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Abstract of the Dissertation

An Approach to Repairing and Evaluating First-Order
Theories Containing Multiple Concepts and Negation

by
James Lee Wogulis

Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 1994
Professor Michael J. Pazzani, Chair

This dissertation addresses the problem of theory revision in machine learning.
The task requires the learner to minimally revise an initial incorrect theory such that
the revised theory explains a given set of training data. A learning system, A3, is
presented that solves this task.

The main contributions of this dissertation include the learning system A3
that can revise theories containing multiple concepts expressed as function-free first-
order Horn clauses, an approach to repairing theories containing negation, and the
introduction of a distance metric between theories to evaluate the degree of revision
performed. Experimental evidence is presented that demonstrates A3's ability to
solve the theory revision task.

Assumptions commonly made by other approaches to theory revision such as
whether a theory needs to be generalized or specialized with respect to misclassified
examples are shown to be incorrect for theories containing negation. A3 is able to
repair theories containing negation and demonstrates a simple, general approach to
identifying types oferrors in a theory using a single mechanism for handling positive
and negative examples as well as examples of multiple concepts.

The syntactic distance between two theories is proposed as aji evaluation metric
for theory revision systems. This distance is defined in terms of the minimum number
of edit operations required to transform one theory into another. This allows for a
precise measurement ofhow much a theory hasbeen revised and allows for comparison
of different systems' abilities to perform minimal revisions. This distance metric is
also used by A3 in order to bias it towards finding minimal revisions that accurately
explain the data.

The distance metric also leads to insights about the theory revision task. In
particular, it is shown that the theory revision task is underconstrained if the addi
tional goal of learning a particular correct theory is to be met. Without additional
constraints, there are potentially many accurate revisions that are far apart syntac
tically. It is shown that providing examples of multiple concepts in the theory can
provide some of these constraints.



Chapter 1

Theory Revision

1.1 The Problem

Imagine that you are given the job of maintaining an expert system written by
someone else in your company. Now, assume that the system had been successfully
used on a number of problems it was designed to solve when, one day, someone
shows you a new problem it solves incorrectly. Because you know the system had
worked in the past, you study the problem and are able to identify an error in the
system. You correct the error, and the problem is solved. Contrast this with the
strategy of discarding the system and rebuilding it from scratch in order to solve this
new problem. All of the work, experience, understanding, and knowledge that your
predecessor built into the system would be lost. Unfortunately, this is the approach
taken by most machine learning systems.

Most machine learning methods are designed to acquire single concepts based
on a set of training examples. Afew systems are able to learn multiple concepts at
one time but very little work has been done that allows a learner to revise a given
set of concepts if they are found to be incorrect or incomplete. Aclass of learning
systems that can build upon and revise its knowledge includes those that perform
theory revision.

Such systems accept an initial, possibly incorrect, theory along with a set of
training examples of concepts in the theory and output a revised version of the input
theory that can explain the set of training examples. The output theory is required to
be as similar as possible to the input theory and should differ only to the extent that
errors mthe input theory are corrected. Asystem that discarded the input theory
and learned a new one from scratch would not be performing theory revision.

This dissertation presents a machine learning system that performs theory re
vision. The system identifies useful, irrelevant, and incorrect background knowledge
and can modify and use this knowledge to improve its ability to classify a set of
training examples correctly. The system's capabilities are evaluated on a number of
domains and it is compared to other systems designed to address a similar task.



1.2 The Learning Task

.fy correctly the set of traming examples as well previously unseen examples.

ing ex^mtL7i"r'' " ' that can be used for classify-
inftearofruiiv rev,s.on task is similar to learning from examples. Howevernstead of building concept descriptions from scratch, the system revises the initiatheory based on the examples provided. The types of revision may inclu^^^^^^^^
modifying, and adding to portions of the initial theory.

Many learning systems are designed to take advantage of auser supnlied an
proxn^ate concept definition (also called an incomplete orlncorrect doZn thtrvi
to gmde or constrain the learning process. Pazzani and Kibler (1992) state that thi
reason or providing adomain theory is "to increase the accuracy of lelmed rules "
Mrs? mechanisms share this objective, eg
(Cohen 1992b) iTeTfI 77 ' T'' Grendel

the accuracy of the learned rules with and without an initial theory. ^ ^ ®

S OTLS (Ginsbe ^ (Ourston &Mooney,
theorif 'Ginsberg, 1988), and Kbann (Towell, 1991) were restricted to revising
p!7 •? n°^°u !n7 t®""' =n<=h as KR-Focf

(r r •u7r' «' (Richards k Mooney, 1991; Richards 1992) Rx(TangkitvMich, Numao kShimura, 1992), and Audrey (Wogulis 1991) have been
mtroduced that revise first-order theories expressed as Horn claused

1.2.1 Representation

In order to build acomputational learning system, one must have arepresenta-
for examples and concepts. This dissertation is concerned with learning concepts



that can be represented using first-order Horn clauses (Lloyd, 1984; Plotkin, 1970;
Vere, 1975; Quinlan, 1990). Aconcept in first-order logic defines a relationship be
tween entities. The first-order formalism allows one to handle alarge and interesting
class of learning problems. For example, classes of concepts that require a first-order
representation are family relationships, time relationships, spatial relationships (e.g.,
positions of pieces on a chess board), and physical relationships (e.g., chemical struc
tures).

For example, the literal uncle (X, Y) can be used to define the uncle relation
such that the literal is true whenever the person referred to by Xis the uncle of the
person referred to by Y.^ The relation name uncle is used to refer to the concept for
uncle.

An example of the uncle relation specifies values for the variables along with
information about whether it is an example or non-example of the concept. If Walt
is the uncle of Mark, uncle (wait, mark) is considered to be a positive example of
the uncle relation. If Lee is not the uncle of Jim, uncleClee, jim) is a negative
example of the relation.

To be of any use, a concept must have a definition. Typically, this defini
tion IS expressed in terms of other known relations. For example, assume there
exists a database of relationships between people that is only expressed in terms
of parent, spouse, and sibling relations and all that is known about an individ
ual is whether they are male or female. This database might include the literals
male(walt), sibling(walt, carol), and parent(carol, mark). Without a defi
nition for the uncle relationship there is no way to determine from this database of
relations whether one person is the uncle of another. However, the uncle relation can
be expressed in terms of the those relations found in the database in a form known
as a Horn clause:

uncle(U, N) male(U), sibling(U, S), parent(S, N) .
uncle(U, N) inale(U), married(U, M) ,

sibling(M, S), parent(S, N).

The above definition for uncle has two parts, each represented by aclause. The
first clause states that if person Uis amale and there exists aperson Swho is asibling
of Uand if Sis also the parent of N, then Uis the uncle of N. The second clause states
that if person Uis a male and there exists a person Mwho is married to Uwho is also
a sibling of a parent of N, then Uis the uncle of N. These two clauses define the two
circumstances for which the uncle relation holds.

'Upper case symbols are used to designate variables and lower case symbols denote objects and
relation names.



The first-order learning task then is to construct such a definition for the uncle
relation given only those relations available in the database and positive and negative
examples of the uncle relation.

1.2.2 Performance

At the highest level, the learner's tcisk is to construct a concept definition that
will correctly classify previously seen and unseen examples of the concept being
learned. This ability is typically measured on a test set of positive and negative
examples as the ratio of correctly classified examples to the total number of exam
ples. Other important measures of a learning system's performance are its learning
rate (number of examples required to learn a concept) and computational complexity.
However, the theory revision task is to make minimal modifications to an existing in
correct theory in order to improve classification performance. It is therefore expected
that the resulting theory bear as close a relationship in form to the original theory as
possible.

An Approach to Theory Revision

This dissertation presents an approach to the theory revision task as described
above. The following is a briefoverview of the approach.

Examples of concepts to be learned are represented as ground literals, e.g.,
uncleCfrank, fred), that are labeled as either positive or negative examples of the
concept to be learned. The initial theory given to the system is expressed as a set
of Horn clauses. The system classifies an example by determining if it is a logical
consequence of the theory. When an example is incorrectly classified there are two
possible types of errors. If the example is a positive example of the concept being
learned but is not a consequent of the theory, the system has made an "error of
omission" and the theory is said to be "incomplete." If a negative example of the
concept being learned is a consequent of the theory, the system has made an "error
of comission" and is said to be "incorrect."

For example, the following theory for uncle is both incorrect and incomplete:

uncle(U, N) sibling(U, S), parent(S, N).

It is incorrect because it will classify a person Uwho is an aunt of Nas an uncle
because the theory is missing the condition that the uncle be a male. This theory is
also incomplete because it does not express the relation that a person Ucan be the
uncle of Nif Uis married to a sibling of a parent of N.



A theory is revised by locating and repairing errors until no more errors are
found. A theory is found to be in error if it misclassifies any of the training examples.
Each misclassified example will lead to the identification of several possible faults in
the theory. The set of incorrectly classified examples is then viewed as a whole and
the most frequently occurring fault is repaired first. A fault identifies a concept in
the theory that is either incomplete or incorrect. Depending on the type of fault, the
system applies a set of operators that attempt to repair the fault.

Returning to the above incorrect and incomplete theory for uncle, assume that
the most common error among the examples is that aunts are classified as uncles.
One possible fault in the theory is that the clause for uncle is too general because
it classifies negative examples as being an uncle. One way to maJce the clause more
specific is to add additional constraints to the definition of the clause. The system
searches for additional constraints that allow positive examples of the uncle relation
ship to be classified and which prevents negative examples from being misclassified.
In this case, the system would find the additional constraint that the person U must
be a male and would revise the theory to be:

uncleCU, N) sibling(U, S), parent(S, N), male(U).

At this point, no more negative examples of uncle are misclassified. However,
the theory is still in error because some positive examples of uncle are not correctly
classified, i.e., situations in which the uncle is married to a sibling of a parent of
person N. The system then looks for faults in the theory that would explain these
errors. Finding that the concept for uncle is too specific, the system may then
attempt to learn an additional clause for the uncle relation to cover those examples
not covered by the existing clause. Assuming the system found a clause to cover the
misclassified positive examples, it might produce the following correct theory:

uncle(U, N) sibling(U, S) , parent(S, N), niale(U).
uncle(U, N) male(U), married(U, M),

sibling(M, S), parent(S, N).

Once the above theory had been learned, all of the positive and negative exam
ples of the uncle concept would be correctly classified and the system would find no
more faults in the theory.

1.4 Evaluation

As stated earlier, the theory revision task requires that the learner take an initial
theory and examples cts input and produce a minimally revised theory that correctly
classifies the examples. Measuring the accuracy of a concept or theory is the most
common metric used to evaluate machine learning systems. However, there are no



metrics currently being used to measure the degree of revision that these systems
perform.

Along with a method for theory revision, this dissertation proposes a distance
metric between theories that can be used to measure the degree of revision a system
performs. The metric is defined in terms of the minimum number of edit operations
required to transform one theory into another.

Computing the distance between the initial theory and the revised theory pro
vides a measure of the degree of revision performed. Just as learning systems are
compared to one another in terms of the accuracies of the theories they produce, this
metric allows systems to be compared in terms of the amount of revision they perform
on the initial theory.

If a correct theory for the problem is known ahead of time, computing the
distance between the correct and revised theory provides a me«isure of how well the
system can recover the correct theory from an initially incorrect one.

As an example of this distance metric, assume learners A and B are given the
following theory and examples for the concept uncle:

uncleCU, N) sibling(U, S), parent(S, N).

Further, suppose that system A produced the following theory:

uncle(U, N) sibling(U, S), parent(S, N), male(U).
uncle(U, N) male(U), married(U, M),

sibling(M, S), parent(S. N).

and that system B produced the theory:

uncle(U, N) sibling(U, S), parent(S, N),
male(U), female(N).

uncle(U, N) sibling(U, S), parent(S, N),
male(U), male(N).

uncle(U, N) male(U), married(U, M), sibling(M, S),
parent(S, N), female(N).

uncle(U, N) male(U), married(U, M), sibling(M, S),
parent(S, N), male(N).

The theories produced by both A and B are correct in the sense that they
correctly classify all positive and negative examples of the uncle relation. However,
when viewed in terms of distance, the theory produced by system A is syntactically
much closer to the original theory than is the one produced by B and hcis therefore
performed a more minimal revision of the initial theory. The distance metric is defined
in Chapter 3 and quantifies this notion of degree of revision.



1.5 Contributions

The work in this dissertation provides several contributions to the field of ma
chine learning research. As previously described, the problem being addressed is that
of minimally revising an initial theory in order to explain a set of training data. A
learning system, A3, is developed that performs this task.

A definition of the degree of revision is defined as the syntactic distance between
two theories and is applied to evaluating theory revision systems. The degree of
revision is defined in terms of the minimum number of edit operations required to
transform one theory into another. This allows for a precise measurement of how much
a theory has been revised and allows for comparison of different systems' abilities to
perform minimal revisions. This distance metric may also be used by the learner in
order to bias it towards finding minimal revisions that accurately explain the data.

This distance metric has also led to insights about the theory revision task.
In particular, it is shown that the theory revision task is underconstrained if the
additional goal of learning a particular correct theory is to be met. Without additional
constraints, there exist many different accurate theories that are not syntactically
close to one another. It is shown that providing examples of multiple concepts in the
theory can provide some of these constraints.

The class of theories studied here are those expressible using function-free first-
order Horn clauses. In addition, the clauses are allowed to be expressed using nega
tions of other concepts in the theory. Previous work on theory revision has dealt
with first-order theories but not with negation. Assumptions about whether the the
ory needs to be generalized or specialized with respect to misclassified examples are
shown to be incorrect for theories containing negation. A3 correctly addresses these
issues with negation and demonstrates a general approach to identifying types of er
rors in a theory by using a single mechanism to handle positive and negative examples
as well as examples of different concepts.

1.6 Overview of the Dissertation

This dissertation describes the theory revision task, a solution to the problem
in the form of a running system and an evaluation of the method. The following
summarizes the contents of this dissertation.

• Chapter 2: Background

Reviews work in the areas of first-order learning and theory revision. Some
of this work forms the basis for the theory revision system proposed in this
dissertation.



• Chapter 3: Evaluating theory revision systems
Proposes a method for measuring the degree of revision performed by a theory
revision system in terms of the syntactic distance between the revised theory
and the initial theory. This distance is measured as the minimum number of
literal-level edit operations required to transform one theory into another.

• Chapter 4: System description

Describes the theory revision system A3 and discusses its various components
and learning mechanisms in detail. The chapter concludes with a detailed ex
ample trace of the system in operation.

• Chapter 5: Validation of the method

Contains experimental evaluation of the system's performance with respect to
theory revision. In particular, the effect that different types of errors in an ini
tial theory have on the predictive accuracy of the learned theories is measured.
Also measured are the type and degree of modification the initial theories un
dergo. The chapter concludes with experiments demonstrating that presenting
the system with examples of intermediate concepts in the theory allows it to
learn theories that are much closer to the correct syntactic theory than if only
examples of a single class were available.

• Chapter 6: Comparison to other approaches

Describes other research addressing the theory revision task and other related is
sues. Comparisons between A3 and these other systems are made that includes
discussion of the relative merits and drawbacks of the different approaches.
Where possible, empirical studies are made comparing A3 to these related sys
tems.

• Chapter 7: Conclusions

Reviews the contributions of this dissertation and presents directions for future
work.



Chapter 2

Background

This chapter reviews approaches to learning first-order concept descriptions and
to revising first-order theories. Discussion begins with learning relations because this
is the foundation and source upon which theory revision systems are built. Theory
revision is a more elaborate version of the first-order learning task and involves iden
tifying errors in the initial theory and then applying inductive learning methods to
correct those errors. The two basic approaches to first-order learning are reviewed:
searching for concept descriptions from general to specific and searching from specific
to general. The chapter concludes with a review of different approaches to theory
revision.

2.1 First-Order Concept Learning

As described in the first chapter, supervised concept learning systems accept
examples of concepts to be learned and produce concept descriptions that can be used
to classify unseen examples. One of the important characteristics of such systems
is the representation language used to describe both examples and concepts. The
work described here is concerned with first-order concepts because of their greater
representation power. Concepts about temporal and spatial relationships require first-
order representations as do logic programming concepts such as membership, list and
sort (Plotkin, 1970; Winston, 1975; Vere, 1975; Quinlan, 1990; Clancey, 1992).

2.1.1 Definitions and Representation

Relations can be naturally represented using first-order logic. While not all
relational leeirning systems explicitly use this representation (Michalski, 1983), it does
provide a good framework for describing the relational learning task. The following
are some useful definitions:



Definition: (concept)

Aconcept is a finite set of Horn clauses each of whose head uses the
same predicate symbol.

Definition: (Horn clause)

AHorn clause is H :• where H (called the head) and
Di,..., (called the body) are literals and n > 0. When n = 0a Horn
clause is called a fact

Definition: (literal)

A literal is where p is a ^-place predicate symbol and
^1, •. •, ^/fe are terms and k >0.

Definition: (term, variable, function, constant)

Aterm is avariable or f(ti where / is aj-place function symbol,
are terms and j > 0. A 0-place function symbol is called a

constant. Variables begin with an upper-case letter and functions with
lower-case.

Definition: (ground literal, ground term, ground clause)

Aliteral, term, or clause that contains no variables is considered ground.

Definition: (example)

An example e of concept C is a ground literal that is labeled as either
positive or negative.

Definition: (class membership)

An example eis a memfier of class Cwith respect to background knowl
edge A iff (C UK) implies e.

Adescription for the concept "parent" might consist of the two clauses:

parentCX, Y) father(X, Y).
parent(X, Y) mother(X, Y).

An example of this concept might be parent (lee, jim). Note that the lit
eral brother(mark, jim) is neither apositive nor negative example of the concept
because they do not share the same predicate symbol.

^ Classifying an example e is then a matter of determining if the example is
logically implied by the concept C, i.e., Che. In practice however there is typically
another set of background clauses needed to support the concept definition For



example, mthe parent concept defined above, the two clauses alone are not sufficient
because the "father" and "mother" relationship between the terms in the examples
are also needed.

2.1.2 First-Order Learning Task

"^he first-order learning task is described as follows.

Given: aset of positive examples Pand aset of negative examples Nand background
knowledge K (a set of Horn clauses)

Find: aconcept Csuch that Vp e P:(C UAT) hpand Vn e :(C UAT) ^n.

There are two mam approaches in relational concept learning for finding adef
inition of the concept being learned. The search for the concept definition can be
either from general to specific or from specific to general. The rest of this section
describes these two approaches to learning first-order concepts

2.1.3 General to Specific Search

Foil (Qumlan 1990) is arelational learning system that searches from general
to specihc to hnd each clause comprising the target concept. Foil learns function-free

1qfini r M9 Nrm"" approach similar to Aq (Michalski,1980) CN2 (Clark k Niblett, 1989), and Greedy (Pagallo k Haussler, 1990). The
search for concept descriptions is guided by an information-based heuristic.

Input to Foil consists of ground literals representing the positive and negative
examples of the concept being learned. Background knowledge for the task is also
represented as ground literals. FoiL then learns aconcept description in terms of the
predicates in the example and background literals.

Foil finds clauses one at a time that cover some portion of the input exam-
pies until of all the positive examples have been covered (Table 2.1). Each clause
IS required to cover some portion of the positive examples and none of the negative
examples. Foil's mam loop performs asearch for concept descriptions from specific
to general because adding clauses to the concept being formed allows new positive
examples to be classified while preventing any negatives from being incorrectly clas
sified However, the process by which each clause is formed is a general to specific
search.

Clauses are formed in Foil's inner loop by repeatedly specializing an initial
clause to cover as many positive examples as possible until no negative examples



Table 2.1. Foil's main loop.

FOIL(Pos, Neg)
let Concept = 0
until Pos = 0 do

begin
let C = FindClause(Pos, TVep)
let Concept = Concept U {C}
let Pos = p € Pos not covered by C

end

return Concept

Table 2.2. Foil's clause finding algorithm.

FindClause(Po5, Neg)
let Clause = p(-Vi,..., ATfc) true
let %= 1

while Neg ^ 0 do
begin

let Li = BestLiteral(C/ause, Pos, A^ep)
let Clause = p{Xi,...,Xk) L\,...,Li
let Neg — extensions of Neg covered by Clause
let Pos = extensions of Pos covered by Clause
let i = 2 + 1

end

return Clause



Table 2.3. Foil's best literal finding algorithm.
BestLiteral(C/au5e, Pos, Neg)

let 7;+ = |Po5|
let T- = iTVeffI
for each L in LiteralSpace(C/aw^e) do

begin
let Pos' = extensions of Pos covered by L
let Neg'= extensions of Neg covered by L
let TiX, = \Pos'\
let 7;;i = \Neg'\
let 7;^+ = number of Pos with extensions in Pos'
let GainiD =7+^ x(iog,(7;+,/(T;+j +T.;,)) _iog3(r,+/(?;+ +7;")))

end

return L with highest Gain{L)

are covered by the clause (Table 2.2). The initial clause is the most general one
that covers all positive examples, namely p(X,,..., A'„) :- true where each A"; is a
distinct variable and pis the name of the concept being learned. This initial clause is
too general because it is guaranteed to cover all the positive and negative examples.
Foil specializes the initial clause by adding literals to its body until no negative
examples are covered by the clause. The selection of which literal to add is guided
by an information-based heuristic.

When building asingle clause, Foil decides which literal to add to the body of
the clause based upon how well the new clause partitions the positive and negative
examples into two distinct cUses (Table 2.3). An ideal literal would be one that
causes the clause to cover all of the positive examples and none of the negatives. In
practice though, a single literal will rarely have this property. Rather, each added
literal will continue to cover some of the positive and negative examples. The heuristic
or choosing the best literal trades off covering as many positives and covering as few

negatives as possible.

As each clause is being built, Foil maintains a list of positive and negative
examples that the clause under construction covers. Each example is represented
as a tuple that encodes the original example along with the bindings for any vari
ables introduced by new literals in the clause. For example, the positive example
uncle (wait, jim) would be represented as the tuple (wait, jim, carol) with re
spect to the clause uncle(X, Y) brother(X, Z) if the literal brother(walt
carol) were true.

To see how Foil maintains these tuples, suppose the goal is to learn the con
cept uncle" with background knowledge about immediate family relationships (e.g.
brother and parent). The initial clause would be:



TincleCXl, X2) true.

which covers all ofthe positive and negative examples because there are no restrictions
on the variable bindings. Adding a new literal to the clause results in:

uncle(Xl, X2) brother(XI, X3).

which introduces a new variable X3 to the clause. The only examples (both positive
and negative) that will be covered by this clause are those where the person repre
sented by the first variable (XI) are found to have a brother. FoiL extends the tuples
representing the positive and negative examples for each possible variable binding of
X3 that makes the clause true. For example, the tuple (wait, jim) would be extended
to (wait, jim, carol) and (wait, jim, lee) if the background knowledge specified
that Walt was the brother of both Carol and Lee.

Maintaining the extended tuples with respect to the clause under construction
allows Foil to cache important partial proof information. Evaluating the addition
of a new literal then only requires comparing the extended tuples to the new literal
rather than recomputing from scratch whether the new clause covers the original
examples. Foil also uses information about the size of the extended tuple sets in its
heuristic for choosing the best literal.

The space of literals that FoiL considers adding to a clause is computed in the
LiteralSpace function mentioned in Table 2.3. The arguments to this function are
the clause under construction and the tuples specifying the background knowledge.
Foil generates literals in the four forms p(14,..., K), not (p(Vl,..., V^)), A", = Xj,
and Xi ^ Xj, where Xi and Xj eue variables already existing in the clause, p is a
predicate symbol found in the background tuples (this includes the concept being
learned so recursive definitions are possible), and each K' is either a new or existing
variable.

Foil prunes literals from this space when the syntactic form of the literal guar
antees that it will not be useful (e.g., have Gain = 0). Literals with all new variables
are discarded because they provide no discrimination and will have Gain = 0. Certain
literals forming recursive definitions are discarded if they lead to infinite recursion.
Finally, a partial order over literals with the same predicate symbol is defined by
the occurrence of new variables. Computing the gain for literals in this partial order
may lead to pruning when the Gain function guarantees no further improvement is
possible.

Foil uses an information-based heuristic to select the best literal as follows.
Suppose Foil has built the clause p(XI, Xk) Lj,...,and is trying to
evaluate the usefulness of adding the new literal X,-. Before Li is added there are
positive and T, negative tuples covered by the clause. The amount of information
required to determine if a single tuple is either positive or negative is given by:



/(T.) = -log,(7;+/(7;+ + T-)).

Adding Li to the clause gives rise to and T'.;. which denote the number of
positive and negative tuples covered by the new clause. Similarly, the information
now required to determine if a single tuple is either positive or negative is given by:

The amount of information gained for classifying a single tuple by adding literal Li is
If T/*"*" is defined as the number of positive Ti tuples that are covered

by the new clause, the total information gained by adding literal Li is given by:

Gain(L,) = x (/(T,) - I{Ti^,)).

One of the major problems with using this definition of Gain as the evaluation
function is that there are cases where a correct literal to add has no information gain
and will not be selected. This is often referred to as the "plateau problem" with
hill-climbing search (Nilsson, 1980). For example, suppose FOIL were trying to learn
the following definition for greater-than using only the successor function:

greater(X,Y) succ(X,Y).
greater(X,Y) succ(X,Z), greater(Z,Y).

Suppose that the first clause heis already been learned and Foil is starting to learn
the second one. The positive tuples will include all of the greater-than relationships
where the numbers are more than one apart (e.g., greater(3, 0)). When Foil
attempts to add the literal succ(X, Z), it finds that T-'̂ = and T~ =
because in every positive and negative tuple, the first argument is a number and every
number has exactly one successor. This means that Gam(succ(X, Z)) = 0 and it
will not be chosen. The Gain will also be zero if FOIL tries to add the greater (Z,
Y) literal. This problem can arise in general when the concept definition requires
a literal that introduces a new variable. In this case. Gain is not an appropriate
heuristic for selecting which literal to add. Solutions to this problem include changing
the evaluation function (Kijsirikul, Numao k Shimura, 1991) and modifying the basic
algorithm to add literals introducing new variables when no literal has sufficient gctin
(Quinlan, 1991; Richards k Mooney, 1992).



2.1.4 Specific to General Search

An alternative to Foil's approach for finding relational concept descriptions is
to search the space of clauses from specific to general. A number of relational learning
systems use this approach (Vere, 1975; Muggleton h Buntine, 1988; Muggleton
h Feng, 1990). A common feature of these methods is their use of least-general-
generalizations (Igg). The idea being that one should not form concept descriptions
any more general than is needed to explain the data. Plotkin (1970, 1971) defines
the notion of an Igg for clauses and gives an algorithm for computing it.

Generalization for literals must be defined before discussing generalization of
clauses. Literal L\ is said to be more general than La if L\(7 —La for some substi
tution <7. For example, the literal human(X) is more general than humanCjoe). The
generalization of two literals L\ and La is also a literal Lg where LgOx = L\ and
Lgcr2 = La- A least generalization of two literals L\ and La is a literal Lg such that
all other generalizations of L\ and La are more general than Lg. For example, the
literal p(X, Y) is a generalization of the literals p(a, a) and p(b,b) but is not the
least general because p(X, X) is also a generalization but is more specific. There is
always a unique Igg of two literals.

Literals themselves are insufficient for representing the class of relational con
cepts. Relational learning systems that search for Horn clauses from specific to gen
eral typically form generalizations between Horn clauses. Plotkin defines the Igg for
clauses as follows. A clause C is represented as a set of literals C = {Li,...,Ln}
which is interpreted as the disjunction of literals Lj. A Horn clause is a clause with
only one non-negated literal. Clause Cj is defined to be more general than clause
C2 if there exists a substitution <7 such that C\(t C C2 in which case C\ is said to
subsume €2-

This definition of generality of clauses is different from the previous definition
of generality for concepts which was based on implication. For example, consider the
following two concepts:

Ci = { c(X) real(X). }
C2 = { c(X) rational(X). }

Concept C\ describes the set of real numbers and C2 the set of rational numbers.
Under this interpretation concept C\ is more general than C2 because the set of
rational numbers is a subset of the reals. However, under Plotkin's definition of
generality, it is not true that C\ is more general than C2 because there does not exist
a substitution (7 such that C\(t C C2 where Ci = { c(X) V not (real (X)) } and
C2 = { c(X) V not(rational(X)) }. Plotkin argues for using subsumption rather
than implication to define generality because subsumption is more manageable. It
is not known whether implication between clauses is even decidable (Plotkin, 1970;
Buntine, 1988).



Table 2.4. Algorithm for computing Igg of two clauses.
lSg(Ci,C2)

/ first form Igg between all pairs of literals */
let C= {K \Lx ^ CijL2 € C2 and K = lgg(L\^ L2)}
/* simplify the generalization C */
let E = C

while E can be simplified do
begin

find L iiL C and substitution a such that Ea C E\iL\
let E = E(7 - \ \ s

end

return E

Plotkin s algorithm for computing the Igg of two clauses is given in Table 24
Both Ci and C2 are assumed to be of finite length. The algorithm operates in two
phases. First, all pairs of literals from each clause are generalized to form a raw
generalization C. Two literals can be generalized if they have the same predicate
symbol and sign. So, p(X, f(Y)) and p(a, b) can be generalized but notCqCZ,
a(b))) and q(W, Y) cannot. The raw generalization Ccan have as many as | Cj |
XIC2 Iliterals if both Ci and C2 contain only literals with the same predicate. The
second phase of the algorithm simplifies the raw generalization down to the final Igg
by removing all literals that are redundant under subsumption.

