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Abstract

This is a modern horror story about an innocently misbehaving
projector, and why we beseech everyone to report minimal col-
orimetric data about stimulus displays. We present anecdotal
experience of configuring a projector to display video stimuli
in a high-tesla MRI room, along with all the gotchas, (broken)
technical assumptions, and theoretical rehashings that should
be considered by every scientist who uses computers to dis-
play visual stimuli. The moral of our story is: (1) check that
your monitor/projector is actually showing the colors and lu-
minances that you think it is, (2) make explicit assumptions
regarding the physical/perceptual space of your stimuli and
how they relate to any model analysis you will perform. This
is especially important when modeling non-human animals,
since most equipment and data formats implicitly assume hu-
man perception. We show that innocent changes to display
settings such as brightness reduction can cause dangerously
unexpected results. Understanding and reporting colorimetric
data in scientific publications is important for two reasons: (1)
reproducibility, and (2) model fidelity.

Keywords: color space; saliency; animal perception;

Introduction
Humans have the amazing ability to percieve visual properties
such as color in an invariant manner. We innocently accept
significantly different physical stimuli as identical. For exam-
ple, you immediately recognize the picture displayed on your
laptop’s screen and the same picture displayed on your mobile
phone screen, even though each different device displays the
image using different combinations of wavelengths of light
and physical fluxes of light. These practical differences raise
issues when stimuli are used for psychophysical or perceptual
tasks, and when comparing human responses to the behav-
ior of other animals such as marmoset or macaque monkeys
(Chen et al., 2021). Assuming without evidence that other an-
imals will perceive visual stimuli in the same fashion as hu-
mans is a common error (Stevens & Cuthill, 2005). Indeed,
the technical fields of monitor engineering, calibration, mea-
surement of luminance, and translation between color spaces
are predicated on theories and models specifically created for
human perception (Broadbent, 2004; Stiles & Burch, 1959).

Thus, for reproducibility in both human and animal stud-
ies, it is important to ensure that stimuli are similar along rel-
evant task dimensions to the original setup. This is difficult
to quantify, and the best option – using identical equipment –
is often untenable as equipment manufacturers change tech-
nology over time. There is no great solution to this issue, we
argue that it is of key importance for a scientist to be aware
that the visible spectrum and properties can differ between
animal species – and account for it in any attempted experi-
mental reproductions or modeling.

(a) Target: sRGB (b) Orig. bright=-24 (c) Calibrated

Figure 1: Video frame before/after calibration.

We first motivate our argument using an anecdote: the pro-
jector in a university-administered fMRI setup has been used
for years under “default” settings. These settings turned out to
be degenerate. We briefly review the theory behind how color
and luminance are defined for visual stimulus displays. This
is relevant for scientists building models to predict behavior
using visual stimuli (in both humans and non-humans). An
example of this modeling is presented in the final section: we
present an example from recent work ((Chen et al., 2021)) in
which we applied saliency map model analysis to video stim-
uli shown to different animal species (human, macaque mon-
key, marmoset monkey) and predicted gaze behavior. In this
paper, we show how mistaken assumptions about the color
space of the stimuli can lead to different modeling results.

In light of this, we propose minimal procedures for verify-
ing the sanity of one’s visual stimulus display configuration.
We also recommend reporting a minimal set of display cal-
ibration data along with behavioral data. We hope that this
will lead to an improvement of reproducibility both in human
and animal studies, as well as more correct application of im-
age processing and perceptual models, by encouraging full
knowledge of the assumptions and limitations of the data and
machines we use daily.

1. Computer displays are not always well-behaved, and may
transform identical computer image data in unexpected
ways. Solution: report visual display (colorimetric) cali-
bration data. Colorimeters operate on assumptions predi-
cated on human-biased color spaces, but are cheap, quick,
and force one to consider problems with one’s visual stim-
uli.

2. Colorimetric data is sufficient to guarantee reproducibil-
ity in most human perceptual studies, but fails to capture
stimulus properties that are relevant in some non-human
animal species or humans with types of color-blindness.
To achieve a species-agnostic method of reporting visual
stimuli, one needs to measure the spectral power distri-
bution (SPD) over a wide visual spectrum. For example,
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(a) Luminance transfer func-
tions for two default projector
settings.

