ; 
𝑆𝑂𝐶A0J > 10, 

∆𝑆𝑂𝐶D3K = (𝑡/J!A −min𝑑= + 𝑞=) ∗ 𝑃= , 
∆𝑆𝑂𝐶L4A3' = min(∆𝑆𝑂𝐶D3K , 100 − 𝑆𝑂𝐶#7347), 

𝑆𝑂𝐶A0J = 𝑆𝑂𝐶#7347 +	∆𝑆𝑂𝐶L4A3' , 
∆𝑆𝑂𝐶ADA4BA0HM = max(0, −1 ∗ 𝑆𝑂𝐶A0J), 
𝑆𝑂𝐶#7347 = 𝑆𝑂𝐶A0J +	∆𝑆𝑂𝐶ADA4BA0HM   (8) 
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3.2.5 Study limitations 
There are several limitations to this analysis that can be addressed with expanded data access. 
First, without complete real-time data from existing charging stations, there may be inaccuracy 
in my estimates of charger availability. In future research, I could expand charging station data 
collection efforts to conduct more accurate and detailed charger availability analysis. Similarly, I 
could also obtain and integrate data on driver shift change locations and times to inform my 
estimates of detour time and surplus SOC during the afternoon shift change. Finally, this analysis 
does not consider a variety of behavioral factors that influence decisions on where and when to 
charge including: the availability of rest places and food, opportunities to meet friends and other 
drivers, and desire to maintain a large SOC buffer at all times (for example, it appears some 
drivers never let their batteries fall below 50% SOC). To analyze these factors in depth and to 
test potential strategies in the real world, future research should include a pilot project via a 
smartphone app that will provide drivers with real-time information on queuing times at charging 
stations as well as an accounting tool to keep track of SOC charged across shifts, to facilitate 
changing shifts at partial charge. 
 

3.3. Results 
As shown in Figure 53 below, analysis of the Shenzhen taxi data shows there are two major 
peaks in charging events in the early morning and late afternoon (likely preceding shift changes), 
along with a smaller peak during the lunchtime period. Each peak is accompanied by a 
significant number of taxis queuing at charging stations, especially in the afternoon. Notably, this 
afternoon peak is also accompanied by a decreased number of hired vehicles serving trips and an 
increased total number of active vehicles, suggesting that these charging events result in 
significant lost revenue. A comparison with TNC trip volumes in Shenzhen across three months 
in 2019 shows correlation between decreased taxi trip volumes and increased TNC trip volumes 
during the afternoon period, suggesting that taxi trip volumes are constrained by vehicle supply 
(TNC data are not shown here due to issues with confidentiality). 
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Figure 53. Number of taxis by operating status over time of day, for both weekends and weekdays. 

 
Drawing on my literature review, my analysis, and taxi driver interviews, I identify three key 
problems in taxi fleet operations: 1) queuing time due to inefficient routing of vehicles to 
charging stations, 2) spatial mismatch between charging station locations and charging demand, 
and 3) temporal mismatch between charging events and the time periods of lowest opportunity 
cost of charging. In the following sections, I analyze each of these problems and the impact of 
proposed interventions. Table 18 below summarizes the intervention results. 
 
Impact on revenue is estimated by multiplying the daytime savings by the average revenue 
generated per vehicle during that time. Results for flexible shift change SOC are derived from 
the scenario providing 99% reliability of maintaining a 10% buffer in SOC between the last 
daytime charging event and early morning hours. Exchange rate between USD and Chinese 
Yuan (RMB) (0.14:1) was recorded on August 1, 2019. 
 
3.3.1 Optimal charging locations 
The charging market in Shenzhen is highly fragmented with over 100 different charging station 
operators,198 and planning has not been integrated with charging demand data, potentially leading 
to a spatial mismatch. Meanwhile, drivers report that they prefer larger charging stations to 
smaller ones due to greater reliability in expected queuing time. This is reflected in charger usage 
data; concentrating chargers into fewer large stations at the best locations may increase usage 
rate. Many studies have suggested siting taxi charging stations close to areas with high trip 
density can improve fleet performance,113,162,192,193 but given that drivers in Shenzhen typically 
charge near their shift-change location, I assume that drivers seek to minimize the detour time 
incurred by visiting a charging station on the way to their next destination, as described in the 
methodology. As shown in Figure 54 below, relocating charging stations to the locations that 
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minimize detour time results in a much higher density of charging stations in densely populated 
areas of the city close to major corridors. I find that on average, optimizing charging station 
locations could save each vehicle eight minutes per day.  
 

Table 18. Summary of impacts of all proposed interventions. 

Strategies/ 
interventions 

Time savings (min/vehicle/day) Revenue 
generated 

(USD/ 
vehicle/day) 

Electricity 
savings 
(USD/ 

vehicle/day) dayshift total 

Optimal charging 
station locations 

5 8 0.72 0 

Optimal dispatch to 
charging stations 

10 14 1.45 0 

Flexible SOC during 
shift change 

25 0 3.77 0.43 

Optimal charging 
during break periods 

72 123 11.16 0.58 

 
 

 
Figure 54. Heat maps comparing the distribution of energy charged at current charging stations with the distribution 
after relocating stations to the locations that minimize the detour time. 

 
 
3.3.2 Optimal charging dispatch 
While existing charging network apps show real-time availability at charging stations, these data 
are fragmented between platforms and may not reflect actual queuing times due to many vehicles 
arriving during a short time window. Accurate queuing time predictions may help drivers locate 
charging stations with less queuing time and improve the certainty of the total time needed to 
charge, allowing drivers to start charging closer to the end of their shift. 
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Using the queuing model described earlier, I estimated the amount of time vehicles could save if 
they charged at the station causing the least delay, which is defined as the sum of the detour and 
queuing time. I find that through optimization it is possible to reduce the time spent queuing per 
charging session by almost 50%, from over 10 minutes to about five, with a total time savings of 
14 minutes per vehicle per day. While over 26% of vehicles currently spend over 30 minutes 
queuing per day, in the simulation I find that this proportion could be reduced to less than 10%. I 
find that optimizing the dispatch of vehicles to charging stations could save almost 4,500 hours 
of downtime per day, potentially resulting in over $10 million per year in additional revenue (see 
Figure 56). 
 

 
Figure 55. Heat maps depicting charger use and total queuing time (black rings) before (top) and after (bottom) 
dispatching optimization. 
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Figure 56. Distributions of time lost due to detouring to charging stations and queuing at charging stations, both 
before and after dispatch optimization. 

 
Optimizing the dispatch of vehicles to charging stations could also greatly increase the economic 
sustainability of the charging network, which may be threatened by the pending removal of 
charger installation subsidies.199 As shown in Figure 55 above, currently most charging is 
concentrated in a few large charging stations with over 100 inferred chargers each, resulting in 
large total queuing times at each of these stations (shown by the black rings). Drivers report that 
they prefer larger stations because the queuing time is more certain due to higher turn-over rates. 
Not surprisingly, by providing accurate estimates of the expected queuing times at each station, I 
find that charging events can be dispersed among more charging stations. 
 
Due to the non-linear relationship between usage and amortized cost per kilowatt-hour (see 
Figure 57), I find that this dispersion can have positive impacts on charging economics. Using 
the cost parameters reported by Crow et al. (2019),198 including costs for charger construction, 
maintenance, and land, I calculated the cost of charging amortized per kilowatt-hour, assuming a 
10% discount rate and a 10-year charging station lifetime. As shown in Figure 58 below, the 
increased usage rate at many stations results in much lower amortized cost. Under the current 
pricing regulation, charging stations are not allowed to charge customers more than $0.11 per 
kWh on top of the electricity price 198. Without subsidies on charger installation, less than 10% 
of inferred charging stations would be economically sustainable, including less than 50% of the 
top 93 inferred charging stations. In contrast, with optimal dispatching of vehicles to charging 
stations, 75% of inferred charging stations would be profitable without subsidies.  
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Figure 57. Impact of usage rate (measured as percent of total hours charger is being used) on amortized cost of 
electricity, by charger type. 

 

 
Figure 58. Usage rate of major charging stations (average percent of time each charger is occupied) by number of 
chargers at each station, before (top) and after (bottom) dispatching optimization. 
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Interestingly, once vehicles have been dispatched to optimal charging stations, repeating the 
heuristic location optimization described in the first section has little effect. As shown in Figure 
59, I find that only stations on the city’s periphery are significantly affected, resulting in time 
savings of less than one minute per vehicle per day. 
 

 
Figure 59. Difference in charging locations before after location optimization, given optimal dispatch. 

 
 
3.3.3 Shift more charging to early morning hours 
I also studied the potential for enhancing efficiency by shifting some charging from the dayshift 
to early-morning hours, when charging carries a lower opportunity cost due to lower demand for 
taxi trips. As shown in Figure 60, most drivers consume less than 50% SOC between the 
afternoon charge and early morning hours when trip demand plummets, suggesting large 
potential for arbitrage. 
 
As seen in Figure 61, during early-morning hours both the proportion of the fleet that is hired 
and the hourly revenue per vehicle drop substantially, suggesting there are more idle vehicles 
than are needed to serve demand. Based on this finding, I estimated the number of “surplus 
vehicles” that could go charge without affecting the fleet’s capacity to serve trip demand. This 
value is defined as the number of idle vehicles that could be removed from duty while 
maintaining the ratio of hired vehicles to idle vehicles at or below 1:1.25, the minimum hired 
ratio observed during the daytime. I find that the number of vehicles charging during early-
morning hours (defined as 1 AM - 7 AM on weekdays and 2 AM – 8 AM on weekends) could 
almost double without affecting the fleet’s capacity to serve trip demand.  
 

      Current 
      Optimized 
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Despite this apparent incentive to charge more during the nightshift, most drivers interviewed 
reported that they feel an obligation to charge to full SOC before the afternoon shift change to 
ensure that dayshift and nightshift drivers both pay for a fair share of the electricity and have an 
equal opportunity to serve long trips.  
 
There is no established policy by regulators or companies that requires drivers to change shift at 
full SOC. If there were a data-driven accounting tool to facilitate payment between drivers to 
compensate for time spent charging, the barrier to optimizing charging times among drivers 
could be overcome. Based on the prediction model described in the methodology, I find that 
starting with a 72% SOC during the afternoon shift change gives the nightshift driver a 95% 
probability (on average) of reaching the early-morning hours without falling below 10% SOC 
(see methods section for details). Based on the derived charging power of each charging station 
(33 kW on average), adding this SOC flexibility to the afternoon shift change would save each 
dayshift driver 40 minutes per day and increase their fare revenue by over me $5 per day. Given 
that electricity prices are also lower between 11 PM and 7 AM, this intervention would also 
reduce charging costs by over me $1 per vehicle per day. Even if nightshift drivers require 99% 
probability that they will maintain at least 10% SOC, a flexible SOC policy during shift changes 
would save each dayshift driver over 25 minutes per day. In aggregate, this intervention could 
save day shift drivers 8,000 to 12,000 hours per day, potentially yielding over $25 million per 
year in additional revenue. This analysis does not include the potential for reducing queuing and 
detour times by increasing flexibility in when and where drivers charge, and so these estimates 
are likely conservative.  
 

 
Figure 60. Distributions of net loss and total consumption of SOC between last charging event before 8pm and the 
start of low-demand hours (1am on weekdays, 2am on weekends). Total consumption is equivalent to net loss for 
vehicles with no charging between 8pm and low-demand hours. 
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Figure 61. Clockwise from top left (all hourly moving averages disaggregated by both time of day and day of 
week):  a) proportion of vehicles hired (not including vehicles that are disengaged or charging); b) average net 
revenue per vehicle per hour (fare revenue minus electricity cost); c) number of “suplus vehicles,” defined as the 
number of vehicles in the fleet that could be charging while keeping the fraction of vehicles hired below the 
minimum value observed during the daytime (44%); d) number of vehicle charging. 

 
3.3.4 Shift charging to break periods 
Early-morning hours are not the only time of day when charging has a negligible opportunity 
cost. I estimate that each vehicle takes over two hours of breaks per day on average, even when 
only including periods when the vehicle spends at least 30 minutes idle in the same location (not 
including charging). Over 60% of vehicles spend at least as much time on these breaks as they 
spend charging during the dayshift. When asked why they do not currently use break periods to 
charge, several drivers reported that they see no need to do so, because they must charge to full 
SOC before changing shift regardless. Without the constraint of changing shift at full SOC, 
drivers could save time by charging during breaks. Such an intervention could also reduce 
fatigue driving and improve safety by encouraging drivers to take longer breaks every few hours 
to ensure that they remain alert while driving. 
 