Systems for learning from examples that use Plotkin's method for computing
generalizations typically work as follows (Vere, 1975; Muggleton k Feng, 1990) The
initial clauses representing the concept are constructed from the examples themselves.
If only asingle positive example ei had been seen, the concept would have the form ci
:- Ti,..., The body of this clause would be comprised of background information
that might be relevant to classifying the example. In the extreme case, these literals
may include all the ground literals implied by the background knowledge.

The clauses forming aconcept describe the conditions under which an example
may be classified as amember of the concept. Without any apriori knowledge of what
background information is relevant or needed to determine the class of an example
the initial clause takes on the most specific form: ei everything-we-know. In other
words, the initial hypothesis explaining cj states that ci is implied by the sum total
of the background knowledge.

When a second example, ej, is encountered, the system will add a second clause
to the concept description: €2 L,, ••• L„. The bodies of these two clauses are
identical and include all ground literals implied by the background knowledge. This
concept description is not at all general because it can only classify the two examples
ci and 62. However, the least generalization of these two clauses provides a more



general clause that goes beyond covering just the two examples. Further, this gener
alization is the least general clause that explains the two examples and therefore is
the least possible induction from the data. The guiding principle of this approach to
concept learning is to make conservative generalizations that generalize beyond the
data as little as possible. These generalizations are analogous to elements in the S
set of version spaces (Mitchell, 1978).

There are a number of problems associated with computing the Igg of two
clauses. Let M be the set of ground literals implied by the background knowledge,
then the Igg of n examples could be as large as | M |". Without some means of weed
ing out irrelevant background knowledge, a learning system that relied on computing
Iggs would be greatly hampered rather than helped by providing more knowledge.
Buntine (1988) presents a simple problem of learning list membership that produces
a clause with 2,000 literals. Similarly, Muggleton and Feng (1990) show that the Igg
of six examples of quick-sort having 49 background literals for append, 15 literals for
partition and 16 examples of quick-sort will have 15^ + 49^ + 16^ + 1 = 13,869,455,043
literals. Plotkin (1970) also showed that a reduced Igg can be infinite in length.

One approach to solving the problem of intractably large Iggs is the use of in
determinate literals in GOLEM (Muggleton & Feng, 1990). This approach is a domain
independent method for weeding out potentially irrelevant background knowledge. A
determinate literal is one for which there is only ever a single binding for new variables
not previously mentioned in the clause. The i and j parameters limit the number of
other variables on which a new variable in the literal can depend. The basic idea is
not to include literals that introduce new variables to the clause that are far away
from variables in the head of the clause or that have variables that produce too many
bindings.

Muggleton and Feng show that the size of the Igg of n examples is bounded by
the parameters i and j and is independent of the number of examples n. However, the
i and j parameters must be kept small because the bound is still large in the worst
case. Muggleton and Feng show how their system can learn many list processing
functions including a definition for quick-sort.

Quinlan (1991) shows how to add ij-determinate literals to FOIL which allows
it to leaxn a definition for quick-sort it otherwise could not find. The effect of adding
ij-determinate literals in FoiL is to move out of local minima where no single literal
has positive gain by introducing literals with new variables that can provide gain to
subsequent literals. It is interesting to note that FOIL uses determinate literals to
expand its search space whereas OOLEM uses them to narrow it.

Another problem with basing a relational learning algorithm on Iggs is learn
ing clauses with negated literals. If the two clauses to be generalized contain no
negated literals, Plotkin's Igg method will not introduce any such literals. To intro
duce negated literals, they need to be in the initial clauses formed from the background



knowledge So the clause for asingle example e. must contain negated literals If the
closed-world .^sumption ,s used, this extends the clause for e, to be e. :- T, AT, A
not Fi)A not(F2)... where the T, are background literals known to be true and the F-
are htera sthat are not .mplied by the background knowledge. Clearly the number^
ground literals that are not implied by the background knowledge will be intractably
large For example if the background knowledge included the successor function the
initial clause would contain ground literals such as succ(l. 2), succ(3 4) as'well

increase in the size of Iggs. iuiuici

2-2 First-Order Theory Revision

Aconcept was earlier defined to be aset of Horn clauses that can be used to
classify examples as either members or non-members of that concept. The bodies

these clauses are made from literals found in the background knowledge By
representing the background knowledge as a set of Horn clauses, the background
knowledge forms aset of concepts. This leads to the following definition:
Definition; (theory)

A theory is a set of concepts.

Concepts within atheory are defined in terms of other concepts within the theory. For
example, given atheory for family relationships, the concept uncle could be defined
in terms of concepts for parent, sibling, and male.

Broadly stated the theory revision task is to take as input an initial possibly
incorrect or incomplete theory and a set of examples of concepts in a theory and
produce anew revised theory that covers the input examples. There have been three
different basic approaches to the theory revision task, which are described in the rest

2.2.1 Theory-Guided Learning

(Mitchell, Keller &Kedar-Cabelli,986) and some of the systems that combine inductive and explanation-based learning
(Pazzani k Kibler, 1992; Tangkitvanich, Numao &Shimura, 1992) can be viewed
as performing theory-guided learning. Such systems take advantage of the input

nitial theory IS correct but later extensions that also perform induction such as FoCL
(Pazzani &Kibler, 1992) assume the theory is neither correct nor complete



The goal of theory-guided learning is to produce a learned theory that can be
used to classify unseen examples correctly. The initial input theory is only used to
guide the learning process and is discarded once the final concept is produced. The
form of the initial and learned theories is not assumed to be relevant and, in fact, the
learned theories often look nothing like the original theories.

iMitchell et al.'s (Mitchell, Keller & Kedar-Cabelli, 1986) Ebg system takes as
input a domain theory and a single example and produces an operational concept
description that generalizes the example based on the initial theory. The resulting
learned concept is then expressed in terms of the lowest level predicates or facts in
the theory and entirely eliminates any intermediate-level concepts. For example, the
following is a theory for determining whether it is safe to stack one item on another:

safe_to_stack(X,Y) not(fragile(X)).
safe_to_stack(X,Y) lighter(X,Y).
lighter(X,Y)

weight(X,Wl),
weight(Y,W2),
less(Wl,W2).

weight(X,W)
volume(X,V),

density(X,D),
W is V * D.

weight(X,5) isa(X,endtable).

If the Ebg system were presented with an example of an object that was safe
to stack on an end table because its weight was less than five, It would learn the
following concept:

safe_to_stack(X,Y)
voluine(X,V),
density(X,D),
W is V » D.

less(W,5),
isa(Y,endtable).

The learned concept is a generalization of the input example in so far as other
examples that can be proved in the same way as this example will also be covered by
the learned concept.

Although this technique and others based on it may have the property that
the learned concept is correct or accurate, the theories produced have very little in
common, at least syntactically, with the original input theory.



2.2.2 Theory Retranslation

Given the additional goal that the output theory should in some sense be close
or related to the input theory, some learning systems attempt to perform the theory
revision task by first translating the theory into some intermediate from, perform
learning on the intermediate representation, and then re-translating the intermediate
form back into the representation of the input theory. Examples of this approach are
RTLS (Ginsberg, 1988; Ginsberg, 1990), KbanN (Towell, Shavllk Noordewier,
1990; Towell, 1991), KR-FOCL (Pazzemi & Brunk, 1991) and ItCA (Tangkitvanich,
Numao Ic Shimura, 1992).

RTLS and Kbann were designed to only handle prepositional domain theories
whereas KR-FoCL and ItCA operate on first-order theories. RTLS, KR-FocL and
'RCA all translate the initial theory into an operational form using methods from
explanation-based learning. The operationalization process allows these systems to
locatefaults in the theory but often translating the repairs to the operational concepts
back into corresponding repairs of the original theory is problematic.

Kbann takes a very different approach and translates the initial theory into
a neural network representation with output units corresponding to the concepts
being learned, input units corresponding to facts about the examples and hidden
units corresponding to intermediate concepts. The weights on the connections are
determined by the structure of the input theory. Kbann then trains the network
on the example set and re-translates the resulting network back into propositional
clauses based on the new weights of the connections.

While these methods may be useful in that well known learning algorithms can
be applied to the intermediaterepresentation, they may have difficulty in translating
the intermediate form back into the original representation. Other difficulties arise
when the expressiveness of the different representations do not match. For example,
it is difficult to see how KbaNN could be extended to first-order theories. Similarly,
the systems that use operational concepts as their intermediate representation have
difficulty with theories containing negation and recursion.

2.2.3 Theory Revision

Systems that perform theory revision have two goals: the learned theory should
correctly classify the training examples and should retain as much of the form of
the input theory as possible. Learning systems that make only minimally required
changes to the initial theory have many desirable properties.

Presumably, the initial theory wcis created by a human expert in order to solve
a particular task. The initial theory then is in a form comprehensible to the author



and others who may use it just as higher level programming languages make programs
easier to write, understand, and maintain than if they were written using machine level
instructions. Theories or programs often contain useful abstractions and concepts that
should be maintained by the theory revision process.

Systems that perform theory revision include EITHER (Ourston &Mooney,
1990) which uses prepositional domains, and Audrey {Wogulis, 1991), FoRTE
(RKhards &Mooney, 1991; Richards, 1992), AUDREY II (Wogulis &Pazzani, 1993)
and A3 (Wogulis, 1993) which use first-order theories.

The first-order theory revision task is therefore defined to be:

Given: an initial theory of concepts expressed as first-order Horn clauses and positive
and negative examples of concepts in the theory.

Find: a minimaUy revised version of the initial theory that is accurate on both seen
and unseen examples of concepts in the theory.

Evaluating the accuracy of learned concepts has been a primary focus of re-
search on concept learning systems. However, no work on theory revision to date has
defined what constitutes a minimally revised theory nor how the degree of revision
can be measured. The next chapter gives a precise definition of the distance between
two theories and proposes its use as a metric for evaluating theory revision systems.
Chapter 6 discusses theory revision systems such as FORTE and EITHER in more
detail and compares these systems with A3.

2.3 Discussion

First-order theory revision extends the first-order learning task to repairing a
set of interrelated concepts. Approaches to solving the first-order learning task fall
into one of two different categories. First-order concept descriptions are typically built
through either specialization or generalization. Foil uses ahill-climbing algorithm to
find literals to add to aclause that will cover positive examples and exclude negatives.
This technique has some desirable properties in that it is computationally efficient,
can easily add negated literals, and usually produces simple concept descriptions.
Some drawbacks to this approach are that it can produce overly general concepts and
that it may fail to learn certain concepts because of problems with hill-climbing.

The other approach to first-order learning is based on the notion of least-general
generalization which performs the minimal amount of generalization between two
positive examples. Some of the advantages to this approach are that it does not tend
to overgeneralize, and it can find conjunctions of literals that hill-climbing methods
can not find. Drawbacks to this approach are that it is computationally inefficient,



has problems introducing negated literals, and it may produce unnecessarily complex
descriptions.

Subsequent chapters introduce the theory revision system A3 that builds upon
the Foil technique for learning first-order concept descriptions. The reasons for
choosing this over the least generalization approach are its computational efficiency,
that it can learn concepts containing negated literals, and that it learns small simple
concept descriptions which may be more likely to be close to the initial theory.

To repair faulty theories, A3 takes the theory revision approach and makes
repairs to the initial theory rather than to a retranslated form of the original theory.
Such revisions are more likely to be minimal modifications than if the theory were
translated into an intermediate form and then back again.



Chapter 3

Evaluating Theory Revision
Systems

One of the goals of theory revision is to produce a minimal modification of the
initial theory in order to classify the training examples. However, to date, no theory
revision system has been evaluated with respect to the degree of revision performed
nor has any system been designed explicitly to satisfy this goal.

This chapter proposes a distance metric between Horn clause theories that may
be used to evaluate how well theory revision systems meet the goal of learning mini
mally revised theories. The measure is defined as the number of edit operations (i.e.,
additions, deletions, or replacements of literals) that are needed to transform one
theory into another.

The notion of edit-distance has been studied by others (Tai, 1979; Shasha &
Zhang, 1990) and applied to problems in areas such as pattern matching, parsing,
and comparing secondary structures of RNA. Without such an evaluation, a system
that ignores the initial theory and runs a purely inductive learner on the training
data might also qualify cis a theory revision system.

This chapter describes in detail why the minimal modification constraint is
useful, and defines a measure of the distance between two theories. This measure
is used to define the appropriateness of a revised theory with respect to the initial
theory. The results reported in subsequent chapters use this metric to evaluate the
performance of theory revision systems and the metric is also used in the theory
revision system, A3, to choose among potential revisions to make.

3.1 Theory Revision

A theory revision system is given an initial domain theory that is incorrect
and/or incomplete, and a set of positive and negative training examples and produces
a revised theory. This chapter proposes that an appropriately revised theory is one



that is closest to the initial theory and one that makes the fewest errors on unseen
examples drawn from the same distribution as the training examples.

Using distance as one factor to measure the quality of a revised theory favors
theories that preserve as much of the initial theory as possible. There are several
reasons why this is desirable:

• One can argue for minimal changes to a theory based on arguments of par
simony. Without any criteria other than accuracy on which a theory may be
evaluated one should make only minimal modifications needed to repair a theory
in order to explain new data.

• Such revisions are more likely to be understood by experts who presumably
understand the initial theory, because they represent minor variants of the ex
perts' theories. An expert may be unwilling to accept a drastic change to a
theory, especially if adding or removing a few training examples results in yet
another drastically different theory.

• The abstractions from the initial theory may be retained in the revised theory.
Many learning systems (e.g., FOCL (Pazzani h Kibler, 1992) and A-EBL
(Cohen, 1992a)) that use a domain theory to guide learning express the learned
concept in terms of the operational predicates. This results in a "flat" theory,
expressed solely in terms of "observables" without intermediate conclusions. In
contrast, a theory revision system should use the abstract predicates from the
initial theory, provided they are useful in making classifications.

• Abstractions from the initial theory that are retained in the revised theory
can support the generation of meaningful natural language explanations of the
system's translations (Swartout, 1981). For example, an explanation derived
from clauses learned by FoCL to determine whether a student is required to
pay back a loan might be expressed in English as "John is not required to
make a payment because John is enrolled at UCI for 15 units and 15 is greater
than or equal to 12." In contrast, the clauses learned by A3 would support
an explanation that involves intermediate conclusions: "John is not required to
make a payment because John is eligible for a student deferment because John
is a full time student at UCI."

Preferring minimally revised theories based on the distance metric favors the
ories that make small incremental changes rather than major re-writes of the initial
theory. While this seems desirable in general, there are situations, perhaps corre
sponding to paradigm shifts (Kuhn, 1962), in which an entire theory must be dis
carded and replaced by a drastically different theory. This issue is not considered
in detail, but note that it might be addressed by introducing a dimension, such as
elegance or simplicity, that may be combined with accuracy and distance to evaluate
revised theories.



One can use the distance metric to compare different revisions of the same initial
theory to determine which revision is closest to the initial theory. When used together
with accuracy, distance provides abetter overall measure of the quality of the revised
t^heories. Clearly, atheory that performs better on both accuracy and distance is to
be preferred. If th^ry Ais more accurate than theory Bbut theory Bis closer to
the initial theory, the issue becomes murkier. Because these measures are orthogonal
preferring one theory over another depends on the user's trade-off between the two

3.2 Theory Distance Metric

The goal, therefore, is to define a metric analogous to accuracy that can be
used to measure the quality of revisions made by theory revision systems. Whereas
the accuracy of a revised theory measures its semantic correctness, a measure of
he syntactic closeness between the two theories is defined as the distance between
he initial and revjsed theories. The distance between two theories is defined as

the minimum number of revisions required to transform one theory into another
INaturaJly, this measure is commutative.

3.2.1 The Distance Between two Theories

As defined previously, adomain theory is aset of Horn clauses which is parti
tioned into concepts Aconcept for theory Tis defined as the set of clauses
mthe theory T with the same predicate symbol pred and arity for the head of the
clause: ^ .(T) ={C ^T\C^ pred(-• •) - T., •••, i„}. For example, the clauses
append ([] [] , []) and sort([],[]) belong to different concepts. The distance be
tween two theories is defined to be the sum of the distances between corresponding
concepts from each theory. ^

dist{TuT2) = Y. ^^^K^PTed(T^),KJ,rcd(T2))
predgTiUTa

This definition of distance does not compare clauses from different concepts so
there is no defined distance between the clauses for append and sort given above.

Because a concept is a set of clauses, there may be many ways in which one
concep could be transformed into another. When measuring the distance between
concept Aand concept B, there are two main cases to consider. Aclause Ca from A
could be the source of many (including zero) clauses in B: ClB,...CnB, or similarly
many clauses mA{ClA-CniA) could be the source of asingle clause Cb in B. The



fo'r '° minimum sum of clause distancestor all mappings between clauses of each concept.

dist(A,B)= min Y, distiCA^CB)
"^ap^rnapptng3(A,B) . ^

L(^^'Ca)€map

snnnH 1 '^eory should correspond to which clauses in another, the distance between two concepts is defined to be
the mmiinum sum of distances for all possible mappings between clauses from each

ZhIou ' corresponds to clause

P!r,i mappings between clause sets 4 and Bcan be computed as follows,hirst, forni the Cartesian product of clauses from Aand B. For example if 4 =
and 5 - {61,62}, one element of Ax B would be (01,62). Next comnute

epower set of AxB Asingles mapping is formed from one element of this power
ml' For any a. e Aor b, e Bnot appearing inmap, add the elements (a„ 0) and (0,6,) to map where 0represents the empty clause.
Therefore, map would be transformed into map = {(ai, 6i), (a,, b^), {0,6,)} This
mapping is interpreted to mean Bcan be revised into Aby transforming clause b,
into clauses a, and a^ and by deleting clause 5,. In general, the number of mappings
between clause sets A and B is

Reach ' ^rh'lhm^ppms between clause sets, consider theories AandBeach with the following clauses for the concept p:

M'- p t, a, m, e.
M' p X.

^i: p t, i, m, e.
^2' p t, o, m, e.

The array in Table 3.1 presents the distances between the clauses from each
theory including the empty clause. Finding the minimum mapping between clause
and ruchThlrt? "TT minimumand such that the subse contains at least one element from each row and each column
1 array. The underlined array elements in Table 3.1 form the minimum mappinggiving atotal distance of four. This mapping can be interpreted to mean that theory
Acan be transformed into theory Bby deleting clause A^ and transforming clause
Ai into clauses Bi and B2.

such t?? fh°'''? the minimum sumsuch that the subset contains at least one element from each row and each column
IS closely related to the assignment problem (Lawler, 1976) which has apolynomial



Table 3.1. Minimum mapping between clauses from two theories.

p t,a,m,e

p X

p :

1

4

5

- t,o,m,e

time complexity solution. The assignment problem differs in that the solution must
contain txactly one element from each row and each column. The complexity of the
clause-mapping problem is unknown but there is reason to believe that it may be
polynomial as well. As implemented in A3, the distance metric is exponential and
somewhat costly to compute but not prohibitive on the domains described in this
dissertation.

For present purposes, the definition of the edit distance between two clauses
will be at the literal level: i.e., how many additions, deletions or replacements of
literals are needed to transform one clause into another.^ However, differences in
the order of literals in a clause and renaming of logical variables are ignored The
distance between two clauses, dist(C^, Cj), is defined to be the minimum number of
additions, deletions, or replacements of literals needed to transform clause Cj into
clause C2 modulo variable names and literal ordering in the bodies of the clauses.^
For example, the distance between the following two clauses is one:

Ci: grandfather(X,Y) :- sister(X,Y), father(X,Z).
C2: grandfather(A,B) father(A,C), parent(C,B).

Without regard to the variable names or goal ordering, clause Cj can be transformed
into C2 by replacing sister(X,Y) with parent(Z,Y).

3.2.2 Relation Between Distance and Accuracy

It is important to note that the definitions of accuracy and distance are orthog
onal to one another and thus complementary. That is to say that two theories may
have the same accuracy, even make the same classification of every example, and yet

1Another possible definition could be more detailed and include the number of changes to terms
within a literal. This complication is ignored because the theories used by theory revision systems
so far do not include complex literals such as pred(f (A), UlB]). Note that these might be han
dled within this framework by breaking a complex literal into several simpler ones (Norvie 1992)
pred(Vl,V2) t VI = f(A) * V2 = [AjB].

^The dist function is known apseudo-metric because disi{x, y) =0^ z=ydue to the possibility
that literals may be reordered and variables may be consistently renamed.



Table 3.2. Three theories for positive, even integers.

Theory 1:
poseveii(X) greater(X,0), even(X) .

Theory 2:
poseveii(X) inodulo(X,2,Y), equal(Y,0),

not(greater(Y,X)).
Theory 3:

poseven(X) less(X,0), even(X).

there may be a large syntactic difference between the two theories. An example of
this is the difference between theories 1 and 2 in Table 3.2, both of which represent
a correct theory for positive, even integers.^

Similarly, two theories may be close to one another syntactically but have en
tirely different semantic meaning. An example of this is theories 1 and 3 in Table 3.2.
Both theories are quite close syntactically but have very different meaning and hence
accuracy.

3.2.3 Uses of the Distance Metric

The primary use of the distance metric will be to compare revisions of the same
initial theory by theory revision systems to determine which revision is closest to the
initial theory. This will allow one to evaluate the claim that theory revision system
A produces better revisions than theory revision system B.

However, if the correct theory is known (e.g., if the incorrect theory were formed
for evaluation purposes by introducing errors into a correct theory), there are two
additional uses of the distance metric.

First, the distance between the initial theory and the correct one provides a
measure of the syntactic corruptness of the initial theory. This should provide a more
useful measure of the difficulty of a theory revision problem than just the accuracy
of the initial theory. Presumably, the more corrupt a theory is, the harder it is to
revise.

Second, the distance between the revised theory and the correct one can be
used in conjunction with accuracy to measure how well a learning system is able to
replicate theories created by humans. Currently, knowledge engineers perform the
theory revision task manually. A prototype expert system is often built, and then

^modulo{A, B, M) is defined such that M is the remainder of A divided by B.



it is refined to perform better on a set of test cases (e.g., (Rabinowitz, Flamholtz,
Wolin &Euchner, 1991)). The initial theory and test cases can serve as input to a
theory revision system and the automatically derived theory can be compared to the
theory produced manually. The distance between the automatically and manually
revised theories measures the system's ability to find theories similar to ones built by
experts.

3.2.4 Some Drawbacks

Theory revision systems require evaluation beyond simply measuring the accu
racy of the theories produced. Ameasure of the type and quality of revisions made
IS also needed. Although the distance metric proposed here is useful toward that
end, it is not a panacea. Because distance is a syntactic measure, it does not han
dle some theories one would like to consider equivalent. For example, the learner
may have clauses containing literals with equivalent meaning such as less(X,Y) and
geq(Y,X). Comparing two theories at the syntactic level will not consider these two
literals equivalent. This problem could be addressed by providing additional equality
axioms to determine the equivalence between two literals. However, this is not a ma
jor problem with the theories described in this dissertation because the background
knowledge tends to be limited to make the induction process more efficient.

3.3 Discussion

Theory revision systems have the goal of improving the accuracy of the initial
theory as well as some constraints on the type and degree ofrevisions that are desir
able. It is argued that revised theories should be as close to the original as possible.
Unfortunately no theory revision systems to date have been evaluated in terms of the
degree of revision made to the initial theory.

This chapter proposed a measure for the distance between two theories. This
measure corresponds to the minimum number of edit operations at the literal level
required to transform one theory into another. This can be used in conjunction with
accuracy to give a better overall evaluation of the quality of revised theories when
comparing one theory revision system to another. The distance metric can also be a
useful tool when the correct theory is known. Comparisons of the revised and correct
theories give a measure of a system's ability to learn theories in a form experts would
write.

In addition to evaluating the performance of theory revision systems, the dis
tance metric can also be used by such systems in order to evaluate the quality of
potential revisions. The next chapter presents the theory revision system A3 that



uses both accuracy and the distance metric to guide its search through the space of
revised theories. Incorporating the distance metric into the theory revision process
can help bias the system toward making minimal revisions of the initial theory.



Chapter 4

A3: A First-Order Theory
Revision System

Previous chapters have discussed the first-order theory revision task and de
scribed various approaches to solving the problem. One of the explicit goals of theory
revision is to perform minimal modifications to the input theory in order to classify
the training examples. However, no existing theory revision systems explicitly at
tempt to meet this goal. Also, none of these systems have been evaluated in their
ability to achieve this goal.

This chapter presents A3, a first-order theory revision system that attempts
to produce correct, minimally modified revisions of an initial theory. The class of
theories the system can revise includes function-free first-order theories containing
negated literals.

The basic approach is to locate and repair errors in the theory until all of the
input examples are correctly classified. Auniform method for processing positive and
negative examples of multiple concepts in the theory is developed that gives A3 a
simple and elegant structure not found in other theory revision systems.

4.1 The Theory Revision Task

A3 solves the first-order theory revision task as described in Section 2.2.3. The
systems accepts as input:

• An initial theory expressed as a set offunction-free Horn clauses. Literals in the
body of aclause may be negated where negation is defined as negation-by-failure
using the closed-world assumption.

• Background knowledge identified as a subset of the initial theory. The learner
may assume the background knowledge is correct and complete and requires no
repairs.



Table 4.1. An incorrect domain theory for concepts odd and even.

odd(X) not(even(X)).
even(2).

• Aset of positive and negative examples for concepts in the theory which may
include examples of multiple concepts.

As output, A3 produces a revised theory that attempts to meet the following
requirements: ®

• The revised theory should correctly classify the input examples.
• The revised theory should be aminimal revision of the initial input theory.
• Unseen examples of concepts in the theory should be correctly classified.

That the revised theory should correctly classify the input examples as well
as unseen examples is the standard learning from examples task. Along with these
requirements, the revised theory should be a minimal revision of the input theory
The degree of revision is defined in terms of the distance metric proposed in the
previous chapter. An optimal solution would be a revised theory T. that correctly
cassifies the input examples and VT, :dist{T., <dist{T,, that correctly
classify the input examples.

Although A3 does not guarantee it will find an optimal solution, it does use the
criteria of correctness and minimal revision to guide its search for a solution.

4.2 Negation in First-Order Theories

Before discussing the details of the A3 system, this section points out aproblem
with negation in first-order theories that other theory revision systems do not handle
correctly.

Table 4.1 presents an incorrect theory for the concepts odd and even The
definition of odd is overly general because it is defined in terms of the negation of
even which is overly specific.

If the input examples were for the concept odd, most theory revision systems
would assume that the theory is overly general and requires either deleting some
clauses or adding literals to existing clauses. However, as demonstrated by this ex
ample, the definition of odd can be considered correct and it is the concept even



Table 4.2. Top-level Algorithm for A3.

AS (theory, examples)

{
while theory accuracy over examples is increasing do

assumption = find_best_assumption(^/ieorj/, examples)
theory = modify_theory(assumprion, theory, examples)

return theory

}

which is overly specific. Thus to repair this theory, the concept for even must be
generalized.

Even though the overall theory may be too general with respect to the input
examples, this does not imply that some concept within the theory is overly general.
Thus any theory revision system that uses the classification of an input example as
the only means of deciding to apply generalization or specialization operators will be
incorrect when confronted with a theory containing negated literals.

4.3 The A3 Theory Revision System

A3 is a system for revising first-order theories containing negation. The basic
approach is first to identify the type of error and its location within the theory and
then to correct the error based on this information.

Table 4.2 shows A3's top-level algorithm. The inputs are an initial, possibly
incorrect theory and a set of positive and negative examples of concepts in the theory.
The examples are not represented as two distinct sets but rather as a single set of
literals that the theory should prove true. Thus the positive example odd(3) would
be represented as odd(3) and the negative example odd(4) would be represented as
not(odd(4)). An example literal is referred to as positive if it is non-negated and
negative if the literal is negated. Note that A3 accepts examples of any concept in the
theory so { odd(3), even(4) } is a valid input example set. A3 returns a modified
theory that should cover all of the input examples and which will presumably do well
at covering unseen examples of concepts in the theory. The search is a form of hill-
climbing that always attempts to improve the coverage of the input examples. The
system stops when it cannot find a theory that incre2ises the coverage of the input
examples.

The search for a revised theory has two main phases. First, a set of candidate
assumptions is produced that would help explain the uncovered examples. A single



Table 4.3: An incorrect theory to identify an element in the symmetric difference of
two lists.

diff(X,Ys,Zs) member(X,Ys), not(member(X,Zs)).
diff(X,Ys,Zs) member(X,Zs), iiot(member(X,Ys)).

member(X,Z) coiis(Y,Xs,Z).
member(X,Z) cons(Y,Ys,Z), member(X,Ys).

best assumption is chosen from this set. Next, the best assumption is used as aguide
to revise the theory in such a way that the assumption must no longer be made to
cover some portion of the uncovered examples. This process is repeated until all
examples are correctly classified.

