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ABSTRACT OF THE DISSERTATION

Learning Under

Random Reshuffling and Distributed Features

by

Bicheng Ying

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Ali H. Sayed, Chair

This dissertation focuses on stochastic gradient learning for problems involving large data sets

or large feature spaces. One of the main advantages of the stochastic gradient technique is its

simplicity and low computational complexity especially for large data sets. This is because

it selects, at each iteration, one data point at random from the training set, updates the

weight iterate using this data point, and continuously repeats the procedure until sufficient

convergence is attained. Two popular mechanisms for sampling the training data is to sample

with or without replacement. In the first case, some samples may be repeated during the

learning process, while in the second case the training data is first reshuffled randomly and

the algorithm is run over the reshuffled data one sample at a time.

It has been observed in the literature through experimentation that learning under ran-

dom reshuffling leads to enhanced performance, not only for the traditional stochastic gra-

dient algorithms but also for variance-reduced implementations. However, no theoretical

analysis exists that explains the phenomenon well under constant step-size adaptation. The

first part of this dissertation resolves this issue and establishes analytically that, under ran-

dom reshuffling, convergence is guaranteed to a small neighborhood of the optimizer at a

linear rate. The analysis further shows that random reshuffling outperforms uniform sam-

pling by showing that the iterates approach a smaller neighborhood of size O(µ2) around the

minimizer as opposed to O(µ). An analytical expression for the steady-state mean-square-

error under random reshuffling is derived, which helps clarify in greater detail the differences

ii



between sampling with and without replacement. The dissertation also provides an expla-

nation for the periodic behavior that is observed in random reshuffling implementations.

In addition, the dissertation examines the effect of random reshuffling on variance-reduced

techniques, which are known to converge to the exact minimizers of empirical risks at linear

convergence rates. The existing convergence results assume uniform data sampling with re-

placement and no proofs or guarantees of convergence exist under random reshuffling. The

dissertation provides a theoretical guarantee of linear convergence under random reshuffling

for the SAGA algorithm in the mean-square sense by using an argument that is also ap-

plicable to other variance-reduced algorithms. A new amortized variance-reduced gradient

(AVRG) algorithm is also proposed, which has constant storage requirements compared to

SAGA and balanced gradient computations compared to SVRG.

In the second part of the dissertation, we examine learning under large feature spaces,

where the feature information is assumed to be spread across agents in a network. In

this setting, each agent is assumed to observe part of the feature space. Through local

cooperation, the agents are supposed to interact with each other to solve an inference problem

and converge towards the global minimizer of the empirical risk. The dissertation proposes

two solution methods: one operates in the dual domain and another operates in the primal

domain. The dual domain solution builds on gradient boosting techniques, where each

agent maintains a local dual variable. By sharing the dual variable with their immediate

neighbors through a diffusion learning protocol, all agents are able to match the performance

of centralized boosting solutions even when the individual agents only have access to partial

information about the feature space. In comparison, the primal domain solution is achieved

by combining a dynamic diffusion construction, a pipeline strategy, and variance-reduced

techniques. One of the main advantages of the primal solution is that it does not require

separate time scales and convergence towards the exact minimizer occurs at a linear rate.
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6.1 Listing of Näıve feature-distributed method for agent k . . . . . . . . . . . . . . 150

6.2 Listing of variance-reduced dynamic diffusion algorithm . . . . . . . . . . . . . . 155

6.3 Listing of pipeline function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Listing of pipelined variance-reduced dynamic diffusion algorithm . . . . . . . . 158

xiii



7.1 Comparison between the stochastic sub-gradient method (7.111) and FISTA [7]

over the KODIM test image set (c.f. footnote 4). All test images are subject

to additive zero-mean Gaussian noise with standard variance 0.1 (with respect

to image values in the range [0, 1]). We set λ = 0.08, µ = 0.002 and 300 max

iterations for sub-gradient methods. For different values of λ and µ, the results

will be different, but the algorithms will perform similarly when µ is chosen

properly. The results in the table show that the sub-gradient implementation

can, in general, achieve similar or higher PSNR in shorter time. . . . . . . . . . 216

xiv



ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor, Professor Ali

H. Sayed, who has supported and guided my Master and Ph.D. studies for five years. I

still keep the draft of my first attempt at writing a formal academic paper, which was

based on a naive presentation, unorganized notations, and numerous typos. I do not forget

how Professor Sayed polished that coarse draft into a formal journal paper by carefully

reviewing the draft, constantly discussing the idea, and revamping the presentation. His

high standards of research greatly enhanced the presentation and quality of my work. My

five years of training as a Ph.D. student will always be the most precious treasure of my

life not only because of the professional training and understanding in scientific research but

also thanks to my learning experiences from his hard-working attitude and high standards

in research.

I am also thankful to Professors Lieven Vandenberghe, Vwani Roychowdhury and Wotao

Yin for taking the time to serve on my Ph.D. committee.

I am glad to have met many good friends at the Adaptive Systems Laboratory (ASL) at

UCLA including: Kun Yuan, Stefan Vlaski, Hawraa Salami, Chung-Kai Yu, Lucas Cassano,

and Sulaiman Alghunaim. I have learned a lot from them. I will always remember our

discussions on the whiteboard and the group meetings, and the collaborations on papers. I

also appreciate the opportunity to have met many friends from all over the world who have

visited ASL and the friends I met when I visited EPFL: Steven Lee, Chengcheng Wang,

Jianshu Chen, Prof. Wenling Li, Prof. Joao Y. Ishihara, Sara Al-Sayed, Saeed Ghazanfari

Rad, Edeward Nguyen, Sergio Valcarcel Macua, Roula Nassif, Augusto Santos. I would also

like to thank all my other friends whom I have met here at UCLA or while an intern at

Google.

Furthermore, I want to thank my family for their selfless support of my studies over the

past years. It is my first time to leave home for such a long time and at such a far away

distance. Working towards a PhD is always challenging, not to mention studying abroad.

xv



None of this would have been possible without your love and support over the years.

Finally, the work in this dissertation is based upon work partially supported by the

National Science Foundation under grants CCF-1524250 and ECCS-1407712. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of the National Science Foundation.

xvi



VITA

2013 B.S., Micro-Electronics Department, Shanghai Jiao Tong University

(SJTU), Shanghai, China

2014 M.S., Department of Electrical Engineering, University of California, Los

Angeles (UCLA), CA, USA

2014-2018 Research Assistant, Department of Electrical and Computer Engineering,

University of California, Los Angeles (UCLA), CA, USA

2016 Intern, Google, Mountain View, CA, USA

2017 Intern, Google, Los Angeles, CA, USA
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CHAPTER 1

Introduction

One of the main advantages of the stochastic gradient technique is its simplicity and low

computational complexity, especially for large datasets. This is because it selects, at each

iteration, one data point at random from the training set, updates the weight iterate us-

ing this data point, and continuously repeats the procedure until sufficient convergence is

attained. Two popular mechanisms for sampling the training data is to sample with or

without replacement. In the first case, some samples may be repeated during the learn-

ing process, while in the second case, the training data is first reshuffled randomly and the

algorithm is run over the reshuffled data one sample at a time. It has been observed in

the literature through experimentation that operation under random reshuffling leads to

enhanced performance, not only for the traditional stochastic gradient algorithms but also

for variance-reduced implementations. However, no theoretical analysis exists that explains

the phenomenon well under constant step-size adaptation. The first part of this dissertation

addresses this point and establishes analytically that, under random reshuffling, convergence

is guaranteed to a small neighborhood of the optimizer at a linear rate. The dissertation

further examines the effect of random reshuffling on variance-reduced techniques, which are

known to converge to the exact minimizers of empirical risks at linear convergence rates.

The results provide a theoretical guarantee of linear convergence under random reshuffling

for the SAGA algorithm in the mean-square-error sense by using an argument that is also

applicable to other variance-reduced algorithms.

In the second part of the dissertation, we examine learning under large feature spaces,

where the feature information is assumed to be spread across agents in a network. In

this setting, each agent is assumed to observe part of the feature space. Through local
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cooperation, the agents are supposed to interact with each other to solve an inference problem

and converge towards the global minimizer of the empirical risk. The dissertation proposes

two solution methods: one operates in the dual domain and another operates in the primal

domain. The first method builds on gradient boosting techniques, while the second method

avoids the need for separate time scales and is shown to converge at a linear rate to the exact

minimizer.

In this initial chapter, we provide a brief review of stochastic gradient learning and

variance-reduced algorithms, and also explain the modes for learning from distributed fea-

tures over networked agents.

1.1 Empirical Risk Minimization

Most supervised learning problems involve the minimization of empirical risk functions which,

by ergodicity arguments, provide good approximations for stochastic risk functions. The

latter are usually defined as the average over some convex loss functions, Q(w;x), where x

denotes the random data: [8–13].

wo
∆
= arg min

w∈RM

JE(w)
∆
= ExQ(w;x) (1.1)

In (1.1), the expectation operator Ex is over the probability distribution of the data. Since

the distribution is generally unknown beforehand, and data measurements {xn}Nn=1 arising

from the distribution are usually available, it is customary to replace (1.1) by an empirical

risk minimization problem of the form:

w?
∆
= arg min

w∈RM

J(w)
∆
=

1

N

N∑
n=1

Q(w;xn), (1.2)

In many cases of interest, each data point xn consists of a pair (γ(n), hn), where γ(n) is

a scalar label variable and hn ∈ RM is a feature vector. Initially, in this dissertation, we

assume the loss function Q(w;xn) is differentiable and the empirical risk J(w) is strongly-
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convex. In later chapters, we examine the case of non-smooth loss functions. Some common

choices for the loss function are listed in the Table 1.1, where r(w) represents a regularization

parameter.

Table 1.1: Examples of regularized empirical risks based on N data pairs {γ(n), hn}Nn=1 and
where r(w) denotes a regularization factor.

Name Regularized empirical risk, J(w).

least-squares r(w) +
1

N

N∑
n=1

(
γ(n)− hTnw

)2

logistic r(w) +
1

N

N∑
n=1

ln
(

1 + e−γ(n)hTnw
)2

exponential r(w) +
1

N

N∑
n=1

e−γ(n)hTnw

perceptron r(w) +
1

N

N∑
n=1

max
{

0, −γ(n)hTnw
}

Huber r(w) +


1

N

N∑
n=1

1

η

(
γ(n)− hTnw

)2
, if |γ(n)− hTnw| ≤ η

1

N

N∑
n=1

(
|γ(n)− hTnw| − η

)
, otherwise

hinge r(w) +
1

N

N∑
n=1

max
{

0, 1− γ(n)hTnw
}

1.2 Stochastic Gradient Learning

When the size of the dataset N is large, it is impractical to solve (1.2) directly with classical

gradient descent. One simple, yet powerful, approach to remedy this difficulty is to employ

the stochastic gradient descent (SGD) method [14–21]. In this method, at every iteration i,

rather than compute the full gradient ∇wJ(w) on the entire data set, the algorithm picks

one index ni at random, and employs ∇wQ(w;xni
) to approximate ∇wJ(w). Specifically, at
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iteration i, the update for estimating the minimizer is of the form:

wi+1 = wi − µ(i)∇wQ(wi;xni
), i ≥ 0 (1.3)

where µ(i) is the step-size parameter.

Stochastic gradient recursions of the form (1.3) have been studied extensively in the

literature, primarily in the case when the step-size µ(i) is diminishing [16–20,22]. When J(w)

is strongly convex, these algorithms have been shown to converge to the minimizer w? at the

sublinear rate O(1/i). In comparison, implementations with constant step-size µ(i) = µ do

not converge to the exact minimizer w?, but rather to a small region around the minimizer

in the order of O(µ) [11, 12, 21, 23–25]. However, convergence to this region occurs at an

exponentially rate O(λn), for some scalar λ ∈ (0, 1). Fast convergence to an approximate but

close solution is very useful in the context of machine learning since, after all, empirical risks

of the form (1.2) correspond to auxiliary problem formulations for the true, yet inaccessible

problem of interest, i.e., (1.1). While (1.2) is used for training, the actual performance

on unseen data is measured through (1.1). The intrinsic bias between w? and wo removes

the need for exact convergence to w? [18, 19]. This line of reasoning, along with the fast

exponential convergence rate and robustness to initialization, has motivated a tremendous

interest in constant step-size implementations with a focus on practical solutions [19,26–28].

A fundamental question that arises when employing a constant step-size is how to choose

µ in order to ensure a desired tolerance on the excess risk (ER) or mean-square-deviation

(MSD) that persist after convergence. Non-asymptotic bounds have been given in [1,12,21,

25,29,30], which are useful in revealing worst-case performance guarantees, but do not predict

exact performance. Recent advances in the field of online adaptation, on the other hand,

have yielded insights into the related problem of learning from streaming data [11, 24, 28].

In particular, MSD and ER expressions, which are accurate to first order in the step-size,

are derived in [11, 28] for a broad class of risk functions beyond the traditional quadratic

measure.
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1.3 Random Reshuffling

Unlike the case of the stochastic-gradient algorithm under uniform sampling, which has

well-established performance results, the study of stochatic gradient learning under random

reshuffling with constant step-sizes is less developed. In random reshuffling implementations,

the data points are no longer picked independently and uniformly at random. Instead, the

algorithm runs multiple times over the data where each run is indexed by k ≥ 1 and is

referred to as an epoch. For each epoch, the original data is first reshuffled and then passed

over in order. In this manner, the i-th sample of epoch k is denoted by σk(i), where the

symbol σ represents a uniform random permutation of the indices. We can then express the

random reshuffling algorithm for the k−th epoch in the following manner:

wk
i+1 = wk

i − µ∇wQ(wk
i ;xσk(i)), i = 0, . . . , N − 1 (1.4)

with the boundary condition:

wk
0 = wk−1

N (1.5)

In other words, the initial condition for epoch k is the last iterate from epoch k − 1. The

boldface notation for the symbols w and σ in (1.4) emphasizes the random nature of these

variables due to the randomness in the permutation operation. While the samples over one

epoch are no longer picked independently from each other, the uniformity of the permutation

function implies the following useful properties [31–33]:

σk(i) 6=σk(j), 1 ≤ i 6= j ≤ N (1.6)

P[ σk(i) = n ] =
1

N
, 1 ≤ n ≤ N (1.7)

P[σk(i+ 1) = n |σk(1 : i)] =


1

N − i
, n /∈ σk(1:i)

0 , n ∈ σk(1:i)

(1.8)

where σk(1:i) represents the collection of permuted indices for the samples numbered 1

through i.
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Several recent works [34–36] have pursued justifications for the enhanced behavior of

random reshuffling implementations over uniform sampling by examining the convergence

rate of the learning process under diminishing step-sizes. It has been analytically shown

that the convergence rate under random reshuffling can be improved from O(1/i) to O(1/i2)

for strongly-convex risks [35, 37], where i is the number of iterations. We also provide a

short proof sketch later in Appendix 3.G. However, some of the justifications rely on loose

bounds, or their conclusions are dependent on the sample size which is problematic for large

datasets. Also, in the work [36], it only establishes that random reshuffling will not degrade

performance relative to the stochastic gradient implementation.

In this dissertation, we focus on a different setting than [34–36] involving random reshuf-

fling under constant rather than decaying step-sizes. In this case, convergence is only guar-

anteed to a small neighborhood of the optimizer albeit at a linear rate. The analysis will

establish analytically that random reshuffling outperforms independent sampling (with re-

placement) by showing that the mean-square-error of the iterate at the end of each run in the

random reshuffling strategy will be in the order of O(µ2). This is a significant improvement

over the performance of traditional stochastic gradient descent, which is O(µ) [13]. Further-

more, we derive an analytical expression for the steady-state mean-square-error performance

of the algorithm, which helps clarify in greater detail the differences between sampling with

and without replacement. We also explain the periodic behavior that is observed in random

reshuffling implementations.

1.4 Variance-Reduction Algorithms

As mentioned in the previous section, the stochastic gradient algorithm under constant step

size µ converges to a small O(µ)−region around the minimizer instead of the exact minimizer.

In recent years, several useful variance-reduced stochastic gradient algorithms have been

proposed, including SVRG [38], SAGA [39], Finito [40], SDCA [41], and SAG [42], with

the intent of reaching the exact minimizer of an empirical risk. Under constant step-sizes

and strong-convexity assumptions on the loss functions, these methods have been shown to
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attain linear convergence towards the exact minimizer when the data samples are uniformly

sampled with replacement. It is sufficient for our purposes in this dissertation to focus on

SAGA and SVRG. We list the SAGA recursions in Table 1.2.

Table 1.2: Listing of the SAGA algorithm under uniform sampling

SAGA under uniform sampling [39]

Initialization: w0
0 = 0,∇Q(φ0

0,n;xn) = 0, n = 1, 2, . . . , N.
Repeat i = 0, 1, . . . N − 1 (iteration):

n =U [1, N ] (uniformly sampled integer between 1 and N) (1.9)

wi+1 =wi − µ
[
∇Q(wi;xn)−∇Q(φi,n;xn) +

1

N

N∑
n=1

∇Q(φi,n;xn)
]

(1.10)

φi+1,n =wi+1, and φi+1,n = φi,n, for n 6= n (1.11)

End

Comparing the SAGA update step (1.10) with the stochastic gradient update step (1.3),

we find that SAGA has two extra gradients represented by∇Q(φi,n;xn) and 1
N

∑N
n=1∇Q(φi,n;xn).

These gradients are defined in terms of history variables {φi,n}, which have size M × 1 each

and store previous values of the iterates wi. To facilitate the understanding of the algorithm,

we associate a matrix Φi with each run:

Φi
∆
=
[
φi,1 φi,2 . . . φi,N

]
(1.12)

At every iteration i, one random column of Φi is populated by the iterate wi+1; the column

location of this random cell is determined by the value of ni.

In [40], it is shown that under some mild conditions on the loss function and the step-size

parameter, the stochastic gradient used in the SAGA implement has two crucial properties:

En

[
∇Q(wi;xn)−∇Q(φi,n;xn) +

1

N

N∑
n=1

∇Q(φi,n;xn)

]
= ∇J(wi)

(1.13)
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lim
i→∞

E

∥∥∥∥∥
[
∇Q(wi;xn)−∇Q(φi,n;xn) +

1

N

N∑
n=1

∇Q(φi,n;xn)

]
−∇J(wi)

∥∥∥∥∥
2

= 0 (1.14)

The first property (1.13) implies the SAGA update step provides an unbiased estimate for

the true gradient vector. The left hand side of the second expression (1.14) represents the

variance of the gradient noise, which is seen to converge to zero asymptotically. These two

properties combined imply that the SAGA iteration will be able to learn the true full gradient

given sufficient iterations.

One inconvenience of the SAGA implementation is its high storage requirement, which

refers to the need to track the history variables {φi,n} or the gradients for use in (1.10). There

is a need to store O(N) variables. In big data applications, the size of N can be prohibitive.

The same storage requirement applies to the variant with reshuffling proposed in [43]. An

alternative method is the stochastic variance-reduced gradient (SVRG) algorithm [38], which

is listed below (again under uniform sampling) for ease of reference.

Table 1.3: Listing of the SVRG algorithm under uniform sampling

SVRG under uniform sampling [38]

Initialization: w0
0 = 0.

Repeat t = 0, 1, 2 . . . , T (epochs):

∇J(wt
0) =

1

N

N∑
n=1

∇Q(wt
0;xn)

Repeat i = 0, 1, . . . N − 1 (iteration):

n =U [1, N ] (uniformly sampled integer between 1 and N) (1.15)

wt
i+1 =wt

i−µ
[
∇Q(wt

i;xn)−∇Q(wt
0;xn)+∇J(wt

0)
]

(1.16)

End

wt+1
0 =wt

N (1.17)

End

The SVRG algorithm replaces the history variables {φi,n} of SAGA by a fixed initial

condition wt
0 for each epoch. This simplification greatly reduces the storage requirement.
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However, each epoch in SVRG is preceded by an aggregation step to compute a gradient

estimate, which is time-consuming for large datasets. It also causes the operation of SVRG

to become unbalanced, with a larger time interval needed before each epoch, and shorter

time intervals needed within the epoch. Similar to the gradient properties (1.13) and 1.14

in SAGA, the gradient step used in SVRG also has similar properties:

En
[
∇Q(wt

i;xn)−∇Q(wt
0;xn)+∇J(wt

0)
]

= ∇J(wt
i) (1.18)

lim
i→∞

E
∥∥[[∇Q(wt

i;xn)−∇Q(wt
0;xn)+∇J(wt

0)
]]
−∇J(wt

i)
∥∥2

= 0 (1.19)

All previous results and the existing convergence results assume uniform data sampling with

replacement and no proofs or guarantees of exact convergence exist for variance-reduced

algorithms under random reshuffling. The dissertation provides a theoretical guarantee of

linear convergence under random reshuffling for SAGA in the mean-square sense; the argu-

ment is also adaptable to other variance-reduced algorithms. Furthermore, a new amortized

variance-reduced gradient (AVRG) algorithm is proposed, which has constant storage re-

quirements compared to SAGA and balanced gradient computations compared to SVRG.

AVRG is also shown analytically to converge linearly.

1.5 Distributed Features over Networks

Large-scale optimization problems are common in data-intensive machine learning problems

[9, 44–46]. For applications, where both the size of the dataset and the dimension of the

feature space are large, it is not uncommon for the dataset to be too large to be stored

or even processed effectively at a single location or by a single agent. In this article, we

examine the situation where the feature data is split across agents either due to privacy

considerations or because they are already physically collected in a distributed manner by

means of a networked architecture and aggregation of the data at a central location entails

unreasonable costs. More specifically, the entries (blocks) of the feature vector are assumed

to be distributed over a collection of K networked agents, as illustrated in Fig. 1.1. For
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Figure 1.1: Distributing the feature across the networked agents.

instance, in sensor network applications, [47,48], multiple sensors are normally employed to

monitor an environment; the sensors are distributed over space and can be used to collect

different measurements. Likewise, in multi-view learning problems [49, 50], the observed

model is represented by multiple feature sets. Another example is the Cournot competition

problem in networked markets [51–53], where individual factories have information about

their local markets, which will not share with each other. Distributed dictionary learning

problems [54] also fit into this scenario if viewing the dictionary as feature.

In this work, we focus on empirical risk minimization problems, which, by ergodicity

arguments, provide a good approximation for average risks [11, 15, 48, 55–59]. Formally, we

consider an empirical risk of the form:

J(w) =
1

N

N∑
n=1

Q
(
hTnw; γn

)
+ r(w) (1.20)

where the unknown parameter model (or separating hyperplane) is designated by w ∈ RM×1,

while hn ∈ RM×1 denotes the n-th feature vector and γn the corresponding scalar label. More-

over, the notation Q(hTw; γ) refers to the loss function and is assumed to be a differentiable

and convex function over w. In most problems of interest, the loss function is dependent on

the inner product hTw rather than the individual terms {h,w}. The factor r(w) represents

the regularization term. We denote the minimizer of J(w) in (1.20) by w?. Although we are
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assuming w and hn to be column vectors, and γn to be a scalar, the analysis can be easily

extended to matrix quantities W ∈ RM×C and to vector labels γ ∈ RC×1, which we will

illustrate later in the simulations.

Since the entries of the feature vector are assumed distributed over K agents, we partition

each hn, and similarly the weight vector w, into K sub-vectors denoted by {hn,k, wk}, where

k = 1, 2, . . . , K:

hn
∆
=


hn,1

hn,2
...

hn,K

 , w
∆
=


w1

w2

...

wK

 (1.21)

Each sub-feature vector hn,k and sub-vector wk are assumed to be located at agent k. The

dimensions of {hn,k, wk} can vary over k, i.e., over agents. In this way, the empirical risk

function can be rewritten in the form

J(w) =
1

N

N∑
n=1

Q

(
K∑
k=1

hTn,kwk; γn

)
+

K∑
k=1

r(wk) (1.22)

where we are also assuming that the regularization term satisfies an additive factorization

of the form

r(w) =
K∑
k=1

r(wk) (1.23)

with regularization applied to each sub-vector wk. This property holds for many popular

regularization choices, such as `2, `1, KL-divergence, etc. Observe that in the form (1.22),

the argument of the loss function is now a sum over the inner products hTn,kwk. That is, we

have a “cost-of-sum” form similar to what was discussed in [54]. Our objective is to optimize

(1.22) over the {wk} and to seek the optimal values in a distributed manner.

In the dissertation, we will first propose a solution in the dual domain that employs

gradient boosting techniques. Next, we will propose a solution that operates directly in the

primal domain, which will be shown to converge at a linear rate to the exact minimizer of
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J(w) without requiring separate time-scales.

1.6 Organization

The dissertation is organized as follows:

• Chapter 2: In this chapter, we draw from recent results in the field of online adap-

tation to derive new tight performance expressions for empirical implementations of

stochastic gradient descent, mini-batch gradient descent, and importance sampling al-

gorithms. The expressions are exact to first order in the step-size parameter and are

tighter than existing bounds. We further quantify the performance gained from em-

ploying mini-batch solutions, and propose an optimal importance sampling algorithm

to optimize performance.

• Chapter 3: This chapter focuses on random reshuffling algorithms with constant

step-sizes. In this case, convergence is guaranteed to a small neighborhood of the

optimizer albeit at a linear rate. The analysis establishes analytically that random

reshuffling outperforms uniform sampling by showing that iterates approach a smaller

neighborhood of size O(µ2) around the minimizer rather than O(µ).

• Chapter 4: This chapter focuses on random reshuffling algorithm with the variance-

reduced stochastic gradient algorithms. The existing convergence results assume uni-

form data sampling with replacement. However, it has been observed in the literature

that random reshuffling can deliver superior performance over uniform sampling and,

yet, no formal proofs or guarantees of exact convergence exist. This chapter pro-

vides a theoretical guarantee of linear convergence under random reshuffling for SAGA

in the mean-square sense; the argument is also adaptable to other variance-reduced

algorithms. Under random reshuffling, this chapter also proposes a new amortized

variance-reduced gradient (AVRG) algorithm with constant storage requirements com-

pared to SAGA and with balanced gradient computations compared to SVRG. AVRG

is also shown to converge linearly.
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• Chapter 5: Using duality arguments from optimization theory, this chapter develops

an effective distributed gradient boosting strategy for inference and classification by

networked clusters of learners. By sharing local dual variables with their immediate

neighbors through a diffusion learning protocol, the clusters are able to match the

performance of centralized boosting solutions even when the individual clusters only

have access to partial information about the feature space. The performance of the

resulting fully-distributed procedure is illustrated on two data sets with superior results

in comparison to a centralized boosting solution.

• Chapter 6: This chapter continues to study the problem of learning under both

large data and large feature space scenarios. The feature information is assumed to

be spread across agents in a network, where each agent observes some of the features.

Through local cooperation, the agents are supposed to interact with each other to solve

the inference problem and converge towards the global minimizer of the empirical risk.

We study this problem exclusively in the primal domain, and propose new and effective

distributed solutions with guaranteed convergence to the minimizer. This is achieved by

combining a dynamic diffusion construction, a pipeline strategy, and variance-reduced

techniques. Simulation results illustrate the conclusions.

• Chapter 7: This chapter examines the performance of stochastic sub-gradient learn-

ing strategies under weaker conditions than usually considered in the literature. The

conditions are shown to be automatically satisfied by several important cases of inter-

est including the construction of Linear-SVM, LASSO, and Total-Variation denoising

formulations. In comparison, these problems do not satisfy the traditional assumptions

automatically and, therefore, conclusions derived based on these earlier assumptions

are not directly applicable to these problems.
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1.7 Notation

All vectors are column vectors. We use boldface letters to denote random quantities (such

as wk,i) and regular font to denote their realizations or deterministic variables (such as xk).

We use diag{x1, · · · , xN} to denote a (block) diagonal matrix consisting of diagonal entries

(blocks) {x1, · · · , xN}, and use col{x1, · · · , xN} to denote a column vector formed by stacking

{x1, · · · , xN} on top of each other. We also use Ex to denote the expectation with respect

to x, (·)T to denote transposition, and ‖ · ‖ for the 2-norm of a matrix or the Euclidean norm

of a vector. The notation 1N = col{1, . . . , 1} ∈ RN .
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CHAPTER 2

Stochastic Gradient Descent with Finite Samples Sizes

In this chapter, we investigate the performance of stochastic gradient descent over finite data

sets and under constant step-sizes.

We thus consider the problem of minimizing an empirical risk function J(w), which is

defined as the sample average over a possibly large, yet finite training set:

w?
∆
= arg min

w∈RM

J(w)
∆
=

1

N

N∑
n=1

Q(w;xn), (2.1)

where the {xn}Nn=1 are training data samples. When the size of the dataset N is large, it is

impractical to solve (2.1) directly with classical gradient descent. One simple, yet powerful,

approach to remedy this difficulty is to employ the stochastic gradient method (SG) [15–21].

In this method, at every iteration, rather than compute the full gradient ∇wJ(w) on the

entire data set, the algorithm picks one index ni at random, and employs ∇wQ(w;xni
) to

approximate ∇wJ(w). Specifically, at iteration i, the update for estimating the minimizer is

of the form:

wi+1 = wi − µ(i)∇wQ(wi;xni
), (2.2)

where µ(i) is the step-size parameter. Although uncommon in the literature, in this chapter

alone we refer to recursion (2.1) as the empirical stochastic gradient (E-SG) iteration, mainly

because we will be contrasting it with an online stochastic gradient (O-SG) algorithm:

wi+1 = wi − µ(i)∇wQ(wi;xi) (2.3)
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where xi is the streaming data arriving at time i. In comparison, in the empirical (E-SG)

implementation (2.2), the data xni
is indexed by a randomly selected index, ni, from the

finite sample-size range 1 ≤ n ≤ N .

In this chapter, we reveal an interesting connection between the two classes of empirical

(E-SG) and online (O-SG) constructions. First, we show that the stochastic gradient descent

algorithm for learning empirical risks (E-SG) is a special case of online stochastic gradient

descent algorithms (O-SG) studied in [11, 28]. This connection helps establish a powerful

unification for learning from finite datasets and learning from streaming data. Once this

connection is established, we then leverage this insight to great effect to derive first-order

expressions for both the MSD and ER of empirical (E-SG) implementations. The resulting

expressions appear to be the tightest in comparison to available results in the literature,

such as [1, 12, 21, 25] and other similar works. We further extend the analysis to include

mini-batch gradient descent [60,61] and importance sampling methods [1,2], and also derive

the corresponding MSD and ER expressions for both algorithms. In particular, we show

that the MSD and ER of mini-batch are inversely proportional to the batch size.

Another important topic in this chapter is that we use the performance expressions to

optimize the probability with which the data samples are selected during the empirical im-

plementation. Different from previous works [1, 2], which assume knowledge of Lipschitz

constants and use them to design the sampling probability, we start from the uniform distri-

bution and devise a procedure that automatically learns the optimal sampling distribution

and attains the optimal ER performance.

2.1 Empirical Stochastic Gradient Descent

In this section we derive the steady-state performance of E-SG implementations by showing

how they can be viewed as special cases of O-SG implementations. The analysis will build

on results from [11], which considered stochastic optimization problems of the form (1.1).
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2.1.1 Relating Both Formulations

Given a finite number of data samples {x1, x2, . . . , xN}, we introduce a discrete random

variable xe having these samples as realizations and a uniform probability mass function

(pmf) defined by

p(xe) =


1
N
, if xe = x1,

...
...

1
N
, if xe = xN .

(2.4)

As a result, the empirical problem (2.1) can be rewritten as

min
w∈RM

J(w) = E[Q(w;xe)] =
1

N

N∑
n=1

Q(w;xn), (2.5)

which has the same form as (4) with the random data x replaced by xe. Therefore, we can

apply the O-SG algorithm (2.3) to solve (2.5), namely,

wi+1 = wi − µ∇Q(wi;xe,i), (2.6)

where the notation xe,i represents the realization of xe that streams in at iteration i. Since

xe,i is selected from {x1, x2, · · · , xN} at iteration i according to the pmf (2.4), we can rewrite

xe,i as xni
and replace (2.6) by

wi+1 = wi − µ∇Q(wi;xni
). (2.7)

Here, the variable ni is a uniform discrete random variable indicating the index of the

sample that is picked at iteration i. Recursion (2.7) is the E-SG algorithm (2.2). We

therefore conclude that the E-SG recursion is an O-SG recursion applied to the solution

of the stochastic optimization problem (2.5). This interpretation is useful because we can

now call upon results from [11] for O-SG and apply them to characterize the performance of
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E-SG. This step is not as straightforward as it appears. This is because the results in [11],

as is common in studies on stochastic optimization, rely on certain regularity conditions

on the risk function and the gradient noise process. In order to be able to appeal to the

earlier results from stochastic optimization theory, we need to verify first that problem (2.5)

satisfies these regularity conditions. In preparation for the main results, we list two typical

conditions on the empirical loss function.

Assumption 2.1 (Condition on loss function) It is assumed that Q(w;xn) is differen-

tiable and has a δn-Lipschitz continuous gradient, i.e., for every n = 1, . . . , N and any

w1, w2 ∈ RM :

‖∇wQ(w1;xn)−∇wQ(w2;xn)‖ ≤ δn‖w1 − w2‖. (2.8)

We also assume J(w) is ν-strongly convex. �

If we introduce δ = max{δ1, δ2, · · · , δN}, then each ∇wQ(w;xn) is also δ-Lipschitz continu-

ous.

Assumption 2.2 (Smoothness condition) It is assumed that J(w) is twice differentiable

and that the Hessian matrix of J(w) is locally Lipschitz continuous in a small neighborhood

around w?:

‖∇2
wJ(w? + ∆w)−∇2

wJ(w?)‖ ≤ κe‖∆w‖, (2.9)

where ‖∆w‖ ≤ ε and constant κe ≥ 0. �

2.1.2 Gradient Noise and its Moments

For the E-SG algorithm (2.7), the gradient noise is given by the approximate gradient at

iteration i is ∇wQ(wi;xni
) and the true gradient is

∇wJ(wi) =
1

N

N∑
n=1

Q(wi;xn) (2.10)
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Therefore, we introduce the gradient noise

si(wi)
∆
= ∇wQ(wi;xni

)−∇wJ(wi). (2.11)

Let F i refer to the collection of all past iterates {wj, j ≤ i} and define

Rs
∆
= lim

i→∞
E[si(w

?)sTi (w?)|F i−1]

(a)
=

1

N

N∑
n=1

[∇wQ(w?;xn)∇wQ(w?;xn)T], (2.12)

where (a) holds because ∇wJ(w?) = 0. Based on this definition,

Tr(Rs) =
1

N

N∑
n=1

‖∇wQ(w?;xn)‖2. (2.13)

We now verify that the gradient noise process (2.11) has zero mean and its second-order

moment improves as the iterate gets closer to the desired minimizer, w?. These are among

the regularity conditions required in [11]. Here we show that this is not an assumption

anymore for E-SG but that it does actually hold.

Lemma 2.1 (Gradient noise properties) The first, second and fourth-order moments of

the gradient noise si(wi) satisfy:

E[si(wi)|F i] = 0, (2.14)

E[‖si(wi)‖2|F i] ≤ β2
e‖w̃i‖2 + σ2

e , (2.15)

E[‖si(wi)‖4|F i] ≤ β4
e4‖w̃i‖2 + σ4

e4, (2.16)

where w̃i = w? − wi and

β2
e

∆
= 2δ2, σ2

e
∆
=

2

N

N∑
n=1

‖∇wQ(w?;xn)‖2. (2.17)

β4
e4

∆
= 128δ4, σ4

e4
∆
=

8

N

N∑
n=1

‖∇wQ(w?;xn)‖4. (2.18)
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Proof : We first prove (2.14). Since wi ∈ F i and ni is selected uniformly, it holds that

E[si(wi)|F i]=
1

N

N∑
n=1

∇wQ(wi;xn)−∇wJ(wi) = 0. (2.19)

Next we establish (2.15). Using Jensen’s inequality:

E[‖si(wi−1)‖2|F i] =E[‖∇wQ(wi;xni
)−∇wJ(wi−1)‖2|F i]

= E[‖∇wQ(wi;xni
)−∇wQ(w?;xni

)−∇wJ(wi)+∇wQ(w?;xni
)‖2|F i]

≤2E[‖∇wQ(wi−1;xni
)−∇wQ(w?;xni

)−∇wJ(wi−1)‖2|F i]

+ 2E[‖∇wQ(w?;xni
)‖2|F i]. (2.20)

where the last inequality holds because of Jensen’s inequality. For the first term in the

right-hand side of the above inequality, notice that

E[∇wQ(wi;xni
)−∇wQ(w?;xni

)|F i] = ∇wJ(wi). (2.21)

Noting that for any random variable x:

E‖x− Ex‖2 = E‖x‖2 − ‖Ex‖2 ≤ E‖x‖2, (2.22)

and using ∇wJ(w?) = 0, we have

E[‖∇wQ(wi;xni
)−∇wQ(w?;xni

)︸ ︷︷ ︸
x

−∇wJ(wi)︸ ︷︷ ︸
Ex

‖2|F i]

≤ E[‖∇wQ(wi;xni
)−∇wQ(w?;xni

)‖2|F i]

=
1

N

N∑
n=1

‖∇wQ(wi;xn)−∇wQ(w?;xn)‖2

(a)

≤ δ2‖wi − w?‖2 = δ2‖w̃i‖2, (2.23)

where (a) holds because of Assumption 2.1. Substituting (2.23) into (2.20), we obtain (2.15).
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A similar argument can be used to establish the fourth-order moment property (2.16), which

we omit for brevity. �

2.1.3 Mean-square Stability and Performance of E-SG

Next we are ready to establish the mean-square stability of E-SG. Recall that the empirical

problem (2.1) is the special case of the general stochastic optimization problem (1.1), and

E-SG is the special case of O-SG. Meanwhile, we have also verified that E-SG gradient noise

(2.11) satisfies all assumptions required in [11], now we can directly apply the convergence

theorem of O-SG (Lemma 3.1 in [11]) to E-SG, and achieve its mean-square-error convergence

property.

Theorem 2.1 (Mean-square-error stability of E-SG) Under Assumption 2.1 and any

step-size satisfying µ < 2ν/(δ2 + β2
e ) = 2ν/3δ2, it holds that

E‖w̃i‖2 ≤ αi E‖w0 − w?‖2 +O(µ). (2.24)

where α = 1− 2νµ+ 3δ2µ2 ∈ (0, 1). �

Theorem 2.1 states that E-SG converges exponentially fast to a small neighborhood around

w? of size O(µ). From (2.24), it is also observed that E-SG is not sensitive to the initial

staring point w0 because ‖w0−w?‖2 will diminish exponentially fast. Theorem 2.1 does not

provide an accurate expression for the steady-state performance of E-SG. More is needed to

arrive at this expression. Here we appeal to Theorem 4.7 from [11] to derive the expression

for the steady-state performance of E-SG. By steady-state we mean the algorithm is applied

repeatedly in random passes over the finite training data. We denote the Hessian of the

empirical risk (2.1) at w? by

H
∆
= ∇2

wJ(w?). (2.25)

Theorem 2.2 (Steady-state performance) Assume the conditions under Assumptions
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2.1 and 2.2 hold. When the step-size is sufficiently small, the MSD and ER metrics to

first-order in µ for the E-SG algorithm (2.2) are given by the following expressions:

MSD
∆
= lim sup

i→∞
E[‖wi −w?‖2] =

µ

2
Tr(H−1Rs), (2.26)

ER
∆
= lim sup

i→∞
E[J(wi)− J(w?)] =

µ

4
Tr(Rs), (2.27)

where H is defined in (2.25) and Rs is defined in (2.12). �

The MSD expression (2.26) is tighter than the bound given in [1], which is written as

lim sup
i→∞

E‖w̃i‖2 ≤ µTr(Rs)

ν(1− µmaxn{δn})
=

µTr(Rs)

ν(1− µδ)
. (2.28)

Since J(w) is ν-strongly convex, we have H ≥ νI. Therefore,

µ

2
Tr(H−1Rs) ≤

µ

2ν
Tr(Rs) <

µTr(Rs)

ν(1− µδ)
, (2.29)

where the last inequality holds because 1 − µδ < 2. Relation (2.29) shows that our MSD

expression (2.26) is tighter. As a result, expressions (2.26) and (2.27) are more helpful

to determine a proper step-size when a certain accuracy ε is required for the MSD or ER

performance.

2.2 Mini-batch Stochastic Gradient Learning

In this section, we derive the MSD and ER performance expressions for mini-batch gradi-

ent descent. Following arguments similar to Section 2.1, we will also interpret mini-batch

gradient descent as a special case of O-SG, and then refer to the theoretical results in [11].

Suppose we have B independent discrete random variables x
(1)
e ,x

(2)
e , · · · ,x(B)

e , each with

the same distribution as xe that is defined from Section 2.1.1. Using these variables, we
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define

Q(w; {x(1)
e ,x(2)

e , · · · ,x(B)
e })

∆
=

1

B

B∑
j=1

Q(w;x(j)
e ), (2.30)

and note that

E[Q(w; {x(1)
e ,x(2)

e , · · · ,x(B)
e })]

(2.30)
=

1

B

B∑
j=1

E[Q(w;x(j)
e )]

(2.5)
=

1

B

B∑
j=1

J(w) = J(w). (2.31)

It follows that the empirical problem (2.1) can also be rewritten as:

min
w∈RM

J(w) = E[Q(w; {x(1)
e ,x(2)

e , · · · ,x(B)
e })], (2.32)

which is a stochastic optimization problem. We can therefore apply the O-SG algorithm to

seek its minimizer, which leads to the mini-batch gradient descent algorithm:

wi+1 = wi − µ∇wQ(wi; {x(1)
e,i ,x

(2)
e,i , · · · ,x

(B)
e,i })

= wi −
µ

B

B∑
j=1

∇wQ(wi;x
(j)
e,i )

(a)
= wi −

µ

B

B∑
j=1

∇wQ(wi;xni(j)), (2.33)

where x
(j)
e,i is the instantaneous realization of the random variable x

(j)
e at iteration i. Equality

(a) holds because, similarly to (2.6) and (2.7), we redefine x
(j)
e,i as xni(j) where the random

variables {ni(j)}Bj=1 are mutually independent with the same pmf as ni. During the imple-

mentation of recursion (2.33), we will sample B data with replacement at each iteration, and

then compute their average.
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2.2.1 Gradient Noise and its Moments

According to the mini-batch recursion (2.33), the gradient noise is

sbi(wi)=
1

B

B∑
j=1

∇wQ(wi;xni(j))−∇wJ(wi). (2.34)

The following result extends Lemma 2.1 to the mini-batch method.

Lemma 2.2 (Gradient noise properties) The first and second-order moments of the gra-

dient noise sbi(wi) defined in (2.34) satisfy:

E[sbi(wi)|F i] = 0, (2.35)

E[‖sbi(wi)‖2|F i] ≤ β2
b‖w̃i‖2 + σ2

b , (2.36)

E[‖sbi(wi)‖4|F i] ≤ β4
b4‖w̃i‖2 + σ4

b4, (2.37)

where w̃i = w? − wi,

β2
b

∆
= β2

e/B, σ2
b

∆
= σ2

e/B, (2.38)

β4
b4

∆
= β4

e4, σ4
b4

∆
= σ4

e4. (2.39)

and β2
e , σ2

e , β4
b4, and σ4

b4 are defined in Lemma 2.1. �

Proof : The argument for (2.35) is similar to (2.19). To prove (2.36), we start by noting

that

E[‖sbi(wi)‖2|F i] = E[‖ 1

B

B∑
j=1

∇wQ(wi;xni(j))−∇wJemp(wi)‖2|F i]

= E

∥∥∥∥∥ 1

B

B∑
j=1

(
∇wQ(wi;xni(j))−∇J(wi)

)∥∥∥∥∥
2
∣∣∣∣∣∣F i


=

1

B2
E

[
B∑
j=1

∥∥∥∇wQ(wi;xni(j))−∇J(wi)
∥∥∥2

∣∣∣∣∣F i

]
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+
1

B2
E

[
B∑
j=1

∑
k 6=j

(
∇wQ(wi;xni(j))−∇J(wi)

)T
(
∇wQ(wi;xni(k))−∇J(wi)

)∣∣∣F i

]
(a)
=

1

B2

B∑
j=1

E
[∥∥∥∇wQ(wi;xni(j))−∇J(wi)

∥∥∥2
∣∣∣∣F i

]
(2.40)

where (a) holds because when k 6= j, ni(j) is independent of ni(k). Now using property

(2.15) from Lemma 2.1 in (2.40) gives (2.36). The derivation for the fourth-order moment

result follows from Jensen’s inequality and (2.16). We omit the proof for brevity. �

One important observation is that, with the mini-batch technique, the magnitude of

the second-order moment of the gradient noise is reduced to 1/B of its original magnitude

(see (2.38)), which suggests that we should expect both the MSD and ER of mini-batch

implementations to improve by a factor of B. The analysis in the next section confirms this

conclusion.

2.2.2 Performance of Mini-batch Stochastic Gradient Learning

First, the limiting covariance matrix of the mini batch gradient noise process is given by

Rb
s =

1

B2

B∑
j=1

Rs =
1

B
Rs. (2.41)

Then, using Theorem 4.7 from [11] we deduce the following.

Theorem 2.3 (Steady-state performance) Under Assumptions 2.1 and 2.2, for a suffi-

ciently small step-size, the MSD and ER metrics for the mini-batch method (2.33) are given

by:

MSDb =
µ

2
Tr(H−1Rb

s) =
µ

2B
Tr(H−1Rs), (2.42)

ERb =
µ

4
Tr(Rb

s) =
µ

4B
Tr(Rs), (2.43)

where H is defined in (2.25) and Rs is defined in (2.41). Moreover, the algorithm converges
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at an exponential rate:

αb = 1− 2νµ+ (1 + 2/B)δ2µ2. (2.44)

�

2.3 Optimal Importance Sampling

We have assumed so far that the data samples in an empirical SG implementation are selected

uniformly at random, according to (2.4). However, we can consider other selection policies in

order to enhance performance. The works [1,2] proposed to measure the importance of each

sample according to its Lipschitz constant δn in (6.52). Specifically, they suggest selecting

the sampling probability according to

p(n) =
δn∑N
m=1 δm

, (2.45)

where p(n) is the sampling probability of data xn. This scheme assumes knowledge of the

Lipschitz constants, which is usually not available in advance or even known. Moreover, this

importance sampling method is not optimal, as the ensuing discussion will show where we

derive the optimal sampling algorithm.

Let us denote the new pmf for the random variable n that we wish to determine optimally

by

p(n) =



α(1), if n = 1,

α(2), if n = 2,

...
...

