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A Manifestly Gauge-Invariant Approach to

Quantum Theories of Gauge Fields

Abhay Ashtekar∗ Jerzy Lewandowski† Donald Marolf∗

José Mourão ‡ Thomas Thiemann∗

July 1994

Abstract

In gauge theories, physical histories are represented by space-time
connections modulo gauge transformations. The space of histories is
thus intrinsically non-linear. The standard framework of constructive
quantum field theory has to be extended to face these kinematical
non-linearities squarely. We first present a pedagogical account of this
problem and then suggest an avenue for its resolution.

1 Introduction

As is well-known, for over 40 years, quantum field theory has remained in
a somewhat peculiar situation. On the one hand, perturbative treatments
of realistic field theories in four space-time dimensions have been available
for a long time and their predictions are in excellent agreement with experi-
ments. It is clear therefore that there is something “essentially right” about
these theories. On the other hand, their mathematical status continues to be
dubious in all cases (with interactions), including QED. In particular, it is
generally believed that the perturbation series one encounters here can be at
best asymptotic. However, it is not clear what exactly they are asymptotic
to.
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This overall situation is in striking contrast with, for example, non-relativistic
quantum mechanics. There, we know well at the outset what the Hilbert space
of states is and what the observables are. In physically interesting models,
we can generally construct the Hamiltonian operator and show that it is
self-adjoint. We take recourse to perturbation theory mainly to calculate its
eigenvalues and eigenvectors. Therefore, if the perturbation series turns out
not to be convergent but only asymptotic, we know what it is asymptotic to.
The theories exist in their own right and perturbative methods serve as ap-
proximation techniques to extract answers to physically interesting questions.
In realistic quantum field theories, we do not yet know if there is an under-
lying, mathematically meaningful framework whose predictions are mirrored
in the perturbative answers. When one comes to QCD, the problem is even
more severe. Now, it is obvious from observations that the physically relevant
phase of the theory is the one in which quarks and gluons are confined. And
this phase lies beyond the grasp of standard perturbative treatments.

To improve this situation, the program of constructive quantum field the-
ory was initiated in the early seventies. This approach has had remarkable
success in certain 2 and 3 dimensional models. From a theoretical physics
perspective, the underlying ideas may be summarized roughly as follows.
Consider, for definiteness, a scalar field theory. The key step then is that of
giving meaning to the Euclidean functional integrals by defining a rigorous
version dµ of the heuristic measure “[exp(−S(φ))]

∏
x dφ(x)” on the space of

histories of the scalar field, where S(φ) denotes the action governing the dy-
namics of the model. The appropriate space of histories turns out to be the
space S ′ of (tempered) distributions on the Euclidean space-time and regular
measures dµ on this space are in one to one correspondence with the so-
called generating functionals χ, which are functionals on the Schwarz space S
of test functions satisfying certain rather simple conditions. (Recall that the
tempered distributions are continuous linear maps from the Schwarz space to
complex numbers.)

Thus, the problem of defining a quantum scalar field theory can be reduced
to that of finding suitable measures dµ on S ′, or equivalently, “appropriate”
functionals χ on S. Furthermore, there is a succinct set of axioms –due
to Osterwalder and Schrader– which spells out the conditions that χ must
satisfy for it to be “appropriate,” i.e., for it to lead to a consistent quantum
field theory which has an associated Hilbert space of states, a Hamiltonian, a
vacuum and an algebra of observables. This strategy has led to the rigorous
construction of a number of interesting theories in 2 and 3 dimensions such
as the λφ4 and the Yukawa models and to an understanding of their relation
to perturbative treatments. A more striking success of these methods is that
they have led to a rigorous construction of the Gross-Neveau model in 3-
dimensions which, being non-renormalizable, fails to exist perturbatively in
the conventional sense.
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These successes are remarkable. However, we believe that the framework
has an important limitation: As in the heuristic, theoretical physics treat-
ments [1, 2], it is based on the assumption that the theories under considera-
tion can be considered to be kinematically linear [3, 4, 5]. That is, even though
dynamical non-linearities are properly incorporated, it is assumed that the
space S ′ of histories is a vector space. This assumption permeates the whole
framework. In particular, in their standard form, all of the key Osterwalder-
Schrader axioms use this property. Now, for unconstrained systems –such as
the λφ4-model– this assumption is not restrictive. However, for constrained
systems it is generally violated. An outstanding example is provided by the
Yang-Mills theory. Now, because of the presence of constraints, the system
has gauge freedom and the space of physically distinct histories is provided
by A/G, the space of connections on the Euclidean space-time modulo gauge
transformations. In dimensions d + 1 > 2, this is a highly non-linear space
with complicated topology. Rather than facing this non-linearity squarely,
one often resorts to gauge fixing, ignores global problems such as those asso-
ciated with Gribov ambiguities, obtains a linear space and proceeds to apply
the standard techniques of constructive quantum field theory. To an outsider
the disparity between the “roughness” with which A/G is steam-rollered into
a linear space and the sophistication with which functional analysis is then
used to construct measures seems rather striking. It is natural to ask if one
can not modify the general framework itself and tailor it to the kinematical
non-linearities of A/G.

The purpose of this contribution is to suggest an avenue towards this goal.
(For earlier work with the same motivation, see [6].) We should emphasize,
however, that ours is only an approach: we will not be able to present a
definitive generalization of the Osterwalder-Schrader axioms. Furthermore,
the key steps of our framework are rather loose. However, it is tailored to
facing the kinematical non-linearities of gauge theories squarely from the very
beginning.

None of the authors are experts in constructive quantum field theory. The
main ideas behind this approach came rather from an attempt to construct
quantum general relativity non-perturbatively. Consequently, certain notions
from quantum gravity –such as diffeomorphism invariance– play a non-trivial
role in the initial stages of our constructions. This is a strength of the frame-
work in the context of diffeomorphism invariant gauge theories. Examples
are: the Yang-Mills theory in 2 dimensions which is invariant under area-
preserving diffeomorphisms and the Chern-Simons theories in 3 dimensions
and the Husain-Kuchař model [7] in 4 dimensions which are invariant under
all diffeomorphisms. In higher dimensional Yang-Mills theories, on the other
hand, the action does depend on the background Euclidean or Minkowskian
geometry; it is not diffeomorphism invariant. In the general program sketched
here, this geometry is used in subsequent steps of our constructions. How-
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ever, we expect that, in a more complete and polished version, it would play
an important role from the beginning. It is clear that considerable work is
still needed to make the framework tight and refined, tailored more closely
to quantum Yang-Mills fields. As the title of the contribution indicates, our
primary aim is only to suggest a new approach to the problem, thereby ini-
tiating a re-examination of the appropriateness of the “standard” methods
beyond the kinematically linear theories.

This contribution is addressed to working theoretical –rather than mathe-
matical– physicists. Therefore, the presentation will be somewhat pedagogi-
cal. In particular, we will not assume prior knowledge of the methods of construc-

tive quantum field theory. We begin in section 2 with a summary of the idea and
techniques used in this area and indicate in particular how the appropriate
measure is constructed for the λφ4 model. As indicated above, this discussion
will make a strong use of the kinematical linearities of models considered. In
section 3, we turn to gauge theories and show how certain recent advances in
the development of calculus on the space of connections modulo gauge trans-
formations can be used to deal with the intrinsic kinematical non-linearities.
In section 4, we indicate how these techniques can be used for Yang-Mills the-
ories. In particular, we will construct the 2-dimensional Euclidean Yang-Mills
theory and indicate its relation to the Hamiltonian framework. In section 5,
we summarize the main results, point out some of the strengths and the
limitations of this approach and discuss directions for further work.