(b) Absolute CIE Lab values of
projector gamut before calibra-
tion (circles) versus reference
laptop (triangles).

(c) Input RGB values for mea-
suring projector transfer func-
tion.

(d) Output (normalized) CIE
XYZ for calibrated projector.

Figure 2: Projector input-output mapping

Gagin et al. (2014) used a DP-655 spectroradiometer in a
exemplary human and macaque study. Spectroradiometers
are expensive (10000 USD) and time-consuming. An op-
tion is to request that manufacturers provide measurements
of the spectral power distributions of their products. Solu-
tion: there is no good solution for how to exactly repro-
duce the correct spectral power distribution using a differ-
ent display for animal experiments other than measuring
the color-matching function of that species and finding a
monitor that can cover it. The easiest option is to ensure
that the SPD of the reproducing display closely matches
the SPD of the original display.

3. Computational models that operate on image or video files
often interpret the image/video data incorrectly. This is
caused by confusion regarding the relationship between
computer data and perceptual/physical properties that the
data represents such as SPD, brightness and/or color. Mod-
elers often do not state what the input of a model is in-
tended to represent. Solution: Explicitly address the in-
tended meaning of visual inputs to models.

Motivation: A Misbehaving fMRI Projector
We use a 7-Tesla fMRI scanner (Siemens Healthcare, Erlan-
gen, Germany). Visual stimuli are back-projected onto a grey
acrylic screen inside of the MR scanner bore from outside the
MRI room using an Epson EB-G5100 (Tokyo, Japan) projec-
tor with a long focus zoom lens (ELPLL06). We presented
video stimuli to subjects while recording eye position using
an EyeLink 1000 eye tracking system system (long distance
mount – SR Research, Ottawa, Canada). Pilot subjects re-

ported that some video stimuli (Figure 1(b)) were too dark.
Previous subjects on the same machine viewing achromatic
(white/black) fixation and text stimuli did not report any such
issues. The projector was confirmed to be in default sRGB
mode using low lamp power setting, with only one diver-
gence from default values: “brightness” parameter was set to
its lowest possible value (−24) because the default brightness
level (0) caused discomfort.

(a) Distribution of pixels in CIE Lch space for Fig-
ure 1(a) (before calibration) and (Figure 1(c)) (after).
Black lines estimate projector gamut borders.

Figure 3: Gamut of uncalibrated project/target.

After resetting the the projector to default settings (sRGB
mode), we hypothesized that the dark stimuli were due to
properties of the gray acrylic screen, incorrect transforma-
tions in the stimulus presenting computer, or color gamut lim-
itations of the projector itself. We used a datacolor SpyderX
colorimeter (New Jersey, USA) to enumerate the input-output
mapping of the projector, i.e. between input pixel byte value
([0,255]) and the output luminance (cd/m2).

We used “dispcal” software (https://www.argyllcms
.com/) to enumerate the input-output mapping of the pro-
jector at high granularity. Figure 2(c)-Figure 2(d) shows
normalized CIE XYZ output values for a tiling of the 3-
dimensional input domain (R,G,B). Peak output luminance
was unchanged (820 cd/m2) regardless of projector “bright-
ness” setting, indicating that the curvature or offset of the
transfer function was changing, not the minimum and max-
imum outputs.

We further visualized the marginal input-output functions
for achromatic and monochromatic stimuli.1 The normalized
curves are plotted for the original setting, as well as for the
projector’s default sRGB setting, in Figure 2(a) against a tar-
get (scaled sRGB) curve. Observe that under default settings,
the output is nearly zero for almost the entire lower half of in-
put values – the left half of the horizontal axis. This explains
the “dark” videos reported by subjects.