As described in the methodology, I developed a simulation model to estimate the minimum 
amount of additional charging time required given full use of both break periods and early 
morning hours, finding that on average vehicles could satisfy all their charging needs with only 
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10 additional minutes, saving over 70 minutes per vehicle per day. This optimization strategy, 
shown as the “optimized” vehicle charging profile in Figure 62, results in a larger early-morning 
peak, a broader lunchtime peak, and a substantially smaller afternoon peak. This reduced demand 
for charging during the afternoon increases the fleet’s capacity to serve trip demand during 
afternoon peak hours, yielding over $75 million per year in additional revenue.  
 

 
Figure 62. Number of vehicles charging by time of day in four different scenarios. The “flexible shift” scenarios 
allow drivers to change shift at a sufficient SOC to provide either 99% (green) or 95% (blue) confidence for the 
nightshift driver to operate without charging until the early morning hours (defined as 1am on weekdays and 2am on 
weekends). The optimized scenario assumes full usage of both break periods and early morning hours for charging. 
The large nighttime peak introduces the possibility of scarcity of available chargers. However, given that I inferred 
over 12,000 chargers in the taxi data, I expect that the dispatching optimization, described above, would be able to 
mitigate this potential issue. 

 
3.3.5 Evidence from current driver behavior 
Using the fleet’s driver shift-change data, I find that some drivers have already adopted charging 
patterns aligned with some of the strategies described above. For example, for 1,251 vehicles or 
roughly 7% of the fleet, dayshift drivers ended their shift with a 60 to 85% SOC. Compared with 
“full SOC” dayshift drivers in Figure 63 below, “flexible SOC” dayshift drivers tend to charge 
earlier in the afternoon, likely coinciding with their lunch break, and “flexible SOC” nightshift 
drivers tend to charge slightly earlier in the early-morning hours.  
 
As shown in Table 19 below, compared with drivers that change shifts at full charge, on average 
these “flexible SOC” drivers earn more revenue ($5 per vehicle per day), operate for slightly 
more time, and continue accepting trips with less time before their shift change (1.42 hour versus 
2.25 hour). They also charge further from the shift-change location (6.1 km versus 2.9 km), 
meaning they have more choice of where to charge. This increased choice likely results in less 
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queuing time and greater certainty of charging time, both of which reduce the overall opportunity 
cost of charging.  
 
Table 19. Comparison of descriptive statistics by vehicle charging strategy. 

Attribute 

SOC at afternoon shift change (%) 

p-value 60 to 85  
(flexible SOC) 

>85  
(full SOC) 

Number of vehicles 1251 10616 n/a 

Total revenue 
(USD/vehicle/day) 211.62 206.15 *** 

Dayshift revenue 
(USD/vehicle/day) 107.09 102.31 *** 

Distance between 
charging station and 
shift change location 
(km) 

6.1 2.9 *** 

Time between 
charging and shift 
change (hr) 

3.63 2.30 *** 

Time between shift 
change and last trip 
dropoff (hr) 

1.42 2.25 *** 

Operating time 
(hr/day) 19.67 19.48 * 

Revenue per operating 
hour (USD/vehicle/hr) 10.79 10.57 ** 

Starting SOC of 
charging events (%) 53 52  

Ending SOC of 
charging events (%) 92 96 *** 

Charging time (hr) 1.09 1.26 *** 

p-values describe results of two-tailed t-tests, with the following significance levels: * < 0.05, ** < 0.01, *** < 
0.001 

 
Additionally, on average “flexible SOC” dayshift drivers stop charging at 92%, saving 10 
minutes per charging event by avoiding slow charging speeds at close to full SOC. These 
findings are consistent with my simulation results that suggest that flexibility in the SOC 
required at shift changes can increase driver earnings by enabling drivers to charge during break 
times and at charging stations with shorter queuing times. 
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Figure 63. Density profile of charging events by start time on July 25, 2019, grouped by shift-change type. 
“Flexible SOC” represents vehicles changing shift in the afternoon at 60 to 85% SOC, “full SOC” represents 
vehicles changing shift in the afternoon at 85 to 100% SOC, and “single shift” represents vehicles that did not report 
a shift change on this day.  

 
Figure 64. Distribution of shift change times on July 25, 2019. 
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Figure 65. Distribution of charging start times by driver shift-change type. 

 

 

Figure 66. Cumulative distributions of different characteristics of driver shift change data. 

 



102 
 

 
Figure 67. Impact of SOC at driver shift change on average revenue per hour both during the dayshift and across the 
day. 

 
 

3.4. Conclusion 
With the Shenzhen taxi fleet data on vehicle trajectory and battery state of charge, I illustrate the 
capability of big data to reveal system-level inefficiencies and inform simple optimization 
strategies to facilitate effective total electrification. Enabling flexible SOC during the afternoon 
shift change could reduce aggregate vehicle downtime by over 10,000 hours per day, while fully 
using break periods and early morning hours to charge could save over 20,000 hours per day. I 
also find that optimizing vehicle dispatching to charging stations could improve the economic 
sustainability of charging infrastructure by increasing the percentage of viable chargers without 
subsidies from less than half to 75%. 
 
These findings naturally lead to recommendations for policies that encourage driver behavioral 
change and coordinated charging. By testing and implementing such strategies, cities and fleet 
operators could greatly alleviate the operating burden arising from electrification. For more 
effective fleet electrification, cities should consider developing data platforms that integrate 
demand-side data on the charging needs of various transportation modes with supply-side data 
on charger availability and construction. This combination would enable critical feedback control 
so cities can predict and balance the demand and supply for electrified transportation. Aside from 
the real-time fleet optimization discussed in this study, data integration can also be used to 
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minimize the stress vehicle charging places on the power grid and maximize usage of 
intermittent renewable energy resources. Meanwhile, switching from conventional vehicles to 
BEVs effectively will require significant behavioral changes, and both taxi drivers and fleet 
operators could benefit from targeted training to better understand how to best use this new 
technology. 
 
Shenzhen provides a strong leadership model for municipal governments to consider as they seek 
full electrification of both fleets and private transportation. Given China’s goal of phasing out 
conventional vehicles over the next several decades,200 the findings of this study have large-scale 
implications for other Chinese megacities aiming to shift to low-carbon transportation.  
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Conclusion:  
On-demand automotive fleet electrification can catalyze global 
transportation decarbonization and smart urban mobility 
 

In the previous three chapters, I have conducted analysis and modeling to show the feasibility of 
rapidly electrifying MODV services worldwide. Figure 68 summarizes these findings. As shown 
in Figure 68a, MODVs often spend over 25% of their time idle while waiting for trips,201 
suggesting that if this downtime could be harnessed effectively, drivers would have plenty of 
time to charge. As shown in Figure 68b, less than 0.5% of taxi trips are over 50 km in a variety 
of cities, and my work discussed above has shown that BEV fleets could serve present-day 
mobility demand in dense urban areas with less than 160 km of battery range.77 Given that these 
vehicles are typically driven in urban cores, BEV fleets could also more effectively reduce air 
pollution, especially in lower-income communities where private BEVs may remain 
prohibitively expensive for many years.202 
 
One factor that complicates MODV electrification is that some companies – mainly TNCs – do 
not own and operate their vehicles but rather operate a software-based marketplace where drivers 
working as independent contractors provide mobility services to consumers requesting rides. 
However, as I discuss below, many of the same opportunities, barriers, and policy needs apply to 
TNCs as well. 
 
Electrification of the MODV sector also presents an opportunity for large potential spill-over 
benefits for other areas of sustainability. MODV electrification would expose many consumers 
to BEV technology and spur investment in charging infrastructure for those without access to 
home charging (especially common in low-income areas), both of which would likely broaden 
the market for private BEVs.80,203 While MODV charging could exacerbate peak electricity 
loads, coordinated charging could eliminate peak-load growth, spreading charging to hours of the 
day when electricity is cheaper and/or underused.153,204 Individual charging stations can also 
moderate power supply to vehicles to align with grid capacity. Furthermore, as I describe in 
detail below, MODV electrification can facilitate the collection and analysis of vehicle trajectory 
data to inform the design, integration and operation of innovative mobility services, including 
bus rapid transit, shared micromobility (bike and scooter sharing platforms), and partnerships 
between MODVs and existing public transit service. Beyond its application to transportation 
innovation and policy, this vehicle trajectory data may also become an important tool to enable 
contact tracing in the fight against the COVID-19 pandemic. 
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Figure 68. Clockwise from top left: a) distribution of time spent by an average New York City (NYC) ridesourcing 
driver.145,201 I assume a vehicle energy consumption of 0.17 kWh/km, equivalent to the performance of the 2018 
Chevrolet Bolt.160 For relocating to charge, I assume one charging session per eight-hour shift and an average 
relocation distance of 4 km at a speed of 16 km/hour. b) Distribution of taxi trip distances in cities in the United 
States (U.S.) and China (data provided by city governments of respective cities). c) Relationship between the total 
cost of charging infrastructure (capital cost, electricity, and demand charges) and percent utilization by time, along 
with the impact of fleet coordination.138,198,201 Note that these costs only include the cost of electricity and charger 
installation, not the opportunity cost of queuing and charging; the reduction of the cost of charging with 
coordination is due to the reduced quantity of chargers needed. d) Operating cost by vehicle type and fleet 
coordination based on cost estimates in Shenzhen. I use cost parameters from chapter 2, and I assume battery 
lifetime of 1,500 cycles when uncoordinated, and 3,750 cycles when coordinated, based on my review of battery 
degradation literature. I assume that vehicles must be replaced at 80% of original capacity when uncoordinated, and 
at 50% when coordinated, as found in chapter 2.77 Revenue lost due to charging is based on results from chapter 3, 
and includes the opportunity cost from time spent both queuing and charging.205,206 In both c) and d), I assume an 
annual discount rate of 5%. See Table 20 to Table 22 for details on calculations, sources, and assumptions. 

Time available to  
charge 

Total time 

Gasoline equivalence 

a) b) 

c) d) 
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Table 20. Variable definitions and values for Figure 68a 

Variable Definition Value Source 

fare_mi fare per mile $1.75 155 

fare_min fare per minute $0.35 155 

fbase base fare $2.55 155 

v velocity 12 miles/hour 145 

w wage $24/hour 154,156 

avg_dist average trip distance 3 miles 145 

t_shift shift duration 5 hours 154,156 

kpm energy consumption 0.28 kWh/mile 160 

C TNC commission 25% 155 

d_rel empty distance ratio 25% 157 

full_wage theoretical wage if serving trips 100% of the time 

t_pass time actually serving trips given wage rate 

t_trprel times spent relocating to trips 

d_tot distance traveled per hour 

t_chgrel time spent relocating to charge 

 

Calculations: 

full_wage = (60 * fare_min + vel * fare_mi + vel / avg_dist * fare_trp) * (1 - C) 

t_pass = 60 * w / full_wage 

t_trprel = t_pass * d_rel 

d_tot = vel * (t_pass + t_trprel) / 60 

t_chgrel = 1 / vel * 60 / t_shift 

time required to charge = d_tot * kpm * 60 / charger power 

total time busy with non-charging activities = t_pass + t_trprel + t_chgrel   



107 
 

Table 21. Variable definitions and values for Figure 68c. 

Variable Definition Value Sources 

SF NYC SZ 

fee annual fee $0 $0 $1,344/year 198,201 

capex installation cost $50,000 $50,000 $24,500 138,198 

opex O&M cost $1,500/year $1,500/year $700/year 138,198 

dmnd demand charge $15.90/kW/month $30.9/kW/month $0 198,201 

elec electricity cost $0.151/kWh $0.061/kWh $0.14/kWh 198,201 

dur charger lifetime 10 years 10 years 10 years 198,201 

disc discount rate 0.05 0.05 0.05 198,201 

power charger rating 50kW 50kW 42kW 198,201,205 

util utilization rate of 
charging 
infrastructure 

current: 7.5% 
uncoordinated: 21% 
coordinated: 82% 

current: 7.5% 
uncoordinated: 

48% 
coordinated: 78% 

current: unknown 
uncoordinated: 

18% 
coordinated: 34% 

158,159,201,

206 

 
Calculations: 

annual kWh = util * power * 24 hours/day * 365 day/year  

discount rate = (1 + disc) ^ (1 / annual kWh) – 1 

total cost per kWh =  

 capex * (discount rate / (1 – (1 + discount rate) ^ (-1 * annual kWh * dur))) + 

 opex * (discount rate / (1 – (1 + discount rate) ^ (-1 * annual kWh))) + 

 fee * (discount rate / (1 – (1 + discount rate) ^ (-1 * annual kWh))) 
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Table 22. Variable definitions and values for Figure 68d. 