4.4 Locating Errors in a Theory

If a concept ma theory fails to cover an example, the concept is too specific
when the example is positive and is too general when the example is negative. Because
a theory is comprised of a set of interrelated concepts, it is possible that one concept
is overly general because another one is too specific (and vice versa). For example,
Table 4.3 presents an incorrect theory for the concept diff that finds an element in
the symmetric difference of two lists. Thus diff (1, [1,2,4], [2,3]) is a positive
example because the item 1 is a member of the first list but not the second whereas
diff (2, [1,2,4], [2,3]) is a negative example because the item 2 is a member of
both lists. This theory is taken from (Shapiro, 1983) page 74.^ The concept diff
is overly specific because the definition of member is too general and is used within a
negation for the definition of diff.

Because it is possible to generalize a concept in a theory by specializing another
concept (and vice versa), the type of revision to be made (generalization or special
ization) depends on the type of error and where it occurs in the theory. A3 uses
a mechanism for finding assumptions to identify a faulty concept and whether that
concept is overly general or specific.

^This theory has been re-written to remove function symbols such as [1] but remains semantically
equivalent. This can be done with a simple preprocessor (Richards, 1992; De Raedt, 1991).



Table 4.4. Algorithm for finding the best assumption,

find-best^ssumption (theory êxamples)

alLassumpiions = 0
for each uncovered example E do

alLassumpiions = alLassumpiions U find_assumptions(/Aeon/, E)
best = elements from alLassumpiions that cover most examples
besi « set of deepest assumptions from besi
return random element from besi

}

An assumption is defined in A3 as a literal that is assumed to be true but
which is not implied by the theory. For example, in the above theory for diff, the
positive example diff (4, [1,2,4] , [2,3]) could be proved by making any of the
assumptions:

notCconsCY, Xs, [1,2,4]))
not(meinber(4, [1,2,4]))
not(member(4, [2,3]))
diff(4, [1,2,4], [2,3])

none of which are provable by the theory.

The goal of the assumption finding phase is to find the single best assumption
defined as the assumption that can be used to prove the most number of incorrectly
classified examples. Table 4.4 outlines the algorithm for finding the best assumption.
A3 only finds a single assumption although it could be extended to find aconjunction
of assumed literals. This would presumably allow A3 to repair a larger class of theories
but experiments indicate that a single assumption is adequate.

It is important to note that this does not imply that A3 cannot repair theories
with multiple errors. As long as the errors in a theory do not interact with one
another, A3 should still be able to repair the errors by finding different assumptions
that highlight those errors. By chosing a single best assumption as the basis for
revising a theory, A3 is biased towards first repairing those errors responsible for the
largest number of misclassified examples. Even if multiple errors do interact within
a theory, there is usually a repair that will yield some improvement in accuracy.



Table 4.5. Algorithm for finding assumptions for a single example.

find_assumptions(i/ieory, example)
{

assumptions = 0
for each goal literal G tried in the proof of example do

if G can be solved

then

if provable_using_assumption(cxamp/e, not(G), theory)
then

add not(G) to assumptions
else

if provable-using^ssumption (examp/e, G, theory)
then

add G to assumptions
return assumptions

Table 4.6. Algorithm for proving an example using an assumption.

provable-using^ssumption (examp/e, assumption, theory)

attempt to prove example using theory
but before attempting to prove a goal G do

G' = G without negation
A' = assumption without negation
if G' unifies with A'

then

if G and assumption are both negated or non-negated
then goal G succeeds
else goal G fails and no alternatives are tried

else

alternatives for goal G are tried



4.4.1 Finding Assumptions for a Single Example

The first step in the algorithm for finding the best assumption is to find all as
sumptions for each uncovered example (see Table 4.4). If an example caji be correctly
clcissified, no assumptions are required. If the example cannot be correctly classified,
a set of assumptions must be found. The algorithm for finding a set of assumptions
for a single examples is given in Table 4.5. Note that every example has at least one
assumption that can be made to prove the example, namely, the example itself.

A3 finds the set of possible assumptions for an example in the following way.
First, a proof of the example is attempted. If the proof fails, A3 searches for assump
tions. During the attempted proof of the example, every goal literal that succeeds
or fails is a candidate for an assumption. If a goal literal pred(. . .) succeeds, A3
tries the assumption not(pred(.. .)) and if the goal fails, it tries the assumption
pred(.. .). Conversely, if the goal not(pred(. ..)) succeeds (i.e., pred(. ..) is
shown to be false), A3 tries the assumption pred(. . .) and if the goal fails (i.e.,
pred(...) is found to be true), it tries the assumption not(pred(.. .)).

Assumptions are literals that must hold true regardless of whether or not they
can be proved by the theory. They are intended to point out where a theory is in
error and the type of error involved (overly general or overly specific). Therefore all
succeeding and failing goals in the proof of an example are candidates for being an
assumption.

Assumptions can be made for goals corresponding to literals that are in the
background knowledge but not for goals that occur in the bodies of clauses in the
background knowledge. For example, consider the following theory:

poseven(X) even(X), greater(X,0).
greater(X,Y) X > Y.

If greater is part of the background knowledge, A3 can assume the literal
greater(-4, 0) but not -4 > 0. Assumptions are allowed for predicates in the
background knowledge because they may indicate an error in a clause using a literal
from the background. The assumption -4 > 0 will not be made because the greater
predicate is assumed to be correct and there is no need to make assumptions within
it.

An cissumption for an example will be retained if the example can be proved
using the assumption. Table 4.6 gives the algorithm for proving an example using
an assumption. Note that, during the proof of an example, an assumption always
overrides the theory regardless of what the theory says about the assumption.

To see how A3 finds assumptions for an example, assume the system is given
the theory in Table 4.1 where the concept odd is overly general and will incorrectly



classify odd(4) as a positive example. Because odd(4) is a negative example, the
goal iiot(odd(4)) should be true. In the proof for iiot(odd(4)), A3 first checks
the goal not(even(4)), which requires trying to prove the goal even(4), which fails
and causes the proof of not (odd(4)) to fail. The system therefore proposes the as
sumption eyen(4) which would allow the example not (odd(4)) to be provable using
the assumption. Going back to the proof for not(odd(4)), the goal not(even(4))
succeeds because even(4) failed. This leads A3 to propose the assumption even(4)
which was already tried. Finally, the system proposes the assumption not (odd (4)),
because the goal for not (odd (4)) fails. So for the given example and theory, A3
finds two assumptions that could be made in order to prove the example: even(4)
and not(odd(4)).

It is important to note that not all proposed assumptions will lead to the exam
ple being provable. For example, consider the following theory with only one clause:

uncle(U,N) brother(U,X), parGnt(X,N).

The positive example uncle (wait, jim) cajinot be classified correctly and A3
would try to find cissumptions that would make it provable. One of the assumptions
attempted would be brother (wait, X). This assumption would not be retained be
cause the original example uncle (wait, jim) still can not be proved due to the
parent predicate failing.

4.4.2 Finding the Best Assumption

Assumptions are used to identify the location (which concept) and type of error
(overly general or specific) found in the theory. A3 finds the set of all single literal
assumptions that could be made to prove each incorrectly classified example. The
number of different examples proposing the same assumption is recorded along with
the SLSsumption itself. The assumption that can be used to prove the most number of
uncovered examples is selected as the best assumption to use as a guide for revising
the theory.

When computing the example count for an assumption, two assumptions are
considered equivalent if they use the same predicate name, are either both negated,
or non-negated literals and are used in the same locations within the theory. This
factors out variable bindings from the specific examples and indicates which clauses
aje incorrect and which literal within the clause is incorrect.

It is possible that more thetn one assumption will have the maximum count.
For example, four assumptions were found in the previous section for the positive
example diff (4, [1,2,4], [2,3]). If this were the only uncovered example, the
four assumptions would each have a count of one. Of the candidate assumptions with
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Figure 4.1. Call graph for diff showing repair locations.

the same maximum count, A3 chooses those deeper in the call graph. Therefore, in
the above example, not (cons (Y, Xs, [1,2,4])) would be chosen. If there is more
than one assumption at the same depth, A3 randomly selects a best assumption.

4.5 Repairing Errors in a Theory

Once an assumption has been found, A3 attempts to revise the theory so that
the examples requiring the assumption may be proved without it. There are two basic
choices to be made about how the theory should be repaired.

• The error may be due to some clause or clauses that used the assumption in the
body of the clause. In this case, the clauses are assumed to be incorrect and
A3 attempts to repair each of them.

• The error may be due to the concept corresponding to the assumption being
incorrect. A3 attempts to repair the concept representing the assumption by
either generalizing or specializing the concept depending on the context in which
the assumption weis used.

Figure 4.1 shows the Cctll graph for the symmetric difference theory first pre
sented in Table 4.3. In order to illustrate how A3 repairs a theory based on an
assumption, assume that A3 has made the assumption corresponding to the member
literal in the first clause for diff. The portions of the theory that correspond to
repairing the clause that uses the assumption, ajid repairing the concept representing
the assumption are shown as circled in Figure 4.1. The solid circle represents the
single clause that is repaired on the basis of using the assumption. The dashed circle



Table 4.7. Algorithm for revising theories.

modify_theory(asswmp;zon, theory, examples)

Ti = repair_where_used(asswmprion, theory, examples)
if assumption is negated

then

T2 = speciaiize_concept(assumprio7i, theory, examples)
else

T2 = generalize_concept(assumprio7i, theory, examples)^return the better of Ty and T2 (T2 if tied)

includes both clauses for the member concept which is the concept corresponding to
the assurned literal. In summary, an assumption indicates that either the assumed
itera is being used incorrectly in the theory, or the concept corresponding to the

literal is in error.

Table 4.7 gives the algorithm for revising atheory based on an assumption. A
negated assumption indicates that its corresponding concept is overly general and
must be specialized. Conversely, if the assumed literal is not negated, its correspond
ing concept is overly specific and must be generalized.

. .u same accuracy, the one that is the closest distanceto the initial theory is preferred. If the two theories are tied on both accuracy and
distance measures, A3 prefers repairing the concept corresponding to the assumption.

4.5.1 Using Assumptions to Repair Clauses

When trying to repair clauses that used the assumption, A3 attempts to repair
each clause according to how it used the assumption (Table 4.8). Aclause uses an
assumption if a literal mthe body of the clause unifies with the assumption in the
successful proof of an example.

Clauses may be repaired through generalization or specialization. If the sign
(negated or non-negated) of the assumption is the same as the sign of the goal using
the assumption, the clause is too specific and must be generalized. If the signs differ,
the clause is overly general and must be specialized.

In the example given above for the positive example diff(4, [1,2,4], [2,3])
A3 found the negated assumption not (cons (Y, Xs, [1,2,4])). It'is used in both



Table 4.8. Algorithm for repairing clauses that use an assumption.

repair_where_used(assumph'on, theory, examples)

{
T' = theory
for each clause in theory using assumption do

assumed.goal - goal in clause that used assumption
if assumption and assumed^goal are both negated or both non-negated

then

T' = generalizejclause(c/ause, assumption, theory, examples)
else

T' = specializejclause(c/ause, assumption, theory, examples)
return T'

}

clauses for member as a non-negated goal which indicates that the clauses must need
to be specialized.

Specializing Clauses

Table 4.9 gives the algorithm for specializing clauses based on an assumption.
A3 attempts to specialize a clause by negating the assumed goal, adding a conjunction
of new literals to the clause using induction (Quinlan, 1990), and by deleting the
clause altogether. The best revision returned is the one with the greatest accuracy on
the training examples. In case of a tie, A3 prefers the revision whose distance to the
initial theory is smallest. If none of the revisions are more accurate than the theory
input to specializejclause, no modification is suggested by this operator.

Table 4.9. Algorithm for specializing clauses.

specializejclause ( clause, assumption, theory, examples)

{
assumed.goal = goal in clause that used assumption
return the better revision of:

• negate assumed-goal in clause
• specialize clause with literals found by induction
• delete clause from theory

}



Table 4.10. Algorithm for generalizing clauses.

generalize-clause(c/au5c, assumption, theory, examples)

{
assumed^goal - goal in clause that used assumption
return the better revision of:

• delete assumed-goal from clause
• replace assumed-goal in clause with literals found by induction
• inductively learn new clause for clause predicate

}

In the example for diff, A3 attempts to specialize both clauses for member
based on the assumption not(cons(Y, Xs, [1,2,4])). The second (and correct)
clause cannot be modified to cover the positive example. Similarly, neither deleting
the first clause for member nor negating the goal for this clause causes the example
to be covered. Adding new literals to the clause finds that the literal equal (X, Y)^
correctly specializes the first clause for member which correctly repairs the theory for
diff so that it works on all examples.

The specializejclause operator gives rise to the following three candidate
revisions to the first clause for member based on the assumption not (cons (Y, Xs,
[1,2,4])):

Negate the assumed literal:

member (X,Z) not(cons(Y,Xs,Z)).
member(X,Z) cons(Y,Ys,Z), member(X,Ys).

Specialize the clause:

member(X,Z) cons(Y,Xs,Z), equal(X,Y).
member(X,Z) cons(Y,Ys,Z), member(X,Ys).

Delete the clause:

member(X,Z) :- cons(Y,Ys,Z), member(X,Ys).

^For this problem, A3 might also find literals that are semantically equivalent to equalCX, Y)
in the context of the clause such as cons(X, Xs, Z).



Generalizing Clauses

Table 4.10 gives the algorithm for generalizing clauses based on an assumption.
Similar to specializing a clause, the generalization phase trys to modify the clause
in three different ways based on the assumption. A clause may be generalized by
deleting the goal using the assumption, replacing the goal using the assumption with
literals found by induction, or by learning a new clause. As with the specialize clause
operator, the best revision returned is the one with the greatest accuracy on the
training examples. In case of a tie, A3 prefers the revision whose distance to the
initial theory is smallest. If none of revisions is more accurate than the theory input
to generalizejclause, no modification is suggested by this operator.

As an example of generalizing clauses, consider the following simple theory for
the concept graindparent consisting of only the (incorrect) clause:

grandparent(G,C) mother(G,P), parent(P,C).

This clause only covers cases where the grandparent is the grandmother. Given
examples of the grandfather relationship, A3 would make the assumption mother(G,P)
for the grandparent clause. In attempting to generalize this clause, A3 might pro
duce the following candidate revisions:

Delete assumed goal:

grandparent(G,C) :- parent(P,C).

Replace assumed goal:

grandparent(G,C) parent(G,P), parent(P,C).

Inductively learn new clause:

grandparent(G,C) :- mother(G,P), parent(P,C).
grandparent(G,C) father(G,P), parent(P,G).

Deleting the assumed goal overgeneralizes the concept to the point where anyone
is the grandparent of anyone else. Replacing the assumed goal will correctly repair
the concept provided the correct literal is used as the replacement. Also, in this case,
learning a new clause correctly repairs the concept provided the new clause covers
the portion missing from the first (i.e., all grandfather relationships). If there are ties
between revisions on both accuracy and distance, A3 choses them in the order listed
in Table 4.10. In this case, the revision to the existing clause is preferred to learning
a second clause.



Table 4.11. Algorithm for specializing concepts.

specialize_concept (assumption, theory, examples)

C = best_clause_to_speciaIize(assump/ion, theory, examples)
Td = theory with C deleted from it
Ts = theory with C specialized by adding literals using induction
if acc{To) > acc(Ts) and acc(T£)) > acc(theory)

then return Td
elseif acc(Ts) > acc(TD) and acc(Ts) > acc(theory)

then return Ts
return no repair found

4.5.2 Using Assumptions to Repair Concepts

Along with modifying the clauses in the theory that use the assumption, A3
also attempts to repair the concept for the assumption itself. If the assumption is
negated, the corresponding concept must be overly general; and if the assumption is
non-negated, it must be too specific. A3 does not attempt to repair a concept if the
assumption corresponds to a literal in the background knowledge.

Specializing Concepts

Table 4.11 gives the algorithm for specializing concepts. A3 selects the best
clause to specialize and then returns the best revision of deleting the clause and
specializing the clause by conjoining new clauses using induction. In the case of a tie,
A3 prefers to delete the clause selected for specialization. Note that A3 might choose
to delete the best clause even if it does not improve the accuracy of the theory. The
reason for this can be seen in the example discussed below.

The algorithm for choosing the best clause to specialize is shown in Table 4.12.
The clause is selected on the basis of the incorrectly classified examples that were
provable using the assumption. Each clause corresponding to the assumption is re
moved from the theory in turn and is scored by computing the difference between the
average number of proofs for each of the positive examples and the average number
of proofs for each of the negative examples. The clause with the highest score is
returned as the best one to specialize.

Because A3 specializes a concept based on choosing a single clause to specialize,
there may be theories containing overly general concepts for which no single clause



Table 4.12. Algorithm for choosing best clause to specialize.

best-clause_tojspecialize( assumption, theory, examples)

{
P = set of positive examples using assumption
N = set of negative examples using assumption
for each clause C in theory corresponding to assumption do

T' = theory without clause C
Vc = average number of proofs using T' for each e € P

— average number of proofs using T' for each e ^ N
return clause C with largest Vc

may be specialized that will improve the accuracy of the revised theory. An example
of such a theory is the following one defining the parent relation:

parent(X.Y).
parent(X,Y) female(Z).
parent(X,Y) father(X,Y).

Assuming female and father are background predicates, this theory is overly
general because two of the three clauses will match any negative example of the
parent predicate. The final clause is correct. If the selection of which clause to
specialize were based on the accuracy of the theory with each clause removed, all three
clauses would look equally good to specialize. Because two of the three clauses are
overly general, there is no single clause that can be deleted and show an improvement
in accuracy.

The idea behind the method in Table 4.12 for selecting which clause to specialize
is that either of the first two clauses should be preferred over the third one because
they do not participate in a meaningful way in the clcissification of examples. The
third clause does participate in a meaningful way because it accounts for some of the
positive examples but none of the negatives.

An alternative method of scoring the clauses could have been based on the
accuracy of the theories with each clause removed. However, this method of scoring
clauses is undesirable because it does not distinguish between the three clauses for
parent in the above example.

Using the method described in Table 4.12, A3 will choose either of the overly
general clauses to specialize and not the correct clause which should be left in the
theory. To see why, assume there axe m positive examples of psirent due to the person
being a mother, / positives corresponding to the father, n negative examples that are



neither fathers nor mothers, and r females in the background knowledge. Deleting
the first clause for parent leads to a score of:

y ^ mz-t-f(l-i-z) £n _ /
Jn -h f n m + /

because without the first clause, there are mz ways to prove the mother positives and
/(I -\- z) ways to prove the father positives out of a total of m+ / positives. Each
negative example can be proved by the second clause giving an average of ^ proofs
per negative example. Similarly, deleting the second clause will also give a score of:

1/2 = 14 = ^ /
"I + / n m + /

Finally, deleting the third clause for parent results in a score of:

y^ ^ (m +/)(l +z) _ n{l +z)
^ m+/ n ~

because without the third clause, there are fewer ways to prove a positive example
where the parent is the father. If there are any positive examples where the parent
is the father, / 7^ 0 and Vl = 14 > V3. Consequently, either of the first two clauses
will be chosen for specialization over the correct third clause.

A3 will therefore delete either of the first two clauses for parent even though
It does not improve the accuracy of the theory. Once this repair is made, A3 could
then delete the other clause for parent or specialize it in order to repair the theory
correctly.



Table 4.13. Algorithm for generalizing concepts.

generalizejconcept(as5um/?^«on, theory, examples)
{

predicate ~ predicate name corresponding to assumption
T' ~ inductively learn a new clause for predicate
return T'

}

Generalizing Concepts

Table 4.13 gives the algorithm for generalizing a concept and consists ofsimply
learning a new clause for the assumption predicate using induction. The induction
operator is discussed in the next section. Note that another possibility for the gener
alizeconcept operator couldhave been to try deleting literals from eachof the clauses
in the concept. However, A3's assumptions are intended to identify such literals and
the repair_where_used operators should perform this task.

The operators for generalizing and specializing concepts are in some sense sim
pler than those for clauses because the assumptions that guide the revision process
give little information as to what is wrong with the concept other than being overly
general or specific. In this case, more precise information about which clause or
clauses in the concept need to be repaired is missing. In contrast, the assumptions
give more precise information about how to revise the theory where they are used,
namely which clause and which literal in the clause need to use the cissumption.

Alternate approaches to the operators for generalizing and specializing concepts
could include choosing some subset of the clauses belonging to a concept and either
generalizing or specializing them all at once. However, experiments indicate that
the simple approach taken by A3 works well but further investigation into alternate
approaches would be worthwhile.

4.6 Clause Induction

The induction operator in A3 for learning new clauses and specializing clauses
is a variant of Foil's FindClause (see Table 2.2) operator. A clause is built through a
hill-climbing process of adding new literals to the clause under construction. The best
literal to add is the one that gives the best coverage of the top-level input exctmples.
Therefore, in the examplefor the concept diff, specializing a clause for member would
determine the best literal to add by computing the coverage of examples for diff,



Table 4.14. A3's algorithm for clause induction.

induce-clause(c/ause, theory, examples)

{
T = add clause to theory
while accuracy of T on examples is improving do

literal ~ bestJiteral(c/awse, T, examples)
add literal to clause in T

return T

Table 4.14 shows the top-level algorithm for inducing new clauses or specializing
existing clauses. The main differences between A3's clause induction and Foil's are
that A3 uses only the input examples and does not keep track of tuples, the sets
of positive and negative examples covered by the clause under construction are not
reduced by A3 when a new literal is added, and A3 uses a simpler evaluation function
when deciding which new literal to add to a clause, namely, choosing the literal that
gives the most improvement in accuracy.

Because A3 learns clauses within the context of a theory, one cannot assume that
adding literals to a clause will specialize other concepts using that clause. However,
Foil does learn clauses in isolation from other concepts and so can assume that when
a literal is added to a clause that all excimples (tuples) that are not covered by the
clause need not be checked when adding further literals. Because of this, Foil's
algorithm for learning a single clause can be made more efficient by trimming the list
of examples to check as they are no longer covered by the clause under construction.

A3's algorithm for learning new clauses (Table 4.14) cannot exclude uncovered
examples once the clause being built no longer covers them because specializing one
clause in a theory may cause cinother to be generalized. Also, A3 cannot use the
same termination criterion as does Foil and must instead stop when no new literal
can improve the accuracy of the theory. The following example demonstrates the
differences between A3 and Foil.

Consider the following incorrect theory for odd and even numbers:

odd(X) not(even(X)).

even(X).

The definition of even is overly general and states that everything is even.
Consequently odd is overly specific and states that nothing is odd. Now assume
that to repair this theory A3 decides to specialize the clause even(X) and is only



given the positive examples odd(l), odd(3) and the negative examples not (odd(2)),
not(odd(4)). Only not(odd(2)) and not(odd(4)) are correctly classified.

If A3 were to weed out those examples not provable by the theory, none of
the above examples would be available to compute the evaluation function for new
literals. The two negative examples are correctly classified because they are not
provable and the two positives are incorrectly classified because they are also not
provable. Consequently, A3 must use all the available examples when computing
its evaluation function because one cannot assume, as one can in FOIL, that adding
literals to a clause strictly specializes a theory.

Another consequent of needing to compute the evaluation function over all the
input examples is that A3 cannot use Foil's termination criterion that the set of
negative examples to exclude is empty. Rather, A3 terminates when no new literal
can be added to the clause that will improve the overall accuracy of the learned
theory.

A3 behaves as FOIL when no initial theory is present because it attempts to
learn a set of clauses to cover the input examples. In this case, A3's method of
retaining all examples for evaluation and stopping when no new literal improves the
evaluation function is less efficient but still equivalent to the control structure used
by Foil.

4.6.1 Evaluation Function

Whereas PoiL uses an information-based heuristic for evaluating which new
literal to add to a clause, A3 uses the simpler measure of accuracy of the theory on
the input training set. There are several reasons for doing this. A3's primary control
structure must at times choose between different revisions to a theory and does so on
the basis of overall accuracy on the input examples. It is therefore reasonable that all
of A3's operators use the same measure. Mingers (1989) showed that classification
accuracy for decision trees is not very sensitive to the choice of evaluation function.
Even though A3 uses a first-order Horn clause representation, the selection of literals
to add to a clause is quite similar to the selection of an attribute when building a
decision tree.

It has not been shown that Foil's use of tuple counts in the evaluation function
mecLSures any meaningful aspect of the concept to be learned. In fact, this aspect of
Foil's evaluation function biases the selection of literals towards those that introduce

new variables. The introduction of literals with new variables is very problematic for
approaches similar to FOIL as was mentioned earlier in Section 2.1.3. Solutions to
this must directly address the problem rather than bury it in the evaluation func
tion. Other attempts at solving this problem include CHAM (Kijsirikul, Numao



Foil eval fn

A3 eval fn

0 % negative correct 0 % negative correctpositive correct positive correct

Figure 4.2. Comparison of Foil's and A3's evaluation function.

k Shimura, 1991), Foil with determinate literals (Quinlan, 1991), and Forte's
relational pathfinding component (Richards k Mooney, 1992).

A3 and Foil's evaluation functions are actually quite similar in behavior. The
two system's evaluation functions are given as follows:

EvalpoiL =

Eval. -^correct "i" ^correct
Ptotai + ^total

Assuming that no new variables are introduced into a new literal then 7;++ =
^+1- Figure 4.2 shows the surfaces of both evaluation functions as a function of the
proportion of positive and negative examples that are correct assuming equal propor
tions of positive and negative input examples.^ The graphs have been normalized to
have a maximum value ofone. One can readily see that the two surfaces are almost
indistinguishable in the region that Foil's gain is greater than zero.

4.7 An Example Trace

This section presents asimple example of A3's operation on a theory containing
multiple errors. The correct theory found in Table 4.15 is used to determine whether

^The difference between the two surfaces is greatest when the initial numbers of positive and
negative examples are equal. As the ratio of initial pc^itives to negatives approaches zero or infinity,
the distance between the two surfaces approaches zero.



Table 4.15. A correct theory for determining voter eligibility.

vote(X) uscitizenCX), not (feloii(X)).

uscitizen(X) born(X,Y), usa(Y).

uscitizen(X) naturalized(X).

felon(X) convicted(X,Y), felony(Y).

/* background clauses */
felony(murder).
misdemesmorCindecent-exposure).
usa(usa).

england(eEgland).

a person is eligible to vote in the United States. The theory states that a person is
eligible to vote if they are a U.S. citizen and have not been convicted of a felony.'*
The theory contains two intermediate concepts: uscitizen and felon. A person is
considered a U.S. citizen if they were either born in the U.S. or if they have become
a naturalized citizen. A felon is a person who has been convicted of a felony.

The input examples and background information given to A3 are found in Table
4.16. The background information represents literals that are present in the input
theory but not shown in Table 4.15. For example, person pi is a male, a felon, and
was born in the U.S. which means the ground clauses male (pi), born (pi, usa), and
convicted(pi, murder) can be found in the theory. The examples given to A3 are
of the form vote(p5) or not(vote(pl)).

Table 4.17 presents an incorrect version of the theory found in Table 4.15. This
theory has four different types of errors: an extra clause, a missing clause, an ex
tra literal, and a missing literal. The extra clause is for the vote predicate. The
uscitizen predicate is missing a clause and one of its clauses is missing a literal.
The clause for felon contains an extra literal.

The theory in Table 4.17 correctly classifies all of the eight positive examples
and none of the ten negative examples. The misclassifications are due to the incorrect
clause vote(X) which matches all examples and consequently gets all of the negatives
wrong. Failing to correctly classify all of the training examples A3 finds assumptions
to locate an error in the theory. A3 finds only one assumption for each of the negative
examples:

^This theory has been intentionally simplified. For example, it omits the requirement that the
person is over eighteen years in age.



Table 4.16. Examples and background information for the voter eligibility theory.

Background InformationExamples

name can vote? born naturalized crime male

pi no usa no murder yes

p2 yes usa no indecent-exposure yes

p3 yes usa no none yes

p4 no england yes murder yes

p5 yes england yes indecent-exposure yes

p6 yes england yes none yes

P7 no england no murder yes

p8 no england no indecent-exposure yes

p9 no england no none yes

plO no usa no murder no

pll yes usa no indecent-exposure no

pl2 yes usa no none no

pl3 no england yes murder no

pl4 yes england yes indecent-exposure no

pl5 yes england yes none no

pl6 no england no murder no

pl7 no england no indecent-exposure no

pl8 no england no none no

Table 4.17. An incorrect theory for determining voter eligibility.

vote(X) uscitizen(X) , iiot(felon(X)) .
vote(X).

uscitizen(X) boni(X,Y).
feloE(X) convicted(X,Y), felony(Y), male(X).

/* background clauses */
felony(murder).
misdemeanor(indecent-exposure).
usa(usa).

england(england).



# Examples Using
Assumption

To

Assumed

Literal

not(vote p7))

The assumption Eot(vote(p7))® is used by all of the ten negative examples.
A3 attempts to repair the theory by repairing the clause using the assumption and
by repairing the concept corresponding to the assumption. Because the assumption
not (vote(p7)) is at the top-level, there are no clauses that use it. Consequently, A3
only tries to specialize the concept vote.