Disabling sRGB mode revealed additional configuration
options in the projector’s software menu, such as color tem-
perature and component channel (R,G,B) weighting. Using
“dispcal”, we adaptively modified settings until the input-

1achromatic: R = G = B i.e. grayscale; monochromatic: one
component channel is stepped from minimum to maximum while
the other two channels locked at zero.
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output mapping approached the sRGB standard (white point
correlated color temperature identical to black body at 6500 K
(D65), effective gamma of 2.4). Best-fit settings were: photo
mode, 0 brightness, -24 contrast, 5000 K color temperature,
-10 red weight, -4 green weight, +12 blue weight.2

After calibration, we confirmed that visual stimuli dis-
played as expected (Figure 1(c)). Pilot subjects reported
videos on the projector looked similar to the same video dis-
played on a reference screen (razer blade stealth 13 laptop
(2019), Figure 1(a)). Figure 3(a) visualizes how the distribu-
tion of pixel values changed after calibration. Pixels are plot-
ted in CIE Lch space (Lightness, Chromaticity, Hue), with
two hue angle slices shown. Black lines indicate SMBGD
estimation of the projector’s gamut border (Morovič & Luo,
2000). The example image was one of the least visible stimuli
under the original (dark) projector settings.

The moral of our anecdote: check colorimetric properties
of your stimulus display device. Monitors and projectors have
default modes named “standard RGB”, but these can be de-
generate and cause unreproducible experimental results if one
does not take care. Modern colorimeters are cheap and auto-
mated with free software, and a display need only be cali-
brated once. For dissemination, we recommend enumerat-
ing the colorimetric data for displays used in previous exper-
iments along with visual stimulus image/video files, so that
posterity can estimate what physical stimuli subjects were
actually seeing. Calibration data can be reported as a table
of input RGB values (sampled in steps of e.g. 4% of the
input space) and output (unnormalized) CIE XYZ values in
cd/m2. We recommend against reporting only “gamma” val-
ues and minimum/peak luminance, since the effective gamma
reported by colorimeters can be misleading if the input-output
curve is degenerate such as the red or blue lines in Figure 2(a).

In addition to being important for reproducing experimen-
tal results, proper handling of the color space of visual stimuli
is of vital importance to accurate comparative animal research
as well as computational modeling. We next review the his-
tory of color spaces and visual perception for these purposes.

Background: A Review of Color And Light
A visual scene in the natural world is a spatio-temporal pat-
tern of propogating electromagnetic waves, which can also
be modeled as quanta (photons). A photon has energy propor-
tional to its wavelength. A visual scene will naturally be com-
prised of many photons of many different wavelengths. Cer-
tain wavelengths (370−700 nanometers for humans) interact
with molecules (opsins and retinol) packed in receptor cells in
human retina, causing nerve signals to propogate when pho-
tons are absorbed. Humans have four receptor types: L-cone,

2Additionally: PC operating system may weight component
(RGB) channels. In Ubuntu 18.04, we confirmed no weighting using
“xrandr” – R, G, B weights and gammas were all 1.0. Furthermore,
xrandr confirmed “Expanded (full RGB)” mode for the HDMI con-
nection to the projector. Under the alternative “TV (limited RGB)”
mode, the PC will clip RGB byte inputs to range [16,235] (instead
of expected [0,255]) before sending them to the display.

(a) Spectral power distribution emitted by
each of the 3 basis elements of a CRT and
LCD monitor.

(b) Sketch of
human luminosity
function

Figure 4: Monitor spectra, human luminosity function

M-cone, and S-cone cells, and Rod cells (Figure 5(a), “hu-
man”) (Jacobs, 2009). The names are based on their shape
(cone-shaped or rod-shaped) and the relative wavelength of
visible light to which they are most sensitive. Rods are en-
gaged primarily in scotopic (night) vision. In contrast, cone
cells are active during photopic and mesopic (daytime, dusk)
vision. L-cones are most sensitive to long wavelength light
(which looks red when viewed monospectrally), M-cones to
medium (green), and S-cones to short (blue).3

Other animals (or humans with genetic mutantations –
“color blindness”) express different sets or numbers of re-
ceptors with different spectral sensitivities (see “Predator” in
Figure 5(a)), and thus different spectral distributions will be
ambiguous or discriminable to different species.

(a) Receptor sensitivities for human (top) and an imaginary species
“predator” with a short and very long wavelength receptor.