Variable Definition Value Sources 

Coordinated  
BEV 

Uncoordinated 
BEV 

ICEV 

fuel_price cost of electricity or 
gasoline 

$0.18/kWh $0.21/kWh $1.02/L 207 

cons rate of fuel consumption  0.2 kWh/km 0.2 kWh/km 0.075 L/km 198,206 

bat_price battery purchase price $150/kWh $150/kWh n/a 201 

capacity battery capacity 80 kWh 80 kWh n/a 206 

cyc_deg battery capacity 
degradation per cycle 

.013% .013% n/a 208 

soc_end capacity at which 
batteries must be 
replaced 

50% 80% n/a 77,201,208 

rev_loss revenue lost due to time 
spent charging 

$1.50/day $15/day $0 206 

maint maintenance cost $0.015/km $0.015/km $0.025/km 77,198 

dist_day average distance traveled 306 km/day 206 

disc daily discount rate 0.05 / 365 = .00014 77 

bat_dur battery lifetime, in days 

 

Calculations: 

bat_dur = (100 – soc_end) / (cyc_deg * dist_day / (capacity / cons)) 

total cost per km = bat_price * capacity *  

disc* (disc + 1) ^ bat_dur / ((r + 1) ^ bat_dur – 1) / dist_day + fuel_price * cons + maint + rev_loss 

 
 

Barriers 
Despite such high stakes and promising opportunities, as discussed above, in most areas MODV 
electrification lags even the slow pace of private-vehicle electrification. While many major TNC 
companies have announced initiatives to promote electrification, most goals amount to 
electrifying less than 5% of operations.209  
 
Current understanding is that fast-charging infrastructure is prohibitively expensive to build and 
operate without high levels of public subsidy, but the truth is more complex. Because cost is 
dominated by installation and demand charges, it is highly dependent on usage rates: as usage 
increases, the per-energy cost decreases exponentially. As shown in Figure 68c, the amortized 
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cost of charging at public fast-charging stations in the U.S. costs over twice as much as gasoline 
because usage rates are very low; private BEV owners typically charge at home and only use 
fast-charging stations in emergency situations or on rare long-distance trips. In contrast, BEV 
fleets need to use fast chargers in urban areas daily and are available to charge in between trips 
throughout the day. Studies have shown that even use by unmanaged fleets could drive costs 
below that of gasoline;92,114 coordinated charging could reduce costs even further.201  
 
Even with sufficient charging infrastructure, MODV services may not electrify without 
additional policy support. Drivers are typically responsible for fuel expenses, leading to a 
principal-agent problem (i.e., the actor able to solve a problem and the actor affected by the 
problem are separate entities)210 as the service operator is much better equipped to facilitate 
electrification. In many places, fuel costs represent less than 10% of driver earnings, and studies 
have shown that consumers tend to undervalue savings from efficiency,211 such that drivers may 
not prioritize efficiency over other factors (e.g., comfort and style) when choosing a vehicle. 
Prior to updated regulation in 2009, NYC taxis had an average gasoline fuel economy of 15 
miles per gallon (16 L/100 km), much lower than the nationwide average. Even today, though 
the total cost of ownership of hybrid vehicles is lower than that for gasoline vehicles, only 60% 
of the taxi fleet in NYC is hybrid, and less than 20% of TNC vehicles.212  
 
Both these trends point to the need for policymakers to set firm targets for MODV electrification. 
Without BEV demand for fast chargers in the urban core, it is not surprising that a lack of 
infrastructure remains a problem. But if charging operators have confidence in high levels of 
demand, private companies will invest in infrastructure, resulting in sufficient supply. As shown 
in Figure 68, high levels of usage from BEV fleets enables charging operators to make a return 
on their investment, spurring further investment.  
 
Electrification trends in China provide a model for how this can work in practice. Mandates on 
bus and taxi fleet electrification in Shenzhen, China spurred heavy investment in charging 
infrastructure, resulting in over 12,000 fast-charge points spread across the city within five years, 
owned and operated by over 10 different private companies.198 Electrification mandates for buses 
and taxis in several Chinese cities have already electrified billions of kilometers, suggesting such 
policy represents a viable pathway to rapid electrification at scale (see Figure 69).  
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Figure 69. Number of vehicles and operating distance in bus and taxi fleets in 10 of the largest Chinese cities, along 
with rates of electrification. Data provided to authors by Aspiring Citizens. 

 
Incentives and pricing play an important role in accelerating adoption of BEVs and installation 
of charging infrastructure. The city government in Shenzhen and the Chinese national 
government provided subsidies for charging stations amounting to 30% of installation cost.198 
However, subsidies for charging stations and vehicles do not guarantee adoption, and no level of 
subsidy is sufficient without demand. For example, analysis of current incentives in the U.S. 
showed that every US$1,000 of monetary incentive has increased BEV sales by less than 3%, 
equivalent to a cost of over US$30,000 per additional sale.213 While incentives will likely be 
necessary to reward early actors and compensate them for risk, they cannot replace firm 
electrification targets. One possible strategy would be to combine incentives with targets through 
a credit-trading scheme, as employed with fuel economy standards for private vehicles in the 
U.S. and elsewhere. Cities in other regions have now also set electrification targets, including 
London, Amsterdam, and Oslo. These governments should look to China for lessons on how to 
electrify quickly, as well as learn from past mistakes.  
 
The Chinese political context enables rapid policy implementation, and electrification will likely 
proceed more slowly in other regions. Most of the same challenges and policy recommendations 
still apply, but a more gradual transition introduces another barrier related to driver equity. When 
all vehicles are electric, they will need the same amount of downtime to charge, and so have the 
same opportunity to earn revenue. In contrast, while there are some ICEVs remaining, they may 
earn more revenue than BEVs that must go to charge. As such, it is likely that TNC companies 
will need to cross-subsidize BEV vehicles, or schedule charging sessions more carefully.  
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On the other hand, a more gradual electrification timeline offers the advantage of allowing 
drivers to opt in based on how amenable their driving habits are to electrification; e.g., those who 
drive full-time and those who lease vehicles specifically for TNC driving will be likely to adopt a 
BEV before part-time drivers and those who use their own vehicle. Furthermore, while TNC 
driving is largely concentrated in urban areas, there are also TNC operations in lower density 
areas, which may prove more difficult to electrify due to the larger requirement for charging 
infrastructure; these operations can be given lower priority. 
 
 

 
 
Figure 70. Taxis waiting to charge at Minle station in Shenzhen on July 30, 2019. As shown in the inset, at the same 
time there were over 100 taxis waiting to charge, a popular charging app by automaker BYD showed 49 available 
charging ports, suggesting that vehicle data may be necessary to provide real-time charging availability. Minle 
station is the largest charging station in the world, with over 500 fast chargers,214 and drivers see it as more reliable 
than other smaller stations, leading to disparities in usage rates and long queuing times. 

 

Solutions 
While important, adequate infrastructure supply does not ensure efficient charging operations. 
As shown in Figure 70, and discussed in the previous chapter, taxis in Shenzhen often wait over 
30 minutes to enter charging stations, despite real-time charging apps that show plenty of 
availability. Downtime for charging currently costs drivers US$15/day, more than the cost of 
electricity itself. A few large charging stations receive a disproportionate share of charging 
demand, while most other charging stations are not economically viable. 
 
As discussed in the previous chapter, my research has showed that this inefficiency is largely due 
to a lack of data: without proper information on the best places and times to charge, drivers tend 
to charge at large stations right before they end their shifts, during afternoon peak demand. The 
authors found that providing drivers with complete information including forecasts of trip 
demand could reduce revenue losses by up to 90%, and even just providing accurate information 
on queues at each charging station could reduce overall queuing time by half. As shown in 
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Figure 68d, the combined cost reductions of fleet management in Shenzhen could reduce 
operating costs by almost 50%, from 130% of the cost of ICEVs to 66%.  
 
Whether to coordinate shift changes and minimize downtime for charging, or to minimize battery 
range requirements, data are essential. To ensure electrification programs succeed, governments 
need to start building public data platforms to host several critical datasets, including vehicle 
trajectories, charging station availability and location, and potential charging location costs.  
 
In the planning stage, charging companies should have access to aggregated vehicle trajectory 
data and grid capacity availability data from power grid operators to predict optimal station 
locations. Charging companies currently waste significant resources searching for the best sites 
for charging stations; many studies have developed methods to optimize the siting of charging 
stations,113,162,192,193 but all require data for proper implementation. In the operational stage, 
charging station status (i.e., number of plugs available and occupied and estimated time until 
free) should be aggregated across operators and integrated with vehicle trajectories to provide 
drivers with an accurate measure of expected wait time at each charging station. Public agencies 
should also actively monitor charging behavior to identify context-dependent barriers, such as 
those found in Shenzhen. In the longer term, such data can enable MODV service operators to 
provide drivers with recommendations for where and when to charge, minimizing electricity 
prices and grid capacity constraints, downtime for charging, and requirements for battery range. 
Note that coordinated charging does not require the fleet to be operated by a single company 
with monopoly power; as long as all operators and drivers have the data necessary to forecast 
total trip demand and charging availability, several operators working independently could still 
conduct their own operations more efficiently. 
 
MODV service operators rarely give up data easily,215 but electrification targets provide a 
powerful justification for data transparency. In Shenzhen, BEV incentives were tied to providing 
vehicle trajectory data as part of a broader modernization effort, and in California, the state 
government successfully requested vehicle trajectory and trip data from TNCs to establish a 
carbon footprint baseline.216 These strategies suggest that not only can smart data policy enable 
electrification, but electrification policy may facilitate mobility data collection as well. Another 
option could include offering subsidized BEV leases for vehicles equipped to transmit data. 
 
But acquiring data is not enough; policy must also ensure that this data is accessible to key 
stakeholders, including charging infrastructure developers and operators, along with third-party 
software developers providing services for efficient fleet operation. While real privacy concerns 
exist, fleet data is also much less sensitive than data from personal vehicles, and data can be 
aggregated to the intersection or census tract level to ensure anonymity without reducing 
benefits. Another possibility would be increasing consumers’ access to their data and notification 
of data collection, as mandated by the European Union’s General Data Protection Regulation.217 
Several cities around the globe already collect TNC trip data (e.g., Toronto, Mexico City, Sao 
Paolo), in some cases also publishing parts of it publicly (e.g., Chicago, NYC);218 it is not hard to 
imagine expanding these existing regulations to aid charging infrastructure development and 
operation. 
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Policy recommendations and spill-over effects 
MODV companies have increasingly relied on treating their drivers as independent contractors to 
minimize labor costs, which means they have a strong incentive to refrain from interfering with 
how their drivers perform their work.219 For example, directing drivers to charge at times with 
relatively low trip demand or collecting data on vehicle state of charge could violate the 
independent contractor relationship, exposing service operators to legal action. Depending on the 
implementation strategy, there could be ways to circumvent these risks (e.g., only providing 
drivers with information on charger availability and forecasted demand), but such complications 
add another barrier to effective MODV electrification. 
 
Policymakers should reform these policies to increase certainty in the relationship between 
MODV companies and their drivers. In September 2019, California passed a law220 that requires 
TNC and taxi drivers to be treated as standard employees, thus eliminating any uncertainty. An 
under-appreciated consequence of the law (still under dispute) is that TNCs will now be allowed 
to direct drivers in between trips, as well as own and maintain vehicles in the same way as other 
fleet operators. While other strategies exist, this law could serve as a template for other 
governments around the world seeking to promote both labor equity and MODV 
decarbonization. 
 
Once real-time MODV data become available, its value extends far beyond electrification itself. 
By shedding light on where people want to go, vehicle trajectory data can enable cities to start 
integrating MODV operations with innovative mobility services, such as bus rapid transit, 
bikesharing, and scooter sharing. Present-day public transit systems are designed to provide 
access to passengers arriving by foot or bike, making it challenging to integrate with vehicle 
fleets, but future systems could locate stations near highway on-ramps and parking lots to 
optimize such integration. Areas with a high density of on-demand trips may be better-served by 
vanpools, while areas with many short trips would be ideal for bike and scooter placement. 
Private companies have access to such data but have little incentive to reduce energy 
consumption or congestion. Figure 71 summarizes the linkages among policy levers, direct and 
indirect impacts, and outcomes. 
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Figure 71. Flow chart depicting the impact of proposed policies to support fleet electrification. 