2 Kinematically linear theories

Several of the ideas we will use in the construction of measures on infinite
dimensional non-linear spaces are similar (but not identical!) to those used
in the linear case. Therefore, in this section we will recall from [3, 4, 8, 9]
some well known results about measures on infinite dimensional linear spaces
in the context of constructive quantum field theory.

Let us consider an Euclidean scalar field theory on flat Euclidean space-
timeM = IRd+1. It is natural to choose as the space SH of classical histories of
the theory the linear space of suitably regular (say C2 and rapidly decreasing
at infinity) scalar field configurations; SH = {φ(x)}. The dynamics of the
theory is determined by the action functional S on SH

S(φ) =
∫

IRd+1

(
1

2
∂µφ(x)∂µφ(x) + V (φ(x))

)
dd+1x , (2.1)

where V (φ(x)) denotes the self-interaction potential (which is assumed to be
bounded from below). In the “classical” theory 1 we are interested in points

1 We used quotation marks in the word “classical” because, strictly speaking, the so-
lutions of the Euclidean equations of motion do not play a direct role in classical physics;
they have physical interpretation only in the semi-classical approximation.
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in SH (i.e. particular histories) that correspond to the extrema of S, i.e. in
solutions of the (Euclidean) equation of motion

∆φ−
∂V

∂φ
= 0 . (2.2)

If V is cubic or higher order in φ the equation (2.2) is non-linear and we have
an example of a dynamically non-linear theory with a linear space of histories.
In our terminology, this is an example of a kinematically linear but dynamically

non-linear theory. Theories of non-abelian gauge fields, on the other hand,
are examples of theories in which non-linearities are present already at the
kinematical level.

In quantum field theory, the interest lies not in particular histories satis-
fying (2.2) but in summing over all histories, i.e. in defining measures on SH
that correspond to the heuristic expression [3, 4, 5]

dµ(φ) = “
1

Z
e−S(φ)

∏

x∈IRd+1

dφ(x)” . (2.3)

We will begin in section 2.1 with a brief review of how measures are con-
structed on infinite dimensional linear spaces. In section 2.2, these techniques
will be applied to two illustrative examples in constructive quantum field the-
ory; the massive free scalar field in d+ 1 dimensions and the λφ4-model in 2
dimensions.

2.1 Integration on SH

We will first present an “algebraic” approach to integration and then sum-
marize the situation from a measure-theoretic viewpoint. In the algebraic
approach, the main idea is to reduce the problem of integration over infinite
dimensional spaces to a series of integrations over finite dimensional spaces
by judiciously choosing the functions one wants to integrate.

In a linear space like SH the simplest functions that one can introduce are
the linear ones. Let S denote the space of all test (or smearing) functions
on IRd+1, i.e. the space of all infinitely differentiable functions which fall off
sufficiently rapidly at infinity. S is called Schwarz space. Its elements e ∈ S
can be used to probe the structure of scalar fields φ ∈ SH through linear
functions Fe on SH defined by

Fe(φ) =
∫

IRd+1
φ(x)e(x) dd+1x ; (2.4)

the test field e probes the structure of φ because it captures part of the
information contained in φ, namely, the “component of φ along e”. We can
probe the behaviour of φ in the neighbourhood of a point in M by choosing
test fields en supported in that neighbourhood.
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To begin with, we want to define integrals of such simple functions. Let
e1, ..., en denote arbitrarily chosen but fixed linearly independent probes. Con-
sider the projection pe1,...,en

they define

pe1,...,en
: SH → IRn

φ 7→ (Fe1
(φ), ..., Fen

(φ)) . (2.5)

Next, consider functions f on SH that depends on φ only through their “n-
components” Fe1

(φ), ..., Fen
(φ), i.e. functions of the type

f(φ) = f̃ (Fe1
(φ), ..., Fen

(φ)) (2.6)

or equivalently

f = p∗e1,...,en
f̃ , (2.7)

where f̃ is a (well-behaved) function on IRn. The function f is said to be cylin-

drical with respect to the finite dimensional subspace Ve1,...,en
(of S) spanned

by the probes {e1, ..., en}. These are the functions we first want to integrate.

This task is easy because the cylindrical functions are “fake” infinite di-
mensional functions: although defined on SH, their “true” dependence is only
on a finite number of variables. Fix a (normalized, Borel) measure dµe1,...,en

on IRn and simply define the integral of f over SH to be the integral of f̃
over IRn with respect to dµe1,...,en

:

∫

SH
f(φ)dµ(φ) :=

∫

IRn
f̃(η1, ..., ηn) dµe1,...,en

(η1, ..., ηn) . (2.8)

Next, in order to be able to integrate functions cylindrical with respect to
any finite dimensional subspace of the probe space, we select, for every collec-
tion {e1, ..., en} of linearly independent probes, and every n ∈ IN, a measure
dµe1,...,en

on IRn and define the integral of that cylindrical function over SH
by (2.8). This is the key technique in the algebraic approach.

The procedure seems trivial at first sight. There is, however, a catch. Since
a function which is cylindrical with respect to a linear subspace V of SH is
necessarily cylindrical with respect to a linear subspace V ′ if V ⊆ V ′, the rep-
resentation (2.6) is not unique. (Indeed, even for fixed V , the explicit form of
(2.6) depends on the basis we use). For the left side of (2.8) to be well-defined,
therefore, the finite dimensional measures (dµe1,...,en

) must satisfy non-trivial
consistency conditions; these serve precisely to ensure that the integral of
f(φ) over SH is independent of the choice of a particular representation of
f as a cylindrical function. When these consistency conditions are satisfied,
SH is said to be equipped with a cylindrical measure.

Let us consider a simple but representative example of consistency con-
ditions. Consider e, ê ∈ S and let V1, V2 be the one and two-dimensional
spaces spanned by e and e, ê respectively and f be the function on SH,
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cylindrical with respect to V1, given by

f(φ) = f̃1 (Fe(φ)) := exp [iλ
∫

IRd+1
e(x)φ(x) dd+1x] . (2.9)

This function is clearly cylindrical also with respect to V2, i.e. it is a function
of Fe and Fê that just happens not to depend on Fê:

f(φ) = f̃2 (Fe(φ), Fê(φ)) := exp [iλ
∫

IRd+1
e(x)φ(x) dd+1x] . (2.10)

To obtain a cylindrical measure, therefore, f, dµe,and dµe,ê must satisfy:

∫

SH
f(φ) dµ(φ) =

∫

IR
eiληdµe(η) =

∫

IR2
eiλη1dµe,ê(η1, η2) . (2.11)

It is easy to see that this equality holds for our choice of f and for any other
integrable function, cylindrical with respect to V1, if and only if the measures
satisfy the following consistency condition

dµe(η) =
∫

IR
dµe,ê(η, η̂) . (2.12)

A natural solution to the consistency conditions is obtained by choosing all
the dµe1,...,en

to be normalized Gaussian measures. Then, the resulting dµ on
SH is called a Gaussian cylindrical measure.