α(N), if n = N,

(2.46)

where α(n) is the sampling probability for data xn, and it holds that the {α(n)} add up

to one. With this new pmf for n, the empirical problem (2.1) can be interpreted as the
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following stochastic optimization problem

min
w∈RM

J(w) =
N∑
n=1

α(n)

α(n)N
Q(w;xn) = En[Ql(w;xn)], (2.47)

where we defined

Ql(w;xn)
∆
=

1

α(n)N
Q(w;xn). (2.48)

Now if we apply O-SG to solve problem (2.47), we obtain the following importance sampling

recursion:

wi+1 = wi − µ∇wQ
l(wi;xni

)

= wi −
µ

p(ni)N
∇wQ(wi;xni

). (2.49)

Next we will explain how to choose p(ni) such that the above recursion can reach optimal

steady-state performance. First, the gradient noise of the importance sampling approach is

given by:

sli(wi) =∇wQ
l(wi;xni

)−∇wJ(wi) (2.50)

Lemma 2.3 (Gradient Noise Property) The gradient noise process in (2.50) satisfies

the following conditions:

E[sli(wi)|F i] = 0, (2.51)

E[‖sli(wi)‖2|F i] ≤ β2
l ‖w̃i‖2 + σ2

l , (2.52)

where w̃i = w? − wi and

β2
l

∆
= 2

N∑
n=1

δ2

α(n)N2
, σ2

l
∆
= 2

N∑
n=1

1

α(n)N2
‖∇wQ(w?;xn)‖2
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This Lemma can be established by following arguments similar to those used in Lemmas 2.1

and 2.2. Now, calling upon Theorem 4.7 from [11] we arrive at the following expression for

the proposed importance sampling recursion (2.49):

ERl =
µ

4
Tr(Rl

s) =
µ

4

N∑
n=1

1

α(n)N2
‖∇wQ(w?;xn)‖2 (2.53)

We can minimize this expression over the {α(n)} and solve:

min
α

N∑
n=1

1

α(n)
‖∇wQ(w?;xn)‖2 (2.54)

s.t.
N∑
n=1

α(n) = 1, 0 ≤ α(n) ≤ 1, n = 1, 2, · · · , N.

Fortunately, this problem has a closed-form solution, which can be derived by the Lagrangian

multiplier method:

α?(n) =
‖∇wQ(w?;xn)‖∑N
m=1 ‖∇wQ(w?;xm)‖

(2.55)

Substituting into (2.53) yields the optimal ER value:

ER?
l =

µ

4

(
N∑
n=1

1

N
‖∇wQ(w?;xn)‖

)2

(2.56)

From Jensen’s inequality, we can verify that ER?
l is always smaller than or equal to the ER

of E-SG derived earlier in (2.27).

Although we determined the optimal pmf in (2.56), one practical problem is that the

expression for α?(n) depends on the unknown w?. This problem can be overcome by replacing

the minimizer by its estimate, which leads to an adaptive importance sampling method:

αi(n) =
‖∇wQ(wi;xn)‖∑N
m=1 ‖∇wQ(wi;xm)‖

. (2.57)
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Table 2.1: Listing of optimal adaptive importance sampling for SG

Optimal adaptive importance sampling for SG

Initialization:
ψ0 is initialized to be some large positive vector;
θ0 is initialized as the sum of the entires in ψ0;
p0 is initialized as uniform distribution;

for i = 1, 2, 3, . . .
Pick ni according to sampling probability pi;
Update ψi and θi according to (2.58) and (2.59) respectively;
Update sampling probability pi = ψi/θi;
Update wi+1 according to (2.49)

end

Expression (2.57) is still inefficient to update because at each iteration we have to compute

‖∇wQ(wi;xn)‖ for all data samples and then calculate the average. To reach an efficient

update, we introduce an auxiliary variable ψ ∈ RN , with its nth entry updated as follows:

ψi(n)=

 γψi−1(n) + (1− γ)‖∇wQ(wi;xn)‖, if n = ni

ψi−1(n), if n 6= ni

(2.58)

where γ ∈ (0, 1); in the simulations we selected γ ∈ (0.1, 0.5). Note that each entry ψi(n)

is an estimate of ‖∇wQ(wi;xn)‖. Note further that at iteration i, only one entry of ψi is

updated, and hence this update is cheap. We also update a scalar θ to maintain the sum of

ψ. Suppose ni is picked up at iteration i, then

θi =
N∑
n=1

ψi(n) =
N∑
n=1

ψi(n) +ψi(ni)−ψi−1(ni)

(2.58)
= θi + (1− γ)

(
‖∇wQ(wi;xn)‖ −ψi−1(ni)

)
. (2.59)

Note that each update of θ only requires O(1) operations, which is also cheap. The algorithm

is summarized in Table 2.1, where pi ∈ RN is the sampling probability vector with each entry

pi(n) indicating the probability that data xn is selected.
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In the algorithm algorithm, we initialize ψ0 to large entries so that pi is not too small for

some indices. In this way, we can guarantee that all data samples are accessed with large

enough probability during the initial stages. The key feature of this algorithm is that it

does not depend on any pre-knowledge of each data sample (such as the Lipschitz constants

needed in [1,2]), and can automatically learn the optimal sampling probability distribution.

Moreover, the algorithm is very efficient in computational cost.

2.4 Numerical Experiments

We illustrate the results by considering the regularized logistic regression problem:

J(w) =
ρ

2
‖w‖2 +

1

N

N∑
n=1

ln
(
1 + exp(−γ(n)hTnw)

)
, (2.60)

where hn ∈ R10 is the feature and γ(n) ∈ {±1} is the label scalar. In the simulation, we

generate a random data set {hn, γ(n)} with N = 500. We set ρ = 0.01 and µ = 0.01. We run

the empirical SG and mini-batch algorithms over 25 epochs. All simulation results shown

below are averaged over 100 trials. From Fig 2.1, it is clear that our bound is significantly

tighter than the bound from [1], which is also shown in (2.28). We also observe that the

MSD performance is inversely proportionally to the size of the mini-batch, as predicted by

Theorem 2.3. Moreover, the figure shows that our theoretical performance expressions match

well with the simulated results.

Next, in Fig. 2.2 we illustrate the behavior of our optimal importance sampling algorithm

with the same problem setting. All algorithms use a 10 mini-batch size. The red curve is

the standard SG learning curve, which is used as reference; The blue curve is using the fixed

optimal importance sampling probability, which is precalculated with the w? information

(2.55). The green curve is our proposed adaptive importance sampling method, which is seen

to be as good as the optimal solution. We also compare against the resampling technique

from [1, 2], which use the Lipschitz constants. The result is the black curve, which is only

matching the performance of the standard SG implementation and is away from the optimal
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Figure 2.1: Convergence behavior of mini-batch SG for regularized logistic regression prob-
lem. B indicates the size of the mini-batch. The dotted MSD levels are calculated according
(2.42) except for the brown line, which is calculated according to [1].
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Figure 2.2: Optimal adaptive importance sampling algorithm for regularized logistic regres-
sion problem. In the figure legend, SG refers to iteration (2.2); SG+Optimal Sampling refers
to (2.55); SG+Adaptive refers to (2.58)—(2.59); SG+Lipschitz is the algorithm proposed
in [2].

2.5 Conclusion

This chapter establishes a useful connection between empirical stochastic gradient methods

for learning from finite data samples, and online stochastic gradient methods for learning

from streaming data. Using performance expressions for the excess risk (ER), an optimal

sampling strategy is devised to attain the best ER performance. Simulation runs illustrate

the results.
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CHAPTER 3

Stochastic Learning under Random Reshuffling

This chapter focuses on random reshuffling algorithms with constant step-size case and

strongly convex loss functions. In this case, convergence is guaranteed to a small neighbor-

hood of the optimizer albeit at a linear rate. The analysis establishes analytically that ran-

dom reshuffling outperforms uniform sampling by showing explicitly that iterates approach

a smaller neighborhood of size O(µ2) around the minimizer rather than O(µ). Furthermore,

we derive an analytical expression for the steady-state mean-square-error performance of the

algorithm, which is exact for quadratic risks and good approximation for general risks. This

helps clarify in greater detail the differences between sampling with and without replacement

that can be described through tanh(·) functions. We also explain the periodic behavior that

is observed in random reshuffling implementations in this chapter.

3.1 Motivation

It has been noted in the literature [34, 35, 62, 63] that incorporating random reshuffling into

the gradient descent implementation helps achieve better performance. More broadly than

in the case of the pure SGD algorithm, it has also been observed that applying random

reshuffling in variance-reduction algorithms, like SVRG [64], SAGA [39], can accelerate the

convergence speed [31,40,43]. The reshuffling technique has also been applied in distributed

system to reduce the communication and computation cost [65].

Several recent works [34–36] have pursued justifications for the enhanced behavior of

random reshuffling implementations over independent sampling (with replacement). The

work [35] examined the convergence rate of the learning process under diminishing step-sizes,
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i.e., µ(i) = c/i, where c is some positive constant. It analytically showed that, for strongly

convex objective functions, the convergence rate under random reshuffling can be improved

from O(1/i) in vanilla SGD [37] to O(1/i2). The incremental gradient methods [3,66], which

can be viewed as the deterministic version of random reshuffling, shares similar conclusions,

i.e., random reshuffling helps accelerate the convergence rate from O(1/i) to O(1/i2) under

decaying step-sizes. Also, in the work [36], it establishes that random reshuffling will not

degrade performance relative to the stochastic gradient descent implementation, provided

the number of epochs is not too large. In this chapter, we focus on a different setting

than [34–36] involving random reshuffling under constant rather than decaying step-sizes. In

this case, convergence is only guaranteed to a small neighborhood of the optimizer albeit at

a linear rate. The analysis will establish analytically that random reshuffling outperforms

independent sampling (with replacement) by showing that the mean-square-error of the

iterate at the end of each run in the random reshuffling strategy will be in the order of

O(µ2). This is a significant improvement over the performance of traditional stochastic

gradient descent, which is O(µ) [13]. Furthermore, we derive an analytical expression for the

steady-state mean-square-error performance of the algorithm, which is exact for quadratic

risks and provides a good approximation for general risks. This helps clarify in greater detail

the differences between sampling with and without replacement We also explain the periodic

behavior that is observed in random reshuffling implementations.

3.2 Stability of SGD Under Random Reshuffling

3.2.1 Properties of the Gradient Approximation

We start by examining the properties of the stochastic gradient ∇wQ(wk
i ;xσk(i)) under ran-

dom reshuffling. One main source of difficulty that we shall encounter in the analysis of

performance under random reshuffling is the fact that a single sample of the stochastic gra-

dient ∇wQ(wk
i ;xσk(i)) is now a biased estimate of the true gradient and, moreover, it is

no longer independent of past selections, σk(1 : i). This is in contrast to implementations

where samples are picked independently at every iteration. Indeed, note that conditioned
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on previously picked data and on the previous iterate, we have:

E
[
∇wQσk(i)(w

k
i ) |wk

i ,σ
k(1 : i− 1)

]
=

1

N − i+ 1

∑
n/∈σk(1 : i−1)

∇wQ(wk
i )

6=∇J(wk
i ) (3.1)

The difference (3.1) is generally nonzero in view of the definition (1.2). For the first iteration

of every epoch however, it can be verified that the following holds:

E
[
∇wQσk(i)(w

k
0)
∣∣∣wk

0

]
(1.7)
=

1

N

N∑
n=1

Q(wk
0;xn)

(1.2)
= ∇J(wk

0) (3.2)

since at the beginning of one epoch, no data has been selected yet. Perhaps surprisingly,

we will be showing that the biased construction of the stochastic gradient estimate not

only does not hurt the performance of the algorithm, but instead significantly improves

it. In large part, the analysis will revolve around considering the accuracy of the gradient

approximation over an entire epoch, rather than focusing on single samples at a time. Recall

that by construction in random reshuffling, every sample is picked once and only once over

one epoch. This means that the sample average (rather than the true mean) of the gradient

noise process is zero since

1

N

N∑
i=1

∇wQ(w;xσk(i)) = ∇J(w) (3.3)

for any w and any reshuffling order σk. This property will become key in the analysis.

3.2.2 Convergence Analysis

We can now establish a key convergence and performance property for the random reshuffling

algorithm, which provides solid analytical justification for its observed improved performance

in practice.
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To begin with, we assume that the risk function satisfies the following conditions, which

are automatically satisfied by many learning problems of interest, such as mean-square-error

or logistic regression analysis and their regularized versions — see, e.g., [9–11,28,67].

Assumption 3.1 (Condition on loss function) It is assumed that Q(w;xn) is differen-

tiable and has a δn-Lipschitz continuous gradient, i.e., for every n = 1, . . . , N and any

w1, w2 ∈ RM :

‖∇wQ(w1;xn)−∇wQ(w2;xn)‖ ≤ δn‖w1 − w2‖ (3.4)

where δn > 0. We also assume J(w) is ν-strongly convex:

(
∇wJ(w1)−∇wJ(w2)

)T
(w1 − w2) ≥ ν‖w1 − w2‖2 (3.5)

�

If we introduce δ = max{δ1, δ2, · · · , δN}, then each ∇wQ(w;xn) and ∇wJ(w) are also δ-

Lipschitz continuous.

The following theorem focuses on the convergence of the starting point of each epoch

and establishes in (3.7) that it actually approaches a smaller neighborhood of size O(µ2)

around w?. Afterwards, using this result, we also show that the same O(µ2)−performance

level holds for all iterates wk
i and not just for the starting points of the epochs.

To simplify the notation, we introduce the constantK, which is the gradient noise variance

at optimal point w?:

K ∆
=

1

N

N∑
n=1

‖∇wQ(w?;xn)‖2 (3.6)

Theorem 3.1 (Stability of starting points) Under assumption 3.1, the starting point of
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each run satisfies

lim sup
k→∞

E‖wk
0 − w?‖2 ≤ 4µ2δ2N2

ν2
K = O(µ2) (3.7)

when the step-size is sufficiently small, namely, for µ ≤ ν
3δ2N

.

Proof: Note first that

wk+1
0

∆
= wk

N

(1.4)
= wk

N−1 − µ∇wQ(wk
N−1;xσk(N))

...

= wk
0 − µ

N−1∑
i=0

∇wQ(wk
i ;xσk(i))

(3.3)
= wk

0 − µN∇wJ(wk
0)− µ

N−1∑
i=0

(
∇wQ(wk

i ;xσk(i))−∇wQ(wk
0;xσk(i))

)︸ ︷︷ ︸
∆
= g

σk(i)
(wk

i )

(3.8)

where we denote by gσk(i)(w
k
i ) the incremental gradient noise which is the mismatch between

the gradient approximations evaluated at wk
0 and wk

i . Next, we introduce the error vector:

w̃k
0

∆
= w? −wk

0 (3.9)

and let 0 < t < 1 be any scalar that we will specify further below. Subtracting w? from

both sides of (3.8), squaring, and using Jensen’s inequality in step (a) below we get:

‖w̃k+1
0 ‖2 =

∥∥∥∥∥w̃k
0 + µN∇wJ(wk

0) + µ

N∑
i=1

gσk(i)(w
k
i−1)

∥∥∥∥∥
2

(a)

≤ 1

t
‖w̃k

0 + µN∇wJ(wk
0)‖2 +

µ2

1− t

∥∥∥∥∥
N∑
i=1

gσk(i)(w
k
i−1)

∥∥∥∥∥
2

(b)

≤1

t

∥∥∥w̃k
0 +µN∇wJ(wk

0)
∥∥∥2

+
µ2N

1− t

(
N∑
i=1

∥∥gσk(i)(w
k
i−1)
∥∥2

)
(3.10)
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where step (a) exploits the Jensen’s inequality:

‖a+ b‖2 =

∥∥∥∥tta+
1− t
1− t

b

∥∥∥∥2

≤ 1

t
‖a‖+

1

1− t
‖b‖2 (3.11)

and step (b) uses the fact that:

∥∥∥∥∥
N∑
i=1

xi

∥∥∥∥∥
2

= N2

∥∥∥∥∥
N∑
i=1

1

N
xi

∥∥∥∥∥
2

≤ N
N∑
i=1

‖xi‖2 (3.12)

We show in Appendix 3.A that the rightmost term in (3.10) can be bounded by:

N∑
i=1

∥∥gσk(i)(w
k
i−1)
∥∥2 ≤ µ2δ2N3

1− 2µ2δ2N2

(
2δ2‖w̃k

0‖2 +K
)

(3.13)

while for the first term in (3.10) we have

∥∥∥w̃k
0 + µN∇J(wk

0)
∥∥∥2

=‖w̃k
0‖2 + µ2N2‖∇J(wk

0)‖2 + 2µN(w̃k
0)T∇J(wk

0)

≤
(

1− 2µN
νδ

δ + ν

)
‖w̃k

0‖2 + µN(µN − 2

δ + ν
)‖∇J(wk

0)‖2

(3.14)

where in the first inequality we exploit the co-coercivity inequality [68] that

(∇J(x)−∇J(y))T(x− y) ≥ νδ

δ + ν
‖x− y‖2 +

1

δ + ν
‖∇J(x)−∇J(y)‖2 (3.15)

Next we require the step size to satisfy

µ ≤ 2

(δ + ν)N
(3.16)

Then, the coefficient of the last term in (3.14) is negative. Combining with the strongly

convexity property ‖∇J(wk
0)−∇J(w?)‖ ≥ ν‖w̃k

0‖, we have

∥∥∥w̃k
0 + µN∇J(wk

0)
∥∥∥2

≤
(

1− 2µN
νδ

δ + ν

)
‖w̃k

0‖2 + µNν2(µN − 2

δ + ν
)‖w̃k

0‖2
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=
(

1− µνN)2‖w̃k
0‖2 (3.17)

Combining (3.13) and (4.71), we establish:

‖w̃k+1
0 ‖2 ≤1

t
(1− µNν)2 ‖w̃k

0‖2 +
µ2N

1− t
µ2δ2N3

1− 2µ2δ2N2

(
2δ2‖w̃k

0‖2 +K
)

(3.18)

We are free to choose t ∈ (0, 1). Thus, let t = 1− µNν. Then, we conclude that

‖w̃k+1
0 ‖2 ≤(1− µNν)‖w̃k

0‖2 +
µ3δ2N3

ν(1− 2µ2δ2N2)

(
2δ2‖w̃k

0‖2 +K
)

=

(
1− µNν +

2µ3δ4N3

ν(1− 2µ2δ2N2)

)
‖w̃k

0‖2 +
µ3δ2N3K

ν(1− 2µ2δ2N2)
(3.19)

If we assume µ is sufficiently small such that

1− 2µ2δ2N2 ≥ 1

2
, (3.20)

then inequality (3.19) becomes

‖w̃k+1
0 ‖2 ≤

(
1− µNν +

4µ3δ4N3

ν

)
‖w̃k

0‖2 +
2µ3δ2N3

ν
K. (3.21)

If we further assume the step-size µ is sufficiently small such that

1− µNν +
4µ3δ4N3

ν
≤ 1− 1

2
µNν (3.22)

then inequality (3.21) becomes

‖w̃k+1
0 ‖2 ≤

(
1− 1

2
µNν

)
‖w̃k

0‖2 +
2µ3δ2N3

ν
K

≤
(

1− 1

2
µNν

)k
‖w̃0

0‖2 +

(
2µ3δ2N3

ν
K
) k∑

j=1

(
1− 1

2
µNν

)j
≤
(

1− 1

2
µNν

)k
‖w̃0

0‖2 +
4µ2δ2N2

ν2
K. (3.23)
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By taking expectations with respect to the filtration, i.e. the collections of the past infor-

mation, on both sides, we have

E‖w̃k+1
0 ‖2 ≤

(
1− 1

2
µNν

)k
E‖w̃0

0‖2 +
4µ2δ2N2

ν2
K, (3.24)

which implies that

lim sup
k→∞

E‖w̃k
0‖2 = O(µ2) (3.25)

Finally we find a sufficient range for µ for stability. To satisfy (3.16), (3.20) and (3.22), it is

enough to set µ as

µ ≤ min

{
2

(δ + ν)N
,

1

2δN
,

ν√
8δ2N

}
<

ν

3δ2N
. (3.26)

The argument in this derivation provides a self-contained proof for the convergence result

(3.7), which generalizes the approach from [69]. There, the bound (3.7) was derived from

an intermediate property (23) in [69], which does not always hold. Here, the same result is

re-derived and shown to hold irrespective of this property. Consequently, we are now able

to obtain Lemma 1 from [69] as a corollary to our current result, as shown next. �

Having established the stability of the first point of every epoch, we can now establish

the stability of every point.

Corollary 3.1 (Full Stability) Under assumption 3.1, it holds that

lim sup
k→∞

E‖wk
i − w?‖2 = O(µ2) (3.27)

for all i when the step-size is sufficiently small.

Proof: We have

E‖w̃k
i ‖2 ≤2E‖wk

i −wk
0‖2 + 2E‖w̃k

0‖2
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≤2
i−1∑
j=0

jE‖wk
j+1 −wk

j‖2 + 2E‖w̃k
0‖2

≤2
i−1∑
j=0

jE‖∇wQ(wk
j ;xσk(j))‖2 + 2E‖w̃k

0‖2

≤2µ2δ2

i−1∑
j=0

jE‖w̃k
j‖2 + 2E‖w̃k

0‖2 (3.28)

Summing over i;

N−1∑
i=1

E‖w̃k
i ‖2 ≤2µ2δ2

N−1∑
i=1

i−1∑
j=0

iE‖w̃k
j‖2 + 2NE‖w̃k

0‖2

=2µ2δ2

N−1∑
j=0

N−1∑
i=j+1

iE‖w̃k
j‖2 + 2NE‖w̃k

0‖2

≤µ2δ2N2

N−1∑
j=0

E‖w̃k
j‖2 + 2NE‖w̃k

0‖2

=µ2δ2N2

N−1∑
j=1

E‖w̃k
j‖2 + (2N + µ2δ2N2)E‖w̃k

0‖2 (3.29)

Rearranging terms, we get

N−1∑
i=1

E‖w̃k
i ‖2 ≤2N + µ2δ2N2

1− µ2δ2N2
E‖w̃k

0‖2 (3.30)

Let k →∞, then

lim sup
k→∞

N−1∑
i=1

E‖w̃k
i ‖2 = O(µ2) (3.31)

Noting that every term in the summation is non-negative, we conclude that for all j:

lim sup
k→∞

E‖w̃k
j‖2 ≤ lim sup

k→∞

N−1∑
i=1

E‖w̃k
i ‖2 = O(µ2) (3.32)

�
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3.3 Illustrating Behavior and Periodicity

In this section we illustrate the theoretical findings so far by numerical simulations. We

consider the following logistic regression problem:

min
w

J(w) =
1

N

N∑
n=1

Q(w;hn, γ(n)), (3.33)

where hn ∈ RM is the feature vector, γ(n) ∈ {±1} is the scalar label, and

Q(w;hn, γn)
∆
= ρ‖w‖2 + ln

(
1 + exp(−γ(n)hTnw)

)
. (3.34)

The constant ρ is the regularization parameter. In the first simulation, we compare the per-

formance of the standard stochastic gradient descent (SGD) algorithm (1.3) with replacement

and the random reshuffling (RR) algorithm (1.4). We set N = 1000 and M = 10. Each hn is

generated from the normal distribution N (0; ΛM), where ΛM is a diagonal matrix with each

diagonal entry generated from the uniform distribution U(1, 10). To generate γ(n), we first

generate an auxiliary random vector w0 ∈ RM with each entry following N (0, 1). Next, we

generate u(n) from a uniform distribution U(0, 1). If u(n) ≤ 1/(1 + exp(−hTnw0)) then γ(n)

is set as +1; otherwise γ(n) is set as −1. We select ρ = 0.1 during all simulations. Figure

3.1 illustrates the MSD performance of the SGD and RR algorithms when µ = 0.003. It is

observed that the RR algorithm oscillates during the steady-state regime, and that the MSD

at the wk
0 is the best among all iterates {wk

i }N−1
i=1 during epoch k. Furthermore, it is also

observed that RR has better MSD performance than SGD. Similar observations also occur

in Fig. 3.2, where µ = 0.0003. It is worth noting that the gap between SGD and RR is much

larger in Fig. 3.2 than in Fig. 3.1.

Next, in the second simulation we verify the conclusion that the MSD for the starting

point of each epoch for the random reshuffling algorithm, i.e., wk
0, can achieve O(µ2) instead

of O(µ). We still consider the regularized logistic regression problem (3.33) and (3.34), and
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Figure 3.1: RR has better mean-square-deviation (MSD) performance than standard SGD
when µ = 0.003. The dotted blue curve is drawn by connecting the MSD performance at
the starting points of the successive epochs.

the same experimental setting. Recall that in Theorem 3.1, we proved that

lim sup
k→∞

E‖w̃k
0‖2 ≤O(µ2), (3.35)

which indicates that when µ is reduced a factor of 10, the MSD-performance E‖w̃k
0‖2 should

be improved by at least 20 dB. We observe a decay of about 20dB per decade in Fig. 3.3 for

a logistic regression problem with N = 25 data points and 30dB per decade in Fig. 3.4 with

N = 1000.

3.4 Introducing a Long-Term Model

We proved in the earlier sections that the mean-square error under random reshuffling ap-

proaches a small O(µ2)−neighborhood around the minimizer. Our objective now is to assess

more accurately the size of the constant that multiplies µ2 in the O(µ2) result, and examine

how this constant may depend on various parameters including the amount of data, N , and
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the form of the loss function Q. To do that, we proceed in two steps. First, we intro-

duce an auxiliary long-term model in (3.44) below and subsequently determine how far the

performance of this model is from the original system described by (3.43) further ahead.

3.4.1 Error Dynamics

In order to quantify the performance of the random reshuffling implementation more accu-

rately than the O(µ2)−figure obtained earlier, we will need to impose a condition on the

smoothness of the Hessian matrix of the risk function.

Assumption 3.2 (Hessian is Lipschitz continuous) The risk function J(w) has a Lip-

schitz continuous Hessian matrix, i.e., there exists a constant κ ≥ 0, such that

‖∇2
wJ(w1)−∇2

wJ(w2)‖ ≤ κ‖w1 − w2‖ (3.36)
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�

Under this assumption, the gradient vector, ∇wJ(w), can be expressed in Taylor expansion

in the form [11, p. 378]:

∇wJ(w) = ∇2
wJ(w?)(w − w?) + ξ(w), ∀w (3.37)

where the residual term satisfies:

‖ξ(w)‖ ≤ κ

2
‖w − w?‖2 (3.38)

As such, we can rewrite algorithm (1.4) in the form:

w̃k
i+1 =w̃k

i + µ∇wJ(wk
i ) + µ

(
∇wQ(wk

i ;xσk(i))−∇wJ(wk
i )
)
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=w̃k
i − µ∇2

wJ(w?)w̃k
i + µξ(wk

i ) + µ
(
∇wQ(wk

i ;xσk(i))−∇wJ(wk
i )
)

(3.39)

To ease the notation, we introduce the Hessian matrix H and the gradient noise process:

H
∆
= ∇2

wJ(w?)

sσk(i)(w
k
i )

∆
= ∇wQ(wk

i ;xσk(i))−∇wJ(wk
i ) (3.40)

so that (3.39) is simplified as:

w̃k
i+1 = (I − µH)w̃k

i + µξ(wk
i ) + µsσk(i)(w

k
i ) (3.41)

Now property (3.2) motivates us to expand (3.41) into the following error recursion by adding

and subtracting the same gradient noise term evaluated at wk
0:

w̃k
i+1 =(I − µH)w̃k

i + µsσk(i)(w
k
0)
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+ µ
(
sσk(i)(w

k
i )− sσk(i)(w

k
0)
)︸ ︷︷ ︸

noise mismatch

+µξ(wk
i ) (3.42)

Iterating (3.42) and using (1.5) we can establish the following useful relation, which we call

upon in the sequel:

w̃k+1
0 = (I − µH)Nw̃k

0 + µ
N−1∑
i=0

(I − µH)N−i−1sσk(i)(w
k
0)

+ µ
N−1∑
i=0

(I − µH)N−i−1
(
sσk(i)(w

k
i )− sσk(i)(w

k
0)
)

+ µ

N−1∑
i=0

(I − µH)N−iξ(wk
i ) (3.43)

Note that recursion (3.43) relates w̃k
0 to w̃k+1

0 , which are the starting points of two successive

epochs. In this way, we have now transformed recursion (1.4), which runs from one sample to

another within the same epoch, into a relation that runs from one starting point to another

over two successive epochs.

To proceed, we will ignore the last two terms in (3.43) and consider the following ap-

proximate model, which we shall refer to as a long-term model.

w̃′k+1
0 = (I − µH)Nw̃′k0 − µ

N−1∑
i=0

(I − µH)N−i−1sσk(i)(w
k
0)︸ ︷︷ ︸

∆
= s′(wk

0)

(3.44)

Obviously, the state evolution will be different than (3.43) and is therefore denoted by the

prime notation, w̃′k0 . Observe, however, that in model (3.44) the gradient noise process is

still being evaluated at the original state vector, wk
0, and not at the new state vector, w′k0 .
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3.4.2 Performance of the Long-Term Model across Epochs

Note that the gradient noise s′(wk
0) in (3.44) has the form of a weighted sum over one epoch.

This noise clearly satisfies the property:

E [ s′(wk
0) |wk

0 ] = 0 (3.45)

We also know that s′(wk
0) satisfies the Markov property, i.e., it is independent of all previous

wk′
i and σk

′
(·), where k′ < k, conditioned on wk

0. To motivate the next lemma consider the

following auxiliary setting.

Assume we have a collection of N vectors {xi} in R2 whose sum is zero. We define a

random walk over these vectors in the following manner. At each time instant, we select a

random vector xni
uniformly and with replacement from this set and move from the current

location along the vector xni
to the next location. If we keep repeating this construction,

we obtain behavior that is represented by the right plot in Fig. 5. Assume instead that

we repeat the same experiment except that now we assume the data {xi} is first reshuffled

and then vectors xσ(i) are selected uniformly without replacement. Because of the zero sum

property, and because sampling is now performed without replacement, we find that in this

second implementation we always return to the origin after N selections. This situation is

illustrated in the left plot of the same Fig. 3.5. The next lemma considers this scenario and

provides useful expressions that allow us to estimate the expected location after 1, 2 or more

(unitl N − 1) movements. These results will be used in the sequel in our analysis of the

performance of stochastic learning under RR.

Lemma 3.1 Suppose we have a set of N vectors X = {xi}Ni=1 with the constraint
∑N

i=1 xi =

0. Assume the elements of X are randomly reshuffled and then selected uniformly without

replacement. Let β be any nonnegative constant, B be any symmetric positive semi-definite

matrix, and introduce

Rx
∆
=

1

N

N∑
i=1

xix
T
i (3.46)
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Var(X)
∆
=

1

N

N∑
i=1

‖xi‖2 = Tr(Rx) (3.47)

Define the following functions for any 1 ≤ n ≤ N :

f(n;X, β)
∆
= E

∥∥∥∥∥
n∑
j=1

βn−jxσ(j)

∥∥∥∥∥
2

(3.48)

F (n;X,B)
∆
= E

[
n∑
j=1

Bn−jxσ(j)

][
n∑
j=1

xTσ(j)B
n−j

]
(3.49)

It then holds that

f(n;X, β) =
(
∑n−1

i=0 β
2i)N − (

∑n−1
i=0 β

i)2

N − 1
Var(X) (3.50)

F (n;X,B) =

[∑n−1
i=0 B

iRxB
i
]
N −

[∑n−1
i=0 B

i
]
Rx

[∑n−1
i=0 B

i
]

N − 1
(3.51)

Proof: The proof is provided in Appendix 3.B. �

We now return to the stochastic gradient implementation under random reshuffling. Re-
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call from (3.3) that the stochastic gradient satisfies the zero sample mean property so that

N∑
i=1

sσk(i)(w) = 0 (3.52)

at any given point w. Applying Lemma 3.1, we readily conclude that

E [s′(wk
0)s′(wk

0)T |wk
0] =

N
(∑N−1

i=0 (I − µH)iRk
s(I − µH)i

)
N − 1

−
[∑N−1

i=0 (I − µH)i
]
Rk
s

[∑N−1
i=0 (I − µH)i

]
N − 1

(3.53)

where

Rk
s

∆
=

1

N

N∑
n=1

sn(wk
0)sn(wk

0)T (3.54)

Similarly, we conclude for the gradient noise at the optimal w?:

R′?s
∆
= E [s′(w?)s′(w?)T]

=
N
(∑N−1

i=0 (I − µH)iR?
s(I − µH)i

)
N − 1

−
[∑N−1

i=0 (I − µH)i
]
R?
s

[∑N−1
i=0 (I − µH)i

]
N − 1

(3.55)

where

R?
s =

1

N

N∑
i=0

∇Q(w?;xi)∇Q(w?;xi)
T (3.56)

Theorem 3.2 (Performance of Long-term Model) Under assumptions 3.1 and 3.2, when

the step size µ is small enough, the mean-square-deviation (MSD) of the long term model

(3.44) is given by

MSDlt
RR

∆
= lim sup

k→∞
‖w′k0 − w?‖2

=µ2Tr
(
(I − (I − µH)2N)−1R′?s

)
+O(µ4) (3.57)
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Proof: See Appendix 3.C. �

The simulations in Fig. 3.6 show that the MSD expression (3.57) fits well the perfor-

mance of the original random reshuffling algorithm. We will establish this fact analytically

in the sequel. For now, the simulation is simply confirming that the performance of the

long-term model is a good indication of the performance of the original stochastic gradient

implementation under RR.
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Figure 3.6: Mean-square-deviation perfromance of random reshuffling algorithm curve on
least-mean-square cost function

3.4.3 Performance of the Long-Term Model over Iterations

In the previous section we examined the performance of the long-term model at the starting

points of successive epochs. In this section, we examine the performance of the same model
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at any iterate wk
i as time approaches∞. This analysis will help explain the oscillations that

are observed in the learning curves in the simulations. First, similar to (3.55), we need to

determine the covariance matrix R′?s,i for any i. From Lemma 3.1, we immediately get that

R′?s,i
∆
= Es′i(w?)s′i(w?)T

=
N
(∑i−1

j=0(I − µH)jR?
s(I − µH)j

)
N − 1

−
[∑i−1

j=0(I − µH)j
]
R?
s

[∑i−1
j=0(I − µH)j

]
N − 1

(3.58)

Theorem 3.3 (Performance Upper-bound for Long- Term Model) Under assumptions

3.1 and 3.2, when the step size µ satisfies µ ≤ 2
δ+ν

, the upper-bound of mean-square-deviation

(MSD) of the long term model (3.44) at all iterations is given by

lim
k→∞

E‖w̃′ki ‖2

≤(1− µν)2iµ2Tr
((
I − (I − µH)2N

)−1
R′?s

)
+
(

1−(1−µν)2i
)
µ2Tr

((
I−(I−µν)2i

)−1
R′?s,i

)
(3.59)

∆
= ηiMSDlt

RR + (1− ηi)MSDlt
RR,i (3.60)

Proof :— See Appendix 3.D. �

We need to point out unlike that (3.57), expression (3.131) is an upper-bound rather

than an actual performance expression. Still, this bound can help provide useful insights

on the periodic behavior that is observed in the simulations. The expression (3.59) on the

right-hand side is a convex combination of two performance measures as defined in (3.60),

where the second term is always larger than the first term but approaching it as i increases

towards N . This behavior will become clearer later in the context of an example and the

hyperbolic representation in section 3.5.2.

Before we continue, we would like to comment on the convergence curve under random
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reshuffling. Unlike the convergence curve under uniform sampling, we observe periodic fluc-

tuations under random reshuffling in Figures 3.2 and 3.6. The main reason for this behavior

is the fact that the gradient noise is no longer i.i.d. in steady-state. Specifically, the noise

variance is now a function of the iterate and it assumes its lowest value at the beginning and

end of every epoch. In lemma 3.1, we show that the variance of the random walk process

resulting from random reshuffling at each iteration n in Eq. (3.50). We plot the function for

N = 20 and Var(x) = 1 in Fig. 3.7. Since the mean-square performance of the algorithm

is related to the variance of the gradient noise, it is expected that this bell-shape behavior

will be reflected in to the MSD curve as well, thus, resulting in better performance at the

beginning and end of every epoch.
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Figure 3.7: The variance function f(n;X,β) at (3.50) versus n with different β value.

3.4.4 Mismatch Bound

Now we provide an upper bound on the mismatch between the long-term model (3.44) and

the original algorithm (1.4).

Lemma 3.2 (Mismatch Bound) After long enough iterations, i.e., k � 1, the difference

between the long term model trajectory (3.44) and the original trajectory (1.4) is

lim sup
k→∞

E‖w̃′k0 − w̃
k
0‖2 ≤ 4µ2δ2N2

ν2(N − 1)
K +O(µ3) (3.61)
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Proof: See Appendix 3.F. �

3.5 Quadratic Risks and Hyperbolic Representation

Lastly, we consider an example involving a quadratic (least-squares) risk to show that, in

this case, the long-term model provides the exact MSD for the original algorithm. The

analysis will also provide some insights into expression (3.57). It also motivates a hyperbolic

representation for the MSD, which helps provides some more insights into the MSD behavior.

3.5.1 Quadratic Risks

Thus, consider the following quadratic risk function:

min
w
J(w) =

1

2N

N∑
n=1

‖Aw − xn‖2 (3.62)

where A has full column rank. We have:

∇wJ(w) =ATAw − AT

(
1

N

N∑
n=1

xn

)
︸ ︷︷ ︸

∆
= x̄

(3.63)

∇wQ(w;xn) =ATAw − ATxn (3.64)

∇2J(wki ) =ATA (3.65)

sn(w) =AT(xn − x̄) (3.66)

Since the gradient noise sn(w) is independent of w, we have

sn(wk
i )− sn(wk

0) ≡ 0 (3.67)

Moreover, since the risk is quadratic, it also holds that

ξ(w) ≡ 0 (3.68)
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Therefore, the long-term model is exactly the same as the original algorithm. For this

example, we can calculate the following quantities:

w? = (ATA)−1ATx̄ (3.69)

R?
s =AT 1

N

N∑
n=1

(xn − x̄)(xn − x̄)TA = ATRxxA (3.70)

Var(x) =
1

N

N∑
n=1

‖xn − x̄‖2 (3.71)

I − µH = I − µATA (3.72)

In special case when the columns of A are orthogonal and normalized, i.e., ATA = I, we can

simplify the MSD expression (3.57) by noting that

R′?s =
1

N − 1

(
N

N−1∑
i=0

(1− µ)2i −
(N−1∑

i=0

(1− µ)i
)2
)
ATRxxA

=
1

N − 1

(
N(1− (1− µ)2N)

1− (1− µ)2
−
(

1− (1− µ)N

1− (1− µ)

)2
)
ATRxxA

=
1

N − 1

(
N(1− (1− µ)2N)

2µ− µ2
−
(
1− (1− µ)N

)2

µ2

)
ATRxxA (3.73)

and, hence,

MSDRR =µ2Tr
(
(1− (1− µ)2N)−1R′?s

)
=

µ2

N − 1

(
N

2µ− µ2
− (1− (1− µ)N)2

µ2(1− (1− µ)2N)

)
Var(x)

=
µ2

N − 1

(
N

2µ− µ2
− 1− (1− µ)N

µ2(1 + (1− µ)N)

)
Var(x) (3.74)

In order to provide further insights on this MSD expression, we simplify it under a small µ

assumption. We could introduce the Taylor series:

(1− µ)N = 1−Nµ+O(N2µ2) (3.75)
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However, this approximation can be bad if N is large, which is not uncommon in big data.

Instead, we appeal to:

(1− µ)N = eN ln(1−µ) = e−µN+O(µ2N) ≈ e−µN (3.76)

Notice it is O(µ2N) instead of O(µ2N2), and therefore (3.76) is a tighter approximation than

(3.75) when N is large. Based on this, we further approximate:

1− (1− µ)N

1 + (1− µ)N
≈ tanh(µN/2) (3.77)

and arrive at the simplified expression:

MSDRR ≈
µ

N − 1

(
N

2
−

tanh(µN
2

)

µ

)
Var(x)

=
µ

2

N

N − 1

(
1− 2

µN
tanh

(µN
2

))
Var(x) (3.78)

For comparison purposes, we know that a simplified expression for MSD under uniform

sampling has the following expression [13]:

MSDus =
µ

2
Var(x) (3.79)

Hence, the random reshuffling case has an extra multiplicative factor:

mRR
∆
=

N

N − 1

(
1− 2

µN
tanh

(µN
2

))
(3.80)

We plot mRR versus µN in the left plot of Fig. 3.8 where we ignore N
N−1

. Now it is clear from

the figure that the smaller the step size µ or the smaller sample size N are, the larger the

improvement in performance is. In contrast, when µN goes to infinity, the term mRR will

converge to 1, i.e., the same performance as uniform sampling situation, which is consistent

with the infinite-horizon case.
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Lastly, noting that

R′?s,i =
1

N − 1

(
N

i−1∑
j=0

(1− µ)2j −
( i−1∑
j=0

(1− µ)j
)2
)
ATRxxA

=
1

N − 1

(
N(1− (1− µ)2i)

1− (1− µ)2
−
(

1− (1− µ)i

1− (1− µ)

)2
)
ATRxxA

=
1

N − 1

(
N(1− (1− µ)2i)

2µ− µ2
− (1− (1− µ)i)

2

µ2

)
ATRxxA (3.81)

and using the approximation (3.76):

R′?s,i ≈
N

N − 1

(
1− e−2µi

2µ
− (1− e−µi)2

µ2N

)
ATRxxA (3.82)

in (3.59) we get for i ∈ [1, N ]:

lim
k→∞

E‖w̃′ki ‖2 ≈ e−2µiµ

2

N

N − 1

(
1− 2

µN
tanh

(
µN

2

))
Var(x)

+ (1− e−2µi)
µ

2

N

N − 1

(
1− 2

µN
tanh

(
µi

2

))
︸ ︷︷ ︸

∆
= mRR(i)

Var(x) (3.83)

Since tanh(·) is monotonically increasing, mRR(i) ≥ mRR. With i increasing, the convex
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combination gives more weight to the second term, which is larger than the first term. This

explains the increasing of MSD at the first half of the cycle. With i increasing further,

mRR(i) will decrease to the same level as mRR. Hence, MSD at the second half of the cycle

will decrease again. The simulation result shows in the right plot of Fig. 3.8 fits with the

theoretical analysis for quadratic risks rather well.

3.5.2 Hyperbolic Representation for the MSD

Motivated by the result for the quadratic risk case, we now derive a similar expression for

the MSD more generally also in terms of a tanh function. First, we extend result (3.76) into

a matrix version. Supposing Λ is a positive diagonal matrix and µ is sufficiently small such

that I − µΛ is a stable matrix, we have

(I − µΛ)N ≈ e−µNΛ (3.84)

and

N−1∑
i=0

(I − µΛ)i =
1

µ
(I − µΛ)NΛ−1

≈ 1

µ
e−µNΛΛ−1 (3.85)

It follows that

Tr

(
(I − (I − µH)2N)−1

(
N−1∑
i=0

(I − µH)iR?
s(I − µH)i

))
(3.122)

= Tr

(
N−1∑
i=0

∞∑
k=0

(I − µH)i(I − µH)2kN(I − µH)iR?
s

)

= Tr

(
∞∑
k=0

N−1∑
i=0

(I − µH)2(kN+i)R?
s

)
(a)
= Tr

(
∞∑
j=0

(I − µH)2jR?
s

)

= Tr
(
(I − (I − µH)2)−1R?

s

)
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≈ 1

2µ
Tr(H−1R?

s) =
1

2µ
Tr(Λ−1UTR?

sU) (3.86)

where in step (a) we used the fact that kN + i is the N -modular representation of all integer

numbers. To shorten the notation, we let:

τ
∆
= µN (3.87)

Next, for the second part of (3.57):

Tr

(
(I − (I − µH)2N)−1

[N−1∑
i=0

(I − µH)i
]
R?
s

[N−1∑
i=0

(I − µH)i
])

(a)
=

1

µ2
Tr
(

(I − e−2τΛ)−1(I − e−τΛ)Λ−1UTR?
sUΛ−1(I − e−τΛ)

)
=

1

µ2
Tr
(

Λ−1(I − e−τΛ)(I − µe−2τΛ)−1(I − e−τΛ)Λ−1UTR?
sU
)

(b)
=

1

µ2
Tr
(

Λ−1(I + e−τΛ)−1(I − e−τΛ)Λ−1UTR?
sU
)

=
1

µ2
Tr
(

Λ−1 tanh(τΛ/2)Λ−1UR?
sU

T
)

=
N

2µ
Tr
(

2τ−1Λ−1 tanh(τΛ/2)Λ−1UR?
sU

T
)

(3.88)

where step (a) replaces H by its eigendecomposition and uses (3.85), while step (b) exploits

the fact that

I − e−2τΛ = (I + e−τΛ)(I − e−τΛ) (3.89)

Moreover, the tanh notation refers to

tanh Λ = diag{tanh(Λ1,1), · · · , tanh(ΛM,M)} (3.90)
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Combining the above two results gives

MSDlt
RR =

µ

2
Tr

(
N

N − 1

[
I − 2

µN
Λ−1 tanh

(µN
2

Λ
)]

︸ ︷︷ ︸
∆
= MRR

Λ−1UTR?
sU

)
(3.91)

Compared with the uniform sampling case:

MSDUS =
µ

2
Tr
(
H−1R?

s

)
=
µ

2
Tr
(
Λ−1UTR?

sU
)

(3.92)

Now, it is clear that the diagonal matrix factor MRR serves the same purpose as mRR. Each

entry of this factor matrix captures the improvement of random reshuffling over uniform

sampling. Lastly, we focus on the order of expression (3.92). We know from the Taylor’s

expansion that

1− 1

x
tanh(x) = O(x2) (3.93)

We conclude that

MRR = O(µ2N2) =⇒ MSDlt
RR = O(µ3) (3.94)

that confirms the observation of O(µ3) in the Fig. 3.2.

Lastly, similar to the derivation for the quadratic case (3.81)–(3.83), we can establish the

hyperbolic representation of MSD for general case at all iterations:

lim
k→∞

E‖w̃′ki ‖2 ≈e−2µiµ

2
Tr

(
N

N − 1

[
I − 2

µN
Λ−1 tanh

(µN
2

Λ
)]

Λ−1UTR?sU

)

+(1−e−2µi)
µ

2
Tr

(
N

N−1

[
I− 2

µN
Λ−1tanh

(µi
2

Λ
)]

︸ ︷︷ ︸
∆
= MRR(i)

Λ−1UTR?sU

)
(3.95)
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3.5.3 Infinite-Horizon Case

In this work, we are mostly interested in the finite-data case, where the data size is N . The

results so far are based on this assumption. However, it is inspiring though to see how the

performance result would simplify if we allow N to grow to infinity. In that case, we get

lim
N→∞

MSDlt
RR = µ2 lim

N→∞
Tr
(
(I − (I − µH)2N)−1R′?s

)
= µ2 lim

N→∞
Tr (R′?s ) (3.96)

since for sufficiently small µ, the matrix I − µH is stable. Moreover, observe further that:

lim
N→∞

N−1∑
i=0

(I − µH)2i =
(
I − (I − µH)2

)−1

=
1

2µ
H−1

(
I − µH/2

)−1

=
1

2µ
H−1 +O(1) (3.97)

where O(1) represents a matrix where all entries are O(1). Hence,

lim
N→∞

Tr (R′?s ) = Tr
(

lim
N→∞

R′?s

)
= Tr

(
lim
N→∞

N∑
i=0

(I − µH)iR?
s(I − µH)i

)

= Tr

(
lim
N→∞

N∑
i=0

(I − µH)2iR?
s

)
(3.98)

=
1

2µ
Tr(H−1R?

s) +O(1) (3.99)

Substituting this result back into (3.96), we establish:

lim
N→∞

MSDlt
RR =

µ

2
Tr(H−1Rs) +O(µ2) (3.100)

which is exactly the same expression we have in the streaming data case [11]. If we examine

the hyperbolic approximation of MSD, performance is proportional to tanh(µN), which

62



implies the performance will degrade with µN but it will saturate if µN keeps increasing.