 
More broadly, open data platforms with vehicle trajectory data encourage a wide swath of smart 
urban mobility strategies. For example, as more cities move to establish low-emissions zones 
(emulating London),221 they will need to understand how much pollution and congestion is 
caused by each vehicle type across space and time. Data analysis could also inform policies 
designed to incentivize higher vehicle occupancy, for example through dynamic ride pooling. 
Ultimately with AVs, all these issues will become magnified, but much harder to regulate once a 
constituency becomes entrenched. Recently, cities have also started using taxi data to inform 
contact tracing and isolation efforts to help fight the COVID-19 pandemic; this public health 
feature will become increasingly important as the globe prepares for future waves of the novel 
coronavirus or other pandemics.222  
 
Urban mobility has entered a period of rapid change, and MODV services may come to dominate 
the sector over the next several decades. This development carries the risk of increased 
congestion, pollution, unequal access, and increased carbon emissions. However, it also presents 
a massive opportunity for both decarbonization and smart urban mobility. When managed 
properly, BEVs can serve on-demand mobility at lower cost than fossil fuel vehicles with today’s 
technology and provide grid benefits with coordinated charging. Strong political will targeted at 
MODV electrification can produce a cascade of positive spillover effects, but it will require 
carefully designed policies targeting both data and labor regulation to succeed. 
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Summary 
 
In sum, this dissertation shows how MODV services are ripe for electrification. Not only does 
BEV technology lend itself to fleet services, but it is feasible with current technology. With 
small improvements in operations, current projects could eliminate revenue losses due to 
charging, while facilitating development of smart urban mobility and rapidly reducing 
transportation emissions and air pollution.  
 
In particular, Chapter 1 shows that battery range will not be the main obstacle for SAEV fleets. 
Currently available ranges more than suffice, and significant cost savings could result from 
reducing battery range from current levels. Chapter 2 shows that the cost of charging 
infrastructure is a relatively small fraction of the total cost of an electric, ride-sourced trip, 
indicating that it might be prudent to slightly overbuild capacity to ensure high-quality service. It 
also shows that drivers have sufficient idle time to charge during their shift without losing 
revenue. Finally, in Chapter 3 I extend this result to current operations in China, showing that 
reduced revenue from BEVs results from irrational charging behavior that can be mitigated by 
simple software and policy interventions. 
 
This dissertation also furthers theory and methodology in several ways. Chapter 1 describes the 
development of a new modeling technique with broad application, involving an abstraction of 
agent-based modeling to allow for retrospective optimization based on simple heuristics. In this 
chapter, I also develop a method to optimize fleet size to minimize total costs based on battery 
degradation and vehicle mileage. Chapter 2 shows how these models can be applied to a variety 
of real-world scenarios by integrating several different data sources and converting them to a 
uniform format that serve as inputs to the model, thus developing a general technique for 
planning MODV electrification. I also develop a theoretical approach to estimating charging 
infrastructure requirements based on wage rates and vehicle speeds, and a modeling approach to 
test the impact of different operational strategies. Finally, Chapter 3 shows the value of 
combining qualitative analysis from semi-structured interviews with quantitative results from 
machine learning and statistical analysis to produce insights that neither approach could have 
produced alone. This mixed-methods approach is relatively uncommon in the field of 
transportation engineering and my dissertation shows it is a promising avenue for future work.  
 
These results suggest that goverments must act quickly to set firm electrification targets and 
establish citywide open data platforms to integrate real-time data on vehicle trajectory, battery 
charge, and charger availability. Regulators must also ensure that fleet operators provide drivers 
with training on best charging practices. In turn, digitization enabled by fleet electrification holds 
the potential to enable a host of smart urban mobility strategies, including integration of public 
transit with innovative transportation systems, emission-based pricing policies, and smart 
charging to facilitate uptake of renewable energy generation. As cities worldwide seek to fully 
electrify MODV services, this analysis has large-scale implications for decarbonized, cleaner 
urban areas. 
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Limitations and directions for future research 
 
This dissertation has focused primarily on questions related to fleet operation, leaving several 
key areas for future research. First, while each chapter successively adds greater real-world detail 
related to driver behavior and operational barriers, future work should address these questions in 
more detail. For example, how do drivers decide where and when to relocate in between trips? 
How do they decide where and when to charge, including factors like amenities (e.g. food and 
rest areas), brand loyalty, and neighborhood location? Aside from conducting modeling based on 
data, it will be crucial to conduct pilot projects to study the real-world impact of various 
operational strategies and interventions. 
 
Another important direction for future research is in the area of market dynamics. What are the 
bottlenecks in vehicle supply, and how does the fleet market intersect with the private BEV 
market? Finally, while my cost models largely assume amortized costs for newly purchased 
vehicles, the used vehicle market may provide opportunities for reduced costs and deserves 
further study. The same could be said of second-life applications for batteries after use in MODV 
services, as well as for alternative ownership models. For example, although short-range BEVs 
may not readily serve all of drivers’ personal trips, leasing or renting vehicles for ridesourcing is 
already common, and deserves greater study. Finally, future work should incorporate dynamics 
of a fleet that changes over time with the introduction of both electric and automated vehicles.  
 
While addressed in some detail, questions related to electricity infrastructure and markets also 
deserve further investigation. For example, it will be crucial to plan charging infrastructure in 
accordance with distribution grid capacity limitations, and operating fleets to simultaneously 
provide grid services could increase revenue while decreasing carbon emissions; future modeling 
should incorporate the trade-offs imposed by these factors. Meanwhile, other types of BEVs like 
private vehicles and logistics vans may compete for public charging resources, so future work 
should incorporate analysis of electric vehicles not involved in MODV services. Many of these 
issues could be addressed through obtaining and integrating additional sources of data, including 
real-time data from existing charging stations, more detailed analysis of driver shift change times 
and locations. 
 
All of these questions relate to market supply, and future work should also include analysis of 
impacts on consumer demand for MODV services. For example, most of my analysis assumes 
exogenous demand, but if costs fall dramatically as projected with electrification and automation, 
demand for MODV services will likely skyrocket. If SAEVs then begin to replace other modes 
of travel, empty miles may lead to increased congestion, which also deserves further study. I 
have addressed these issues through conservative assumptions (e.g. including a 10-minute wait 
time buffer) and conducting a range of scenarios ranging from the island of Manhattan to entire 
cities in both China and the United States, to developing a model to extrapolate key parameters 
for the entire country. Nonetheless, all of these issues merit further study. 
 
In turn, changes in VMT could have important implications for climate change, air pollution, and 
travel times. While my work focuses on the electrification of motorized transportation, future 
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research must also include analysis of other transportation modes, including shared 
micromobility, active transportation, and mass transit. Future work should compare these various 
travel modes across a range of parameters – including carbon intensity, energy consumption and 
speed – and identify strategies for shifting demand to a more desirable mix of travel modes, 
while also reducing the need for mobility through reforms in housing and urban development 
policy. 
 
More importantly, future work should study not just how many passengers MODVs will serve 
but whom. In particular, as discussed in the introduction, MODV services hold the potential to 
reduce structural inequality in the transportation system by reducing the dominance of private 
vehicles that leads to prohibitively high upfront costs. However, companies may not necessarily 
serve all customers equally, and future research should analyze the impact of different 
operational strategies on rider equity. For example, machine learning algorithms that account for 
users’ names, neighborhood, gender, race, etc. can easily perpetuate existing inequalities. 
Especially in areas with high levels of segregation, fleets that prioritize wealthier areas will 
exclude marginalized groups, not only through the spatial distribution of vehicles but also by 
disproportionately serving times of day when wealthier users are travelling; disadvantaged 
groups that travel more at off-peak times may experience lower quality of service. In turn, the 
spatial distribution of mobility services will determine the impact electrification has on local air 
pollution, so future research should identify ways to ensure that operation serves areas with high 
levels of air pollution, especially those where pollution is a consequence of discriminatory 
governmental policy in need of legal remedies. 
 
There are also a variety of barriers beyond fleet operation that have a disparate impact on already 
disadvantaged MODV users. People with limited or nonexistent access to banking services 
currently experience difficulties accessing MODV services, as do those without smartphones, or 
with a physical or cognitive disability. Meanwhile, users with fewer transportation options and 
educational resources are more vulnerable to a variety of forms of exploitation, including 
discriminatory pricing, predatory lending, and data privacy violations. Each of these issues 
deserve further study, including evaluation of possible policy interventions to ensure equal 
access.  
 
Finally, while this dissertation focuses on vehicles and fleet operation, MODV services would 
not exist without drivers willing to provide their labor, and there are a number of issues 
regarding labor rights and equity that require further study. As the recent controversy 
surrounding TNC drivers’ independent contractor status shows, all too often these drivers do not 
earn a living wage, and have little ability to negotiate the conditions of their employment. Given 
the complex costs of vehicle ownership and operation, it is unclear the extent to which new 
drivers accurately understand their total earnings, or the extent to which MODV companies take 
advantage of this lack of transparency when marketing to potential new drivers. Without careful 
implementation, MODV services also threaten incumbent technologies, including the taxi 
industry and public transit, both of which are important sources of stable employment. Future 
research should include holistic evaluations of MODV services’ impact on equity, including both 
drivers and riders.   



118 
 

References 
(1)  Schneider, M. The Road Ahead for Electric Vehicles. ICCG Reflect. 2017, 54, 1–8. 
(2)  Hao, H.; Geng, Y.; Sarkis, J. Carbon Footprint of Global Passenger Cars: Scenarios 

through 2050. Energy 2016, 101, 121–131. https://doi.org/10.1016/j.energy.2016.01.089. 
(3)  Lah, O. Decarbonizing the Transportation Sector: Policy Options, Synergies, and 

Institutions to Deliver on a Low-Carbon Stabilization Pathway. Wiley Interdiscip. Rev. 
Energy Environ. 2017, 6 (6), 1–13. https://doi.org/10.1002/wene.257. 

(4)  U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks (1990-2016). United 
Stats Environ. Prot. Agency 2018. https://doi.org/EPA 430-T-18-003. 

(5)  Hawkins, T. R.; Gausen, O. M.; Strømman, A. H. Environmental Impacts of Hybrid and 
Electric Vehicles-a Review. Int. J. Life Cycle Assess. 2012, 17 (8), 997–1014. 
https://doi.org/10.1007/s11367-012-0440-9. 

(6)  Cai, H.; Xu, M. Greenhouse Gas Implications of Fleet Electrification Based on Big Data-
Informed Individual Travel Patterns. Environ. Sci. Technol. 2013, 47 (16), 9035–9043. 
https://doi.org/10.1021/es401008f. 

(7)  Hawkins, T. R.; Singh, B.; Majeau-Bettez, G.; Strømman, A. H. Comparative 
Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J. Ind. Ecol. 
2013, 17 (1), 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x. 

(8)  Green, E. H.; Skerlos, S. J.; Winebrake, J. J. Increasing Electric Vehicle Policy Efficiency 
and Effectiveness by Reducing Mainstream Market Bias. Energy Policy 2014, 65, 562–
566. https://doi.org/10.1016/j.enpol.2013.10.024. 

(9)  King, C.; Griggs, W.; Wirth, F.; Quinn, K.; Shorten, R. Alleviating a Form of Electric 
Vehicle Range Anxiety through On-Demand Vehicle Access. Int. J. Control 2015, 88 (4), 
717–728. https://doi.org/10.1080/00207179.2014.971521. 

(10)  Alternative Fuels Data Center. All-Electric Vehicles 
https://afdc.energy.gov/vehicles/electric_basics_ev.html (accessed Dec 4, 2018). 

(11)  Feng, W.; Figliozzi, M. An Economic and Technological Analysis of the Key Factors 
Affecting the Competitiveness of Electric Commercial Vehicles: A Case Study from the 
USA Market. Transp. Res. Part C Emerg. Technol. 2013, 26, 135–145. 
https://doi.org/10.1016/j.trc.2012.06.007. 

(12)  Wood, E.; Rames, C.; Muratori, M.; Raghavan, S.; Melaina, M. National Plug-In Electric 
Vehicle Infrastructure Analysis; Washington, D.C., 2017. 
https://doi.org/10.13140/RG.2.2.25881.93280. 