(b) Spectral power distributions
for two imaginary stimuli “A”
and “B”.

(c) Response of each receptor
type of human and the predator
to stimulus A and B.

Figure 5: Two stimuli can be distinguishable to one species
(the predator) but look identical to another (human).

The intensity of a receptor’s response to a stimulus is cal-
culated by convolving the spectral power distribution of the
beam of light with the spectral sensitivity function of the re-
ceptor. An example is given for two example SPDs “A” and
“B” in Figure 5(b). The corresponding neural response of
receptor cells with sensitivities defined in Figure 5(a) is car-
tooned in Figure 5(c). Even though “A” and “B” are mix-
tures of entirely different wavelengths of light, both stim-

3A receptor class responds with different sensitivity to a range of
photon energies. Sensitivity distribution is determined by quantum
properties of the opsin molecules expressed by the receptor.
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uli cause identical responses in human receptor types (Fig-
ure 5(c), left). This phenomenon is “metamerism”, a type
of anti-aliasing resulting from the visual system sampling
a high-dimensional space using only three basis functions.
Different basis functions change which spectral distributions
look the same and which look different (A and B look differ-
ent to “Predator”, Figure 5(c)).

Most extant technology (CRT, LCD monitors) takes ad-
vantage of metamerism. Display devices use three light-
emitting/transmitting components (e.g. Figure 4(a)), each of
which emits a a spectral distribution of light that peaks in a
unique region of the visual spectrum. These primaries can be
mixed together in appropriate proportions to produce percep-
tual stimuli that look the same as any desired target spectral
distribution.

Luminance, Color Spaces, Color Matching
Full enumeration of the spectral power distribution of a stim-
ulus includes wavelengths not visible to humans (radio, in-
frared, ultraviolet). To standardize a function of spectrum that
matches human perception of luminance, the international
commission on illumination (CIE) published a “luminosity
function” (photopic function sketched in Figure 4(b)) which
measures candelas (cd). For visual displays, we report the
luminous intensity per unit surface area, i.e. cd/m2.

The luminosity function is related to the CIE RGB and CIE
XYZ color spaces. Scientists defined human “color-matching
function” by having subjects mix three mono-spectral “pri-
mary” light sources in different proportions to match mono-
spectral light targets (Guild, 1931; Wright, 1929). This ef-
fectively quantified the metameric partition function for hu-
man. CIE standardized three mono-spectral primaries: r at
700 nm, g at 546.1 nm, and b at 435.8 nm and published
color-matching functions for those primaries: r̄(λ), ḡ(λ),
b̄(λ), obtained via transformation from the empirical color-
matching results of different primaries. The color matching
functions define the proportions of the three primaries nec-
essary to match any given mono-spectral light of wavelength
λ. CIE standardized the the response of the “average” partic-
ipant, creating the “CIE 2◦ standard observer”.4

Using these color matching functions, arbitrary spectral
power distributions S(λ) can be reproduced using a mixture
of only the three primaries in different proportions. The three
linear gains R, G, B that match SPD S(λ) are achieved by
R=

∫
∞

0 S(λ)r̄(λ)dλ, G=
∫

∞

0 S(λ)ḡ(λ)dλ, B=
∫

∞

0 S(λ)b̄(λ)dλ.
This is CIE RGB. However, r̄(λ) included negative val-

ues5. So, CIE developed CIE XYZ, a color space formed
using imaginary primaries X, Y, and Z and color-matching
functions such that certain desirable properties are satisfied.
Specifically, the color matching functions x̄(λ), ȳ(λ), z̄(λ) are
never negative, and the tristimulus value Y corresponds to the
luminous intensity of the stimulus.

4Colors were matched within a circle two degrees of visual angle
in the center of the visual field.

5I.e. target wavelength unmatchable without adding red primary
to the target.