Equation (3.100) shows that the limit value is the same as the uniform sampling case.

3.6 Concluding Remarks

In conclusion, this chapter studies the performance of stochastic gradient implementations

under random reshuffling and provides a detailed analytical justification for the improved

performance of these implementations over uniform sampling. The work focuses on constant

step-size adaptation, where the agent is continuously learning. The analysis establishes

analytically that random reshuffling outperforms uniform sampling by showing that iterates

approach a smaller neighborhood of size O(µ2) around the minimizer rather than O(µ).

Simulation results illustrate the theoretical findings. We also summarize the conclusions in

Table 3.1.

3.A Derivation of (3.13)

Indeed, from Lipschitz continuity of the gradients, we have

N−1∑
i=0

∥∥gσk(i)(w
k
i )
∥∥2 ≤

N−1∑
i=0

δ2
∥∥wk

i −wk
0

∥∥2

= δ2

N−1∑
i=0

∥∥∥∥∥
i∑

j=1

(wk
j −wk

j−1)

∥∥∥∥∥
2

(3.12)

≤ δ2

N−1∑
i=0

i

i∑
j=1

‖wk
j −wk

j−1‖2 (3.101)

Using the equivalence relation

N−1∑
i=0

i∑
j=1

aij ≡
N−1∑
j=1

N−1∑
i=j

aij (3.102)
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we obtain

N−1∑
i=0

∥∥gσk(i)(w
k
i )
∥∥2 ≤δ2

N−1∑
j=1

N−1∑
i=j

i‖wk
j −wk

j−1‖2

≤δ
2N2

2

N−1∑
j=1

‖wk
j −wk

j−1‖2

≤δ
2N2

2

N∑
j=1

‖wk
j −wk

j−1‖2 (3.103)

where in the second inequality we used the fact that

N−1∑
i=j

i ≤
N−1∑
i=0

i =
N(N − 1)

2
≤ N2

2
, j = 1, 2, . . . , N (3.104)

We can recursively bound the difference terms in (3.103) as follows. From (1.4), we have

‖wk
j −wk

j−1‖2 =µ2‖∇wQ(wj−1;xσk(j))‖2

≤2µ2‖∇wQ(wj−1;xσk(j))−∇wQ(w?;xσk(j))‖2

+ 2µ2‖∇wQ(w?;xσk(j))‖2

≤2µ2δ2‖w̃k
j−1‖2 + 2µ2‖∇wQ(w?;xσk(j))‖2

≤4µ2δ2‖w̃k
0‖2 + 4µ2δ2‖wk

j−1 −wk
0‖2 + 2µ2‖∇wQ(w?;xσk(j))‖2 (3.105)

Summing over j:

N∑
j=1

‖wk
j −wk

j−1‖2
(3.6)

≤ 4µ2δ2N‖w̃k
0‖2 + 2µ2NK + 4µ2δ2

N∑
j=1

‖wk
j−1 −wk

0‖2

= 4µ2δ2N‖w̃k
0‖2 + 2µ2NK + 4µ2δ2

N∑
j=1

∥∥∥∥∥
j−1∑
i=1

(wk
i −wk

i−1)

∥∥∥∥∥
2

(3.12)
= 4µ2δ2N‖w̃k

0‖2 + 2µ2NK + 4µ2δ2

N∑
j=1

j−1∑
i=1

(j − 1)‖wk
i −wk

i−1‖2

(3.102)
= 4µ2δ2N‖w̃k

0‖2 + 2µ2NK + 4µ2δ2

N−1∑
i=1

N∑
j=i+1

(j − 1)‖wk
i −wk

i−1‖2
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(3.104)

≤ 4µ2δ2N‖w̃k
0‖2 + 2µ2NK + 2µ2δ2N2

N−1∑
j=1

‖wk
j −wk

j−1‖2

≤ 4µ2δ2N‖w̃k
0‖2 + 2µ2NK + 2µ2δ2N2

N∑
j=1

‖wk
j −wk

j−1‖2 (3.106)

Rearranging the terms, we get

(1− 2µ2δ2N2)
N∑
j=1

‖wk
j −wk

j−1‖2 ≤ 4µ2δ2N‖w̃k
0‖2 + 2µ2NK (3.107)

After substituting into (3.103) and simplifying, we establish (3.13).

3.B Proof of Lemma 3.1

We employ mathematical induction. First, it is easy to verify that f(1;X, β) = Var(X).

Now, assuming (3.50) is correct for case n, we consider case n+ 1:

f(n+ 1;X, β) = E

∥∥∥∥∥
n+1∑
j=1

βn+1−jxσ(j)

∥∥∥∥∥
2

= E

∥∥∥∥∥β
n∑
j=1

βn−jxσ(j) + xσ(n+1)

∥∥∥∥∥
2

= β2E

∥∥∥∥∥
n∑
j=1

βn−jxσ(j)

∥∥∥∥∥
2

+ E‖xσ(n+1)‖2 + 2βE

(
n∑
j=1

βn−jxσ(j)

)T

xσ(n+1)

(3.108)

From the uniform random reshuffling property (1.7), we know that:

E‖xσ(n+1)‖2 = Var(x) (3.109)
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For the cross terms, we exploit the law of total expectation [70]:

E

(
n∑
j=1

βn−jxσ(j)

)T

xσ(n+1) = Eσ(1:n)

Eσ(n+1)

(
n∑
j=1

βn−jxσ(j)

)T

xσ(n+1)

∣∣∣σ(1 : n)


(1.8)
= Eσ(1:n)

( n∑
j=1

βn−jxσ(j)

)T
 1

N − n
∑

j /∈σ(1:n)

xj


= − 1

N − n
Eσ(1:n)

( n∑
j=1

βn−jxσ(j)

)T n∑
j=1

xσ(j)


= − 1

N − n
Eσ(1:n)

n∑
j=1

βn−j‖xσ(j)‖2

− 1

N − n
Eσ(1:n)

n∑
i=1

βn−i

(
n∑

j=1,j 6=i

xTσ(i)xσ(j)

)
(3.110)

Without loss of generality, we assume i < j in the following argument. If i > j, exchanging

the place of xσ(i) and xσ(j) leads to the same conclusion:

Eσ(1:n)

[
xTσ(i)xσ(j)

]
= Eσ(i),σ(j)

[
xTσ(i)xσ(j)

]
= Eσ(i)

{
xTσ(i)Eσ(j)[xσ(j) |σ(i)]

}
(1.8)
= − 1

N − 1
Eσ(i)‖xσ(i)‖2

= − 1

N − 1
Var(X) (3.111)

Substituting (3.111) into (3.110), we obtain:

E

(
n∑
j=1

βn−jxσ(j)

)T

xσ(n+1) =− 1

N − n

(
n∑
j=1

βn−j −
n∑
j=1

βn−j
n− 1

N − 1

)
Var(X)

= − 1

N − 1

n∑
j=1

βj−1Var(X) (3.112)
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Combining (3.108), (3.109), and (3.112), we get:

f(n+ 1;X, β) =β2f(n;X, β) + Var(X)− 2

N − 1

n∑
j=1

βjVar(X)

=

(
β2 (
∑n−1

i=0 β
2i)N − (

∑n−1
i=0 β

i)2

N − 1
+ 1−

2
∑n

j=1 β
j

N − 1

)
Var(X)

=
(
∑n

i=1 β
2i)N − (

∑n
i=1 β

i)2 + (N − 1)− 2
∑n

j=1 β
j

N − 1
Var(X)

=
[(
∑n

i=1 β
2i)N +N ]− [(

∑n
i=1 β

i)2 + 2
∑n

j=1 β
j + 1]

N − 1
Var(X)

=
(
∑n

i=0 β
2i)N − (

∑n
i=0 β

i)2

N − 1
Var(X) (3.113)

Hence, we conclude that (3.50) is valid.

Next, the proof of (3.51) is similar. It is easy to verify that F (1;X,B) = Rx. Assuming

(3.51) is correct for case n, we consider case n+ 1:

F (n+ 1;X,B) = E

[
n∑
j=1

Bn−jxσ(j) + xσ(n+1)

][
n∑
j=1

xTσ(j)B
n−j + xσ(n+1)

]

=BF (n;X,B)B + E
n∑
j=1

Bn−jxσ(j)x
T
σ(n+1)

+ E
n∑
j=1

xσ(n+1)x
T
σ(j)B

n−j +Rs

(1.8)
= BF (n;X,B)B − 1

N − n
E

n∑
j=1

n∑
i=1

Bn−j xσ(j)x
T
σ(i)

− 1

N − n
E

n∑
j=1

n∑
i=1

xσ(i)x
T
σ(j)B

n−j +Rs

(a)
= BF (n;X,B)B − 1

N − 1

n∑
j=1

Bn−jRs −
1

N − 1

n∑
j=1

RsB
n−j +Rs (3.114)

where in the step (a) we use the same trick as (3.112):

E
n∑
j=1

n∑
i=1

Bn−jxσ(j)x
T
σ(i)
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=E
n∑
j=1

Bn−jxσ(j)x
T
σ(j) + E

n∑
j=1

∑
i 6=j

Bn−jxσ(j)x
T
σ(i)

=
n∑
j=1

Bn−jRs −
1

N − 1
E

n∑
j=1

Bn−jxσ(j)xσ(j) (3.115)

Now if we substitute the F (n;X,B) according to (3.51) into (3.114), we will conclude that

the format of (3.51) is still valid for F (n+ 1;X,B), which completes the proof.

3.C Proof of Theorem 3.2

We introduce the eigen-decomposition [71]

H = UΛUT (3.116)

where U is orthogonal and Λ is diagonal with positive entries. Transforming (3.44) into the

eigenvector space of H, we obtain:

UTw̃′k+1
0 = (I − µΛ)NUTw̃′k0 − µUTs′(wk

0) (3.117)

Let

w̄k
0

∆
= UTw̃′k0 (3.118)

and introduce any positive-definite matrix Σ. Computing the weighted square norm of both

sides of (3.117) and taking expectations we get

E‖w̄k+1
0 ‖2

Σ

(3.45)
= E‖(I − µΛ)Nw̄k

0‖2
Σ + µ2E‖UTs′(wk

0)‖2
Σ (3.119)

where ‖x‖2
Σ

∆
= xTΣx and we are free to choose Σ. The cross term is canceled thanks to

property (3.45). Letting k →∞, we get

lim
k→∞

E‖w̄k
0‖2

Σ−(I−µΛ)NΣ(I−µΛ)N = lim
k→∞

µ2E‖UTs′(wk
0)‖2

Σ (3.120)
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To recover the mean-square-deviation E‖w̄k
0‖2, we choose Σ as the solution to the Lyapunov

equation:

Σ− (I − µΛ)NΣ(I − µΛ)N = I (3.121)

which is given by

Σ? =
∞∑
k=0

(I − µΛ)2Nk =
(
I − (I − µΛ)2N

)−1
(3.122)

The desired MSD is given by:

MSDlt
RR

∆
= lim

k→∞
E‖w̃′k0 ‖2 = lim

k→∞
E‖w̄k

0‖2 (3.123)

and, hence,

lim
k→∞

E‖w̄k
0‖2 (3.120)

= lim
k→∞

µ2E‖UTs′(wk
0)‖2

Σ?

= lim
k→∞

µ2Tr
(
UΣ?UTEs′(wk

0)s′(wk
0)T
)

= lim
k→∞

µ2Tr
(
UΣ?UTEs′(w?)s′(w?)T

)
+

lim
k→∞

µ2Tr
(
UΣ?UTEs′(wk

0)s′(wk
0)T − Es′(w?)s′(w?)T

)
=µ2Tr

(
UΣ?UTEs′(w?)s′(w?)T

)
+O(µ4) (3.124)

The proof of last equality is provided in Appendix 3.E. Combining (3.122) and the fact that

U is the eigenvector matrix of H, we get:

MSDlt
RR =µ2Tr

(
U

∞∑
k=0

(I − µΛ)2NkUTEs′(w?)s′(w?)T
)

+O(µ4)

=µ2Tr

(
∞∑
k=0

(I − µH)2NkEs′(w?)s′(w?)T
)

+O(µ4)

=µ2Tr
((
I − (I − µH)2N

)−1
R′?s

)
+O(µ4) (3.125)
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3.D Proof of Theorem 3.3

Using a similar approach to (3.43), we have

w̃′ki = (I − µH)iw̃′k0 − µ
i∑

j=1

(I − µH)i−jsσk(i)(w
k
0)︸ ︷︷ ︸

∆
= s′i(w

k
0)

(3.126)

where

E [s′i(w
k
0)|wk

0] = µ

i∑
j=1

(I − µH)i−jE
[
sσk(i)(w

k
0)|wk

0

]
= 0

Computing the squared norm and taking expectations we get:

E‖w̃′ki ‖2 = E‖(I − µH)iw̃′k0 ‖2 + µ2E‖s′i(wk
0)‖2 (3.127)

We assume µ is sufficiently small so that ‖I − µH‖ ≤ 1− µν, i.e. requiring µ ≤ 2
ν+δ

and let

t = (1− µν)i. Then,

E‖w̃′ki ‖2 ≤ (1− µν)2iE‖w̃′k0 ‖2 + µ2E‖s′i(wk
0)‖2 (3.128)

From Lemma 3.1, we know that

R′?s,i
∆
= Es′i(w?)s′i(w?)T

=
N
(∑i−1

j=0(I − µH)jR?
s(I − µH)j

)
N − 1

(3.129)

−
[∑i−1

j=0(I − µH)j
]
R?
s

[∑i−1
j=0(I − µH)j

]
N − 1

and

E‖s′i(w?)‖2 = Tr
(
Es′i(w?)s′i(w?)T

)
(3.130)
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With k →∞, we obtain:

lim
k→∞

E‖w̃′ki ‖2 ≤(1− µν)2iMSDlt
RR + µ2Tr

(
R′?s,i
)

+O(µ4) (3.131)

where the O(µ4) term comes from the same argument in (3.124).

Substituting the result (3.125), we have

lim
k→∞

E‖w̃′ki ‖2 ≤(1− µν)2iµ2Tr
((
I − (I − µH)2N

)−1
R′?s

)
+ µ2Tr

(
R′?s,i
)

+O(µ4) (3.132)

Lastly, we multiple
(

1−(1−µν)2i
)

and its inverse at the second term of (3.132), which results

in (3.59).

3.E Mismatch of Gradient Noise in (3.124)

In this appendix, we will show that

lim
k→∞

µ2Tr
(
UΣ?UTEs′(wk

0)s′(wk
0)T − Es′(w?)s′(w?)T

)
= O(µ4) (3.133)

which is equivalent to showing

lim
k→∞

Tr
(
UΣ?UTEs′(wk

0)s′(wk
0)T − Es′(w?)s′(w?)T

)
= O(µ2) (3.134)

Using the inequality that |Tr(X)| ≤ c‖X‖ for any square matrix and some constant c, we

can just focus on the norm instead of trace:

∥∥UΣ?UT
(
Es′(wk

0)s′(wk
0)T − Es′(w?)s′(w?)T

)∥∥
≤ ‖UΣ?UT‖

∥∥Es′(wk
0)s′(wk

0)T − Es′(w?)s′(w?)T
∥∥

= O(1/µ)
∥∥Es′(wk

0)s′(wk
0)T − Es′(w?)s′(w?)T

∥∥ (3.135)
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where the last equality is due to

‖UΣ?UT‖ ≤‖Σ?‖

=
∥∥∥(I − (I − µΛ)2N

)−1
∥∥∥

=
∥∥∥(2NµΛ +O(µ2)

)−1
∥∥∥

=O(1/µ) (3.136)

This result implies that we now need to show

lim
k→∞

∥∥Es′(wk
0)s′(wk

0)T − Es′(w?)s′(w?)T
∥∥ = O(µ3) (3.137)

Since we have already established an expression for the covariance matrix of the gradient

noise in (3.53) we have:

E [s′(wk
0)s′(wk

0)T |wk
0] =

N
(∑N−1

i=0 (I − µH)iRk
s(I − µH)i

)
N − 1

−
[∑N−1

i=0 (I − µH)i
]
Rk
s

[∑N−1
i=0 (I − µH)i

]
N − 1

(3.138)

Thus,

E [s′(wk
0)s′(wk

0)T |wk
0]− Es′(w?)s′(w?)T

=
N
(∑N−1

i=0 (I − µH)iR̃k
s(I − µH)i

)
N − 1

−
[∑N−1

i=0 (I − µH)i
]
R̃k
s

[∑N−1
i=0 (I − µH)i

]
N − 1

(3.139)

where

R̃k
s

∆
= Rk

s −R?
s (3.140)

Rk
s

∆
=

1

N

N∑
n=1

sn(wk
0)sn(wk

0)T (3.141)

R?
s

∆
=

1

N

N∑
n=1

sn(w?)sn(w?)T (3.142)
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To simplify the notation, we rewrite the first term as follows:

N

(
N−1∑
i=0

(I − µH)iR̃k
s(I − µH)i

)
=

N−1∑
i=0

N−1∑
j=0

(I − µH)iR̃k
s(I − µH)i (3.143)

Similarly, the second term:

[
N−1∑
i=0

(I − µH)i

]
R̃k
s

[
N−1∑
i=0

(I − µH)i

]
=

N−1∑
i=0

N−1∑
j=0

(I − µH)iR̃k
s(I − µH)j (3.144)

Subtracting (3.143) from (3.144) we obtain (in the following, the notation O(µm) is a matrix

where each entry can be bounded by O(µm)):

E [s′(wk
0)s′(wk

0)T |wk
0]− Es′(w?)s′(w?)T

=
1

N − 1

N−1∑
i=0

N−1∑
j=0

(I − µH)iR̃k
s [(I − µH)i − (I − µH)j]

(a)
=

1

N − 1

N−1∑
i=0

N−1∑
j=0

(I − µH)iR̃k
s [µ(j − i)H +O(µ2)]

(b)
=

1

N − 1
µ
N−1∑
i=0

N−1∑
j=0

(I − µH)iR̃k
s(j − i)H + R̃k

sO(µ2)

(c)
=

1

N − 1
µ
N−1∑
i=0

N−1∑
j=0

(
I +O(µ)

)
R̃k
s(j − i)H + R̃k

sO(µ2)

=
1

N − 1
µ

N−1∑
i=0

N−1∑
j=0

R̃k
s(j − i)︸ ︷︷ ︸

=0

H +O(µ2)R̃k
sH + R̃k

sO(µ2)

= O(µ2)R̃k
sH + R̃k

sO(µ2) (3.145)

where steps (a) and (c) use the binomial expansion, and step (b) assumes the step-size is

small enough so that I − µH is stable. Next, we conclude:

∥∥Es′(wk
0)s′(wk

0)T − Es′(w?)s′(w?)T
∥∥

=
∥∥∥Ewk

0

[
Es′(wk

0)s′(wk
0)T |wk

0

]
− Es′(w?)s′(w?)T

∥∥∥
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(a)

≤ Ewk
0

∥∥∥[Es′(wk
0)s′(wk

0)T |wk
0

]
− Es′(w?)s′(w?)T

∥∥∥
(3.145)

= Ewk
0
‖O(µ2)R̃k

sH + R̃k
sO(µ2)‖

≤ O(µ2)E‖R̃k
s‖ (3.146)

where step (a) applies Jensen’s inequality. Lastly, we prove

lim
k→∞

E‖R̃k
s‖ = O(µ) (3.147)

From (3.140)-(3.142), we have

R̃k
s =Rk

s −R?
s

=
1

N

N∑
n=1

[
sn(wk

0)sn(wk
0)T − sn(w?)sn(w?)T

]
=

1

N

N∑
n=1

[
sn(wk

0)sn(wk
0)T − sn(wk

0)sn(w?)T

+ sn(wk
0)sn(w?)T − sn(w?)sn(w?)T

]
=

1

N

N∑
n=1

[
sn(wk

0)[sn(wk
0)− sn(w?)]T + [sn(wk

0)− sn(w?)]sn(w?)T
]

(3.148)

Next, it is easy to verify that sn(w) is also 2δ-Lipschitz continuity:

‖sn(wk
0)− sn(w?)‖ = ‖∇J(w?)−∇Q(w?;xσk(i))−∇J(wk

0)−∇Q(wk
0;xσk(i))‖

≤ ‖∇J(wk
0)−∇J(w?)‖+ ‖∇Q(wk

0;xn)−∇Q(w?;xn)‖
(3.4)

≤ 2δ‖w̃k
0‖ (3.149)

Taking the expectation of the norm of (3.148):

E‖R̃k
s‖ ≤

1

N

N∑
n=1

E
∥∥sn(wk

0)[sn(wk
0)− sn(w?)]T + [sn(wk

0)− sn(w?)]sn(w?)T
∥∥

(3.149)

≤ 2

N

N∑
n=1

E
(
‖sn(wk

0)‖δ‖w̃k
0‖+ δ‖w̃k

0‖‖sn(w?)‖
)
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≤ 2δ

N

N∑
n=1

√
E‖sn(wk

0)‖2E‖w̃k
0‖2 +

√
E‖w̃k

0‖2‖sn(w?)‖ (3.150)

where the last inequality exploits the Cauchy-Schwartz inequality. Next, as we prove in

theorem 3.1, when k � 1:

E‖w̃k
0‖2 = O(µ2),

E‖sn(wk
0)‖2 ≤ 2E‖sn(wk

0)− sn(w?)‖2 + 2E‖sn(w?)‖2

≤O(µ2) +O(1) = O(1) (3.151)

Substituting the previous results into (3.150), we conclude

E‖R̃k
s‖ ≤

δ

N

N∑
n=1

(√
O(µ2)O(1) +

√
O(µ2)O(1)

)
= O(µ), k � 1 (3.152)

3.F Bound on Long-term Difference

Subtracting (3.43) from (3.44) and then taking the conditional expectation, we obtain:

E
[
‖w̃k+1

0 − w̃′k+1
0 ‖2 | w̃k

0, w̃
′k
0

]
≤ 1

t
‖(I − µH)N‖‖w̃k

0 − w̃
′k
0 ‖2

+
2µ2

1− t
E

∥∥∥∥∥
N−1∑
i=0

(I − µH)N−i−1
(
sσk(i)(w

k
i )− sσk(i)(w

k
0)
)∥∥∥∥∥

2

︸ ︷︷ ︸
B

+
2µ2

1− t
E

∥∥∥∥∥
N−1∑
i=0

(I − µH)N−i−1ξ(wk
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
C

(3.153)

where we exploit the Jensen’s inequality and 0 < t < 1. In the following, we assume the step

size is sufficiently small so that:

‖I − µH‖ ≤ 1− µν (3.154)
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Now, we find a tighter bound on the B term:

B
(a)

≤ E

(
N−1∑
i=0

∥∥(I − µH)N−i−1
∥∥∥∥sσk(i)(w

k
i )− sσk(i)(w

k
0)
∥∥)2

= E

(
N∑
i=1

∥∥(I − µH)N−i
∥∥∥∥sσk(i+1)(w

k
i−1)− sσk(i+1)(w

k
0)
∥∥)2

(3.149)

≤ E

(
N∑
i=1

∥∥(I − µH)N−i
∥∥ 2δ

∥∥wk
i−1 −wk

0

∥∥)2

= 4δ2

N∑
i=1

N∑
j=1

‖I − µH‖(N−i)(N−j)E
∥∥wk

i−1−wk
0

∥∥∥∥wk
j−1−wk

0

∥∥
= 4δ2µ2

N∑
i=1

N∑
j=1

‖I − µH‖(N−i)(N−j)×

E

∥∥∥∥∥
i−1∑
n=1

∇wQ(wk
n−1;xσk(n))

∥∥∥∥∥
∥∥∥∥∥
j−1∑
n=1

∇wQ(wk
n−1;xσk(n))

∥∥∥∥∥
(b)

≤ 4δ2µ2

N∑
i=1

N∑
j=1

(1− µν)(N−i)(N−j)×√√√√E

∥∥∥∥∥
i−1∑
n=1

∇Q(wk
n−1;xσk(n))

∥∥∥∥∥
2

E

∥∥∥∥∥
j−1∑
n=1

∇Q(wk
n−1;xσk(n))

∥∥∥∥∥
2

= 4δ2µ2

 N∑
i=1

(1− µν)N−i

√√√√E

∥∥∥∥∥
i−1∑
n=1

∇wQ
(
wk
n−1;xσk(n)

)∥∥∥∥∥
2


2

(3.155)

where step (a) exploits the triangular inequality, and the sub-multiplicative property of

norms, and step (b) uses Cauchy-Schwartz. Then, we establish the following when k is large

enough:

E
∥∥∥ i−1∑
n=1

∇wQ
(
wk
n−1;xσk(n)

)∥∥∥2

=E

∥∥∥∥∥
i−1∑
n=1

(
∇Q(wk

0;xσk(n))−∇Q(w?;xσk(n))+∇Q(w?;xσk(n))
)∥∥∥∥∥

2

≤ 2E

∥∥∥∥∥
i−1∑
n=1

∇wQ
(
w?;xσk(n)

)∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
i−1∑
n=1

(
∇Q(wk

0;xσk(n))−∇Q(w?;xσk(n))
) ∥∥∥∥∥

2
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= 2
(i− 1)N − (i− 1)2

N − 1
K +O(µ2) (3.156)

where the last equality is because we already conclude from Lemma 3.1 and (3.6) that

E

∥∥∥∥∥
i−1∑
n=1

∇wQ(w?;xσk(n))

∥∥∥∥∥
2

=
(i− 1)N − (i− 1)2

N − 1
K (3.157)

Moreover, we know that for sufficiently large k:

E

∥∥∥∥∥
i−1∑
n=1

(
∇wQ(wk

0;xσk(n))−∇wQ(w?;xσk(n))
)∥∥∥∥∥

2

≤ (i− 1)E
i−1∑
n=1

∥∥∇wQ(wk
0;xσk(n))−∇wQ(w?;xσk(n))

∥∥2

≤ δ2(i− 1)E
i−1∑
n=1

‖w̃k
i−1‖2

=O(µ2) (3.158)

Substituting previous results into (3.155):

B ≤4δ2µ2

(
N∑
i=1

(1− µν)N−i
√

2
(i− 1)N − (i− 1)2

N − 1
+O(µ2)

)2

K

(3.159)

We know for any 0 ≤ i ≤ N

(i− 1)N − (i− 1)2

N − 1
≤ N2

4(N − 1)
(3.160)

and, hence,

B ≤4δ2µ2

(
N2

2(N − 1)
+O(µ2)

)(
1− (1− µν)N

µν

)2

K

=
2δ2N2

ν2(N − 1)
(1− (1− µν)N)2K +O(µ2) (3.161)
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Next, we can bound the term C when epoch k is sufficiently large:

C ≤N
N∑
i=1

E‖(I − µN)N−iξ(wk
i−1)‖2

≤N
N∑
i=1

E‖ξ(wk
i−1)‖2

(3.38)

≤ κ2N

4

N∑
i=1

E‖w̃k
i−1‖4

=O(µ4) (3.162)

where the last equality is due to (3.21):

‖w̃k+1
0 ‖4 ≤

((
1− 1

2
µNν

)
‖w̃k

0‖2 +
2µ3δ2N3

ν
K
)2

≤

(
1− 1

2
µNν

)2

s
‖w̃k

0‖4 +
4µ6δ4N6

(1− s)ν2
K2 (3.163)

Let s = 1− 1
2
µNν, we obtain:

‖w̃k+1
0 ‖4 ≤

(
1− 1

2
µNν

)
‖w̃k

0‖4 +
8µ5δ4N5

ν3
K2 (3.164)

After letting k →∞ and taking expectation, we conclude E‖w̃k
0‖4 = O(µ4).

Lastly, choosing t = (1−µν)N in (3.153) and combining (3.161) and (3.162), we establish:

E
[
‖w̃k+1

0 − w̃′k+1
0 ‖2

]
≤ (1− µν)NE‖w̃k

0 − w̃
′k
0 ‖2

+
2µ2

1− (1− µν)N
2δ2N2

ν2(N − 1)
(1− (1− µν)N)2K +O(µ4) (3.165)

Letting k →∞, we conclude

E‖w̃k
0 − w̃

′k
0 ‖2 ≤ 4µ2δ2N2

ν2(N − 1)
K +O(µ3) (3.166)
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3.G Convergence for RR under Decaying Step-Sizes

In this section, we provide a sketch of the proof for the convergence of random reshuffling

under decaying step-sizes. A more detailed discussion can be found in [72]. Here, we follow

an alternate argument by modifying our derivation to arrive at a similar conclusion.

First, observe that inequality (3.23) continues to hold for decaying step-sizes:

E‖w̃k+1
0 ‖2 ≤

(
1− 1

2
µ(k)Nν

)
E‖w̃k

0‖2 +
2µ(k)3δ2N3

ν
K (3.167)

For simplicity, we only consider step-size sequences of the form:

µ(k) =
c

k + 1
, k ≥ 0 (3.168)

where c is some positive constant. Then, we can exploit the Chung’s lemma [17] or [11,

Lemma F.5]:

Lemma 3.3 Let u(k) ≥ 0 denote a scalar sequence that satisfies the inequality recursion:

u(k + 1) ≤ [1− a(k)]u(k) + b(k), k ≥ 0 (3.169)

When the scalar squences {a(k), b(k)} are of the form

a(k) =
c

k + 1
, b(i) =

d

(k + 1)p+1
, c > 0, d > 0, p > 0 (3.170)

it holds that, for large enough k, the sequence u(k) converges to zero at one of the following

rates depending on the value of c:


u(k) ≤

(
d
c−p

)
1/kp + o(1/kp) c > p

u(k) = O(log(k)/kp), c = p

u(k) = O(1/kc), c < p

(3.171)

The fastest convergence rate occurs when c > p and is in the order of 1/kp
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Comparing (3.167) and (3.169), we have

cNν

2(k + 1)
→ a(k),

2c3δ2N3K
ν(k + 1)3

→ b(k) (3.172)

Through lemma 3.3, we can immediately conclude that the convergence rate of E‖w̃k+1
0 ‖2 is

O(1/k2). The relationship between the number of epoch k and iteration i is linear. Therefore,

it also follows that the convergence rate is O(1/i2).
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CHAPTER 4

Variance-Reduced Stochastic Learning under Random

Reshuffling

This chapter focuses on random reshuffling algorithm with the variance-reduced stochastic

gradient algorithms. The existing convergence results assume uniform data sampling with

replacement. However, it has been observed in related works that random reshuffling can

deliver superior performance over uniform sampling and, yet, no formal proofs or guarantees

of exact convergence exist for variance-reduced algorithms under random reshuffling. This

chapter provides a theoretical guarantee of linear convergence under random reshuffling for

SAGA in the mean-square sense; the argument is also adaptable to other variance-reduced

algorithms.

4.1 Introduction and Motivation

In recent years, several useful variance-reduced stochastic gradient algorithms have been

proposed, including SVRG [38], SAGA [39], Finito [40], SDCA [41], and SAG [42], with

the intent of reaching the exact minimizer of an empirical risk. Under constant step-sizes

and strong-convexity assumptions on the loss functions, these methods have been shown to

attain linear convergence towards the exact minimizer when the data samples are uniformly

sampled with replacement.

However, it has been observed in related works [34,35,62] that implementations that rely

instead on random reshuffling (RR) of the data (i.e., sampling without replacement) achieve

better performance than implementations that rely on uniform sampling with replacement.

Under random reshuffling, the algorithm is run multiple times over the finite data set. Each
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run is indexed by the integer t ≥ 1 and is referred to as an epoch. For each epoch, the

original data is reshuffled so that the sample of index i becomes the sample of index σt(i),

where the symbol σ is used to refer to a uniform random permutation of the indices.

It was shown in [35] that random reshuffling under decaying step-sizes can accelerate

the convergence rate of stochastic-gradient learning from O(1/i) to O(1/i2) [17, 68], where

i is the iteration index. It was also shown in [69, 73] that random reshuffling under small

constant step-sizes, µ, can boost the steady-state performance of these algorithms from O(µ)-

suboptimal to O(µ2)-suboptimal around a small neighborhood of the exact minimizer [11]. A

similar improvement in convergence rate and performance has been observed for the variance-

reduced Finito algorithm [40]. However, no formal proofs or guarantees of exact convergence

exist for the class of variance-reduced algorithms under random reshuffling, i.e., it is still

not known whether these types of algorithms are still guaranteed to converge to the exact

minimizer when RR is employed and under what conditions on the data. For example,

in [43], another variance-reduction algorithm is proposed under reshuffling; however, no

proof of convergence is provided. The closest attempts at proof are the useful arguments

given in [3, 36, 74], which deal with special problem formulations. The work [75] deals with

the case of incremental aggregated gradients, which corresponds to a deterministic version

of RR for SAG, while the work [36] deals with SVRG in the context of ridge regression

problems using regret analysis.

The random reshuffling setting has some connection with studies that employ cyclic

or incremental implementations such as the incremental aggregate gradient (IAG) algorithm

[3,4,74–77]. In this implementation, within each epoch, each sample is also sampled only once

but keeps the same order over all epochs. In many cases, the analysis of cyclic/incremental

algorithms can apply to the random reshuffling algorithms and vice versa. However, the

search direction in these works on incremental algorithms is based on an aggregate gradient

construction that is the best choice for studying on the random reshuffling as discussed

further ahead. For this reason, different techniques are necessary to carry out the convergence

analysis under random reshuffling.

Motivated by these considerations, this chapter makes two contributions. First, it resolves
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the open mean-square convergence issue and provides the first theoretical proof and guarantee

of linear convergence to the exact minimizer under random reshuffling for SAGA. While

the argument is easily adaptable to a wider class of variance-reduced implementations, we

illustrate the technique in this work for the SAGA algorithm and and explain how it extends

to SVRG as well. This work focuses on providing a linear convergence guarantee on the

variance-reduced algorithm under random reshuffling. However, it is still an open question

to analytically show that variance-reduced algorithms under random reshuffling converge

faster than uniform sampling. A second contribution is that, under random reshuffling,

we will propose a new amortized variance-reduced gradient (AVRG) algorithm with two

benefits: it has constant storage requirements in comparison to SAGA, and it has balanced

gradient computations in comparison to SVRG. The balancing in computations is attained by

amortizing the full gradient calculation across all iterations. AVRG is also shown analytically

to converge linearly.

In preparation for the analysis, we review briefly some of the conditions and notation

that are relevant. We consider a generic empirical risk function J(w) : RM → R, which is

defined as a sample average of loss values over a possibly large but finite training set of size

N :

w?
∆
= arg min

w∈RM

J(w)
∆
=

1

N

N∑
n=1

Q(w;xn), (4.1)

where the {xn}Nn=1 represent training data samples.

Assumption 4.1 (Loss function) The loss function Q(w;xn) is convex, differentiable,

and has a δ-Lipschitz continuous gradient, i.e., for every n = 1, . . . , N and any w1, w2 ∈ RM :

‖∇wQ(w1;xn)−∇wQ(w2;xn)‖ ≤ δ‖w1 − w2‖ (4.2)

where δ > 0. We also assume that the empirical risk J(w) is ν-strongly convex, namely,

(
∇wJ(w1)−∇wJ(w2)

)T
(w1 − w2) ≥ ν‖w1 − w2‖2 (4.3)

83



4.2 SAGA with Random Reshuffling

We consider the SAGA algorithm [39] in this work, while noting that our analysis can be

easily extended to other versions of variance-reduced algorithms; for example, we shall illus-

trate how the approach applies to the new variant designated by the acronym AVRG. We list

the SAGA algorithm without the proximal step but incorporate random reshuffling into the

description of the algorithm. We explain the symbols and the operation of the algorithm in

Table 4.1. In the listing below, note that, random quantities are being denoted in boldface

font, which will be our standard convention in this work.

Table 4.1: Listing of the SAGA algorithm with random reshuffling

SAGA with Random Reshuffling [39]

Initialization: w0
0 = 0,∇Q(φ0

0,n;xn) = 0, n = 1, 2, . . . , N.
Repeat t = 0, 1, 2 . . . , T (epoch):

generate a random permutation function σt(·).
Repeat i = 0, 1, . . . N − 1 (iteration):

n =σt(i+ 1) (4.4)

wt
i+1 =wt

i − µ
[
∇Q(wt

i;xn)−∇Q(φti,n;xn) +
1

N

N∑
n=1

∇Q(φti,n;xn)
]

(4.5)

φti+1,n =wt
i+1, and φti+1,n = φti,n, for n 6= n (4.6)

End

wt+1
0 =wt

N , φ
t+1
0 = φtN (4.7)

End

4.2.1 Operation of the Algorithm

Note that the algorithm runs a total of T times over the data of size N . For each run

t, the original data {xn}Nn=1 is first randomly reshuffled so that the sample of index i + 1

becomes the sample of index n = σt(i + 1) in that run. To facilitate the understanding of
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the algorithm, we associate a block matrix Φt with each run, as illustrated in Fig. 4.1. This

matrix is only introduced for visualization purposes. We denote the block rows of Φt by

{φti}; one for each iteration i. Each block row φti has size M ×N , with its entries generated

by the SAGA recursion:

φti
∆
=
[
φti,1 φti,2 . . . φti,N

]
(i−th block row) (4.8)

We can therefore view Φt as consisting of cells {φti,n}, each having the same M × 1 size

as the minimizer w?. At every iteration i, one random cell in the (i + 1)−th block row is

populated by the iterate wt
i+1; the column location of this random cell is determined by the

value of n.

0 blue block

1 blue block

2 blue blocks

N blue blocks

Iterations

Figure 4.1: An illustration of the evolution of the history variables {φti,n}.

We refer to Fig. 1 and explain in greater detail how the cells in the figure are up-

dated. These cells play the role of history variables. To begin with, at iteration i = 0,

the cells in the first block row φt0 will contain a randomly reshuffled version of all iterates

{wt−1
1 ,wt−1

2 , . . . ,wt−1
N } generated during the previous run of index t− 1. A random sample

of index n = σt(1) is selected. Assume this value turns out to be n = 2. Then, as indicated

in the blue cell in the second block row in the figure, the second cell of φt1 is updated to wt
1

while all other cells in this row remain invariant. Moving to iteration i = 1, a new random

sample of index n = σt(2) is selected. Assume this value turns out to be n = N . Then,

as indicated again in the third block row in the figure, the last cell of φt2 is updated to wt
2

while all other cells in this row remain invariant. The process continues in this manner,
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by populating the cell corresponding to location n in the i−th block row. By the end of

iteration N , all cells of φtN would have been populated by the iterates {wt
i} generated during

the t−th run. Observe that, since uniform sampling without replacement is used, then all

weight iterates {wt
i}, from i = 1 to i = N will appear in φtN . These iterates appear randomly

shuffled in the last row in the figure and they constitute the initial value for φt+1
0 for the

next run.

4.2.2 Properties of the History Variables

Several useful observations can be drawn from Fig. 4.1. These properties will be useful in

the convergence proof in subsequent sections.

Observation 1: At the start of each epoch t, the components {φt0,n}Nn=1 correspond to

a permutation of the weight iterates from the previous run, {wt−1
i }Ni=1. �

Observation 2: At the beginning of the i−th iteration of an epoch t, all components

of indices {σt(m)}im=1 will be set to weight iterates obtained during the t−th run, namely,

{wt
m}im=1, while the remaining N − i history positions will have values from the previous

run, namely, {wt−1
kn
}N−in=1 for some values kn ∈ {1, 2, . . . , N}. �

Observation 3: At the beginning of the i−th iteration of an epoch t, it holds that

φti,n = φt0,n, where n ∈ σt(i+ 1:N) (4.9)

where σt(i+1:N) represents the selected indices for future iterations i+1 to N . This property

holds because, under random reshuffling, sampling is performed without replacement. �

Using these observations, the following two results can be established.

Lemma 4.1 (Distribution of history variables) Conditioned on the previous t−1 epochs,

each history variable φti,n has the following probability distribution at the beginning of the
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i−th (i < N) iteration of epoch t:

P(φti,n|F t
0) =



1/N, φti,n = wt−1
1

1/N, φti,n = wt−1
2

...

1/N, φti,n = wt−1
N

, for n ∈ σt(i+ 1:N) (4.10)

where F t
0 is the collection of all information before iteration 0 at epoch t.

Proof : See Appendix 4.A. �

Lemma 4.2 (Second-order moment of φti,n) The aggregate second-order moment of each

history variable φti,n is equal to:

E

[
N∑
n=1

‖φti,n‖2

]
=

i∑
n′=1

E‖wt
n′‖2 +

N − i
N

N∑
n=1

E‖wt−1
n ‖2 (4.11)

Proof : See Appendix 4.B. �

For comparison purposes, the results obtained so far do not hold for implementations

that involve sampling the data with replacement. For example, in that case (4.11) would be

replaced instead by the following expression derived in [39]:

E

[
N∑
n=1

‖φti,n‖2

]
= E‖wt

i‖2 +
N − 1

N

N∑
n=1

E‖φti−1,n‖2 (4.12)

This result is similar to (4.11) only for i = 1. However, observe that (4.12) involves variables

{φti−1,n} on the right-hand side, instead of the variables {wt−1
n } that appear in (4.11). This

is because random reshuffling updates every history variable during each run, while uniform

sampling may leave some variables φti−1,n untouched. As we are going to illustrate in later

experiments, this difference helps explain why SAGA under random reshuffling tends to have

faster convergence rate.
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4.2.3 Biased Nature of the Gradient Estimator

Before launching into the convergence analysis of the variance-reduced algorithm, we first

highlight one useful observation, namely, that it is not necessary to insist on unbiased gradient

estimators for proper operation of stochastic-gradient algorithms. To see this, let us examine

first the SAGA implementation assuming uniform data sampling with replacement. In a

manner similar to (4.5), the SAGA algorithm in this case will employ the following modified

gradient direction:

ĝu(wt
i)

∆
= ∇Q(wt

i;xu)−∇Q(φti,u;xu) +
1

N

N∑
n=1

∇Q(φti,n;xn) (4.13)

where the subscript u is used to denote a uniformly distributed random variable, u ∼ U [1, N ].

As a result, this modified gradient satisfies the unbiasedness property [39]:

Eu[ĝu(wt
i)|F t

i] = ∇J(wt
i) (4.14)

where F t
i denotes the collection of all available information before iteration i at epoch t.

However, this property no longer holds under random reshuffling! This is because data is

now sampled without replacement and the selection of one index becomes dependent on the

selections made prior to it. Specifically, let

ĝn(wt
i)

∆
= ∇Q(wt

i;xn)−∇Q(φti,n;xn) +
1

N

N∑
n=1

∇Q(φti,n;xn) (4.15)

denote the stochastic gradient that is employed by the SAGA recursion (4.5). It then holds

that

En
[
ĝn(wt

i)|F t
i

]
=

1

N − i
∑

n/∈σt(1:i)

(
∇Q(wt

i;xn)−∇Q(φti,n;xn)
)

+
1

N

N∑
n=1

∇Q(φti,n;xn)

(4.16)
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where n=σt(i+1) and we exploit the uniform property of random reshuffling when expanded

the expectation [69]

P[σt(i+ 1) = n |σt(1 : i)] =


1

N − i
, n /∈ σt(1:i)

0 , n ∈ σt(1:i)

(4.17)

where σt(1:i) represents the collection of permuted indices for the original samples numbered

1 through i. . It is not hard to see that the expression on the right-hand side of (4.16) is

generally different from ∇J(wt
i). Consequently, the gradient estimate that is employed by

SAGA under random reshuffling in (4.5) is not an unbiased estimator for the true gradient.

Nevertheless, we will establish two useful facts in the following sections. First, the gradient

estimate (4.15) becomes asymptotically unbiased when the algorithm converges, as t→∞.

Second, the biased gradient estimation does not harm the convergence rate because we will

observe later that SAGA under random reshuffling actually converges faster than SAGA

under uniform sampling with replacement in the simulations.

4.2.4 Convergence Analysis

The analysis employs two supporting lemmas. To begin with, we relate the starting iterates

for two successive epochs as follows by summing all gradient terms in (4.5) over i:

wt+1
0 = wt

N

= wt
N−1 − µ

[
∇Q(wt

N−1;xnt
i
)−∇Q(φtN−1,nt

N−1
;xnt

N−1
) +

1

N

N∑
n=1

∇Q(φtN−1,n;xn)

]
...

= wt
0 − µ

N−1∑
i=0

[
∇Q(wt

i;xnt
i
)−∇Q(φti,nt

i
;xnt

i
) +

1

N

N∑
n=1

∇Q(φti,n;xn)

]
(4.18)

where we are using the notation nti = σt(i + 1). As already alluded to, one main difficulty

in the analysis is the fact that the gradient estimate is biased. For this reason, we shall
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compare against the gradient at the start of the epoch:

wt+1
0

(a)
=wt

0 − µN∇J(wt
0)

+ µ

N−1∑
i=0

[
∇Q(φt0,nt

i
;xnt

i
)− 1

N

N∑
n=1

∇Q(φt0,n;xn)
]

− µ
N−1∑
i=0

[
∇Q(wt

i;xnt
i
)−∇Q(wt

0;xnt
i
)

+
1

N

N∑
n=1

(
∇Q(φti,n;xn)−∇Q(φt0,n;xn)

)]
(b)
=wt

0 − µN∇J(wt
0)

− µ
N−1∑
i=0

[
∇Q(wt

i;xnt
i
)−∇Q(wt

0;xnt
i
)

+
1

N

N∑
n=1

(
∇Q(φti,n;xn)−∇Q(φt0,n;xn)

)]
(4.19)

where in step (a) we added and subtracted {∇Q(wt
0;xn)} and {∇Q(φt0,n;xn)}, and we also

changed the notation ∇Q(φti,nt
i
;xnt

i
) into ∇Q(φt0,nt

i
;xnt

i
) because of observation 3; in step

(b) we exploited the random reshuffling property that each index is selected only once, i.e.,

N−1∑
i=0

∇Q(φt0,nt
i
;xnt

i
) ≡

N−1∑
n=0

∇Q(φt0,n;xn) (4.20)

We also need to appeal to a second recursion (within epoch t). By moving wt
i in (4.5) to

the left-hand side and computing the squared norm, we obtain:

‖wt
i+1 −wt

i‖2 = µ2
∥∥∥∇Q(wt

i;xn)−∇Q(φti,n;xn) +
1

N

N∑
n=1

∇Q(φti,n;xn)
∥∥∥2

(a)
= µ2

∥∥∥∇Q(wk
i ;xj)−∇Q(wk

0;xj)−∇Q(φki,j ;xj) +∇Q(wk−1
N ;xj)

+
1

N

N∑
n=1

[∇Q(φki,n;xn)−∇Q(w?;xn)]
∥∥∥2
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(a)

≤ 3µ2
∥∥∥∇Q(wt

i;xn)−∇Q(wt
0;xn)

∥∥∥2

+ 3µ2
∥∥∥∇Q(φti,n;xn)−∇Q(wt−1

N ;xn)
∥∥∥2

+ 3µ2
∥∥∥ 1

N

N∑
n=1

[∇Q(φti,n;xn)−∇Q(w?;xn)]
∥∥∥2

(b)

≤ 3δ2µ2‖wt
i −wt

0‖2 +3δ2µ2‖wt−1
N − φti,n‖2 +

3δ2µ2

N

N∑
n=1

‖φti,n − w?‖2 (4.21)

where in step (a) we first added and subtracted ∇Q(wt
0;xn) and used the fact that

1

N

N∑
n=1

∇Q(w?;xn) = 0 (4.22)

then, we employed Jensen’s inequality; and step (b) is because of the assumed Lipschitz

condition (4.2). Using (4.19) and (4.21), and further introducing the error quantity w̃t
i =

w? −wt
i, we can establish the following auxiliary lemmas.