Associated with every cylindrical measure (not necessarily Gaussian) on
SH, there is a function χ on the Schwarz space S of probes, called the Fourier
transform of the measure by analysts and the generating function (with imag-
inary current) by physicists:

χ(e) :=
∫

SH
exp [i

∫

IRd+1
e(x)φ(x)dd+1x] dµ(φ) =

∫

IR
eiηdµe(η) . (2.13)

To see that χ is the generating functional used in the physics literature, let
us substitute the heuristic expression (2.3) of dµ in (2.13) to obtain:

χ(e) = “
1

Z

∫

SH
exp[i

∫

IRd+1
e(x)φ(x)dd+1x] × (2.14)

exp[−
(∫

IRd+1

1

2
∂µφ(x)∂µφ(x) + V (φ(x))

)
dd+1x]

∏

x∈IRd+1

dφ(x)” .

From the properties of these heuristic generating functionals discussed in the
physics literature, one would expect χ to contain the complete information
about dµ. This is indeed the case.

In fact, such generating functionals can serve as a powerful tool to define

non-Gaussian measures dµ. This is ensured by a key result in the subject,
the Bochner theorem [8, 9], which has the following consequence :
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Let χ(e) be a function on the Schwarz space S satisfying the following three con-

ditions :

(i) χ(0) = 1

(ii) χ is continuous in every finite dimensional subspace ofS

(iii) For every e1, ..., eN ∈ S and c1, ..., cN ∈ C we have
N∑

i,j=1

cicjχ(−ei + ej) ≥ 0 . (2.15)

Then, there exists a unique cylindrical measure dµ on SH such that χ is its gener-

ating functional. Thus, functions χ satisfying (2.15) are generating functionals

of cylindrical measures on SH and every generating functional is of this form.
This concludes the “algebraic” part of our discussion.

We now turn to the measure-theoretic part and ask if the above procedure
for integrating cylindrical functions actually defines a genuine measure –i.e.,
a σ-additive set function (see below)– on SH or a related space. This issue
is important because a proper measure theoretic understanding would enable
us to integrate functions on SH that are genuinely infinite dimensional, i.e.,
depend on infinitely many probes. Indeed, the classical action is invariably
such a function. It turns out that one can define genuine measures, but to do
so, we have to extend the space SH. For later convenience, we will proceed
in two steps. First, we will present a “maximal” extension and arrive at a
space SH which serves as “the universal home” for all cylindrical measures
on SH. In practice, however, the space SH is too large in that the measures
of interest to constructive quantum field theory are generally supported on
a significantly smaller subspace S ′ of SH (which are still larger than SH).
Then, in the second step, we will discuss this “actual home,” S ′, for physically
interesting measures.

The universal home, SH, is simply the algebraic dual of SH: the space of
all linear functionals on the probe space S. This space is “very large” because
we have not required the maps to be continuous in any topology on S. It is
easy to check that S also serves as the space of probes for SH and that, given
a consistent family of measures dµe1,...,en

that defines a cylindrical measure
dµ on SH, it also defines a cylindrical measure, say dµ̄, on SH. (SH is the
“largest” space for which this result holds.) Now, for a cylindrical measure to
define a genuine, infinite dimensional measure, it has to be extendible in the
following sense. For a cylindrical measure, the measurable sets are all cylin-
drical, i.e., inverse images, under projections pe1,...,en

of (2.5), of measurable
sets in (IRn, dµe1,...,em

). The measure of a cylindrical set is just the measure
of its image under the projection. Now, for dµ̄ to be a genuine measure, it
has to be σ-additive, i.e., the measure of a countable union of non-intersecting
measurable sets has to equal the sum of their measures. Unfortunately, al-
though the union of a finite number of cylindrical sets is again cylindrical, in
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general the same is not true for a countable number. Thus, the question is
whether we can add countable unions to our list of measurable sets and extend

dµ̄ consistently. It turns out that every cylindrical measure on SH can be so
extended. (This is in general not true for SH; even the Gaussian cylindrical
measures on SH may not be extendable to σ-additive measures thereon. In
particular this happens for physically interesting measures.) This is why SH
can be regarded as the “universal home” for cylindrical measures.

Unfortunately, the space SH is typically too big for quantum scalar field
theories: The actual home of a given measure dµ̄ is generally a smaller space,
say ŜH, of better behaved generalized histories, in the sense that µ̄(SH −
ŜH) = 0. (More precisely, every measurable set U such that U ⊂ SH − ŜH
has zero measure µ̄(U) = 0.) Since ŜH has a richer structure, it is most
natural (and, in practice, essential) to ignore SH and work directly with ŜH.

The key result which helps one determine the actual home of a measure is
the Bochner-Minlos theorem [9]. The version of this theorem which is most
useful in scalar field theories can be stated as follows :
σ-additive measures on the space S ′ of continuous linear functionals on the probe

space S (equipped with its natural nuclear topology τ(n)) are in one to one corre-

spondence with generating functions χ on S, satisfying the conditions (i), (iii) of

(2.15) and

(ii′)χ is continuous with respect to τ(n). (2.16)

(The space S ′ is of course the space of tempered distributions.) Since the

topology on S used in (ii′) is weaker than that in (ii), the Bochner-Minlos
theorem expresses the general trend that the weaker the topology with respect
to which the generating function χ is continuous, the smaller is the support
of the resulting measure dµ̄.

This concludes our discussion of mathematical preliminaries. Let us sum-
marize. One can define cylindrical measures on SH which enable one to
integrate cylindrical functions. However, to integrate “genuinely infinite di-
mensional” functions, one needs a genuine measure. The algebraic dual SH
of the space S of probes is the univeral home for such measures in the sense
that every cylindrical measure on SH can be extended to a genuine measure
on SH. In practice, however, physically interesting measures have a much
smaller support ŜH which, however, is larger than SH. (Indeed, typically SH
has zero measure.) The Bochner-Milnos theorem provides a natural avenue
to constructing such measures.

2.2 Scalar field theories

For a measure dµ̄ to correspond to a physically interesting quantum scalar
field theory, it has to satisfy (some version) of the Osterwalder-Schrader ax-
ioms [3, 4]. These axioms guarantee that from the measure it is possible
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to construct the physical Hilbert space with a well defined Hamiltonian and
Green functions with the appropriate properties. They are based on the as-
sumption that the actual home for measures that correspond to quantum
scalar field theories is the space S ′ of tempered distributions. Thus, the
appropriate histories for quantum field theories are distributional. In fact,
typically, the measure is concentrated on genuine distributions in the sense
that µ̄(S ′ −SH) = 1. This is the origin of ultra-violet divergences: while the
measure is concentrated on distributions, the action (2.1) is ill-defined if the
histories are distributional.

We will denote the measures on S ′ by dµ̂. The Osterwalder-Schrader ax-
ioms restrict the class of possible measures. The most important of these
axioms are: Euclidean invariance and reflection positivity. The first requires
that the measure dµ̂ be invariant under the action of the Euclidean group on
IRd+1. Reflection positivity is the axiom that allows to construct a physical
Hilbert space with a non-negative self-adjoint Hamiltonian acting on it. Let
θ denote the time reflection, i.e. reflection with respect to the hyperplane

(x0 = 0, x1, ..., xd) . (2.17)

Consider the subspace R+ of L2(S ′, dµ̂) of (cylindrical) functions of the form

f(φ̂) =
N∑

j=1

cje
iφ̂(e+

j
) , (2.18)

where cj ∈ C and e+j are arbitrary probes with support in the x0 > 0 half-
space. Then, the reflection positivity of the measure is the condition that

< θf, f >L2=
∫

S′

[(θf)(φ̂)]⋆ f(φ̂) dµ̂(φ̂) ≥ 0 . (2.19)

(If reflection invariance is satisfied for one choice of Euclidean coordinates,
by Euclidean invariance of the measure, it is satisfied for any other choice.)