To specialize vote, A3 first chooses the clause for vote that is used in the most
number of incorrect classifications of examples. In this case, the clause vote(X) is
chosen. A3 considers deleting the clause and it considers specializing the clause by
adding new literals. The better of these two revisions is retained. The results of
these two revisions are given below along with the total number of examples correctly
classified and the distance between the revised theory and the initial theory.

• Delete Clause: 11 correct, distance to initial is 1.

• Add Literals: 11 correct, distance to initial is 1.

vote(X) not(convicted(X,Y)).

In the case of a tie on both accuracy and distance, A3 always prefers the delete
clause operator which in this case leads to the following theory:

vote(X) uscitizen(X), not(felon(X)).
uscitizen(X) born(X,Y).
felon(X) convicted(X,Y), felony(Y), male(X).

This revised theory still correctly classifies all the positive examples, but mis-
classifies seven of the ten negative examples. A3 finds the following cissumptions for
the seven incorrect negatives:

# Examples Using
Assumption

7

7

7

7

3

2

2

Assumed

Literal

not(born(pl3,Y))
felon(pl3)
not(uscitizen(pl3))
not(vote(pl3))
male(pl3)
convicted(p8,Y)
felony(indecent-exposure)

®The assumptions are written with specific bindings for some of the arguments. A3 ignores these
variable bindings when considering whether or not two assumptions are equivalent.



There are two deepest assumptions covering the same number of examples:
iiot(born(pl3, Y)) and feloii(pl3). A3 chooses among these randomly so assume
not(born(pl3, Y)) is chosen.® To repair the theory, A3 considers specializing the
clause using the assumption as well as specializing the concept corresponding to the
cissumption.

The clause for uscitizen uses the assumption not(born(pl3, Y)) and is spe
cialized by deleting the clause, negating the goal corresponding to the assumption,
and by adding new literals to the clause. A3 generates the following candidate revi-

• Delete Clause: 10 correct, distance to initial is 3.

• Negate Goal: 10 correct, distance to initial is 2.

uscitizen(X) not(borii(X,Y)).

• Add Literals: 13 correct, distance to initial is 2.

uscitizen(X) born(X, Y), usa(Y).

Because the concept for the assumption not (born(pl3,Y)) is in the background
knowledge, A3 does not attempt to repair the concept. Therefore A3 chooses to add
a new literal the to clause for uscitizen resulting in the following theory:

vote(X) uscitizen(X), not(felon(X)).
uscitizen(X) born(X,Y), usa(Y).

felonCX) convicted(X,Y), felony(Y), male(X).

This theory now incorrectly classifies four of the eight positive examples but
only one of the negative examples. To locate further errors in the theory, A3 finds
the following assumptions based on the incorrectly classified examples:

# Examples Using
Assumption

4

4

4

4

Assumed

Literal

usa(england)
born(pl5, Y)
uscitizen(pl5)
vote(pl5)
not(usa(usa))
not(bornCplO, Y))
felon(plO)
male(plO)
not(uscitizen(plO))
not(vote(plO))

®Note that both assumptions correspond to different errors that occur in the theory.



There are two deepest assumptions covering the same number of examples:
usa(engl5uid) and born(pl3,Y). A3 chooses among these randomly so assume that
usa(englaiid) is chosen. To repair the theory, A3 attempts to both generalize the
clause using the assumption as well as generalize the concept corresponding to the
assumption. However, because the assumption corresponds to background knowledge,
A3 only attempts to generalize the clause using the assumption.

The clause uscitizen(X) born(X,Y), usa(Y) is generalized by deleting
the goal using the assumption, replacing the goal with new literals, and by learning
a new clause for the predicate uscitizen.

• Delete Goal: 11 correct, distance to initial is 1.

uscitizenCX) born(X,Y).

• Replace Goal: 13 correct, distance to initial is 2.

uscitizen(X) born(X,Y), naturalized(X).

• Learn new clause: 16 correct, distance to initial is 3.

uscitizen(X) naturalized(X).

The best revision found by A3 is to add the new clause for uscitizen resulting
in the following theory:

vote(X) uscitizen(X), not(felon(X)).
uscitizen(X) born(X,Y), usa(Y).
uscitizen(X) :- naturalized(X).

felon(X) :- convicted(X,Y), felony(Y), male(X).

The theory is now almost completely repaired except for the clause for felon
which causes two of the negative examples to be incorrectly classified. A3 find the
following assumptions for these two examples:

# Examples Using Assumed

Assumption Literal

2 male(pl3)
2 not (uscitizen(pl3))
2 felon(pl3)
2 not(vote(pl3))
1 not(naturalized(pl3))
1 not(usa(usa))

1 not(born(plO, Y))

The deepest assumption covering the most number of examples is male(pl3).
A3 attempts to repair the theory by generalizing the clause using the assumption and



by generalizing the concept corresponding to the assumption. Because the assump
tion male(pl3) is in the background knowledge, A3 does not attempt to general
ize the concept. The clause felon(X) convictedCX, Y), felony(Y), male(X)
uses the assumption and is generalized by deleting the goal corresponding to the as
sumption, replacing the goal with new literals, and by learning a new clause for the
predicate felon:

• Delete Goal: 18 correct, distance to initial 4.

felon(X) convicted(X,Y), felony(Y).

• Replace Goal: 18 correct, distance to initial 4.

felon(X) convicted(X,Y), felony(Y).

• Learn new clause: 16 correct, distance to initial 5.

felon(X) not(convicted(X, Y)).

Note that both the delete goal and replace goal operator make the same revision
which classifies all eighteen examples correctly. The replace goal operator did not find
any literals to add in place of the goal male(X) that were able to improve the accuracy
of the theory. A3 therefore chooses to delete the goal male(X) from the clause for
felon producing the final and correct revision of the initial theory:

vote(X) uscitizen(X), nQt(felon(X)).
uscitizen(X) born(X,Y), usa(Y).
uscitizen(X) naturalized(X).

felon(X) :- convicted(X,Y), felony(Y).

4.8 Discussion

This chapter has presented the details of the A3 system for revising function-
free first-order theories containing negation. There are several important aspects of
the system that should be noted.

As stated earlier, one of the goals of the theory revision task is to learn correct
theories that are minimal revisions of the incorrect input theory. One of the unique
features of A3 is that it has a well defined notion of the degree of revision. A
minimally revised theory is one whose edit distance from the initial theory is smallest
over the set of all theories that correctly classify the training examples. A3 uses this
metric in its evaluation function for deciding on which candidate revision to make.
The system prefers more accurate theories but breaks ties using the distance metric.
Although this does not guarantee that A3 will find an optimal solution the useof the
distance metric for selecting revisions will bias it towards making minimal revisions
of the input theory.



A3 derives much of its power through its assumption finding mechanism. These
assumptions play a crucial role in both locating and repairing errors in a theory.
Assumptions are generated on the basis of incorrectly classified examples. The sys
tem uniformly treats positive and negative examples as literals that should be provable
by the theory. Thus the negative example of an even number evenCS) can be repre
sented as not(even(3)). Using negation-as-failure and the closed-world assumption
a negative example such as not(even(3)) should be provable by a correct theory.
An incorrectly classified example is therefore one which has no proof. Assumptions
in A3 are made in order to allow the proof of an example to complete. Consequently,
an assumption could be used by more than one example, be it positive or negative,
or by examples of different classes altogether.

The most commonly occurring assumption over the set of incorrectly clcissified
examples serves as an indication of an error in the theory. By focusing on the most
common errors first, A3 performs a hill-climbing search for revised theories. Because
the same assumption can be used by both positive and negative examples as well as
examples of different concepts in the theory, A3 is able to make repairs that have the
largest impact over the entire set of examples.

Most learning systems decide to generalize when a positive example is uncovered
or to specialize when a negative example is covered by the concept description being
built. However, as shownearlier in this chapter, a theory containing negation does not
have this property. A3 avoids this problem altogether through the useofassumptions.
The form of the assumption and how it is used provide the basis for deciding which
concepts in the theory need to be generalized and which need to be specialized. No
longer does the system decide this on the basis of the positive or negative examples
themselves; rather, the sign of the assumed literal (negated or non-negated) indicates
the need for specialization or generalization. It is interesting to note that in the
special case where there are no intermediate concepts in the theory, the assumptions
will correspond directly to the input examples: incorrectly classified positives will
indicate the need for generalization and incorrectly classified negatives will indicate
the need for specialization.

Finally, A3 demonstrates how an existing method for learning first-order con
cepts can be used in the larger theory revision task. A3 has operators for generalizing
and specializing clauses and one of the methods for specializing clauses is based on
techniques used in FOIL. Once again, a hill-climbing search through the space of
literals to add to a clause forms the basis for clause specialization. A3 generalizes the
Foil technique in order to specialize a clause within the context of a larger theory
being repaired. In the special case where there is no larger context and only clauses
for a single concept are being built, A3's method for clause specialization is equivalent
to Foil's.



Chapter 5

Validation of the Method

This chapter explores A3's ability to perform theory revision on a variety of
domains. The learned theories are evaluated in terms of accuracy as well as the
distances between the initial, learned, and correct theories.

The first section presents demonstrations of A3's ability to repair complex the
ories. A3 is shown to be able to repair recursive logic programs containing errors
within the scope of a negation.

The second section presents the results of systematic evaluation of A3's abilities
to repair theories containing varying degrees and types of errors. Two very different
domains are used: the king-rook-king problem and a theory of common sense moral
reasoning (Shultz, 1990). A correct theory for each domain is mutated by varying
degrees with varying types of errors and given to A3 to revise. The revised theories
are then evaluated in terms of both accuracy and distance. The results show that
A3 does not handle all types of errors equally well but that its performance degrades
gracefully with increased complexity.

The final set of experiments demonstrates A3's ability to learn from examples of
multiple concepts in a theory. Because some errors in a theory can be corrected with
repairs at different locations, further constraints on the learning task are required in
order for the system to learn theories that are close to the correct one. Examples of
intermediate-level concepts provide one form of such constraints. The experiments
with intermediate concepts demonstrate how A3 uniformly handles examples of mul
tiple concepts in order to learn theories that are closer to the correct one than if only
top-level examples were available.

Demonstrations of Theory Revision

This section demonstrates A3's ability to repair incorrect theories containing
negation. As mentioned earlier, other first-order theory revision systems, including
KR-Focl (Pctzzani & Brunk, 1991), AUDREY (Wogulis, 1991), CLINT (De Raedt,
1991), Forte (Richards k Mooney, 1991; Richajds, 1992), and V-CA (Tangkitvanich,



Numao Sz Shimura, 1992) are not fully able to revise theories containing errors within
the scope of a negation. Most of these systems can add and delete clauses containing
negated literals or even add and delete negated literals from clauses. However, the
control structures of these systems are not able to locate or explicitly repair errors
within a negation. The following sections demonstrate A3's ability to repair theories
with negation on a number of domains.

5.1.1 A Simple Domain: Odd and Even Numbers

The first domain examined is the very simple one presented in Table 4.1 for
determining whether a number is odd or even. The theory contains the following two
clauses:

odd(X) not(even(X)).
even(2).

Once again, note that the concept even is too specific because it is only correct
for the value two. Consequently, the concept odd is overly general and is incorrect
for all even numbers except two. All training sets of examples for these concepts can
only include four types of examples:

odd(num)

not(odd(nwm))

even(num)
not(even(num))

where num is an integer. All examples belonging to the class odd(iium) are correct
even though for the wrong reason, and all examples in the class not (odd (num))
except for not(odd(2)) are incorrectly classified. Similarly, all examples of the
class not (even (num)) are correct and all examples of the class even (num) except
for even (2) are incorrect.

Given a training set for this problem, A3 will first try to find an error in the
theory that can account for the most number of incorrectly classified examples. The
incorrect examples fall into two classes: not(odd(num)) and even(num). Because
there is only a single clause for the concept even, all of the incorrectly classified
examples of even could be proved by making the assumption even (num). Every in
correct example from the class not (odd (num)) has two assumptions that would make
it provable, namely not (odd (num)) and even (num) of which the later would be cho
sen because it is deeper in the call graph than the first. Regardless of the proportion
of examples between these different classes, A3 would always choose even(num) as
the best assumption to use as a guide for revising the theory. Having correctly iden
tified the error in the theory, A3 will repair the theory in the correct place given



sufficient background knowledge to express even numbers. For example, given predi
cates mod2(X,Y) and zerop(X), A3 will repair the definition of even to be even(X)

mod2(X,Y) ,zerop(Y) A3 will not repair the theory by modifying the clause for
odd because that would not improve the coverage for the incorrect examples of even.

5.1.2 Logic Programs

Recursion and Negation: Symmetric Difference of Lists

A more complex theory that A3 is able to repair was presented in Table 4.3
for finding elements in the symmetric difference between two lists. Shapiro (1983)
presented this theory to show how MIS could solve the problem with a single positive
example and the use of an oracle. This theory was used in Chapter 4 to demonstrate
the workings of different components of A3 which is able to correctly repair the theory
given only the positive example diff (4, [1,2,4] , [2,3]). In both A3 and MIS, the
positive example is used to identify the error. However, A3 is also able to use the
positive example to correct the error in the definition of member whereas the MIS
system required answers from an oracle about the intended meaning of the member
predicate.

The clauses from the incorrect theory are as follows:

diff(X,Ys,Zs) membGr(X,Ys), not(mGmber(X,Zs)).

diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).

member(X,Z) cons(Y,Xs,Z).
member(X,Z) cons(Y,Ys,Z), member(X,Ys) .

Note that the concept diff is overly specific because the error occurs in the first
clause for member (indicated by italics) making it overly general. In order to repair this
theory, A3 must at least be given positive examples of the predicate diff. Positive
examples are required to find the location of the error in the member concept because
negative examples are correctly classified and do not require finding assumptions.

All positive examples of the diff predicate will be incorrectly classified and
can be used by A3 to generate assumptions that locate the error in the theory. In
fact, all positive examples of the form diff (ni, /i, I2) will lead to the generation
of the same best assumption not (cons (Y, Xs, /i)) used in both clauses for the
member predicate. Because all negative examples are correctly classified (even if for
the wrong reason), none will lead to the generation of assumptions. Consequently,
for any training set of positive and negative examples of the predicate diff, A3 will
correctly locate the error in the theory as indicated by the assumption not (cons (Y,
Xs, /i)).



Table 5.1. Positive and negative examples of symmetric difference.

diffCl, [2,4,1], [2,3])
diffO, [1,2,4], [2,3])
diff(4, [1,2,4], [2,3])
diff(2, [3,2] , [])
diff(2, [], [1,2])

not(diff(l, [1,2,4], [2,1,3]))
not(diff(2, [1,2,4], [2,3]))
not(diff(6, [1,2,4], [2,3]))

not(diff(7, [1,2,4], [2,3]))
not(diff(l, [], []))

The assumption essentially states that the first list argument, /i, for the diff
predicate can not be decomposed. Consequently, neither clause for member will work
when membership is asked of li but will work for the list I2. This assumption then
allows the example diff (4, [1,2,4] , [2,3]) to be provable.

In order to repair the theory, A3 must be given examples that can be used to
specialize the concept for member. This is the role played by the two oracle queries pre
sented by Shapiro: member(4, [1,2,4]) and member(4, [2,3] ). The answers to these
two queries amount to giving MIS both a positive and negative example of the member
predicate. A3 is able to use the positive example diff (4, [1,2,4] , [2,3]) to fill this
role because correctly classifying the example using the first clause for diff requires
both proving that the goal member(4, [1,2,4]) is true and that member(4, [2,3]) is
false. Unless A3 is able to repair the concept for member such that these queries are
true, the positive example diff (4, [1,2,4] , [2,3]) will not be correctly classified.
Given the background clause equal (X, X) true, A3 will then correctly repair
the first clause for member to be member(X,Z) cons(Y,Xs,Z), equal(X,Y) by
using the algorithm for repairing a concept where an assumption is used (Table 4.8).

While A3 is able to repair the incorrect theory for diff given by Shapiro, it is
also able to repair other types of errors that could occur in this theory. The following
experiments demonstrate how A3 repairs errors in this theory consisting of missing
literals and missing clauses given a small training set of positive and negative examples
of the concept diff. Incorrect versions of the theory are generated by deleting each
literal and each clause in turn. Because the two clauses for diff are symmetric, only
one of them will be modified to demonstrate A3's behavior.

All of the experiments use the training set consisting of the five positive and five
negative examples shown in Table 5.1. The correct theory and available background
knowledge are given in Table 5.2.



Table 5.2. Correct theory and background knowledge for symmetric difference.

diff(X,Ys,Zs) member(X,Ys), iiot(member(X,Zs)).

diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).

member(X,Z) cons(X,Xs,Z).
member(X,Z) cons(Y,Ys,Z), member(X,Ys).

/* background knowledge */

nuU([]).

cons(X,Y,CX|Y]).

eq(X,X).

The first test case involves deleting the first clause for diff giving the following
overly specific theory that correctly classifies two of the five positive examples and all
five of the negative examples:

diff(X,Ys,Zs) member(XjZs)> iiot(member(X,Ys)).

member(X,Z) cons(X,Xs,Z).
member(X,Z) cons(Y,Ys,Z), member(X,Ys).

To cover the three incorrect positive examples, A3 finds that the single assump
tion diff (2, [3, 2] , []) can be used for each one. Note that this assumption is
reported with constants from a specific example. Even though the constants are
different for each example, all three use equivalent assumptions. From here on, as
sumptions will be presented for a specific example even though different examples use
an equivalent one. The assumption diff (2, [3, 2] , [] ) indicates that the concept
for diff is overly specific and A3 uses the operator generalizejconcept to repair
it. A3 generalizes concepts by inducing a new clause and finds the correct clause
diff (A, B, C) member(A, B), not(member(A, O) to repair the theory.

The second test case involves deleting the first clause for the member concept
resulting in the following overly specific theory that correctly classifies none of the
five positive examples but all of the five negatives:

diff(X,Ys,Zs) member(X,Ys), not(member(X,Zs)).
diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).
member(X,Z) cons(Y,Ys,Z), member(X,Ys).

A3 finds that the assumption member (4, [4]) will allow the proof of all the
five incorrectly classified positive examples. Notice that this cissumption corresponds



to the base case for a recursive definition of member which is the missing clause from
the theory. The assumption indicates that the member concept must be generalized
and A3 attempts to learn a new clause using induction. From the examples provided,
A3 learns the correct clause for the base case: member(A, B) cons(A, C, B) .

The final test case for deleting clauses results in the following theory that cor
rectly classifies none of the five positive examples and three of negatives. Note that
this theory is both overly general and overly specific:

diff(X,Ys,Zs) memb6r(X,Ys), not(member(X,Zs)).
diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).
member(X,Z) cons(X,Xs,Z).

A3 finds that the assumption cons(2, X, [1,2,4]) allows all five of the in
correct positives and both of the incorrect negatives to be correctly classified. Notice
that this single assumption is used by both positive and negative examples. The as
sumption indicates that either the concept cons or member, which uses cons, is overly
specific and must be generalized. Because cons is part of the background knowledge,
A3 only attempts to repair clauses for member. Using the repair_where_used oper
ator, A3 is able to induce a new clause for memberwhich is the correct missing clause:
member(A, B) cons(C, D, B), member(A, D).

The next set of test cases involves deleting single literals from the clauses in the
correct theory. Again, because the two clauses for diff are symmetric, only literals
from one are deleted. The first test case deletes the first literal from the first clause

for diff resulting in the following overly general theory that correctly classifies all
five positive examples but only two of the five negatives:

diff(X,Ys,Zs) not(member(X,Zs)).

diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).

member(X,Z) cons(X,Xs,Z).

member(X,Z) cons(Y,Ys,Z), member(X,Ys).

A3 finds that the assumption cons(7, X, [2,3] ) will cover all three incorrect
negative examples. Because cons is a part of the background knowledge, A3 only
attempts to repair clauses using the assumption which in this case are the clauses for
member. However, A3 is unable to repair the clauses for member to improve the ac
curacy of the theory. Consequently, A3 uses the next best assumption, not (diff (1,

[] > [])) which is also used by all three negatives. That the assumption is negated
means that the concept for diff must be specialized. A3 chooses the first clause as
the best to specialize because it is responsible for misclassifying some of the negatives.
The clause is then specialized by adding new literals using induction and A3 repairs
the incorrect clause to be: diff(X, Ys, Zs) not(member(X, Zs)), member(X,
Ys).



The next test case for deleting a literal produces the following overly general
theory that correctly classifies all five positive examples but only three of the five
negatives:

diff(X,Ys,Zs) member(X,Ys).
diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).
member(X,Z) cons(X,Xs,Z).

member(X,Z) cons(Y,Ys,Z), member(X,Ys).

A3 finds that the assumption not(diff(2, [1,2,4], [2,3])) covers both
incorrect negatives. The assumption indicates that the concept for diff must be
specialized and A3 uses the operator specialize^oncept to select the first incorrect
clause for diff to specialize. The clause is specialized by adding new literals and A3
learns the correct clause:

diffCX, Ys, Zs) member(X, Ys), not(member(X, Zs)).

The third test case deletes the member (X, Ys) literal from the second clause for
member resulting in the following overly specific theory that correctly classifies two of
the five positives and all five of the negatives:

diff(X,Ys,Zs) member(X,Ys), not(member(X,Zs)).
diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).
member(X,Z) cons(X,Xs,Z).
member(X,Z) cons(Y,Ys,Z).

All three of the incorrect positive examples can be correctly classified using
the assumption not(cons(Y, Ys, [1,2,4])). A3 attempts to repair the theory by
specializing the clauses that use the assumption. The incorrect clause for member is
specialized by adding the correct literal to produce the correct repair: member(X, Z)

cons(Y, Ys, Z) , member(X, Ys) .

The next test case involves deleting the literal for the base-case clause for member
producing the following overly specific theory that correctly classifies none of the
positive examples and all of the negatives:

diff(X,Ys,Zs) member(X,Ys), not(member(X,Zs)).
diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).
member(X,Z).
member(X,Z) cons(Y,Ys,Z), member(X,Ys).

The incorrect positive examples can be correctly classified by making the as
sumption not (member(4, [2,3])) which indicates that either the member concept
or clauses that use it must be specialized. The correct repair is to specialize the first
clause for member. However, using the specializejconcept operator, A3 is unable
to determine which clause for member is the best one to specialize and so does not



learn the correct repair to the theory. Instead, A3 repairs the theory by adding the
clause diff (A, B, C) not(eq(B, C)) which improves the accuracy of the initial
theory but does not cover all of the training examples.

The final test case deletes the first literal in the second clause for member pro
ducing the following overly specific theory that correctly classifies none of the five
positive examples and all of the negatives:

diff(X,Ys,Zs) member(X,Ys), not(member(X,Zs)).

diff(X,Ys,Zs) member(X,Zs), not(member(X,Ys)).
member(X,Z) cons(X,Xs,Z).
member(X,Z) member(X,Ys).

For the incorrectly classified positive examples, A3 only finds the assump
tion diff(4, [1,2,4] » [2,3]) indicating that the concept diff is overly specific.
However, A3 is unable to generalize the concept diff to improve accuracy. Given
the additional positive example diff (1, [1] , []), A3 would also find the assumption
not(member(l, [])). This assumption indicates that the concept member is overly
general. One of the operators used to repair member is to add new literals which will
attempt to make the repair: member(X, Z) :- member(X, Ys), cons(A, B, Ys).
However, because of the way A3 does theorem proving, this clause will not work
correctly due to adding the literal to the end of the clause.^ Were A3 able to add the
new literal before the member(X, Ys) literal, it would have found the correct repair
to the theory.

These test cases show that A3 can repair a large variety of errors in recursive
theories containing negation. Those errors that A3 could not repair point out some
weaknesses in the system that will be discussed later.

A Complex Logic Program: N-Queens

To test A3 on a more complex logic programming domain, the system was
provided with an incorrect theory for the five queens problem as shown in Table 5.3^.
The theory contains the same error in the definition of member as was in the incorrect
theory for diff. Note that in the theory for determining elements in the logical
difference between two lists, the member predicate is used as a test whereeis it is used
to generate bindings within the attacks predicate from the five-queens problem.

^Both A3 and Prolog will go into infinite recursion when the item is not a member of the list.
A3 uses a depth-bound theorem prover and chooses not to make a repair if the bound is exceeded
during the proof of any example.

^Adapted from (Bratko, 1986).



Table 5.3. Incorrect domain theory for the five-queens problem.

solutionCC]).

solution(S)
cons(A,Others,S),
cons(X,[Y],A),

solution(Others),
memberCY, [1,2,3,4,5]),
not(attacks(X,Y,Others)).

attacks(X,Y,Others)
member([XI,Yl],Others),
attacking(X,Y,Xl,Yl).

attacking(X,Y,Xl,Y1)
attacking(X,Y,Xl,Y1)
attacking(X,Y,Xl,Y1)

- eq(Yl,Y).
- Yl is (Y+Xl-X)

- Yl is (Y-Xl+X)

member(A,R) cons(B,L,R).
member(A,R) cons(B,L,R), member(A,L)



As with the list clifFerence problem, all negative and no positive examples of
solution are correctly classified by the initial theory. Consequently, positive exam
ples are required in order to locate where the theory needs to be repaired. For any
positive example of the form solution(/i), A3 finds that making the assumption
consCX, Y, /i) will allow the example to be proved. Note that this is different than
the assumption made for the symmetric list difference theory which was not (cons (X,
Y, /i)).

The assumption cons(X, Y, /i) is used in two places in the second clause for
solution and in both clauses for member. The deepest use of the cissumption occurs
in the member clauses. Because the assumption is not negated, A3 tries to generalize
the clauses for member. The best alternative chosen by A3 is to replace the cons literal
in the first clause for member with a new one found through induction: cons(A,L,R).
This repair will perform best on any input training examples because it completely
and correctly repairs the theory.

5,2 Systematic Evaluation

This section attempts to characterize A3's ability to revise theories containing
different types of errors. This is done by controlling the types of errors in the initial
theory and measuring the system's resulting performance. These experiments provide
empirical evidence that A3 is able to repair a wide variety of theory errors.

In order to perform these experiments, two domains were chosen, the king-rook-
king chess end game and a theory that simulates moral reasoning (Shultz, 1990).
The experiments involved systematically introducing different types and degrees of
error and then measuring A3 s performance after having been presented with dif
fering numbers of training examples. The dependent performance variables include
accuracy, the distance of the revised theory from the initial theory, and the distance
between the revised theory and the correct one. The independent variables are the
number of training examples, the type of theory errors introduced and the number of
errors introduced.

5.2.1 Moral Reasoner: A Complex Domain

As a test of A3's ability to repair larger "real-world" domains, this section
investiptes Shultz's (Shultz, 1990; Darley k Shultz, 1990) MR (Moral Reasoner)
which is a rule-based model that qualitatively simulates moral reasoning. The model
was intended to simulate how an ordinary person, down to about age five, reasons
about harm-doing.



The Domain

Shultz explains that the MR system has been implemented using production
rules as well as LiSP functions returning true or false according to the rules they
encode. Translating these rules into a Horn clause representation is quite straight
forward. The Horn clause rules for MR are listed in Appendix A. Figure 5.1 shows
the relationship between the different concepts from the domain in the form of an
AND-OR graph. Each node in the graph represents a concept and is connected to
the concepts that comprise its definition. Nodes prefixed with the not symbol mean
the negation is to be used. For example, the clause for blameworthy will be true if
the person is responsible, the action was not justified, and the harm was greater
than the benefit to the victim.

The MR domain is an especially interesting test bed for A3 because many of
the concepts are expressed using the negation of others. In fact, in some cases, there
are several layers of negation as seen in the clauses for accident. If the clauses for
MR had to be written without using negation, the resulting theory would be much
more cumbersome to write and more difficult to read. As this domain shows, some
concepts are easier for people to express and understand in terms of the negation of
other concepts and it therefore seems desirable for a theory revision system to handle
such theories.

In order to evaluate the original MR model, Shultz (1990) tested the theory
on two large sets of real-world cases of harm-doing. One set was tahen from legal
cases in English and American law and the other from anthropologists working with
traditional cultures that had no codified legal system. The MR model agreed on the
outcome of 84% of the legal cases and 97% of the traditional cultures cases. These
experiments were intended to demonstrate the validity and generality of the model.

Because the theory did not agree 100% with all of the test cases, one might
be tempted to use a theory revision system to repair the theory. However, this
assumes the fault lies within the theory. The other alternative is that the test cases
themselves may be at fault. First, the MR domain is a general theory of how people
decide matters of responsibility. Trying to apply this general theory to specific cases
may not always work. For example, in the legal cases, the final decision by which the
theory is evaluated is whether the theory agrees with the judicial ruling. Clearly, no
judicial ruling is guaranteed always to be right as evidenced by the appeals process
where earlier decisions may be overturned. Second, when applying the MR theory to a
specific legal Ccise, information about the case must be whittled down and represented
by only a small number of attributes. This will almost certainly lead to leaving out
relevant information.

The MR domain is an interesting test bed for theory revision systems not
so much because judicial rulings may be duplicated but rather as an example of
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a somewhat complex theory that people use themselves and can understand. The
experiments in this section with the MR domain test A3's ability to repair faulty
versions of the theory.