Lemma 4.3 (Mean-square error recursion) The mean-square-error at the start of each

epoch satisfies the following inequality recursion for step sizes µ ≤ 2/(N(ν + δ)):

E‖w̃t+1
0 ‖2 ≤ (1− µνN)E‖w̃t

0‖2

+ 4µ
δ2

ν

(
N−1∑
i=1

E‖wt
i −wt

0‖2 +
N−1∑
n′=1

E‖wt−1
N −wt−1

n′ ‖
2

)
(4.23)

Proof : See Appendix 4.C. �

Roughly, the above result shows that the mean-square error across epochs evolves according

to a dynamics that is determined by the scaling factor

α
∆
= (1− µνN) (4.24)

which is smaller than one under the required condition in lemma 4.3. In addition, there are

two driving terms in (4.23). We will refer
∑N−1

i=1 E‖wt
i−wt

0‖2 as the forward inner difference
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term and to
∑N−1

n′=1 E‖w
t−1
N −wt−1

n′ ‖2 as the backward inner difference term.

Lemma 4.4 (Inner differences) The forward inner difference satisfies:

N−1∑
i=1

E‖wt
i −wt

0‖2

≤ 5δ2µ2N2

(
N−1∑
i=1

E‖wt
i −wt

0‖2 +
N−1∑
i=1

E‖wt−1
N −wt−1

i ‖2

)
+3δ2µ2N3E‖w̃t

0‖2 (4.25)

while the backward inner difference satisfies:

N−1∑
i=1

E‖wt−1
N −wt−1

i ‖2

≤ 5δ2µ2N2

(
N−1∑
i=1

E‖wt−1
i −wt−1

0 ‖2+
N−1∑
i=1

E‖wt−2
N −wt−2

i ‖2

)
+3δ2µ2N3E‖w̃t−1

0 ‖2 (4.26)

Proof : See Appendix 4.D. �

Combining the above lemmas, we arrive at the following theorem. Let w̃t
0

∆
= w? −wt

0 and

introduce the energy function:

Vt+1
∆
= E‖w̃t+1

0 ‖2 +
5

8
γ

(
1

N

N−1∑
i=1

E‖wt+1
i −wt+1

0 ‖2+
1

N

N−1∑
i=1

E‖wt
N−wt

i‖2

)

where γ = 8µδ2N/ν.

Theorem 4.1 (Linear convergence of SAGA) For sufficiently small step-sizes, namely,

for µ ≤ ν
7δ2N

, the quantity Vt+1 converges linearly:

Vt+1 ≤ αVt (4.27)

where

α=
1− µνN/2

1− 24δ4µ3N3/ν
< 1 (4.28)

It follows that E‖w̃t
0‖2 ≤ αtV0.

92



Proof : See Appendix 4.E. �

Remark: To achieve an ε-optimal solution, the number of iterations required is close to

O(Nδ2/ν2 log(1/ε)), which is slower than the rate proved under sampling with replacement

in [39]. The main reason is that the dependency between the samples makes it difficult to

obtain a tight bound. Also, to ensure the stability of the algorithm, the stepsize upper bound

is small. Meanwhile, as we will observe in the simulations later, in practice, the convergence

can be faster than the original SAGA and the choice of stepsize is almost independent of

size of dataset.

4.3 Amortized Variance-Reduced Gradient (AVRG) Learning

One inconvenience of the SAGA implementation is its high storage requirement, which refers

to the need to track the history variables {φti,n} or the gradients for use in (4.5). There is

a need to store O(N) variables. In big data applications, the size of N can be prohibitive.

The same storage requirement applies to the variant with reshuffling proposed in [43]. An

alternative method is the stochastic variance-reduced gradient (SVRG) algorithm [38], which

is listed below (again with random reshuffling) for ease of reference.

This method replaces the history variables {φti,n} of SAGA by a fixed initial condition

wt
0 for each epoch. This simplification greatly reduces the storage requirement. However,

each epoch in SVRG is preceded by an aggregation step to compute a gradient estimate,

which is time-consuming for large data sets. It also causes the operation of SVRG to become

unbalanced, with a larger time interval needed before each epoch, and shorter time intervals

needed within the epoch. Motivated by these two important considerations, we propose a

new amortized implementation, referred to as AVRG. This new algorithm removes the initial

aggregation step from SVRG and replaces it by an estimate gt+1. This estimate is computed

iteratively within the inner loop by re-using the gradient, ∇Q(wt
i;xn), to reduce complexity.
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Table 4.2: Listing of SVRG with random reshuffling

SVRG with Random Reshuffling [38]

Initialization: w0
0 = 0.

Repeat t = 0, 1, 2 . . . , T (epochs):

∇J(wt
0) =

1

N

N∑
n=1

∇Q(wt
0;xn)

generate a random permutation function σt(·).
Repeat i = 0, 1, . . . N − 1 (iteration):

n =σt(i+ 1) (4.29)

wt
i+1 =wt

i−µ
[
∇Q(wt

i;xn)−∇Q(wt
0;xn)+∇J(wt

0)
]

(4.30)

End

wt+1
0 =wt

N (4.31)

End

4.3.1 Useful Properties

Several properties stand out when we compare the proposed AVRG implementation with the

previous algorithms. First, observe that the storage requirement for AVRG in each epoch

is just the variables gt, gt+1, and wt
0, which is similar to SVRG and considerably less than

SAGA.

Second, since the gradient vector Q(wt
i;xn) used in (4.34) has already been computed in

(4.33), every iteration i will only require two gradients to be evaluated. Thus, the effective

computation of gradients per epoch is smaller in AVRG than in SVRG.

Third, observe from Eq. (4.34) how the estimated gt is computed by averaging the loss

values at successive iterates. This construction is feasible because of the use of random

reshuffling. Under random reshuffling, the collection of gradients {Q(wt
i;xn)} that are used

in (4.34) during each epoch will end up covering the entire set of data, {xn}Nn=1. This is

not necessarily the case for operation under uniform sampling with replacement. Therefore,

the AVRG procedure assumes the use of random reshuffling. We will simply refer to it as

94



Table 4.3: Listing of AVRG with random reshuffling

AVRG with Random Reshuffling

Initialization: w0
0 = 0, g0 = 0, ∇Q(w0

0;xn)← 0, n = 1, 2, . . . , N
Repeat t = 0, 1, 2 . . . , T (epoch):

generate a random permutation function σt(·)
set gt+1 = 0
Repeat i = 0, 1, . . . N − 1 (iteration):

n =σt(i+ 1) (4.32)

wt
i+1 =wt

i − µ
[
∇Q(wt

i;xn)−∇Q(wt
0;xn) + gt

]
(4.33)

gt+1 ← gt+1 +
1

N
∇Q(wt

i;xn) (4.34)

End

wt+1
0 =wt

N (4.35)

End

AVRG, rather than AVRG under RR.

Fourth, unlike the SVRG algorithm, which requires a step to compute the full gra-

dient, the AVRG implementation is amenable to decentralized implementations (i.e., to

fully-decentralized implementations with no master nodes). and also to asynchronous op-

eration [78]. The unbalanced gradient computation in SVRG poses difficulties for fully-

decentralized solutions [11, 79,80] (instead of master-slave model) and introduces idle times

when multiple devices/agents with different amounts of data cooperate to solve an optimiza-

tion problem. The amenability to effective decentralized solutions is a powerful convenience

of the AVRG framework and one main motivation for introducing it, as explained in the

related work [80].

Finally, the modified gradient direction that is employed in (4.33) by AVRG has distinc-

tive properties in relation to the modified gradient direction (4.5) in SAGA. To see this, we
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note that the gradient direction in (4.33) can be written as

ĝn(wt
i)

∆
= ∇Q(wt

i;xn)−∇Q(wt
0;xn)

+
1

N

N−1∑
n=0

∇Q(wt−1
n ;xσt−1(n+1)) (4.36)

It is clear that even when the index n is chosen uniformly, the above vector cannot be an

unbiased estimator for true gradient in general. What is more critical for convergence is that

the modified gradient direction of an algorithm should satisfy the useful property that as

the weight iterate gets closer to the optimal value, i.e., as ‖w?−wt
i‖ ≤ ε, for arbitrary small

ε and large enough t, the modified and true gradients will also get arbitrarily close to each.

This property holds for (4.36) since

‖ĝn(wt
i)−∇J(w?)‖ ≤

∥∥∇Q(wt
i;xn)−∇Q(wt

0;xn)
∥∥

+

∥∥∥∥∥ 1

N

N∑
n=1

∇Q(wt−1
n−1;xσt−1(n))−

1

N

N∑
n=1

∇Q(w?;xn)

∥∥∥∥∥
≤ δ‖wt

i − w?‖+ δ‖wt
0 − w?‖+

δ

N

N−1∑
n=1

∥∥wt−1
n−1 − w?

∥∥
≤ 3δε (4.37)

where in the second inequality we exploited Jensen’s inequality, the triangle inequality, Lip-

schitz assumption, and the fact that σt−1(n) corresponds to sampling without replacement.

Because ε can be chosen arbitrary small, then ĝn(wt
i) must approach the true gradient at

w?. This result implies the aforementioned asymptotic unbiasedness property of the gradient

estimate. Actually, this property holds for all previous modified gradients in SAGA, SVRG,

SAG, Finito, and AVRG. The work [81] also discusses a case where there is an extra error

term in the gradient calculation, which supports the observation that a small gradient bias

does not necessarily harm convergence. For ease of reference, Table 4.3 compares the trade-

offs between storage and computational complexity of different variance-reduced algorithms

with and without random reshuffling.
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4.3.2 Convergence Analysis

The same approach used to establish the convergence of SAGA under RR is also suitable

for AVRG. For this reason, we can be brief. First, similar to (4.19), we derive the main

recursion for one epoch:

wt+1
0 =wt

0 − µN∇J(wt
0) (4.38)

− µ
N−1∑
i=0

[
∇Q(wt

i;xnt
i
)−∇Q(wt

0;xnt
i
)
]

+ µ
N−1∑
i=0

[
∇Q(wt

0;xnt−1
i

)−∇Q(wt−1
i ;xnt−1

i
)
]

where, for compactness of notation, we introduce nt−1
i = σt−1(i + 1). Second, similar to

(4.21), we derive an inner difference recursion:

‖wt
i+1 −wt

i‖2 = µ2
∥∥∇Q(wt

i;xn)−∇Q(wt
0;xn) + gt

∥∥2

≤ 3µ2δ2

(
‖wt

i −wt
0‖2+

1

N

N−1∑
i=0

‖wt−1
i −wt−1

N ‖
2 + ‖w̃t

0‖2

)
(4.39)

Next, we establish recursions related to w̃t
0, and the forward and backward difference terms.

Lemma 4.5 (Recursions for AVRG analysis) The mean-square-error at the start of each

epoch satisfies the following inequality for step-sizes µ ≤ 2/(N(ν + δ)):

E‖w̃t+1
0 ‖2 ≤ (1− µνN)E‖w̃t

0‖2

+
2µδ2

ν

(
N−1∑
i=0

E‖wt
i −wt

0‖2+
N−1∑
i=0

E‖wt−1
N −wt−1

i ‖2

)
(4.40)

Moreover, the forward inner difference satisfies:

N−1∑
i=0

E‖wt
i −wt

0‖2 ≤ 3µ2δ2N2

N−1∑
i=0

E‖wt
i −wt

0‖2
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+ µ2δ2N2

(
N−1∑
i=0

E‖wt−1
N −wt−1

i ‖2 +NE‖w̃t
0‖2

)
(4.41)

while the backward inner difference satisfies:

N−1∑
i=0

E‖wt
N −wt

i‖2

≤ 3µ2δ2N2

N−1∑
i=0

E‖wt
i −wt

0‖2 + 3µ2δ2N2

(
N−1∑
i=0

E‖wt−1
i −wt−1

N ‖
2 +NE‖w̃t

0‖2

)
(4.42)

Proof : See Appendix 4.F. �

Likewise, we introduce the energy function:

Vt+1
∆
= E‖w̃t+1

0 ‖2 +
13

16
γ

(
1

N

N−1∑
i=1

E‖wt+1
i −wt+1

0 ‖2 +
1

N

N−1∑
i=1

E‖wt
N −wt

i‖2

)
(4.43)

where γ = 5µδ2N/ν, and state the relevant convergence theorem.

Theorem 4.2 (Linear convergence of AVRG) For sufficiently small step-sizes, namely,

for µ ≤ ν
6δ2N

, the quantity Vt+1 converges linearly:

Vt+1 ≤ αVt (4.44)

where

α =
1− µνN/2

1− 15δ4µ3N3/ν
< 1 (4.45)

It follows that E‖w̃t
0‖2 ≤ αtV0.

Proof : See Appendix 4.G. �

Remark: This is similar to the theorem for SAGA under RR except for the scaling coeffi-

cients. However, in practice, the convergence curve of AVRG will be different from the one

of SAGA under RR.
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4.3.3 Sketch of Proof for SVRG under Random Reshuffling

We provide a brief explanation of how the same proof technique applies to SVRG.

Theorem 4.3 (Linear convergence of RR-SVRG) For sufficiently small step-sizes, namely,

for µ ≤ ν
2δ2N

, we have:

E‖wt+1
0 ‖2 ≤ (1− 2

3
µνN)E‖wt

0‖2 (4.46)

Proof : First, similar to (4.19), we derive the main recursion for one epoch:

wt+1
0 = wt0 − µN∇J(wt0)− µ

N−1∑
i=0

[∇Q(wt
i;xnt

i
)−∇Q(wt

0;xnt
i
)] (4.47)

Under µ ≤ 2
µ+δ

, after expectations and simplifying, we arrive at

E‖w̃t+1
0 ‖2 ≤ (1− µνN)2

t
E‖w̃t

0‖2 +
µ2δ2N

1− t

N−1∑
i=0

E‖wt
i −wt

0‖2

= (1− µνN)E‖w̃t
0‖2 +

µδ2

ν

N−1∑
i=0

E‖wt
i −wt

0‖2 (4.48)

Second, similar to (4.21), we derive an inner difference recursion:

‖wt
i+1 −wt

i‖2 = µ2
∥∥∇Q(wt

i;xn)−∇Q(wt
0;xn) +∇J(wt0)

∥∥2

≤ 2µ2δ2
(
‖wt

i −wt
0‖2 + ‖w̃t

0‖2
)

(4.49)

Then, similar to the approach in Appendix 4.D, we establish:

N−1∑
i=0

‖wt
i −wt

0‖2 ≤
N−1∑
i=0

∥∥∥ i∑
j=1

(wt
j −wt

j−1)
∥∥∥2

≤
N−1∑
i=0

i∑
j=1

i
∥∥∥wt

j −wt
j−1

∥∥∥2
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=
N−1∑
j=1

N−1∑
i=j

i
∥∥∥wt

j −wt
j−1

∥∥∥2

≤N
2

2

N−1∑
j=1

∥∥∥wt
j −wt

j−1

∥∥∥2

≤µ2δ2N2

N−1∑
j=1

(
‖wt

i −wt
0‖2 + ‖w̃t

0‖2
)

(4.50)

Note that SVRG computes the full gradient at the start of the epoch. Therefore, RR-SVRG

will have a forward difference term only. Rearranging terms we get:

N−1∑
i=0

‖wt
i −wt

0‖2 ≤ µ2δ2N3

1− µ2δ2N2
‖w̃t

0‖2 (4.51)

Substituting back, we have

E‖w̃t+1
0 ‖2 ≤ (1− µνN)E‖w̃t

0‖2 +
δ

ν

µ3δ3N3

(1− µ2δ2N2)
E‖w̃t

0‖2 (4.52)

Supposing µ ≤ 1
2δN

, so that

µ3δ3N3

(1− µ2δ2N2)
≤ 4

3
µ3δ3N3 (4.53)

and we obtain

E‖w̃t+1
0 ‖2 ≤ (1− µνN)E‖w̃t

0‖2 + 4µ3δ4N3/(3ν)E‖w̃t
0‖2 (4.54)

Under the further assumption µ ≤ ν
2δ2N

, we have

4µ3δ4N3/(3ν) ≤ 1

3
µνN (4.55)

and we conclude that

E‖w̃t+1
0 ‖2 ≤

(
1− 2

3
µνN

)
E‖w̃t

0‖2 (4.56)
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4.3.4 Algorithms with Incremental Strategies

There is also the possibility of running through the data in a cyclic or incremental manner

[66,75,82,83]. The incremental aggregated gradient (IAG) algorithm [3,4,74–77] is one such

example. However, the algorithm is based on the following gradient construction

gi
∆
=

1

N

N∑
n=1

∇Q(wτi,n ;xn) (4.57)

where τi,n represents the gradient of the i−th component function sampled at time τi,n. They

assume that each component function is sampled at least once in the past K ≥ 0 iterations,

i.e., we have

i−K ≤ τi,n ≤ K, ∀n ∈ 1, 2, . . . , N (4.58)

For the cyclic case, that constant K = N and for random reshuffling K = 2N . This leads

to a counterintuitive conclusion that cyclic algorithm is to random reshuffling due to this

factor 2, which we know is not true. For this reason, different proof techniques are needed

to handle random reshuffling implementations.

4.4 Simulation Results

In this section, we illustrate the convergence performance of various algorithms by numerical

simulations. We consider the following regularized logistic regression problem:

min
w

J(w) =
1

N

N∑
n=1

Q(w;hn, γ(n))

∆
=

1

N

N∑
n=1

(ρ
2
‖w‖2 + ln

(
1 + exp(−γ(n)hTnw)

))
(4.59)

102



0
2

4
6

8
1

0
1
2

1
4

E
p
o
ch

s

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

1
0

-1
1

0
0

‖w
t
0−w‖

2
/‖w‖

2

C
o
v
ty

p
e

0
5

1
0

1
5

2
0

2
5

3
0

3
5

#
G

ra
d
ie

n
ts

 /
 N

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

1
0

-1
1

0
0

J(w
t
0)−J(w)

0
2

4
6

8
1

0
1

2
1

4

E
p
o
ch

s

1
0

-1
3

1
0

-1
2

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

1
0

-1
1

0
0

M
N

IS
T

0
5

1
0

1
5

2
0

2
5

3
0

3
5

#
G

ra
d
ie

n
ts

 /
 N

1
0

-1
3

1
0

-1
2

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

0
2

4
6

8
1
0

1
2

1
4

E
p
o
ch

s

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

1
0

-1
1

0
0

R
C

V
1

0
5

1
0

1
5

2
0

2
5

3
0

3
5

#
G

ra
d
ie

n
ts

 /
 N

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

1
0

-1
1

0
0

0
2

4
6

8
1
0

1
2

1
4

E
p
o
ch

s

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

1
0

-1
1

0
0

C
IF

A
R

-1
0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

#
G

ra
d
ie

n
ts

 /
 N

1
0

-1
1

1
0

-1
0

1
0

-9
1

0
-8

1
0

-7
1

0
-6

1
0

-5
1

0
-4

1
0

-3
1

0
-2

1
0

-1
1

0
0

A
V

R
G

S
V

R
G

S
A

G
A

S
A

G
A

+
R

R

F
ig

u
re

4.
2:

C
om

p
ar

is
on

of
va

ri
ou

s
va

ri
an

ce
-r

ed
u
ce

d
al

go
ri

th
m

s
ov

er
th

re
e

d
at

as
et

s:
C

ov
ty

p
e,

M
N

IS
T

,
R

C
V

1,
an

d
C

IF
A

R
-1

0.
T

h
e

to
p

th
re

e
p
lo

ts
co

m
p
ar

e
th

e
re

la
ti

ve
m

ea
n
-s

q
u
ar

e-
er

ro
r

p
er

fo
rm

an
ce

ve
rs

u
s

th
e

ep
o
ch

in
d
ex

,
t,

w
h
il
e

th
e

b
ot

to
m

th
re

e
p
lo

ts
co

m
p
ar

e
th

e
ex

ce
ss

ri
sk

va
lu

es
ve

rs
u
s

th
e

n
u
m

b
er

of
gr

ad
ie

n
ts

co
m

p
u
te

d
.

103



where hn∈RM is the feature vector, γ(n)∈{±1} is the class label. In all our experiments, we

set ρ=1/N . The optimal w? and the corresponding risk value are calculated by means of the

Scikit-Learn package. We run simulations over four datasets: covtype.binary1, rcv1.binary

2, MNIST3, and CIFAR-104. The last two datasets have been transformed into binary

classification problems by considering data with labels 0 and 1, i.e., digital zero and one

classes for MNIST and airplane and automobile classes for CIFAR-10. All features have

been preprocessed and normalized to the unit vector [84]. The results are exhibited in Fig.

4.2. To enable fair comparisons, we tune the step-size parameter of each algorithm for fastest

convergence in each case. The plots are based on measuring the relative mean-square-error,

E‖wt
0 − w?‖2/‖w?‖2, and the excess risk value, EJ(wt

0)− J(w?). Two key facts to observe

from these simulations are that 1) SAGA with RR is consistently faster than SAGA, and 2)

without the high memory cost of SAGA and without the unbalanced structure of SVRG, the

proposed AVRG technique is able to match their performance reasonably well. Moreover,

as we shall show in future work [80], the AVRG technique enables effective distributed

implementations.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

3http://yann.lecun.com/exdb/mnist/

4http://www.cs.toronto.edu/~kriz/cifar.html
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Figure 4.3: Comparison of SAGA, AVRG, and IAG [3, 4] under random reshuffling and
incremental settings on the MNIST dataset. The green region is the possible learning curve
under incremental setting.
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We also compare the performance of random reshuffling and incremental implementations

in Fig. 4.3. The plot is generated by running the logistic regression problem over the MNIST

dataset with same hyperparameter setting as before. We run the incremental SAGA, SAG,

and AVRG over multiple experiments with different permutation orders. The green region

represents the difference between the best and worse cases over 25 different permutation

orders. The plot suggests that incremental and random reshuffling implementations have

similar convergence rates. However, random reshuffling has superior performance in most

cases.

4.5 Discussion and Future Work

The statements of Theorems 6.1 and 7.2 are similar. This suggests that the analysis approach

is applicable to a wider class of variance-reduced implementations. The statements also

suggest that these types of algorithms are able to deliver linear convergence for sufficiently

small constant step-sizes. One useful extension for future study is to consider situations with

non-smooth loss functions. It is also useful to note that the stability ranges and convergence

rates derived from the theoretical analysis tend to be more conservative than what is actually

observed in experiments.

4.A Proof of Lemma 6.1

For n = σt(i+ 1) and any wt−1
i , i = 1, 2, . . . , N , it holds that

P(φti,n = wt−1
i |F t

0) =
∑
σt

P(σt)P(φti,n = wt−1
i |F t

0,σ
t)

=
∑
σt

1

N !
P(φti,n = wt−1

i |F t
0,σ

t)

=
∑
σt

1

N !
P(φt0,n = wt−1

i |F t
0,σ

t)

=
1

N !

∑
σt

I [φt0,n = wt−1
i |F t

0,σ
t] (4.60)
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The second equality is because all permutation sequences are equally probable; the third

equality applies observation 3. The last equality follows from noting that, given F t
0 and σt,

the quantity φt0,n becomes a deterministic variable. In this case, the probability P(φt0,n|F t
0,σ

t)

is either 1 or 0. We therefore express it in terms of the indicator function, where the notation

I[a] = 1 when the statement a is true and is zero otherwise. Next note that there are (N−1)!

permutations σt with the n−th position storing wt−1
i . Substituting back, we get

P(φti,n = wt−1
i |F t

0) =
(N − 1)!

N !
=

1

N
(4.61)

�

4.B Proof of Lemma 4.2

Conditioning on the information in the past epochs:

E

[(
N∑
n=1

‖φti,n‖2

)∣∣∣∣∣F t
0

]
= E

 ∑
n∈σt(1:i)

‖φti,n‖2

∣∣∣∣∣∣F t
0

+ E

 ∑
n/∈σt(1:i)

‖φti,n‖2

∣∣∣∣∣∣F t
0


= E

[(
i∑

n′=1

‖wt
n′‖2

)∣∣∣∣∣F t
0

]
+ E

[(
N∑

i′=i+1

‖φti,σt(i′)‖2

)∣∣∣∣∣F t
0

]
(4.10)
=

i∑
n′=1

E
[
‖wt

n′‖2|F t
0

]
+

N∑
i′=i+1

1

N

N∑
n=1

‖wt−1
n ‖2

=
i∑

n′=1

E
[
‖wt

n′‖2|F t
0

]
+
N − i
N

N∑
n=1

‖wt−1
n ‖2 (4.62)

Taking expectation over F t
0, we arrive at (4.11). �
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4.C Proof of Lemma 4.3

By introducing the error quantity w̃t
i = w? −wt

i, we easily arrive at the following recursion

for the evolution of the error dynamics:

w̃t+1
0 = w̃t

0 + µN∇J(wt
0) + µ

N−1∑
i=0

[
∇Q(wt

i;xnt
i
)−∇Q(wt

0;xnt
i
)

+
1

N

N∑
n=1

(
∇Q(φti,n;xn)−∇Q(φt0,n;xn)

)]
(4.63)

Computing the conditional mean-square-error of both sides of (4.63), and appealing to

Jensen’s inequality, gives:

E
[∥∥w̃t+1

0

∥∥2 |F t
0

] (a)

≤ 1

1− a
∥∥w̃t

0 + µN∇J(wt
0)
∥∥2

+
µ2

a
E

{∥∥∥∥∥
N−1∑
i=0

[
∇Q(wt

i;xnt
i
)−∇Q(wt

0;xnt
i
)

+
1

N

N∑
n=1

(
∇Q(φti,n;xn)−∇Q(φt0,n;xn)

)]∥∥∥∥∥
2∣∣∣F t

0


(b)

≤ 1

1− a
∥∥w̃t

0 + µN∇J(wt
0)
∥∥2

+
µ2N

a

N−1∑
i=0

E

[∥∥∇Q(wt
i;xnt

i
)−∇Q(wt

0;xnt
i
)

+
1

N

N∑
n=1

(
∇Q(φti,n;xn)−∇Q(φt0,n;xn)

)∥∥∥∥∥
2∣∣∣F t

0


(c)

≤ 1

1− a
∥∥w̃t

0 + µN∇J(wt
0)
∥∥2

+
2µ2N

a

N−1∑
i=0

E
[∥∥∇Q(wt

i;xnt
i
)−∇Q(wt

0;xnt
i
)
∥∥2 |F t

0

]

+
2µ2N

a

N−1∑
i=0

E

∥∥∥∥∥ 1

N

N∑
n=1

∇Q(φti,n;xn)−∇Q(φt0,n;xn)

∥∥∥∥∥
2∣∣∣F t

0


=

1

1− a
∥∥w̃t

0 + µN∇J(wt
0)
∥∥2
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+
2µ2N

a

N−1∑
i=1

E
[∥∥∇Q(wt

i;xn)−∇Q(wt
0;xn)

∥∥2 |F t
0

]

+
2µ2N

a

N−1∑
i=1

E

∥∥∥∥∥ 1

N

N∑
n=1

(
∇Q(φti,n;xn)−∇Q(φt0,n;xn)

)∥∥∥∥∥
2∣∣∣F t

0

 (4.64)

where step (a) follows from Jensen’s inequality and a can be chosen arbitrarily in the open

interval a ∈ (0, 1); and steps (b) and (c) also follow from the following corollary of Jensen’s

inequality: ∥∥∥∥∥
N∑
i=1

yi

∥∥∥∥∥
2

= N2

∥∥∥∥∥
N∑
i=1

1

N
yi

∥∥∥∥∥
2

≤ N
N∑
i=1

‖yi‖2 (4.65)

We further know from the Lipschitz condition (4.2) that:

E
[∥∥∇Q(wt

i;xn)−∇Q(wt
0;xn)

∥∥2
∣∣∣F t

0

]
≤ δ2E

[
‖wt

i −wt
0‖2
∣∣∣F t

0

]
(4.66)

and

E

∥∥∥∥∥ 1

N

N∑
n=1

(
∇Q(φti,n;xn)−∇Q(φt0,n;xn)

)∥∥∥∥∥
2 ∣∣∣F t

0


(a)
= E

∥∥∥∥∥ 1

N

i∑
n=1

∇Q(wt
n;xσt(n))−∇Q(φt0,σt(n);xσt(n))

∥∥∥∥∥
2 ∣∣∣F t

0


(b)

≤ iδ2

N2

i∑
n=1

E
[
‖wt

n − φt0,σt(n)‖2 |F t
0

]
=
iδ2

N2

i∑
n=1

E
[
‖wt

n −wt
0 +wt−1

N − φt0,σt(n)‖2 |F t
0

]
(c)

≤ iδ2

N2

i∑
n=1

(
2E
[
‖wt

n −wt
0‖2|F t

0

]
+2E

[
‖wt−1

N − φt0,σt(n)‖2|F t
0

] )
=
iδ2

N2

(
i∑

n=1

2E
[
‖wt

n −wt
0‖2 |F t

0

]
+

2

N

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2

)
(4.67)

where step (a) holds because of observation 2, steps (b) and (c) apply Jensen’s inequality; and

the last equality is because of uniform random reshuffling. Next, using the strong-convexity
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of the empirical risk, we have

∥∥w̃t
0 + µN∇J(wt

0)
∥∥2

=‖w̃t
0‖2 + µ2N2‖∇J(wt

0)‖2 + 2µN(w̃t
0)T∇J(wt

0)

≤
(

1− 2µN
νδ

δ + ν

)
‖w̃t

0‖2 + µN(µN − 2

δ + ν
)‖∇J(wt

0)‖2 (4.68)

where in the first inequality we exploit the co-coercivity inequality [68] that

(∇J(x)−∇J(y))T(x− y) ≥ νδ

δ + ν
‖x− y‖2 +

1

δ + ν
‖∇J(x)−∇J(y)‖2 (4.69)

Next we require the step size to satisfy

µ ≤ 2

N(δ + ν)
(4.70)

Then, the coefficient of the last term in (4.68) is negative. Combining with the strongly

convexity property ‖∇J(wt
0)−∇J(w?)‖ ≥ ν‖w̃t

0‖, we have

∥∥w̃t
0 + µN∇J(wt

0)
∥∥2 ≤

(
1− 2µN

νδ

δ + ν

)
‖w̃t

0‖2 + µNν2(µN − 2

δ + ν
)‖w̃t

0‖2

=
(

1− µνN)2‖w̃t
0‖2 (4.71)

Substituting (4.66), (4.67), and (4.71) into (4.64) and letting a = µNν, we get

E
[
‖w̃t+1

0 ‖2 |F t
0

]
≤ (1− µνN) ‖w̃t

0‖2 + 2µ
δ2

ν

N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+ 2µ

δ2

ν

N−1∑
i=1

i

N2

(
i∑

n=1

2E
[
‖wt

n −wt
0‖2 |F t

0

]
+

2

N

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2

)
(a)
= (1− µνN) ‖w̃t

0‖2 + 2µ
δ2

ν

N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+ 2µ

δ2

ν

N−1∑
n=1

N−1∑
i=n

i

N2

(
2E
[
‖wt

n −wt
0‖2 |F t

0

]
+

2

N

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2

)
(b)

≤ (1− µνN) ‖w̃t
0‖2 + 2µ

δ2

ν

N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
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+ 2µ
δ2

ν

N−1∑
n=1

1

2

(
2E
[
‖wt

n −wt
0‖2 |F t

0

]
+

2

N

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2

)
≤ (1− µνN) ‖w̃t

0‖2

+ 2µ
δ2

ν

N−1∑
i=1

E
[
‖wt

i −wt
0‖2|F t

0

]
+ 2µ

δ2

ν

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2

≤ (1− µνN) ‖w̃t
0‖2

+ 4µ
δ2

ν

(
N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+

N−1∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2

)
(4.72)

where in step (a) and in several similar steps later, we are using the equality:

N−1∑
i=1

i∑
n=1

f(n, i) ≡
N−1∑
n=1

N−1∑
i=n

f(n, i) (4.73)

As for step (b), the factor 1
2

is because:

N−1∑
i=n

i

N2
=

(N − n)(N + n− 1)

2N2
≤ 1

2
, 1 ≤ n ≤ N − 1 (4.74)

The last step (4.72) is unnecessary; it is used to introduce symmetry into the expression and

facilitate the treatment. Taking expectation over the past history F t
0 leads to (4.23).

4.D Proof of Lemma 4.4

Using (4.21), we can establish an upper bound for any inner difference based on wt
0 as

follows:

‖wt
i −wt

0‖2 = ‖wt
i −wt

i−1 +wt
i−1 − · · · −wt

0‖2

= i2
∥∥∥∥1

i

(
wt
i −wt

i−1 +wt
i−1 − · · · −wt

0

)∥∥∥∥2

≤ i
i−1∑
m=0

‖wt
m+1 −wt

m‖2
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(4.21)

≤ 3δ2µ2i

i−1∑
m=0

(
‖wt

m −wt
0‖2+‖wt−1

N − φtm,n‖2+
1

N

N∑
n=1

‖φ̃
t

m,n‖2

)
(4.75)

where φ̃
t

m,n
∆
= w? −φtm,n. It is important to remark here that now n = σt(m+ 1), i.e., n is

always associated with the index before it. Summing over i, we have

N−1∑
i=1

‖wt
i −wt

0‖2 ≤ 3δ2µ2

N−1∑
i=1

i

i−1∑
m=0

(
‖wt

m −wt
0‖2 + ‖wt−1

N − φtm,n‖2

+
1

N

N∑
n=1

‖φ̃
t

m,n‖2

)
(4.73)
= 3δ2µ2

N−2∑
m=0

N−1∑
i=m+1

i

(
‖wt

m −wt
0‖2 + ‖wt−1

N − φtm,n‖2

+
1

N

N∑
n=1

‖φ̃
t

m,n‖2

)
(a)

≤ 3

2
δ2µ2N2

N−2∑
m=0

(
‖wt

m −wt
0‖2 + ‖wt−1

N − φtm,n‖2

+
1

N

N∑
n=1

‖φ̃
t

m,n‖2

)
(b)
=

3

2
δ2µ2N2

N−2∑
m=0

(
‖wt

m −wt
0‖2 + ‖wt−1

N −wt−1
m+1‖2

+
1

N

N∑
n=1

‖φ̃
t

m,n‖2

)

=
3

2
δ2µ2N2

(
N−2∑
m=0

‖wt
m −wt

0‖2 +
N−1∑
i=1

‖wt−1
N −wt−1

i ‖2

+
N−2∑
m=0

1

N

N∑
n=1

‖φ̃
t

m,n‖2

)

≤ 3

2
δ2µ2N2

(
N−1∑
i=1

‖wt
i −wt

0‖2 +
N−1∑
i=1

‖wt−1
N −wt−1

i ‖2

+
N−2∑
i=0

1

N

N∑
n=1

‖φ̃
t

i,n‖2

)
(4.76)
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where step (a) is because
∑N−1

i=m+1 i is bounded by N2

2
, and step (b) uses the fact that

φti,n = wt
m+1 by construction. Then, computing the conditional expectation, we get:

N∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
≤ 3

2
δ2µ2N2

(
N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+

N−1∑
i=1

‖wt−1
N −wt−1

i ‖2

+
N−2∑
i=0

1

N

N∑
n=1

E
[
‖φ̃

t

i,n‖2 |F t
0

])
(4.77)

To bound the last term, we first separate it into two quantities:

E
[
‖φ̃

t

i,n‖2 |F t
0

]
= E

[
‖φ̃

t

i,n − w̃
t
0 + w̃t

0‖2 |F t
0

]
≤ 2E

[
‖φti,n −wt

0‖2 |F t
0

]
+ 2‖w̃t

0‖2 (4.78)

Using an argument similar to Lemma 4.2, we can establish that:

E

[
N∑
n=1

‖φti,n −wt
0‖2
∣∣∣F t

0

]
=

i∑
n=1

E
[
‖wt

i −wt
0‖2
∣∣∣F t

0

]
+
N − i
N

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2 (4.79)

Combining results (4.78) and (4.79), we can bound the last term of (4.77):

N−2∑
i=0

1

N

N∑
n=1

E
[
‖φ̃

t

i,n‖2 |F t
0

]
≤

N−1∑
i=0

2

N

(
i∑

n=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+
N − i
N

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2

)
+ 2N‖w̃t

0‖2

≤ 2

N

N−1∑
i=0

i∑
n=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+
N + 1

N

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2 + 2N‖w̃t

0‖2

≤ 2
N−1∑
i=0

E
[
‖wt

i −wt
0‖2 |F t

0

]
+ 2

N∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2 + 2N‖w̃t

0‖2

= 2
N−1∑
i=1

E [‖wt
i−wt

0‖2|F t
0] + 2

N−1∑
n′=1

‖wt−1
N −w

t−1
n′ ‖

2+2N‖w̃t
0‖2 (4.80)
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Substituting back into (4.77), we have:

N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
≤ 3

2
δ2µ2N2

(
N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+

N−1∑
i=1

‖wt−1
N −wt−1

i ‖2

+ 2
N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+ 2

N−1∑
n′=1

‖wt−1
N −wt−1

n′ ‖
2 + 2N‖w̃t

0‖2

)

≤ 9

2
δ2µ2N2

(
N−1∑
i=1

E
[
‖wt

i −wt
0‖2 |F t

0

]
+
N−1∑
i=1

‖wt−1
N −wt−1

i ‖2

)
+ 3δ2µ2N3‖w̃t

0‖2

≤ 5δ2µ2N2

(
N−1∑
i=1

E[‖wt
i −wt

0‖2 |F t
0] +

N−1∑
i=1

‖wt−1
N −wt−1

i ‖2

)
+ 3δ2µ2N3‖w̃t

0‖2 (4.81)

Taking expectation over the filtration leads to (4.25).

Next, following similar arguments, we have the following for backward inner difference

term:

‖wt−1
N −wt−1

i ‖2

= ‖wt−1
N −wt−1

N−1 +wt−1
N−1 − · · · −w

t−1
i ‖2

≤ (N − i)
N−1∑
m=i

‖wt−1
m+1 −wt−1

m ‖2

(4.21)

≤ 3δ2µ2(N − i)
N−1∑
m=i

(
‖wt−1

m −wt−1
0 ‖2 + ‖wt−2

N − φt−1
m,n‖2 +

1

N

N∑
n=1

‖φ̃
t−1

m,n‖2

)
(4.82)
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where φ̃
t−1

m,n
∆
= w? − φt−1

m,n and now n = σt−1(m+ 1). Summing over i, we have

N−1∑
i=1

‖wt−1
N −wt−1

i ‖2 ≤ 3δ2µ2

N−1∑
i=1

(N − i)
N−1∑
m=i

(
‖wt−1

m −wt−1
0 ‖2 + ‖wt−2

N − φt−1
m,n‖2

+
1

N

N∑
n=1

‖φ̃
t−1

m,n‖2

)

= 3δ2µ2

N−2∑
m=1

N−1∑
i=m

(N − i)

(
‖wt−1

m −wt−1
0 ‖2 + ‖wt−2

N − φt−1
m,n‖2

+
1

N

N∑
n=1

‖φ̃
t−1

m,n‖2

)

≤ 3

2
δ2µ2N2

N−2∑
m=1

(
‖wt−1

m −wt−1
0 ‖2 + ‖wt−2

N − φt−1
m,n‖2

+
1

N

N∑
n=1

‖φ̃
t−1

m,n‖2

)

=
3

2
δ2µ2N2

N−2∑
m=1

(
‖wt−1

m −wt−1
0 ‖2 + ‖wt−2

N −wt−2
m+1‖2

+
1

N

N∑
n=1

‖φ̃
t−1

m,n‖2

)

=
3

2
δ2µ2N2

(
N−2∑
i=1

‖wt−1
i −wt−1

0 ‖2 +
N−1∑
i=2

‖wt−2
N −wt−2

i ‖2

+
N−2∑
i=1

1

N

N∑
n=1

‖φ̃
t−1

i,n ‖2

)

≤ 3

2
δ2µ2N2

(
N−1∑
i=1

‖wt−1
i −wt−1

0 ‖2 +
N−1∑
i=1

‖wt−2
N −wt−2

i ‖2

+
N−2∑
i=0

1

N

N∑
n=1

‖φ̃
t−1

i,n ‖2

)
(4.83)

The above result is similar to (4.76) with t replaced by t− 1. Therefore, the same procedure

can now be followed to arrive at (4.26).
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4.E Proof of Theorem 6.1

To simplify the notation, we introduce the symbols:

a2
t

∆
=

1

N

N−1∑
i=1

E‖wt
i −wt

0‖2, b2
t−1

∆
=

1

N

N−1∑
i=1

E‖wt−1
N −wt−1

i ‖2 (4.84)

Then, the results of the previous three lemmas can be rewritten in the form:

E‖w̃t+1
0 ‖2≤(1− µνN)E‖w̃t

0‖2+4µN
δ2

ν
(a2
t + b2

t−1) (4.85)

a2
t+1 ≤ 5δ2µ2N2(a2

t+1 + b2
t ) + 3δ2µ2N2E‖w̃t+1

0 ‖2 (4.86)

b2
t ≤ 5δ2µ2N2(a2

t + b2
t−1) + 3δ2µ2N2E‖w̃t

0‖2 (4.87)

Before continuing, we first give a more strict condition on the step size than the one in (4.70):

Condition #1 : µ ≤ 1

4(δ + ν)N
(4.88)

Let γ denote an arbitrary positive scalar that we are free to choose. Multiplying relations

(4.86) and (4.87) by γ and adding to (4.85) we obtain:

E‖w̃t+1
0 ‖2 + γ(a2

t+1 + b2
t ) ≤ (1− µνN)E‖w̃t

0‖2 + 4µN
δ2

ν
(a2
t + b2

t−1)

+ 5γδ2µ2N2(a2
t+1 + b2

t ) + 3γδ2µ2N2E‖w̃t+1
0 ‖2

+ 5γδ2µ2N2(a2
t + b2

t−1) + 3γδ2µ2N2E‖w̃t
0‖2 (4.89)

which simplifies to

(1− 3γδ2µ2N2)E‖w̃t+1
0 ‖2 + γ(1− 5δ2µ2N2)(a2

t+1 + b2
t )

≤
(
1− µνN + 3γδ2µ2N2

)
E‖w̃t

0‖2 +

(
4µN

δ2

ν
+ 5γδ2µ2N2

)
(a2
t + b2

t−1) (4.90)
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Under the condition 1− 3γδ2µ2N2 > 0, which is equivalent to

Condition #2 : µ2γ <
1

3δ2N2
(4.91)

it holds that

E‖w̃t+1
0 ‖2 + γ

1− 5δ2µ2N2

1− 3γδ2µ2N2
(a2
t+1 + b2

t ) ≤
1− µνN + 3γδ2µ2N2

1− 3γδ2µ2N2
E‖w̃t

0‖2

+
4µN δ2

ν
+ 5γδ2µ2N2

1− 3γδ2µ2N2
(a2
t + b2

t−1)

=
1− µνN + 3γδ2µ2N2

1− 3γδ2µ2N2
×(

E‖w̃t
0‖2 +

4µN δ2

ν
+ 5γδ2µ2N2

1− µνN + 3γδ2µ2N2
(a2
t + b2

t−1)

)
(4.92)

This relation in turn implies that

E‖w̃t+1
0 ‖2 + γ(1− 5δ2µ2N2)(a2

t+1 + b2
t )

≤ 1− µνN + 3γδ2µ2N2

1− 3γδ2µ2N2
×

(
E‖w̃t

0‖2 +
4µN δ2

ν
+ 5γδ2µ2N2

1− µνN + 3γδ2µ2N2
(a2
t + b2

t−1)

)
(4.93)

We can again simplify the result by noting that

1− µνN + 3γδ2µ2N2 =1− µνN/2− (µνN/2− 3γδ2µ2N2)

≤1− µνN/2 (4.94)

where the inequality holds when µνN/2− 3γδ2µ2N2 ≥ 0, i.e.,

Condition #3 : µγ ≤ ν

6δ2N
(4.95)
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In addition, we have the lower bound

1− µνN + 3γδ2µ2N2 ≥ 1− µνN (4.96)

Using condition #1 from Eq. (4.88), we have

1− µνN ≥ 1− ν

4(δ + ν)
≥ 3

4
(4.97)

In a similar manner,

4µN
δ2

ν
+ 5γδ2µ2N2 ≤ 4µN

δ2

ν
+ µN

δ2

ν

= 5µN
δ2

ν
(4.98)

where the last inequality holds when µγ ≤ 1
5νN

, which is always valid under condition #3

in Eq. (4.95) since the latter implies that µγ ≤ 1
6δN

. Substituting (4.94), (4.97), and (4.98)

into (4.93), we find that

E‖w̃t+1
0 ‖2 + γ(1− 5δ2µ2N2)(a2

t+1 + b2
t )

≤ 1− µνN/2
1− 3γδ2µ2N2

(
E‖w̃t

0‖2 +
4

3
· 5µN δ2

ν
(a2
t + b2

t−1)

)
(4.99)

Under condition #1 in Eq. (4.88), we have

1− 5δ2µ2N2 ≥ 1− 5δ2N2 1

16(δ + ν)2N2
≥ 1− 5

16
>

5

8
(4.100)

and, hence,

E‖w̃t+1
0 ‖2 +

5

8
γ(a2

t+1 + b2
t ) ≤

1− µνN/2
1− 3γδ2µ2N2

(
E‖w̃t

0‖2 +
20

3
µN

δ2

ν
(a2
t + b2

t−1)

)
≤ 1− µνN/2

1− 3γδ2µ2N2

(
E‖w̃t

0‖2 + 5µN
δ2

ν
(a2
t + b2

t−1)

)
(4.101)

where the last inequality is unnecessary but is introduced for convenience. Recall that we
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are free to choose γ, so assume we choose it to satisfy

5

8
γ = 5µN

δ2

ν
=⇒ γ = 8µN

δ2

ν
(4.102)

It then follows that:

E‖w̃t+1
0 ‖2 +

5

8
γ(a2

t+1 + b2
t ) ≤

1− µνN/2
1− 3γδ2µ2N2

(
E‖w̃t

0‖2 + 5γ(a2
t + b2

t−1)
)

∆
= α

(
E‖w̃t

0‖2 + 5γ(a2
t + b2

t−1)
)

(4.103)

where we introduced the positive parameter

α
∆
=

1− µνN/2
1− 3γδ2µ2N2

(4.104)

This parameter controls the speed of convergence. It will hold that α < 1 when

1− µνN/2
1− 3γδ2µ2N2

=
1− µνN/2

1− 24δ4µ3N3/ν
< 1 ⇐⇒ µ <

√
1

48

ν

δ2N
(4.105)

Let us now re-examine conditions #1 through #3, along with (4.105), when γ is chosen

according to (4.102). In this case, conditions #1 through #3 become

µ ≤ 1

2(δ + ν)N
, µ <

1

3δN

(ν
δ

)1/3

, µ ≤
√

1

48

ν

δ2N
(4.106)

All three conditions and condition (4.105) can be satisfied by the following single sufficient

bound on the step-size parameter (since 72 > 48):

µ ≤ ν

7δ2N
(4.107)
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4.F Proof of Lemma 4.5

Subtracting w? from both sides of (4.38), we obtain:

w̃t+1
0 =w̃t

0 + µN∇J(wt
0) + µ

N−1∑
i=0

[
∇Q(wt

i;xn)−∇Q(wt
0;xn)