(13)  Alternative Fuels Data Center. Developing Infrastructure to Charge Plug-In Electric 
Vehicles https://afdc.energy.gov/fuels/electricity_infrastructure.html#level2 (accessed Dec 
4, 2018). 

(14)  Schafer, A.; Victor, D. G. The Future Mobility of the World Population. Transp. Res. Part 
A Policy Pract. 2000, 34 (3), 171–205. https://doi.org/10.1016/S0965-8564(98)00071-8. 

(15)  Bauer, G. The Impact of Battery Electric Vehicles on Vehicle Purchase and Driving 
Behavior in Norway. Transp. Res. Part D Transp. Environ. 2018, 58. 
https://doi.org/10.1016/j.trd.2017.12.011. 

(16)  US Federal Highway Administration. National Household Travel Survey 
https://nhts.ornl.gov/ (accessed Jul 7, 2020). 

(17)  Kelley Blue Book Co. Kelley Blue Book https://www.kbb.com/ (accessed Sep 28, 2018). 
(18)  US Bureau of Labor Statistics. Consumer Expenditure Surveys https://www.bls.gov/cex/ 

(accessed Jul 7, 2020). 



119 
 

(19)  Alemi, F.; Circella, G.; Mokhtarian, P.; Handy, S. Exploring the Latent Constructs behind 
the Use of Ridehailing in California. J. Choice Model. 2018, 29 (July 2017), 47–62. 
https://doi.org/10.1016/j.jocm.2018.08.003. 

(20)  Gehrke, S. R.; Felix, A.; Reardon, T. G. Substitution of Ride-Hailing Services for More 
Sustainable Travel Options in the Greater Boston Region. Transp. Res. Rec. 2019. 
https://doi.org/10.1177/0361198118821903. 

(21)  Henao, A.; Marshall, W. E. The Impact of Ride-Hailing on Vehicle Miles Traveled. 
Transportation (Amst). 2018, No. 0123456789. https://doi.org/10.1007/s11116-018-9923-
2. 

(22)  Shaheen, S.; Cohen, A. Shared Ride Services in North America: Definitions, Impacts, and 
the Future of Pooling. Transp. Rev. 2019, 39 (4), 427–442. 
https://doi.org/10.1080/01441647.2018.1497728. 

(23)  Rayle, L.; Dai, D.; Chan, N.; Cervero, R.; Shaheen, S. Just a Better Taxi? A Survey-Based 
Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco. Transp. Policy 
2016, 45, 168–178. https://doi.org/10.1016/j.tranpol.2015.10.004. 

(24)  Shaheen, S.; Cohen, A.; Yelchuru, B.; Sarkhili, S. Mobility on Demand: Operational 
Concept Report; Washington, D.C., 2017. 

(25)  Martin, E.; Shaheen, S. A. Greenhouse Gas Emissions Impacts of Carsharing in North 
America. Trans. Intell. Transp. Syst. 2011, 12 (4), 1–114. 
https://doi.org/10.1109/TITS.2011.2158539. 

(26)  Shaheen, S. A.; Chan, N. D.; Gaynor, T. Casual Carpooling in the San Francisco Bay 
Area: Understanding User Characteristics, Behaviors, and Motivations. Transp. Policy 
2016, 51, 165–173. 

(27)  Lucken, E.; Frick, K.; Shaheen, S. Microtransit Framework... 2020. 
(28)  Shaheen, S.; Cohen, A. Mobility on Demand in the United States: From Operational 

Concepts and Definitions to Early Pilot Projects and Future Automation. Anal. Shar. 
Econ. Math. Eng. Bus. Perspect. 2020, 227–254. 

(29)  Yvkoff, L. FedEx Sees Robots, Not Drones, As the Next Big Thing in Logistics - The 
Drive https://www.thedrive.com/tech/7430/fedex-sees-robots-not-drones-as-the-next-big-
thing-in-logistics (accessed Jul 27, 2020). 

(30)  Conway, M.; Salon, D.; King, D. Trends in Taxi Use and the Advent of Ridehailing, 
1995–2017: Evidence from the US National Household Travel Survey. Urban Sci. 2018, 2 
(3), 79. https://doi.org/10.3390/urbansci2030079. 

(31)  Burgstaller, S.; Flowers, D.; Tamberrino, D.; Terry, H. P.; Yang, Y. Rethinking Mobility; 
New York, 2017. 

(32)  Kammen, D. M.; Sunter, D. A. City-Integrated Renewable Energy for Urban 
Sustainability. Science (80-. ). 2016, 352 (6288), 922–928. 
https://doi.org/10.1126/science.aad9302. 

(33)  Porter, J. Uber launches new delivery services as demand for ride-hailing plummets 
https://www.theverge.com/2020/4/20/21227828/uber-connect-direct-deliveries-
medication-pet-supplies (accessed Apr 29, 2020). 

(34)  Johnson, C.; Walker, J. Peak Car Ownership: The Market Opportunity of Electric 
Automated Mobility Services; Boulder, Colorado, 2016. 

(35)  Bansal, P.; Kockelman, K. M.; Singh, A. Assessing Public Opinions of and Interest in 
New Vehicle Technologies : An Austin Perspective. Transp. Res. Part C 2016, 67, 1–14. 
https://doi.org/10.1016/j.trc.2016.01.019. 



120 
 

(36)  Taiebat, M.; Brown, A. L.; Safford, H. R.; Qu, S.; Xu, M. A Review on Energy, 
Environmental, and Sustainability Implications of Connected and Automated Vehicles. 
Environ. Sci. Technol. 2018, 52 (20), 11449–11465. 
https://doi.org/10.1021/acs.est.8b00127. 

(37)  Zhang, J. Didi by the numbers https://www.scmp.com/tech/start-ups/article/2181542/didi-
numbers-ride-hailing-firm-covered-more-miles-2018-5-earth (accessed Nov 22, 2019). 

(38)  China Financial News. The Ministry of Transport issued the “Statistical Bulletin on the 
Development of the Transportation Industry in 2018” 
http://www.financialnews.com.cn/sj_142/hysj/201904/t20190412_158127.html. 

(39)  Innovation Center for Energy and Transportation. 2018 New Data Analysis on Real-World 
Driving and Fuel Consumption for Passenger Cars in China; 2018. 

(40)  Monika. China’s automobile population totals 250 million units by June 2019 
http://autonews.gasgoo.com/china_news/70016117.html. 

(41)  Shrivastava, A. Speed bump: Uber, Ola face sharp slowdown in growth of rides in 2018 
https://economictimes.indiatimes.com/small-biz/startups/newsbuzz/uber-ola-enter-slow-
lane-in-2018/articleshow/65927443.cms. 

(42)  Muralidhar, S. H. How Ola Disrupted Taxi Services in India? Rev. Manag. 2016, 6 (3/4), 
5–17. 

(43)  Allirajan, M. Drive 12,000km a year? Cheaper to call cab 
https://timesofindia.indiatimes.com/business/india-business/drive-12k-km-a-year-cheaper-
to-call-cab/articleshow/59979877.cms. 

(44)  CEIC. India Motor Vehicle Registered 
https://www.ceicdata.com/en/indicator/india/motor-vehicle-registered. 

(45)  Staff. Here’s how many taxis are now on South Africa’s roads – and how much they earn 
https://businesstech.co.za/news/motoring/275265/heres-how-many-taxis-are-now-on-
south-africas-roads-and-how-much-they-earn/. 

(46)  de Villiers, J. Almost a third of South African households now own their own cars - while 
90% have electric stoves. 

(47)  Merven, B.; Stone, A.; Hughes, A.; Cohen, B. Quantifying the Energy Needs of the 
Transport Sector for South Africa : A Bottom ‐ up Model; 2012. 

(48)  Bundesverband Taxi. Facts and figures http://taxipedia.info/zahlen-und-fakten/. 
(49)  Odyssee-Mure. Change in distance travelled by car https://www.odyssee-

mure.eu/publications/efficiency-by-sector/transport/distance-travelled-by-car.html. 
(50)  Department for Transport. Taxi and Private Hire Vehicle Statistics: England 2019; 2019. 
(51)  Collinson, P. Average UK car mileage falls again on back of higher petrol prices 

https://www.theguardian.com/money/2019/jan/14/average-uk-car-mileage-falls-again-on-
back-of-higher-petrol-prices. 

(52)  Correspondent. Number of taxis rises 86% in 2 years, buses reduce in Delhi 
https://www.hindustantimes.com/delhi-news/number-of-taxis-rises-86-in-2-years-buses-
reduce-in-delhi/story-Fclx1TRJ4NMw60TXitB88I.html. 

(53)  Juan, D. Beijing takes aim at congestion, pollution with new car limits 
http://www.chinadaily.com.cn/a/201806/16/WS5b244a9fa310010f8f59d4a0.html 
(accessed Nov 22, 2019). 

(54)  Staff. Number of vehicles in 12 CDMX municipalities has soared 600% since 2000 
https://mexiconewsdaily.com/news/number-of-vehicles-has-soared-600/ (accessed Nov 
22, 2019). 



121 
 

(55)  Pennington, J. Jams everywhere but Thailand’s road network is anything but a picnic 
https://www.aseantoday.com/2017/03/jams-everywhere-but-thailands-road-network-is-
anything-but-a-picnic/. 

(56)  Staff. CAPMAS: Egypt’s licensed vehicles rose by 12% in 2014, reaching 7.9 million 
https://egyptindependent.com/capmas-egypt-s-licensed-vehicles-rose-12-2014-reaching-
79-million/. 

(57)  Wenzel, T.; Rames, C.; Kontou, E.; Henao, A. Travel and Energy Implications of 
Ridesourcing Service in Austin, Texas. Transp. Res. Part D Transp. Environ. 2019, 70 
(March), 18–34. https://doi.org/10.1016/j.trd.2019.03.005. 

(58)  Erhardt, G. D.; Roy, S.; Cooper, D.; Sana, B.; Chen, M.; Castiglione, J. Do Transportation 
Network Companies Decrease or Increase Congestion? Sci. Adv. 2019, 5 (5), eaau2670. 
https://doi.org/10.1126/sciadv.aau2670. 

(59)  Siddiqui, F. Falling transit ridership poses an ‘emergency’ for cities, experts fear 
https://www.washingtonpost.com/local/trafficandcommuting/falling-transit-ridership-
poses-an-emergency-for-cities-experts-fear/2018/03/20/ffb67c28-2865-11e8-874b-
d517e912f125_story.html?utm_term=.8a6b09394e54 (accessed Aug 31, 2018). 

(60)  California State Legislature. California Clean Miles Standard and Incentive Program; 
2019. 

(61)  Shah, A. Exclusive: India plans to order taxi aggregators like Uber, Ola to go electric - 
documents https://in.reuters.com/article/india-electric-autos/exclusive-india-plans-to-
order-taxi-aggregators-like-uber-ola-to-go-electric-documents-idINKCN1T805J (accessed 
Nov 21, 2019). 

(62)  California State Legislature. Senate Bill No. 1014 
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1014 
(accessed Oct 3, 2018). 

(63)  Walker, A. Uber’s plan to get more electric cars on the road 
https://www.curbed.com/2018/6/19/17479086/uber-electric-vehicle-ride-sharing (accessed 
Sep 18, 2018). 

(64)  Etherington, D. Lyft sets goal of 1 billion autonomous electric rides per year by 2025 
https://techcrunch.com/2017/06/15/lyft-sets-goal-of-1-billion-autonomous-electric-rides-
per-year-by-2025/ (accessed Oct 1, 2018). 

(65)  SLoCaT. E-Mobility Trends and Targets; 2019; Vol. 2019. 
(66)  Statt, N. Norway will install the world’s first wireless electric car charging stations for 

Oslo taxis https://www.theverge.com/2019/3/21/18276541/norway-oslo-wireless-
charging-electric-taxis-car-zero-emissions-induction (accessed Nov 21, 2019). 

(67)  City of Amsterdam. The Electric City: Plan Amsterdam; 2016. 
(68)  Joselow, M. D.C.’s ballyhooed green cabs are a driver’s “nightmare” 

https://www.eenews.net/stories/1060110833 (accessed Apr 30, 2019). 
(69)  Edelstein, S. NYC Issues Roadmap For Electrifying One Third Of Taxis By 2020 

https://www.greencarreports.com/news/1089752_nyc-issues-roadmap-for-electrifying-
one-third-of-taxis-by-2020 (accessed Apr 30, 2019). 