The Hilbert space and the Hamiltonian can then be constructed as follows.
(2.19) provides a degenerate inner product (., .) on R+, given by

(f1, f2) =< θf1, f2 >L2 . (2.20)

Denoting by N the subspace of (., .)-null vectors on R+ we obtain a Hilbert
space H by taking the quotient R+/N and completing it with respect to (., .):

H = R+/N . (2.21)

The Euclidean invariance provides an unitary operator T̂t , t > 0, of time
translations on L2(S ′, dµ̂). It in turn gives rise to the self-adjoint contraction
operator on H:

e−Ht , t > 0 , (2.22)
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where H is the Hamiltonian.

Finally, we can formulate the two axioms in terms of the generating func-
tional. Let E : IRd+1 → IRd+1 denote an Euclidean transformation. Then
the condition that the measure be Euclidean invariant is equivalent to de-
manding:

χ̂(e ◦ E) = χ̂(e) , for every E . (2.23)

Next, let us consider reflection positivity. From the definition of the generat-
ing functional χ̂ (2.13) (here with SH ≡ S ′) it follows that the condition of
reflection positivity is equivalent to

N∑

i,j=1

cicjχ̂(e+j − θe+i ) ≥ 0 (2.24)

for all N ∈ IN, c1, ..., cN ∈ C and for all e+1 , ..., e
+
N ∈ R+.

To summarize, constructive quantum field theory provides an elegant and
compact characterization of quantum field theory as a measure dµ̂ on S ′ or as
a (generating) function χ̂ on the space S of test functions, satisfying certain
conditions. So all the work can be focussed on finding (or at least proving
the existence of) appropriate dµ̂ or χ̂.

To conclude this section, we will provide two examples of such measures.

The first example is that of a free, massive scalar field on IRd+1. Note
first, that, it follows from the discussion in section 2.1 that a measure dµ̂ is
Gaussian if and only if its generating functional is Gaussian, i.e. if and only
if

χ̂(e) = exp[−
1

2
(e, Ĉe)] , (2.25)

where Ĉ is a positive definite, linear operator defined everywhere on S. Ĉ is
called the covariance of the resulting Gaussian measure dµ̂. The free massive
quantum scalar field theory corresponds to the Gaussian measure dµ̂m with
covariance

(
Ĉme

)
(x) =

∫

IRd+1
(−∆ +m2)−1(x, y) e(y) dd+1y , (2.26)

where the integral kernel is defined by:

(−∆ +m2)−1(x, y) =
1

(2π)d+1

∫

IRd+1
dd+1p

eip(x−y)

p2 +m2
.

Our next example is more interesting in that it includes interactions: the
λφ4 model in 2-dimensions. The classical action is now given by:

S(φ) =
∫

IR2

(
1

2
∂µφ∂

µφ+
m2

2
φ2 + λφ4

)
d2x (2.27)
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Therefore, the heuristic expression for the quantum measure is

dµλ,m =
1

Zλ,m
e−λ

∫
IR2 φ̂4(x)d2x e−Sm(φ̂)

∏

x∈IR2

dφ̂(x)

=
1

Z̃λ,m

(
e−λ

∫
IR2 φ̂4(x)d2x

)
dµ̂m(φ̂) , (2.28)

where Sm is the action of the free field with mass m and dµ̂m denotes the
(rigorous) Gaussian measure discussed above. The problem with this expres-
sion is that while dµ̂ is concentrated on distributional connections, the factor
in the exponent is ill-defined for distributional φ̂.

One way of trying to make sense of (2.28) is by substituting the Gaussian
measure dµ̂m by a regulated Gaussian measure with a smaller support on
which the integrand is well-defined. This can be achieved, e.g., by replac-
ing the covariance Cm in (2.26) with the cutoff covariance Ck

m, given in the
momentum space by [4]

C̃k
m(p) =

1

(2π)2

e−k(p2+m2)

p2 +m2
, k > 0 . (2.29)

Then the resulting measure dµk
m “lives” on the space L of infinitely differen-

tiable functions that grow at most logarithmically at infinity (more precisely

as
√

ln(|x|)). (This is an extremely useful property. Nonetheless, we cannot
just use this measure as the physical one because, among other reasons, it
does not satisfy reflection positivity.) However, the function

λ
∫

IR2
φ4(x)d2x (2.30)

is still infrared divergent (almost everywhere with respect to dµk
m). Therefore,

we have to put an infrared cutoff by restricting space-time to a box of volume
V . Of course if we now take the regulators away, V → ∞ and k → 0, then we
return to the ill-defined expression (2.28). Therefore, the question is whether
it is possible to change λ

∫
IR2 φ4(x)d2x by an interacting term with the same

leading order dependence on φ but such that the limit, when the regulators
V → ∞, k → 0, exists, is non trivial and satisfies the Osterwalder-Schrader
axioms.

In 2-dimensions the answer is in the affirmative if we substitute (2.30) by
[4]

λ
∫

IR2
: φ4(x) : d2x , (2.31)

where : φ4(x) : denotes normal ordering with respect to the Gaussian measure
dµk

m

: φ4(x) : = φ4(x) − 6Ck
m(0)φ2(x) + 3(Ck

m(0))2 . (2.32)
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The expression for the regulated generating functional then reads

χk,V
m,λ :=

1

Z̃k,V
λ,m

∫

L
exp[i

∫

V
eφd2x] exp[−λ

∫

V
: φ4(x) : d2x] dµk

m(φ) , (2.33)

where L denotes the support of the measure (i.e., the space of C∞ functions

on IR2 which grow at worst as
√
ln(|x|)). Finally, it can be now shown that

the limit
χm,λ(e) = lim

V →∞
lim
k→0

χk,V
m,λ(e) (2.34)

exists, is non-Gaussian and has the appropriate properties. Thus, while the
extraordinarily difficult problem of rigorously constructing a quantum field
theory is formulated succinctly in this approach as that of finding a suit-
able measure or generating functional, the actual task of finding physically
interesting measures is correspondingly difficult.

Finally, note that the entire framework is “soaked in” kinematic linearity.
The fact that the space S of probes and and home S ′ of measures are linear
was exploited repeatedly in various steps.

3 Calculus on A/G

We now turn to gauge theories which are kinematically non-linear. Here, the
classical space of histories is the infinite dimensional space A/G of smooth
connections modulo gauge transformations on the d + 1 dimensional space-
time M ; SH = A/G. We will assume the gauge group G to be a compact Lie
group and, in specific calculations, take it to be SU(2). In this section, we
will summarize how one develops calculus on A/G by suitably extending the
arguments of section 2.1 [12, 15]. (Analogous methods for d+1 = 2 were first
used in the second reference of [26]. For an alternative approach, see [6]). In
the section 4, we will apply these ideas to a specific model along the lines of
section 2.2

3.1 Cylindrical measures

The main idea ([11, 12]) is to substitute the linear duality between scalar field
histories and test functions by the “non-linear duality” between connections
and loops in M. This duality is provided by the parallel transport or holonomy
map H, evaluated at a base point p ∈M :

H : (α,A) → Hα(A) = P exp(
∮

α
A.dl) ∈ G , (3.1)

where α is a piecewise analytic loop in M and A ∈ A. (For definiteness we
will assume that A is explicitly expressed using (one of) the lowest dimen-
sional representation(s) of the Lie algebra of G.) In view of this duality, loops
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will now be used to probe the structure of the space of connections. In the
kinematically linear theories, the probes and the histories were objects of the
same type; in the scalar field theories, for example, they were both functions
on M . In gauge theories, the roles are played by quite different objects.