Illuminants and White Points

White light can be formed of many different mixtures of
wavelengths. CIE published “standard” illuminants, based
on defined physical systems such as a specific type of metal
(tungsten, mercury) at a specific temperature. It is also com-
mon to use the spectrum emitted by an idealized blackbody
radiator, whose SPD is defined by Planck’s law. CIE pub-
lished standards to simulate outdoor illumination. For ex-
ample “D65” (used for sRGB standard below) is the spec-
tral power distribution of average direct and diffuse sunlight
at noon in Western/Northern Europe. D65’s correlated color
temperature6 is 6500 Kelvin. The triplet of primaries (e.g.
[R,G,B], [X ,Y,Z]) that color-match a chosen white illuminant
are called the “white point” or “reference white”. Defining a
reference white is necessary to convert between color spaces,
since it defines the “pivot” around which rotations or scalings
occur. An absolute white point (in cd/m2) is necessary to
map from a color space to physical luminances.

Visual Stimuli for Computers: sRGB

The combination of a perceptual color space, a fixed white
point, an absolute luminosity, and an environment with con-
trolled ambient illumination is sufficient to uniquely deter-
mine the perceptual response that a color stimulus will elicit.
An example is “standard” RGB (sRGB – not CIE RGB).
sRGB defines white point (D65), absolute luminance (80
cd/m2), environment (CRT monitor in dim office environ-
ment). sRGB primaries (r, g, b) are defined via CIE XYZ.
Most modern computer monitors are calibrated to display
sRGB or similar, with varying absolute luminance. This
means that image and video data stored on computers (JPEG,
PNG, TIFF) is usually implicitly encoded in sRGB.

Figure 6: Image data in modern computers. In cameras, light
is detected by (three) sensors and converted to internal color
space via color-matching functions. Internally, luminance is
compressed to more efficiently cover space of human dis-
criminable luminances. Displays use three light-producing
elements to emit mixtures of light perceptually indistinguish-
able from the original, despite comprising physically differ-
ent distribution of spectral powers.

6temperature of blackbody radiator it color-matches
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Gamma (non-linear encoding)
For CIE XYZ or CIE RGB, a linear increase in the tristimulus
value corresponds to a linear increase in the luminous inten-
sity of the SPD generated by that tristimulus point. Other
color spaces do not share this property. For example, sRGB
is gamma-compressed to take advantage of the fact that hu-
mans are more sensitive to contrast at low luminance than at
high luminance. sRGB transforms the linear physical inten-
sity represented by a raw tristimulus value (of arbitrary phys-
ical linear primaries, e.g. from a camera image sensor) via a

function like fsave(x) = x
1
γ . γ is usually ∈ [1.8,2.4]. It then

stores the the “gamma-compressed” value. The reason for
this is that devices on which the image data will eventually be
displayed are expected to behave such that the mapping be-
tween input values and emitted light intensity will implement
the inverse of that function (i.e. fdisplay(x) = xγ (“gamma ex-
pansion”). In this way, fewer bits of information can be used
to span the range of brightness in perceptually evenly spaced
steps. This works because human perception of luminance
is non-linear, following a power law (Stevens’s power law)
relatinship between physical luminous intensity and appar-
ent magnitude with exponent 1/3. Gamma-compression and
gamma-expansion cancel each other out – but ensure that the
representable space of luminances of a given data format (e.g.
byte) fall at perceptually pleasing, equal intervals.

sRGB is Not a Perceptual Color Space
Thus, gamma correction only influences the distribution of
values that are represented by a signal with limited band-
width. sRGB is not intended to represent the non-linear per-
ceptual response to stimuli. Rather, it is a standard to ensure
that the set of representable colors and brightnesses is stan-
dard across physical displays (Figure 6). An image in sRGB
color space is guaranteed to look identical to standard hu-
mans displayed on an sRGB calibrated monitor in the proper
environment. Note that it will only be perceptually identical
to a human standard observer – no such guarantee is made for
animals or humans who diverge significantly from the stan-
dard observer on which sRGB is defined.

There do exist “perceptual” color spaces which purport
to model the subject human perceptual response to colors.
For example, CIE Lch, CIE L*a*b*, and CIE Luv represent
“Luminance” (L) of a stimulus as a non-linear mapping of
linear luminance Y (of CIE XYZ), to account for the non-
linearity of human perception. The goal of these color spaces
is to model visual stimuli along natural perceptual dimen-
sions. For example, one should be able to only change the
perceived hue of a stimulus without modifying its brightness,
chromaticity, or saturation, simply by moving along one axis.