(70)  Shah, A. Ola’s sputtering India electric vehicle trial a red flag for Modi plan 
https://www.reuters.com/article/us-india-autos-electric-insight/olas-sputtering-india-
electric-vehicle-trial-a-red-flag-for-modi-plan-idUSKCN1GL0CL (accessed Nov 21, 
2019). 

(71)  President of Costa Rica. Síntesis: Plan Nacional de Descarbonización 2018-2050 



122 
 

https://presidencia.go.cr/comunicados/2019/02/sintesis-plan-nacional-de-
descarbonizacion-2018-2050/ (accessed Nov 21, 2019). 

(72)  Williams, D. First electric black cabs arrive in London 
https://www.standard.co.uk/news/london/first-electric-black-cabs-arrive-in-london-
a3747246.html (accessed Nov 21, 2019). 

(73)  Alsema, A. Medellin to replace 1500 yellow cabs with electric taxis in attempt to curb 
pollution https://colombiareports.com/medellin-to-replace-yellow-1500-cabs-with-
electric-taxis-in-attempt-to-curb-pollution/ (accessed Nov 21, 2019). 

(74)  Marchán, E.; Viscidi, L. The Outlook for Electric Vehicles in Latin America; 2015. 
(75)  Greenblatt, J. B.; Saxena, S. Autonomous Taxis Could Greatly Reduce Greenhouse-Gas 

Emissions of US Light-Duty Vehicles. Nat. Clim. Chang. 2015, 5 (September), 860–865. 
https://doi.org/10.1038/nclimate2685. 

(76)  Li, R.; Fitzgerald, G. Ride-Hailing Drivers Are Ideal Candidates for Electric Vehicles 
https://rmi.org/ride-hailing-drivers-ideal-candidates-electric-vehicles/ (accessed Sep 18, 
2018). 

(77)  Bauer, G. S.; Greenblatt, J. B.; Gerke, B. F. Cost, Energy, and Environmental Impact of 
Automated Electric Taxi Fleets in Manhattan. Environ. Sci. Technol. 2018. 
https://doi.org/10.1021/acs.est.7b04732. 

(78)  Spangher, L.; Gorman, W.; Bauer, G.; Atkinson, C.; Xue, Y. Quantifying the Impact of 
U.S. Electric Vehicle Sales on Light-Duty Vehiclefleet CO2emissions Using a Novel 
Agent-Based Simulation. Transp. Res. Part D 2019, 72, 358–377. 

(79)  George, S. R.; Zafar, M. Electrifying the Ride-Sourcing Sector in California; San 
Francisco, 2018. 

(80)  Jenn, A.; Laberteaux, K.; Clewlow, R. New Mobility Service Users’ Perceptions on 
Electric Vehicle Adoption. Int. J. Sustain. Transp. 2018, 12 (7), 526–540. 
https://doi.org/10.1080/15568318.2017.1402973. 

(81)  Greenblatt, J. B.; Shaheen, S. Automated Vehicles , On-Demand Mobility , and 
Environmental Impacts. Curr. Sustain. Energy Reports 2015, 2, 74–81. 
https://doi.org/10.1007/s40518-015-0038-5. 

(82)  Pereirinha, P. G.; González, M.; Carrilero, I.; Anseán, D.; Alonso, J.; Viera, J. C. Main 
Trends and Challenges in Road Transportation Electrification. Transp. Res. Procedia 
2018, 33, 235–242. https://doi.org/10.1016/j.trpro.2018.10.096. 

(83)  Blumenberg, E.; Agrawal, A. W. Getting Around When You’re Just Getting By: 
Transportation Survival Strategies of the Poor. J. Poverty 2014, 18 (4), 355–378. 
https://doi.org/10.1080/10875549.2014.951905. 

(84)  Dillahunt, T. R.; Veinot, T. C. Getting There: Barriers and Facilitators to Transportation 
Access in Underserved Communities. ACM Trans. Comput. Interact. 2018, 25 (5), 29:1--
29:39. https://doi.org/10.1145/3233985. 

(85)  Brown, A. Ridehail Revolution: Ridehail Travel and Equity in Los Angeles, University of 
California, Los Angeles, 2018. 

(86)  Spurlock, C. A.; Sears, J.; Wong-Parodi, G.; Walker, V.; Jin, L.; Taylor, M.; Duvall, A.; 
Gopal, A.; Todd, A. Describing the Users: Understanding Adoption of and Interest in 
Shared, Electrified, and Automated Transportation in the San Francisco Bay Area. Transp. 
Res. Part D Transp. Environ. 2019, No. January, 1–19. 
https://doi.org/10.1016/j.trd.2019.01.014. 

(87)  Shaheen, S.; Bell, C.; Cohen, A.; Yelchuru, B. Travel Behaviour. Shared Mobility and 



123 
 

Transportation Equity. 2017, 66. 
(88)  Steg, L. Car Use: Lust and Must. Instrumental, Symbolic and Affective Motives for Car 

Use. Transp. Res. Part A Policy Pract. 2005, 39 (2-3 SPEC. ISS.), 147–162. 
https://doi.org/10.1016/j.tra.2004.07.001. 

(89)  Lamberton, C. P.; Rose, R. L. When Is Ours Better Than Mine? A Framework for 
Understanding and Altering Participation in Commercial Sharing Systems. J. Mark. 2012, 
76 (4), 109–125. https://doi.org/10.1509/jm.10.0368. 

(90)  Sperling, D. Three Revolutions; Island Press: Washington, D.C., 2018. 
(91)  Chen, T. D.; Kockelman, K. M. Management of a Shared Autonomous Electric Vehicle 

Fleet: Implications of Pricing Schemes. Transp. Res. Rec. J. Transp. Res. Board 2016, 
2572 (1), 37–46. https://doi.org/10.3141/2572-05. 

(92)  Chen, T. D.; Kockelman, K. M.; Hanna, J. P. Operations of a Shared , Autonomous , 
Electric Vehicle Fleet : Implications of Vehicle & Charging Infrastructure Decisions. 
Transp. Res. Part A 2016, 94, 243–254. https://doi.org/10.1016/j.tra.2016.08.020. 

(93)  Luk, J. M.; Kim, H. C.; Kleine, R. De; Wallington, T. J.; Maclean, H. L. Review of the 
Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting 
Vehicles with Different Powertrains. Environ. Sci. Technol. 2017, 51, 8215–8228. 
https://doi.org/10.1021/acs.est.7b00909. 

(94)  Fagnant, D. J.; Kockelman, K. M. The Travel and Environmental Implications of Shared 
Autonomous Vehicles , Using Agent-Based Model Scenarios. Transp. Res. Part C Emerg. 
Technol. 2014, 40, 1–13. https://doi.org/10.1016/j.trc.2013.12.001. 

(95)  Fagnant, D. J.; Kockelman, K. M.; Bansal, P. Operations of Shared Autonomous Vehicle 
Fleet for Austin , Texas , Market. Transp. Res. Rec. 2015, No. 2536, 98–106. 
https://doi.org/10.3141/2536-12. 

(96)  Chen, T. D. Management of a Shared, Autonomous, Electric Vehicle Fleet: Vehicle 
Choice, Charging Infrastructure & Pricing Strategies, University of Texas, Austin, 2015. 

(97)  Bischoff, J.; Maciejewski, M. Agent-Based Simulation of Electric Taxicab Fleets. Transp. 
Res. Procedia 2014, 4, 191–198. https://doi.org/10.1016/j.trpro.2014.11.015. 

(98)  Bischoff, J.; Maciejewski, M. Electric Taxis in Berlin – Analysis of the Feasibility of a 
Large-Scale Transition. In Tools of Transport Telematics. Communications in Computer 
and Information Science; Mikulski, J., Ed.; 2015; Vol. 531, pp 343–351. 
https://doi.org/10.1007/978-3-319-24577-5. 

(99)  Bösch, P. M.; Becker, F.; Becker, H.; Axhausen, K. W. Cost-Based Analysis of 
Autonomous Mobility Services. Transp. Policy 2017, No. August, 1–16. 
https://doi.org/10.1016/j.tranpol.2017.09.005. 

(100)  Loeb, B. Shared Autonomous Electric Vehicle (SAEV) Operations across the Austin, 
Texas Network with a Focus on Charging Infrastructure Decisions, 2016. 

(101)  Shapiro, R. Staten Island has more cars per person than rest of city 
http://www.silive.com/news/2016/11/staten_island_has_more_cars_pe.html (accessed Jan 
1, 2018). 

(102)  Schmitz, M. How many cars does the average American own? 
https://www.cars.com/articles/how-many-cars-does-the-average-american-own-
1420694459157/ (accessed Dec 10, 2017). 

(103)  Burns, L. D.; Jordan, W. C.; Scarborough, B. A. Transforming Personal Mobility; New 
York, 2013. 

(104)  Said, C. Uber’s new plan to woo drivers: It’s electric 



124 
 

https://www.sfchronicle.com/business/article/Uber-s-new-plan-to-woo-drivers-It-s-
electric-13005719.php (accessed Sep 18, 2018). 

(105)  Hagman, J.; Langbroek, J. H. M. Conditions for Electric Vehicle Taxi: A Case Study in 
the Greater Stockholm Region. Int. J. Sustain. Transp. 2018, 0 (0), 1–10. 
https://doi.org/10.1080/15568318.2018.1481547. 

(106)  Baek, S.; Kim, H.; Chang, H. J. A Feasibility Test on Adopting Electric Vehicles to Serve 
as Taxis in Daejeon Metropolitan City of South Korea. Sustain. 2016, 8 (9). 
https://doi.org/10.3390/su8090964. 

(107)  Yang, J.; Dong, J.; Zhang, Q.; Liu, Z.; Wang, W. An Investigation of Battery Electric 
Vehicle Driving and Charging Behaviors Using Vehicle Usage Data Collected in 
Shanghai, China. Transp. Res. Rec. 2018. https://doi.org/10.1177/0361198118759015. 

(108)  Zou, Y.; Wei, S.; Sun, F.; Hu, X.; Shiao, Y. Large-Scale Deployment of Electric Taxis in 
Beijing: A Real-World Analysis. Energy 2016, 100, 25–39. 
https://doi.org/10.1016/j.energy.2016.01.062. 

(109)  Yang, W. H.; Wong, R. C. P.; Szeto, W. Y. Modeling the Acceptance of Taxi Owners and 
Drivers to Operate Premium Electric Taxis: Policy Insights into Improving Taxi Service 
Quality and Reducing Air Pollution. Transp. Res. Part A Policy Pract. 2018, 118 
(August), 581–593. https://doi.org/10.1016/j.tra.2018.10.011. 

(110)  Wood, E.; Rames, C.; Kontou, E.; Motoaki, Y.; Smart, J.; Zhou, Z. Analysis of Fast 
Charging Station Network for Electrified Ride-Hailing Services. 2018, No. April, 10–12. 
https://doi.org/10.4271/2018-01-0667. 

(111)  Ke, J.; Cen, X.; Yang, H.; Chen, X.; Ye, J. Modelling Drivers’ Working and Recharging 
Schedules in a Ride-Sourcing Market with Electric Vehicles and Gasoline Vehicles. 
Transp. Res. Part E Logist. Transp. Rev. 2019, 125 (February), 160–180. 
https://doi.org/10.1016/j.tre.2019.03.010. 

(112)  Tu, W.; Santi, P.; Zhao, T.; He, X.; Li, Q.; Dong, L.; Wallington, T. J.; Ratti, C. 
Acceptability, Energy Consumption, and Costs of Electric Vehicle for Ride-Hailing 
Drivers in Beijing. Appl. Energy 2019, 250 (April), 147–160. 
https://doi.org/10.1016/j.apenergy.2019.04.157. 

(113)  Hu, L.; Dong, J.; Lin, Z.; Yang, J. Analyzing Battery Electric Vehicle Feasibility from 
Taxi Travel Patterns: The Case Study of New York City, USA. Transp. Res. Part C 
Emerg. Technol. 2018, 87 (December 2017), 91–104. 
https://doi.org/10.1016/j.trc.2017.12.017. 

(114)  Loeb, B.; Kockelman, K. M.; Liu, J. Shared Autonomous Electric Vehicle (SAEV) 
Operations across the Austin, Texas Network with Charging Infrastructure Decisions. 
Transp. Res. Part C 2018, 89, 222–233. 

(115)  Keskin, M.; Çatay, B. Partial Recharge Strategies for the Electric Vehicle Routing 
Problem with Time Windows. Transp. Res. Part C Emerg. Technol. 2016, 65 (216), 111–
127. https://doi.org/10.1016/j.trc.2016.01.013. 