We will begin by specifying the precise structure of the space of probes.
Fix a point p ∈ M and consider only those loops α in M which are based at
p. It is natural to define the following equivalence relation on the space of
these loops:

α′ ∼ α iff Hα′(A) = Hα(A), ∀A ∈ A , (3.2)

where A is the space of smooth connections on M . Denote the equivalence
class by [α]p and call it a (based) holonomic loop or a hoop. The set of all
hoops, HGp, in M forms a group with respect to the product

[α1]p · [α2]p = [α1 ◦p α2]p , (3.3)

where α1 ◦p α2 denotes the usual composition of loops at the base point p.
For gauge theories, the hoop group HGp will serve as the space of probes.

Let us now turn to connections. For simplicity, we will first consider the
space A/Gp where Gp is the subgroup of gauge transformations which are
equal to the identity 1G ∈ G at p. For each α ∈ HGp the holonomy Hα

defines a G-valued function on A/Gp, i.e. a G-valued function on A which is
invariant under Gp-gauge transformations. These functions are sufficient to
separate the points of A/Gp. That is, for every [A1]p 6= [A2]p there exists a
α ∈ HGp such that Hα(A1) 6= Hα(A2), where [A]p denotes the Gp equivalence
class of the connection A. In this sense, hoops play the role of non-linear
probes for histories [A]p ∈ A/Gp. Finally, note that each smooth connection
A ∈ A defines a homomorphism H of groups,

H.(A) : HGp → G; α → Hα(A), (3.4)

which is smooth in an appropriate sense ([16]).

As in section 2.2, we can now define cylindrical functions and cylindrical
measures on A/Gp using the “probe functions” Fα defined by Fα([A]p) :=
Hα(A). Our first task is to introduce the analogs of the projections (2.5). For
this, we need the notion of strongly independent hoops. Following [12], we will
say that hoops [βi]p are strongly independent if they have representative loops
βi such that each contains an open segment that is traced exactly once and
which intersects other representatives at most at a finite number of points.
The notion of strong independence turns out to be the appropriate non-
linear analog of the linear independence of probes used in section 2.1. In
particular, we have the following result. Given n strongly independent hoops,
[βi]p, i = 1, ..., n, there exists a set of projections, pβ1,...,βn

: A/Gp → Gn, given
by:

pβ1,..,βn
([A]p) = (Hβ1

(A), .., Hβn
(A)) (3.5)
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which are surjective [12].

Now, a function f on A/Gp is called cylindrical with respect to the subgroup
of HGp generated by β1, .., βn if it is the pull-back by pβ1,..,βn

of a (well-
behaved) complex valued function f̃ on Gn

f([A]p) = f̃(Hβ1
(A), .., Hβn

(A)). (3.6)

Consider now a family {dµβ1,..,βn
} of (positive, normalized) measures on Gn,

one for each set {β1, .., βn}, n ∈ IN of strongly independent hoops. As in
section 2.1, this family of measures on finite dimensional spaces allows us to
define in a unique way a cylindrical measure dµ on the infinite dimensional
space A/Gp, provided that appropriate consistency conditions are satisfied.
These conditions are again a consequence of the fact that the representation
(3.6) of f as a cylindrical function is not unique. If the consistency conditions
are satisfied, then the family (dµβ1,..,βn

) defines a unique cylindrical measure
dµ on A/Gp through

∫

A/Gp

dµ([A]p)f([A]p) :=
∫

Gn
dµβ1,..,βn

(g1, .., gn)f̃(g1, .., gn) (3.7)

where f is the pull-back of f̃ as in (3.6).

In the linear case, Gaussian measures on IRn provided a natural way to
meet the consistency conditions. In the present case, one can use the Haar
measure on Gn. More precisely, the consistency conditions are satisfied if one
chooses [12]

dµ0
β1,..,βn

(g1, .., gn) = dµH(g1)..dµH(gn) , (3.8)

where dµH is the normalized Haar measure on G. This family (dµ0
β1,..,βn

)
leads to a measure cylindrical dµ0 on A/Gp which is in fact invariant under
the action of diffeomorphisms 2 of M .

3.2 “Universal home” and “actual home” for measures

As in the linear case, not every cylindrical measure on A/Gp is a genuine, in-
finite dimensional measure. It turns out, however, that they can be extended
to genuine measures on a certain completion, A/Gp. This comes about as
follows. Since A/Gp is in one to one correspondence with the set of smooth
homomorphisms from HGp to G [16], a natural analog of the algebraic dual
SH of the space S of linear probes is now

A/Gp := Hom(HGp, G), (3.9)

2Additional solutions of the consistency conditions leading to diffeomorphism invariant
measures on A/Gp were found by Baez in [13]. The resulting measures are sensitive to
certain kinds of self-intersections of loops. Such measures are relevant for quantum gravity,
formulated as a dynamical theory of connections [18],[19].
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i.e., the set of all homomorphisms (without any continuity condition) from
the hoop group to the gauge group [12]. Elements of A/Gp will be denoted by
Ā and called generalized connections. Just as S continues to serve as the space
of probes for SH in the linear case, the group HGp continues to provide non-
linear probes for the space A/Gp of generalized connections. Furthermore, as
in the linear case, every consistent family (dµβ1,..,βn

) of measures on Gn that
defines a cylindrical measure dµ on A/Gp through (3.7) also defines a measure
dµ̄ on A/Gp by

∫

A/Gp

f̄(Ā)dµ̄(Ā) =
∫

Gn
f̃(g1, .., gn)dµβ1,..,βn

(g1, .., gn) (3.10)

where f̄ is an arbitrary cylindrical function on A/Gp with respect to the
subgroup of HGp generated by β1, .., βn; f̄(Ā) = f̃(Ā(β1), .., Ā(βn)). Finally,
every measure dµ̄ on A/Gp defined as in (3.10) can be extended to a σ-
additive measure on A/Gp and is thus a genuine, infinite dimensional measure
[9, 12, 14].

From a physical point of view, however, we should still factor out by the
gauge freedom at the base point p. A generic gauge transformation g(.) ∈ G
acts on A/Gp simply by conjugation

(g ◦ Ā)(β) = g(p) · Ā(β) · g−1(p) (3.11)

The physically relevant space A/G is therefore the quotient of A/Gp by this
action. The classical space of histories A/G is naturally embedded in A/G
through

[A] → {gH.(A)g−1, g ∈ G} (3.12)

where [A] denotes the gauge-equivalence class of the connection A. By inte-
grating gauge-invariant functions on A/Gp with the help of dµ̄ we obtain a
measure on A/G that we will denote also by dµ̄. This measure is of course
just the push-forward of the measure on A/Gp under the canonical projection
π : A/Gp → A/G. Again, these measures dµ̄ on A/G, associated with
consistent families (dµβ1,..,βn

), are always extendible to σ−additive measures.
Thus, for gauge theories, A/G serves as the universal home for measures (for
which the traces of holonomies are measurable functions) in the same sense
that SH is the universal home for measures in the linear case.