Experimental Results

The experiments in this domain involved randomly mutating the correct the
ory, training it on a number ofexamples, and measuring the resulting accuracy and
distances between the revised theories, the mutated theories, and the correct theory.
The training and test examples were generated according to the correct theory.

The mutated theories were generated by applying different numbers ofmutation
operators to the correct theory. Four basic mutation operators were used: add a
random literal to a clause, delete a random literal from a clause, add a random clause
to the theory, and delete a random clause from the theory. These operators are
discussed in more detail in Section 5.2.3 on page 75. The experiments were run at
different levels ofmutation in order toevaluate A3's ability to repair corrupt theories.
Each trial involved mutating the correct theory by applying 1, 2, 4, 6 and 8 randomly
chosen mutation operators and training the system on 100 randomly chosen examples
from a possible set of 202. The results are averaged over ten trials for each level of
mutation.

Thesetof202 examples from which to choose was randomly generated to include
102 positive examples and 100 negative examples. Table 5.4 lists the background pred
icates used to represent each example along with the possible values for its arguments
listed in braces. The set of negative examples was generated by selecting random
values for each background predicate and testing the resulting example against the
theory. Examples that were not provable by the theory to be guilty were retained as
negative examples. Approximately 90% ofexamples generated this way are negative.

The set of positive examples is representative of the different classes occur
ring in the theory. Analysis of the theory shows that there are seventeen distinct
classes representable in terms of the lowest background predicates. This was com
puted by expanding the definition for guilty through the intermediate concepts into
a DNF form expressed in terms of the background predicatesand a few intermediate-
level predicates. A predicate was not expanded if its definition was expressed in
terms of background predicates and there were multiple clauses defining the predi
cate. Also, the negation of a predicate whose definition was expressed in terms of
background predicates was also not expanded. These seventeen classes are presented
in Section A.2 in Appendix A. Six random positive examples were generated for each
of the seventeen classes giving a total of 102 positive examples.

The experiments in this section consisted of varying the number of mutation
operators applied to the correct theory and training A3 on the mutated theory with



Table 5.4: Background predicates along with possible argument values used to repre
sent examples in the MR domain.

sufficient_for_harm(case, {yes, no})
produceJiarmCcase, {yes, no})
plan_known(case, {yes, no})
plan_include_hann(case, {yes, no})
someonejelse_causeJiarm(case, {yes, no})
out rank4)erpet rator (case, {yes, no})
monitorCcase, {yes, no})
harm_causedjLS_planned(case, {yes, no})
goal-.outweigh_harm(case, {yes, no})
goal_achievable_lessJiarmful(case, {yes, no})
foresee_intervention(case, {yes, no})
externaljcauseCcase, {yes, no})
control-perpetratorCcase, {yes, no})
benefit4>rotagonist(case, {yes, no})
careful(case, {yes, no})
benefit_victim(case, number)
severityJiarra(case, number)
achieve^oaKcase, {yes, no})
interveningj:ontribution(case, {yes, no})
foreseeability(case, {high, low, no})
external-force(case, {yes, no})
mental_state(case, {negligent, reckless, intend, n/a})
necessary-for-harm(case, {yes, no})
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Figure 5.2: Accuracy of revised and initial mutated Moral Reasoner theories for A3.

100 randomly chosen examples using the remaining 102 for the test set. Figure 5.2
presents the accuracy of the revised theories compare to the accuracy of the initial
mutated theory. Each point is the average of ten trials.

As one would expect, the accuracy of the mutated theories decreases as the
number of mutations to the theory increases. At one mutation, the accuracy is
approximately 88% and after eight mutations it is approximately 72%. The accuracies
for the revised theories found by A3 after 100 training examples are all above 96%
and for four of the five mutation levels the accuracy is above 98%. The shapes of
the two accuracy curves in Figure 5.2 are similar which demonstrates that initial
theories with lower accuracy are harder for A3 to repair than theories with higher
initial accuracy. Overall, these results suggest that A3 is fairly robust with respect
to repairing theories containing differing degrees of error.

It is interesting to note that without an initial theory A3 is unable to learn any
clauses for this domain. The problem is in the clause induction algorithm used by
A3. Because all the background predicates (see Table 5.4) require the introduction
of a new variable to be useful, A3 is unable to find a literal to add that has any
gain. Foil would also have trouble with this domain unless it incorporated methods
for handling this problem such as determinate literals (Quinlan, 1991) or relational
pathfinding (Richards & Mooney, 1992).



4 5
Mutations

Figure 5.3: Distances between revised, initial mutated, and correct Moral Reasoner
theories for A3.

Figure 5.3 presents the distance between the revised theory and the mutated
input theory, the distance between the mutated theory and the correct theory, as well
as the distance between the revised theory and the correct theory. One would expect
the distance between the mutated theory and the correct theory to increase with the
number of mutations. However, the distance between the revised and initial mutated
theory does not increase nearly as much.

If A3 were fully repairing the errors introduced by the mutations, one would
expect this curve to be higher. How does this reconcile with the high levels of accuracy
achieved by A3? Clearly, A3 is able to repair the theories with respect to accuracy
without many revisions. This could occur if the space of correct or even very accurate
theories were large. A large space of accurate theories would also explain why the
distance between the revised theory and the correct one is higher than between the
initial mutated theory and the correct one. A3 finds repairs to the theory that are
different from the mutations but still lead to theories with high accuracy. Another
explanation for the small distances between revised and initial theories could be that
many of the mutations have no effect on the accuracy of the theory and so A3 finds no
need to repair them. However, Figure 5.2 provides evidence against this showing that
the accuracy of the mutated theories decreases as the number of mutations increases.



5.2.2 The King-Rook-King Problem

The domain used to perform the mutation experiments in this section is one
of the more common ones used for first-order learning systems; the king-rook-king
problem (Muggieton, Bain, Hayes-Michie &Michie, 1989; Muggleton k Feng, 1990;
Pazzani k Kibler, 1992; Richards, 1992). The goal of the problem is to identify which
chess board positions containing a white king, white rook and black king are illegal.
Aboard position is considered illegal ifthe black king is in check or ifany two pieces
occupy the same board position.

Table 5.5 gives acorrect domain theory for this problem. The concept illegal is
defined in terms of other concepts: same^square, adjacent^quares, line^ttack,
equal, less, and adj. The concepts for equal, less, and adj are specified as
background knowledge to A3 and are therefore cissumed tobe correct. The arguments
for the different predicates in the theory are interpreted as follows.

• (Wkr, Wkf, Wrr, Wrf, Bkr ,Bkf) : is true if the board position specified
by its arguments is an illegal configuration. The first two arguments specify
the position (rank and file) of the white king, the third and fourth arguments
specify the position of the white rook and the fifth and sixth arguments specify
the position of the black king.

• same_square(Rl,F1 ,R2,F2) : is true when the two positions specified by its
arguments are the same, i.e., when R1 = R2 and F1 = F2.

• adjaceiit_squares(Rl,Fl,R2,F2) : is true when the two positions specified by
its arguments are adjacent to one another. This predicate is defined to be false
if the two positions are the same.

• line_attack : is true if the white rook is in the same row or column as the
black king and the white king is not blocking the attack.

• adj (X,Y) : is true if the rank X(or file) is next to the rank (or file) of Y.
• less(X,Y) : is true if the number Xis strictly less than the number Y.

• equal(X,Y) : is true if its two arguments are the same.

Note that the theory inTable 5.5 contains both negated and non-negated defini
tions of the background predicates. A3 does not need toexplicitly represent concepts
in this way but this theory was taken from (Richards, 1992) so that A3's performance
could be directly compared to Forte's.

5.2.3 Theory Mutation

The following four basic mutation operators are used in order to corrupt a
theory: add a clause, delete a clause, add a literal to a clause, and delete a literal



Table 5.5. Acorrect theory for the king-rook-king problem.
i11egal(Wkr,Wkf,Wrr,Wrf,Bkr,Bkf) ;-

same_sqTiare(Wkr,Wkf .
illegal(Wkr,Wkf,Wrr,Wrf,Bkr,Bkf) :-

same_square(Wkr,Wkf,Bkr,Bkf).
illegal(Wkr,Wkf,Wrr,Wrf,Bkr,Bkf) :-

same_square(Wrr,Wrf,Bkr,Bkf).
illegal(Wkr,Wkf,Wrr,Wrf,Bkr,Bkf) :-

adjacent-.squares (Wkr, Wkf, Bkr.Bkf).
illegaKWkr,Wkf,Rank,Wrf,Rank,Bkf)

line_attack(Wkr,Rank,Wkf,Wrf,Bkf).
illegaKWkr,Wkf,Wrr,File,Bkr,File)

line.^ttack(Wkf,File,Wkr,Wrr,Bkr) .

same-square (A, B,A,B).

adjacent.squares(Rl,Fl,R2,F2) adj(Rl,R2), adj(F1 F2)
adjacent.squares(Rl.F,R2,F) ;- adj(R1,R2).
adjacent.squares(R,Fl,R,F2) adj(Fl,F2).

line.attack(Wk, Others, A,B,C) not.equal(Wk,Others).
line.attack(Same,Same.Wk,Wr,Bk) less(Hk,Wr), less(Wk,Bk).
Une.attack(Same,Saine,Wk,Wr,Bk) less(Wr,Wk), less(Bk,Wk).
/* background knowledge */

equal(X,X).

not_equal(X,Y) not(equal(X,Y)).
adj(X,Y) 1 = X-Y.
adj(X,Y) 1 = Y-X.
not_adj(X,Y) not(adj(X,Y)).
less(X,Y) X < Y.
not_less(X,Y) X >= Y.



from a clause. One could certainly come up with other interesting operators such as
replacing a literal with a different one, changing a variable in a clause, misspelling a
predicate, etc. In the absence of any a priori classification of error types, these four
base operators were chosen because all other possible operators can be expressed as
sequences of these four. The degree and type of theory mutations are specified by
varying which operator or operators to apply and how many times to apply it. In the
experiments described in this section, corrupt theories are obtained by applying the
mutation operators as follows.

Deleting a clause from a theory is quite straight forward. A theory is divided
into two sets of clauses: those known to be correct, often referred to as "background
knowledge," and all other clauses. Only non-background clauses may be deleted (or
modified by anyofthe mutation operators). For example, the clause for the predicate
greater is part of the background knowledge. The delete-clause operator works by
randomly deleting a clause that is not part of the background knowledge.

Deleting a literal from a theory is also straight forward. The operator is applied
by randomly chosing a clause (that is not part of the background) and then deleting
a random literal from the body of the clause.

The operator for adding a literal is somewhat more complicated. Once again,
only clauses that are not part of the background may be modified. As with the delete-
literal operator, a random clause is chosen to modify. The predicate symbol of the
literal to be added is randomly chosen from all the predicates appearing in the theory.
A variablization for the predicate is created in accordance with the mode restrictions
declared for the predicate. If the variable in position i is an input variable, it is
randomly chosen from those variables already appearing in the clause. If the variable
is an output variable, it is randomly chosen from the set of all variables appearing in
the clause plus one new variable.

A random clause is added to a theory by selecting a random predicate for the
head of the clause, adding new variables for each position in the head of the clause,
and applying the add-literal operator multiple times. The number of literals added
to create the body of the clause is dictated by characteristics of all the clauses in the
theory. Statistics are gathered about the probability distribution of the number of
literals in the body of a clause for all clauses in the theory. The randomly created
clause will have a random number of literals according to this distribution.

5.2.4 Results with A3

The experiments described in this section involved mutating the correct king-
rook-king theory (Table 5.5) to varying degrees using different combinations of the
mutation operators and measuring A3's performance in terms of accuracy, distance



of revised theory from the mutated theory, and the distance of the revised theory
from the correct theory. The independent variables used for these experiments were
the number of training examples, the set of available mutation operators, and the
number of mutations performed.

The training examples were selected from a random sample of 2000 board posi
tions (about 34% werepositiveexamplesof illegal). Experiments were performed at
0, 75, and 200 training examples. Accuracy was measured on the remaining examples.

The theory was modified according to sets of available mutation operators. Five
different sets of combinations of operators were used corresponding to each operator
used alone (four), and all operators being available (one).

The degree of mutation was controlled by applying different numbers of muta
tion operators randomly selected from the available set. Experiments were performed
for 1, 2, 4, and 8 mutations.

The results are averaged over twenty trails for every combination of these inde
pendent variables. Each trial differed in the set of randomly chosen training examples.
Appendix D contains the average and standard deviation results of the experiments
whereas the following sections present them graphically.

Accuracy of Learned Theories

Figures 5.4 - 5.6 show how the degree and type of mutation affects the accuracy
of the resulting theory. The axes in these figures that correspond to the set of mutation
operators are all sorted according to the accuracy of the learned theories at 200
examples with 8 mutations.

First of all, note that the accuracy of the mutated theories can vary greatly
between the different operator sets. As one would expect, the accuracy decreases as
the number of mutations increases regardless of the operator set being used. The
add-literal operator appears to have the smallest effect and the delete-literal operator
the greatest effect. One possible explanation for this has to do with the structure
of the theory and characteristics of the domain. The theory has six top-level clauses
for the concept illegal, each one having only a single literal in the body. These
six clauses account for almost half of the thirteen clauses making up the theory (not
including background clauses). Given that about 66% of the examples are negative,
deleting a literal from one of these six clauses could cause most or all of the negative
examples to be misclassified. On the other hand, adding a random literal to one of
the six clauses would only alfect the small portion of the positive examples covered
by the clause. Also, it is possible that the added literal would have no effect on the
semantics of the clause if it were always true or equivalent to another literal in the
clause.
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Figure 5.5. Accuracy of A3's revised theories for illegal after 75 examples.
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Figure 5.6. Accuracy of A3's revised theories for illegal after 200 examples.

Just as the accuracy of the mutated theories decreases as the number of mu
tations increases (Figure 5.4), the theories learned by A3 also decrease in accuracy
as the number of mutations increases for both 75 (Figure 5.5) and 200 (Figure 5.6)
examples. Note that the scale for accuracy in Figure 5.4 ranges from 0% to 100%
whereas the scale for accuracy in both Figures 5.5 and 5.6 range from 90% to 100%.
These results are quite reasonable for a theory revision system, the simple conclusion
being that more corrupt theories are harder to repair. Similarly, at any given level
of mutation, for any set of mutation operators, the accuracy of the revised theory
increases with the number of training examples (the standard learning curve). This
is easiest to see by looking at the tables in Appendix D.

Finally, the most interesting aspect of the results on accuracy is how the revised
theories vary depending on the type of mutation applied to the correct theory. As
stated earlier, the axes for the mutation type are sorted according to the accuracy of
the learned theories at 200 examples and 8 mutations. Figures 5.5 and 5.6 show that
after 200 examples at 8 mutations, A3's performance varies according to the mutation
type with theories mutated by the delete-clause operator being the hardest to repair
and those with the add-literal being easiest to repair. As one would expect, A3's
performance with all mutation types present falls in the middle with the add-clause
and add-literal mutations being easier to repair and the delete-clause and delete-literal
mutations being harder to repair.

Note that A3's accuracy after 200 examples is not perfectly correlated with the
initial accuracy of the mutated theories. Figure 5.4 shows that after eight mutations



the accuracy of theories produced with the delete-clause operator are much higher
than those produced by the add-clause operator. However, after 200 examples, the
accuracy of A3's revised theories are much greater for the add-clause operator than
for the delete-clause operator. This result indicates that the difficulty of repairing a
theory is not so much dependent on the accuracy of the initial theory as it is on the
nature of the errors that occur in the theory.

Although there are performance differences depending on the type of mutation
applied, those differences are not as extreme as they may appear in Figures 5.5 and 5.6
which are scaled in order to highlight the differences. After 200 examples with eight
mutations, the worst performance is for the delete-clause operator which is 94.29%
±2.21 and the best performance is for the add-literal operator which is 98.65% ±1.13.

In order to compare these results with the purely inductive task of learning a
definition for illegal, A3 was presented with 200 examples and an initial theory
containing only the background predicates shown in Table 5.5. Averaged over 20
trials, A3 learned theories that were only 89.83% accurate. This level of accuracy is
lower than any of the values shown in Figure 5.6. This result seems to indicate that
even having an incorrect initial theory is better than having no initial theory at all.
Clearly, A3 must be taking advantage of parts of the initial theory that are correct
or at least partially correct in order to produce more accurate theories than it could
if the initial theory were not present at all. Although one could likely construct an
initial theory that would lead A3 to learn less accurate theories, the results presented
in the section illustrate the system's robustness with respect to errors in the initial
theory.

Distance of Learned Theories from Initial Theory

Along with measuring the accuracy of the revised theories, the distance metric
was used to measure the distance between the revised theory and the initial mutated
theory. These results can be seen in Figures 5.8 and 5.9. The graph for the zero
examples case is not included because clearly no revision has taken place and all the
distances are zero. Just as Figure 5.4 shows the accuracy of the mutated theories.
Figure 5.7 shows the distance between the correct and mutated theories.

The curves in Figure 5.7 show that for all types of mutation operators, the
distance between the correct theory and the mutated theory grows roughly linearly
with the number of mutations. This is to be expected, especially for the add-literal
and delete-literal operators which typically change the distance by one each time
they are applied. Notice, however, that the curves for the add-clause and delete-
clause operators are also roughly linear in the number of mutations but that their
slope is steeper. This is due to the fact that adding or deleting a whole clause has a
greater effect on the distance measure than does adding or deleting a single literal.
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Figure 5.9: Distance between revised and mutated theories for A3 after 200examples.

The results shown in Figures 5.8 and 5.9 provide a measure of the degree to
which theories are being revised by A3. The distance between the mutated theory
and the revised theory increases cis the number of mutations increases for all classes
of mutation operators. One would expect this in light of fact that the mutated
theories being revised also increase in distance from the correct theory as the number
of mutations increases.

It is also important to note that even though the distance between the revised
and mutated theories increcises with the number of mutations, this distance is always
less than the distance between the mutated and correct theories. A theory revision
system should minimally revise ctn input theory in order to classify the training ex
amples. These experiments use one particular correct theory for the king-rook-king
problem, namely the one given in Table 5.5, even though it is possible to come up
with other equivalent theories. If somehow the system were to "undo" the muta
tions that formed the input theory, the distance between the revised and the input
theories would be the same as the distance between the input and correct theories.
Consequently, the distance between the revised theory and the input theory should
not be greater than the distance between the original theory and the correct one.
Any theory revision system that produced distances greater than those between the
input and correct theories would be doing an unnecessary amount of revision.



Why then are the revised theory distances produced by A3 consistently less
than the distance between the mutated and correct theories? Because A3's primary
goal is to produce theories that correctly classify the training examples, no revisions
will be made to a theory beyond what is needed to cover the examples. Many of the
mutations to the theory may have little or no effect on the accuracy of the theory,
especially if they are in the form of extra clauses that are never true. Also, the training
set may not have examples representative of all the possible disjuncts occurring for
the domain. If some of the representative examples of these rare disjuncts are not in
the training set, those parts of the theory affecting these examples will not be revised.
Of the six clauses for illegal shown in Figure 5.5, the first three each cover only
about 4.5% of the positive examples whereas the last three each cover roughly 33%
positive examples.^ This could explain, in part, why the distances at 200 examples
(Figure 5.9) are slightly greater than those at 75 examples (Figure 5.8) even though
the curves in the two figures are similar in form.

Finally, note that while the curves in Figures 5.8 and 5.9 are quite close to one
another independent of the mutation operator, two of the mutation operators behave
somewhat differently. The distances for the add-clause operator are lower than the
rest, especially at larger numbers of mutations. As described earlier, A3 has trouble
repairing theories when the error is multiple, incorrect clauses for the same concept.
These lower distances indicate that fewer revisions are being made presumably be
cause the extra clauses are not being identified and deleted. The distances for the
delete-clause operator are somewhat greater than for the rest of the mutation opera
tors because eis Figure 5.7 indicates, the initial theories are further from the original.
A greater degree of revision is required to learn a clause that has been deleted than
to identify and delete a single extra literal.

Distance of Learned Theories from Correct Theory

The final set of results presented in Figures 5.10-5.11 are for the distance be
tween the revised theories and the correct one given in Table 5.5. Although it was
not a stated goal that A3 should learn the "correct" theory, it is interesting to see
how the revised theories do in fact compare to the correct one. The striking thing to
notice when comparing Figure 5.7 to Figures 5.10 and 5.11 is that for a given type
and number of mutations, the number of training examples has almost no effect on
the distance between the revised and correct theories. These results alone might lead
one to believe little or no revision was taking place. However, the results for accuracy
and distance between the revised and input theories clearly show that A3 is doing a
reasonable job of revising incorrect theories.

The conclusion to draw from the results in Figures 5.7, 5.10 and 5.11 is that
the space of correct or equivalent theories must be large and that while A3 is able to

^The total is greater than 100% because more than one clause can cover an example.
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repair incorrect theories it would have great difficulty in finding the "correct" theory
defined as the initial theory that was mutated to form the input theory. This is
clearly to be expected given that the space of semantically equivalent but syntactically
different theories is so large. For example, what would one expect as the output
of a first-order learner that was only given input examples of sorted and unsorted
list pairs: bubble-sort?, merge-sort?, quick-sort? Even larger than the number of
correct theories is the number of approximately correct theories. For example, in an
introductory programming class, students are required to write programs that solve
a particular problem. In all likelyhood, each student's solution will be different from
all the others and not all will be perfectly correct. Without further information than
just the input/output specifications of a procedure or the example/class specification
of a concept to be learned, there are simply no constraints on the form a solution
may take and it would be unreasonable to expect a theory revision system to come
up with any one solution in particular.

5.2.5 Experiments with Intermediate Concepts

Whereas the experiments in the previous sections only presented A3 with exam
ples of the top-level concept to be learned, the experiments in this section investigate
A3's performance when given examples of intermediate concepts along with the exam
ples of the top-level concept. It is expected that the additional information provided
by intermediate-level examples will help A3 to choose more appropriate revisions that
should improve both the accuracy of the revised theories and the distance between
the revised and correct theories.

Examples of intermediate-level concepts should help in identifying the location
of errors and in making repairs to the correct concepts in a theory because they provide
further evidence to the learning algorithm about which concepts need to be repaired.
By only giving examples of top-level concepts it is possible that candidate repairs
in several different intermediate concepts could have the same effect on the accuracy
of the top-level examples and would therefore be indistinguishable from one another.
However, providing examples of intermediate concepts should help the decision among
such alternatives and favor making the repair to the appropriate concept.

Pazzani and Brunk (1991) presented a domain theory for determining if a stu
dent needed to make payments on a student loan. The theory, shown in Figure 5.12,
contains sixteen clauses up to four levels deep. Four different types of errors were
introduced into the theory: one clause was missing a literal, a whole clause was miss
ing, one clause had an extra literal, and one concept had an extra clause. Figure 5.13
shows the incorrect theory and Appendix B lists the clauses in the correct and incor
rect student loan theories.
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Figure 5.12. Correct theory for the student loan domain.
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Figure 5.13. Incorrect theory for the student loan domain with four errors.



The following experiment was run using the incorrect theory shown in Figure
5.13. A3 was presented with examples of the top-level concept no-payment-due along
with a varying number of randomly chosen examples of intermediate concepts from
the theory corresponding to each training example. The following eight intermediate
concepts were used:

continuouslyjenrolled
never_left_school

eligible^or-deferment
mil itary_deferment
peace-corps_deferment

financialjlef erment

student_deferment

d i s ab i 1ityjleferment

The number of examples of intermediate concepts for each top-level example
varied among i = 0, 2, 6, and 8. The number of top-level exctmples presented to
A3 ranged from 5 to 45 out of a possible 50. For each top-level training example,
i randomly chosen intermediate examples were generated for that example. The
revised theories were evaluated in terms of accuracyon the unseen top-level examples
(Figure 5.14), the distance between the revised and initial theory (Figure 5.15), and
the distance between the revised and correct theory (Figure 5.16). The results axe
averaged over 30 trials.

Figure 5.14 shows that A3 improves the accuracy of the revised theory with
increasing numbers of training examples regardless of the number of examples of
intermediate-level conceptsprovided. After 45examples, for all levels of i (intermediate-
level examples), A3 achieves nearly 100% accuracy. However, with fewer numbers of
examples, the accuracy of the revised theories increases as more intermediate exam
ples are provided with the difference diminishing as the number of training examples
increases. One would expect a higher level of accuracy in this case because the learner
is presented with additional information about each training example.

Figure 5.15 shows the distance between the initial and revised theories. A3
performs similarly for all numbers of intermediate-level examples with all reaching a
distance of a little over four after training on 45 examples. Although the curves are
indistinguishable after 20 examples, one can see that more revision is performedon the
initial theory as the number of intermediate examples increases. A more interesting
result can be seen in Figure 5.16, which shows the distance between the revised and
correct theory.

As the number of top-level and intermediate-level examples increases, A3 learns
theories that are increasingly closer to the correct theory. This indicates that the
intermediate-level examples are in fact providing useful information to the learner
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Figure 5.14. Accurax:y of A3 when given examples of intermediate concepts.
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Figure 5.15: Distance between initial and revised theories for A3 when given examples
of intermediate concepts for the student loan domain.
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Figure 5.16: Distance between revised and correct theories for A3 when given exam
ples of intermediate concepts for the student loan domain.

about where and how repairs to the theory must be made. When i = 0, only top-
level examples are presented to A3. Regardless of the number of training examples,
A3 revises the initial theory to one that is nearly always a distance of four from the
correct theory. In this case, A3 has no guidance as to which changes to make. Figures
5.14 and 5.15 show that when i = 0, A3 is able to learn an accurate revision of the
initial theory; it just is not able to come up with the correct one. However, when
i = 8, the distance between the revised and correct theories is dramatically smaller
and approaches zero as the number of training examples increases. In this case, A3 is
able to make use of the extra information provided by the intermediate-level examples
and can correctly locate and repair the errors in the initial theory.

These experiments with intermediate-level concepts demonstrate that A3 can
use the additional information provided by intermediate-level examples in order to
learn theories that are closer in distance to the correct theory than would be the case
if only top-level examples were provided. These experiments also highlight the ad
vantages of A3's simple mechanisms for locating and repairing errors in a theory that
do not require designating a single specific concept to be learned. These mechanisms
not only treat positive and negative examples in a uniform manner, but also make no
special distinction between examples from multiple concepts.



5.3 Discussion

This chapter has demonstrated how A3 handles a variety of different problems
relevant to the theory revision task. The system was shown to repair theories contain
ing negation and recursion as well has theories containing multiple errors of different
types. Finally, it was shown that providing examples of intermediate concepts can
help A3 learn more accurate theories as well as theories that are closer to the correct
theory.

The first section of this chapter provided simple demonstrations of how A3 is
able to repair theories containing negation and recursion. An example from Shapiro
for computing the symmetric difference between two lists was used. Whereas Shapiro's
system required the use of an oracle as well as examples of a theory's intended be
havior, in contrast, A3 required only the examples. Although A3 was able to repair
most of the errors introduced into the diff theory, there were two cases that were
problematic. One case involved learning the recursive clause for the member predi
cate that required adding a literal in the correct location in the body of the clause.
Because A3 only adds literals to the end of a clause, there are Ccises where the correct
literal may not show an improvement if, for instance, the literal bound new variables
required by other literals in the clause. One possible solution to the problem would
be to try adding literals at all locations in the body of the clause. Of course, a static
analysis of the variables in the literal and the clause could reduce this search space
by determining which locations are equivalent to which others.

The other problem A3 had with the diff theory was the case in which it identi
fied an incorrect concept but could not determine which clause in the concept required
specialization. A possible solution to this problem would be to attempt to special
ize each clause in turn and select the best revision. However, A3 was designed to
choose a single best clause to specialize in order to be more computationally efficient.
Specializing clauses requires a search for new literals to add to the body of the clause
and evaluating each literal is an expensive process because it involves attempting to
prove each example. Foil's technique is more efficient because partial proof infor
mation can be retained whereas A3 must reprove each example for each new literal
added. Caching partial proof information in the theorem proving component of A3
is one possible solution but initial experiments with this approach showed that the
overhead of caching was approximately equivalent to the savings obtained.

The second half of this chapter reported empirical studies demonstrating A3's
performance on a variety of tasks. The first experiment involved mutating a complex
theory of moral reasoning that contained multiple levels of negation. It was shown
that A3 performed well at repciiring these mutated theories even for relatively high
numbers of errors. The results for the distance measures of the revised theories proved
to be interesting. As the number of mutations to the correct theory rose, A3 was able
to repair the theories in terms of accuracy; but, the distance of the revised theories



to the correct one rose as well indicating that the repairs to the theory were in some
sense orthogonal to the errors introduced through mutation. The distances between
the revised and initial theories provide some clues as to why this is the case. For
all levels of mutation, A3 performed small numbers of revisions to the initial theory
which led to highly accurate revised theories. In fact, the degree of revision was much
less than the degree of mutation. This seems to indicate that for this domain the
number of correct or highly accurate theories is very large and that such accurate
theories can be found by taking a few revision steps away from the initial mutated
theory.

The second set of empirical studies involved introducing different classes and
degrees of errors into a correct theory for the king-rook-king problem and measuring
A3's ability to repair those theories. The results in this domain showed that A3 was
able to repair certain types of errors more easily than others although it was quite
competent at handling them all. In fact, for all types and degrees of error, A3 learned
more accurate theories than it would without an initial theory at all.