(116)  Juanjuan, Y. How to solve the problem of charging thousands of electric taxis in 
Shenzhen? 

(117)  Saxena, S.; MacDonald, J.; Moura, S. Charging Ahead on the Transition to Electric 
Vehicles with Standard 120 v Wall Outlets. Appl. Energy 2015, 157, 720–728. 
https://doi.org/10.1016/j.apenergy.2015.05.005. 

(118)  Yang, J.; Dong, J.; Hu, L. A Data-Driven Optimization-Based Approach for Siting and 
Sizing of Electric Taxi Charging Stations. Transp. Res. Part C Emerg. Technol. 2017, 77 



125 
 

(2), 462–477. https://doi.org/10.1016/j.trc.2017.02.014. 
(119)  Jia, Y.; Zhao, Y.; Guo, Z.; Xin, Y.; Chen, H. Optimizing Electric Taxi Charging System: 

A Data-Driven Approach from Transport Energy Supply Chain Perspective. 2017 IEEE 
Electr. Power Energy Conf. EPEC 2017 2018, 2017-Octob, 1–6. 
https://doi.org/10.1109/EPEC.2017.8286238. 

(120)  Lee, T. B. Waymo makes history testing on public roads with no one at the wheel 
https://arstechnica.com/cars/2017/11/fully-driverless-cars-are-here/ (accessed Jan 5, 
2018). 

(121)  NHTSA. Federal Automated Vehicles Policy: Accelerating the next Revolution in 
Roadway Safety; Washington, D.C., 2016. 

(122)  NYC Taxi & Limousine Commission. Your guide to Boro Taxis 
http://www.nyc.gov/html/tlc/html/passenger/shl_passenger.shtml (accessed Jan 5, 2018). 

(123)  Van Dyke Parunak, H.; Savit, R.; Riolo, R. L. Agent-Based Modeling vs. Equation-Based 
Modeling: A Case Study and Users’ Guide. In Multi-Agent Systems and Agent-Based 
Simulation; Springer: Paris, France, 1998. https://doi.org/10.1007/978-3-642-29066-
4{_}11. 

(124)  Warerkar, T. Uber surpasses yellow cabs in average daily ridership in NYC 
https://ny.curbed.com/2017/10/13/16468716/uber-yellow-cab-nyc-surpass-ridership 
(accessed Jan 5, 2018). 

(125)  Lutz, B. Bob Lutz: Kiss the good times goodbye 
http://www.autonews.com/article/20171105/industry_redesigned/171109944/industry-
redesigned-bob-lutz (accessed Dec 5, 2017). 

(126)  Wang, J.; Purewal, J.; Liu, P.; Hicks-Garner, J.; Soukiazian, S.; Sherman, E.; Sorensen, 
A.; Vu, L.; Tataria, H.; Verbrugge, M. W. Degradation of Lithium Ion Batteries 
Employing Graphite Negatives and Nickel-Cobalt-Manganese Oxide + Spinel Manganese 
Oxide Positives: Part 1, Aging Mechanisms and Life Estimation. J. Power Sources 2014, 
269, 937–948. https://doi.org/10.1016/j.jpowsour.2014.07.028. 

(127)  EPA. Dynanometer drive schedules https://www.epa.gov/vehicle-and-fuel-emissions-
testing/dynamometer-drive-schedules (accessed May 23, 2017). 

(128)  Schuster, S. F.; Bach, T.; Fleder, E.; M??ller, J.; Brand, M.; Sextl, G.; Jossen, A. 
Nonlinear Aging Characteristics of Lithium-Ion Cells under Different Operational 
Conditions. J. Energy Storage 2015, 1 (1), 44–53. 
https://doi.org/10.1016/j.est.2015.05.003. 

(129)  Ellingsen, L. A.-W.; Singh, B.; Strømman, A. H. The Size and Range Effect: Lifecycle 
Greenhouse Gas Emissions of Electric Vehicles. Environ. Res. Lett. 2016, 11 (5), 054010. 
https://doi.org/10.1088/1748-9326/11/5/054010. 

(130)  Peters, J. F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The Environmental 
Impact of Li-Ion Batteries and the Role of Key Parameters – A Review. Renew. Sustain. 
Energy Rev. 2017, 67, 491–506. https://doi.org/10.1016/j.rser.2016.08.039. 

(131)  Pasion, C.; Oyenuga, C.; Gouin, K.; LLC, C. Inventory of New York City Greenhouse Gas 
Emissions in 2015; New York City, 2017. 

(132)  Burnham, A.; Han, J.; Clark, C. E.; Wang, M.; Dunn, J. B.; Palou-Rivera, I. Life-Cycle 
Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum. Environ. Sci. 
Technol. 2012, 46 (2), 619–627. https://doi.org/10.1021/es201942m. 

(133)  Nansai, K.; Tohno, S.; Kono, M. Life-Cycle Analysis of Charging Infrastructure for 
Electric Vehicles. Appl. Energy 2001, 70, 251–265. 



126 
 

(134)  Weis, A.; Jaramillo, P.; Michalek, J. Consequential Life Cycle Air Emissions Externalities 
for Plug-in Electric Vehicles in the PJM Interconnection. Environ. Res. Lett. 2016, 11 (2). 
https://doi.org/10.1088/1748-9326/11/2/024009. 

(135)  Spath, P. L.; Mann, M. K. Life Cycle Assessment of a Natural Gas Combined Cycle Power 
Generation System; Golden, CO, 2000. https://doi.org/10.2172/776930. 

(136)  Litman, T. Autonomous Vehicle Implementation Predictions: Implications for Transport 
Planning; Victoria, Canada, 2016. 

(137)  Voelcker, J. Electric-car battery costs; Tesla $190 per kwh for pack, GM $145 for cells 
http://www.greencarreports.com/news/1103667_electric-car-battery-costs-tesla-190-per-
kwh-for-pack-gm-145-for-cells (accessed Jan 1, 2017). 

(138)  Agenbroad, J. Pulling Back the Veil on EV Charging Station Costs 
https://rmi.org/news/pulling-back-veil-ev-charging-station-costs/ (accessed Jan 1, 2017). 

(139)  NYDPS. Monthly Commercial Bills Including State GRT; New York City, 2013. 
(140)  Litman, T.; Doherty, E. Parking Costs. In Transportation Cost and Benefit Analysis; 

Victoria Transport Policy Institute: Victoria, Canada, 2017; pp 1–27. 
(141)  SpotHero Inc. NYC Parking https://spothero.com/nyc-parking?monthly=true (accessed 

Jan 5, 2018). 
(142)  Metromile. Introducing pay-per-mile insurance https://www.metromile.com/. 
(143)  Propfe, B.; Redelbach, M.; Santini, D. J.; Friedrich, H. Cost Analysis of Plug-in Hybrid 

Electric Vehicles Including Maintenance & Repair Costs and Resale Values. In EVS26 
International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium; World Electric 
Vehicle Association: Los Angeles, California, 2012; p 10. 

(144)  ChargePoint. ChargePoint: Find a charging location 
https://na.chargepoint.com/charge_point (accessed May 9, 2017). 

(145)  City, N. Y. 2015 Yellow Taxi Trip Data https://data.cityofnewyork.us/view/ba8s-jw6u. 
(146)  Nopmongcol, U.; Grant, J.; Knipping, E.; Alexander, M.; Schurhoff, R.; Young, D.; Jung, 

J.; Shah, T.; Yarwood, G. Air Quality Impacts of Electrifying Vehicles and Equipment 
Across the United States. Environ. Sci. Technol. 2017, 51 (5), 2830–2837. 
https://doi.org/10.1021/acs.est.6b04868. 

(147)  Tessum, C. W.; Hill, J. D.; Marshall, J. D. Life Cycle Air Quality Impacts of Conventional 
and Alternative Light-Duty Transportation in the United States. Proc. Natl. Acad. Sci. 
2014, 111 (52), 18490–18495. https://doi.org/10.1073/pnas.1406853111. 

(148)  NYC Mayor’s Office of Sustainability. New York City’s Roadmap to 80x50; New York, 
2016. 

(149)  Alternative Fuels Data Center. Alternative Fuels Data Center – Fuel Properties 
Comparison https://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf (accessed Aug 
20, 2017). 

(150)  Granovskii, M.; Dincer, I.; Rosen, M. A. Life Cycle Assessment of Hydrogen Fuel Cell 
and Gasoline Vehicles. Int. J. Hydrogen Energy 2006, 31 (3), 337–352. 
https://doi.org/10.1016/j.ijhydene.2005.10.004. 

(151)  Energy Information Agency. Table 8.1. Average Operating Heat Rate for Selected Energy 
Sources https://www.eia.gov/electricity/annual/html/epa_08_01.html (accessed Sep 17, 
2017). 

(152)  Aaronson, L.; Boehm, G.; Delehanty, D.; Divelbliss, E. M.; Ernst, K.; Hoffman, K.; Kim, 
P.; Maurer, B.; Rieke, A.; Schmeiser Kathryn; et al. New York City Mobile Services 
Study Research Brief. 2015. 



127 
 

(153)  Sheppard, C.; Jenn, A.; Bauer, G.; Gerke, B.; Greenblatt, J.; Gopal, A. A Joint 
Optimization Scheme for the Planning and Operations of a Regional Electrified Fleets of 
Ride Hailing Vehicles Serving Mobility on Demand. Transp. Res. Rec. 2019, 1–19. 
https://doi.org/10.1177/0361198119838270. 

(154)  Parrott, J. A.; Reich, M. An Earnings Standard for New York City’s App-Based Drivers 
Economic Analysis and Policy Assessment; New York City, 2018. 

(155)  Uber. Uber fare estimator https://www.uber.com/fare-estimate/ (accessed Sep 18, 2018). 
(156)  Hall, J. V.; Krueger, A. B. An Analysis of the Labor Market for Uber’s Driver-Partners in 

the United States. ILR Rev. 2018, 71 (3), 705–732. 
https://doi.org/10.1177/0019793917717222. 

(157)  San Francisco County Transportation Authority. TNCs Today: A Profile of San Francisco 
Transportation Network Company Activity. 2017. 

(158)  Wolbertus, R.; Hoed, R. van den; Maase, S. Benchmarking Charging Infrastructure 
Utilization. In EVS29 International Battery, Hybrid and Fuel Cell Electric Vehicle 
Symposium; Montreal, Quebec, Canada, 2016; pp 1–18. 
https://doi.org/10.3390/wevj8040754. 

(159)  Idaho National Laboratory. Plugged In: How Americans Charge Their Electric Vehicles; 
Idaho Falls, Idaho, 2017. 

(160)  U.S. Department of Energy; U.S. EPA. fueleconomy.gov https://www.fueleconomy.gov/ 
(accessed Sep 18, 2018). 

(161)  Hyland, M.; Mahmassani, H. S. Dynamic Autonomous Vehicle Fleet Operations: 
Optimization-Based Strategies to Assign AVs to Immediate Traveler Demand Requests. 
Transp. Res. Part C Emerg. Technol. 2018, 92 (April), 278–297. 
https://doi.org/10.1016/j.trc.2018.05.003. 

(162)  He, S. Y.; Kuo, Y. H.; Wu, D. Incorporating Institutional and Spatial Factors in the 
Selection of the Optimal Locations of Public Electric Vehicle Charging Facilities: A Case 
Study of Beijing, China. Transp. Res. Part C Emerg. Technol. 2016, 67 (June), 131–148. 
https://doi.org/10.1016/j.trc.2016.02.003. 

(163)  San Francisco Treasurer & Tax Collector’s Office. Registered Business Locations - San 
Francisco https://data.sfgov.org/Economy-and-Community/Registered-Business-
Locations-San-Francisco/g8m3-pdis/data (accessed Sep 18, 2018). 

(164)  IWGSCG. Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis 
Under Executive Order 12866; Washington, D.C., 2016. 

(165)  MoneyChimp. Compound Annual Growth Rate of the Stock Market 
http://www.moneychimp.com/features/market_cagr.htm (accessed Apr 11, 2019). 

(166)  NYC Taxi & Limousine Commission. Taxicab specifications 
http://www.nyc.gov/html/tlc/downloads/pdf/specrules.pdf (accessed Sep 28, 2018). 

(167)  Union of Concerned Scientists. Going from Pump to Plug. 2017. 
(168)  Nerdwallet. Rideshare Insurance for Drivers: Where to Buy, What It Covers 

https://www.nerdwallet.com/blog/insurance/best-ridesharing-insurance/ (accessed Sep 28, 
2018). 