It is therefore natural to ask if there is a “non-linear” analog of the Bochner
theorem. The answer is in the affirmative. In fact the arguments are now
simpler because both A/Gp and A/G are compact Hausdorff spaces (with
respect to the natural Gel’fand topologies). To see this explicitly, let us
now restrict ourselves to the gauge group G = SU(2). In this case, the
Mandelstam identities imply that the vector space generated by traces of
holonomies Tα is closed under multiplication. This in turn implies that the
entire information about the measure is contained in the image of the “loop
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transform:”

χ(β) =
∫

A/G
T̄β([Ā]) dµ̄([Ā]) , (3.13)

where T̄α[Ā] = 1
2
trĀ[α] is the natural extension to A/G of the “trace of the

holonomy (or Wilson loop) function” on A/G. Note that (3.13) is the natural
non-linear analog of the Fourier transform (2.13). The generating function χ
is again a function on the space of probes which now happens to be the hoop
group HG rather than the Schwarz space S. From the normalization and the
positivity of dµ̄ it is easy to see that χ(α) satisfies

(i) χ(p) = 1

(ii)
N∑

i,j=1

c̄icj[χ(βi ◦ βj) + χ(βi ◦ β
−1
j )] ≥ 0, ∀βi ∈ H , (3.14)

where p denotes the trivial (i.e., identity) hoop, ci ∈ C, are arbitrary complex
numbers and N ∈ IN is an arbitrary integer. Finally, the Riesz-Markov
theorem [17] implies that every generating functional χ satisfying

∑
i ciχ(βi) =

0 whenever
∑

i ciTβi
= 0 is the loop transform of a measure dµ̄ so that there

is a one to one correspondence between positive, normalized (regular, Borel)
measures on A/G and generating functionals on HGp [11]. This result is
analogous to the Bochner theorem in the linear case.

As in section 2.2, a given measure µ̄0 on A/G may be supported on a smaller
space of better behaved generalized connections (support or actual home for
dµ̄0). Indeed, just as SH is “too large” for scalar field theories, we expect
that A/G is “too large” for Yang-Mills theories. To see this, note that in
(3.14), no continuity condition was imposed on the generating functional χµ̄0

(or, equivalently, the generating functionals are assumed to be continuous only
with the discrete topology on HGp). Now, in Yang-Mills theories (with d+1 >
2), a background space-time metric is available and it can be used to introduce
suitable topologies on HGp which would be much weaker than the discrete
topology. It would be appropriate to require that the Yang-Mills generating
functional χ be continuous with respect to one of these topologies. Now,
from our experience in the linear case, it seems reasonable to assume that the
following pattern will emerge: the weaker the topology with respect to which
χ is continuous, the smaller will be the support of dµ̄. Thus, we expect that,
in Yang-Mills theories, physically appropriate continuity conditions will have
to be imposed and these will restrict the support of the measure considerably.
What is missing is the non-linear analog of the Bochner-Minlos theorem which
can naturally suggest what the domains of the physically interesting measures
should be.

The situation is very different in diffeomorphism invariant theories of con-
nections such as general relativity. For these theories, diffeomorphism in-
variant measures such as dµ̄0 are expected to play an important role. There
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are indications that the generating functionals of such measures will be con-
tinuous only in topologies which are much stronger than the ones tied to
background metrics on M . Finally, since dµ̄0 is induced by the Haar measure
on the gauge group, it is very closely related to the measure used in the lattice
gauge theories. Therefore, it is possible that even in Yang-Mills theories, it
may serve as a “fiducial” measure –analogous to µk

m of the scalar field theory–
in the actual construction of the physical measure. We will see that this is
indeed the case in d+ 1 = 2.

4 Example : Quantum Yang Mills Theory in

two dimensions

In this section we will show how the mathematical techniques introduced in
section 3 can be used to construct Yang-Mills theory in 2 dimensions in the
cases when the underlying space-time M is topologically IR2 and when it is
topologically S1×IR. In particular, we will be able to show equivalence rigor-
ous 3 between the Euclidean and the Hamiltonian theories; to our knowledge
this was not previously demonstrated. The analysis of this case will also
suggest an extension of the Osterwalder-Schrader axioms for gauge theories.
Due to space limitations, however, we will present here only the main ideas;
for details see [22].

4.1 Derivation of the continuum measure

We wish to construct the Euclidean quantum field theory along the lines of
section 2.2. As indicated in section 3.2, the analog of the generating functional
χ(e) on S is the functional χ(α) on the hoop group HGp. In the present case,
the heuristic expression of χ(α) is:

“χ(α) =
∫

A/G
Tα([A]) e−SYM([A])

∏

x∈M

d[A](x)′′ , (4.1)

where [A] is the gauge equivalence class to which the connection A belongs,
Tα([A]) is the trace of the holonomy of A around the closed loop α and SY M is
the Yang-Mills action. To obtain the rigorous analog of (4.1), we proceed, as
in section 2.2, in the following steps: i) regulate the action using suitable cut-
offs; ii) replace A/G by a suitable completion thereof; iii) introduce a measure
on this completion with respect to which the regulated action is measurable;
iv) carry out the integration; and, v) take the appropriate limits to remove
the cut-offs.

3Similar results were obtained via the heuristic Fadeev-Popov approach in [23].
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To carry out the first step, we will use a lattice regularization. Introduce
a finite, square lattice of total length Lx and Lτ in x and τ direction respec-
tively, and lattice spacing a, using the Euclidean metric on M . Thus we have
imposed both infrared and ultraviolet regulators. There are (Nx +1)(Nτ +1)
vertices on that finite lattice in the plane (and (Nτ + 1)Nx in the cylinder)
where Nxa := Lx, Nτa := Lτ . Denote the holonomy associated with a pla-
quette 2 by p2. There are no boundary conditions for the plane while on the
cylinder we identify [24] the vertical link variables l associated with the open
paths starting at the vertices (0, τ) and (a Nx, τ). The regularized action is
then given by Sreg = βSW where β = 1/(g0a

2), with g0, the bare coupling
constant, and SW is the Wilson action given by:

SW :=
∑

2

[1 −
1

N
Re tr(p2))] , (4.2)

where Re tr stands for “real part of the trace.” Finally, we note certain
consequences of this construction. Choose a vertex and call it the base point
p. One can show that in two dimensions the based plaquettes form a complete
set of loops which are independent in the sense that one can separately assign
to each holonomy associated with a plaquette an arbitrary group element.
This means that they can, in particular, be used as independent integration
variables on the lattice. They can also be used to define projection maps of
(3.5).

The next step is to find the appropriate extension of A/G and a measure
thereon. For this, we note that since A/G of section 3.2 is the space of all
homomorphisms from HGp to G, for any given lattice, the Wilson action (4.2)
can be regarded as a bounded cylindrical function S̄W on A/G. Therefore,
this function is integrable with respect to the measure dµ̄0. Since the push-
forward of dµ̄0 under the projections pβ1,...,βn

of (3.5) is just the Haar measure
on Gn, using for βi the plaquettes, we have:

χa,Lx,Lτ (α) :=
1

Z

∫

A/G
T̄α(Ā) e−βS̄W [Ā] dµ̄0 (4.3)

=
1

NZ(a, Lx, Lτ )

∏

l

∫

G
e−βSW tr(

∏

l∈α

Hl) dµH(Hl)

for any loop α contained in the lattice. Here dµH is the Haar measure on G
and the partition function Z is defined through χ(p) = 1 where, as before,
p denotes the trivial hoop. Note that (4.3) is precisely the Wilson integral
for computing the vacuum expectation value of the trace of the holonomy.
Thus, the space A/G and the measure dµ̄0 are tailored to the calculations one
normally performs in lattice gauge theory.