]
− µ

N−1∑
i=0

[
∇Q(wt

0;xn′)−∇Q(wt−1
i ;xn′)

]
(4.108)

Then, taking the squared norm and applying Jensen’s inequality, we establish the first re-

cursion for any t ∈ (0, 1):

‖w̃t+1
0 ‖2 ≤ 1

t

∥∥w̃t
0 + µN∇J(wt

0)
∥∥2

+
2µ2

1− t

∥∥∥N−1∑
i=0

[
∇Q(wt

i;xn)−∇Q(wt
0;xn)

] ∥∥∥2

+
2µ2

1− t

∥∥∥N−1∑
i=0

[
∇Q(wt

0;xn′)−∇Q(wt−1
i ;xn′)

] ∥∥∥2

≤ 1

t
‖w̃t

0 + µN∇J(wt
0)‖2 +

2µ2δ2N

1− t

N−1∑
i=0

‖wt
i −wt

0‖2

+
2µ2δ2N

1− t

N−1∑
i=0

‖wt−1
N −wt−1

i ‖2 (4.109)

Using an argument similar to (4.71) and letting t = 1 − µNν, assuming µ ≤ 2/(N(δ + ν)),

we obtain:

‖w̃t+1
0 ‖2 ≤ (1− µνN) ‖w̃t

0‖2 +
2µδ2

ν

(
N−1∑
i=0

‖wt
i −wt

0‖2 +
N−1∑
i=0

‖wt−1
N −wt−1

i ‖2

)
(4.110)

Taking the expectation of both sides, we establish (4.40). The forward inner difference

recursion can be obtain by following the same procedure as in (4.75):

‖wt
i −wt

0‖2 ≤ i
i−1∑
m=0

‖wt
m+1 −wt

m‖2
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(4.39)

≤ 3µ2δ2i

i−1∑
m=0

(
‖wt

m −wt
0‖2+

1

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2+‖w̃t
0‖2

)

= 3µ2δ2i
i−1∑
m=0

‖wt
m −wt

0‖2

+ 3µ2δ2i2

(
1

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2 + ‖w̃t
0‖2

)
(4.111)

Summing over i, we have

N−1∑
i=0

‖wt
i −wt

0‖2 ≤ 3µ2δ2

(
N−1∑
i=0

i

i−1∑
m=0

‖wt
m −wt

0‖2

+
N−1∑
i=0

i2

(
1

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2 + ‖w̃t
0‖2

))

= 3µ2δ2

(
N−1∑
m=0

N−1∑
i=m+1

i‖wt
m −wt

0‖2

+
N−1∑
i=0

i2

(
1

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2 + ‖w̃t
0‖2

))
(a)

≤ 3µ2δ2N2

N−1∑
m=0

‖wt
m −wt

0‖2

+ µ2δ2N2

(
N−1∑
n′=0

‖wt−1
N −wt−1

n′ ‖
2 +N‖w̃t

0‖2

)

= 3µ2δ2N2

N−1∑
i=0

‖wt
i −wt

0‖2

+ µ2δ2N2

(
N−1∑
i=0

‖wt−1
N −wt−1

i ‖2 +N‖w̃t
0‖2

)
(4.112)

where step (a) is because:

N−1∑
m+1

i ≤ N2,
N−1∑
i=0

i2 =
(N − 1)N(2N − 1)

6
≤ N3

3
(4.113)

Lastly, we establish the backwards inner difference term using the same argument as in
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(4.82):

‖wt
N −wt

i‖2 = ‖wt
N −wt

N−1 +wt
N−1 − · · ·+wt

i+1 −wt
i‖2

≤ (N − i)
N−1∑
m=i

‖wt
m+1 −wt

m‖2

≤ 3µ2δ2(N − i)
N−1∑
m=i

(
‖wt

m −wt
0‖2 +

1

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2 + ‖w̃t
0‖2

)

≤ 3µ2δ2(N − i)
N−1∑
m=i

‖wt
m −wt

0‖2

+
3µ2δ2(N − i)2

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2+3µ2δ2(N − i)2‖w̃t
0‖2 (4.114)

Observing that this backward term is summing from 0 to N−1, rather than from 1 to N−1

as in SAGA with RR, we have

N−1∑
i=0

‖wt
N −wt

i‖2 ≤ 3µ2δ2

N−1∑
i=0

(N − i)
N−1∑
m=i

‖wt
m −wt

0‖2

+ 3µ2δ2

N−1∑
i=0

(N − i)2

(
1

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2 + ‖w̃t
0‖2

)

= 3µ2δ2

N−1∑
m=0

m∑
i=0

(N − i)‖wt
m −wt

0‖2

+ 3µ2δ2N(N+1)(2N+1)

6

(
1

N

N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2+‖w̃t
0‖2

)

≤ 3µ2δ2N2

N−1∑
m=0

‖wt
m −wt

0‖2

+ 3µ2δ2N2

(
N−1∑
n′=0

‖wt−1
n′ −w

t−1
N ‖

2 +N‖w̃t
0‖2

)

= 3µ2δ2N2

N−1∑
i=0

‖wt
i −wt

0‖2

+ 3µ2δ2N2

(
N−1∑
i=0

‖wt−1
i −wt−1

N ‖
2 +N‖w̃t

0‖2

)
(4.115)
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where in the last inequality we used the fact that

N(N + 1)(2N + 1)

6
≤ N3, ∀N (4.116)

4.G Proof of Theorem 7.2

We let

at
∆
=

1

N

N−1∑
i=0

E‖wt
i −wt

0‖2, bt
∆
=

1

N

N−1∑
i=0

E‖wt
N −wt

i‖2 (4.117)

The recursions available so far for AVRG are:

E‖w̃t+1‖2 ≤ (1− µνN)E‖w̃t
0‖2 +

2µδ2N

ν
(at + bt−1) (4.118)

at+1 ≤ 3µ2δ2N2at+1 + µ2δ2N2bt + µ2δ2N2E‖w̃t+1
0 ‖2 (4.119)

bt ≤ 3µ2δ2N2(at + bt−1) + 3µ2δ2N2E‖w̃t
0‖2 (4.120)

which have exactly the same form as recursions (4.85)—(4.87) except for the coefficients. To

simplify the argument, we can replace (4.119) by:

at+1 ≤ 3µ2δ2N2(at+1 + bt) + µ2δ2N2E‖w̃t+1
0 ‖2 (4.121)

Similarly, we first give a more strict condition for the step size than the one in (4.70):

Condition #1 : µ ≤ 1

2(δ + ν)N
(4.122)

Under the condition 1− γδ2µ2N2 > 0, which is equivalent to

Condition #2 : µ2γ <
1

δ2N2
(4.123)
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it further holds that

E‖w̃t+1‖2 + γ(1− 3µ2δ2N2)(at+1 + bt)

≤ 1− µνN + 3γµ2δ2N2

1− γδ2µ2N2
×

(
E‖w̃t

0‖2 +
2µδ2N
ν

+ 3γµ2δ2N2

1− µνN + 3γµ2δ2N2
(at + bt−1)

)
(4.124)

Note that the numerator 1− µνN + 3γµ2δ2N2 is the same as SAGA in (4.94). Thus, under

condition:

Condition #3 : µγ ≤ ν

6δ2N
(4.125)

we have:

3

4
≤ 1− µνN + 3γδ2µ2N2 ≤ 1− µνN (4.126)

Lastly, we can verify that

2µδ2N

ν
+ 3γµ2δ2N2 ≤ 2µδ2N

ν
+
µδ2N

ν

≤ 3µδ2N

ν
(4.127)

where the last inequality holds when µγ ≤ 1
3νN

, which is always valid under condition #3.

Now, collecting the results, we have

E‖w̃t+1‖2 + γ
13

16
(at+1 + bt) ≤

1− µνN/2
1− γµ2δ2N2

(
E‖w̃t

0‖2 + 3× 4

3
µN

δ2

ν
(at + bt−1)

)
≤ 1− µνN/2

1− γµ2δ2N2

(
E‖w̃t

0‖2 +
65

16
µN

δ2

ν
(at + bt−1)

)
(4.128)

Assume we choose γ such that

γ
13

16
=

65

16
µN

δ2

ν
=⇒ γ = 5µN

δ2

ν
(4.129)
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It then follows that:

E‖w̃t+1
0 ‖2 +

13

16
γ(a2

t+1 + b2
t ) ≤

1− µνN/2
1− 3γδ2µ2N2

(
E‖w̃t

0‖2 +
13

16
γ(a2

t + b2
t−1)

)
∆
= α

(
E‖w̃t

0‖2 +
13

16
γ(a2

t + b2
t−1)

)
(4.130)

where we introduced the positive parameter

α
∆
=

1− µνN/2
1− 3γδ2µ2N2

(4.131)

This parameter satisfies α < 1 for

1− µνN/2
1− 3γδ2µ2N2

=
1− µνN/2

1− 15δ4µ3N3/ν
< 1 ⇐⇒ µ <

√
1

30

ν

δ2N
(4.132)

We re-examine conditions #1–#3 when γ is chosen according to (4.129). In this case,

these conditions become

Conditions 1− 3 : µ≤ 1

4(δ + ν)N
, µ3<

ν

5δ4N3
, µ2≤ ν2

30δ4N2
(4.133)

which can be met by:

µ ≤ 1

4(δ + ν)N
, µ <

1

2δN

(ν
δ

)1/3

, µ ≤ ν

6δ2N
(4.134)

All these three conditions and the condition for α < 1 can be satisfied by the following

single sufficient bound on the step-size parameter:

µ ≤ ν

6δ2N
(4.135)
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CHAPTER 5

Diffusion Gradient Boosting for Networked Learning

Using duality arguments from optimization theory, this chapter develops an effective dis-

tributed gradient boosting strategy for inference and classification by networked clusters of

learners. By sharing local dual variables with their immediate neighbors through a diffusion

learning protocol, the clusters are able to match the performance of centralized boosting

solutions even when the individual clusters only have access to partial information about the

feature space. The performance of the resulting fully-distributed procedure is illustrated on

two data sets with superior results in comparison to a centralized boosting solution.

5.1 Introduction and Motivation

In statistics and machine learning, ensemble learning is a formidable technique that is able to

aggregate the recommendations of weak classifiers into a more powerful classification struc-

ture with enhanced predictive abilities [9,10,85,86]. One prominent example is the AdaBoost

algorithm [85, 87, 88], which has achieved great prominence due to its efficient implementa-

tion structure, strong performance, and its ability to limit over-fitting [9]. It also satisfies

a useful optimality property in that it can be derived from the minimization of exponential

risk functions [89]. This connection between exponential risks and AdaBoost has motivated

useful generalizations of boosting solutions using other choices for the risk function. Two of

the main generalizations introduced in [90] and [91] are the Gradient Boosting Machine and

the AnyBoost solution. These useful works helped solidify the connection between boosting

techniques and gradient-descent methods from an optimization theory perspective.

In this chapter, we exploit this connection more broadly and consider distributed im-
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plementations. Specifically, we show how to develop cooperative boosting strategies by ex-

ploiting strong duality arguments from optimization theory [15, 46] and powerful diffusion

strategies from distributed learning [11, 28]. We examine the important case in which the

weak classifiers are not co-located but are dispersed, either geographically over space or by

design through the intentional partitioning of the classifier set. The main challenge is to

devise suitable cooperation and communication protocols that are able to bring forth these

enhancements. The scenario where the classifier set is partitioned into smaller sets arises

when it is desired to reduce the possibility of overfitting or when the feature space itself

can be partitioned into lower-dimensional subspaces. Regardless of the motivation for split-

ting the classifier set, we assume that the classifier set is partitioned into smaller groups,

where the elements in each group may only have access to lower dimensional subspaces of

the feature space. The groups are also networked by an outer topology – see Fig. 6.1 and

5.1 further ahead. The objective is to endow the dispersed groups of classifiers, through

localized cooperation, with a distributed learning mechanism that ensures that the quality

of their predictions is as close to what would result from a centralized solution with access

to the entire feature space.

One earlier approach to distributed boosting is studied in [92–94]. It is based on learning

from subsets of the training data and then combining the weak classifiers through an ag-

gregation procedure. This formulation is different from the approach pursued in this work,

which is fully decentralized and does not involve fusing the information from across all clas-

sifiers. A second example of a distributed implementation is the Ivote procedure [95] and

its distributed version DIvote [96, 97]. These procedures, however, do not rely on boosting

and their theoretical limits of performance have not been analyzed as closely as AdaBoost.

While these various methods work well in some circumstances, they may still suffer from

over-fitting or get trapped at local minima. In comparison, our main objective in this work

is to devise truly distributed boosting solutions with performance guarantees by relying on

strong duality arguments [44, 46] and the theory of diffusion adaptation [11,28].
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5.2 Gradient Boosting Algorithm

In order to prepare for the derivation of the distributed strategy, we briefly review the well-

known gradient boosting technique [90,91,98] in the context of supervised machine learning

problems. Thus, consider a collection of N data pairs:

D =
{
{h1, γ(1)}, {h2, γ(2)}, · · · , {hN , γ(N)}

}
(5.1)

where hn∈RM are feature vectors and γ(n) represent the class variable. In this chapter, we

assume that there are two classes and γ(n)∈{±1}. A generic classifier, denoted by c(h), is

a transformation that maps a feature vector h into a class value, γ(h). Assume we have a

collection of L weak classifiers:

C = {c1(h), c2(h), · · · , cL(h)} (L can be larger than the data size, N) (5.2)

We would like to select combination coefficients {α(`)} to construct a prediction for the class

variable γ(h) by combining the above learners into a more powerful classifier:

γ̂(h)
∆
=

L∑
`=1

α(`)c`(h) (5.3)

The coefficients {α(`)} are determined by minimizing a surrogate risk of the following form

Jemp(γ̂)
∆
=

1

N

N∑
n=1

Q
(
γ̂(n); γ(n)

)
(5.4)

where the symbol Q(·) denotes a generic loss function, assumed convex and first-order

differentiable. Some popular choices for Q(·) include exponential loss, quadratic loss, hinge

loss, and logistic loss [9,10,99]. Gradient boosting provides a solution technique by applying

a greedy strategy to the minimization of (5.4) [9, 90, 98], where one coefficient α(`) and

one classifier c`(h) are selected at a time. Specifically, assume that by the end of iteration

t − 1, we have already succedded in identifying classifiers {co1(h), . . . , cot−1(h)} and weights
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Table 5.1: Listing of gradient boosting algorithm

Gradient boosting algorithm [90]

Initialization: choose γ̂(0)(n), n = 1, 2, . . . , N
Repeat t = 1, 2, . . . , T :

gt(n) = −
∂Q
(
γ̂(n) ; γ(n)

)
∂γ̂(n)

∣∣∣∣∣
γ̂(n)=γ̂(t−1)(n)

(5.7)

{`o, βo} = arg min
{`,β}

N∑
n=1

(gt(n)− βc`(hn))2 =⇒ set cot (h) = c`o(h) (5.8)

αo(t) = arg min
α

N∑
n=1

Q
(
γ̂(t−1)(hn) + αcot (hn) ; γ(n)

)
(5.9)

γ̂(t)(h) = γ̂(t−1)(h) + αo(t)cot (h) (5.10)

End

{αo(1), . . . , αo(t− 1)}. Gradient boosting selects the next classifier, ct(h), and its associated

weight, α(t), in order to enlarge enlarge the aggregate prediction from iteration t − 1 as

follows:

γ̂(t)(h) =
t−1∑
s=1

αo(s)cos(h) + α(t)ct(h) = γ̂(t−1)(h) + α(t)ct(h) (5.5)

This expression involves correcting the previous construction by adding the term α(t)ct(h).

In order to determine the optimal choices {cot (h), αo(t)}, the algorithm evaluates the negative

gradient of the empirical risk (5.4):

negative gradient for stage t
∆
=


gt(1)

...

gt(N)

 , gt(n)
∆
= −∂Q(γ̂(n) ; γ(n))

∂γ̂(n)

∣∣∣∣
γ̂(n)=γ̂(t−1)(n)

(5.6)

and selects the classifier and its weight optimally as summarized below: the index `o is

selected through (5.8) and the coefficient αo(t) through (5.9).
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5.3 Diffusion Gradient Boosting

We now move on to motivate and derive an effective decentralized strategy for boosting

assuming distributed classifier groups and partial information at the groups. We first describe

a formulation that involves the centralized fusion of predictions from a collection of dispersed

learning groups. We subsequently apply duality arguments from optimization theory to show

that this can be transformed into a distributed implementation that relies solely on local

interactions among the groups.

5.3.1 Networked Groups and Partitioning Model

We consider a scenario in which the L classifiers happen to be divided into K groupings.

We index the groups by the letter k, with k = 1, 2, . . . , K. We denote the classifiers that are

available in group k:

Ck = {ck,1(h), ck,2(h), . . . , ck,Lk
(h)}, (Lk classifiers at group or agent k) (5.11)

Note that we are attaching a subscript k to the classifiers to indicate that these are the ones

used by group k. We also allow classifiers to be repeated across groups. Moreover, for further

generality, we assume that each group k may have access to only a subset of the feature space

for its classification decisions. This situation is common. For example, weak classifiers are

often chosen as shallow decision trees, or simply stumps [9, 100]. When a number of these

weak classifiers is present at a particular group k, then this group will be relying on a subset

of the feature entries. To reflect this fact, for any of the training vectors hn ∈ RM , we shall

adopt the notation hk,n ∈ RMk to refer to the subset of the feature vector hn that is used

by group k. Again, we allow for feature entries to be repeated across groups. Accordingly,

when we write, for example, ck,1(hk,n), this notation is meant to refer to the classifier c1(·)

that is present in group k and which operates on the sub-features of hn that are included in

hk,n.

We further assume that there is a graph structure that ties the groups together — see
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Fig. 5.1 so that if groups k and k′ are connected by some edge, then this means that these

groups can exchange information over this edge. A non-negative scalar ak′,k is assigned to

the edge connecting k′ to k. These scalars are convex combination coefficients and satisfy:

ak,k′ = ak′,k ≥ 0,
∑
k′∈Nk

ak′,k = 1, (5.12)

where Nk denotes the set of neighbors of group k; these are the groups that are directly

connected to k by edges. If we collect the scalars {ak′,k} into a K ×K matrix A = [ak′,k],

then the above property implies that A is a symmetric matrix, and each column and each

row of A adds up to one. We say that A is a doubly-stochastic matrix. There are many

possible choices for such doubly-stochastic matrices. One popular choice is the Metropolis

rule [28].

…
..	  

…
..	  

M1

M2

M3

MK

h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

hK,1 hK,2

h1,N

h2,N

h3,N

hK,N

…..	  

…..	  

c1,`(h1,·)

cK,`(hK,·)

ak0,k
ak0,k

size of data — N cluster 1

cluster K

cluster k

cluster k0

…
…
…
…
...
.	  

Figure 5.1: Partitioning of the feature space and network topology.

5.3.2 Centralized Processing at the Groups

In principle, each group k can run its own gradient boosting procedure and, after T ≤ Lk

iterations, come up with its own prediction, one that is based on the classifiers in Ck. More

broadly, a centralized solution would seek to determine a global prediction function, γ̂(h),that
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combines all group classifiers in the following manner:

γ̂(T )(h)
∆
=

K∑
k=1

T∑
t=1

αk(t)ck,t(hk,·) (5.13)

in terms of some coefficients {αk(t)} that need to be determined. Observe that we are

now attaching a subscript k to coefficients arising from group k. The main difference in

the derivation that follows in relation to the gradient boosting derivation from the previous

section is that now we need to select a total of K classifiers, one for each group, for each

iteration t, along with their corresponding weights. That is, every stage t now involves

determining K pairs {cok,t(hk,·), αok(t)} for k = 1, 2, . . . , K.

Assume that by the end of iteration t−1, each group k has already identified the optimal

classifiers {cok,1(h), cok,2(h), . . . , cok,t−1(h)} and their combination weights {αok(1), αok(2), . . . , αok(t−

1)}. Next, we would like to select the next K classifiers, denoted generically by {ck,t(h)},

and their associated weights {αk(t)}, for k = 1, 2, . . . , K, in order to enlarge the aggregate

prediction from stage t− 1 by adding to it a term of the following form:

γ̂(t)(h) =
K∑
k=1

t−1∑
s=1

αok(s)c
o
k,s(hk,·) +

K∑
k=1

αk(t)ck,t(hk,·) = γ̂(t−1)(h) +
K∑
k=1

αk(t)ck,t(hk,·) (5.14)

Observe that the aggregate update now involves the sum of K weak classifiers: one from

each group k. In order to determine the optimal choices {cok,t(h), αok(t)} for k = 1, 2, . . . , K,

we evaluate the negative gradient of this empirical risk:

negative gradient by group k
∆
=


gk,t(1)

...

gk,t(N)

 , gk,t(n)
∆
= −

∂Q
(
γ̂(n) ; γ(n)

)
∂γ̂(n)

∣∣∣∣∣
γ̂(n)=γ̂(t−1)(n)

(5.15)
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and set cok,t(h) = ck,`ok(h), where the optimal index `ok, for group k, is obtained by solving:

{`ok, βok} = arg min
{1≤`≤Lk,βk}

N∑
n=1

(
gk,t(n)− βk ck,`(hk,n)

)2

(5.16)

Once the {cok,t(h)} are selected, we then choose the weights {αk(t)} for the K groups in order

to result in steepest decline in the value of the empirical risk, namely,

{αok(t)} = arg min
{αk}

N∑
n=1

Q
(
γ̂(t−1)(hn) +

K∑
k=1

αkc
o
k,t(hk,n) ; γ(n)

)
(5.17)

Notice this function has same format as (6.1) in the introduction. With the {cok,t(h), αok(t)}

so determined, we can rewrite (5.14) it in terms of these optimal choices:

γ̂(t)(h) = γ̂(t−1)(h) +
K∑
k=1

αok(t)c
o
k,t(hk,·) (5.18)

The resulting algorithm is non-distributed; nevertheless, it solves the problem of selecting K

optimal classifiers and their weights at each stage in order to reduce the empirical risk value

sequentially. Since this implementation requires access to global information from across all

groups, we shall refer to it as a centralized solution.

5.3.3 Equivalence via Duality Argument

The centralized implementation of gradient boosting involves two steps, (5.17) and (5.18),

where agents require access to global information from across all other agents. Our purpose

now is to device a fully-decentralized scheme whereby groups rely solely on their local in-

formation and on exchanges with their immediate group neighbors in order to construct the

aggregate classifier without the need to access global information.

Let us consider first problem (5.17). For generality, we consider a regularized version of
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(5.17), say,

{αok(t)} = arg min
{αk}

ρ
K∑
k=1

q(αk) +
N∑
n=1

Q

(
γ̂(t−1)(hn) +

K∑
k=1

αkc
o
k,t(hk,n) ; γ(n)

)
(5.19)

where ρ > 0 is a regularization parameter and q(·) is a convex regularization function. The

key observation is that the objective function in (5.19) has the form of a “cost-of-sum” since

the argument of Q involves a sum in terms of the unknowns, {αk}. The duality argument

will show that this “cost-of-sum” form can be transformed into an equivalent “sum-of-cost”

form, which are particularly amenable to distributed implementations [54].

We start by introducing, for every n = 1, 2, . . . , N , a dummy scalar variable z(n) and

transform the above optimization problem into the following constrained form:

min
{z,α}

ρ
K∑
k=1

q(αk) +
N∑
n=1

Q
(
γ̂(t−1)(hn) + z(n) ; γ(n)

)
subject to z(n) =

K∑
k=1

αkc
o
k,t(hk,n), for n = 1, 2, . . . , N

(5.20)

It is easy to see that problem (5.20) is a standard convex optimization problem and that,

under the linear equality constraints, strong duality holds [46]. As such, we can seek the

minimizer(s) {zo(n), αok(t)} by means of Lagrangian duality. Let

L(z, α, λ)
∆
=

N∑
n=1

Q
(
γ̂(t−1)(hn) + z(n) ; γ(n)

)
+ ρ

K∑
k=1

q(αk) +
N∑
n=1

λ(n)

(
z(n)−

K∑
k=1

αkc
o
k,t(hk,n)

)
(5.21)

where the {λ(n)} are scalar Lagrange multipliers. The corresponding dual function is given

by:

D(λ)
∆
=

N∑
n=1

inf
z(n)

{
Q
(
γ̂(t−1)(hn) + z(n)

)
+ λ(n)z(n) ; γ(n)

}
(5.22)

+ ρ
K∑
k=1

inf
αk

{
q(αk)−

N∑
n=1

λ(n)cok,t(hk,n)

ρ
αk

}
(5.23)
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where the primal variables {αok(t, λ), zo(n, λ)} and the dual variable λ are related via:

{zo(n, λ), αok(t, λ)} = arg min
{z,α}

L(z, α, λ) (5.24)

It will be shown later that the primal variables can be recovered in a distributed manner.

We can now call upon the concept of a conjugate function. For any function r(x) of a scalar

variable x, the conjugate function is denoted by r?(ν) [46], where ν is a scalar argument,

and defined as

r?(ν)
∆
= supx (νx− r(x)) (5.25)

For many common regularization forms, closed form expressions exist for q?(ν) — see [54,

101]. The first minimization in (5.22) can also be expressed in closed form in important

cases, such as when the loss function Q(·) is chosen as the exponential loss, or the square

loss, or the logit loss. For now, we denote the minimum value of the first term generically as

Qo(n, λ)
∆
= − inf

z(n)

{
Q
(
γ̂(t−1)(hn) + z(n) ; γ(n)

)
+ λ(n)z(n)

}
(5.26)

so that the expression (5.22) can be written as:

D(λ) = −
N∑
n=1

Qo(n, λ)− ρ
K∑
k=1

q?

(
N∑
n=1

λ(n)cok,t(hk,n)

ρ

)
(5.27)

We introduce the following compact notation for the cost at group k:

D(λ) =−
K∑
k=1

Jk(λ), where Jk(λ)
∆
= ρq?

(
N∑
n=1

λ(n)cok,t(hk,n)

ρ

)
+

1

K

N∑
n=1

Qo(n, λ) (5.28)

Therefore, the problem of determining the optimal dual variable, λo, can be equivalently

stated as

min
λ

K∑
k=1

Jk(λ) =⇒ λo (5.29)

The purpose of the duality argument employed so far has been to transform the original

problem (5.19) into the equivalent problem (5.29), which involves minimizing an objective
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function that is written in the form of a “sum-of-costs.” Such forms admit efficient distributed

implementations, meaning that each group k is now able to estimate λo on its own by

interacting solely with its neighbors. We shall denote these local estimates by λok, with a

subscript k to indicate the group index. These estimates can be computed in a distributed

manner by employing consensus or diffusion strategies [11, 28].

5.3.4 Diffusion Learning

In the diffusion implementation, at every stage t and starting from some initial value, each

group k repeats the following computations a couple of times until its estimate for the vector

λ, denoted by λk,i at time i, converges close enough towards a limiting value, denoted by λok;

this limiting value is the local estimate for the desired dual variable λo:

Diffusion strategy [11] (run by every group k)

Repeat i = 1, 2, . . . , I:

φk,i = λk,i−1 − µ∇λJk(λk,i−1)

λk,i =
∑
k′∈Nk

ak′kφk′,i

End

Set λok = λk,I

(5.30)

In the above adapt-then-combine (ATC) diffusion strategy [11, 28, 102], for every i, agent

k first move along the negative direction of its cost gradient to generate the intermediate

estimate φk,i, followed by a consultation step where it combines the intermediate estimates

{φk′,i} from its neighbors to obtain λk,i. We shall represent the diffusion strategy more

compactly by writing

λok = diffusion {Jk(λ),Nk, I} (5.31)

where Nk denotes the neighborhood of group k, and I denotes the number of iterations

to be used; this parameter is set by the designer. All groups apply the diffusion strategy
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simultaneously. Consequently, every group k will end up with a local version, λok, for the

global dual variable λo. In this way, each group k can now compute a local version for zo(n)

and its optimal coefficient αok(t) by solving:

zok(n) = arg min
z

{
Q
(
γ̂

(t−1)
k (hn) + z ; γ(n)

)
+ λok(n)z

}
(5.32)

αok(t) = arg min
αk

{
q(αk) −

(
N∑
n=1

λok(n)cok,t(hk,n)

ρ

)
αk

}
(5.33)

We now explain how the prediction variables can be estimated for arbitrary features, h.

Indeed, note that after completing T stages of the diffusion strategy to learn the dual variable,

each agent k will have available its optimal coefficients αok(t) and classifier selections cok,t(·).

During testing, when a new feature vector h is received, each agent k is able to use this local

information to evaluate:

b
(T )
k (h)

∆
=

T∑
t=1

αok(t)c
o
k,t(hk,·) (5.34)

Then, from the general form (5.13) we know that the overall prediction variable is the

aggregate sum of these individual decision variables. When A is doubly-stochastic, this sum

can be evaluated in a distributed manner by each agent k run the traditional consensus

iteration [11,103] to combine repeatedly the local values at its neighbors.

Local averaging (run by every group k)

Initialization : start from s
(0)
k (h) = b

(T )
k (h)

Repeat j = 1, 2, . . . , J :

s
(j)
k (h) =

∑
k′∈Nk

ak′k s
(j−1)
k (h)

End

Set γ̂
(T )
k (h) = K · s(J)

k (h)

(5.35)
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We shall represent the above averaging procedure more compactly by writing:

γ̂
(T )
k (h) = K · average

{
b

(T )
k (h),Nk, J

}
(5.36)

where J is the number of iterations. In summary, the algorithm is listed as follows:

Table 5.2: Listing of diffusion gradient boosting algorithm

Diffusion gradient boosting algorithm

Initialization:
choose γ̂

(0)
k (n), for n = 1 . . . N , and k = 1 . . . K

Repeat t = 1, 2, . . . , T :
for every agent (in parallel) k = 1, 2, . . . , K:

gk,t(n) = −
∂Q
(
γ̂ ; γ

)
∂γ̂(n)

∣∣∣∣∣
γ̂=γ̂

(t−1)
k (n)

(5.37)

{`ok, βok} = arg min
{1≤`≤Lk,βk}

N∑
n=1

(
gk,t(n)− βk ck,`(hk,n)

)2

=⇒ set cok,t(h) = ck,`ok(h) (5.38)

Jk(λ) = expression (5.28) (5.39)

λok = diffusion {Jk(λ),Nk, I} (5.40)

αok(t) = arg min
αk

{
q(αk)−

(
N∑
n=1

λok(n)cok,t(hk,n)

ρ

)
αk

}
(5.41)

b
(t)
k (h) = b

(t−1)
k (h) + αok(t)c

o
k,t(h) (5.42)

End
End

γ̂
(t)
k (h) = K · average

{
b

(t)
k (h),Nk, J

}
(5.43)
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5.4 Simulation on Special Loss Functions

In this section, we consider the exponential loss function, Q(γ, γ̂) = e−γγ̂, which is associated

with AdaBoost learning and will simplify several steps since some minimization operation

can be carried out in closed form. To explain the simplifications, we start by noting that:

−
∂Q
(
γ̂(n) ; γ(n)

)
∂γ̂(n)

∣∣∣∣∣
γ̂(n)=γ̂

(t−1)
k (n)

= γ(n)τk,t(n), where τk,t(n)
∆
= e−γ(n)γ̂

(t−1)
k (n) (5.44)

Now, it is easy to verify following equivalence by exploiting the fact that γ(n), ck,`(h) ∈ {±1}:

`ok = arg min
1≤`≤Lk

N∑
n=1

(γ(n)τk,t(n)− ck,`(hk,n))2 ⇐⇒ arg min
1≤`≤Lk

N∑
n=1

τk,t(n) I [ck,`(hk,n) 6= γ(n)] (5.45)

where I[x] denotes the indicator function; it is equal to one when its argument is true

and zero otherwise. Result (5.45) indicates that the optimal classifier `ok is selected as the

one that results in the smallest sum of weights τk,t(n) over the misclassified data.

Next, we can evaluate the function Qo(n, λ) defined by (5.26), which in this case is given

by:

zok(n, λ) = −γ(n) ln

(
γ(n)λ(n)

τk,t(n)

)
=⇒ Qo

k,t(n, λ) = γ(n)λ(n)

[
ln

(
γ(n)λ(n)

τk,t(n)

)
− 1

]
(5.46)

Assume we select the regularization function as the following elastic-net function:

q(x) = δ|x|+ 1

2
|x|2 ⇐⇒ q?(ν) =

1

2

∣∣Tδ(ν)
∣∣2 (5.47)

where Tδ(ν) represents the soft-threshold operator:

Tδ(ν) = sgn(ν) ·max(|ν| − δ, 0) (5.48)
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It follows that the individual costs, Jk(λ), defined by (5.28) are given by

Jk,t(λ) =
ρ

2

∣∣∣∣∣Tδ
(

1

ρ

N∑
n=1

λ(n)cok,t(hk,·)

)∣∣∣∣∣
2

+
1

K

N∑
n=1

γ(n)λ(n)

[
ln

(
γ(n)λ(n)

τk,t(n)

)
− 1

]
(5.49)

It also follows from (5.33) that

αok(t) = Tδ

(
1

ρ

N∑
n=1

λok,t(n)cok,t(hk,·)

)
(5.50)

Furthermore, using expression (5.46) we now have

γ̂
(t)
k (n) = γ̂

(t−1)
k (n)− γ(n) ln

(
γ(n)λok,t(n)

τk,t(n)

)
(5.51)

We can use this update to derive an alternative expression for the weight τk,t(n) in terms of

the local dual variable λok,t(n) as follows:

τk,t+1(n) = γ(n)λok,t(n) (5.52)

It is useful to assign λok,t−1(n) as initial starting point for λok,t(n) in the diffusion update

(5.30), which can reduce the number of iterations due to (5.52).

We now compare the performance of the diffusion Adaboost implementation with elastic-

net regularization against the standard (centralized) Adaboost algorithm on two test datasets.

Both implementations will be based on the same set of weak classifiers, which are chosen as

c`(hn) = sign(hn(p) > thresp) (5.53)

Each of these classifiers simply compares the p−th entry of the feature vectors against a

threshold value. For the diffusion AdaBoost setting, we assigned 10 groups, which are

connected through a random doubly stochastic matrix. Each group is in charge of one-tenth

of total number of feature entries and corresponding weak classifiers.
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The test data is obtained from the LIBSVM website1. We first use the Adult dataset

after preprocessing [104] with 11,220 training data and 21,341 testing data in 123 feature

dimensions. The parameter setting is as follows: regularization term coefficients ρ = 0.005,

`1-norm ratio δ = 0.1, and the step-size µ = 1×10−6. We also examine the performance of the

algorithm on another large-scale dataset, namely, the Reuters Corpus Volume I (RCV1) data

with 20242 training data and 253843 testing data consisting of 47236 feature dimensions. The

agent setting is the same and the parameter setting is ρ = 0.01, δ = 0.2, and µ = 1× 10−6.

One observation stands out from these results. The dotted lines in the figure confirm

that if the individual groups were to rely solely on their classifiers to solve the inference

task, then their performance will be poor. However, once they start cooperating locally and

sharing local information, the network of dispersed groups is able to match the information

of the centralized Adaboost solution.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 5.2: Evolution of the performance curves. There are ten dotted lines. Each represents the

performance of one group based on its own weak classifiers.
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CHAPTER 6

Learning Under Distributed Features

This chapter continues to study the problem of learning under both large datasets and

large-dimensional feature space scenarios. The feature information is assumed to be spread

across agents in a network, where each agent observes some of the features. Through local

cooperation, the agents are supposed to interact with each other to solve an inference problem

and converge towards the global minimizer of an empirical risk. We study this problem

exclusively in the primal domain, and propose new and effective distributed solutions with

guaranteed convergence to the minimizer. This is achieved by combining a dynamic diffusion

construction, a pipeline strategy, and variance-reduced techniques.

6.1 Introduction and Problem Formulation

For easy reference, we illustrate our netwokred agent model in Fig. 6.1 again:

9

5
8

1

2

4

6

7

3

Figure 6.1: Distributing the feature across the networked agents.
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Also, we list the empirical risk function considered in this chapter here again:

J(w) =
1

N

N∑
n=1

Q

(
K∑
k=1

hTn,kwk; γn

)
+

K∑
k=1

r(wk) (6.1)

where we are also assuming that the regularization term satisfies an additive factorization

of the form

r(w) =
K∑
k=1

r(wk) (6.2)

with regularization applied to each sub-vector wk.

6.1.1 Related Works

Problems of this type have been pursued before in the literature by using duality arguments,

such as those in [15,54,105–107]. One common way to do that is to transform problem (6.1)

into a constrained problem, say, as:

min
w∈RM

J(w) =
1

N

N∑
n=1

Q (zn; γn) +
K∑
k=1

r(wk) (6.3)

s.t. zn =
K∑
k=1

hTn,kwk n = 1, 2, . . . , N

Next, exploiting a duality argument, problem (6.3) is equivalent to solving the following dual

problem:

min
y∈RN

D(y)=
K∑
k=1

{
K

N

N∑
n=1

Q?(−yn; γn)+r?

(
1

N

N∑
n=1

ynhn,k

)}
(6.4)

where the scalar yn denotes the dual variable corresponding to the n−th constraint, and

Q?(·) and r?(·) represent the conjugate functions, i.e., f ?(y) = supx(y
Tx − f(x)), of Q(·)

and r(·), respectively. Note that the function in (6.4) has the format of a “sum-of-cost” and

each term inside the summation can be computed by each agent alone. Therefore, problem

144



(6.4) can be solved in a number of traditional distributed algorithms [11, 57, 58, 108, 109].

However, the resulting algorithms suffer from some limitations. One limitation is that the

term 1
N

∑N
n=1 ynhn,k inside of r?(x) has complexity O(N) to compute. Another limitation

is that the resulting algorithms rely on the use of conjugate functions, which are not always

available in closed form; this will greatly depend on the nature of the loss function Q(·).

This limitation is worse for nonlinear models, say, for:

J(w) =
1

N

N∑
n=1

Q
( K∑
k=1

f(wk, hn,k); γn

)
+ r(w) (6.5)

where f(wk, hn,k) is some nonlinear function. These difficulties do not arise if we pursue

a solution directly in the primal domain. For example, the case of nonlinear models can

be handled through the chain rule of differentiation (as in backpropagation), when deriving

stochastic gradient algorithms. Furthermore, we are often interested more directly in the

primal rather than the dual variable.

With regards to the large feature space, one may be motivated to consider coordinate de-

scent techniques [110,111], which pursue optimization one coordinate yn at a time. However,

these techniques still face difficulties in both the primal and dual domains. For instance, in

the primal domain [112–114], they will generally require two time-scales: one scale governs

the rate for updating the gradients and a second faster scale for running averaging iterations

multiple times. This feature limits the rate at which data can be sampled because the inner

calculation will need to be completed before the computation of the next datum. The same

difficulties mentioned above for the dual methods will again arise if coordinate descent so-

lutions are implemented in the dual domain [106,115,116]. For these reasons, the approach

proposed in this chapter does not rely directly on coordinate descent implementations.

Other useful approaches to solving problems of the form (6.1) are the Alternating Direc-

tion Method of Multipliers (ADMM) [105, 117, 118] and primal dual-methods [57, 108, 119,

120]. These techniques have good convergence properties but continue to suffer from high

computational costs and two-time scale communications.
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6.1.2 Novelty and Contributions

In this chapter, we propose a stochastic solution method to (6.1) that operates directly

in the primal domain. By avoiding the dual formulation, we will arrive at a simple and

effective method even for large scale applications. We exploit the idea of dynamic consensus

algorithm [121, 122], which has been adopted in the distributed optimization algorithms to

track the average of gradients, see [113, 123–126]. Meanwhile, we are interested in tracking

the sum of score,
∑K

k=1 h
T
n,kwk, due to the different problem setting. More importantly,

we will show that the proposed method is able to converge at a linear rate to the exact

minimizer of the empirical risk J(w) even under constant step-size learning. We will also

exploit variance-reduced techniques [39] and a pipeline strategy [127] to obtain a reduced

complexity algorithm that requires only O(1) operations per iteration. The algorithm will

not require two (or separate) time-scales and will not necessitate the solution of auxiliary

sub-optimization problems as is common in prior methods in the literature.

Problems similar to (6.1) were also studied in [5] using similar primal methods like us

but in a deterministic setting, but the approach is not well-suited for big-data applications.

Notation: We use plain letters for deterministic variables, and boldface letters for random

variables. We also use Ex to denote the expectation with respect to x, col{x1, · · · , xn} to

denote a column vector formed by stacking x1, · · · , xn, (·)T to denote transposition, and ‖ · ‖

for the 2-norm of a matrix or the Euclidean norm of a vector. Through this chapter, we use

the subscript n as the index of data, the subscript i, j as the index of iteration/time, and

k, ` as the index of agent. We also put i, j as the superscript with the same meaning, i.e.,

the index of iteration/time. The notation 1N = col{1, . . . , 1} ∈ RN .

6.2 Preliminary Näıve Solution

We first propose a simple and näıve solution, which will be used to motivate the more

advanced algorithms in later sections.
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6.2.1 Networked Agent Model and Consensus Strategy

To begin with, we introduce several preliminary concepts that will be exploited in later

sections.

We consider the graph model shown in Fig. 6.1. In this construction, the communication

network of the agents is modeled as a fixed directed graph G = ({1, · · · , K} ; E), where

E ⊆ {1, · · · , K} × {1, · · · , K} is the set of edges. The edge (`, k) means that agent ` can

send a message to agent k, where we associate the weight a`k as a nonnegative factor that

scales the information from agent ` to agent k. We assume the combination matrix A = [a`k]

is symmetric and doubly-stochastic, i.e.,

K∑
`=1

a`k = 1,
K∑
k=1

a`k = 1 (6.6)

We also assume that akk > 0 for at least one agent k and the underlying graph G is strongly

connected.

Now assume there is a signal dk at each agent k. Then, a well-studied and traditional

algorithm for the agents to learn the average value of all the {dk} signals is to run the

consensus iteration [11,58,109,128]:

wi+1,k =
∑
`∈Nk

a`kwi,`, where w0,k = dk (6.7)

where the notation Nk denotes the set of neighbors of agent k. In this way, each agents starts

from its own observation vector dk and continually averages the state values of its neighbors.

After sufficient iterations, it is well-known that

wi,k →
1

K

K∑
k=1

dk (6.8)

under some mild conditions on A [28, 58,128–130].
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6.2.2 Näıve Solution

Now, let us consider the problem of minimizing (6.1) by means of a stochastic gradient

recursion. Let αn,k = hTn,kwk denote the inner product that is available at agent k at time n

and define

zn
∆
=

K∑
k=1

αn,k (6.9)

which is the argument of Q(·) in (6.1):

J(w) =
1

N

N∑
n=1

Q (zn; γn) + r(w) (6.10)

If we denote the average of the local inner products by

ᾱn
∆
=

1

K

K∑
k=1

αn,k (6.11)

then the variable zn is a scaled multiple of ᾱn, namely, zn = Kᾱn. Now, the stochastic-

gradient step to solving (6.10) will involve approximating the true gradient vector of J(w)

by the gradient vector of the loss function evaluated at some randomly selected data pair

(zni
, γni

), where ni at iteration i denotes the index of the sample pair selected uniformly

at random from the index set {1, 2, . . . , N}. Doing so, the stochastic gradient recursion will

take the form:

wi+1 = wi − µ∇zQ(zni
; γni

)hni
− µ∇wr(wi) (6.12)

Note that ni is independent of the iterates {wj}ij=0. Recalling that hn and w are partitioned

into K blocks, we can decompose (6.12) into K parallel recursions run at the local agents:

wi+1,k = wi,k − µ∇zQ (zni
; γni

)hni,k − µ∇wr(wi,k) (6.13)
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One main problem with (6.13) is that it is not a distributed solution because agents need

to calculate ∇zQ(z; γ) at z whose value depends on all sub-vectors {wk} from all agents and

not just on wk from agent k. This difficulty suggests one initial solution method.

Since the desired variable zn is proportional to the average value ᾱn, then a consensus-type

construction can be used to approximate this average. For some total number of iterations

J , each agent would start from ᾱ
(0)
n,k = αn,k and repeat the following calculations J times:

ᾱ
(j)
n,k ←

∑
`∈Nk

a`kᾱ
(j−1)
n,` , j = 1, 2, . . . , J (6.14)

However, this mode of operation requires the agents to complete J consensus updates be-

tween two data arrivals and requires a two-time scale operation: a faster time-scale for the

consensus iterations and a slower time-scale for the data sampling and computing the gra-

dient. One simplification is to set J = 1 and to have each agent perform only one single

combination step to generate the variable:

ẑni,k =
∑
`∈Nk

a`kKh
T
ni,`

wi,` (6.15)

where we are expressing the result of this single combination by ẑni,k to indicate that this

is the estimate for zni
that is computed at agent k at iteration i. Observe also that we are

scaling the quantity inside the sum by K since, as explained before, zn = Kᾱn. We list the

resulting algorithm in (6.16)–(6.18).

Observe that this implementation requires all agents to use the same random index ni

at iteration i. Although this requirement may appear restrictive, it can still be implemented

in distributed architectures. For example, each agent can be set with the same random seed

so that they can generate the same index variable ni at iteration i. To agree on the same

random seed in a fully distributed manner, one way is to run the consensus algorithm on

the seed in the setting phase. Specifically, each agent generates a random seed number, then

runs the consensus algorithm until it converges and rounds the result to the nearest integer.

Alternatively, agents can sample the data in a cyclic manner instead of uniform sampling.
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Table 6.1: Listing of Näıve feature-distributed method for agent k

Algorithm 6.1 (Näıve feature-distributed method for agent k)

Initialization: Set w0,k = 0.
Repeat for i = 1, 2, . . .:

ni ∼ U [1, N ] (uniformly sampled) (6.16)

ẑni,k =
∑
`∈Nk

a`k(Kh
T
ni,k

wi,k) (6.17)

wi+1,k = wi,k−µ∇zQ
(
ẑni,k; γni

)
hni,k − µ∇wr(wi,k) (6.18)

End

But in the main body of this chapter, we assume each agent k will sample the same index

ni at iteration i for simplicity.

6.2.3 Limitations

Algorithm 1 is easy to implement. However, it suffers from two major drawbacks. First, the

variable ẑni,k generated by the combination step (6.17) is not generally a good approximation

for the global variable zni
. This approximation error affects the stability of the algorithm

and requires the use of very small step-sizes. A second drawback is that the stochastic-

gradient implementation (6.16)–(6.18) will converge to a small neighborhood around the

exact minimizer rather than to the exact minimizer itself [11, 13]. In the following sections,

we will design a more effective solution.