Summary: Common Mistakes with Computer Data
1. Non-linearities in data representation – image and video

files are usually gamma-encoded and must be passed
through an inverse exponential function to recover the lin-
ear physical luminances that would be produced by a com-

puter monitor displaying the image or video.

2. Incorrect assumptions about the brightness of stimuli –
modelers often misunderstand the relationship of tristim-
ulus primaries (R, G, B) to both perceived and absolute
luminance (Nguyen & Brown, 2017).

3. Incorrect assumptions about the meaning of stimulus color
spaces – modelers mistakenly assume that commonly used
color spaces (RGB, XYZ, Lab, Luv, YUV, CMYK, etc.)
uniquely indicate physical visual stimuli. These color
spaces are specifically designed to model only the set of
visual stimuli consciously discriminable to humans. They
incorrectly predict the perceptual response of organisms
with different photoreceptors or visual processing neural
circuits. Corollary: human technology (computer display
screens, printed materials, etc.) is incapable of displaying a
consistent visual perceptual space of either color or bright-
ness to organisms with perceptual systems different from
the standard human.7

Results: Saliency Model Input Assumptions
Different assumptions about the input image format lead to
different model performance in a model of visual attention
we recently reported to predict looking behavior of humans,
marmosets, and macaque monkeys (Chen et al., 2021). This
is meant to be an example of how an incorrect assumption on
the part of the modeler can be responsible for different results,
damaging reproducibility and explanatory power.

The saliency map model (Itti & Koch, 2000) is a well-worn
model of bottom-up visual attention operating on pixel im-
ages. The color space of the images are never made explicit.
The saliency map is used as a surrogate of bottom-up visual
attention in humans and non-human primates. Recently, cor-
relates of saliency have been identified in parts of the brain
related to visuo-ocular control (superior colliculus (White et
al., 2017; Veale, Hafed, & Yoshida, 2017)).

The saliency map model extracts visual features of the in-
put such as luminance, color, motion, and oriented lines, and
identifies parts of the input where those visual features dif-
fer from their surroundings at many spatial scales. It uses
center-surround differences of the features extracted at dif-
ferent spatial scales, as well as within-map competition and
normalization. Finally, the feature maps (orientation, color,
motion, etc.) are combined into a feature-agnostic saliency
map.

An overview of the saliency map model and how it would
process an example input image (Figure 1(a)), is shown in
Figure 7(a). In this example, the default implementation and
assumptions of the saliency map model are used for comput-
ing color and luminance Itti and Koch (2000). The model is

7The representable perceptual gamut will be uneven and include
gaps of unrepresentable colors and brightnesses. This can occur
even if an organism has the same number of photoreceptors, so long
as their spectral sensitivity profiles diverge significantly from the
standard human.
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(a) Input sRGB gamma-compressed pixels (default). (b) Input pixels are assumed to be linear.

Figure 7: Analysis of saliency map response to different assumptions about input.

implemented via the “salmap rv” library.8 Image data pixel
values are used to directly compute color and luminance,
without gamma-expansion nor color channel weighting. A
first question: is it appropriate to use the gamma compressed
values, or should they be linearized first? In addition to be-
ing gamma-compressed, pixel values implicitly incorporate
sRGB channel weightings. We know that the sRGB color
space is defined in perceptual linear CIE XYZ space, a space
specifically designed using human judgement. Is it appropri-
ate to use this human-biased input for fitting the behavior of
marmoset monkeys, for example? We will investigate how
model output changes given different input assumptions.

The second image (Figure 7(b)) shows the response of
the model to linear RGB input (i.e. with gamma removed
and channel weightings removed for luminance calculation).
Small differences are visible in the luminance (top right) and
color (bottom right) channels.