We have thus carried out the first four steps outlined above. The last step,
taking the continuum limit, is of course the most difficult one. It has been
carried out for the general case G = SU(N) [22]. For simplicity, however, in
what follows, we will restrict ourselves to the Abelian case G = U(1).
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Consider the pattern of areas that the loop α creates on M and select
simple loops βi that enclose these areas. It can be shown that α can be
written as the composition of the βi and the completely horizontal loop c at
”future time infinity”. Let k(βi) and k be the effective winding numbers of
the simple loops βi, i = 1, .., , n and of the homotopically non-trivial loop
c respectively, in the simple loop decomposition of α (that is, the signed
number of times that these loops appear in α). Define |βi| to be the number
of plaquettes enclosed by βi. Then, if we set

Kn(β) :=
∫

G
[exp−β(1 − Re(g))] gn dµH(g), (4.4)

the generating functional (on the plane or the cylinder) becomes

χ(α) =
n∏

i=1

[
Kk(βi)(βi)

K0(βi)
]|βi| (4.5)

for k = 0 (and, in particular, for any loop in the the plane), and it vanishes
identically otherwise. We can now take the continuum limit. The result is
simply:

χ(α) = lim
a→0

χa,Lx,Lτ (α) = exp[−
g2
0

2

n∑

i=1

k(βi)
2Ar(βi)]. (4.6)

if k = 0, and χ(α) = 0 if k 6= 0, where Ar(β) is the area enclosed by the loop
β.

A number of remarks are in order. i) We see explicitly the area law in (4.6)
(which would signal confinement in d+ 1 > 2 dimensions). The same is true
for non-Abelian groups. ii) As in the case of the λφ4-model in 2-dimensions,
no renormalization of the bare coupling g0 was necessary in order to obtain
a well-defined limit. This is a peculiarity of 2 dimensions. Indeed, in higher
dimensions because the bare coupling does not even have the correct physical
dimensions to allow for an area law. iii) It is interesting to note that the
above expression is completely insensitive to the fact that we have not taken
the infinite volume limit, Lx, Lτ → ∞ on the plane, and Lτ → ∞ on the
cylinder. (The only requirement so far is that the lattice is large enough
for the loop under consideration to fit in it.) Thus, the task of taking these
“thermodynamic” limits is quite straightforward. iv) In higher dimensions,
one can formulate a program for constuction of the measure along similar
lines (although other avenues also exist). This may be regarded as a method
of obtaining the continuum limit in the lattice formulation. The advantage
is that if the limit with appropriate properties exists, one would obtain not
only the Euclidean “expectation values” of Wilson loop functionals but also
a genuine measure on A/G, a Hilbert sapce of states and a Hamiltonian.

Finally, let us compare our result with those in the literature. First, there
is complete agreement with [26]. However our method of calculating the
vacuum expectation values, χ(α), of the Wilson loop observables is somewhat
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simpler and more direct. Furthermore, it does not require gauge fixing or the
introduction of a vector space structure on A/G and we were able to treat the
cases M = IR2 and M = S1 × IR simultaneously. More importantly, we were
able to obtain a closed expression in the U(1) case. Finally, the invariance
of χ(α) under area preserving diffeomorphisms is manifest in this approach;
the huge symmetry group of the classical theory transcends to the quantum
level. This important feature was not so transparent in the previous rigorous
treatments (except for the second paper in [26]).

4.2 A proposal for Constructive Quantum Gauge Field

theory

In this section, we will indicate how one might be able to arrive at a rigorous,
non-perturbative formulation of quantum gauge theories in the continuum.
The idea of course is to define a quantum theory of gauge fields to be a measure
dµ̄ on A/G –whose support may be considerably smaller than A/G– satisfying
the analogs of the Osterwalder-Schrader axioms. These must be adapted to
the kinematical non-linearity of gauge theories. We will discuss how the key
axioms can be so formulated. As one would expect, they are satisfied in the
2-dimensional example discussed above. Using them, we will arrive at the
Hamiltonian framework which turns out to be equivalent to that obtained
from canonical quantization.

The two key axioms in the kinematically linear case were the Euclidean
invariance and the reflection positivity. These can be extended as follows.
Let E : IRd+1 → IRd+1 denote an Euclidean transformation. We require:

χ(E ◦ α) = χ(α) (4.7)

for all E in the Euclidean group. The axiom of reflection positivity also admits
a simple extension. Let us construct the linear space R+ of complex-valued
functionals Ψ{zi},{βi} on A/G of the form:

Ψ{zi},{βi}(Ā) =
n∑

i=1

zi T̄βi
[Ā] =

n∑

i=1

zi Ā[βi] , (4.8)

where βi ∈ HG are independent in the sense of the previous subsection and
have support in the positive half space, and zi are arbitrary complex numbers.
Then a measure dµ̄ on A/G will be said to satisfy the reflection positivity
axiom if:

(Ψ,Ψ) :=< θΨ,Ψ >:=
∫

A/G
(θΨ(Ā))⋆Ψ(Ā) dµ̄(Ā) ≥ 0 , (4.9)

where θ, as before, is the “time-reflection” operation 4. The remaining
Osterwalder-Schrader axioms can be extended to gauge theories in a simi-
lar manner [21, 22], although a definitve formulation is yet to emerge.

4This formulation is for the case when the gauge group is U(1), or SU(2). For
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Let us now consider the 2-dimensional example for G = U(1). Since the
generating functional (4.6) is invariant under all area preserving diffeomor-
phisms, it is, in particular, invariant under the 2-dimensional Euclidean group
on the plane 5 The verification of reflection positivity requires more work.
We will simultaneously carry out this verification and the construction of
the physical Hilbert space. Let us apply the Osterwalder-Schrader algorithm,
outlined in section 2.2, to construct the physical Hilbert space and the Hamil-
tonian. First, a careful analysis provides us the null space N : its elements
are functionals on A/G of the type:

Ψ̃[Ā] = (
n∑

i=1

zi T̄βi
[Ā]) − (

n∑

i=1

ziχ(βi)) T̄p[Ā] , (4.10)

provided all βi are homotopically trivial. The physical Hilbert space H is
given by the quotient construction, H = R+/N . On the plane, it is simply
the linear span of the trivial vector Tp = 1; H is one-dimensional.

Let us now consider the more interesting case of the cylinder. If one of βi

or βj contains a homotopically trivial loop and the other does not, (θβi)
−1◦βj

necessarily contains a homotopically non-trivial loop and the characteristic
function (4.6) vanishes at that loop. Finally, if both loops are homotopically
non-trivial, then (θβi)

−1 ◦ βj necessarily contains a homotopically non-trivial
loop unless the effective winding numbers of the non-trivial loops in βi and
βj are equal. Therefore, the linear spans of Tα’s with zero and non-zero k are
orthogonal under (., .). The former was shown to coincide with the null space
generated by Tp. To display the structure of the Hilbert space H = R+/N , let
us introduce a horizontal loop γ at τ = 0 with winding number one. Then, any
loop with winding number k = n can be written as the composition of γn and
homotopically trivial loops. Therefore β = γ−n ◦α has zero winding number.
Finally, using θγ = γ, it is easy to show that Tγn◦β − χ(β)Tγn ∈ N , implies
that the Hilbert space H is the completion of the linear span of the vectors
Tγn n ∈ ZZ. The vectors ψn := Tγn form an orthonormal basis in H. Since the
quotient of R+ by the null sub-space N has a positive definite inner-product,
(., .), it is clear that the generating function χ satisfies reflection positivity.
Finally, note that, since the loop γ probes the generalized connections Ā only
at “time” zero, the final result is analogous to that for a scalar field where
the Hilbert space constuction can also be reduced to to the fields at “time”
zero.