(169)  Pacific Gas and Electric Company. Electric schedule A-10 
https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_A-10.pdf (accessed 
Sep 28, 2018). 

(170)  conEdison. Market Supply Charge Calculator 
https://apps.coned.com/CEMyAccount/csol/MSCcc.aspx (accessed Sep 28, 2018). 



128 
 

(171)  Consolidated Edison Company of New York. Statement of Market Supply Charge - 
Capacity https://www.coned.com/_external/cerates/documents/elecPSC10/StatMSCCAP-
40.pdf (accessed Sep 28, 2018). 

(172)  Energy Information Agency. Weekly Retail Gasoline and Diesel Prices 
https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_a.htm (accessed Oct 10, 2018). 

(173)  Qualcomm. Wireless Electric Vehicle Charging 
https://www.qualcomm.com/solutions/automotive/wevc (accessed Jun 15, 2017). 

(174)  Tian, Z.; Jung, T.; Wang, Y.; Zhang, F.; Tu, L.; Xu, C.; Tian, C.; Li, X. Y. Real-Time 
Charging Station Recommendation System for Electric-Vehicle Taxis. IEEE Trans. Intell. 
Transp. Syst. 2016, 17 (11), 3098–3109. https://doi.org/10.1109/TITS.2016.2539201. 

(175)  Dong, Z.; Liu, C.; Li, Y.; Bao, J.; Gu, Y.; He, T. REC: Predictable Charging Scheduling 
for Electric Taxi Fleets. Proc. - Real-Time Syst. Symp. 2018, 2018-Janua, 287–296. 
https://doi.org/10.1109/RTSS.2017.00034. 

(176)  Conway, T. On the Effects of a Routing and Reservation System on the Electric Vehicle 
Public Charging Network. IEEE Trans. Intell. Transp. Syst. 2017, 18 (9), 2311–2318. 
https://doi.org/10.1109/TITS.2016.2641981. 

(177)  Google. Gas stations in San Francisco https://www.google.com/maps (accessed Oct 15, 
2018). 

(178)  NYC City Hall. Leading the Charge: Mayor Announces Fast-Charging EV Hubs in All 5 
Boroughs https://www1.nyc.gov/office-of-the-mayor/news/600-17/leading-charge-mayor-
fast-charging-ev-hubs-all-5-boroughs (accessed Oct 1, 2018). 

(179)  PlugShare. PlugShare https://www.plugshare.com/ (accessed Oct 2, 2018). 
(180)  Avalos, G. PG&E launches electric vehicle charging network with 7,500 stations 

https://www.mercurynews.com/2018/01/17/pge-launches-electric-vehicle-charging-
network-with-7500-stations/ (accessed Oct 2, 2018). 

(181)  Electric Vehicle Grant Programs. Charge Program: Apply for funding for electric vehicle, 
or EV, charging stations http://www.baaqmd.gov/grant-funding/businesses-and-
fleets/charge (accessed Oct 2, 2018). 

(182)  Kontou, E.; Liu, C.; Xie, F.; Wu, X.; Lin, Z. Understanding the Linkage between Electric 
Vehicle Charging Network Coverage and Charging Opportunity Using GPS Travel Data. 
Transp. Res. Part C Emerg. Technol. 2019, 98 (November 2017), 1–13. 
https://doi.org/10.1016/j.trc.2018.11.008. 

(183)  Lumb, D. New York approves surcharge for Uber and Lyft rides in Manhattan 
https://www.engadget.com/2018/04/02/new-york-surcharge-uber-lyft-manhattan/ 
(accessed Oct 10, 2018). 

(184)  Sabatini, J. SF’s rideshare tax moves closer to ballot, proposed cannabis tax amended 
http://www.sfexaminer.com/sfs-rideshare-tax-moves-closer-ballot-proposed-cannabis-tax-
amended/ (accessed Oct 10, 2018). 

(185)  Dong, Y.; Wang, S.; Li, L.; Zhang, Z. An Empirical Study on Travel Patterns of Internet 
Based Ride-Sharing. Transp. Res. Part C Emerg. Technol. 2018, 86 (January), 1–22. 
https://doi.org/10.1016/j.trc.2017.10.022. 

(186)  Global Opportunity Explorer. Taiyuan: World’s Fastest Electric Taxi Fleet Overhaul. 
(187)  Shenzhen Local Treasure. Since August, Shenzhen has added a electric car to use a pure 

electric vehicle. 
(188)  Xinhua News Agency. Guangzhou City promotes pure electric taxis. 
(189)  Xinhua. Electric taxis hit road in Sichuan. 



129 
 

(190)  Galeon, D. 70,000 Beijing taxis are being converted to electric power 
https://www.weforum.org/agenda/2017/03/beijing-is-converting-its-fleet-of-70-000-taxis-
to-electric-power. 

(191)  Tian, Z.; Wang, Y.; Tian, C.; Zhang, F.; Tu, L.; Xu, C. Understanding Operational and 
Charging Patterns of Electric Vehicle Taxis Using GPS Records. 2014 17th IEEE Int. 
Conf. Intell. Transp. Syst. ITSC 2014 2014, 2472–2479. 
https://doi.org/10.1109/ITSC.2014.6958086. 

(192)  Li, M.; Jia, Y.; Shen, Z.; He, F. Improving the Electrification Rate of the Vehicle Miles 
Traveled in Beijing: A Data-Driven Approach. Transp. Res. Part A Policy Pract. 2017, 
97, 106–120. https://doi.org/10.1016/j.tra.2017.01.005. 

(193)  Sheppard, C. J. R.; Harris, A.; Gopal, A. R. Cost-Effective Siting of Electric Vehicle 
Charging Infrastructure With Agent-Based Modeling. 2016, 2 (2), 174–189. 

(194)  Southern Metropolis Daily. Shenzhen: 80% of electric taxi drivers surveyed believe that 
charging affects daily operations. 

(195)  Lu, J. L.; Yeh, M. Y.; Hsu, Y. C.; Yang, S. N.; Gan, C. H.; Chen, M. S. Operating Electric 
Taxi Fleets: A New Dispatching Strategy with Charging Plans. 2012 IEEE Int. Electr. 
Veh. Conf. IEVC 2012 2012, 1–8. https://doi.org/10.1109/IEVC.2012.6183233. 

(196)  Tian, Z.; Tu, L.; Wang, Y.; Zhang, F.; Tian, C. Impact of Core Charging Station’s Cease 
Operation in the Entire Charging Station System: A Case Study in Shenzhen. Proc. - 3rd 
IEEE Int. Conf. Big Data Comput. Serv. Appl. BigDataService 2017 2017, 90–95. 
https://doi.org/10.1109/BigDataService.2017.12. 

(197)  Google. Google Vision AI. 
(198)  Crow, A.; Mullaney, D.; Liu, Y.; Wang, Z. A New EV Horizon: Insights From Shenzhen’s 

Path to Global Leadership in Electric Logistics Vehicles; Boulder, Colorado, 2019. 
(199)  People’s Network. From construction to operation, who is benefiting from the adjustment 

of the charging pile subsidy. 
http://auto.cnr.cn/gdzx/20190819/t20190819_524736953.shtml (accessed Sep 30, 2019). 

(200)  The Economist. China moves towards banning the internal combustion engine. 
(201)  Bauer, G. S.; Phadke, A.; Greenblatt, J. B.; Rajagopal, D. Electrifying Urban Ridesourcing 

Fleets at No Added Cost through Efficient Use of Charging Infrastructure. Transp. Res. 
Part C Emerg. Technol. 2019, 105 (January), 385–404. 
https://doi.org/10.1016/j.trc.2019.05.041. 

(202)  Mahady, J. A.; Octaviano, C.; Araiza Bolaños, O. S.; López, E. R.; Kammen, D. M.; 
Castellanos, S. Mapping Opportunities for Transportation Electrification to Address 
Social Marginalization and Air Pollution Challenges in Greater Mexico City. Environ. Sci. 
Technol. 2020. https://doi.org/10.1021/acs.est.9b06148. 

(203)  Nilsson, M.; Nykvist, B. Governing the Electric Vehicle Transition – Near Term 
Interventions to Support a Green Energy Economy. Appl. Energy 2016, 179, 1360–1371. 
https://doi.org/10.1016/j.apenergy.2016.03.056. 

(204)  Coignard, J.; Saxena, S.; Greenblatt, J.; Wang, D. Clean Vehicles as an Enabler for a 
Clean Electricity Grid. Environ. Res. Lett. 2018, 13 (5), 0–8. https://doi.org/10.1088/1748-
9326/aabe97. 

(205)  Bauer, G. S.; Zheng, C.; Shaheen, S.; Kammen, D. M. Leveraging Big Data and 
Coordinated Charging for Effective Taxi Fleet Electrification: The 100% EV Conversion 
of Shenzhen, China. IEEE Trans. Intell. Transp. Syst. 

(206)  Bauer, G. S.; Zheng, C.; Shaheen, S.; Kammen, D. M. Leveraging Big Data and Charging 



130 
 

Coordination for Effective Taxi Fleet Electrification: A Case Study of Shenzhen, China. 
In Transportation Research Board 2020 Annual Meeting; Transportation Research Board: 
Washington, D.C., 2020. 

(207)  GlobalPetrolPrices. Gasoline prices in Shenzhen, China 
https://www.globalpetrolprices.com/China/Shenzhen/gasoline_prices/ (accessed Apr 29, 
2020). 

(208)  Wang, D.; Coignard, J.; Zeng, T.; Zhang, C.; Saxena, S. Quantifying Electric Vehicle 
Battery Degradation from Driving vs . Vehicle-to-Grid Services. J. Power Sources 2016, 
332, 193–203. https://doi.org/10.1016/j.jpowsour.2016.09.116. 

(209)  Slowik, P.; Fedirko, L.; Lutsey, N. Assessing Ride-Hailing Company Commitments to 
Electrification; 2019. 

(210)  Eisenhardt, K. M. Agency Theory: An Assessment and Review. Acad. Manag. Rev. 1989, 
14 (1), 57–74. 

(211)  Allcott, H.; Wozny, N. Gasoline Prices, Fuel Economy, and the Energy Paradox. Rev. 
Econ. Stat. 2014, 96 (5), 779–795. 

(212)  NYC Taxi and Limousine Commission. 2018 TLC Factbook; New York City, 2018. 
(213)  Jenn, A.; Springel, K.; Gopal, A. R. Effectiveness of Electric Vehicle Incentives in the 

United States. Energy Policy 2018, 119 (July 2017), 349–356. 
https://doi.org/10.1016/j.enpol.2018.04.065. 

(214)  Schmidt, B. World’s largest charging station in Shenzhen powers all-electric taxi fleet 
https://thedriven.io/2019/05/24/worlds-largest-charging-station-in-shenzhen-powers-all-
electric-taxi-fleet/ (accessed Mar 11, 2020). 

(215)  Bliss, L. Uber’s Beef With L.A. Is Bigger Than Data 
https://www.citylab.com/transportation/2019/10/uber-lawsuit-data-privacy-scooter-
tracking-los-angeles/600985/ (accessed Nov 21, 2019). 

(216)  California Air Resources Board. Clean Miles Standard 2018 Base-Year Emissions 
Inventory Report; 2019. 

(217)  European Commission. EU data protection rules 
https://ec.europa.eu/info/priorities/justice-and-fundamental-rights/data-protection/2018-
reform-eu-data-protection-rules/eu-data-protection-rules_en (accessed Mar 2, 2020). 

(218)  Joshi, M.; Cowan, N.; Limone, O.; Mcguinness, K.; Rao, R. E-Hail Regulation in Global 
Cities; New York City, 2019. 

(219)  Internal Revenue Service. Independent Contractor Defined 
https://www.irs.gov/businesses/small-businesses-self-employed/independent-contractor-
defined (accessed Mar 5, 2020). 

(220)  California State Legislature. AB-5 Worker status: employees and independent contractors 
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201920200AB5 
(accessed Mar 2, 2020). 

(221)  Edwards, T. ULEZ: The politics of London’s air pollution https://www.bbc.com/news/uk-
england-london-47814416 (accessed Mar 2, 2020). 

(222)  Vaswani, K. Coronavirus: The detectives racing to contain the virus in Singapore 
https://www.bbc.com/news/world-asia-51866102 (accessed Apr 29, 2020). 

 