Our primary purpose in this paper is to reiterate the impor-
tance of explicitizing assumptions about the format of inputs
to one’s models, especially when those models and experi-
ments relate to non-human animals. For the saliency map
model, different assumptions regarding the input format lead
to different outputs (Figure 7(a) versus Figure 7(b)), although
broad qualities of the model output were unchanged. This
may be because the test image is an abnormal outlier – it was
initially selected for being too dark to discriminate before cal-
ibration but visible afterwards (Figure 3(a) – mostly low chro-
maticity). One can imagine that more extreme changes, such
as changing the color space of the input, or using a model
which takes raw spectral power distributions as input, would
cause more extreme divergences. For example, one might ar-
gue that the saliency map should take perceptual-space stim-
uli as input. Inputs would be transformed to e.g. CIE Lch
color space, and an appropriate feature detector added to
identify local differences in hue or chromaticity. The non-
linear transforms implicit in the conversion to Lch can be ex-
pected to likewise result in different model output, since color
and luminances (which form the basis of orientation and mo-
tion detectors) will be distorted. On the other hand, one may
not see a large change, since the original input, sRGB, is al-

8https://github.com/flyingfalling/salmap rv

ready specialized to represent human perception, and conver-
sion to Lch will not distort as much as expected. A more ex-
treme conversion, for example to a color space predicated on
the color-matching function of a different animal species or a
color-blind subject, may result in clearer divergence of model
output. Macaque monkeys may have a color-matching func-
tion almost identical to human ((Gagin et al., 2014)). This is
not true for the common marmoset, which is usually dichro-
matic (Freitag & Pessoa, 2012).

Conclusion: Report Colorimetry, Be Aware

Image data does not usually contain sufficient information to
reproduce a physical stimulus exactly. To do so would require
knowledge of the spectral power distribution for every point
of the stimulus. Rather, our cameras sample physical stim-
uli using low-dimensional basis functions (primaries). This
turns out to be sufficient to elicit a perceptual experience in-
distinguishable from the original stimulus using the standard
human color matching function. Thus, for a human, a picture
of a forest looks the same as if one were actually looking at
the forest. However, this is not guaranteed for other animal
species unless one tailors the color space of the image to the
characteristic color-matching function of that species (which
is usually unknown).

The transfer function of a visual stimulus display device
for experiments can be quantified via colorimeter or spec-
trometer. This is a reproducible starting point with minimal
assumptions, and will greatly improve the reproducibility of
human visual experiments. While spectroradiometer data is
preferable since it can be used for animal experiments, col-
orimetry data may be sufficient in the future as the color-
matching functions of more species are quantified. Unfortu-
nately, there is no good way to reconcile the fact that display
parameters will be biased towards human perception. Our
best hope is to be careful to ensure that visual stimuli look
as expected to the visual systems of subjects, be they humans
or animals. Finally, for modeling, we caution scientists to be
wary of the format of visual stimulus data, and to make ex-
plicit decisions regarding the meaning of data used as input
to computational models.
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Morovič, J., & Luo, M. R. (2000). Calculating medium and
image gamut boundaries for gamut mapping. Color Re-
search & Application, 25(6), 394–401.

Nguyen, R. M., & Brown, M. S. (2017). Why you should
forget luminance conversion and do something better. In
Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 6750–6758).

Stevens, M., & Cuthill, I. C. (2005). The unsuitability of
html-based colour charts for estimating animal colours–a
comment on berggren and merilä (2004). Frontiers in Zo-
ology, 2(1), 1–9.

Stiles, W. S., & Burch, J. M. (1959). Npl colour-matching in-
vestigation: final report (1958). Optica Acta: International
Journal of Optics, 6(1), 1–26.

Veale, R., Hafed, Z. M., & Yoshida, M. (2017). How is visual
salience computed in the brain? insights from behaviour,
neurobiology and modelling. Philosophical Transactions
of the Royal Society B: Biological Sciences, 372(1714),
20160113.

White, B. J., Berg, D. J., Kan, J. Y., Marino, R. A., Itti, L., &
Munoz, D. P. (2017). Superior colliculus neurons encode a

visual saliency map during free viewing of natural dynamic
video. Nature communications, 8(1), 1–9.

Wright, W. D. (1929). A re-determination of the trichro-
matic coefficients of the spectral colours. Transactions of
the Optical Society, 30(4), 141.

417