Our next task is to construct the Hamiltonian H . By definition, H is the
generator of the Euclidean time translation semi-group. Let γ(τ) := T (τ)γ

SU(N) N > 2, the product of traces of holonomies is not expressible as a linear com-
bination of traces of holonomies. Therefore, the argument of the functionals χ contain
1, 2, ..., N − 1 loops. However, the required extension is immediate.

5On the cylinder the Euclidean group, of course, has to be replaced by the isometry
group of the metric, that is, the group generated by the Killing vectors ∂τ and ∂x.
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be the horizontal loop at time τ and set α = γ ◦ ρ ◦ γ(τ)−1 ◦ ρ−1, where ρ is
the vertical path between the vertices of the horizontal loops. Then, we have
Tγ(τ)n = χ(αn)Tγn as elements of H, so that

(ψm, T (τ)ψn) = χ(αn)δn,m = [exp(−1
2
n2g2

0Lxτ)] δn,m (4.11)

=: (ψn, exp(−τH)ψm) . (4.12)

Finally, the completeness of {ψn}n∈ZZ enables us to write down the action of
the Hamiltonian H simply as:

Hψn =
g2
0

2
LxE

2ψn, Eψn = −inψn . (4.13)

Finally, it is clear that the vacuum vector is unique and given by Ω(Ā) = 1.
Thus, because the key (generalized) Osterwalder axioms are satisfied by our
continuum measure, we can construct the complete Hamiltonian framework.

To conclude, we note that the 2-dimensional model can also be quantized
directly using the Hamiltonian methods [25, 22]. The resulting quantum
theory is completely equivalent to the one obtained above, starting from the
Euclidean theory.

5 Discussion

In this contribution we first pointed out that, in its standard form [3], the
basic framework of constructive quantum field theory depends rather heavily
on the assumption that the space of histories is linear. Since this assumption
is not satisfied in gauge theories (for d+1 > 2), a fully satisfactory treatment
of quantum gauge fields would require an extension of the framework. We
then suggested an avenue towards this goal.

The basic idea was to regard A/G as the classical space of histories and
to attempt to construct a quantum theory by suitably completing it and
introducing an appropriate measure on this completion. To achieve this, one
can exploit the “non-linear duality” between loops and connections. More
precisely, if one uses loops as probes –the counterpart of test functions in
the case of a scalar field– one can follow the general methods used in the
kinematically linear theories and introduce the notion of cylindrical functions
and cylindrical measures on A/G. The question is if these can be extended
to genuine measures. The answer turned out to be in the affirmative: there
exists a completion A/G of A/G such that every cylindrical measure on A/G
can be extended to a regular, σ-additive measure on A/G. Thus, we have
a “non-linear arena” for quantum gauge theories; the discussion is no longer
tied to the linear space of tempered distributions. We were able to indicate
how the Osterwalder-Schrader axioms can be generalized to measures on the
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non-linear space A/G. The key open problem is that of singling out physically

appropriate measures.

The space A/G is analogous to the algebraic dual SH of the Schwarz
space one encounters in the kinematically linear case. Therefore, it is almost
certainly too big for quantum Yang-Mills theories (although there are indi-
cations that it is of the “correct size” for diffeomorphism invariant theories
such as general relativity.) That is, although measures which would be phys-
ically relevant for Yang-Mills theories could be well-defined on A/G, their
support is likely to be significantly smaller. In the kinematically linear case,
the Bochner-Milnos theorem provides tools to find physically relevant mea-
sures and tells us that their support is the space S ′ of tempered distributions.
The analogous result is, unfortunately, still lacking in our extension to gauge
theories. Without such a result, it is not possible to specify the exact math-
ematical nature of the Schwinger functions of the theory –the “Euclidean
expectation values” of the Wilson loop operators. This in turn means that
we have no results on the analytic continuation of these functions, i.e., on
the existence of Wightman functions. What we can formulate, is the notion
of reflection positivity and this ensures that the physical Hilbert space, the
Hamiltonian and the vacuum exists.

It is clear from the above discussion that our framework is incomplete. We
need to introduce appropriately weak topologies on the space of hoops –the
probe space– and find generating functionals χ(α) which are continuous with
respect to them. Only then can one have sufficient control on the nature
of Schwinger functions. For the moment, A/G serves only as the “universal
home” for the measures we want to explore. As we saw, this strategy was
successful in the 2-dimensional Yang-Mills theory.

In higher dimensions, there are reasons to be concerned that A/G may be
too large to play even this “mild” role. That is, one might worry that the
elements of A/G are allowed to be so “pathological” that it would be difficult
to define on them the standard operations that one needs in mathematical
physics. For instance, A/G arises only as a (compact, Hausdorff) topological
space and does not carry a manifold structure. For physical applications on
the other hand, one generally needs to equip the domain spaces of quantum
states with operations from differential calculus. Would one not be stuck if
one has so little structure? It turns out that the answer is in the negative:
Using projective techniques associated with families of graphs, one can develop
differential geometry on A/G. In particular, notions such as vector fields,
differential forms, Laplacians and heat kernels are well defined [15]. Thus, at
least for the purposes we want to use A/G, there is no obvious difficulty with
the fact that it is so large.

A more subtle problem is the following. A working hypothesis of the
entire framework is that the Wilson loop operators should be well-defined in
quantum theory. From a “raw,” physical point of view, this would seem to
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be a natural assumption: after all Wilson loop functionals are the natural
gauge invariant observables. However, technically, the assumption is strong.
For example, if the connection is assumed to be distributional, the Wilson
loop functionals cease to be well-defined. Therefore, in a quantum theory
based on such a hypothesis, the connection would not be representable as an
operator valued distribution. In particular, in the case of a Maxwell field,
such a quantum theory can not recover the textbook Fock representation
[27]. More generally, the representations that can arise will be qualitatively

different from the Fock representation in which the elementary excitations
will not be plane waves or photon-like states. Rather, they would be “loopy,”
concentrated along “flux lines.” They would be related more closely to lattice
gauge theories than to the standard perturbation theory. In 2 dimensions, this
reprentation does contain physically relevant states. Whether this continues
to be the case in higher dimensions is not yet clear. It is conceivable that the
quantum theories that arise from our framework are only of mathematical
interest. However, even if this turns out to be the case, they would still be of
considerable significance since as of now there does not exist a single quantum
gauge theory in higher dimensions. Finally, if it should turn out that loops
are too singular for physical purposes, one might be able to use the extended
loop group of Gambini and co-workers [20] as the space of probes. This
group has the same “flavor” as the hoop group in that it is also well tailored
to incorporate the kinematical non-linearities of gauge theories. However,
the hoops are replaced by extended, smoothened objects so that Fock-like
excitations are permissible.

To conclude, our main objective here is to revive intertest in manifestly
gauge invariant approaches to quantum gauge theories, in which the kine-
matical non-linearities are met head on right from the beginning. There have
been attempts along these lines in the past (see, particularly [21]) which,
however, seem to have been abandoned. (Indeed, to our knowledge, none of
the major programs for construction of quantum Yang-Mills theories is still
being actively pursued.) The specific methods we proposed here are rather
tentative and our framework is incomplete in several respects. Its main merit
is that it serves to illustrate the type of avenues that are available but have
remained unexplored.
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