Comparing the initial accuracy of the mutated theories with the accuracy of
the theories produced by A3 shows no correlation between the two. This indicates
that the correctness of the initial theory has less to do with how well A3 will repair
it than does the type of errors occurring in the theory. The experimental results
show that A3 more readily repairs theories with extra literals or extra clauses than
with missing literals or missing clauses. A possible expleination of this behavior is
that the extra literals and clauses are usually identified with the assumption finding
mechanism whereas missing literals and clauses must be learned using the inductive
component. A3's implementation of the FoiL-like method is very simple and does
not have some of the more advanced features such as Quinlan's determinate literals
(Quinlan, 1991) or Richard's relational pathfinding mechanism (Richards Mooney,
1992).

The final empirical study investigated the effect that examples of intermediate
concepts had on A3's performance. Previous experiments had demonstrated that the
theory revision task is underconstrained with respect to recovering the correct theory
from an initially incorrect one. Part of the problem is due to having insufficient
information as to where in a theory a repair should be made. In some cases, repairing
different intermediate concepts may have an equivalent effect on the accuracy of
the top-level examples but be incorrect with respect to the intermediate concepts.
The experiments with the student loan domain demonstrate that A3 is able to use
the information contained in examples of intermediate concepts effectively in order to
recover the correct theory. As more examples of intermediate concepts were presented,
the theories learned by A3 were shown to be progressively closer to the correct one.
With or without the intermediate-level examples, A3 performed the same amount of
revision on the initial theory. However, the intermediate examples were able to guide
A3 towards repairs closer to the correct theory.



In summary, A3 has been shown to be a robust learner with respect to the
type and degree of errors in the initial theory. Also demonstrated was A3's ability
to repair theories containing negation and recursion and its ability to use examples
of intermediate-level concepts in order to recover the correct theory from an initially
incorrect one.



Chapter 6

Comparison to Other Approaches

This chapter presents other systems that perform first-order theory revision and
compares them to A3. Where possible, empirical comparisons between these systems
and A3 are made. Also described are systems that perform certain aspects of the
first-order theory revision task but which fall short of performing the full task.

6.1 FORTE

Forte (Richards k Mooney, 1991; Mooney & Richards, 1992; Richards, 1992)
is a system that performs first-order theory revision using operators based on propo-
sitional theory revision (Ourston k Mooney, 1990) and inductive logic programming
(Muggleton k Buntine, 1988). The system accepts as input an initial theory and pos
itive and negative examples of concepts in the theory and revises the theory to cover
the input examples while keeping the revised theory as semantically and syntactically
similar to the input theory as possible.

Although both FORTE and A3 can revise first-order theories, FORTE does not
allow the initial theory to contain negated literals nor can it add negated literals to
clauses during the revision process. In this respect, A3 is able to repair and learn a
larger class of theories than can FORTE.

6.1.1 System Operation

Table 6.1 outlines the top-level algorithm of FORTE. The search terminates
when no operator application can improve the accuracy of the theory. A3's top-level
control structure is similar to Forte's in that both perform a hill-climbing search
through the space of theory revisions. However, the systems differ on the number of
alternatives tried at each point in the search space. FORTE attempts repairs at all
revision points and prunes the list when it is unlikely or impossible for a revision point
to lead to a better theory. A3, on the other hand, attempts revisions at a single best



Table 6.1. Forte's main loop.

F0RTE(examp/e5, theory)
let r = 0

let Ti)est —theory
while Tbeat better than T do

begin
let T = Tbeat
let Tbest = 0
generate revision points for T based on examples
sort revision points by potential gain
for each revision point from best to worse do

if revision potential better than Tbeat
then generate revisions

update Tbeat
end

return Tbeat

point and only tries other alternatives if that revision does not improve accuracy. In
this respect, A3 performs less search than FORTE.

Forte uses an extensive set of theory revision operators, each with a possibly
large number of instantiations. FORTE controls the branching factor of the search
by restricting operator applications to a set of revision points identified in the the
ory. There are two basic types of revision points: specialization and generalization.
Revision points are identified during the process of trying to prove misclassified ex
amples. In some respects, Forte's revision points are similar to AS's assumptions.
However, FORTE generates many more revision points for an example than A3 finds
assumptions.

Forte defines a specialization revision point to be a clause that participated
in the proof of a negative example. For each clause in the theory, Forte records
how many negative examples used that clause in a proof of the example. This num
ber represents the potential of the revision point which is the maximum increase in
accuracy one could expect by specializing the theory at that point.

For example, one of ForTE's operators is to delete a clause from the theory.
Without any constraints, this would lead to a large number of revised theories to
evaluate. However, Forte uses the specialization revision points as a guide for re
stricting the application of this operator by attempting to delete clauses with high
potential.



Forte defines a generalization revision point as a specific antecedent literal
in a clause, as a clause, or as a predicate. These revision points correspond to the
different generalization operators used by PORTE and indicate points of failure in
proving positive examples. In trying to prove a misclassified positive example, PORTE
notes all goals in the theory that failed and caused the proof process to backtrack.
In addition to these failing literals, PORTE keeps track of the literals that bound
variables during the proof up to the failure point. These literals form the antecedent-
based revision points. Every clause containing an antecedent-based revision point
becomes a clause-based revision point. Finally, a predicate-based revision point is
created for each distinct predicate from the antecedent-based revision points.

Revision points identify likely places in the theory where errors occur. The
following discusses the details of each of PORTE's revision operators and how they
use revision points to guide learning.

Delete Rule

Specialization revision points identify clauses in the theory that may contribute
to it being overly general. The more drastic method of specializing such a clause is to
delete it from the theory. PORTE produces a new candidate theory for each special
ization revision point that corresponds to deleting the identified clause. Presumably
fewer candidate theories will be created than if all clauses in the theory were deleted
one at a time because PORTE only attempts to delete clauses corresponding to spe
cialization revision points.

Delete Antecedent

Clause-based generalization revision points are used to identify clauses in the
theory that are overly specific and may have caused some positive examples to be
unprovable. Each such revision point is annotated with the positive examples that
identified the clause. PORTE produces a new candidate theory for each revision point
by generalizing the clause to cover all the failing positives and to cover no negative
examples. Clauses cire generalized by deleting antecedents and, if necessary, several
generalizations of the same clause may be built in order to cover all of the failing
positive examples for that clause. PORTE first attempts to generalize the clause
by repeatedly deleting antecedents from the clause that allow the most number of
positives to be proved without covering any negatives. Once such a generalization of
the clause is found, it is added to the new theory and the process is repeated in order
to cover any positives not covered by the generalized clause. It is possible that this
hill-climbing approach to deleting antecedents will become stuck on a plateau and
not find a generalization of the clause. In this case, PORTE then tries an exhaustive
search of deleting combinations of multiple literals from the clause. This is clearly



an expensive combinatoric search; but, Forte can prune the space when it is known
that deleting a certain literal will cause some negative examples to be provable.

Add Antecedent

Specialization revision points identify potentially overly general clauses. The
delete clause operator is a drastic approach to correcting the problem and suffers
from the possibility that some positive examples need the deleted clause. Rather
than throw away an overly general clause, the add antecedent operator attempts
to specialize the clause so that it is still useful for proving positive examples but
prevents any negatives from being misclassified. The add antecedent operator is
similar to that of Foil. It begins with the overly general clause and adds literals
until the clause excludes all negative examples. If any positives are left uncovered,
the process repeats and builds new clauses to cover the remaining positives. FORTE
uses a slightly different evaluation function than Foa's; it only counts the number
of positive and negative examples that are provable and not the number of ways in
which each example is provable. As described in Table 2.3, Foa's evaluation function

GatnFoiL[L) = Tt^ x (I(Ti) - /(T,^.i))

whereas FoRTE uses:

GainFORrE(L) = x I(Ti) - /(7;+,).

If no literal has positive gain and there are still provable negative examples.
Forte calls on its relational pathfinding (Richards ^ Mooney, 1992) component to
find new literals to add. This method is intended to overcome the well known prob
lem with Foa that makes it difficult, if not impossible, to learn certain conjunctive
definitions where each literal on its own has no information gain but the conjunc
tion does. After the relational pathfinding component returns, Forte may again try
adding single literals to the clause if some negative examples are still covered.

When adding literals to a clause at an intermediate-level in a theory, Forte
uses the top-level positive and negative examples in order to generate positive and
negative examples for the head of the clause being repaired. Once the examples have
been reformulated, Forte runs the basic FoiL algorithm on the clause using the
new examples. However, reformulating the top-level examples can be problematic,
especially if the clause being repaired generates new bindings for variables. For ex
ample, in the following theory the clause for brother is overly general and needs to
be specialized:



uncle(U,N) brother(U,X), parent(X,N).
brotherCA.B).
parent(sam,joe).

However, given the positive example uncle(fred, joe), the generation of ex
amples for the brother predicate is problematic because there is no information about
how to bind the variable Xin the clause for uncle. Similarly, generating negative ex
amples for a clause is difficult because the clause may not be used in any proof of a
positive or negative example and consequently generates no bindings for variables in
the head of the clause.

The add-antecedent operator replaces a single clause in the theory with one
or more clauses that are specializations of the original clause. The new theory is
therefore specialized with respect to the input examples but may be more general
than the original theory because new clauses may have been added.

Add Rule

Clause-based generalization revision points are used to identify clauses that
may be overly specific and require generalization in order to allow some positive
examples to be proved. The add-rule operator is really a combination of several other
operator applications. The identified clause does not allow the proof of some number
of positive examples and the goal is to modify the clause to cover the positives while
excluding all negative examples. The operator first copies the clause then deletes all
literals from the clause that do not allow any negatives to be covered. At this point,
if any positives remain uncovered, FORTE will continue to delete literals from the
clause until all positives are covered, even if that means some negatives will now be
included. Finally, the add-antecedent operator is applied to the new clause in order
to exclude all negative examples that may have been included by deleting literals.
Note that the add-rule operator may add several clauses to the theory because the
add-antecedent operator can generate multiple clauses.

Identification

Predicate-based revision points indicate that a theory is too specific and may
require a new clause in order to prove a failing literal. Whereas clause-based gen
eralization revision points indicate particular clauses that need to be generalized,
predicate-based revision points indicate that an altogether new clause is needed.
The idea behind the identification operator was presented in CiGOL (Muggleton
k Buntine, 1988) and is based on inverse resolution. Suppose the following clauses
are in a theory:



- b, X.

- b, c, d

- e, f.

Notice that the two clauses for a share some structure. Identification will create a
new clause and rewrite the theory to be:

- b, X

- c, d,

- e, f

The definition of a remains semantically the same but the definition of x has
been generalized by adding the new clause x c, d. FoRTE generates candidate
theory revisions based on all places in the theory where identification creates a new
clause for the failing predicate defined by the revision point.

Absorption

The absorption operator is the complement of the identification operator and its
application is driven by antecedent-based revision points. Absorption is also based on
inverse resolution (Muggleton & Buntine, 1988). Suppose the following two clauses
are in a theory:

a :- b, c, d.

X :- c, d.

Notice that the clause for tt a shares structure with the clause for x. Absorption
will rewrite the clause for a giving:

a b, X.

X c, d.

The definition of x remains semantically the same but the definition of a h<is
been generalized because it may use definitions for X other than X c, d. FORTE
attempts to apply the absorption operator to the literals in clauses identified by the
revision points. There may be many ways to apply the absorption operator to a failing
literal and FoRTE will generate all such applications as candidate theory revisions.

Note that both the absorption and identification operators may compact the
theory as measured by number of literals. Because FORTE uses an evaluation func
tion that compares theories based on their improvement in accuracy and breaks ties
according to theory size, it is possible that these operators may be applied even if no
improvement in accuracy results. Once the theory has been compacted, it may then
be possible for the other operators to improve upon the theory accuracy. Because



these operators change the syntactic form of the theory, they will also cause an in
crease in the distance measure between the revised and input theories.

6.1.2 Comparison to A3

Although many aspects of FORTE and A3 are similar, there are some important
differences between the two systems. Broadly, these differences are in how errors are
located, how they are repaired, and the types of errors that can be repaired.

Locating Errors

Both Forte and A3 base their revision of atheory on identifying the location of
errors in the theory. This is the role of Forte's revision points and A3's assumptions.
In general, Forte will generate many more revision points for an incorrectly classified
example than will A3.

Aprovable negative example will cause Forte to generate a revision point for
each clause used in all proofs of the example. Ifanegative example has only one proof
Forte and A3 will generate the same number of revision points and assumptions'
Note, however, that FoRTE will attempt to revise the theory based on each revision
point whereas A3 will choose a single best revision point to use. Consequently A3
has asmaller space to search than Forte when trying to revise a theory. The sm'aller
search space could be detrimental to accuracy but experiments indicate that this is
not the case.

If there are multiple proofs of a negative example, FoRTE will generate more
revision points than A3 and will consequently have an even larger search space. A
clause used in the proof of a negative example may be useless to revise if there are
other proofs that circumvent that clause. A3, on the other hand, only generates
assumptions that are known to be potentially worthwhile. In this case A3's search
space is smaller than Forte's; but, A3 has eliminated branches that are known a
priori to be useless.

The other type of revision point generated by FoRTE is the generalization re-
vision point for unprovable positive examples. These revision points correspond to
all failed literals in the proof of the example as well as "contributing points" which
are literals that bind variables used by each failing literal. A3 finds a subset of these
literals for its assumptions. Afailing literal will only be considered for arevision point
if the success of that literal would have lead to the correct classification of the posi
tive example. FoRTE will generate a revision point for a literal even if the successful
matching of the literal would still not lead to the positive example being provable.
Again, A3 s search space of revision points is much smaller than Forte's. Using



assumptions, A3 is able to prune the search space of revisions to avoid attempting
repairs to a theory that could not lead to an improvement in accuracy.

Although Forte performs more search because it attempts repairs at multiple
revision points, it does have the advantage that it uses an admissible search heuristic
(Nilsson, 1980) over the list of possiblerevision points. The revision points are ordered
by their potential improvement in accuracy. Once the potential improvement of a
revision point is less than the accuracy of the best revision found, the system can stop
searching the list. This approach could not be used in A3 or other theory revision
systems that handled negation because one can not determine an upper bound on
the impact of different types of repairs on the classification of the training examples.
Consequently, it is not possible to determine the potential improvement of a revision
point.

Revision Operators

Both Forte and A3 use sets of operators to revise theories that are built
upon the basic four: add a literal, delete a literal, add a clause, and delete a clause.
Forte, however, uses two other operators that are not used by A3: identification
and absorption.

The delete-clause operator is the most straight forward one to apply and is used
by both systems to remove a clause that appears to be incorrect. The only difference
between the systems with respect to this operator is the conditions under which the
operator is applied.

The add-literal operator is used in both systems to specialize an overly general
clause rather than delete it. Both systems add literals based on techniques derived
from Foil. However, FORTE uses an additional method, relational pathfinding, to
improve upon the plateau problem caused by Foil's hill-climbing method. A3 could
easily be modified to take advantage of such improvements over the basic Foil method
but the emphasis of the research to date has been on the general problem of theory
revision.

The main distinction between A3 and Forte's add-literal operator is that A3
does not have to reformulate the top-level examples into examples of the intermediate-
level clause being revised. A3 evaluates the addition of a single literal by measuring
the accuracy of the revised theory with respect to the input examples. FORTE on
the other hand must generate intermediate-level examples which can be problematic.
Also, because FORTE only evaluates the candidate literals to add with respect to
the clause being revised and the reformulated examples, it may select a literal that
causes the accuracy of the theory taken as a whole to decrease. Forte's add-literal
operator is consequently more efficient because A3 must use theorem proving to



evaluate candidate literals. However, FORTE gains this efficiency at the expense of
potentially producing incorrect repairs.

The add-clause operator is fairly different between the two systems. Whereas
A3 adds a new clause to a concept found to be too specific, FORTE copies existing
clauses found through the clause-based generalization points. FORTE attempts to
generalize those clauses by applying an elaborate search mechanism combining both
delete-literal and add-literal operators. A3 only modifies existing clauses if it can
identify an error in the clause in which case it need not perform the extensive search
that Forte applies in its add-clause operator.

The application of the delete-literal operator is much different in A3 than in
Forte. The clause-based generalization points found by FORTE indicate that a clause
must be generalized. FORTE then performs a search in the space of literal deletions
from the clause until the failing example can be proved. If the resulting theory is too
general, FoRTE will attempt to specialize the clause using the add-literal operator.
A3, one the other hand, only deletes literals it has identified as being incorrect and
does not require the search that FORTE does. As with FORTE, the clause may be
specialized if deleting the literal caused the clause to become overly general.

The identification and absorption operators are used to change the syntactic
form of the theory rather than improve system accuracy. Consequently, these op
erators will cause the resulting theories to be further in distance from the original
without a corresponding gain in accuracy. In part, these operators transform theories
that Forte is unable to revise into ones that it can repair.

Negation

Forte repairs theories based on the revision points found for incorrectly clcissi-
fied examples. These revision points identify the type and location of potential errors.
The error type indicates whether the theory is overly general or overly specific. The
application of theory revision operators is based on this type information. However,
if the theory to be repaired has errors within the scope of a negation, Forte will not
be able to identify the type or location of the actual error. For example, consider the
following over-general theory for odd numbers:

odd(X) not(even(X)).

even(2).

The incorrectly classified negative example not (odd (4)) leads Forte to gen
erate a specialization revision point corresponding to each clause that matched in the
proof of the example. In this case, the only clause that matched was the clause for



Table 6.2: Average accuracy and distance measures for A3 and FORTE on mutated
theories for illegal after 50 and 250 examples.

Examples
50

250

A3

Accuracy Distance

Initial Correct

95.09 2.75 5.90

98.89 i 3.83 6.22

Forte

Accuracy Distance

Initial Correct

96.06 3,10 5.50

99.85 4.33 6.50

odd. Consequently, FORTE will only attempt to revise this clause to repair the the
ory even though this is not where the error occurs. Now, consider the overly specific
theory for odd numbers:

odd(X) not(even(X)).

even(X).

The incorrectly classified positive example odd(3) leads FORTE to generate
generalization revision points that correspond to failing literals in the theory. The
only failing literal in this case is not(even(X)). This revision point leads to revisions
of the clause for odd which, again, is not where the theory is wrong.

6.1.3 Empirical Comparison of A3 and FORTE

This section compares the performance of A3 and FORTE on a number of mu
tated theories for the king-rook-king problem. Each trial consisted of mutating the
correct theory for illegal (Table 5.5) by introducing one of each type of error: an
extra clause, a missing clause, an extra literal, and a missing literal. Both systems
were given the same initial theory to revise and the same training and test sets of
examples. Training sets of size 50 and 250 out of 2000 were used with the remaining
examples used for the test set. Table 6.2 presents the accuracy and distance measures
for both A3 and Forte after seeing 50 and 250 examples averaged over 20 and 18
trials respectively.

After 50 examples. Forte outperforms A3 in terms of accuracy and A3 out
performs Forte in terms of the degree of revision performed on the initial theory.
Forte's theories are on average about 1% more accurate than A3's but A3's theories
are approximately 11% closer to the initial theory than are Forte's.

Although Forte learns theories that are slightly closer to the correct theory
than A3, this measure is less important to the theory revision task than is accu
racy and degree of revision. Without additional information such as examples of
intermediate-level concepts, the theory revision tcisk in underconstrained and one



cannot expect a theory revision system to approximate a correct theory in terms of
syntactic distance. At 50 examples, FORTE learns theories that are about 7% closer
to the correct theory than does A3.

The results for 250 examples are similar to those for 50 examples. Both systems
learn more accurate theories at 250 examples than at 50 and Forte's theories are
still an average of 1% more accurate than A3's. Both systems perform more revision
of the initial theory at 250 examples as indicated by the average distance between
the learned and initial theories. At 250 examples A3's theories are on average about
12% closer to the initial theory than Forte's. A3 also shows a slight improvement
of about 4% over Forte for the distance between the learned and correct theories.

It is difficult to draw any strong conclusions about the overall relative perfor
mance of A3 and FORTE on the basis of these experiments. However, both systems
are able to repair incorrect theories achieving nearly the same levels of accuracy with
A3 learning theories that are slightly closer to the initial theory than does FORTE.
That A3 learns more minimally revised theories should not be too surprising because
it uses the distance metric in its evaluation function for choosing which revision to
make. FORTE, on the other hand, uses accuracy and the size of the revised theory in
its evaluation function.

The theories used in this section to compare A3 and FORTE did not include
errors within the scope of a negation which is problematic for FORTE but is easily
handled by A3. To get a better overall comparison of these systems would involve
comparing them on more domains and with different types of errors. It would also
be interesting to compare both systems' ability to revise different types of errors in
isolation as was done for A3 in Section 5.2.

6.2 FOCL and KR-FOCL

6.2.1 Theory Guided Induction

FocL (PcLZzani & Kibler, 1992) is a first-order learning system that combines
both empirical and explanation-based learning (Ebl) (Mitchell, Keller & Kedar-
Cabelli, 1986) to take advantage of existing background knowledge even when that
knowledge is incomplete or incorrect. Focl performs theory guided induction rather
than theory revision, the difference being that while both types of learning rely on
an initial theory, FoCL outputs a new concept definition rather a revision of the
input theory. KR-FocL (Pazzani & Brunk, 1991) is an extension of FoCL that
uses information gathered during the learning process to suggest to the user possible
revisions to the initial theory. KR-FoCL can be viewed as a theory revision system
that requires some decisions to be made by the user.



FOCL

Foil is a purely inductive learning system that does not take advantage of ex
isting background knowledge. Explanation-based learning methods use background
knowledge to constrain the search for operational concept descriptions. FoCL was de
signed to combine these two learning methods so that the inductive component could
take advantage of background knowledge when present and so that the explanation-
based component could use induction when the initial theory was incomplete or in
correct.

Focl's basic control structure is identical to Foil's but differs on how new

literals are chosen to add to the clause under construction. FoCL divides predicates
in the domain theory into two classes: operational and non-operational. Operational
predicates are those that have no clause in the theory with which to prove them; they
must be present in the examples. Non-operational predicates are those that do have
corresponding clauses in the theory. As with Ebl methods, FocL learns concept
descriptions in terms of operational predicates only. When learning a new clause,
Focl first computes the information gain of the target concept if the background
knowledge supplies a definition for it. If the gain is positive, FoCL operationalizes
the target concept to form a new clause. If the clause still covers some negative
examples, FocL continues to add new literals to the clause as would FOIL. The new
literals are variablizations of both operational and non-operational predicates. If a
non-operation predicate has the highest information gain, FoCL will operationalize
the predicate adding the resulting literals to the body of the clause.

Focl's operationalization process differs from the standard Ebl process which
works with only a single example at a time. Focl uses the available set of examples
to guide the operationalization process. For example, take the following very simple
theory where a is the target concept, b is non-operational and c, d, e, and f are
operational predicates:

a b, c.

a b, d.

b e, f.

Given the positive example {c A e Af}, standard Ebl would form the concept
a e, f, c corresponding to the predicates in the leaves of the proof tree for the
example. FocL, on the other hand, has a set of positive and negative examples that
it uses to guide the operationalization process. As each predicate is operationalized,
Focl computes the information gain for each alternative clause and expands the one
with the highest gain. For example, using the above theory and the positive example
{dAe Af Ah} and the negative example {cAeAfAj}, Focl will expand the second
clause for a because the first does not cover the positive example but does cover the



negative and so has negative gain. The final concept found by FOCL in this case
would be a : - e, f, d.

Focl has an advantage over FOIL because it can use an initial theory to guide
the learning process, making use of the correct portions of the theory and avoiding
incorrect portions. FoCL can also learn new clauses to cover the incomplete portions
of the theory. Taking advantage of the correct or useful portions of a theory and iden-
tifying and avoiding the incorrect portions is an important component of any theory
revision system. However, FoCL learns concept descriptions in terms of operational
predicates and loses the structure of the initial theory. In this respect, FoCL fails
at the theory revision task. KR-FOCL was designed to overcome this deficiency and
uses the results of FoCL to suggest repairs to the initial theory.

KR-FOCL

KR Focl (Pazzani &Brunk, 1991) was designed toidentify and suggest repairs
for the four different types oferrors: a missing clause, and extra clause, a clause with
extra literals and a clause with too few literals. The system uses information about
how Focl learned the concept description in order to propose revisions to the initial
theory that correct one or more of these errors. During the learning process, KR-
Focl notes which clauses were operationalized and which predicates were induced.
This information is used in conjunction with several heuristics to suggest where and
how the theory may be repaired.

The first heuristic states that a clause learned exclusively by operationalization
indicates that all of the clauses operationalized were correct and require no modifica
tion.

The second heuristic states that a clause learned by first operationalization and
then by adding induced predicates indicates that one or more of the operationalized
clauses are too general and require adding the induced literals. Because the induced
predicates could be added to any of the operationalized clauses and still result in an
equivalent definition, the system asks the user to which clause they should be added.

Thethird heuristic deals withclauses that were learned exclusively by induction.
In this case, there are three classes of possible repairs. The new clause could subsume
an existing clause in the theory that was never operationalized because it was too
specific and had too low information gain. Replacing the existing clause with the
induced one has the effect of deleting literals from the existing clause. If the new
clause is subsumed by an existing clause in the theory, it may be that the existing
clause is too general and admits too many negative examples. Replacing theexisting
clause with the induced one has the effect of adding literals to the existing clause.
Finally, the induced clause could be an alternative clause for either the top-level



predicate or any other unoperationaiized predicate in the theory. KR-FOCL applies
these heuristics and queries the user if any of the suggested revisions should be made.

The final heuristic states that any clause in the original theory that was not
operationalized is a candidate for deletion. Such a clause has no function in the
theory; presuming the examples are thoroughly representative of the domain, it may
be safe to delete the clause. Again, the user is asked to confirm the suggested revision.

6.2.2 Comparison of A3, FOCL and KR-FOCL

The main difference between A3, FoCL, and KR-FoCL is that A3 performs
theory revision whereas the others perform theory guided induction. KR-FocL comes
closest, however, in that it suggests to the user what revisions might be useful. One
could imagine modifying KR-FoCL to make the revisions without user intervention
and retain those revisions that improve accuracy the most. Such a modification would
make KR-FoCL much more similar to A3 and FORTE in that it would perform a hill-
climbing search through the space of revised theories guided by the proposed repairs
and the resulting accuracy. Because this modification has not been made to KR-
Focl and because it has not undergone extensive experimental tests, there are no
empirical results by which to compare A3 and KR-FoCL and comparison is limited
to a discussion of the differences between the two algorithms.

To a large extent, the revision operators in A3 and KR-FoCL are similar. Both
systems add and delete clauses as well as add and delete literals from clauses. The
main difference lies in the conditions under which these operators are applied. A3
first identifies the location and type of error it believes occurs in the theory. Based
on this information, A3 applies the appropriate operators to repair the error.

In A3, clauses to be deleted are identified as those contributing to the incorrect
classification of an example. In KR-Focl, clauses are considered for deletion if
they were never operationalized, in which case no positive examples required them
and they possibly covered some negative examples. Whereas A3 directly identifies
clauses to be deleted, KR-FoCL must make this decision after all other learning has
taken place. Only at this point do unused clauses become candidates for deletion.

One heuristic by which KR-FoCL can add literals to a clause is when a learned
concept required adding induced literals. The user decides on which clause to add
them. Because the induced literals to be added are based only on the examples that
make it through a single operationalization path, it may be harder to tell to which
clause to add them. In fact, the literals themselves might have been chosen differently
if the other contexts (i.e., operationalizations) in which they would be used in the
revised theory had been available. By deciding ahead of time which clause needs the



addition of new literals, A3 is able to measure the effect of adding literals to that
clause with respect to the full theory and the whole example set.

Similarly, using the clause subsumption heuristics, KR-FOCL might have added
or deleted different literals from the clause had the operator been performed in the
context of the full theory and not just within the context of a single operationalization
path.

Another problem for KR-FoCL arises when different revisions, adding or delet
ing literals, are made to different operationalizations of the same clause. It is not at
all clear how this information could be used to decide what repairs are needed for the
original clause.

Finally, KR-FoCL operates in two phases: it first uses FOCL to learn an opera
tional concept and second suggests revisions to the theory based on how the concept
was learned. This could lead to a great deal more work for the learner if the theory
contained a single deep error that required FoCL to add induced literals to all of its
operationalized concepts. This extra work could be avoided perhaps if the error was
repaired early on in the learning process.

6.2.3 Empirical Comparison of A3 and FOCL

This section compares A3 to FocL to emphasize the difference between revising
a theory and using a theory to guide induction. Pazzani and Brunk (1991) presented
a domain theory for determining if a student needed to make payments on a student
loan. The theory, as previously shown in Figure 5.12 (Section 5.2.5), contains sixteen
clauses up to four levels deep. Four different types of errors were introduced into the
theory: one clause was missing a literal, a whole clause was missing, one clause had
an extra literal, and one concept had an extra clause. Figure 5.13 in Section 5.2.5
shows the incorrect theory.

KR-Focl operated on this incorrect theory suggesting different revisions to cor
rect the different errors. Empirical results comparing A3 and KR-Focl are not given
because KR-Focl requires user input to decide what revisions to make. Although
Fool does not perform theory revision, it does use an initial theory as a guide for
learning. Foci learns first-order Horn clause theories for the top-level concept being
learned and these theories are compared to those learned by A3 for the domain.