6.3 Correcting the Approximation Error

6.3.1 Dynamic Diffusion Strategy

Motivated by the dynamic average consensus method [121, 122], we will design a stochastic

diffusion-based algorithm to correct the error introduced by (6.17). To motivate the algo-

rithm, let us step back and assume that each agent k in the network is observing some

dynamic input signal, di,k ∈ RN , that changes with time i. Assume we want to develop
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a scheme to ensure that each agent k is able to track the average of all local signals, i.e.,

d̄i = 1
K

∑K
k=1 di,k. For that purpose, we consider an optimization problem of the form:

min
x∈RP

Ci(x) =
K∑
k=1

1

2
‖x− di,k‖2 (6.19)

where the cost function Ci(x) is changing with time i. The global minimizer of Ci(x) is the

desired average r̄i. However, we would like the agents to attain this solution in a distributed

fashion. To this end, we can apply the exact diffusion algorithm developed in [57, 131] to

solve (6.19). For this case, the algorithm simplifies to the following recursions:

Adapt: ψi+1,k = xi,k − µ(xi,k − di+1,k) (6.20)

Correct: φi+1,k = ψi+1,k + xi,k − ψi,k (6.21)

Combine: xi+1,k =
∑
`∈Nk

a`kφi+1,` (6.22)

Each agent k has a state variable xi,k at time i. Step (6.20) uses the input signal di+1,k

at agent k to update its state to the intermediate value ψi+1,k. The second step (6.21)

corrects ψi+1,k to φi+1,k, and the third step (6.22) combines the intermediate values in the

neighborhood of agent k to obtain the update state xi+1,k. The process continues in this

manner at all agents. Based on the results from [131] applied to (6.19), we can set µ = 1 in

(6.20) and combine three recursions to get

xi+1,k =
∑
`∈Nk

a`k (xi,` + di+1,` − di,`) (6.23)

with x0,k = d0,k for any k. It can be shown that if the signals change slowly, the xi,k will track

the mean d̄i = 1
K

∑K
k=1 di,k well [121, 122]. Also, using induction and the initial boundary

conditions, it is easy to verify that (6.23) has the unbiasedness property:

K∑
k=1

xi,k =
K∑
k=1

di,k, ∀i > 0 (6.24)
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In this chapter, we are interested in a second useful property that:

lim
i→∞

xi,k =
1

K

K∑
k=1

dk, when lim
i→∞

di,k = dk, ∀k (6.25)

This means if the signals di,k converge, then the xi,k of all agents will converge to the mean

of the limit values. We refer to (6.23) as the dynamic diffusion method.

We now apply this intermediate result to the earlier recursion (6.13) to transform it into

a distributed solution. Recall that there we need to evaluate the variable

zni
=

K∑
k=1

hTni,k
wi,k (6.26)

Calculating this quantity is similar to solving problem (6.19), where each di,k corresponds

to the inner product hTni,k
wi,k. However, there is one key difference: the signal hni

is not

deterministic but stochastic and it varies randomly with the data index ni. At any particular

iteration i, we do not know beforehand which random index ni is going to be chosen. This

suggests that in principle we should keep track of N variables zn, one for each possible

n = 1, 2, . . . , N . For large datasets, this is of course too costly to implement it. Instead, we

propose a more efficient solution where the data is sparsely sampled. Assume first, for the

sake of argument only, that we move ahead and compute the variable zn for every possible

value of n. If we do so, we would need to repeat construction (6.23) a total of N times at

each node k, one for each n, as follows:

zi+1
1,k =

∑
`∈Nk

a`k
(
zi1,` +KhT1,`wi,` −KhT1,`wi−1,`

)
(6.27)

zi+1
2,k =

∑
`∈Nk

a`k
(
zi2,` +KhT2,`wi,` −KhT2,`wi−1,`

)
(6.28)

...

zi+1
N,k =

∑
`∈Nk

a`k
(
ziN,` +KhTN,`wi,` −KhTN,`wi−1,`

)
(6.29)

In this description, we are adding a superscript i to each zin,k to indicate the iteration index.
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In this way, each zin,k will be able to track the sum
∑K

k=1 h
T
n,kwi,k. However, since the data

size N is usually very large, it is too expensive to communicate and update all {zn,k}Nn=1 per

iteration. We propose a stochastic algorithm in which only one datum hni,k is selected at

iteration i and only the corresponding entry zi+1
ni,k

be updated while all other zi+1
n,k will stay

unchanged for n 6= ni:


zi+1
ni,k

=
∑
`∈Nk

a`k
(
zjni,`

+KhTni,`
wi,` −KhTni,`

wj−1,`

)
zi+1
n,k = zin,k, n 6= ni

(6.30)

where the index j in the first equation refers to the most recent iteration where the same

index ni was chosen the last time. Note that the value j depends on ni and the history of

sampling, and therefore we need to store the inner product value that is associated with it.

To fetch zjn,` and KhTni,`
wj−1,` easily, we introduce two auxiliary variables:

uini,`
← zjni,`

, vini,`
← KhTnj ,`

wj−1,` (6.31)

If we view {zi+1
1,k , z

i+1
2,k , . . . ,z

i+1
N,k} as one long vector, the update (6.27)—(6.29) resembles a

coordinate descent algorithm [111,113].

An unbiasedness property similar to (6.24) will continue to hold:

K∑
k=1

uin,k =
K∑
k=1

vin,k =
K∑
k=1

KhTn,kwj−1,k, ∀n, i > 0 (6.32)

It is easy to verify the validity of (6.32) by taking the summation over (6.30) and combining

the initialization conditions.

6.3.2 Variance-Reduction Algorithm

We can enhance the algorithm further by accounting for the gradient noise that is present

in (6.12): this noise is the difference between the gradient of the risk function J(w), which

is unavailable, and the gradient of the loss function that is used in (6.12). It is known, e.g.,
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from [11–13, 17] that under constant step-size adaptation, and due to this gradient noise,

recursion (6.12) will only approach an O(µ)−neighborhood around the global minimizer of

(6.1). We can modify the recursion to ensure convergence to the exact minimizer as follows.

There is a family of variance-reduction algorithms such as SVRG [38], SAGA [39], and

AVRG [31] that can approach the exact solution of the empirical risk function with constant

step-size. In this chapter, we exploit the SAGA construction because the variables {un,k}

can readily be used in that implementation. Let us consider an agent k in a non-cooperative

scenario where the vanilla SAGA recursion would be

wi+1,k=wi,k−µ∇zQ(hTni,k
wi,k; γni

)hni,k (6.33)

+ µ∇zQ(uini,k
; γni

)hni,k −
µ

N

N∑
n=1

∇zQ(uin,k; γn)hn,k

ui+1
n,k =


hTni,k

wi,k, if n = ni

uin,k, otherwise

(6.34)

It is proved in [39] that the variance of the gradient noise, i.e., the difference between the

gradient step in 6.33 and the full gradient, introduced in SAGA will vanish in expectation.

Therefore, SAGA will converge to the exact solution of problem (1.20). Also, note that the

N -summation term
∑N

n=1∇zQ(uin; γn)hn can be calculated in an online manner since only

one term is updated, i.e.,

N∑
n=1

∇zQ(ui+1
n ; γn)hn =

N∑
n=1

∇zQ(uin; γn)hn−∇zQ(uini
; γni

)hni
+∇zQ(ui+1

ni
; γni

)hni
(6.35)

This online calculation results in O(1) complexity per iteration.

Note that the vanilla SAGA needs to store the gradient ∇zQ(uin,k; γn)hn,k for n =

1, 2, . . . , N . However, we have already stored uin,k and the additional storage of the gra-

dient is unnecessary.

Hence, the stochastic gradient recursion(6.13) at each agent k will be modified to (6.38)

with two correction terms. The resulting algorithm is summarized in Table 6.2.

154



Table 6.2: Listing of variance-reduced dynamic diffusion algorithm

Algorithm 6.2 [Variance-Reduced Dynamic Diffusion (VRD2)]

Initialization: Set w0,k = 0; u0
n,k = 0; v0

n,k = 0.
Repeat for i = 1, 2, . . .:

ni ∼ U [1, N ] (uniformly sampled) (6.36)

zni,k =
∑
`∈Nk

a`k
(
uini,`

+KhTni,`
wi,`−vini,`

)
(6.37)

wi+1,k = wi,k − µ

{[
∇zQ

(
zni,k; γni

)
−∇zQ

(
uini,k

; γni

)]
hni,k

+
1

N

N∑
n=1

∇zQ
(
uin,k; γn

)
hn,k +∇wr(wi,k)

}
(6.38)

ui+1
n,k =

{
zi+1
ni,k

, if n = ni

uin,k, otherwise
(6.39)

vi+1
n,k =

{
KhTni,k

wi,k, if n = ni

vin,k, otherwise
(6.40)

End
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6.4 Acceleration with pipeline

Algorithm 6.2 can be shown to converge to the solution of problem (1.20) for sufficiently

small step-sizes. However, it is observed in numerical experiments that its convergence rate

can be slow. One reason is that the variable zn,k generated by (6.37) converges slowly to∑K
k=1 h

T
n,kwi,k. To accelerate convergence, it is necessary to run (6.37) multiple times before

the gradient descent step (6.38), which, however, will take us back to in a two-time-scale

algorithm. In this section, we propose a pipeline method that accelerates the convergence of

zn,k while maintaining the one-time-scale structure.

A pipeline is a set of data processing elements connected in series, where the output of

one element is the input to the next element [127]. We assume each agent k stores J variables

at iteration i:

[z
(0)
ni,k

, z
(1)
ni−1,k

, · · · z(J−1)
ni−J+1,k

] ∈ RJ (6.41)

At every iteration, agent k runs a one-step average consensus recursion on its state vector

(6.41):

[z
(1)
ni,k

, z
(2)
ni−1,k

, · · · z(J)
ni−J+1,k

] =
∑
`∈Nk

a`k[z
(0)
ni,`

, z
(1)
ni−1,`

, · · · z(J−1)
ni−J+1,`

] (6.42)

Then, agent k pops up the variable z
(J)
ni−J+1,k

from memory and uses it to continue the

stochastic gradient descent steps. Note that the variable z
(J)
n,k can be interpreted as the

result of applying J consensus iterations and, therefore, it is a better approximation for∑K
k=1 h

T
n,kwn,k. At iteration i+ 1, agent k will push a new variable z0

ni+1,k
= KhT

ni+1,k
wi+1,k

into the buffer and update its state to

[z
(0)
ni+1,k

, z
(1)
ni,k

, · · · z(J−1)
ni−J+2,k

] ∈ RJ . (6.43)

Recursion (6.42) employs the pipeline strategy. For example, variable z
(1)
ni,k

is updated
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iterations

Pop out

Push in

Consensus
steps

Figure 6.2: Illustration of the pipeline strategy with buffer length J = 3.

at iteration i. This new output z
(1)
ni,k

will become the second input at iteration i and is used

to produce the output z
(2)
ni,k

. Next, the output z
(2)
ni,k

will be the third input at iteration i+ 2

and is used to produce the output z
(3)
ni,k

. If we follow this procedure, the output z
(J)
ni,k

will be

reached at iteration i+ J − 1. At that time, we can pop up z
(J)
ni,k

and use it in the stochastic

gradient update. The pipeline procedure is summarized in the “Pipeline function” shown

above, and Fig. 6.2 illustrates the pipeline strategy.

The pipeline strategy has two advantages. First, it is able to calculate z
(J)
n,k without inner

Table 6.3: Listing of pipeline function

Pipeline function

Initialization: zni,k = 0 for any i ≤ 0

Function Pipeline
(
z

(0)
ni,k

, vi+J−1
ni,k

)
Push

[
z

(0)
ni,k

, vi+J−1
ni,k

]
into the queue (6.44)

[z
(1)
ni,k

, z
(2)
ni−1,k

, · · · z(J)
ni−J+1,k

] =
∑
`∈Nk

a`k[z
(0)
ni,`

, z
(1)
ni−1,`

, · · · z(J−1)
ni−J+1,`

] (6.45)

Pop
[
z

(J)
ni−J+1,k

, vini−J+1,k

]
out of the queue (6.46)

Return
[
z

(J)
ni−J+1,k

, vini−J+1,k

]

loop, which accelerates the algorithm and maintains the one-time-scale structure. Second, in

one iteration, the two-time-scale solution sends a scalar J times while the pipeline solution
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Table 6.4: Listing of pipelined variance-reduced dynamic diffusion algorithm

Algorithm 6.4 [Pipelined Variance-Reduced Dynamic Diffusion ( PVRD2)]

Initialization: Set w0,k = 0; u0
n,k = 0; v0

n,k = 0.
Repeat for i = 1, 2, . . .:

ni ∼ U [1, N ] (uniformly sampling) (6.47)[
z

(J)

n′i,k
,vi+1
n′i,k

]
= Pipeline

(
uini,k

+KhTni,k
wi,k−vini,k

, KhTni,k
wi,k

)
(6.48)

(denote n′i
∆
= ni−J+1)

wi+1,k = wi,k − µ

{[
∇zQ

(
z

(J)

n′i,k
; γn′i

)
−∇zQ

(
uin′i,k; γn

′
i

)]
hn′i,k

+
1

N

N∑
n=1

∇zQ
(
uin,k; γn

)
hn,k +∇wr(wi,k)

}
(6.49)

ui+1
n,k =

{
z

(J)

n′i,k
, if n = n′i

uin,k, otherwise
(6.50)

vi+1
n,k =

{
vi+1
n′i,k

, if n = n′i

vin,k, otherwise
(6.51)

End

sends a J-length vector just once. Though the communication load is the same, the pipeline

solution is usually faster than the two-time-scale approach in practice. That is because

sending a scalar with J time needs all agents to synchronize for J times, which can take

longer time than the one-time communication.

Observe that when z
(0)
ni,k

is popped out of the pipeline after J iterations, the required

vini,k
should also be from J iterations ago. This means that we need to store the past vini,k

values. One solution is to push the auxiliary vini,k
along with z

(0)
ni,k

into the pipeline but

without doing any processing inside the pipeline. Since this value will be used J iterations

into the future, this variable should be denoted by vi+J−1
ni,k

.
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6.5 Algorithm Analysis

6.5.1 Delayed gradient calculations

First, we have to point out that the pipeline solution is not equivalent to the two-time-scale

solution. It is observed that the gradient used in the stochastic gradient descent step (6.49)

at iteration i is ∇zQ(z
(J)

n′i,k
; γn′i) where n′i = ni−J+1, which is J-time out-of-date. The cause

of the delay is that the variable zn,k has to conduct J updates in the pipeline. When z
(J)
ni,k

pops up from the pipeline, the iteration index has arrived to i + J − 1. As a result, the

pipeline solution introduces delays in the gradient. Due to this delay, it does not necessarily

follow that deeper pipelines lead to better performance. Actually there is a trade off between

depth and performance.

Fortunately, problems involving delays in gradient calculations are well-studied in the

distributed machine learning and signal processing literature [132–134]. These works show

that convergence can still occur albeit the stability ranges are affected. Although, in most

literature, the delayed gradient is usually caused by unbalanced computation loads or frag-

ile communication environments instead of pipeline structure, the proof in this chapter is

inspired from these investigations to some extent.

6.5.2 Convergence Analysis

To establish the convergence theorem, we require two assumptions

Assumption 6.1 (Risk Function) The loss function Q(z; γn)
∆
= Q(hTnw; γn) is differ-

entiable, and has an L-Lipschitz continuous gradient with respect to w and a δ-Lipschitz

continuous gradient with respect to z, for every n = 1, . . . , N , i.e., for any w1, w2 ∈ RM :

‖∇wQ(hTnw1; γn)−∇wQ(hTnw2; γn)‖ = ‖∇zQ(hTnw1; γn)hn−∇zQ(hTnw2; γn)hn‖

≤ L‖w1 − w2‖ (6.52)

‖∇zQ(z1; γn)−∇zQ(z2; γn)‖ ≤ δ‖z1 − z2‖ (6.53)
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where L > 0 and δ > 0. For the regularization term r(w), it is convex and has η-Lipschitz

continuous gradient:

‖∇wr(w1)−∇wr(w2)‖ ≤ η‖w1 − w2‖ (6.54)

We also assume that the risk J(w) is ν-strongly convex, namely,

(
∇wJ(w1)−∇wJ(w2)

)T
(w1 − w2) ≥ ν‖w1 − w2‖2 (6.55)

�

Assumption 6.2 (Topology) The underlying topology is strongly connected, and the com-

bination/weighted adjacency matrix A is symmetric and doubly stochastic, i.e.,

A = AT and A1K = 1K (6.56)

where 1 is a vector with all unit entries. We further assume that akk > 0 for at least one

agent k. �

Under assumption 6.2, we can show that matrix A is primitive [11,129] and that the second

largest magnitude of the eigenvalue of A, denoted by λ, satisfies [130]:

0 < λ < 1 (6.57)

Theorem 6.1 ( Convergence of PVRD2) Algorithm PVRD2 converges at a linear rate

for sufficiently small step-sizes µ, i.e.,

E‖wi,k − w?‖2 ≤ ρiC, ∀k, i > 0 (6.58)
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for some constant C, where:

ρ = max

(
1− 1− λJ

2N
, 1− µν/5

)
(6.59)

Proof: See Appendix 6.A. �

This theorem indicates that the convergence rate of the algorithm depends on the network

topology through λ, the depth of pipeline J , and the strong convexity parameter ν. When

J is not very large and the first term in (6.59) is larger than the second one, the convergence

rate will depend more on the network topology and the depth of the pipeline. However,

when J is large enough so that the second term is dominant, the algorithm performance will

depend on the strong convexity parameter ν, as in the single agent case.

Remark: The theorem indicates that the algorithm converges to the minimizer of empirical

risk (6.1) exactly. In many cases we are instead interested in the minimizer of the average

risk JE(w) = ExQ(w;x)+r(w). By an ergodicity argument, the two minimizers will become

closer when the number of data samples increases. �

Notice that algorithm VRD2 is a special case of algorithm PVRD2 by setting J = 1.

Thus, we establish the following corollary from Theorem 6.1.

Corollary 6.1 (Convergence of VRD2) Algorithm VRD2 converges at a linear rate for

sufficiently small step-sizes µ, i.e.,

E‖wi,k − w?‖2 ≤ ρiC, ∀k, i > 0 (6.60)

for some constant C, where:

ρ = max

(
1− 1− λ

2N
, 1− µν/4

)
(6.61)

�
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6.6 Simulations

We illustrate the performance of the PVRD2 algorithm on the MNIST dataset, which consists

of 50000 28 × 28 handwritten digits1. In the simulation, we consider the classification task

of predicting digit 0 or digit 1. We separate the features over 8 networked agents. The loss

function we use is logistic regression:

J(w)=
1

N

N∑
n=1

ln

(
1 + exp

(
−γn

K∑
k=1

hTn,kwk

))
+ ρ

K∑
k=1

‖wk‖2 (6.62)

In the simulation, we set ρ = 1 × 10−4. From two subplots in Fig. 6.3, we see that each

agent is in charge of part of w, and each converges to its corresponding part of w?. Next, we

compare our algorithm to the method proposed in [5] with some modification, which can be

viewed as the deterministic full-gradient version of our algorithm without pipeline. To make

a fair comparison, we plot the convergence curve based on the count of gradients calculated

and the combination step in Fig. 6.4. Notice that when the pipeline step J is larger, we

need to do more operation on the combination step (6.45). Therefore, we use a different

mini-batch B for different J but we keep the sum, J + B equal 30. The curve shows that

the larger J we set, the faster the algorithm converges until it is large enough to trigger the

second term in the convergence rate.

Next, we compare the communication cost on the CIFAR-10 dataset, which consists of

50000 32x32 color images in 10 classes, with 5000 images per class2. For this multi class

problem, we use the softmax as the loss function:

J(W ) =− 1

N

N∑
n=1

ln

(
exp(

∑K
k=1Wk[ : , γn]Thn,k)∑C

c=1 exp(
∑K

k=1 Wk[ : , c]Thn,k)

)
+ ρ

K∑
k=1

‖Wk‖2
F (6.63)

where ‖ · ‖F represents the Frobenius norm, Wk ∈ RM×C is a matrix that has dimensions

M × C, where C = 10 in CIFAR-10 problem, and W [ : , c] is the C-th column of matrix W .

1http://yann.lecun.com/exdb/mnist/

2https://www.cs.toronto.edu/~kriz/cifar.html
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agent 1: w_1

agent 3: w_3

agent 5: w_5

agent 7: w_7

agent 2: w_2

agent 4: w_4

agent 6: w_6

agent 8: w_8

Figure 6.3: Left: Visualization of wi,k; Right: Visualization of w?.

Notice that this model is a little bit different from (1.20). However, it is still easy to adapt

our algorithm for the softmax cost. Notice that we now need to find the summation of

C-classes, i.e.

zn,k
∆
=



zn,k(1)

zn,k(2)
...

zn,k(C)


∆
=



∑K
k=1Wk[ : , 1]Thn,k∑K
k=1Wk[ : , 2]Thn,k

...∑K
k=1 Wk[ : , c]Thn,k


(6.64)

As long as the agent has the information of zn,k, it can compute the gradient locally. For

simplicity, we let

prob(zn,k, γn)
∆
=

exp
(
zn,k(γn)

)
∑C

c=1 exp
(
zn,k(c)

)
=

exp
(∑K

k=1 Wk[ : , γn]Thn,k

)
∑C

c=1 exp
(∑K

k=1Wk[ : , c]Thn,k

) (6.65)

After some algebraic manipulations, we know that

∇Wk[ : ,γn]Jn(W )=
(

prob(zn,k, γn)− 1
)
hn,k + ρWk[ : , γn] (6.66)
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and for the other columns where c 6= γn, we have

∇Wk[ : ,c]Jn(W ) = prob(zn,k, c)hn,k + ρWk[ : , c] (6.67)

Thus, the only modification that is necessary to our algorithm is changing from sending a

scalar zn,k into sending a vector zn,k. In the simulation, we compare this implementation it

with SAGA+Exact diffusion as proposed in [80]. In the simulation, as plotted in Fig. 6.5,

we set K = 10, J = 10, ρ = 1e − 4 and mini-batch is B = 10. In Fig. 6.5, the curve

is plotted based on the total number of communicated length versus the excess risk, i.e.,

J(wi)− J(w?). More specifically, for PVRD2 algorithm, at every iteration, each edge of the

network will communicate a length of J × C × B = 1000. Meanwhile, for Exact Diffusion,

it needs 32 × 32 × 3 × 10 = 30720. Hence, from Fig. 6.5, it is not surprising to find that

PVRD2 is more communication-efficient.

Lastly, we provide a simulation to show the influence of network structure on algorithm

performance in Fig. 6.6. The approach we utilized to generate the network is the random

geometric graph model, which places N nodes uniformly at random in the unit square and

two nodes are joined by an edge if the Euclidean distance between the nodes is less than

some radius threshold [135]. The simulation problem is the same as the previous MNIST

problem except we distribute the feature over 28 agents. We generate four network topologies,

whose Euclidean distance threshold ∆ are 0.3, 0.4, 0.6, and
√

2—full connected networks,

respectively. For all network topologies, we fix the pipeline depth at 20 and mini-batch at

10. Figure 6.6 confirms the conclusion from Theorem 6.1 that the denser the topology is,

the faster it converges.

6.A Proof of Theorem 6.1

6.A.1 Supporting lemma and proof sketch

Before we start the proof of the main theorem, we first give two useful lemmas here.
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Figure 6.6: Comparison of PVRD2 with different network topologies over MNIST Dataset.

Lemma 6.1 For a ν-strongly convex and L-Lipschitz gradient continuous function f(·), the

following inequality holds:

(∇f(z)−∇f(y))T(x− z) ≤ L

2
‖x− y‖2 − ν

2
‖z − y‖2 − ν

2
‖x− z‖2 (6.68)

Proof : From the convexity and Lipschitz conditions, we have:

f(x) ≤f(y) +∇f(y)T(x− y) +
L

2
‖x− y‖2 (6.69)

f(z) ≥f(y) +∇f(y)T(z − y) +
ν

2
‖z − y‖2 (6.70)

f(x) ≥f(z) +∇f(z)T(x− z) +
ν

2
‖x− z‖2 (6.71)

Combining these inequalities, we get:

f(x)− f(z) ≤f(y) +∇f(y)T(x− y) +
L

2
‖x− y‖2

− f(y)−∇f(y)T(z − y)− ν

2
‖z − y‖2

≤∇f(y)T(x− z) +
L

2
‖x− y‖2 − ν

2
‖z − y‖2 (6.72)

f(x)− f(z) ≥∇f(z)T(x− z) +
ν

2
‖x− z‖2 (6.73)

Combining the above two inequalities and rearranging terms, we establish (6.68). �
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Lemma 6.2 Consider the inequality recursion for non-negative numbers αi:

αi+1 ≤ λαi + ρiC (6.74)

where 1 > ρ > λ > 0. The sequence αi converges to zero according to

αi+1 ≤ ρi+1

(
α0 +

1

ρ− λ
C

)
(6.75)

Proof : Iterating, we get

αi+1 ≤λ2αi−1 + λρi−1C + ρiC

≤λ3αi−2 + λ2ρi−2C + λρi−1C + ρiC

...

≤λi+1a0 +
i∑

j=0

λjρi−dC

≤λi+1α0 +
ρi

1− λ/ρ
C

≤ρi+1

(
α0 +

1

ρ− λ
C

)
(6.76)

�

The procedure of proving the linear convergence in Theorem 6.1 consists of two steps.

The first step is to construct an error recursion for E‖wi−w?‖2. However, because of many

auxiliary variables, eventually, we establish six recursions— (6.97), (6.100), (6.104), (6.105),

(6.107), and (6.110). Note that a simple energy or Lyapunov function cannot establish the

linear convergence easily due to the delay introduced by the pipeline strategy. Instead, we

employ a mathematical induction method. After assuming the quantity E‖wi − wi−1‖2

converges linearly, the six error recursions will have the same format as (6.74) in Lemma

6.2. So that we conclude the proof by showing E‖wi −wi−1‖2 converges linearly in view of

Lemma 6.2.

167



6.A.2 Error Recursion

In order to shorten the notation, we let d = J − 1, such that n′ = ni−d. First, we rewrite

the main recursion in vector notation:

wi+1 = wi − µ
([
∇zQ(Z

(J)
n′,i−d; γn′)−∇zQ(Uin′ ; γn′)

]
hn′

+
1

N

N∑
n=1

∇zQ(Uin; γn)hn +∇wr(wi)
)

(6.77)

where:

Z
(J)
n′,i−d

∆
=col{z(J)

n′,1, z
(J)
n′,2, · · · , z

(J)
n′,K}∈ RK×1 (6.78)

Uin′
∆
=col{uin′,1,uin′,2, · · · ,uin′,K}∈ RK×1 (6.79)

∇zQ(Z
(J)
n′,i−d; γn′)

∆
=blockdiag{∇zQ(z

(J)
n′,1; γn′)IM1 , · · · ,∇zQ(z

(J)
n′,K ; γn′)IMK

}∈ RM×M (6.80)

∇zQ(Uin′ ; γn′)
∆
=blockdiag{∇zQ(uin′,1; γn′)IM1 , · · · ,∇zQ(uin′,K ; γn′)IMK

}∈ RM×M (6.81)

In our notation convention, all calligraphic symbols represent stacked vectors or matrices

over agents. Notice the subscript i − d in Z is used to represents the z is computed from

wi−d instead of data or agent index. Introducing the error quantity w̃i
∆
= w? − wi, we

obtain the error recursion:

w̃i+1 = w̃i + µ
([
∇zQ(Z

(J)
n′,i−d; γn′)−∇zQ(Uin′ ; γn′)

]
hn′

+
1

N

N∑
n=1

∇zQ(Uin; γn)hn +∇wr(w
k
i )
)

(6.82)

We introduce the filtration F i, which consists of all previous information wj, j ≤ i and

indices nj, j ≤ i− J . Then, the modified gradient step satisfies the unbiasedness property:

En′
[([
∇zQ(Z

(J)
n′,i−d; γn′)−∇zQ(Uin′ ; γn′)

]
hn′ +

1

N

N∑
n=1

∇zQ(Uin; γn)hn +∇wr(wi)
)∣∣∣F i

]

=
1

N

N∑
n=1

∇zQ(Z
(J)
n,i−d; γn)hn +∇wr(wi) (6.83)
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Thus, we have the following error recursion:

En′ [‖w̃i+1‖2|F i] =‖w̃i‖2 +
2µ

N

N∑
n=1

w̃T
i [∇zQ(Z

(J)
n,i−d; γn)hn +∇wr(wi)]

+ µ2E

[∥∥∥[∇zQ(Z
(J)
n′,i−d; γn′)−∇zQ(Uin′ ; γn′)

]
hn′

+
1

N

N∑
n=1

∇zQ(Uin; γn)hn +∇wr(wi)
∥∥2
∣∣∣F i

]

≤ ‖w̃i‖2+
2µ

N

N∑
n=1

w̃T
i [∇zQ(Z

(J)
n,i−d; γn)hn +∇wr(wi)]

+ 4µ2E
∥∥∥[∇zQ(Z

(J)
n′,i−d; γn′)−∇zQ(hTn′w

?; γn′)IM
]
hn′
∥∥∥2

+ 4µ2E
∥∥∥[∇zQ(Uin′ ; γn′)−∇zQ(hTn′w

?; γn′)IM
]
hn′
∥∥∥2

+ 4µ2 1

N

N∑
n=1

∥∥∥[∇zQ(Uin; γn)−∇zQ(hTnw
?; γn)IM ]hn

∥∥∥2

+ 4µ2
∥∥∥∇wr(wi)−∇wr(w

?)
∥∥∥2

(6.84)

where we appealed to Jensen’s inequality and IM is the M ×M identity matrix. Next, we

focus on the cross term:

1

N

N∑
n=1

w̃T
i [∇zQ(Z

(J)
n,i−d; γn)hn +∇wr(wi)] =

1

N

N∑
n=1

w̃T
i [∇zQ(Z

(J)
n,i−d; γn)hn +∇wr(wi)−∇wJ(w?)]

(a)
=w̃T

i

[
1

N

N∑
n=1

∇zQ(Z̄n,i−d; γn)hn +∇wr(wi)−∇wJ(w?)

]

+
1

N

N∑
n=1

w̃T
i [∇zQ(Z

(J)
n,i−d; γn)hn−∇zQ(Z̄n,i−d; γn)hn]

(b)
=[∇wJ(wi−d)−∇wJ(w?)]T(w? −wi)

+ [∇wr(wi)−∇wr(wi−d)]
T(w? −wi)

+
1

N

N∑
n=1

w̃T
i [∇zQ(Z

(J)
n,i−d; γn)hn−∇zQ(Z̄n,i−d; γn)hn]

(6.85)
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where we define

z̄n,i−d
∆
=

1

K
1
T
KZ

(0)
n,i−d∈ R (6.86)

Z̄n,i−d
∆
= col{z̄n,i−d, · · · , z̄n,i−d} = z̄n,i−d1K∈ RK×1 (6.87)

In step (a), we add and subtract the same term about ∇zQ(Z̄n,i−d; γn)hn; In step (b), we

exploit the property that z̄n,i−d = hTnwi−d. Indeed, note that

z̄n,i−d =
1

K
1
T
KZ

(0)
n,i−d

(6.48)
=

1

K

K∑
k=1

(KhTn,kwi−d,k + ui−dn,k − v
i−d
n,k )

(6.32)
=

K∑
k=1

hTn,kwi−d,k

=hTnwi−d (6.88)

Now, to bound the first term in (6.85), we apply the result (6.68) from Lemma 6.1 so that

we immediately get

[∇wJ(wi−d)−∇wJ(w?)]T(w? −wi) ≤
L+ η

2
‖wi −wi−d‖2 − ν

2
‖w? −wi−d‖2 − ν

2
‖wi − w?‖2

≤(L+ η)d

2

i−1∑
j=i−d

‖wj+1 −wj‖2 − ν

2
‖w̃i−d‖2 − ν

2
‖w̃i‖2

(6.89)

and we have

[∇wr(wi)−∇wr(wi−d)]
T(w? −wi) ≤

ηε

2
‖wi −wi−d‖2 +

1

2ε
‖w̃i‖2

≤ ηd

ν

i−1∑
j=i−d

‖wj+1 −wj‖2 +
ν

4
‖w̃i‖2 (6.90)

where the first inequality is due to Young’s inequality aTb ≤ ε
2
‖a‖2 + 1

2ε
‖b‖2 and ε can be

any positive number. And in second step we set ε = 2
ν
.
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For the third term in (6.85), we obtain:

w̃T
i [∇zQ(Z

(J)
n,i−d; γn)hn −∇zQ(Z̄n,i−d; γn)hn] ≤ ε

2
‖w̃i‖2 +

1

2ε

∥∥∥∇Q(Z
(J)
n,i−d; γn)hn −∇Q(Z̄n,i−d; γn)hn

∥∥∥2

≤ ε
2
‖w̃i‖2 +

δ2

2ε

∥∥∥Z(J)
n,i−d − Z̄n,i−d‖

2‖hn‖2 (6.91)

Next, for the remaining terms in the main recursion (6.84), we have the following bounds

through the Lipschitz condition:

En′
∥∥∥[∇zQ(Z

(J)
n′,i−d; γn′)−∇zQ(hTn′w

?; γn′IM)
]
hn′
∥∥∥2

≤ 2En′
∥∥∥[∇zQ(Z

(J)
n′,i−d; γn′)−∇zQ(Z̄n′,i−d; γn′)

]
hn′
∥∥∥2

+ 2En′
∥∥∥[∇zQ(hTn′wi−d; γn′)−∇zQ(hTn′w

?; γn′)
]
hn′
∥∥∥2

≤ 2δ2

N

N∑
n=1

‖Z(J)
n,i−d − Z̄n,i−d‖

2‖hn‖2 + 2L2‖w̃i−d‖2 (6.92)

and

En′
∥∥∥[∇zQ(Uin′ ; γn′)−∇zQ(hTn′w

?; γn′)IM
]
hn′
∥∥∥2

≤ E‖∇zQ(Uin′ ; γn′)−∇zQ(hTn′w
?; γn′)IM‖2‖hn′‖2

≤ δ2

N

N∑
n=1

‖Uin − hTnw?1K‖2‖hn‖2 (6.93)

and

1

N

N∑
n=1

∥∥∥[∇zQ(Uin; γn)−∇zQ(hTnw
?; γn)IM ]hn

∥∥∥2

≤δ
2

N

N∑
n=1

‖Uin − hTnw?1K‖2‖hn‖2. (6.94)

and

4µ2
∥∥∥[∇wr(wi)−∇wr(w

?)
∥∥∥2

≤ 4µ2η2‖w̃i‖2 (6.95)
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Substituting (6.89) – (6.95) into the main error recursion (6.84), we have:

En′ [‖w̃i+1‖2|F i] ≤(1 + 4µ2η2)‖w̃i‖2 + µd(L+ η +
2η

ν
)

i−1∑
j=i−d

‖wj+1 −wj‖2

− νµ‖w̃i−d‖2 − µν

2
‖w̃i‖2 + µε‖w̃i‖2

+

(
µδ2

ε
+ 8µ2δ2

)
1

N

N∑
n=1

‖Z(J)
n,i−d − Z̄n,i−d‖

2‖hn‖2

+ 8µ2L2‖w̃i−d‖2 +
8µ2δ2

N

N∑
n=1

‖Uin − hTnw?1K‖2‖hn‖2 (6.96)

Let ε = ν
6

and denote L′
∆
= L+ η + 2η

ν
. Rearranging terms we get:

En′ [‖w̃i+1‖2|F i] ≤(1− µν/3 + 4µ2η2)‖w̃i‖2 + µdL′
i−1∑
j=i−d

‖wj+1 −wj‖2

− (νµ− 8µ2L2)‖w̃i−d‖2 +
8µδ2

νN

N∑
n=1

∥∥∥Z(J)
n,i−d−Z̄n,i−d

∥∥∥2

‖hn‖2

+
8δ2µ2

N

N∑
n=1

‖Uin − hTnw?1K‖2‖hn‖2 (6.97)

where we relaxed 6µδ2

ν
+ 8µ2δ2 into the upper bound 8µδ2

ν
, which requires

8µδ2

ν
≥ 6µδ2

ν
+ 8µ2δ2 ⇐⇒ µ ≤ 1

4ν
(6.98)

So far we have established (6.97). Next, we seek a recursion for the inner difference:

E [‖wi+1 −wi‖2|F i] =µ2En′
[∥∥∥∇zQ(Z

(J)
n′,i−d; γn′)−∇zQ(Uin′ ; γn′)

]
hn′

+
1

N

N∑
n=1

∇zQ(Uin; γn)hn +∇wr(wi)
∥∥∥2∣∣∣F i

]
(6.99)
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Applying Jensen’s inequality and combining results (6.92), (6.93), (6.94), and (6.95) we get:

E
[
‖wi+1 −wi‖2|F i

]
≤8µ2δ2

N

N∑
n=1

‖Z(J)
n,i−d − Z̄n,i−d‖

2‖hn‖2

+
8µ2δ2

N

N∑
n=1

‖Uin − hTnw?1K‖2‖hn‖2

+ 8µ2L2‖w̃i−d‖2 + 4µ2η2‖w̃i‖2 (6.100)

Then, we derive the result:

‖Z(J)
i−d,n − Z̄i−d,n‖

2 =‖Z(J)
i−d,n −

1

K
11

TZ
(J)
i−d,n‖

2

(6.45)
=

∥∥∥∥(I − 1

K
11

T

)
AJ(KHT

nwi−d + Uin − Vin)

∥∥∥∥2

(a)
=

∥∥∥∥(AJ − 1

K
11

T

)
(KHT

nwi−d − Vin + Uin − Ūin)

∥∥∥∥2

(b)

≤λJ‖Uin − Ūin‖2 +
λ2J

1− λJ
∥∥KHT

nwi−d − Vin
∥∥2

(6.101)

where AJ arises from the definition of Z
(J)
i−d,n, which is the stacked vector of z

(0)
i−d,n after J-step

consensus, and where we denote:

Hn
∆
=


h1,n

. . .

hK,n

∈ RM×K (6.102)

Step (a) holds because
(
AJ − 1

K
11

T
)
Ūin = 0, and

Ūin
∆
=

1

K
11

T
KU

i
n =

(
1

K

k∑
k=1

uin,k

)
1∈ RK×1 (6.103)

In step (b), λ is the second largest eigenvalue of A. Multiplying by ‖hn‖2, taking expectation
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and averaging over n:

1

N

N∑
n=1

E‖Z(J)
i−d,n − Z̄i−d,n‖

2‖hn‖2 ≤ λJ
1

N

N∑
n=1

E‖Uin − Ūin‖2‖hn‖2

+
λ2J

1− λJ
1

N

N∑
n=1

E
∥∥KHT

nwi−d − Vin
∥∥2 ‖hn‖2 (6.104)

Next, using the uniform sampling property, we establish a similar recursion for Uin:

1

N

N∑
n=1

En′
[
‖Ui+1

n − Ūi+1
n ‖2‖hn‖2

∣∣F i

]
(6.50)
=

N − 1

N2

N∑
n=1

‖Uin − Ūin‖2‖hn‖2 +
1

N2

N∑
n=1

‖Z(J)
n,i−d − Z̄n,i−d‖

2‖hn‖2 (6.105)

Similarly, we get:

En′
[
‖Uin − hTnw?1‖2|F i

] (6.50)
=

1

N
‖Z(J)

n,i−d − h
T
nw

?
1‖2 +

N − 1

N
‖Ui−1

n − hTnw?1‖2

≤ 2

N
‖Z(J)

n,i−d − Z̄n,i−d‖
2 +

2

N
‖Z̄n,i−d − hTnw?1‖2

+
N − 1

N

N∑
n=1

‖Ui−1
n − hTnw?1‖2

(6.88)
=

2

N
‖Z(J)

n,i−d − Z̄n,i−d‖
2 +

2

N
‖hTnw̃i−d‖2

+
N − 1

N
‖Ui−1

n − hTnw?1‖2 (6.106)

Multiplying ‖hn‖2, taking expectation over filtration and averaging over n:

1

N

N∑
n=1

E‖Uin − hTnw?1‖2‖hn‖2 ≤ 2

N2

N∑
n=1

E‖Z(J)
n,i−d − Z̄n,i−d‖

2‖hn‖2 +
2

N2

N∑
n=1

E‖hn‖4‖w̃i−d‖2

+
N − 1

N2

N∑
n=1

E‖Ui−1
n − hTnw?1‖2‖hn‖2 (6.107)

Lastly, we obtain:

En′
[
‖KHT

nwi−d − Vin‖2|F i

]
=

1

N
‖KHn(wi−d −wi−d−1)‖2 +

N − 1

N
‖KHT

nwi−d − Vi−1
n ‖2
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≤ 1

N
‖KHn(wi−d −wi−d−1)‖2 +

N − 1

tN
‖KHT

nwi−d−1 − Vi−1
n ‖2

+
N − 1

(1− t)N
‖KHT

n (wi−d −wi−d−1)‖2 (6.108)

If we choose t = N−1
N−1/2

, then

En′
[
‖KHT

nwi−d − Vin‖2|F i

]
≤1 + 2(N − 1)2

N
‖KHn(wi−d −wi−d−1)‖2

+
N − 1/2

N
‖KHT

nwi−d−1 − Vi−1
n ‖2 (6.109)

Notice that ‖Hn‖2 ≤ ‖Hn‖2
F = ‖hn‖2. After multiplying by ‖hn‖2, taking expectation over

the filtration and averaging over n, we have

1

N

N∑
n=1

E‖KHT
nwi−d − Vin‖2‖hn‖2 ≤ K2 + 2K2(N − 1)2

N2

N∑
n=1

E‖(wi−d −wi−d−1)‖2‖hn‖4

+
N − 1/2

N2

N∑
n=1

E‖KHT
nwi−d−1 − Vi−1

n ‖2 (6.110)

To simplify the notation, we introduce

ai
∆
= E‖w̃i‖2 (6.111)

bi
∆
= E‖wi −wi−1‖2 (6.112)

ci
∆
=

1

N

N∑
n=1

E
∥∥∥Z(J)

n,i−d−Z̄n,i−d‖
2‖hn‖2 (6.113)

di
∆
=

1

N

N∑
n=1

E‖Uin − Ūin‖2‖hn‖2 (6.114)

ei
∆
=

1

N

N∑
n=1

E‖Uin − hTnw?1‖2‖hn‖2 (6.115)

fi
∆
=

1

N

N∑
n=1

E‖KHT
nwi−d − Vin‖2‖hn‖2 (6.116)

h4 ∆
=

1

N

N∑
n=1

‖hn‖4 (6.117)
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Using the above notation, we have established so far the following six recursions from (6.97),

(6.100), (6.104), (6.105), (6.107), (6.110):

ai+1 ≤ (1− µν/3 + 4µ2η2)ai + µdL′
i−1∑
j=i−d

bj+1

− (νµ− 8µ2L2)ai−d +
8µδ2

ν
ci + 8µ2δ2ei (6.118)

bi+1 ≤ 8µ2δ2ci + 8µ2δ2ei + 8µ2L2ai−d + 4µ2η2ai (6.119)

ci ≤ λJdi +
λ2J

1− λJ
fi (6.120)

di+1 =
1

N
ci +

N − 1

N
di (6.121)

ei =
2

N
h4ai−d +

2

N
ci +

N − 1

N
ei−1 (6.122)

fi ≤
N − 1/2

N
fi−1 +

K2 + 2K2(N − 1)2

N
h4bi−d (6.123)

6.A.3 Linear Convergence of Error Recursion

Finally, we establish convergence of the PVRD2 algorithm using Lemma 6.2 and mathemat-

ical induction. Assuming bi ≤ ρiC0 for j ≤ i− 1, where we set

ρ = max

(
1− 1− λJ

2N
, 1− µν/5

)
(6.124)

Then, from (6.123), we have

fi ≤
N − 1/2

N
fi−1 +

K2 +K2(N − 1)2

Nρd−1
h4C0ρ

i−1

≤ρi
(
f0 +

1

ρ− N−1/2
N

K2 + 2K2(N − 1)2

Nρd−1
h4C0

)
∆
= ρiC1 (6.125)

Substituting (6.120) into (6.121), we have

di+1 ≤
λJ

N
di +

λ2J

N(1− λJ)
fi +

N − 1

N
di (6.126)
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=
λJ +N − 1

N
di +

λ2J

N(1− λJ)
fi

≤
(

1− 1− λJ

N

)
di +

λ2J

N(1− λJ)
ρiC1

≤ρi+1

(
d0 +

1

ρ− 1 + 1−λJ
N

λ2J

N(1− λJ)
C1

)
∆
= ρi+1C2 (6.127)

From (6.120):

ci ≤λJρiC2 +
λ2J

1− λJ
ρiC1

=ρi
(
λJC2 +

λ2J

1− λJ
C1

)
∆
= ρiC3 (6.128)

Adding (6.118) and (6.122) with a positive coefficient γ, we have

ai+1 + γei ≤ (1− µν/3 + 4µ2η2)ai + µdL′
i−1∑
j=i−d

bj+1

− (νµ− 8µ2L2)ai−d +
8µδ2

ν
ci + 8µ2δ2ei

+
2γ

N
h4ai−d +

2γ

N
ci + γ

N − 1

N
ei−1 (6.129)

We require that µ ≤ ν
48η2 such that

1− µν/3 + 4µ2η2 ≤ 1− µν/4 (6.130)

Rearranging terms:

ai+1 + (γ − 8µ2δ2)ei ≤ (1− µν/4)ai + µdL′
i−1∑
j=i−d

bj+1 −
(
νµ− 8µ2L2 − 2γ

N
h4
)
ai−d

+

(
4µδ2

ν
+

2γ

N

)
ci + γ

N − 1

N
ei−1
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= (1− µν/4)

(
ai + γ

N − 1

(1− µν/4)N
ei−1

)
+

(
8µδ2

ν
+

2γ

N

)
ci −

(
νµ− 8µ2L2 − 2γ

N
h4
)
ai−d + µdL

i−1∑
j=i−d

bj+1

(6.131)

We require that

γ − 8µ2δ2 = γ
N − 1

(1− µν/4)N

⇐⇒ [1− µνN/4]γ = 8µ2δ2N(1− µν/4)

⇐⇒ γ =
8µ2δ2N(1− µν/4)

1− µνN/4
= O(µ2) (6.132)

We can further require that µ ≤ 1
2νN

so that γ has the upper bound:

γ ≤ 10µ2δ2N ≤ 5µ
δ2

ν
(6.133)

Let si+1 = ai+1 + (γ − 8µ2δ2)ei, we have

si+1 ≤ (1− µν/3)si + µdL
i−1∑
j=i−d

bj+1 +

(
8µδ2

ν
+

2γ

N

)
ci (6.134)

where we discard the term about ai−d, which requires:

νµ− 8µ2L2 − 2γ

N
h4 ≥ 0

⇐⇒ νµ ≥ 8µ2L2 +
2γ

N
h4

(6.133)⇐= νµ ≥ 8µ2L2 + 20µ2δ2h4

⇐⇒ µ ≤ ν

8L2 + 20δ2h4
(6.135)
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After substituting (6.133), we have

si+1 ≤(1− µν/4)si + µdL′
i−1∑
j=i−d

bj+1 +

(
8µδ2

ν
+

10µδ2

νN

)
ci

≤(1− µν/4)si + µdL′
i−1∑
j=i−d

ρj+1C0 +
18µδ2

ν
ρiC3

≤(1− µν/4)si + ρi

(
µdL′

d−1∑
j=0

ρ−jC0 +
18µδ2

ν
C3

)

≤ρi+1

(
s0 +

µ

ρ− 1 + µν/4

(
dL′

d−1∑
j=0

ρ−jC0+
18δ2

ν
C3

))
∆
= ρi+1C4 (6.136)

This also implies

ai ≤ ρiC4 (6.137)

Revisiting (6.122), we have

ei ≤
N − 1

N
ei−1 + ρi−d

h4

N
C4

≤ρi
(
e0 +

1

ρ− N−1
N

h4

ρd+1N
C4

)
∆
= ρiC5 (6.138)

Lastly, we substitute foregoing results into (6.119):

bi+1 ≤8µ2δ2ρiC3 + 8µ2δ2ρiC5 + 8µ2L2ρi−dC4 + 4µ2η2ρiC4

=ρiµ2

(
8δ2C3 + 8δ2C5 +

C4

ρd
+ 4η2C4

)
(6.139)

And we require the following to complete the mathematical induction:

µ2

(
6δ2C3 + 6δ2C5 +

C4

ρd
+ 4η2C4

)
< ρC0 (6.140)
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In the following, we will show that C3, C4 and C5 can be upper bounded by constants

that are independent of step-size µ. From (6.124), we have

ρ ≥ 1− 1− λJ

2N
, (6.141)

ρ ≥ 1− µν

4
. (6.142)

Moreover, since µ ≤ 1/2νN , from (6.142) we also have

ρ ≥ 1− µν

4
≥ 1− 1

8N
. (6.143)

With (6.141) and (6.142), it holds that

1

ρ− 1 + 1
2N

(6.141)

≤ 2N

λJ
, (6.144)

1

ρ− 1 + 1−λJ
N

(6.141)

≤ 2N

1− λJ
, (6.145)

µ

ρ− 1 + µν/4

(6.142)

≤ 20

ν
, (6.146)

1

Nρ−N + 1

(6.141)

≤ 2

1 + λJ
. (6.147)

Now we examine the upper bounds on C3, C4 and C5. Note that

C1 = f0 +
1

ρ− N−1/2
N

K2 + 2K2(N − 1)2

Nρd−1
h4C0

(6.144)

≤ f0 + 2K2 1 + 2(N − 1)2

λJρd−1
h4C0

(6.143)

≤ f0 + 2K2 1 + 2(N − 1)2

λJ(1− 1/(8N))d−1
h4C0 = O(1), (6.148)

and

C2 = d0 +
1

ρ− 1 + 1−λJ
N

λ2J

N(1− λJ)
C1

(6.145)

≤ d0 +
2λ2J

(1− λJ)2
C1 = O(1). (6.149)
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With C1 and C2, we have

C3 = λJC2 +
λ2J

1− λJ
C1

∆
= C ′3 = O(1) (6.150)

Next we examine C4:

C4 = s0 +
µ

ρ− 1 + µν/4

(
dL′

d−1∑
j=0

ρ−jC0 +
18δ2

ν
C3

)
(6.146)

≤ s0 +
20

ν

(
d2L′

(1− 1
8N

)d
C0 +

18δ2

ν
C3

)
∆
= C ′4 = O(1). (6.151)

For term C5:

C5 = e0 +
h4

ρd+1(Nρ−N + 1)
C4

(6.147)

≤ e0 +
2h4

ρd+1(1 + λJ)
C4

≤ e0 +
2h4

(1− 1/(8N))d+1(1 + λJ)
C4

∆
= C ′5 = O(1). (6.152)

Note that all constants C ′3, C ′4 and C ′5 are independent of µ. Finally, note that

6δ2C3 + 6δ2C5 +
C4

ρd
+ 4η2C4

≤ 6δ2C ′3 + 6δ2C ′5 +
C ′4
ρd

+ 4η2C ′4

≤ 6δ2C ′3 + 6δ2C ′5 +
C ′4

(1− 1/(8N))d
+ 4η2C ′4

∆
= B, (6.153)

and B is independent of step-size µ. Also, we have have

ρC0 ≥
(

1− 1

8N

)
C0. (6.154)
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To prove (6.140), it is enough to choose µ such that

µ2B ≤
(

1− 1

8N

)
C0 ⇐⇒ µ ≤

√(
1− 1

8N

)
C0

B
. (6.155)

Combining with 1/2νN , we can set µ as

µ ≤ min

{√(
1− 1

8N

)
C0

B
,

1

2νN

}
(6.156)
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CHAPTER 7

Stochastic Subgradient Learning

This chapter examines the performance of stochastic sub-gradient learning strategies under

weaker conditions than usually considered in the literature. The conditions are shown to

be automatically satisfied by several important cases of interest including the construction

of Linear-SVM, LASSO, and Total-Variation denoising formulations. In comparison, these

problems do not satisfy the traditional assumptions automatically and, therefore, conclusions

derived based on these earlier assumptions are not directly applicable to these problems.