The experiment consisted of giving A3 and FoCL the initial incorrect theory
and examples chosen from a pool of 50 students. For each different number of input
examples, the revised theories were measured in terms of accuracy on unseen exam
ples, distance from the original theory, and distance from the correct theory. The
results axe shown in Figures 6.1, 6.2, and 6.3 and are averaged over 30 trials.
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Figure 6.1. Accuracy for A3 and FOCL on student loan domain.

Figure 6.1 shows that A3 performs better overall on accuracy than POCL and
that the distances from both the original and correct theories for FoCL are much
greater than for A3. The distance of the revised theory from the original as a function
of the number examples (Figure 6.2) rises for A3 from 0 to around 20 examples after
which it levels off. A "good" revised theory should be accurate and be close to the
original theory. However, early on the theory is not very accurate but the distance
to the original theory is small. After 45 examples its distance from the original has
increased. In fact, according to the distance metric, the correct, 100% accurate theory
given by Pazzani and Brunk (1991) should have a distance of four from the original
theory, while the theory learned by A3 has an average distance of about four and a
half after 45 examples.

As a comparison to a pure inductive learner, A3 was given 45 examples from
this domain along with an empty initial theory. Averaged over 20 trials, A3 learned
theories that were 78% accurate. This is much lower than either A3 or PocL when

given an initial incorrect theory. Part of the reason the accuracy with no initial
theory is so low is that some of the correct clauses require adding literals with no
information gain. Were A3 to incorporate methods such as determinate literals or
relational pathfinding, the resulting accuracy would likely increase.

The results comparing the accuracy of PoCL and A3 indicate another benefit
of the bias towards minimal revisions of theories. A3 does not delete any of the
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Figure 6.2: Distance between original and revised theory for A3 and POCL on the
student loan domain.

domain theory unless doing so improves accuracy on the training set. In contrast,
Focl learns clauses that discriminate positive from negative examples. When there
are few training examples, it ignores those portions of the domain theory that are not
needed to explain any of the positive examples in the training set.

Figure 6.3 shows the distance between the revised and correct theories. Notice
that the original theory hcis a distance of four from the correct theory. As learning
proceeds, the distance between the revised and correct theory actually increases. One
would hope that this distance would, in fact, go to zero as accuracy approaches 100%.
Unfortunately, for this problem, A3's distance from the correct theory is an average of
4.2 after 45 examples. In this case, the theory revision problem is under-constrained.
For example, the correct theory should contain the following clauses:

continuouslyjenrolled(S)
never_left_school(S) ,

part_time_student(S).

part-time-Student (S)
enrolled(S,School,U),

school(School), U > 5.
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Figure 6.3: Distance between correct and revised theory for A3 and POCL on the
student loan domain.

While A3 typically learns:

continuouslyj8nrolled(S)
part_time_student (S).

part_tinie_student (S) : -
enrolledCS,School,U),
school(School), U > 5,
neyer_left_school(S) .

Although these two definitions are equivalent with respect to accuracy, the latter
definition does not reflect a proper definition of part-time student that an expert
would be willing to accept. It is exactly this type of difference that the distance
metric is intended to capture. The problem arises in this domain because there are
two places where one could add a literal to achieve the same accuracy. While both
are equally distant from the original theory, one makes the revised theory closer to
the known correct theory, while the other moves it further away. This problem would
not occur if the syntactic differences between the theories resulted in differences in
accuracy. This could be accomplished in A3 by providing examples for intermediate
concepts (e.g., examplesof part-time students), or if the predicate part_time_student
were used elsewhere in the theory as demonstrated in Section 5.2.5.



6.3 MIS

Shapiro's MIS system (Shapiro, 1983) can inductively learn and correct logic
programs given an initial program, examples of how it should behave, and an oracle
to answer queries. In this respect, it performs theory revision. However, the system
was designed in part as a program debugging aid and requires extensive use of an
oracle, or user, to supply answers to queries about the intended meaning of the target
program.

MIS was designed to be a general purpose solution to program debugging.
It uses an abstract computational model that covers a class of common functional
programming languages including Prolog. The algorithms are presented as Prolog
code and the programs being debugged are represented as Prolog programs. This
providesa direct mapping between a domain theory and what Shapiro calls a program.

Shapiro considers MIS to be an incremental learning system because it processes
a single example at a time correcting the theory based on the example. However, the
more common interpretation of incremental learning is that the learning system does
no or little re-processing of past examples. Although MIS processes a single example
at a time, the system is non-incremental in the sense that all of the past examples
must be available in order to evaluate the correctness of proposed theory revisions.

6.3.1 Identifying Errors in a Theory

As with A3, Forte, and other theory revision systems, MIS operates in two
phases: error detection and error correction. In the error detection phase, MIS
identifies three classes of errors: a program can terminate producing incorrect output,
it can terminate failing to produce any output, or it can fail to terminate. The first
case corresponds to over-generality where an example is implied by the theory even
though it should not be. The second case corresponds to a theory being overly specific,
in which case the theory fails to prove an example. The final case of non-termination
of programs is one which A3 does not address.

Incorrect Output: Overly General Theories

A theory produces an incorrect output if it is able to prove a negative example,
or, in other words, if it is overly general. It must therefore be the case that some
subconcept used in the proof of the example produces an incorrect output. The goal
of the bug identification phase is to find a goal that incorrectly proved to be true.
MIS does this by essentially querying the user about every goal proved during the
proof of the example. A bug, or error, is found when the user identifies a goal that



should not have been provable. In the worst case, this algorithm may query the user
about every goal solved in the proof of the example which is 0{n) where n is the
number of goals solved in the proof of the example.

Shapiro presents an improvement on this algorithm that only requires at worst
0(h log n) queries where 6 is the branching factor of the proof tree and n is again the
number of nodes in the proof tree. The basic idea is a divide-and-conquer approach
that orders the queries according to the structure of the proof tree. By asking queries
that isolate the fault to one half of the tree or another, the number of queries required
becomes proportional to the number of branches at a node times the depth of the tree
or 0(6 log n). The important thing to note about this algorithm is that it searches
for a single error in the theory at a time based on a single example even if there may
be multiple errors. The user is required to identify incorrect goals in the theory and
must therefore have complete knowledge of the intended meaning of every concept in
the theory.

Finite Failure: Overly Specific Theories

The other type of error that MIS detects is finite-failure in which a positive
example is not provable by the theory. In this case the theory is overly specific. A
theory that can not correctly classify a positive example must have some subconcept
within the theory that is incorrect. MIS identifies failing goals by once again querying
the user about every attempted goal in the proof process. However, in this case, MIS
is trying to identify a goal that should be provable but is not; so, instead of querying
the user after the goal was proved, it first queries the user for a solution to the goal.
If the user supplied instantiation of the goal is not provable by the theory, an error
has been found. If the goal is provable, MIS continues attempting the proof of the
misclassified example. The worst case number of queries performed by this algorithm
will be 0(bd) where d is the maximum depth of a proof for any example and 6 is the
maximum number of solutions for any subgoal in the proof of any example.

Error Detection in A3 and MIS

Both A3 cind MIS are able to diagnose theories containing multiple errors even
though they both look for a single error at a time. MIS entirely relies on information
from the oracle to determine whether something is an error or not. The algorithms
for locating errors only serve to direct the queries and attempt to reduce the number
of queries needed. A3, on the other hand, does not rely on an oracle but rather
replaces it with a proof process using assumptions.

A3's proposed cissumptions correspond to oracle queries in MIS; however, the
answer to the query is decided based on whether or not the example can be proved



using the assumption. This is a more strict requirement for identifying errors because
it is possible that multiple errors interact in which Ceise A3 might not identify an as
sumption that truly corresponds to an error. Because MIS has complete information
from the oracle, it need not worry about how errors interact; it simply returns the
first error it finds in a theory.

MIS handles negation in much the same way as A3. The algorithms for detect
ing over-generality and speciality are interchanged when passing through a negated
literal. Thus MIS has no difficulty with correctly identifying errors within the scope
of a negation. However, the system still relies on an oracle to furnish the intended
meaning of all concepts in the theory.

6.3.2 Correcting Errors in a Theory

MIS's approach to both inductive program synthesis and theory revision is to
process examples one at a time and incrementally refine the theory to classify all
previously seen examples. The system is incremental in that once a theory has been
proposed and eliminated, it will never be proposed again. Shapiro then is able to
show that MIS can correctly learn or revise a theory in the limit. The approach
involves enumerating all possible theories and marking those that are inconsistent
with the input examples.

The error diagnosis phase identifies a single incorrect clause in the theory.
Shapiro describes two possible approaches to repairing the clause. One is to throw
away the clause and learn a new one from scratch. The other method is to identify
an equivalence class of common programming errors and to refine the incorrect clause
by applying operators that transform clauses into others in the equivalence class. If
the system is unable to find a new clause, it asks the user to supply the answer.

MIS's search for clauses to correct an error is based on the notion of a refinement

graph. This graph organizes clauses according to generality with the empty clause
at the root and more specific clauses at the intermediate nodes. Refinements are
applied to nodes in the graph to produce new, more specific clauses. Essentially,
these refinements add new literals to the body of the clause. Subtrees of the graph
are pruned once a contradicting example is found. The refinement graph is analogous
to the G set in version spaces (Mitchell, 1978). The approach that A3 and Foil
take is to find a node in this graph by heuristically chosing the refinement with the
best information gain or coverage of the examples. While this approach may fail to
find a new clause consistent with the exctmples, it has the advantage of exploring a
muchsmaller search space which is especially large for first-order theories (Haussler,
1987).



6.4 Other Related Systems

This section describes other learning systems that perform different aspects of
first-order theory revision and compares them to A3.

6.4.1 FOIL

The inductive learning component of A3 is largely based on FoiL. Induction is
used in A3 to either specialize an existing clause by adding new literals or by learning
new clauses from scratch. Because A3 performs induction within the context of a
larger theory, its control structure must be different than the one used for FOIL
(Section 4.6).

A3 evaluates the addition of each new literal in terms of the improvement to
the overall accuracy on the training data. In contrast, because each additional clause
added by FOIL strictly generalizes the concept being built, once a positive example
as been covered by a clause, there is no further need to check if it remains covered.
However, because A3 may have to revise a theory containing negation, it can not
assume that once a positive example has been covered that it will remain covered. It
must, therefore, evaluate each new literal with respect to the entire training data. This
can actually be detrimental to A3's performance as seen in the following example.

For one trial of 75 examples of illegal from the king-rook-king domain, FOIL
produced the following concept description which is about 96% accurate:

illegal(V0,Vl,V2,V3,V4,V5) equal_row(V4,V2).
illegal(V0,Vl,V2,V3,V4,V5) equal_coluiiin(V5,V3).
illegal(V0,Vl,V2,V3,V4,V5)

equal_row(V4,V0) , near-column(V5,V1).
illegal(V0,Vl,V2,V3,V4,V5)

near-row(V4,V0), near-coluiim(V5,Vl).
illegal(V0,Vl,V2,V3,V4,V5)

equal^olumn(V5,Vl), not(less(V0,V4)).
illegal(V0,Vl,V2,V3,V4,V5)

equal_row(V2,V0), equal_column(V3,Vl).

A3, on the other hand, given no initial theory and the same example set will only
learn the following clauses which are about 90% accurate:

illegal(V0,Vl,V2,V3,V4,V5) equal_row(V4,V2).
illegal(V0,Vl,V2,V3,V4,V5) equal-column(V5,V3).



The reason that A3 is not able to learn the complete definition that FOIL does is
due to evaluating the revised theory in terms of the overall accuracy on the training
data. A3 is able to learn the first clause in the manner that FOIL does because

it improves the accuracy of the empty theory from about 66% to 79% by covering
some positives but excluding most of the negatives. The second clause can also be
learned by A3 because it only requires adding a single literal in order to improve
the accuracy to about 90%. At this point, however, A3 is unable to learn the other
clauses that provide the additional 5% improvement in accuracy. The problem is that
each of these other clauses requires the addition of two literals. To learn a third clause
A3 must go through an intermediate step in which the clause has only one of the
two correct literals. This overly general clause then makes the theory overly general
and consequently perform worse than a theory containing just the first two clauses.
Therefore A3 will not find a literal to add to the third clause that can improve the
theory's accuracy and will stop only having learned the first two clauses. On other
trials of 75 examples, A3 was able to learn a more complete concept description that
included more of the clauses learned by FOIL. However, this general problem still can
arise and is dependent on the distribution of examples in the training set.

Further research is required to overcome this problem in A3 when the theory to
be revised contains negation. If the theory does not contain negation, A3 could be
modified to adopt the control structure of FoiL in which previously covered positives
are not checked when adding a new clause or specializing an existing clause.

6.4.2 EITHER

Either (Ourston k Mooney, 1990) is a theory revision system that only hcin-
dles prepositional domains. The representational power of propositional theories is
greatly reduced because they do not allow recursive definitions and can only perform
classification tasks such as deciding if an input example, say odd (4), is true or not
rather than being able to generate results such as determining a binding for X in the
example member(X, [1,2,3] ).

As with other theory revision systems, Either revises theories in two phases.
First, the locations of errors in the theory are identified and second, the theory is
repaired at the identified locations. EITHER identifies errors in an overly-specific
theory by constructing all partial proofs of all failing positive examples. Each partial
proof contains a set of cissumptions (literals assumed to be true) that are required
to prove the example. EITHER then searches for a minimal set of assumptions that
cover the most number of failing positive examples. The theory is then generalized to
cover the failing positive examples by generalizing all clauses that use an assumption.
The clause is generalized by first removing the assumed literal. If this leads to any
negative examples being covered, EITHER inductively adds new literals to the clause
to exclude any covered negatives.



Overly general theories require finding overly general clauses. EITHER uses the
proof of all incorrectly classified negative examples to find a minimal set of clauses at
the leaves of the proof tree that can be deleted and will prevent the proof of negative
examples. If deleting a clause causes some positive examples to become unprovable,
Either inductively learns new clauses.

Because EITHER works only on propositional theories it can afford to search
for a larger set of assumptions. In contrast, all first-order theory revision systems
including A3, FORTE, and MIS only identify a single error at a time. However,
Either searches for assumptions at the leaves of the theory and may not find simpler,
intermediate-level repairs. Also, EITHER only allows negation of literals at the leaves
of the proof tree and so can make the simplifying assumption that an uncovered
positive example is the result of a missing or overly-specific clause or clauses and that
a provable negative example is the result of an overly-general clause or clauses.

6.4.3 RLA

Tangkitvanich et al. (1992) present a theory revision system called TtCA whose
basic approach to theory revision is very similar to KR-Focl's. "R-CA first oper-
ationalizes the theory based on the input examples. The operationalization differs
somewhat from Foci's; but, it does use information-gain to guide the process. The
operationalization phase may delete literals from a clause if they are found to be use
less which they define to be a literal whose gain falls below some predefined threshold.
If the operationalized theory fails to cover some positive examples, new clauses are
learned using Foil. Concepts in the original theory are then repaired based on in
formation from the operationalization phase.

Both RCA and KR-FOCI operationalize incorrect theories and then run an
inductive process to find either new clauses or literals to add to existing clauses. The
problem for these systems is that they do not explain how to operationalize through
a negated goal and hence have not demonstrated an ability to detect or correct errors
within a negation. Other problems arise when the initial theory contains recursive
concept definitions. Also, if a clause is operationalized more than once and each
operationalization is repaired differently using induction, these systems have no way
of deciding which repair to make to the original clause.

6.4.4 CLINT

MIS is able to identify errors within negation. However, both the error detection
and error correction phases require user input to make important decisions to guide
these phases. ClINT (De Raedt & Bruynooghe, 1989; De Raedt, I99I) was designed



as an interactive concept learner and is based in part on MIS. It accepts incorrect
first-order theories as input and requires both examples of concepts in the theory and
the use of an oracle to repair the theory. Clint uses methods for detecting errors
that are based in large part on those found in MIS. Because CLINT does not accept
theories containing negation, it repairs overly general theories by deleting clauses and
overly specific theories by adding new clauses. New clauses are learned by using a
specific to general search of the space of clauses. The initial most specific clause is
constructed in a manner common to many systems based on performing least-general
generalization (e.g., Golem), which is to add all or a large subset of ground literals
known to be true over terms present in the examples. It is not clear if or how ClINT
is able to repair clauses for intermediate concepts in the theory.

Although Clint is based in part on MIS, it does not accept theories containing
negation. De Raedt and Bruynooghe (1990) describe an extension to the form of
input theories to handle negation where both a concept and its negation must be
explicitly defined. The system then learns for each concept a set of clauses identifying
the positive examples of the concept and a set of clauses defining the negation. This
extension has advantages in some learning contexts because examples can be classified
as positive, negative, unknown, and inconsistent. However, revising theories such as
those in Table 4.3 remains problematic because the initial theory must have clauses
that define both the member and not_member relations which would be difficult to

express. Consequently, the system would have to perform the additional overhead of
checking the consistency of the two definitions.

6.4.5 GOLEM

Golem (Muggleton & Feng, 1990) is a system that induces logic programs from
examples and background knowledge. While the system can make use of an initial
background theory, it can only construct new theories rather than revise incorrect
ones. Golem takes the opposite approach from many other first-order learners in that
it constructs new clauses through generalization rather than specialization by forming
least-general generalizations of very specific clauses that represent single examples.
Each example can be represented by a clause whose body contains all literals known
to be true of terms in the example. These literals are those provable using bounded
computation. The specific clauses for examples can then be generalized to form
clauses in the final theory. Overly general clauses are eliminated if they cover negative
examples.

Learning clauses containing negation are difficult for GOLEM in part because
the initial clauses would by exceedingly large if all true negations were included
(e.g., not(member(l, [])), not (member (2, [])),not(equal(l, 2)) ...). Bainand
Muggleton (1991) describe a method called Closed-World Specialization (CWS) that
has been used in both CiGOL and Golem for handling both overly general theories



and noise in the input examples (Srinivasan, Muggleton &Bain, 1992). The method

Although CWS provides apowerful method of specializing theories, it has not been
shown how concepts in an initial theory used within the scope of negation can be
corrected when they are either too specific or too general.

6.4.6 LATEX

th t Shimura (1993) present a theory revision system, Latexhat handles no'̂ y training data. Their work builds upon the minimum description
ength principle (MDL) (Rissanen, 1978). Rather than choosing revisions according

of the , Latex measures the amount of compression
fuSre Tvt® ^ ^°">P^ession is measured as thember of bit required to encode the positive examples according to revised theory
mini"' th" b> examples according to the initial theorymus the bits required to encode the revisions themselves. Revisions that provide
the greatest compression are favored.

The revision algorithm in LaTEX is fairly simple. The initial theory is not
Thri r r '7"^* only one top-level predicate is allowed.This IS essentially the class of concepts that FOIL can represent. Given an initial
theory, Latex evaluates all possible revisions to the theory according to afew sim^k

The rev- I'̂ ral from a clause, and adding a literal to a clause.The revision providing the best compression of the data is selected and the process
continues until no more compression can be achieved.

Their approach to evaluating revisions using the MDL is an interesting one to
pursue because it may be applicable to other theory revision systems such as A3

t^reitt rr

6.5 Discussion

that Other theory revision systems and with systems
sForte ™AHt hA^ a A3^ Forte. Although A3 and Forte operate similarly in many respects, there aremany diferences between the two. A3 accepts alarger class of theories as input
because It has capabilities to repair theories containing negation. Improving Forte
to handle negation would be a very difficult task because its architecture makes
ertam assumptions about the relationship between positive and negative examples



and whether a theory is overly general or overly specific. By treating all examples in
a uniform manner, A3 uses simple general methods for determining which parts of a
theory are overly general or overly specific.

Other differences between the two systems are the use of assumptions in A3 and
revision points in FORTE, both of which are used to locate potential errors in a theory.
A3 generates fewer assumptions per example than Forte does revision points and
consequently performs less search. A3 also uses a distance metric in its evaluation
function which causes it to prefer minimal modifications of the initial theory. Forte
has no such evaluation component and therefore has no explicit bias towards minimal
revisions which is part of the theory revision task.

The inductive components of A3 and FORTE are both based on FoiL and each
one has strengths over the other. On the one hand, A3 does not have the problem of
reformulating top-level examples into examples for intermediate concepts that FORTE
does because A3 evaluates the addition of new literals by attempting to classify all
the input training examples. On the other hand, FORTE uses the more sophisticated
technique of relational pathfinding to overcome problems inherent in Foil's hill-
climbing search for literals. The advantages of these techniques could easily be added
to either A3 or FORTE.

Finally, empirical comparisons of A3 and FORTE show them to both be compa
rable in terms of the accuracy of the revised theories but with A3 performing fewer
modifications to the initial theory. This is not too surprising because A3 uses the dis
tance metric to bias it towards making minimal revisions. Further empirical studies
are needed to understanding better the differences between these two systems.

A3 was also compared with FOCL, which performs theory guided induction
rather than actual theory revision. Both systems are able to overcome errors in an
initial theory in order to learn accurate new theories; but, A3 does this by repairing
the input theory whereas FoCL only uses it as a guide. Consequently, the theories
produced by FoCL are of a much different form than those produced by A3. Empirical
comparisons highlight this difference by me^lsuring both the distance between the
revised and input theories as well as the revised and correct theories. A3 performs
much less revision of the initial theory and produces revised theories much closer to
the correct one than does Foci.

KR-Focl is an extension of FoCL that performs some of aspects of the theory
revision task. It uses the results of FoCL and suggestions by the user in order to
decide how the original theory should be repaired. Although KR-FoCL is a step
towards a full theory revision system, it requires user intervention and suffers from
problems with trying to recover information from the results of learning in FoCL that
are needed to decide what repairs to make. No empirical comparisons have been made
between A3 and KR-FoCL because KR-FoCL requires human intervention and has
not undergone extensive empirical studies on its own.



Other related systems are also discussed but they all only perform certain as
pects of the first-order theory revision task. Shapiro's MIS and De Raedt's Clint
system perform theory revision but both require extensive use of an oracle. MIS can
handle neption in theories but Clint cannot. Other systems such as HCA perform
theory guided induction and consequently have difficulties using the learned knowl
edge to go back and repair the original theory. GoLEM learns complex logic programs
but has no facility for revising incorrect theories. Latex demonstrated an approach
to handling noisy data in a theory revision system, but the class of theories it can
revise it greatly restricted.



Chapter 7

Conclusions

This chapter reviews the contributions and limitations of the work presented in
this dissertation and suggests directions for future research.

7.1 Contributions

The main contributions of this work include the introduction and use of the

theory distance metric, the ability to revise first-order theories containing negation,
the integration of an existing first-order learning method, and the ability to utilize
examples of multiple concepts in a theory.

7.1.1 Distance Metric

One of the goals of theory revision is to minimally revise a given theory in
order to correctly classify a set of training examples. Almost all learning systems are
evaluated with respect to the accuracy of the learned concepts, but to date, no theory
revision system has been evaluated with respect to the degree of modification made
to the initial theory.

This work has proposed and used a methodology for evaluating revised theories.
The edit-distance between two theories is defined as the minimum number of literal-

level edit operations that can transform one theory into another. Measuring the
edit-distance between an initial and revised theory provides a quantitative evaluation
of the degree of revision performed. The distance metric has proved to be a useful
tool in many respects.

Along with accuracy, the distance metric can be used to compare the theories
learned by two different systems. Just as one system can outperform another with
respect to the accuracy of the revised theories, one system may make smaller changes
to the initial theory that the other. Section 6.1.3 presented such results comparing
A3 and Forte on the king-rook-king domain. It was shown that both systems



learned theories that were within 1% accuracy of one another but that A3 learned
theories that were on average 11% closer in distance to the initial theory. Although
one cannot make broad claims about the relative performance of the two systems,
these experiments do show how such systems can be compared with respect to how
well they perform the theory revision task.

Because the learned theories should be close to the original, it is natural that
the learner take this into account during the learning process. Just as improvement
in accuracy usually guides most learning systems, A3 uses an evaluation function
that favors more accurate theories and breaks ties according to the distance of the
revision from the initial theory. In some of the experiments reported here A3 had to
break ties according to distance in up to 50% of the cases where competing revisions
were evaluated. Other tradeoffs between accuracy and distance could be built into
the system if such a tradeoff were known for the specific domain. Without such a
tradeoff, A3 favors more accurate revisions and only uses distance to choose among
equally accurate revisions.

Using the distance metric as an evaluation tool hcis provided some interesting
insights into the theory revision task. In all of the experiments reported here a correct
theory for the domain was known and the distance between the revised and correct
theories was measured. One might expect that with increasing numbers of training
examples that as the accuracy of a theory increased, so would the distance to the
correct theory. However, this is not the case. The most likely explanation for this
behavior is that the number of accurate theories is quite large and that without
additional constraints, the learner is able to produce small revisions to the initial
theory that achieve a high level of accuracy even if those revisions do not make the
theory syntactically closer to the correct theory. This result is encouraging in that
clearly the system is able to find minimal revisions of the theory. However, it also
seems desirable that the learned theories would converge on the correct one given
sufficient examples. In terms of recovering the correct theory, the theory revision
task is underconstrained.

7.1.2 Intermediate concepts

One approach to further constrain the theory revision task is to present examples
of intermediate-level concepts in the theory along with the top-level ones as reported
in Section 5.2.5. Because revisions at different points within a theory may have the
same effect on accuracy of the top-level examples there is no principled way to chose
among them. However, presenting examples of the intermediate-level concepts does
add this missing constraint. The results on the student loan domain demonstrate that
by presenting examples of intermediate-level concepts A3 was able to learn theories
of somewhat greater accuracy that were also closer to the correct theory than if
only top-level examples had been presented. Furthermore, increasing the number



of intermediate examples led to theories that were closer to the correct one. These
experiments show how A3 is able to effectively use examples of multiple concepts in
a uniform manner.

7.1.3 Negation

Existing first-order theory revision systems cannot correct errors within the
scope of a negation. The ability to express concepts in terms of the negation of other
concepts provides greater flexibility of representation and can provide greater com-
prehensibility for humans. A3 was designed in part to repair theories with negation.
The system handles both positive and negative examples as well as examples of mul
tiple concepts in a uniform manner which allows the system to correctly identify the
location and types of errors in first-order theories containing negation.

Modifying other theory revision systems to handle negation is often quite dif
ficult. Most of these systems were designed around the notion that an incorrectly
classified positive example requires that some concept in the theory be generalized
and that an incorrectly classified negative example requires that some concept be spe
cialized. This is simply not the case for theories containing negation as was discussed
in Section 4.2.

A3's assumption finding mechanism locates errors within a theory and identifies
whether the error is due to some intermediate concept being overly general or specific.
Because cissumptions are generated in the same way for both positive and negative
examples as well as examples from different classes, a given assumption may be used
by these different classes of examples. For instance, a positive and negative example
may both indicate that some intermediate concept is overly general. It is therefore
the assumption itself that directly determines the location and type of error rather
than the training examples.

A3 uses simple and general mechanisms for locating and repairing errors that
allow it to repair theories containing errors within the scope of a negation. Adding
the complexity of handling negation actually allowed A3 to be designed in a more
elegant, general, and symmetric way than other systems performing first-order theory
revision including AUDREY (VVogulis, 1991) which was an earlier version of A3 that
performed separate generalization and specialization phases.

7.1.4 Clause Induction

Because A3 performs first-order theory revision it builds upon other work in
first-order concept learning. Forexample, when a concept is found to be overly specific



A3 attempts to induce a new clause to cover some subset of uncovered examples-
New clauses are learned and existing ones specialized by using techniques based on
the first-order learner FoiL.

The basic Foil algorithm is intended to be used to learn a set of clauses for a
single concept in isolation. Although variations on FOIL such cis FOCL are able to
use background knowledge during learning, concepts are learned without respect to
how they may be used elsewhere. For example, FoiL is able to learn a definition for
the append relation from examples and non-examples of appending two lists together.
However, the learning does not take place within a context where the concept may be
used such as while attempting to learn a definition of sort that depends on having
the append relation.

The Foil algorithm is able to make certain assumptions that are only valid
when learning single concepts in isolation. Such assumptions include being able to
stop considering negative examples once the clause being built excludes them and
the stopping criteria that no negative examples are covered by the clause being built.
Systems such as Forte that use the Foil technique within the larger framework
of theory revision often try to construct the task such that Foil's assumptions are
still valid. However, as discussed in Section 4.6, certain assumptions about the task
required by the Foil algorithm do not hold or are difficult to maintain when used
for the theory revision task. These assumptions are not valid for theories containing
negation.

Because a clause being learned through induction may be used within the larger
context of a theory containing negation, it is no longer true that adding new literals to
a clause will specialize the theory with respect to the examples. Rather, if the clause
is within the scope of a negation, it may actually generaJize the theory. A3 has
modified the basic FOIL algorithm to consider the classification of all of the training
examples when evaluating the addition of a new literal to a clause.

Because generating examples for an intermediate-level clause being learned from
top-level examples can be problematic, or even impossible, A3 evaluates the addition
of new literals based on classifying the original training examples. Forte, on the
other hand, goes to great lengths in order to generate a set of training examples for
the clause being learned in order to use the FOIL algorithm without modification.
A3 uses a generalized FoiL method that circumvents the need to force the task to
conform to the solution and retains many of the positive aspects of the original FoiL
method.



7.2 Limitations and Future Work

Although A3 has been shown to perform well at first-order theory revision it
has a number of limitations that are interesting areas for future work. One of the
main drawbacks to A3 is that it can only isolate and repair a single fault at a time.
Although the system can repair theories with multiple errors there are cases where
its performance could be greatly enhanced it if were to identify and repair multiple
errors at once.

A3 could also be improved upon in areas currently being addressed in other
first-order learning systems. Problems such as predicate invention, clause induction,
noise, and efficiency have been the subject of investigation and incorporatingsolutions
to these problems into solutions to the theory revision tcisk provide interesting topics
for future work.

7.2.1 Multiple Assumptions

A3 locates and repairs single errors in a theory at a time until no more errors can
be found. An error is identified using an assumption. Because A3 only finds a single
assumption to base its repairs on there are classes of theories containing multiple
errors for which A3 would not find the desired solution. A3 can repair theories with
multiple errors, even if those errors interact with one another. However, if two errors
in a theory interact, A3 may not locate the correct source of the errors. For example,
consider the following incorrect theory for uncle:

uncle(U, N) brother(U, P), father(P, N).
brother(A, B) sibling(A, B), male(A),

grandparent(B, A).
father(A, B) parent(A, B), male(A), older(B, A).

The theory has two errors, the clause for brother and the clause for father are
both too specific because they each have an extra literal. Generating eissumptions
based on either of the incorrect literals would not allow any positive examples to
be correctly classified. The only single assumption that A3 would find for a set of
positive example would be of the form uncle(pl, p2). In this case, A3 could only
isolate the fault at the level of uncle whereas the actual error occurs at two locations

deeper in the theory.

If A3 were also provided with examples of the brother and father concepts, it
might be able to make repairs to those concepts one at a time. In the absence of such
examples, A3 would be forced to repair the theory at the higher level uncle concept.



By finding multiple assumptions per example, A3 would have a better chance
of finding the two errors in the theory by assuming the conjunction of the literals
grandparent (p2, pi) and older(p2, pi). However, allowing for multiple assump
tions raises some difficult issues. The number of assumption sets with more than
one element is likely to be quite large and the efficiency of the theory revision sys
tem would be greatly hampered. Effective ways of choosing the appropriate set of
assumptions would be required.

Performing repairs based on multiple assumptions is also problematic. It may
be necessary to make simultaneous repairs at both error locations in order to see an
improvement in accuracy. This is likely to be the case because the errors interact
and must both be solved before an incorrect example can be correctly classified. The
number of combinations of simultaneous repairs to make will certainly be much larger
than if only one repair were made at a time.

7.2.2 Multiple Incorrect Clauses

Similar to the problem of locating multiple errors in a theory is the problem of
handling multiple overly general clauses. A3's operator for specializing concepts by
selecting the best clause to specialize (Table 4.11) will fail if multiple clauses must be
repaired simultaneously. For example, assume that a correct theory for illegal had
the following two additional clauses:

illegal(A,B,C,D,E,F) A > 0.
illegal(A,B,C,D,E,F) B > 0.

These two clauses are true for any board configuration and so all negative exam
ples will be incorrectly classified and all positive examples will be correctly classified.
However, fixing just one clause at a time will not give any improvement in accuracy
because the other clause will still match. Only by deleting both clauses can there be
any improvement in accuracy.

This is the plateau problem with hill-climbing search and is similar in spirit to
a problem encountered in Foil (Section 2.1.3 page 15.) A hill-climbing approach to
adding literals to a clause will not work if a conjunction of literals is needed to provide
any information gain. The various methods for overcoming this problem in FOIL have
to do with controlled look-ahead. For example, cliches (Silverstein Pazzani, 1991),
determinate literals (Quinlan, 1991) and relational pathfinding (Richards h Mooney,
1992) can be viewed as a form of constrained n-step look-ahead in the space of literals
to add.

The problem with deciding which clauses of a concept to modify may require
trying all 2" possible combinations of clauses before finding the correct subset that is



faulty. Even if the number of clauses n is small there is still considerable computation
required to repair the fault for any given combination of clauses. In fact, the problem
with induction in FOIL may arise again if the faulty clauses need specializing: adding
a new literal to only one clause will not change the accuracy and so gives no guidance
for what literal to add or which clause to add it to. Clearly, further research in this
area is required in order to find methods of identifying and repairing theories with
multiple interacting errors at the clause level.

7.2.3 Constraints on Theory Revision

As previously discussed, certain aspects of the theory revision task are under-
constrained. In particular, it is unlikely that the intended correct theory will be
produced if only top-level examples are available. Often repairs at multiple locations
will produce equally accurate theories and there is no information available to decide
which repair to choose.

Section 5.2.5 presented one possible constraint that could help with this prob
lem. By presenting examples of intermediate-level concepts, A3 was able to leaxn
theories that were closer to the intended correct theory than if only top-level exam
ples were used. However, this is only a partial solution in that each concept in the
theory could be represented in many different ways.

Suppose the system were to learn a definition for the predicate sort and was
only provided background knowledge for such concepts as append and greater. With
no further constraints, the system could learn definitions based on any number of
different sorting algorithms such as quicksort, or bubblesort. These solutions would
all be correct in that they would correctly classify examples but may be different from
some unknown intended correct solution.

Clearly, further information or constraints must be provided to the learner if
the revision task also requires the theory produced to be of some particular form.
Possible solutions to this problem might be to provide information to the theory
revision system in the form of rule models (Davis, 1978) or higher-order relationships
between predicates such as those expressible in CYC (Lenat & Guha, 1990).

7.2.4 Predicate Invention

While A3 can revise a given initial theory by repairing concepts within the
theory, it does not create ctny new concepts. Inventing new predicates and their
definitions is an important area of research that has received little attention. Methods
for performing predicate invention can be found in CiGOL (Muggleton &: Buntine,



1988), LFP2 (Wirth, 1989), SIERES (Wirth k O'Rorke, 1991), and CHAMP
(Kijsirikul, Numao k Shimura, 1992). The introduction of new concepts into a theory
can prove to be very useful and in some cases required in order to learn certain classes
of concepts.

Inventing new concepts can serve to improve the accuracy of a theory but at the
same time will produce revisions further away from the initial theory. The conditions
under which new concepts should be created requires further investigation. Clearly,
if the only way to learn a desired concept is by creating a new concept, the learner
should do so. However, if there are multiple ways in which to repair a theory, the
decision of whether or not to add a new concept becomes more difficult. Introducing
new predicates into a theory may have an adverse effect on its distance from the
original but it might actually make the theory more coherent, more maintainable,
and more understandable to a human. Some means of measuring these aspects of a
theory are needed beyond the measures of accuracy and distance proposed here.

7.2.5 Improvements to Clause Induction

While A3 uses a generalized Foil algorithm as its inductive component there
are still many interesting problems to be solved for first-order clause induction. In
particular, FOIL has the previously mentioned problem with its hill-climbing approach
in that it may not find the correct conjunction of literals to add to a clause if all are
required before any improvement in accuracy is found.

Solutions to this problem such as limited lookahead, cliches, determinate literals,
and relational pathfinding could all be incorporated into A3 in order to improve its
inductive learning component. One of the advantages of using a FOIL based approach
to induction is the possibility of improving the theory revision system with new results
from first-order inductive learning as mentioned above.

Section 6.4.1 described a problem with using the Foil approach in A3 when
the theory to be revised contains a negation. The basic problem is that revisions
to a theory must be evaluated in terms of the accuracy of the revision on the entire
training set rather than only on the remaining uncovered positives. Consequently,
A3 may only learn a subset of the clauses that would be learned by FOIL alone. This
problem is easy to overcome if the theory contains no negation, but requires further
research in order to match the performance of FoiL in the more general case where
theories may contain negation. Even without these improvements to the basic FOIL
method, A3 has been shown to handle a large variety of first-order theory revision
tasks.



7.2.6 Noise

An important area of research in machine learning is the handling of noisy
data. Some work has been done with handling noise in first-order learning (Brunk
& Pa^zani, 1991; Dzeroski k Lavrac, 1991; Ali k Pazzani, 1993) as well as in theory
revision (Tangkitvanich k Shimura, 1993).

Currently, A3 could accept noisy training data and would produce a revised
theory based upon it. However, it is doubtful that the resulting theory would perform
very well in terms of accuracy, only because the system wcis designed without taking
noise into consideration.

Tangkitvanich and Shimura (1993) presented a method for handling noisy data
within their theory revision system LaTEX. Their approach is based on the minimum
description length principle that favors the least revision of the initial theory that can
accurately cover the training data. However, the class of input theories it can revise
is greatly restricted. It would be relatively simple to change A3's evaluation function
to use their approach which might provide a better method of handling noisy data.

Because many of A3's repair operators are based on FOIL, any improvements
to Foil that handle noise are likely to be applicable in A3 as well. However, the
system's method of selecting the best assumption upon which to base revisions to the
theory would have to be changed. Assumptions would still be generated for both noisy
and non-noisy examples but the criteria for selecting the best assumption may have
to be based on something more than just the most commonly occurring assumption.

7.2.7 Efficiency

Theory revision is a computationally expensive task. No longer is the system
learning just a single concept in isolation, but rather in the context of a larger the
ory. As implemented, A3 evaluates competing revisions to a theory based upon the
accuracy of the revised theories on the training examples. This accuracy is obtained
by attempting to classify each training example which involves proving the example
using the theory. This is a costly process and is one of the most common operations
in the system. The inductive component is an especially heavy user because it must
evaluate the addition of large numbers of literals to a clause. This is probably the
most fruitful area to explore in order to improve the efficiency of the system.

One approach taken but not reported here was to cache all intermediate results
of the theorem proving process so that these results may be resued when re-proving an
example with a different modification to the theory. However, changes to the theory
will cause some or all of these cached result to be invalidated and to be removed from

the cache. In the domains presented here, the overhead of caching was essentially



equivalent to benefits received so that there was no overall net gain in the system's
performance. It is possible that for other domains, especially ones with larger numbers
of concepts that caching might prove beneficial if large areas of the theory remained
unaffected by a single change.

Other ways of improving the efficiency of the inductive component is to weed
out candidate literals before evaluating them. Using constraints such as type and
mode of the arguments to a literal can also greatly improve efficiency. Further work
into identifying useful literals to try becomes especially important as the size of the
background theory grows. One would hope that with more knowledge, the learner
would be more efficient than with less.

7.3 Final Thoughts

This dissertation has presented a solution to the theory revision problem that
can handle theories with multiple concepts expressed as function-free Horn clauses
including negation. Systems performing theory revision are able to take advantage
of, and even repair, previously acquired knowledge. This offers a great advantage
over other machine learning systems that can only learn single concepts at a time
without the ability to repair incorrect knowledge. As machine learning solutions are
applied to real-world problems, this ability to repair previously acquired knowledge,
be it from a human or other source, becomes increasingly important. A3 has been
shown to repair a class of theories with greater representational power than previous
systems performing theory revision and has pointed out directions for future research.
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Appendix A

The Moral Reasoner Theory

A.l Moral Reasoner Theory Clauses

The following are the clauses comprising the moral reasoner domain.

guilty(X) blameworthy(X).
guilty(X) vicariousJ)lajae(X).

blameworthy(X)
responsible(X),
not(justified(X)),
severityJiarm(X,H) ,
benefit_victim(X,V),
greater(H,V).

vicariousd>lame(X)

vicarious(X),

not(justified(X)),
severityJiarm(X,H) ,
benefit_victim(X,V),

greater(H,V).

vicarious(X)
someonejelse-cause_harm(X,Y),
outr2uik^erpetrator(X,Y),
control^erpetrator(X,Y), yes(Y).

justified(X)
achieve^oal(X,Y), yes(Y),
goaljDutweighJiarm(X,Y),
goal_achievableJ.ess_harmful(X,Z), no(Z).



responsible(X)
cause(X),
not(accident(X)),
voluntary(X),
foreseeable(X),

not(interveningxause(X)) .

cause(X)

cause(X)

cause(X)

- produce_harm(X ,H) , yes(H).
- necessary-forJiarm(X,H), yes(H).
- suff icient-for_hana(X,H) , yes(H)

accident(X)

not(intend(X)),
not(reckless(X)),
not(negligent(X)).

foreseeable(X)

foreseeable(X)

foreseeable(X)

- foreseeability(X,F), high(F)
- foreseeability(X,F), low(F).
- foreseeability(X,F), yes(F).

reckless(X) mental_state(X,M), recklessjn(M)

reckless(X)

careful(X,C),
no(C),

not(strong_intend(X)),
foreseeability(X,F),
high(F).

negligent(X)
mental_state(X,M) ,
negligent ja(M).

negligent(X)
careful(X,C), no(C),
not (strong-intend (X)),
foreseeability(X,F),
low(F).

intend(X) strong_intend(X).
intend(X) weak_intend(X) .



strong_intend(X)
meiital^tate(X,M) ,
iiitend_m(M) .

strong-intend (X)
plan-known(X,Y),
plan-includeJiarm(X ,Y),
harni_caused-as_planned(X,Y), yes(Y).

weak_intend(X)

weak_intendl(X) ,

not(reckless(X)),
not(negligent(X)).

weak-intendl (X)

weak-intendl (X)

weak-intendl (X)

- not(discount_intent(X)).

- monitor(X,Y), yes(Y).
- benef it4)rotagonist(X,Y), yes(Y)

discount-intent(X) external-cause(X,Y) , yes(Y).

voluntary(X) extemal_force(X,Y), no(Y) .

interveningjcause(X)
intervening_contribution(X,Y), yes(Y),
foresee-intervention(X,Z), no(Z).

greater(X,Y) X > Y.

eq(X,X).

yes(y).
no(n).

high(high).
low(low).

recklessjQ(reckless).

negl igent JD (negl igent)
intend_m(intend) .



A.2 Seventeen classes of positive examples in the
Moral Reasoner domain.

The following are the seventeen classes of positive examples of guilty used for
the experiments reported in Section 5.2.1. Each class is represented as the conjunction
of literals from the background knowledge. For example, the first class listed below
covers all positive examples where the person caused the event, their mental state
was negligent, the action was not justified, there was no external force, the event
was highly foreseeable, there were no intervening cases, there was severe harm to the
victim, and the victim received no benefit. Section 5.2.1 discusses how these classes
were determined.

cause(X), mental_state(X, negligent), not(justified(X)),
externaljeorce(X,no), foreseeability(X,high) ,
not (intervening-cause (X)), severityJiarmCX, 1),
benefit_victim(X,0).

cause(X), mental_state(X, negligent), not(justified(X)),
externaljforce(X,no) , foreseeability (X,low) ,
not(intervening_cause(X)) , severity_hann(X, 1),
benefit_victini(X,0).

cause(X), careful(X,no), not(interveningj:ause(X)) ,
foreseeability(X,lou), externaUorce(X,no) ,
severityJiarm(X,l), benefit_victim(X,0),
not(justified(X)).

cause(X), mental-state(X, reckless), not(justified(X)),
externaljforce(X,no), foreseeability(X,high),
not(intervening_cause(X)) ,
severity_harm(X,l), benefit_victim(X,0).

cause(X), mental_state(X, reckless), not(justified(X)),
externaljforce(X,no), foreseeability(X,low),
not (intervening-cause(X)) , severity-harm(X, 1),
benefit,victim(X,0).



cause(X), careful(X,iio), foreseeability(X,high) ,
external-force(X,no), not(interveningjcause(X)),
not(justified(X)) severityJiarra(X, 1),
benefit_victim(X,0).

cause(X), mental_state(X, intend), external^orce(X,no),
foreseeability(X,high), not(intervening-causeCX)),
not (justif ied(X)), severity_harm(X, 1),
benef it_victim(X,0).

cause(X), mental_state(X, intend), external^orce(X,no),
foreseeability(X,low), not (intervening-cause(X)),
not (justif ied(X)), severity_harm(X, 1),
benefit_victim(X,0).

cause(X), harni_caused_as_planned(X,yes),
plcLn_includeJiarm(X,yes), planJtnown(X,yes),
external_force(X,no), f oreseeability (X,high) ,
not(interveningxause(X)) , not(justified(X)) ,
severityJiarm(X,1), benefit_victim(X,0).

cause(X), harm_caused_as4)l2ained(X,yes) ,
pl2Ln_includeJiarm(X,yes) , pl2ai_known(X,yes),
external-force(X,no), foreseeability(X,low),
not(intervening^ause(X)), not (justified(X)),
severity-harm(X, 1), benef it_victiiii(X,0).

caus6(X), monitor(X,yes), 6xternal_force(X,no),
foreseeability(X,high), not(intervening^ause(X)),
not(justif ied(X)), severity_harm(X, 1),
benefit_victim(X,0).

cause(X), monitor(X,yes), external_force(X,no),
foreseeability(X,low), not(interveningjcause(X)),
not(justified(X)), severity_harm(X, 1),
benefit_victim(X,0).

cause(X), benefit4>rotagonist(X,yes), not(justified(X)),
external_force(X,no), foreseeability(X,high),
not(intervening_cause(X)), severityJiarm(X, 1),
benef it_victiin(X,0).



cause(X), benefit4)rotagonist(X,yes), not(justifiedCX)),
externaljforce(X,no), foreseeability(X,low),
not(interveningjcause(X)), severity_harm(X. 1).
benefit_victim(X,0).

cause(X), not(discountdntent), externaljforce(X,no),
foreseeability(X,liigh), not(intervening_cause(X)),
not(justified(X)), severity_harin(X, 1),
benefit_victim(X,0).

cause(X), not(discountdntent), externaldorce(X,no),
foreseeability(X,low), not(intervening_cause(X)),
not(justified(X)), severitydiarm(X,l),
ben6fit_victim(X,0).

vicarious(X), not(justified(X)),
severity_hann(X,l), benefit_victim(X,0).



Appendix B
The Student Loan Domain

B.l Correct Student Loan Theory

The following are the clauses from the correct theory for the student loan do-

no_paymeiit_due(Person)

continuously^nrolled (Person).
nonpaymentjlue (Person)

eligiblejfor^eferment (Person) .

continuouslyjBnrolled(P6rson)
neveraeftjschool (Person),
enrolled_Ln_more_than_n_units(Person, 5) ,

never_Left_school (Person)

longest jbsenceJrom-schooKPerson, Months),
Months <= 6.

eligiblejforJeferment (Person)
militaryjieferment (Person) .

eligiblejforjdeferment (Person)
peace-corpsjdeferment (Person) .

eligible_forJieferment (Person)
financialjieferment (Person) .

eligiblejforjieferment (Person)
student jieferment (Person) .

eligiblejforjdeferment (Person)
disabilityjieferment (Person) .



military-deferment(Person)
enlist(Person, Organization),
armed-forces(Organization).

peace-corps-deferment (Person) : -
enlist(Person, Organization),
peace^orps(Organization).

financialjieferment (Person)

filed-for-bankruptcy (Person).

financialjieferment (Person)

unemployed(Person).

studentjieferment (Person) : -

enrolled_in_more_than_n_units (Person, 11)

disabilityjleferment (Person) : -
disabled(Person).

/* background clauses */

enrolled_injaore_than_n_units (Person, Number)

enrolled(Person, School, Units),
school(School),

Units > Number.

B.2 Incorrect Student Loan Theory

The following clauses form the incorrect student loan theory. The contciins four
errors.

no_paymentjiue (Person)
continuouslyjenrolled (Person).

no_payment_due(Person)
eligible.for_deferment (Person).

/* missing literal: neverJeft-school(Person) */



contiiiuouslyjenrolled(Persoii) :-
neverJ.eft_school(Person) ,

enrolledJ.n-more_than_n_units(Person, 5).

never_left_school(Person) : -

longest^bsence_from-^chool(Person, Months),
Months <= 6.

eligibleJorjdeferment (Person) : -
military-deferment (Person).

eligible_for_deferment (Person)
peace_corpsjdeferment (Person) .

eligible_for_deferment (Person) ; -
f inancial_deferment(Person).

eligible_forjdeferment (Person) : -
student-deferment(Person).

eligible_for_deferment (Person) : -
disability-deferment (Person).

militaryjieferment (Person)
enlist(Person, Organization),
armedjforces (Organization).

peace_corps_deferment (Person) : -
ealist(Person, Organization),
peace_corps(0rg2Lnization).

financial-deferment (Person)
filed_for-b2Lnkruptcy(Person) .

/* missing clause
financiaLdeferment(Person)

unemployed(Person).
y

student-deferment (Person)

enrolled_injnore_thcLn-n_units(Person, 11) .

disability-deferment (Person)
filed_for_bankruptcy (Person) , /* extra literal */
disabled(Person).

/* extra clause */



financialjieferment (Person) : -

enrolled(Person, School, Units),
uci(School).

/* background clauses */

enrolledJ.n_!iiore_thanjti_units(Person, Number)
enrolled(Person, School, Units),
school(School),
Units > Number.



Appendix C

A3 and Forte King-Rook-King
Results

The two tables in this Appendix report the results for each trial run comparing
A3 and PORTE on randomly mutated king-rook-king theories at 50 and 250 examples.
See Section 6.1.3 for further details and comparisons.



Table C.l: Accuracy and distance measures for A3 and FoRTE on 20 incorrect the
ories for illegal with 50 training examples.

Forte

Accuracy Distance Accuracy Distance

Initial Correct Initial Correct

97.33 3 8 97.33 3 5

92.21 2 3 86.62 3 4

98.46 2 2 98.67 3 5

97.13 5 9 93.49 6 11

88.00 2 6 98.00 3 6

83.69 6 10 94.82 8 8

98.36 2 5 99.69 2 5

95.64 5 9 98.36 3 3

92.05 6 9 91.74 6 12

97.03 2 7 97.03 3 4

97.08 1 3 97.08 1 3

98.05 1 5 98.05 1 5

96.92 1 4 96.92 1 4

96.56 1 5 94.62 4 8

96.82 4 5 98.46 3 3

93.03 1 5 93.03 1 5

98.67 1 5 98.67 1 5

96.00 5 9 98.46 4 4

96.56 4 5 97.08 5 6

92.15 1 4 93.13 1 4

95.09 2.75 5.90 n 96.06 3.10 5.50



Table C.2: Accuracy and distance mefisures for A3 and FORTE on 18 incorrect the
ories for illegal with 250 training examples.

Forte

Accuracy Distance Accuracy Distance

Initial Correct Initial Correct

99.71 1 5 99.89 1 3

98.91 4 7 99.66 4 8

100.00 4 7 100.00 4 3

99.54 4 7 99.89 7 13

96.86 2 4 100.00 2 4

97.83 0 4 99.71 4 8

99.89 2 4 99.89 2 4

97.03 4 8 99.71 7 7

100.00 2 3 100.00 2 3

99.89 3 1 99.89 5 6

99.71 8 9 99.54 6 9

96.86 3 4 100.00 4 5

99.89 5 7 99.89 5 7

99.66 5 9 99.71 6 11

96.40 4 7 99.71 4 8

100.00 5 6 100.00 4 3

98.00 8 11 100.00 5 11

99.89 5 9 99.89 6 4

98.89 3.83 6.22 99.85 4.33 6.50



Appendix D

King-Rook-King Mutation Results

This appendix contains the averages and standard deviation for the experiments
with mutated king-rook-king theories. The results are averaged over 20 trials. More
detailed analyses of these results are reported in Section 5.2.4.



Table D.l. King-Rook-King Mutation Results for All Mutations

Examps.
0

75

200

.A-ccuracy
1 2 4 8

88.97 ± 23.14 79.46 ± 23.91 57.06 ± 25.17 52.64 ± 23.30

99.68 ± 0.51 98.03 ± 2.18 97.85 ± 2.05 93.81 ± 3.57

99.47 ± 1.21 98.89 ± 1.78 98.38 ± 1.81 I 96.54 ± 2.86

Examps.
Distance from Original

1 2 4 8

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0.45 ± 0.59 1.30 ± 0.95 2.55 ± 1.43 2.85 ± 1.19

0.55 ± 0.59 i 1.90 ± 1.41 2.85 ± 1.53 4.00 ± 1.90

Distance to Correct

1 2 4 8

1.15 ± 0.36 2.25 ± 0.70 4.25 ± 0.70 7.15 ± 1.49

1.40 ± 0.73 2.75 ± 1.58 5.15 ± 1.65 7.95 ± 2.22

1.35 ± 0.65 3.20 ± 1.94 5.10 ± 2.39 9.00 ± 2.88

0

75

200

Examps.
0

75

200

Table D.2. King-Rook-King Mutation Results for Add Clause

Examps.
0

75

200

Accuracy
1 2 4 8

82.61 ± 25.46 62.28 ± 27.01 53.90 ± 23.35 43.72 ± 17.81

99.98 ± 0.07 98.84 ± 2.56 98.14 ± 2.72 97.34 ± 3.71

99.98 ± 0.08 . 99.05 ± 1.89 98.88 ± 2.02 97.82 ± 2.95

Distance from Original
Examps. 2 4

0

75

200

Examps.
0

75

200

0.00 ± 0.00 I 0.00 ± 0.00 0.00 ± 0.00 I 0.00 ± 0.00
0.45 ±0.50 1.10 ± 0.77 2.35 ± 1.24 3.10 ±1.30

0.45 ± 0.50 1.75 ± 1.58 2.75 ± 1.76 3.45 ± 2.13

Distance to Correct

1 2 ! 4 8

1.60 ± 0.49 2.85 ± 0.65 5.60 ± 0.80 10.65 ± 1.59

1.50 ± 0.81 1 2.85 ± 1.46 5.20 ± 2.16 9.70 ± 2.70

1.50 ± 0.81 1 3.20 ± 2.25 6.25 ± 2.72 9.95 ± 3.64



Table D.3. King-Rook-King Mutation Results for Delete Clause

Examps.
0

75

200

Examps.
0

75

200

Examps.
0

75

200

Accuracy
1 2 4 8

95.78 ± 5.54 ' 92.25 ± 6.24 81.91 ± 6.89 71.35 ± 4.44

98.03 ± 2.13 97.97 ± 1.69 95.61 ± 2.58 91.14 ± 2.63

98.99 ± 1.26 98.63 ± 1.46 97.68 ± 1.95 94.29 ± 2.21

Distance from Original
1 2 4 8

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

1.00 ± 0.84 1.25 ± 0.83 2.85 ± 0.96 4.00 ± 1.70

1.15 ± 0.85 1.80 ± 0.93 3.45 ± 1.47 5.00 ± 2.43

Distance to Correct

1 2 4 8

1.45 ± 0.50 2.75 ± 0.62 5.80 ± 1.12 13.45 ± 1.75

2.35 ± 1.06 3.45 ± 1.36 7.15 ± 1.71 : 14.05 ± 2.40

2.55 ± 1.12 3.70 ± 1.27 : 7.20 ± 1.99 14.40 ± 2.18

Table D.4. King-Rook-King Mutation Results for Add Literal

Examps.
0

75

200

Examps.

0

75

200

Examps.
0

75

200

Accuracy
1 2 4 8

96.91 ± 3.56 94.74 ± 5.57 89.75 ± 6.33 83.33 ± 7.32

99.32 ± 1.36 99.01 ± 1.33 : 97.93 ± 2.83 97.24 ± 2.60

99.74 ± 0.73 99.75 ± 0.48 99.43 ± 0.92 98.65 ± 1.13

Distance from Original
2 4 8

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0.80 ± 0.93 1.20 ± 1.12 1.80 ± 1.12 3.25 ± 1.26

0.80 ± 0.75 1.50 ± 1.24 2.55 ± 1.28 3.75 ± 1.76

Distance to Correct

1 2 4 8

o
o

o

-H

o
p

1.95 ± 0.22 4.00 ± 0.00 7.95 ± 0.22

1.50 ± 1.12 2.95 ± 1.20 5.20 ± 1.17 i 10.30 ± 1.38

1.40 ± 1.02 2.50 ± 1.47 5.85 ± 1.49 10.15 ± 1.59



Table D.5. King-Rook-King Mutation Results for Delete Literal

Examps.
0

75

200

Accuracy
1 2 4 8

78.51 ± 29.19 49.12 ± 25.90 43.76 ± 22.77 34.20 ± 0.00

99.71 ± 0.70 98.04 ± 2.52 98.90 ± 1.24 93.08 ± 3.61

99.93 ± 0.09 99.35 ± 1.14 99.14 ± 0.98 95.69 ± 3.12

Distance from Original
Examps. 1 ! 2 4 8

0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

75 0.55 ± 0.50 1.50 ± 0.67 1.85 ± 1.19 12.95 ± 1.24

200 0.55 ± 0.50 1.85 ± 0.91 ' 2.35 ± 1.82 3.60 ± 1.83

1 Distance to Correct

Examps. 1 2 4 8

0 1.00 ± 0.00 1.95 ± 0.22 3.55 ± 0.50 6.35 ± 0.57

75 0.90 ± 0.30 1.90 ± 0.62 3.55 ± 1.12 7.15 ± 1.06

200 0.80 ± 0.40 1.85 ± 1.28 3.95 ± 1.66 ! 7.30 ± 1.27