The analysis establishes that stochastic sub-gradient strategies can attain exponential con-

vergence rates, as opposed to sub-linear rates, to the steady-state. A realizable exponential-

weighting procedure is proposed to smooth the intermediate iterates by the sub-gradient

procedure and to guarantee the established performance bounds in terms of convergence

rate and excessive risk performance. Both single-agent and multi-agent scenarios are stud-

ied, where the latter case assumes that a collection of agents are interconnected by a topology

and can only interact locally with their neighbors. The theoretical conclusions are illustrated

by several examples and simulations, including comparisons with the FISTA procedure.

7.1 Introduction and Motivation

The minimization of non-differentiable convex cost functions is a critical step in the solution

of many design problems [17,44,136], including the design of sparse-aware (LASSO) solutions

[9, 137], support-vector machine (SVM) learners [8, 10, 60, 138, 139], or total-variation based

image denoising solutions [7, 140]. Several powerful techniques have been proposed in the

literature to deal with the non-differentiability aspect of the problem formulation, including
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methods that employ of sub-gradient iterations [17, 44, 136], cutting-plane techniques [141],

or proximal iterations [142, 143]. This work focuses on the class of sub-gradient methods

for the reasons explained in the sequel. The sub-gradient technique is closely related to the

traditional gradient-descent method where the actual gradient is replaced by a sub-gradient

at the points of non-differentiability. It is one of the simplest methods in current practice

but is known to suffer from slow convergence. For instance, it is shown in [136] that, for

convex cost functions, the optimal convergence rate that can be delivered by sub-gradient

methods in deterministic optimization problems cannot be faster than O(1/
√
i), where i is

the iteration index.

Still, there are at least three strong reasons that motivate a closer examination of the

limits of performance of sub-gradient learning algorithms. First, the explosive interest in

large-scale and big data scenarios favors the use of simple and computer-efficient algorith-

mic structures, of which the sub-gradient technique is a formidable example. Second, it is

becoming increasingly evident that more sophisticated optimization iterations do not nec-

essarily ensure improved performance when dealing with complex models and data struc-

tures [17, 19, 144, 145]. This is because the assumed models, or the adopted cost functions,

do not always reflect faithfully the underlying problem structure. In addition, the presence

of noise in the data generally implies that a solution that may be perceived to be optimal is

actually sub-optimal due to perturbations in the data and models. Third, it turns out that a

clear distinction needs to be made between optimizing deterministic costs [17,44,136], where

the cost function is known completely beforehand, and optimizing stochastic costs, where the

cost function is actually unavailable due to its dependence on the unknown probability distri-

bution of the data. Stochastic problem formulations are very common in applications arising

in machine learning problems, adaptation, and estimation. We will show that sub-gradient

algorithms have surprisingly favorable behavior in the stochastic setting.

Motivated by these remarks, we therefore examine in some detail the performance of

stochastic sub-gradient algorithms for the minimization of non-differentiable convex costs.

Our analysis will reveal some interesting properties when these algorithms are used in the

context of continuous adaptation and learning (i.e., when actual sub-gradients cannot be
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evaluated but need to be approximated continually in an online manner). The study is carried

out for both cases of single stand-alone agents and multi-agent networks [11,58,102,146,147].

We start with single-agent learning and establish some revealing conclusions about how fast

and how well the agent is able to learn. Extension of the results to the multi-agent case

will require additional effort due to the coupling that exists among neighboring agents.

Nevertheless, the same broad conclusions will continue to hold in this case with proper

adjustments.

In order to examine the performance of stochastic sub-gradient implementations, it is

necessary to introduce some assumptions on the gradient noise process (which is the differ-

ence between a true sub-gradient and its approximation). Here we diverge in a noticeable

way from assumptions commonly used in the literature for two reasons (see Sec. 7.3 for fur-

ther explanations). First, we introduce weaker assumptions than usually adopted in prior

works and, secondly and more importantly, we show that our assumptions are automati-

cally satisfied for important cases of interest (such as SVM, LASSO, Total Variation). In

contrast, these applications do not satisfy the traditional assumptions used in the literature

and, therefore, conclusions derived based on these earlier assumptions are not directly ap-

plicable to these problems. For example, it is common in the literature to assume that the

cost function has a bounded gradient [17,22,58,147–149]; this condition is not even satisfied

by quadratic costs whose gradient vectors are affine in their parameter. This condition is

also in direct conflict with strongly-convex costs [149]. By weakening the assumptions, the

analysis in this chapter becomes more challenging (as the material in the appendices reveal).

At the same time, the conclusions become stronger and more revealing, and they apply to a

broader class of algorithms and scenarios.

A second aspect of our study is that we focus on the use of constant step-sizes in order

to enable continuous adaptation and learning. Since the step-size is assumed to remain

constant, the effect of gradient noise is always present and does not die out, as would occur

if we were using instead a diminishing step-size, say, of the form µ(i) = τ/i for some τ > 0

[58, 60, 148]. Such diminishing step-sizes annihilate the gradient noise term asymptotically

albeit at the cost of turning off adaptation in the long run. When this happens, the learning
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algorithm loses its ability to track drifts in the solution. In contrast, a constant step-size keeps

adaptation alive and endows the learning algorithm with an inherent tracking mechanism:

if the minimizer that we are seeking drifts with time due, for example, to changes in the

statistical properties of the data, then the algorithm will be able to track the new location

since it is continually adapting [150]. This useful tracking feature comes at the expense

of a persistent gradient noise term that never dies out. The challenge in analyzing the

performance of learning algorithms in the constant adaptation regime is to show that their

feedback mechanism induces a stable behavior that reduces the size (variance) of the gradient

noise to a small level and that ensures convergence of the iterates to withinO(µ) of the desired

optimal solution. Moreover, and importantly, it turns out that constant step-size adaptation

is not only useful under non-stationary conditions when drifts in the data occur, but it is

also useful even under stationary conditions when the minimizer does not vary with time.

This is because, as we will see, the convergence towards the steady-state regime will now be

guaranteed to occur at an exponential rate, O(αi) for some α ∈ (0, 1), which is much faster

than the O(1/i) rate that would be observed under a diminishing step-size implementation

for strongly-convex costs.

A third aspect of our contribution is that it is known that sub-gradient methods are not

descent methods. For this reason, it is customary to employ pocket variables (i.e., the best

iterate) [44, 136, 151, 152] or arithmetic averages [60] to smooth out the output. However,

as the analysis will reveal, the pocket method is not practical in the stochastic setting (its

implementation requires knowledge of unavailable information), and the use of arithmetic

averages [20] does not match the convergence rate derived later in Sec. 7.4.3. We shall

propose an alternative weighted averaging scheme with an exponentially-decaying weight

and show that this technique does not degrade convergence while providing the desired

smoothing effect.
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7.2 Problem Formulation: Single Agent Case

7.2.1 Problem Formulation

We consider the problem of minimizing a risk function, J(w) : RM → R, which is assumed

to be expressed as the expected value of some loss function, Q(w;x), namely,

w?
∆
= arg min

w
J(w), (7.1)

where we are denoting the minimizer by w? and where

J(w)
∆
= E Q(w;x). (7.2)

Here, the letter x represents the random data and the expectation operation is performed

over the distribution of this data. Many problems in adaptation and learning involve risk

functions of this form, including, for example, mean-square-error designs and support vector

machine (SVM) solutions — see, e.g., [10,139,150]. For generality, we allow the risk function

J(w) to be non-differentiable. This situation is common in machine learning formulations,

e.g., in SVM costs and in regularized sparsity-inducing formulations; examples to this effect

are provided in the sequel.

In this chapter, we examine in some detail the performance of stochastic sub-gradient

algorithms for the minimization of (7.1) and reveal some interesting properties when these

algorithms are used in the context of continuous adaptation and learning (i.e., when actual

sub-gradients cannot be evaluated but need to be approximated continually in an online

manner). This situation arises when the probability distribution of the data is not known

beforehand, as is common in practice. In most applications, we only have access to data

realizations but not to their actual distribution. Our study is carried out for both cases

of single stand-alone agents and multi-agent networks. We start with single-agent learning

and establish some revealing conclusions about how fast and how well the agent is able to

learn. Extension of the results to the multi-agent case will require additional effort due to the
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coupling that exists among neighboring agents, and is pursued in a future section. The same

broad conclusions will continue to hold in this case as well with some proper adjustments.

7.2.2 Stochastic Sub-Gradient Algorithm

To describe the sub-gradient algorithm in the single-agent case, we first recall that the sub-

gradient of a function J(w) at any arbitrary point w0 is defined as any vector g ∈ RM that

satisfies:

J(w) ≥ J(w0) + gT(w − w0), ∀w (7.3)

We shall often write g(w0), instead of simply g, in order to emphasize that it is a sub-gradient

vector at location w0. We note that sub-gradients are generally non-unique. Accordingly,

a related concept is that of the sub-differential of J(w) at w0, denoted by ∂J(w0). The

sub-differential is defined as the set of all possible sub-gradient vectors at w0:

∂J(w0)
∆
=
{
g | J(w) ≥ J(w0) + gT(w − w0), ∀w

}
. (7.4)

In general, the sub-differential ∂J(w0) is a set and it will collapse to a single point if, and

only if, the cost function is differentiable at w0 [136]; in that case, the sub-gradient vector

will coincide with the actual gradient vector at location w0.

Now, referring back to problem (7.1), the traditional sub-gradient method to minimizing

the risk function J(w) takes the form:

wi = wi−1 − µ g(wi−1), i ≥ 0 (7.5)

where g(wi−1) refers to a sub-gradient vector for J(w) at location wi−1, and µ > 0 is a

small step-size parameter. However, in the context of adaptation and learning, we do not

know the exact form of J(w) because the distribution of the data is not known to enable

computation of EQ(w;x). As such, true sub-gradient vectors for J(w) cannot be determined

and they will need to be replaced by stochastic approximations evaluated from streaming

data; examples to this effect are provided in the sequel in the context of support-vector
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machines and LASSO sparse designs. Accordingly, we replace the deterministic iteration

(7.5) by the following stochastic iteration [44,136,151,152]:

wi = wi−1 − µ ĝ(wi−1), (7.6)

where the successive iterates, {wi}, are now random variables (denoted in boldface) and ĝ(·)

represents an approximate sub-gradient vector at locationwi−1 estimated from data available

at time i. The difference between an actual sub-gradient vector and its approximation is

referred to as gradient noise and is denoted by

si(wi−1)
∆
= ĝ(wi−1)− g(wi−1). (7.7)

7.2.3 Examples: SVM and LASSO

To illustrate the construction, we list two examples dealing with support vector machines

(SVM) [138] and the LASSO problem [137]; the latter is also known as the sparse LMS

problem or basis pursuit [9, 153, 154]. We will be using these two problems throughout the

manuscript to illustrate our findings.

Example 1 (SVM problem). The two-class SVM formulation deals with the problem of

determining a separating hyperplane, w ∈ RM , in order to classify feature vectors, denoted

by h ∈ RM , into one of two classes: γ = +1 or γ = −1. The regularized SVM risk function

is of the form:

J svm(w)
∆
=

ρ

2
‖w‖2 + E

(
max

{
0, 1− γhTw

})
, (7.8)

where ρ > 0 is a regularization parameter. We are generally given a collection of independent

training data, {γ(i),hi}, consisting of feature vectors and their class designations and as-

sumed to arise from joint wide-sense stationary processes. Using this data, the loss function
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at time i is given by

Qsvm(w; {γ(i),hi}) =
ρ

2
‖w‖2 + max

{
0, 1− γ(i)hT

i w
}
, (7.9)

where the second term on the right-hand side, which is also known as the hinge function,

is non-differentiable at all points w satisfying 1− γ(i)hT
i w = 0. One choice to approximate

the sub-gradient vector of J svm(w) is to employ the following instantaneous approximation

(which follows from “differentiating” the loss function (7.9)):

ĝsvm(wi−1) = ρwi−1 + γ(i)hi I[γ(i)hT
i wi−1 ≤ 1]. (7.10)

In this expression, the indicator function I[a] is defined as follows:

I[a] =

 1, if statement a is true

0, otherwise
(7.11)

It then follows that the gradient noise process in the SVM formulation is given by

ssvm
i (wi−1) = γ(i)hi I[γ(i)hT

i wi−1 ≤ 1]− Eγh I[γhTwi−1 ≤ 1]. (7.12)

�

Example 2 (LASSO problem). The least-mean-squares LASSO formulation deals with

the problem of estimating a sparse weight vector by minimizing a risk function of the form

[155,156]:1

J lasso(w)
∆
=

1

2
E‖γ − hTw‖2 + δ‖w‖1, (7.13)

where δ > 0 is a regularization parameter and ‖w‖1 denotes the `1−norm of w. In this

problem formulation, the variable γ now plays the role of a desired signal, while h plays the

role of a regression vector. It is assumed that the data are zero-mean wide-sense stationary

1Traditionally, LASSO refers to minimize a deterministic cost function, like ‖y−Ax‖2 +λ‖x‖1. However,
since here we are more interested in stochastic version, we only consider the case like (7.13).
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with second-order moments denoted by

rhγ
∆
= Ehγ, Rh

∆
= EhhT. (7.14)

It is generally assumed that {γ,h} satisfy a linear regression model of the form:

γ = hTwo + n, (7.15)

where wo ∈ RM is the desired unknown sparse vector, and n refers to an additive zero-mean

noise component with finite variance σ2
n and independent of h. If we multiply both sides

of (7.15) by h from the left and compute expectations, we find that wo satisfies the normal

equations:

rhγ = Rhw
o. (7.16)

We are again given a collection of independent training data, {γ(i),hi}, consisting of regres-

sion vectors and their noisy measured signals. Using this data, the loss function at time i is

given by

Qlasso(w; {γ(i),hi}) =
1

2
(γ(i)− hT

i w)2 + δ‖w‖1, (7.17)

where the second term on the right-hand side is again non-differentiable. One choice for

the approximate sub-gradient vector of J lasso(w) is to employ the following instantaneous

approximation (which follows from “differentiating” the loss function (7.17)):

ĝlasso(wi−1) = −hi(γ(i)− hT
i wi−1) + δ · sgn(wi−1)

= − hihT
i (w◦ −wi−1)+δ · sgn(wi−1)−hin(i), (7.18)

where the notation sgn(a), for a scalar a, refers to the sign function:

sgn[a] =

 +1, a ≥ 0

−1, otherwise
. (7.19)

When applied to a vector a, as is the case in (7.18), the sgn function is a vector consisting
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of the signs of the individual entries of a. It then follows that the gradient noise process in

the LASSO formulation is given by

slasso
i (wi−1) = (Rh − hihT

i )(w◦ −wi−1)− hin(i). (7.20)

�

7.3 Modeling Conditions

In order to examine the performance of the stochastic sub-gradient implementation (7.6) for

single-agent adaptation and learning, and later for multi-agent networks, it is necessary to

introduce some assumptions on the gradient noise process. We diverge here from assump-

tions that are commonly used in the literature for two reasons. First, we introduce weaker

assumptions than usually adopted in prior works and, secondly and more importantly, we

show that our assumptions are automatically satisfied by important cases of interest (such as

SVM and LASSO). In contrast, these applications do not satisfy the traditional assumptions

used in the literature and, therefore, conclusions derived based on these earlier assumptions

are not directly applicable to SVM and LASSO problems. We clarify these remarks in the

sequel.

Recall from (7.1) that w? denotes the global minimizer that we are seeking. The first set

of conditions on the gradient noise process below essentially require that the construction of

the approximate sub-gradient vector should not introduce bias and that its error variance

should decrease as the quality of the iterate approaches the optimal solution, w?. Both

of these conditions are sensible and, moreover, they will be shown to be satisfied by, for

example, SVM and LASSO constructions. More formally, we require the gradient noise

process to satisfy the following two conditions.

Assumption 7.1 (Conditions on gradient noise) The first and second-order conditional

192



moments of the gradient noise process satisfy the following conditions:

E [ si(wi−1) |F i−1 ] = 0, (7.21)

E [ ‖si(wi−1)‖2 |F i−1 ] ≤ β2‖w? −wi−1‖2 + σ2, (7.22)

for some constants β2 ≥ 0 and σ2 ≥ 0, and where the notation F i−1 denotes the filtration

(collection) corresponding to all past iterates:

F i−1 = filtration by {wj, j ≤ i− 1}. (7.23)

�

Assumption 7.2 (Strongly-convex risk function) The risk function is assumed to be

η−strongly-convex (or, simply, strongly-convex), i.e., there exists an η > 0 such that

J(θw1 + (1− θ)w2) ≤ θJ(w1) + (1− θ)J(w2)− η

2
θ(1− θ)‖w1 − w2‖2, (7.24)

for any θ ∈ [0, 1], w1, and w2. The above condition is equivalent to requiring [17]:

J(w1) ≥ J(w2) + g(w2)T(w1 − w2) +
η

2
‖w1 − w2‖2. (7.25)

Under this condition, the minimizer w? exists and is unique. �

Assumption 7.2 is relatively rare in works on non-differentiable function optimization be-

cause it is customary for these works to focus on studying piece-wise linear risks; these are

important examples of non-smooth functions but they do not satisfy the strong-convexity

condition. In our case, strong-convexity is not a restriction because in the context of adapta-

tion and learning, it is common for the risk functions to include a regularization term, which

generally helps ensure strong-convexity.

Assumption 7.3 (Sub-gradient is Affine-Lipschitz) It is assumed that the sub-gradient

of the risk function, J(w), is affine Lipschitz, which means that there exist constants c ≥ 0
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and d ≥ 0 such that

‖g(w1)− g(w2)‖ ≤ c‖w1 − w2‖+ d, ∀w1, w2, (7.26)

and for any choice g(·) ∈ ∂J(w). �

More critically, though, it is customary in the literature to use in place of Assumption 7.3

a more restrictive condition that requires the sub-gradient to be bounded [22,44,58,147,149],

i.e.,

‖g(w)‖ ≤ d1, ∀w, g ∈ ∂J(w). (7.27)

which is also equivalent to assuming the risk function is Lipschitz:

‖J(w1)− J(w2)‖ ≤ d1‖w1 − w2‖, ∀w1, w2 (7.28)

Such a requirement does not even hold for quadratic risk functions, J(w), whose gradient

vectors are affine in w and, therefore, grow unbounded! Even more, it can be easily seen that

requirement (7.27) is always conflicted with the strong-convexity assumption. For example,

if we set w1 = w and w2 = w? in (7.25), we would obtain:

J(w) ≥ J(w?) +
η

2
‖w − w?‖2. (7.29)

Likewise, if we instead set w1 = w? and w2 = w in (7.25), we would obtain:

J(w?) ≥ J(w) + g(w)T(w? − w) +
η

2
‖w − w?‖2. (7.30)

Adding relations (7.29)–(7.30) we arrive at the so-called strong monotonicity property:

g(w)T(w − w?) ≥ η‖w − w?‖2, (7.31)
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which implies, in view of the Cauchy-Schwarz inequality, that

‖g(w)‖ ≥ η‖w − w?‖. (7.32)

In other words, the strong-convexity condition (7.25) implies that the sub-gradient satisfies

(7.32); and this condition is in clear conflict with the bounded requirement in (7.27).

One way to circumvent this problem is to restrict the domain of J(w) to some bounded

convex set, say, w ∈ W , in order to bound its sub-gradient vectors, and then employ a

projection-based sub-gradient method (i.e., one in which each iteration is followed by pro-

jecting wi onto W). However, this approach has at least three difficulties. First, the un-

constrained problem is transformed into a more demanding constrained problem involving

an extra projection step. Second, the projection step may not be straightforward to carry

out unless the set W is simple enough. Third, the bound that results on the sub-gradient

vectors by limiting w to W can be very loose, which will be dependent on the diameter of

convex set W .

For these reasons, we do not rely on the restrictive condition (7.27) and introduce instead

the more relaxed affine-Lipschitz condition (7.26). This condition is weaker than (7.27).

Indeed, it can be verified that (7.27) implies (7.26) but not the other way around. To see

this, assume (7.27) holds. Then, using the triangle inequality of norms we have

‖g(w1)− g(w2)‖ ≤ ‖g(w1)‖+ ‖g(w2)‖

≤ d1 + d1

= 2d1, (7.33)

which is a special case of (7.26) with c = 0 and d = 2d1. We now verify that important

problems of interest satisfy Assumption 7.3 but not the traditional condition (7.27).

Example 3 (SVM problem). We revisit the SVM formulation from Example 1. The risk

function (7.8) is strongly convex due to the presence of the quadratic regularization term,
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ρ
2
‖w‖2, and since the hinge function E max{0, 1−γhTw} is convex. The zero-mean property

of the gradient noise process is obvious in this case. With respect to the variance condition,

we note that

E [‖ssvm
i (wi−1)‖2|F i−1] = EhT

i hi I[γ(i)hT
i wi−1 ≤ 1]− ‖Eγh I[γhTwi−1 ≤ 1]‖2

≤ EhT
i hi I[γ(i)hT

i wi−1 ≤ 1]

≤ EhT
i hi

= Tr(Rh), (7.34)

so that Assumption 7.1 is satisfied with β2 = 0 and σ2 = Tr(Rh). Let us now verify

Assumption 7.3. For that purpose, we first note that:

‖gsvm(w1)− gsvm(w2)‖ ≤ ρ‖w1 − w2‖+ ‖Eγh I[γhTw1 ≤ 1]‖+ ‖Eγh I[γhTw2 ≤ 1]
∥∥.

(7.35)

Additionally, we have

‖Eγh I[γhTw < 1]
∥∥2 (a)

≤ E
∥∥γh I[γhTw ≤ 1]

∥∥2

= EhTh I[γhTw ≤ 1]

≤ Tr(Rh), (7.36)

where step (a) uses Jensen’s inequality [46]. Substituting into (7.35) gives

‖gsvm(w1)− gsvm(w2)‖ ≤ ρ‖w1 − w2‖+ 2[Tr(Rh)]
1/2, (7.37)

which is of the same form as (7.26) with parameters c = ρ and d = 2[Tr(Rh)]
1/2. �

Example 4 (LASSO problem). We revisit the LASSO formulation from Example 2.

Under the condition that Rh > 0, the risk function (7.13) is again strongly-convex because

the quadratic term, 1
2
E‖γ−hTw‖2, is strongly convex and the regularization term, δ‖w‖1, is

convex. With regards to the gradient noise process, it was already shown in Eq. (3.22) in [11]
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that a gradient noise process of the form (7.20) is zero-mean and its conditional variance

satisfies:

E [‖slasso
i (wi−1)‖2|F i−1] ≤ a‖w◦ −wi−1‖2 + σ2

nTr(Rh)

≤ 2a‖w? −wi−1‖2 + σ2
nTr(Rh) + 2a‖w◦ − w?‖2, (7.38)

where a = 2E‖Rh − hihT
i ‖2. It follows that Assumption 7.1 is satisfied with β2 = 2a and

σ2 = σ2
nTr(Rh) + 2a‖w◦ − w?‖2. Let us now verify Assumption 7.3. For that purpose, we

first note that:

‖glasso(w1)− glasso(w2)‖ = ‖Rhw1 −Rhw2 + δ(sgn(w1)− sgn(w2))‖

≤ ‖Rh‖‖w1 − w2‖+ 2δ‖1‖

= ‖Rh‖‖w1 − w2‖+ 2δM1/2, (7.39)

where 1 is the column vector with all its entries equal to one. We again arrive at a relation

of the same form as (7.26) with parameters c = ‖Rh‖ and d = 2δM1/2. �

7.4 Performance Analysis: Single Agent Case

We now carry out a detailed mean-square-error analysis of the stability and performance of

the stochastic sub-gradient recursion (7.6) in the presence of gradient noise and for constant

step-size adaptation.

7.4.1 Continuous Adaptation

Since the step-size is assumed to remain constant, the effect of gradient noise is continually

present and does not die out, as would occur if we were using instead a diminishing step-size,

say, of the form µ(i) = τ/i. Such diminishing step-sizes annihilate the gradient noise term

asymptotically albeit at the expense of turning off adaptation in the long run. In that case,

the learning algorithm will lose its tracking ability. In contrast, a constant step-size keeps
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adaptation alive and endows the learning algorithm with a tracking mechanism and, as the

analysis will show, enables convergence towards the steady-state regime at an exponential

rate, O(αi), for some α ∈ (0, 1).

7.4.2 A Useful Bound

In preparation for the analysis, we first conclude from (7.26) that the following useful con-

dition also holds, involving squared-norms as opposed to the actual norms:

‖g(w1)− g(w2)‖2 ≤ e2‖w1 − w2‖2 + f 2 ∀w1, w2, g ∈ ∂J, (7.40)

for some nonnegative constants, e2, f 2. Indeed, if we square both sides of (7.26) we get

‖g(w1)− g(w2)‖2 ≤ c2‖w1 − w2‖2 + 2cd‖w1 − w2‖+ d2

(a)

≤
(
c2 +

2cd

R

)
‖w1 − w2‖2 + d2 + 2cdR, (7.41)

where the constant R is any positive number that we are free to choose, and step (a) is

because

‖w1 − w2‖ ≤

R, if ‖w1 − w2‖ < R

‖w1 − w2‖2/R, if ‖w1 − w2‖ ≥ R
. (7.42)

It follows that the constants {e2, f 2} in (7.40) can be taken as

e2 ∆
= c2 +

2cd

R
≥ 0 (7.43)

f 2 ∆
= d2 + 2cdR ≥ 0. (7.44)

There is a second easier derivation for a bound of the form (7.40) without the need to

introduce the parameter R but it generally leads to a looser bound. For example, observe

that by squaring and appealing to Jensen’s inequality we get:

‖g(w1)− g(w2)‖2 ≤
(
c‖w1 − w2‖+ d

)2

(7.45)
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≤ 2c2‖w1 − w2‖2 + 2d2. (7.46)

In this case, we would select e2 = 2c2 and f 2 = 2d2. We continue with (7.41).

7.4.3 Stability and Convergence

We are now ready to establish the following important conclusion regarding the stability and

performance of the stochastic sub-gradient algorithm (7.6); the conclusion indicates that the

algorithm is stable and converges exponentially fast for sufficiently small step-sizes. But first,

we explain our notation and the definition of a “best” iterate, denoted by wbest
i [136]. This

variable is useful in the context of sub-gradient implementations because it is known that

(negative) sub-gradient directions do not necessarily correspond to real descent directions

(as is the case with actual gradient vectors for differentiable functions).

At every iteration i, the risk value that corresponds to the iterate wi is J(wi). This value

is obviously a random variable due to the randomness in the data used to run the algorithm.

We denote the mean risk value by EJ(wi). The next theorem examines how fast and how

close this mean value approaches the optimal value, J(w?). To do so, the statement in the

theorem relies on the best pocket iterate, denoted by wbest
i , and which is defined as follows.

At any iteration i, the value that is saved in this pocket variable is the iterate, wj, that has

generated the smallest mean risk value up to that point in time, i.e.,

wbest
i

∆
= arg min

0≤j≤i
E J(wj). (7.47)

The statement below then proves that EJ(wbest
i ) approaches a small neighborhood of size

O(µ) around J(w?) exponentially fast:

lim
i→∞

E J(wbest
i ) ≤ J(w?) + O(µ), (7.48)

where the big-O notation O(µ) means in the order of µ.

Theorem 7.1 (Single agent performance) Consider using the stochastic sub-gradient
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algorithm (7.6) to seek the unique minimizer, w?, of the optimization problem (7.1), where

the risk function, J(w), is assumed to satisfy Assumptions 7.1–7.3. If the step-size param-

eter satisfies (i.e., if it is small enough):

µ <
η

e2 + β2
, (7.49)

then it holds that

EJ(wbest
i )− J(w?) ≤ ξ · αiE

∥∥w0 − w?
∥∥2

+ µ(f 2 + σ2)/2, ∀ i (7.50)

That is the convergence of E J(wbest
i ) towards the O(µ)−neighborhood around J(w?) occurs

at linear rate, O(αi), dictated by the parameter

α
∆
= 1− µη + µ2(e2 + β2) = 1−O(µ) (7.51)

Condition (7.49) ensures α ∈ (0, 1). In the limit:

lim
i→∞

EJ(wbest
i )− J(w?) ≤ µ(f 2 + σ2)/2. (7.52)

That is, for large i, EJ(wbest
i ) is approximately µ(f 2 + σ2)/2-suboptimal.

Proof : We introduce the error vector, w̃i = w?−wi, and use it to deduce from (7.6)–(7.7)

the following error recursion:

w̃i = w̃i−1 + µg(wi−1) + µsi(wi−1). (7.53)

Squaring both sides and computing the conditional expectation we obtain:

E [‖w̃i‖2 |F i−1 ] = E [ ‖w̃i−1 + µg(wi−1) + µsi(wi−1)‖2 |F i−1 ] (7.54)

(a)
= ‖w̃i−1 + µg(wi−1)‖2 + µ2E [‖si(wi−1)‖2 |F i−1 ]

= ‖w̃i−1‖2 + 2µg(wi−1)Tw̃i−1 + µ2‖g(wi−1)‖2 + µ2E [‖si(wi−1)‖2 |F i−1 ].
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In step (a), we eliminated the cross term because, conditioned on F i−1, the gradient noise

process has zero-mean. Now, from the strong convexity condition (7.25), it holds that

g(wi−1)Tw̃i−1 ≤ J(w?)− J(wi−1)− η

2
‖w̃i−1‖2. (7.55)

Substituting into (7.54) gives

E [‖w̃i‖2 |F i−1 ] ≤ ‖w̃i−1‖2 + 2µ
(
J(w?)− J(wi−1)− η

2
‖w̃i−1‖2

)
+

µ2‖g(wi−1)‖2 + µ2E [‖si(wi−1)‖2 |F i−1 ]. (7.56)

Referring to (7.40), if we set w1 = wi−1, w2 = w?, and use the fact that g(w?) = 0, we

obtain:

‖g(wi−1)‖2 ≤ e2‖w̃i−1‖2 + f 2. (7.57)

Substituting into (7.56), we get

E [‖w̃i‖2 |F i−1 ]

≤ (1− µη + µ2e2)‖w̃i−1‖2 + 2µJ(w?)− 2µJ(wi−1) + µ2f 2 + µ2E [‖si(wi−1)‖2 |F i−1 ]

(7.22)

≤ (1− µη + µ2(e2 + β2))‖w̃i−1‖2 + 2µJ(w?)− 2µJ(wi−1) + µ2f 2 + µ2σ2. (7.58)

Taking expectation again we eliminate the conditioning on F i−1 and arrive at:

2µ(EJ(wi−1)− J(w?)) ≤ (1−µη+µ2(e2 +β2))E‖w̃i−1‖2−E‖w̃i‖2 +µ2(f 2 +σ2). (7.59)

To proceed, we simplify the notation and introduce the scalars

a(i)
∆
= EJ(wi−1)− J(w?) (7.60)

b(i)
∆
= E‖w̃i‖2 (7.61)

α
∆
= 1− µη + µ2(e2 + β2) (7.62)
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τ 2 ∆
= f 2 + σ2 (7.63)

Note that since w? is the unique global minimizer of J(w), then it holds that J(wi−1) ≥ J(w?)

so that a(i) ≥ 0 for all i. The variable a(i) represents the average excess risk. Now, we can

rewrite (7.59) more compactly as

2µa(i) ≤ αb(i− 1)− b(i) + µ2τ 2. (7.64)

Iterating over 0 ≤ i ≤ L, gives

L∑
i=0

αL−i(2µa(i)− µ2τ 2) ≤ αL+1b(−1)− b(L) ≤ αL+1b(−1). (7.65)

Let us verify that α ∈ (0, 1). First, observe from expression (7.62) for α that α(µ) is a

quadratic function in µ. This function attains its minimum at location µo = η/(2e2 + 2β2).

For any µ, the value of α(µ) is larger than the minimum value of the function at µo, i.e., it

holds that

α ≥ 1− η2

4(e2 + β2)
. (7.66)

Now, comparing relations (7.32) and (7.26), we find that the sub-gradient vector satisfies:

η‖w − w?‖ ≤ ‖g(w)‖ ≤ c‖w − w?‖+ d, ∀w, (7.67)

which implies that η ≤ c since the above inequality must hold for all w. It then follows from

(7.43) that e2 > η2 and from (7.66) that

α ≥ 1− η2

4η2
> 0. (7.68)

In other words, the parameter α is positive. Furthermore, some straightforward algebra using

(7.62) shows that condition (7.49) implies α < 1. We therefore established that α ∈ (0, 1),

as desired.

Returning to (7.64), we note that because the (negative) sub-gradient direction is not
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necessarily a descent direction, we cannot ensure that a(i) < a(i− 1). However, we can still

arrive at a useful conclusion by introducing a pocket variable, denoted by abest(L) ≥ 0. This

variable saves the value of the smallest increment, a(j), up to time L, i.e.,

abest(L)
∆
= min

0≤i≤L
a(i) . (7.69)

Let further wbest
L denote the corresponding iterate wi where this best value is achieved.

Replacing a(i) by abest(L) in (7.65) gives

(2µabest(L)− µ2τ 2) ≤ αL+1b(−1)

(
L∑
i=0

αL−i

)−1

= αL+1b(−1)

(
1− αL+1

1− α

)−1

= b(−1) · α
L+1(1− α)

1− αL+1
, (7.70)

or, equivalently,

2µabest(L) ≤ µ2τ 2 + b(−1) · α
L+1(1− α)

1− αL+1
. (7.71)

Plugging the definition of abest(L) and b(−1), we will arrive at

EJ(wbest
L )− J(w?) ≤ αL

α(1− α)

2µ(1− αL+1)
E‖w−1 − w?‖2 + µ(f 2 + σ2)/2 (7.72)

Taking the limit as L→∞, we conclude that

lim
L→∞

EJ(wbest
L )− J(w?) ≤ µτ 2/2 = µ(f 2 + σ2)/2. (7.73)

�

Remark #1: It is important to note that result (50) extends and enhances a useful result

derived by [149] where the following lower bound was established (using our notation):

EJ(wi)− J(w?) ≥ ζ1

i

[
E‖w−1 − w?‖2

]
(7.74)
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for some constant ζ1 > 0. This result shows that the convergence of J(wi) towards J(w?)

cannot be better than a linear rate when one desires convergence towards the exact minimum

value. In contrast, our analysis that led to (50) establishes the following upper bound:

EJ(wi)− J(w?) ≤ ζαi
[
E‖w−1 − w?‖2

]
+ O(µ) (7.75)

for some constant ζ > 0. Observe that this expression is showing that J(wi) can actually

approach a small O(µ)−neighborhood around J(wi) exponentially fast at a rate that is

dictated by the scalar 0 < α < 1. It is clear that the two results (7.74) and (7.75) on the

convergence rate do not contradict each other. On the contrary, they provide complementary

views on the convergence behavior (from below and from above). Still, it is useful to remark

that the analysis employed by Agarwal and Bartlett (2012) imposes a stronger condition on

the risk function than our condition: they require the risk function to be Lipschitz continuous.

In comparison, we require the subgradient (and not the risk function) to be affine Lipschitz,

which makes the current results applicable to a borader class of problems.

�

Remark #2: We can similarly comment on how our result (7.50) relates to the useful results

that appear in [157]. Using our notation, the main conclusion that follows from propositions

3.2 and 3.3 is that

EJ(wbest
i )− J(w?) ≤ ζ2

i
E‖w−1 − w?‖2 +O(µ) (7.76)

for some constant ζ2 > 0. This result only ensures a sub-linear rate of convergence. In

contrast, our convergence analysis leads to the following result

EJ(wbest
i )− J(w?) ≤ ζαi

[
E‖w−1 − w?‖2

]
+ O(µ) (7.77)

for some scalar 0 < α < 1, which shows that convergence actually occurs at a linear rate. This

conclusion is clearly more powerful. Furthermore, as was the case with the treatment in [149],

the result (7.76) is derived in [157] by assuming the sub-gradient vectors are bounded, which
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is a stronger condition than the affine Lipschitz condition used in the current manuscript. �

The above theorem only clarifies the performance of the best pocket value, which is not

readily available during the algorithm implementation since the risk function itself cannot

be evaluated. That is, J(wi) cannot be computed because J(w) is not known due to the

lack of knowledge about the probability distribution of the data. However, a more practical

conclusion can be deduced from the statement of the theorem as follows. Introduce the

geometric sum:

SL
∆
=

L∑
j=0

αL−j =
1− αL+1

1− α
, (7.78)

as well as the normalized and convex-combination coefficients:

rL(j)
∆
=

αL−j

SL
, j = 0, 1, . . . , L. (7.79)

Using these coefficients, we define the weighted iterate

w̄L
∆
=

L∑
j=0

rL(j)wj =
1

SL

[
αLw0 + αL−1w1 + . . .+ αwL−1 +wL

]
. (7.80)

Observe that, in contrast to wbest
L , the above weighted iterate is computable since its value

depends on the successive iterates {wj} and these are available during the operation of the

algorithm. Observe further that w̄L satisfies the recursive construction:

w̄L =

(
1− 1

SL

)
w̄L−1 +

1

SL
wL. (7.81)

In particular, as L→∞, we have SL → 1/(1− α), and the above recursion simplifies in the

limit to

w̄L = αw̄L−1 + (1− α)wL. (7.82)

Now, since J(·) is a convex function, it holds that

J(w̄L) = J

(
L∑
j=0

rL(j)wj

)
≤

L∑
j=0

rL(j)J(wj). (7.83)
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Using this fact, the following corollary derives a result similar to (7.52) albeit applied to w̄L.

Corollary 7.1 (Weighted iterate) Under the same conditions as in Theorem 7.1, it holds

that

lim
L→∞

EJ(w̄L)− J(w?) ≤ µ(f 2 + σ2)/2, (7.84)

and the convergence of EJ(w̄L) towards J(w?) continues to occur at the same exponential

rate, O(αL).

Proof : We start from (7.65), namely,

L∑
i=0

αL−i(2µEJ(wi)− 2µJ(w?)− µ2τ 2) ≤ αL+1b(−1), (7.85)

and divide both sides by the same sum:

L∑
i=0

(
αL−i∑L
j=0 α

L−j

)
(2µEJ(wi)− 2µJ(w?)− µ2τ 2) ≤

(
αL+1∑L
j=0 α

L−j

)
b(−1), (7.86)

which gives

L∑
i=0

r(i)(2µEJ(wi)− 2µJ(w?)) ≤ αL+1(1− α)

1− αL+1
b(−1) + µ2τ 2. (7.87)

Appealing to the convexity property (7.83) we conclude that

2µ(EJ(w̄L)− 2µJ(w?)) ≤ αL+1(1− α)

1− αL+1
b(−1) + µ2τ 2. (7.88)

Taking the limit as L→∞ leads to (7.84). �

Using α as a scaling weight in (7.80) may still be inconvenient because its value needs to

be determined. The analysis however suggests that we may replace α by any parameter κ

satisfying α ≤ κ ≤ 1. The parameter κ plays a role similar to the step-size, µ: both become
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parameters selected by the designer. Next, we introduce the new weighted variable:

w̄′L
∆
=

L∑
j=0

r′L(j)wj, (7.89)

where now

r′L(j) = κL−j/S ′L, j = 0, 1, . . . , L, (7.90)

and

S ′L =
L∑
j=0

κL−j. (7.91)

Corollary 7.2 (Relaxed Weighted iterate) Under the same conditions as in Theorem 7.1

and α ≤ κ < 1, relation (7.84) continues to hold with w̄L replaced by w̄′L. Moreover, con-

vergence now occurs at the exponential rate O(κL).

Proof : The argument requires some modification relative to what we have done before. We

start from (7.64) again:

2µa(i) ≤ αb(i− 1)− b(i) + µ2τ 2. (7.92)

But unlike the previous derivation in (7.65), now we use κ to expand the recursion from

iteration i = 0 to L:

L∑
i=0

κL−i(2µa(i)− µ2τ 2) ≤
L∑
i=0

κL−i
(
αb(i− 1)− b(i)

)
=

L−1∑
i=−1

κL−i−1αb(i)−
L∑
i=0

κL−ib(i)

=
L−1∑
i=−1

κL−i−1(α− κ)b(i) + κL+1b(−1)− b(L)

≤ κL+1b(−1), (7.93)

where in the last inequality we used the fact that κ ≥ α. We can now proceed from here

and complete the argument as before. �
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Corollary 7.3 (Mean-Square-Deivation Performance) Under the same conditions as

in Theorem 7.1 and α ≤ κ < 1. It holds that

lim
L→∞

E‖w̄′L − w?‖2 ≤ µ(f 2 + σ2)/η (7.94)

Moreover, convergence to the steady-state regime occurs at the exponential rate O(κL).

Proof : Referring to equation (7.29), we get

E‖w̄′i − w?‖2 ≤ 2

η
(EJ(w̄′i)− J(w?)) (7.95)

Combining with the corollary 7.2, we arrive at (7.94). �

It is interesting to compare result (7.84) with what happens in the case of differentiable

risk functions. In that case, the standard stochastic gradient algorithm, using the actual

gradient vector rather than sub-gradients, can be employed to seek the minimizer, w?. It was

established in [11, Ch. 4] that for risk functions that are twice-differentiable, the stochastic

gradient algorithm guarantees

lim
L→∞

EJ(wL)− J(w?) =
µ

4
σ2, (7.96)

where the right-hand side is dependent on σ2 alone; this factor arises from the bound (7.22)

on the gradient noise process. In contrast, in the non-smooth case (7.84), we established

here a similar bound that is still in the order of O(µ). However, the size of the bound is not

solely dependent on σ2 anymore but it also includes the factor f 2; this latter factor arises

from condition (7.40) on the sub-gradient vectors. That is, there is some minor degradation

(since µ is small) that arises from the non-smoothness of the risk function. If we set f = 0

in (7.84), we recover (7.96) up to a scaling factor of 2. Although the bound in this case is

still O(µ), as desired, the reason why it is not as tight as the bound derived in the smooth

case in [11] is because the derivation in the current paper is not requiring the risk function

to be twice differentiable, as was the case in [11], and we are also discarding the term b(L)

in equation (7.65). The important conclusion to note is that the right-hand side of (7.84) is

208



also O(µ), as in the smooth case (7.96).

7.4.4 Interpretation of Results

The results derived in this section highlight several important facts that we would like to

summarize:

(1) First, it has been observed in the optimization literature that sub-gradient descent

iterations can perform poorly in deterministic problems (where J(w) is known). Their

convergence rate is O(1/
√
i) under convexity and O(1/i) under strong-convexity [136]

when decaying step-sizes, µ(i) = 1/i, are used to ensure convergence [60]. Our argu-

ments show that the situation is different in the context of stochastic optimization when

true sub-gradients are approximated from streaming data. By using constant step-sizes

to enable continuous learning and adaptation, the sub-gradient iteration is now able

to achieve exponential convergence at the rate of O(αi) for some α = 1−O(µ).

(2) Second, of course, this substantial improvement in convergence rate comes at a cost,

but one that is acceptable and controllable. Specifically, we cannot guarantee conver-

gence of the algorithm to the global minimum value, J(w?), anymore but can instead

approach this optimal value with high accuracy in the order of O(µ), where the size of

µ is under the designer’s control and can be selected as small as desired.

(3) Third, this performance level is sufficient in most cases of interest because, in practice,

one rarely has an infinite amount of data and, moreover, the data is often subject

to distortions not captured by any assumed models. It is increasingly recognized in

the literature that it is not always necessary to ensure exact convergence towards the

optimal solution, w?, or the minimum value, J(w?), because these optimal values may

not reflect accurately the true state due to modeling error. For example, it is explained

in the works [18, 19, 144] that it is generally unnecessary to reduce the error measures

below the statistical error level that is present in the data.
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7.5 Applications: Single Agent Case

We now apply the results of the previous analysis to several cases in order to illustrate that

stochastic sub-gradient constructions can indeed lead to good performance.

Example 5 (LASSO problem). For the LASSO problem, we choose R = 0.5 so that

f 2 = d2 + cd = 4δ2M + 2δM
1
2 . (7.97)

It then follows that

lim
L→∞

E J lasso(w̄L)− J lasso(w?) ≤ µ(2δ2M + δM
1
2 ) +

µ

2
σ2
nTr(Rh). (7.98)

In order to verify this result, we run a simulation with µ = 0.001, δ = 0.002, and M = 100.

Only two entries in w◦ are assumed to be nonzero. The regression vectors and noise process

{hi,n(i)} are both generated according to zero-mean normal distributions with variances

Rh = I and σ2
n = 0.01, respectively. From the optimality condition, 0 ∈ ∂J(w?), it is easy

to conclude that [158]

w? = Sδ(w◦), (7.99)

where the symbol Sδ represents the soft-thresholding function with parameter δ, i.e.,

Sδ(x) = sgn(x) ·max{0, |x| − δ}. (7.100)

Figure 7.1 plots the evolution of the excess-risk curve, E J lasso(w̄L)−J lasso(w?), obtained by

averaging over 50 experiments. The figure compares the performance of the standard LMS

solution:

wi = wi−1 + µhi(γ(i)− hT
i wi−1), (7.101)

against the sparse sub-gradient version [153,159,160]:

wi = wi−1 + µhi(γ(i)− hT
i wi−1)− µδ · sgn(wi−1). (7.102)
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It is observed that the stochastic sub-gradient implementation satisfies the bound predicted

by theory.
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Figure 7.1: LASSO problem. The excess-risk curves, i.e.
(
E J(wL)− J(w?)

)
, for LMS and

for LASSO-LMS are obtained by averaging over 50 experiments.

�

Example 6 (SVM problem). For the SVM problem, we again select R = 0.5 and conclude

that

lim
L→∞

E J svm(w̄L)− J svm(w?) ≤ µ

2

(
5Tr(Rh) + 2ρ(Tr(Rh))

1
2

)
. (7.103)

Actually, for the SVM construction, we can obtain a tighter upper bound than the one

provided by Corollary 7.1; this is because we can exploit the special structure of the SVM

cost to arrive at

lim
L→∞

E J svm(w̄L)− J svm(w?) ≤ µ
(
ρ2‖w?‖2 + ρ+ Tr(Rh)/2

)
, (7.104)

with convergence rate α = 1 − 2µρ + µ2ρ2. The proof is provided in Appendix 7.A. We
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compare the performance of the stochastic sub-gradient SVM implementation:


wi = (1− ρµ)wi−1 − µγ(i)hiI[γ(i)hT

i wi−1 ≤ 1]

Si = (1− 2µρ+ µ2ρ2)Si−1 + 1

w̄i =

(
1− 1

Si

)
w̄i−1 +

1

Si
wi

, (7.105)

(with all variables initiate at zero) against LIBSVM (a popular SVM solver that uses dual

quadratic programming) [6]. The test data is obtained from the LIBSVM website2 and also

from the UCI dataset3. We first use the Adult dataset after preprocessing [104] with 11,220

training data and 21,341 testing data in 123 feature dimensions. To ensure a fair comparison,

we use linear LIBSVM with the exact same parameters as the sub-gradient method. Hence,

we choose C = 5 × 102 for LIBSVM, which corresponds to ρ = 1
C

= 2 × 10−3. We also set

µ = 0.05.
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Figure 7.2: SVM solvers applied to the Adult data set. Comparison of the performance
accuracy, percentage of correct prediction over test dataset, for LIBSVM [6] and a stochastic
sub-gradient implementation (7.105).

2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

3http://archive.ics.uci.edu/ml/
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We can see from Fig. 7.2 that the stochastic sub-gradient algorithm is able converge to

the performance of LIBSVM quickly. Since we only use each data point once, and since

each iteration is computationally simpler, the sub-gradient implementation ends up being

computationally more efficient. We also examine the performance of the sub-gradient SVM

solver on another large-scale dataset, namely, the Reuters Corpus Volume I (RCV1) data

with 20242 training data and 253843 testing data consisting of 47236 feature dimensions.

The chosen parameters are C = 1× 105, µ = 0.2. The performance is shown in Fig. 7.3.
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Figure 7.3: SVM solvers applied to the RCV1 data set. Comparison of the performance
accuracy, percentage of correct prediction over test dataset, for LIBSVM [6] and a stochastic
sub-gradient implementation (7.105). The blue line for LIBSVM is generated by using the
same parameters as the sub-gradient implementation, while the black line is determined by
using cross validation. The difference between both lines is because LIBSVM achieves higher
accuracy when setting ρ to a large value, say, around the value of one. In comparison, from
(7.104) we know that sub-gradient methods need a small ρ to achieve higher accuracy.

�

Example 7 (Image denoising problem). We next illustrate how the stochastic sub-

gradient implementation can match the performance of some sophisticated techniques for

image denoising, such as the FISTA algorithm. This latter technique solves the denoising

problem by relying on the use of proximal projections and acceleration methods applied to
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a dual problem [7,161].

One classical formulation for the image denoising problem with total-variation regular-

ization involves seeking an image (or matrix) that minimizes the following deterministic

cost [140]:

min
I

1

2
‖I − Inoisy‖2

F + λ · TV (I), (7.106)

where λ > 0 is a regularization factor. Moreover, the term I denotes some rectangular or

square image that we wish to recover, say, of size N × N , and Inoisy refers to the available

noisy measurement of the true image:

Inoisy = Io + noise, (7.107)

where the noise term refers to a zero-mean perturbation. The notation ‖ · ‖F denotes the

Frobenious norm of its matrix argument, and the operation TV (·) stands for a total-variation

computation, which is defined as follows:4

TV (I)
∆
=
∑
m,n

|I(m,n)− I(m+ 1, n)|+ |I(m,n)− I(m,n+ 1)|. (7.108)

The total variation term essentially encourages the difference between the image and some

of its shifted versions to remain nearly sparse. We may also formulate a stochastic version

of the denoising problem by considering instead:

min
I

1

2
E‖I − Inoisy‖2

F + λ · TV (I), (7.109)

where the expectation is now over the randomness in the noise used to generate the noisy

image (here we only consider the synthesis case). The sub-gradient of the Total Variation

term is straightforward to compute. For illustration purposes, we evaluate the sub-gradient

at some arbitrary point (m0, n0). Expanding the summation and separating the terms related

4Here, we only consider the discrete `1-based anisotropic TV and neglect the boundary modification.
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to point (m0, n0), we obtain:

TV (I) = |I(m0, n0)− I(m0 + 1, n0)|+ |I(m0, n0)− I(m0, n0 + 1)|+

|I(m0 − 1, n0)− I(m0, n0)|+ |I(m0, n0 − 1)− I(m0, n0)|+ rest,(7.110)

where the rest variable refers to terms that do not contain the variable I(m0, n0). Computing

the sub-gradient with respect to I(m0, n0) will generate four terms with the sign function as

in the LASSO problem. It is then clear that stochastic sub-gradient implementation in this

case is given by:

I i = I i−1 + µ

(
I i−1 − Inoisy +

4∑
j=1

λ · sgn(I i−1 − Ij
i−1)

)
, (7.111)

where I i represents the recovered image at iteration i, I1
i represents shifting the image to

the left by one pixel, while I2
i ,I3

i ,I4
i represent shifting the image to the right, up, and down

by one pixel, respectively. We observe that recursion (7.111) now iterates repeatedly over

the same single image, Inoisy. Accordingly, in this example, the stochastic gradient noise

does not vary over time, i.e.,

si(I i) = Io − Inoisy, ∀i. (7.112)

Nevertheless, Assumption 7.1 still holds; it was not required there that the gradient noise

process cannot be independent of time. Table 7.5 lists performance results using the Kodak

image suite5. The table lists two metrics. The first metric is the PSNR defined as

PSNR = 10× log
(255)2

MSE
, (7.113)

where MSE represents the mean-square-error, and the second metric is the execution time.

For a fair comparison, we used similar un-optimized MATLAB codes6 under the same com-

5http://r0k.us/graphics/kodak/

6Code for FISTA is available at http://iew3.technion.ac.il/~becka/papers/tv_fista.zip.
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Test Image kodim1 kodim5 kodim7 kodim8 kodim11 kodim14

PSNR(dB)
Sub-gradient 25.19 25.18 29.43 24.59 27.80 30.32

FISTA 24.90 24.87 29.14 24.26 27.59 30.25

Time(s)
Sub-gradient 8.88 9.33 8.50 8.46 9.00 8.7

FISTA 9.16 9.78 10.15 8.22 10.24 9.19

Test Image kodim15 kodim17 kodim19 kodim21 kodim23 kodim24

PSNR(dB)
Sub-gradient 30.32 29.38 27.53 27.29 31.68 26.25

FISTA 30.25 29.17 27.23 27.03 31.51 25.95

Time(s)
Sub-gradient 9.07 9.50 9.60 9.45 9.17 8.88

FISTA 10.13 9.98 9.47 9.62 10.17 8.51

Table 7.1: Comparison between the stochastic sub-gradient method (7.111) and FISTA [7]
over the KODIM test image set (c.f. footnote 4). All test images are subject to additive
zero-mean Gaussian noise with standard variance 0.1 (with respect to image values in the
range [0, 1]). We set λ = 0.08, µ = 0.002 and 300 max iterations for sub-gradient methods.
For different values of λ and µ, the results will be different, but the algorithms will perform
similarly when µ is chosen properly. The results in the table show that the sub-gradient
implementation can, in general, achieve similar or higher PSNR in shorter time.

puter environment. The table shows that the sub-gradient implementation can achieve com-

parable or higher PSNR values in shorter time. Clearly, if we vary the algorithm parameters,

these values will change. However, in general, it was observed in these experiments that the

sub-gradient implementation succeeds in matching the performance of FISTA reasonably

well. �

7.6 Problem Formulation: Multi-Agent Case

We now extend the previous analysis to multi-agent networks where a collection of agents

cooperate with each other to seek the minimizer of an aggregate cost of the form:

min
w

N∑
k=1

Jk(w), (7.114)

where k refers to the agent index. Each individual risk function continues to be expressed

as the expected value of some loss function:

Jk(w)
∆
= EQk(w;xk). (7.115)
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True Image

Subgradient FISTA

Noisy Image

Figure 7.4: Comparison of the performance of FISTA and sub-gradient implementations
on test image Kodim 23 (zoom-in) under low PSNR (13dB). The result of the sub-gradient
implementation is almost indistinguishable from the result of FISTA.

The expectation is over the data at agent k. We continue to assume that the individual

costs satisfy Assumptions 7.2 and 7.3, i.e., each Jk(w) is strongly-convex and its sub-gradient

vectors are affine-Lipschitz with parameters {ηk, ck, dk}; we are attaching a subscript k to

these parameters to make them agent-dependent (alternatively, if desired, we can replace
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them by agent-independent parameters by using bounds on their values). We further assume

that the individual risks share a common minimizer, w?, which will therefore agree with the

global minimizer for (7.114). This scenario corresponds to the important situation in which

the agents have a common objective (or task), namely, that of estimating the same parameter

vector, w?, in a distributed manner through localized interactions and cooperation.

7.6.1 Network Model

Thus, consider a network consisting of N separate agents connected by a topology. As

described in [11,28], we assign a pair of nonnegative weights, {ak`, a`k}, to the edge connecting

any two agents k and `. The scalar a`k is used by agent k to scale the data it receives from

agent ` and similarly for ak`. The network is said to be connected if paths with nonzero

scaling weights can be found linking any two distinct agents in both directions. The network

is said to be strongly–connected if it is connected with at least one self-loop, meaning that

akk > 0 for some agent k. Figure 7.5 shows one example of a strongly–connected network.

For emphasis in this figure, each edge between two neighboring agents is represented by two

directed arrows. The neighborhood of any agent k is denoted by Nk and it consists of all

agents that are connected to k by edges; we assume by default that this set includes agent

k regardless of whether agent k has a self-loop or not.

There are several strategies that the agents can employ to seek the minimizer, w?, in-

cluding consensus and diffusion strategies [11,28,48,58,162]. In this chapter, we focus on the

latter class since diffusion implementations have been shown to have superior stability and

performance properties over consensus strategies when used in the context of adaptation and

learning from streaming data (i.e., when the step-sizes are set to a constant value as opposed

to a diminishing value) [11,28,163]. As explained earlier, diminishing step-sizes annihilate the

gradient noise term but disable adaptation and learning in the long run. On the other hand,

constant step-size updates keep adaptation alive, which permits gradient noise to seep into

the operation of the algorithm. The challenge is to show that the dynamics of the algorithm

over the network is such that this noise effect does not degrade performance and that the
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Figure 7.5: Agents that are linked by edges can share information. The neighborhood of
agent k is marked by the broken line and consists of the set Nk = {6, 7, `, k}.

network will still able to learn the unknown. This kind of analysis has been answered before

in the affirmative for smooth twice-differentiable functions, Jk(w) — see [11,28,102,146]. In

this chapter, we want to pursue the analysis more generally for possibly non-differentiable

costs in order to encompass important applications (such as SVM learning by multi-agents or

LASSO and sparsity-aware learning by similar agents [164–167]). We also want to pursue the

analysis under the weaker affine-Lipschitz assumption on the sub-gradients than the stronger

conditions used in the prior literature, as we already explained in the earlier sections.

7.6.2 Distributed Strategy

We therefore consider the following diffusion strategy in its adapt-then-combine (ATC) form:


ψk,i = wk,i−1 − µ ĝk(wk,i−1)

wk,i =
∑
`∈Nk

a`kψ`,i

. (7.116)

Here, the first step involves adaptation by agent k by using a stochastic sub-gradient iter-

ation, while the second step involves aggregation; we assume the gradient noise processes
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across all agents are independent of each other. The entries A = [a`k] define a left-stochastic

matrix, namely, the entries of A are non-negative and each of its columns adds up to one.

Since the network is strongly-connected, the combination matrix A will be primitive [11,168].

This implies that A will admit a Jordan-decomposition of the form:

A = VεJV
−1
ε

∆
=
[
p VR

] 1 0

0 Jε

 1
T

V T
L

 , (7.117)

with a single eigenvalue at one and all eigenvalues strictly inside the unit circle. The matrix Jε

has a Jordan structure with the ones that would typically appear along its first sub-diagonal

replaced by a small positive number, ε > 0. Note that the eigenvectors of A corresponding

to the eigenvalue at one are denoted by

Ap = p, AT
1 = 1. (7.118)

It is further known from the Perron-Frobenius theorem [168] that the entries of p are all

strictly positive and we normalize them to add up to one. We denote the individual entries

of p by {pk}:

pk > 0,
N∑
k=1

pk = 1. (7.119)

Furthermore, since VεV
−1
ε = I, it holds that

V T
R 1 = 0, V T

L p = 0, V T
L VR = I. (7.120)

7.6.3 Network Performance

We are now ready to establish the following extension of Theorem 7.1 to the network case.

The result establishes that the distributed strategy is stable and converges exponentially fast

for sufficiently small step-sizes. The statement below is again in terms of a pocket variable,

which we define as follows.

At every iteration i, the risk value that is attained by iterate wk,i is Jk(wk,i). This value
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is a random variable due to the randomness in the streaming data used to run the algorithm.

We denote the mean risk value at agent k by EJk(wk,i). We again introduce a best pocket

iterate, denoted by wbest
k,i . At any iteration i, the value that is saved in the pocket variable

is the iterate, wk,j, that has generated the smallest mean risk value up to time i, i.e.,

wbest
k,i

∆
= arg min

0≤j≤i
E Jk(wk,j). (7.121)

Observe that we now have N pocket values, one for each agent k.

Theorem 7.2 (Network performance) Consider using the stochastic sub-gradient diffu-

sion algorithm (7.116) to seek the unique minimizer, w?, of the optimization problem (7.114),

where the risk functions, Jk(w), are assumed to satisfy Assumptions 7.1–7.3 with parame-

ters {ηk, β2
k , σ

2
k, e

2
k, f

2
k}. Assume the step-size parameter is sufficiently small (see condition

(7.178)). Then, it holds that

E

(
N∑
k=1

pkJk(w
best
k,i )−

N∑
k=1

pkJk(w
?)

)
≤ ξ·αiq

N∑
k=1

pk‖wk,0−w?‖+
µ

2

N∑
k=1

(
pkf

2
k + p2

kσ
2
k + 2pkfkh

)
(7.122)

for some finite constants h and ξ. The convergence to steady-state regime occurs at an

exponential rate, O(αiq), dictated by the parameter

αq
∆
= max

k

{
1− µηk + µ2e2

k + µ2β2
kpk + µ2h

e2
k

fk

}
= 1−O(µ). (7.123)

Condition (7.178) further ahead ensures α ∈ (0, 1).

Proof : The argument is provided in Appendix 7.B. �

The above theorem clarifies the performance of the network in terms of the best pocket

values across the agents. However, these pocket values are not readily available because

the risk values, Jk(wk,i), cannot be evaluated. This is due to the fact that the statistical

properties of the data are not known beforehand. As was the case with the single-agent

scenario, a more practical conclusion can be deduced from the statement of the theorem as
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follows. We again introduce the geometric sum

SL
∆
=

L∑
j=0

αL−jq =
1− αL+1

q

1− αq
, (7.124)

as well as the normalized and convex-combination coefficients:

rL(j)
∆
=

αL−jq

SL
, j = 0, 1, . . . , L. (7.125)

Using these coefficients, we define a weighted iterate at each agent:

w̄k,L
∆
=

L∑
j=0

rL(j)wk,j =
1

SL

[
αLqwk,0 + . . .+ αqwk,L−1 +wk,L

]
, (7.126)

and observe that w̄k,L satisfies the recursive construction:

w̄k,L =

(
1− 1

SL

)
w̄k,L−1 +

1

SL
wk,L. (7.127)

In particular, as L → ∞, we have SL → 1/(1 − αq), and the above recursion simplifies in

the limit to

w̄k,L = αqw̄k,L−1 + (1− αq)wk,L. (7.128)

Corollary 7.4 (Weighted iterates) Under the same conditions as in Theorem 7.2, it

holds that

lim
L→∞

E

(
N∑
k=1

pkJk(w̄k,L)−
N∑
k=1

pkJk(w
?)

)
≤ µ

2

N∑
k=1

(
pkf

2
k + p2

kσ
2
k + 2hpkfk

)
= O(µ),

(7.129)

and convergence continues to occur at the same exponential rate, O(αLq ). �

Result (7.129) is an interesting conclusion. However, the statement is in terms of the

averaged iterate w̄k,L whose computation requires knowledge of αq. This latter parameter

is a global information, which is not readily available to all agents. Nevertheless, result

222



(7.129) motivates the following useful distributed implementation with a similar guaranteed

performance bound. We can replace αq by a design parameter, κ, that is no less than αq but

still smaller than one, i.e., αq ≤ κ < 1. Next, we introduce the weighted variable:

w̄′k,L
∆
=

L∑
j=0

r′L(j)wk,j, (7.130)

where

r′L(j) = κL−j/S ′L, j = 0, 1, . . . , L, (7.131)

and

S ′L =
L∑
j=0

κL−j. (7.132)

Corollary 7.5 (Distributed Weighted iterates) Under the same conditions as in The-

orem 7.2 and αq ≤ κ < 1, relation (7.129) continues to hold with w̄k,L replaced by w̄′k,L.

Moreover, convergence now occurs at the exponential rate O(κL). �

7.6.4 Interpretation of Results

Examining the bound in (7.129), and comparing it with result (7.84) for the single-agent

case, we observe that the topology of the network is now reflected in the bound through the

Perron entries, pk. Recall from (7.118) that the {pk} are the entries of the right-eigenvector

of A corresponding to the eigenvalue at one. Moreover, the bound in (7.129)involves three

terms (rather than only two as in the single-agent case):

(1) pkf
2
k , which arises from the non-smoothness of the risk function;

(2) p2
kσ

2
k, which is due to gradient noise and the approximation of the true sub-gradient

vector;

(3) 2hpkfk, which is an extra term in comparison to the single agent case. We explained

in (7.168) that the value of h is related to how far the error at each agent is away from
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the weighted average error across the network. Therefore, the term 2hpkfk is induced

by the distributed cooperative strategy.

Additionally, when the risk function happens to be smooth, we have f 2
k = 0. But we cannot

set R = fk any more. Instead, we can set R to be a small number, say µ1/2. Relation (7.171)

will then give:

E ḡ(Wi−1)Tw̄i−1 ≤
N∑
k=1

pk

(
Jk(w

?)− EJk(wk,i−1)− ηk
2
E‖w̃k,i−1‖2

)
+
h

2

N∑
k=1

pk
(
µ1/2e2

kE‖w̃k,i−1‖2 + µ3/2
)
. (7.133)

Hence, we can recover the tighter result:

lim
L→∞

E
N∑
k=1

pkJk(w̄k,L)−
N∑
k=1

pkJk(w
?) ≤ µ

2

N∑
k=1

p2
kσ

2
k + o(µ). (7.134)

This bound is similar to the one derived in [11] except for a factor of two (µ/2 instead of

µ/4) since the derivation in the current article does not require the cost functions to be

twice-differentiable.

Example 8 (Multi-agent LASSO problem) We now consider the LASSO problem with

20 agents connected according to Fig. 7.6(left). Each agent has different regression power and

noise level, as illustrated in Fig. 7.6(right). The remaining parameters, including w◦, δ, µ and

M are the same as in Example 5. The parameter h ≈ 1.8 is computed from the simulation

directly. Figure. 7.7 compares several strategies including standard diffusion LMS [11,28,169]


ψk,i =wk,i−1 + µhk,i(γ(k, i)− hT

k,iwk,i−1)

wk,i =
∑
`∈Nk

a`kψ`,i

, (7.135)
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and sparse diffusion LMS [164–167]:


ψk,i =wk,i−1 + µhk,i(γ(k, i)− hT

k,iwk,i−1)− µδ · sgn(wk,i−1)

wk,i =
∑
`∈Nk

a`kψ`,i

, (7.136)

in the cooperative and non-cooperative modes of operation (in the latter case, the combina-

tion step (7.116) is absent).

�

Example 9 (Multi-agent SVM learning) We examine the diffusion sub-gradient SVM

implementation:



ψk,i = (1− ρµ)wk,i−1 − µγ(k, i)hiI[γ(k, i)hT
k,iwk,i−1 ≤ 1]

wk,i =
∑
`∈Nk

a`kψ`,i

Sk,i = κSk,i−1 + 1

w̄k,i =

(
1− 1

Sk,i

)
w̄k,i−1 +

1

Sk,i
wk,i

, (7.137)

(with all variables initiated at zero) over the Adult dataset again. We distribute 32561

training data over a network consisting of 20 agents. We set ρ = 0.002 and µ = 0.15 for all

agents. From Example 6 and Theorem 7.2, we know that for the multi-agent SVM problem:

αq = max
k

{
1− µρ+ µ2(h+ 1)e2

k

}
(7.138)

= max
k

{
1− µρ+ µ2(h+ 1)

(
ρ2 +

2ρdk
R

)}
.

We set κ = 1 − 0.9 · µρ, which usually guarantees κ ≥ αq. Fig. 7.8 (left) shows that

cooperation among the agents outperforms the non-cooperative solution. Moreover, the

distributed network can almost match the performance of the centralized LIBSVM solution.

We also examined the RCV1 dataset. Here we have 20242 training data points and we

distribute them over 20 agents. We set the parameters to ρ = 1 × 10−5 and µ = 0.5(for
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limited data). We now use κ = 1− 0.5 · µρ since µ is not that small. The result is shown in

Fig. 7.8 (right).

�
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Figure 7.6: Top: Network topology linking N = 20 agents. Left: Feature and noise variances
across the agents.
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sparse LMS refers (7.105); and the upper bound comes from (7.122)

7.7 Conclusion

In summary, we examined the performance of stochastic sub-gradient learning strategies.

We proposed a new affine-Lipschitz condition, which is quite suitable for strongly convex

but non-differentiable cost functions and is applicable to several important cases including

SVM, LASSO, Total-Variation denoising, etc. Under this weaker condition, the analysis

establishes that sub-gradient strategies can attain exponential convergence rates, as opposed

to sub-linear rates. The analysis also established that these strategies can approach the

optimal solution within O(µ), for sufficiently small step-size. Both single-agent and multi-

agent scenarios are studied.

7.A Derivation of the Tighter SVM Bound (7.104)

We assumed in the exposition leading to Theorem 7.1 and Corollary 7.1 that the sub-gradient

vectors and the variance of the gradient noise satisfy affine-like forms separately — see (7.22)
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Figure 7.8: Performance of multi-agent SVM solution for the Adult dataset(Top) and RCV1
dataset(Bottom), where vertical axis measures the percentage of correct prediction over test
dataset.

and (7.26). For the case of the SVM problem, a joint bound can be derived as follows. First,

note that

E
[
‖gsvm(wi−1) + si(wi−1)‖2 |F i−1

]
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=E
[
‖ĝsvm(wi−1)‖2 |F i−1

]
=E

[ ∥∥ρwi−1 + γ(i)hi I[γ(i)hT
i wi−1 ≤ 1]

∥∥2 |F i−1

]
=ρ2‖wi−1‖2 + 2ρEγ(i)hT

i wi−1 I[γ(i)hT
i wi−1 ≤ 1] |F i−1]+

E
[
γ2(i)hih

T
i I[γ(i)hT

i wi−1 ≤ 1] |F i−1

]
(a)

≤ρ2‖wi−1‖2 + 2ρ+ E [hT
i hi I[γ(i)hT

i wi−1 ≤ 1] |F i−1]

≤ ρ2‖wi−1‖2 + 2ρ+ Tr(Rh)

(b)

≤ 2ρ2‖w̃i−1‖2 + 2ρ2‖w?‖+ 2ρ+ Tr(Rh), (7.139)

where in step (a) we used the facts that γ2(i) = 1 and

γ(i)hT
i wi−1I[γ(i)hT

i wi−1 ≤ 1] |F i−1] ≤ 1, (7.140)

while step (b) follows from Jensen’s inequality by adding and subtracting w? to wi−1. We

therefore conclude that

E [‖gsvm(wi−1) + si(wi−1)‖2 |F i−1] ≤ 2ρ2‖w̃i−1‖2 + 2ρ2‖w?‖+ 2ρ+ Tr(Rh). (7.141)

We now use this result to expand the first line of (7.54).

E [‖w̃i‖2 |F i−1 ] = E [ ‖w̃i−1 + µgsvm(wi−1) + µsi(wi−1)‖2 |F i−1 ]

= ‖w̃i−1‖2 + 2µg(wi−1)Tw̃i−1 + µ2E [‖gsvm(wi−1) + si(wi−1)‖2 |F i−1 ]

≤ ‖w̃i−1‖2 + 2µg(wi−1)Tw̃i−1 + µ2
(
2ρ2‖w̃i−1‖2 + 2ρ2‖w?‖+ 2ρ+ Tr(Rh)

)
.

(7.142)

Now following the same steps after (7.55) , we arrive at the tighter bound (7.104).
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7.B Proof of theorem 7.2

Introduce the error vector, w̃k,i = w?−wk,i. We collect the iterates and the respective errors

from across the network into block column vectors:

Wi
∆
= col{w1,i,w2,i, . . . ,wN,i} (7.143)

W̃i
∆
= col{w̃1,i, w̃2,i, . . . , w̃N,i}. (7.144)

We also define the extended quantities:

A ∆
= A⊗ IM (7.145)

G(Wi−1)
∆
= col{g1(w1,i−1), . . . , gN(wN,i−1)} (7.146)

Si(Wi−1)
∆
= col{s1,i(w1,i−1), . . . , sN,i(wN,i−1)}, (7.147)

where⊗ denotes the Kronecker product operation, and sk,i(wk,i−1) denotes the gradient noise

at agent k. Then, it is straightforward to verify that the network error vector generated by

the diffusion strategy evolves according to the following dynamics:

W̃i = AT (W̃i−1 + µG(Wi−1) + µSi(Wi−1)) . (7.148)

Motivated by the treatment of the smooth case in [11,102,146], we perform a useful change

of variables. Let Vε = Vε ⊗ IM and Jε = Jε ⊗ IM . Multiplying (7.148) from the left by VT
ε

gives

VT
ε W̃i = J T

ε

[
VT
ε W̃i−1 + µVT

ε G(Wi−1) + µVT
ε Si(Wi−1)

]
. (7.149)

We introduce the transformed quantities:

VT
ε W̃i =

 (pT ⊗ I)W̃i

(V T
R ⊗ I)W̃i

 ∆
=

 w̄i

W̌i

 , (7.150)

VT
ε G(Wi−1) =

 (pT ⊗ I)G(Wi−1)

(V T
R ⊗ I)G(Wi−1)

 ∆
=

 ḡ(Wi−1)

Ǧ(Wi−1)

 , (7.151)
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VT
ε Si(Wi−1) =

 (pT ⊗ I)Si(Wi−1)

(V T
R ⊗ I)Si(Wi−1)

 ∆
=

 s̄i(Wi−1)

Ši(Wi−1)

 . (7.152)

Note that the quantities {w̄i, ḡ(Wi−1), s̄i(Wi−1)} amount to the weighted averages:

w̄i =
N∑
k=1

pkw̃k,i, (7.153)

ḡ(Wi−1) =
N∑
k=1

pkgk(wk,i−1), (7.154)

s̄i(Wi−1) =
N∑
k=1

pksk,i(wk,i−1). (7.155)

We can now rewrite (7.149) as

 w̄i

W̌i

 =

 IM 0

0 J T
ε

 w̄i−1

W̌i−1

+ µ

 ḡ(Wi−1)

Ǧ(Wi−1)

 +µ

 s̄i(Wi−1)

Ši(Wi−1)

 . (7.156)

Consider the top recursion, namely,

w̄i = w̄i−1 + µḡ(Wi−1) + µs̄i(Wi−1). (7.157)

Squaring and taking expectations we have

E [‖w̄i‖2 |F i−1] = E [‖w̄i−1 + µḡ(Wi−1) + µs̄i(Wi−1)‖2 |F i−1]

= ‖w̄i−1‖2 + 2µḡ(Wi−1)Tw̄i−1 + µ2‖ḡ(Wi−1)‖2 + µ2E [‖s̄i(Wi−1)‖2 |F i−1].

(7.158)

We examine the terms on the right-hand side one by one. First note that, using Jensen’s

inequality,

‖ḡ(Wi−1)‖2 =

∥∥∥∥∥
N∑
k=1

pkgk(wk,i−1)

∥∥∥∥∥
2
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≤
N∑
k=1

pk‖gk(wk,i−1)‖2

(7.40)

≤
N∑
k=1

pk

(
e2
k‖w̃k,i−1‖2 + f 2

k

)
. (7.159)

Next, using the assumed independence of the stochastic gradient noises across the agents,

we have

E [‖s̄i(Wi−1)‖2 |F i−1] = E

∥∥∥∥∥
N∑
k=1

pksk(wk,i−1)

∥∥∥∥∥
2

|F i−1


=

N∑
k=1

p2
kE [‖sk(wk,i−1)‖2 |F i−1]

≤
N∑
k=1

p2
k

(
β2
k‖w̃k,i−1‖2 + σ2

k

)
. (7.160)

Finally, with regards to the cross term in (7.158), we adapt an argument from [58] to note

that:

ḡ(Wi−1)Tw̄i−1 =
N∑
k=1

pkg
T
k (wk,i−1)

(
w̃k,i−1 + w̄i−1 − w̃k,i−1

)
=

N∑
k=1

pkg
T
k (wk,i−1)w̃k,i−1 +

N∑
k=1

pkg
T
k (wk,i−1)

(
w̄i−1 − w̃k,i−1

)
. (7.161)

Using the strong-convexity property, namely,

gk(wk,i−1)Tw̃k,i−1 ≤ Jk(w
?)− Jk(wk,i−1)− ηk

2
‖w̃k,i−1‖2, (7.162)

we get

ḡ(Wi−1)Tw̄i−1 ≤
N∑
k=1

pk

(
Jk(w

?)− Jk(wk,i−1)− ηk
2
‖w̃k,i−1‖2

)
+

N∑
k=1

pkg
T
k (wk,i−1)

(
w̄i−1 − w̃k,i−1

)
(7.163)
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≤
N∑
k=1

pk

(
Jk(w

?)− Jk(wk,i−1)− ηk
2
‖w̃k,i−1‖2

)
+

N∑
k=1

pk‖gk(wk,i−1)‖‖w̄i−1 − w̃k,i−1‖. (7.164)

It follows, under expectation, that

E ḡ(Wi−1)Tw̄i−1 ≤
N∑
k=1

pk

(
Jk(w

?)− EJk(wk,i−1)− ηk
2
E‖w̃k,i−1‖2

)
+

N∑
k=1

pkE (‖gk(wk,i−1)‖‖w̄i−1 − w̃k,i−1‖) . (7.165)

Now, using the Cauchy-Schwartz inequality, we can bound the last expectation as

E
(
‖gk(wk,i−1)‖‖w̄i−1 − w̃k,i−1‖

)
≤
√

E‖gk(wk,i−1)‖2E‖w̄i−1 − w̃k,i−1‖2. (7.166)

After sufficient iterations, it will hold that (see Appendix 7.C for the proof):

E‖w̄i−1 − w̃k,i−1‖2 = O(µ2). (7.167)

This means that there exists an Io large enough and a constant h such that for all i ≥ Io:

E‖w̄i−1 − w̃k,i−1‖2 ≤ h2µ2. (7.168)

Therefore, we find that

E
(
‖gk(wk,i−1)‖‖w̄i−1 − w̃k,i−1‖

)
≤ hµ

(√
E‖gk(wk,i−1)‖2

)
≤ hµ

(√
e2
kE‖w̃k,i−1‖2 + f 2

k

)
≤ µ

h

2

(
e2
kE‖w̃k,i−1‖2 + f 2

k

R
+R

)
, (7.169)
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where the last inequality follows from using

√
x ≤ 1

2

( x
R

+R
)
, x ≥ 0, (7.170)

for any positive R, e.g., R = fk, which allows us to conclude that, as i→∞:

E ḡ(Wi−1)Tw̄i−1 ≤
N∑
k=1

pk

(
Jk(w

?)− EJk(wk,i−1)− ηk
2
E‖w̃k,i−1‖2

)
+ µ

h

2

N∑
k=1

pk

(
e2
k

fk
E‖w̃k,i−1‖2 + 2fk

)
. (7.171)

Taking expectation of (7.158) over the filtration and substituting (7.159), (7.160), and

(7.171), we obtain asymptotically that:

E‖w̄i‖2 ≤ E‖w̄i−1‖2 + 2µ
N∑
k=1

pk

(
Jk(w

?)− EJk(wk,i−1)
)
− µ

N∑
k=1

pkηkE‖w̃k,i−1‖2 +

µ2

N∑
k=1

pk

(
e2
kE‖w̃k,i−1‖2 + f 2

k

)
+ µ2

N∑
k=1

p2
k

(
β2
kE‖w̃k,i−1‖2 + σ2

k

)
+

µ2h
N∑
k=1

pk

(e2
k

fk
E‖wk,i−1‖2 + 2fk

)
≤ E‖w̄i−1‖2 + 2µ

N∑
k=1

pk

(
Jk(w

?)− EJk(wk,i−1)
)
−

N∑
k=1

(1− αk) pkE‖w̃k,i−1‖2 + µ2

N∑
k=1

(
pkf

2
k + p2

kσ
2
k + 2hpkfk

)
, (7.172)

where we defined αk in the second inequality as follows:

1− αk
∆
= µηk − µ2e2

k − µ2pkβ
2
k − µ2h

e2
k

fk
. (7.173)

Let q denote the index of the agent that has the smallest 1− αk:

q = arg min
1≤k≤N

{1− αk}. (7.174)
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Then, it holds that

N∑
k=1

(1− αk) pkE‖w̃k,i−1‖2 ≥ (1− αq)
N∑
k=1

pkE‖w̃k,i−1‖2

≥ (1− αq)E‖w̄i−1‖2, (7.175)

where we used Jensen’s inequality to deduce that

‖w̄i−1‖2 =

∥∥∥∥∥
N∑
k=1

pkw̃k,i−1

∥∥∥∥∥
2

≤
N∑
k=1

pk‖w̃k,i−1‖2. (7.176)

It follows from (7.172) that

2µ
( N∑
k=1

pk (E Jk(wk,i−1)− Jk(w?))
)
≤ αqE‖w̄i−1‖2−E‖w̄i‖2+µ2

N∑
k=1

(pkf
2
k+p2

kσ
2
k+2hpkfk).

(7.177)

This inequality recursion has a form similar to the one we encountered in (7.59) in the single

agent case. The argument can now be continued similarly to arrive at the conclusions in

the statement of the theorem and that stability is ensured for sufficiently small step-sizes

satisfying

µ <
ηq

e2
q + pqβ2

q + he2
q/fq

. (7.178)

This bound ensures that αq ∈ (0, 1).

7.C Proof of (7.167)

We now establish the asymptotic result (7.167). Let

W̄i = col{w̄i, . . . , w̄i}, (7.179)
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where the vector w̄i is stacked N times to match the dimension of W̃i. We start from the

second relation in the error recursion (7.156):

W̌i = J T
ε

(
W̌i−1 + µǦ(Wi−1) + µŠi(Wi−1)

)
, (7.180)

and first explain how to recover W̃i − W̄i from W̌i. Consider the linear system of equations

W̌i = VT
RW̃i, with coefficient matrix VT

R. Noting from (7.120) that V T
L VR = I, we conclude

from the relationship between the nullspace and range space of a matrix that [170]:

W̃i − VLW̌i ∈ N (VT
R) ⇐⇒ W̃i = VLW̌i + Z, (7.181)

for some Z ∈ N (VT
R). We further know that N (V T

R ) is the linear space generated by the

vector 1, so that Z is parallel to the vector 1. Therefore, we can write Z = 1⊗ z, for some

vector z. Moreover, it holds that

w̄i = (pT ⊗ I)W̃i

= (pT ⊗ I)VLW̌i + (pT ⊗ I)Z

(a)
= (pT ⊗ I)(1⊗ z)

(b)
= z, (7.182)

where step (a) is because (pT ⊗ I)VL = (pTVL) ⊗ I = 0, and step (b) is because of (7.119).

Hence, combining the above two results, we find that

W̃i − W̄i = VLW̌i, (7.183)

which shows how we can recover W̃i − W̄i from W̌i.

Now returning to the error recursion (7.180), and computing the expected squared norm,

we obtain:

E [‖W̌i‖2 |F i−1] =
∥∥∥J T

ε

(
W̌i−1 + µǦ(Wi−1)

)∥∥∥2

+ µ2E [‖J T
ε Ši(Wi−1)‖2 |F i−1]
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≤ ρ(JεJ T
ε )‖W̌i−1 + µǦ(Wi−1)‖2 + µ2ρ(JεJ T

ε )E [‖Ši(Wi−1)‖2 |F i−1],

(7.184)

where, from [11, Ch. 9], we know that

ρ(JεJ T
ε ) ≤ (ρ(Jε) + ε)2 < 1. (7.185)

Let us examine the terms in (7.184). To begin with, note that

ρ(JεJ T
ε )‖W̌i−1 + µǦ(Wi−1)‖2 ≤ (ρ(Jε) + ε)2

∥∥∥∥t1t W̌i−1 +
1− t
1− t

µǦ(Wi−1)

∥∥∥∥2

(a)

≤ (ρ(Jε) + ε)2

t
‖W̌i−1‖2 + µ2 (ρ(Jε) + ε)2

1− t
‖Ǧ(Wi−1)‖2

(b)

≤ (ρ(Jε) + ε)‖W̌i−1‖2 + µ2 (ρ(Jε) + ε)2

1− ρ(Jε)− ε
‖Ǧ(Wi−1)‖2,

(7.186)

where step (a) is because of Jensen’s inequality and in step (b) we set t = ρ(Jε) + ε < 1.

Next, we bound the square of the sub-gradient term:

‖Ǧ(Wi−1)‖2 = ‖VT
RG(Wi−1)‖2

≤ ‖VR‖2
( N∑
k=1

‖gk(wk,i−1)‖2
)

≤ ‖VR‖2
( N∑
k=1

e2
k‖w̃k,i−1‖2 + f 2

k

)
(a)

≤ ‖VR‖2
(
e2

max‖W̃i−1‖2 +
N∑
k=1

f 2
k

)
, (7.187)

where in step (a) we let e2
max = maxk e

2
k. We can then bound (7.186) by

ρ(JεJ T
ε )‖W̌i−1 + µǦ(Wi−1)‖2 ≤ (ρ(Jε) + ε)‖W̌i−1‖2 + µ2 (ρ(Jε) + ε)2

1− ρ(Jε)− ε
‖VR‖2

N∑
k=1

f 2
k

+ µ2 (ρ(Jε) + ε)2

1− ρ(Jε)− ε
‖VR‖2e2

max‖W̃i−1‖2. (7.188)
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Finally, we consider the last term involving the gradient noise in (7.184):

E [‖Ši(Wi−1)‖2 |F i−1] ≤ ‖VR‖2

(
N∑
k=1

β2
k‖w̃k,i−1‖2 + σ2

k

)

≤ ‖VR‖2βmax‖W̃i−1‖2 + ‖VR‖2

N∑
k=1

σ2
k. (7.189)

Now introduce the constants:

a
∆
=

(ρ(Jε) + ε)2

1− ρ(Jε)− ε
‖VR‖2e2

max + ρ(JεJ
T
ε )‖VR‖2βmax, (7.190)

b
∆
=

(ρ(Jε) + ε)2

1− ρ(Jε)− ε
‖VR‖2

N∑
k=1

f 2
k + ρ(JεJ

T
ε )‖VR‖2

N∑
k=1

σ2
k. (7.191)

Then, substituting the previous results into (7.184), we arrive at

E‖W̌i‖2 ≤ (ρ(Jε) + ε)E‖W̌i−1‖2 + µ2aE‖W̃i−1‖2 + µ2b, (7.192)

In Appendix 7.D we show that E‖W̃i−1‖2, for any iteration i, is bounded by a constant value

for sufficient small step-sizes. In this case, we can conclude that

E‖W̌i‖2 ≤ (ρ(Jε) + ε)E‖W̌i−1‖2 + µ2b′, (7.193)

for some constant b′, so that at steady state:

lim sup
i→∞

E‖W̌i‖2 ≤ µ2b′

1− ρ(Jε)− ε
= O(µ2). (7.194)

Using relation (7.183), it then follows asymptotically that

E‖W̃i − W̄i‖2 ≤ ‖VL‖2 · E‖W̌i‖2 = O(µ2), (7.195)
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and, consequently,

E‖w̃k,i − w̄i‖2 ≤ E‖W̃i − W̄i‖2 = O(µ2). (7.196)

7.D Proof that E‖W̃i‖2 is uniformly bounded

We follow mathematical induction to establish that E‖W̃i‖2 is uniformly bounded by a

constant value, for all i. Assume, at the initial time instant we have E‖w̃k,−1‖2 < c for all

k and for some constant value c, such that

c ≥ηk(Jk(w?)− Jk(w?k))/2 ,∀k (7.197)

Then, assuming this bound holds at iteration i− 1, namely,

E‖w̃k,i−1‖2 ≤c ,∀k (7.198)

where w?k is the minimizer of Jk(w). We would like to show that it also holds at iteration

i. Recall from (7.116) that the diffusion strategy consists of two steps: an adaptation step

followed by a combination step. The adaptation step has a similar structure to the single-

agent case. Hence, the same derivation that was used to establish (7.59) would show that

for agent k:

2µ (E Jk(wk,i−1)− Jk(w?)) ≤ αkE‖w̃k,i−1‖2 − E‖ψ̃k,i‖2 + µ2(f 2
k + σ2

k), (7.199)

where

αk = 1− µηk + µ2(e2
k + β2

k) = 1−O(µ). (7.200)

Now, since E Jk(wk,i−1) ≥ Jk(w
?
k), we conclude that

E‖ψ̃k,i‖2 ≤ αkE‖w̃k,i−1‖2 + µ2(f 2
k + σ2

k) + µ(Jk(w
?)− Jk(w?k))

(7.198)

≤ α′kc + µ2(f 2
k + σ2

k), (7.201)
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where

α′k = 1− µηk/2 + µ2(e2
k + β2

k) = 1−O(µ). (7.202)

and the step-size can be chosen small enough to ensure α′k ∈ (0, 1). Now, it is also clear that

there exist sufficiently small values for µ to ensure that, for all agents k:

α′kc + µ2(f 2
k + σ2

k) ≤ c, (7.203)

which then guarantees that

E‖ψ̃k,i‖2 ≤ c. (7.204)

It then follows from the combination step (7.116) that

E‖w̃k,i‖2 = E

∥∥∥∥∥∑
`∈Nk

a`kψ̃`,i

∥∥∥∥∥
2

≤
∑
`∈Nk

a`kE
∥∥∥ψ̃`,i

∥∥∥2

≤
∑
`∈Nk

ak`c

= c, ∀k. (7.205)

Therefore, starting from (7.198), we conclude that E‖w̃k,i‖2 < c as well, as desired. Finally,

since E‖W̃i‖2 =
∑N

k=1 E‖w̃k,i‖2, we conclude that E‖W̃i‖2 is also uniformly bounded over

time.
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CHAPTER 8

Issues for Future Consideration

In this dissertation, we addressed several important aspects pertaining to the implementation

of distributed learning algorithms under random reshuffling. We examined the performance

of random reshuffling for both vanilla stochastic gradient and variance-reduction cases. We

showed that for vanilla stochastic gradient case, random reshuffling setting improves the

convergence region from O(µ) to O(µ2); while variance-reduced algorithms converge to the

exact solution at a linear rate. We further examined learning under large feature spaces,

where the feature information is assumed to be spread across agents in a network. We

proposed two solution methods: one operates in the dual domain and another operates in

the primal domain. The dual domain solution builds on gradient boosting techniques while

the primal domain solution is achieved by combining a dynamic diffusion construction, a

pipeline strategy, and variance-reduced techniques. The primal solution does not require

separate timescales and convergence towards the exact minimizer occurs at a linear rate.

There are several open issues that deserve further investigation:

1. Establish that random reshuffling techniques can lead to similar performance improve-

ment for sub-gradient implementations with constant step-size when the loss functions

are not necessarily smooth. Such improvements have been observed in simulation but

the analysis is still lacking.

2. Establish analytically that variance-reduced algorithms under random reshuffling are

indeed faster than under uniform sampling. Simulations suggest that this appears to

be the case.

3. Show that the PVRD2 algorithm still converges linearly under random reshuffling. The
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PVRD2 algorithm proposed in this dissertation requires all agents to select the same

random indices. The difficulty can be addressed if we appeal to random reshuffling.

4. Design an asynchronous PVRD2 algorithm. The limitation that all agents select the

same random indices can be completely avoided in the asynchronous setting. Moreover,

this possibility has great potential for the distributed feature problem.
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