
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Achieving Flexibility and Performance for Packet Forwarding and Data Center Management

Permalink
https://escholarship.org/uc/item/76s772g3

Author
Moon, Daekyeong

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/76s772g3
https://escholarship.org
http://www.cdlib.org/

Achieving Flexibility and Performance for Packet Forwarding
and Data Center Management

by

Daekyeong Moon

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Scott J. Shenker, Chair
Professor Ion Stoica

Professor Tapan Parikh

Spring 2010

Achieving Flexibility and Performance for Packet Forwarding
and Data Center Management

Copyright c© 2010

by

Daekyeong Moon

1

Abstract

Achieving Flexibility and Performance for Packet Forwarding
and Data Center Management

by

Daekyeong Moon
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott J. Shenker, Chair

Although today’s networking equipment has achieved high performance and low
cost by embedding forwarding logic in hardware, this has come at the price of severely
reduced flexibility. In this dissertation, we address the problem of achieving both flexi-
bility and performance in two networking domains: packet forwarding and data center
networking. In packet forwarding, we present Software Defined Forwarding, a hybrid
design that attempts to combine the high speed and low cost of hardware with the
superior flexibility of software. Within the data center context, we propose Ripcord,
a platform for data center routing and management. Through simulation, prototype
implementation and testbed experiments, we demonstrate that these solutions achieve
both flexibility and high performance in their respective contexts.

Professor Scott J. Shenker
Dissertation Committee Chair

i

To my family and Hayan.

ii

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Problem statement . 2
1.2 Contribution . 2

1.2.1 Software Defined Forwarding 2
1.2.2 Ripcord: Data Center Routing/Management Platform 3

1.3 Dissertation Organization . 4

2 Background 5
2.1 The Status Quo in Packet Forwarding 5
2.2 Data Center Networking Aspects . 7
2.3 Summary . 8

3 Software Defined Forwarding 9
3.1 Goals, Limitations, and Applicability 9

3.1.1 Goals . 9
3.1.2 Limitations . 10
3.1.3 Applicability . 10

3.2 Overview . 11
3.2.1 System Functionality and Components 11
3.2.2 Forwarding Steps . 13
3.2.3 Sound Familiar? . 14

3.3 System Design . 15
3.3.1 API . 15
3.3.2 System Software . 19
3.3.3 Hardware . 20

3.4 Implementation . 22
3.4.1 NetFPGA prototype . 22
3.4.2 Microbenchmarks. 24

iii

3.5 Summary . 24

4 SDF Use Cases 26
4.1 Accelerating Existing Software Routers 26
4.2 Virtualization . 27
4.3 Implementing Forwarding Algorithms 29

4.3.1 L2 Learning Switch . 29
4.3.2 IPv4 and IPv6 Forwarding . 30
4.3.3 Floodless in SEATTLE . 32
4.3.4 i3 and Chord . 33

4.4 Summary . 33

5 SDF Performance Study 34
5.1 Assumption . 34
5.2 L2 learning . 36
5.3 IPv4 forwarding . 36
5.4 Performance under stressful conditions 38
5.5 Summary . 40

6 Ripcord: Platform for Data Center Routing and Management 41
6.1 Overview . 41

6.1.1 Design Requirements . 42
6.1.2 Key Criteria for Data Center Networking 42
6.1.3 Ripcord’s Design Principles 42
6.1.4 Prototype . 43

6.2 Design . 44
6.2.1 Example Walkthrough . 44
6.2.2 Components . 45

6.3 Implementation . 48
6.3.1 Configuration & Policy Database 48
6.3.2 Topology Engine . 48
6.3.3 Authenticator-Demultiplexer 48
6.3.4 App Engine and Management Apps 49
6.3.5 Routing Engine and Per-tenant Routing Pipeline 50
6.3.6 Monitoring Implementation 51
6.3.7 Flow Installer . 51
6.3.8 Virtual-to-Physical Mapping 52

6.4 Case studies . 53
6.4.1 Proactive L2 routing . 53
6.4.2 VL2 . 53
6.4.3 PortLand . 54
6.4.4 Additional Capabilities . 55

iv

6.5 Evaluation . 56
6.5.1 Software testbed . 56
6.5.2 Hardware testbed . 56
6.5.3 Experiments on Software Testbed 57
6.5.4 Experiment on Hardware Testbed 59
6.5.5 Flow Table Size . 60
6.5.6 Running Simultaneous Ripcord Applications 60

6.6 Scalability . 61
6.7 Related Work . 64

7 Conclusion 66
7.1 Contribution Summary . 66
7.2 Future Directions . 67

Bibliography 68

v

List of Figures

3.1 High-level view of software defined forwarding. 11
3.2 A distributed forwarding architecture. 20
3.3 Packet processing pipeline of the NetFPGA prototype. User data path

refers to custom logic on the FPGA. 23

4.1 Supporting an existing software router by a simple forwarding appli-
cation implementing the forwarding engine abstraction of the software
router. 27

4.2 Supporting network virtualization in SDF. 29

5.1 Simulations of cache miss rates for L2 learning with the enterprise trace. 36
5.2 Cache miss rates for ISP-US trace (top) and ISP-EU trace (bottom). 37
5.3 Cache miss rates with forwarding on the /16 and /24 granularities for

the OC-48 (top) and the OC192-C trace (bottom). 38
5.4 Cache miss rates with (and without) random DoS traffic comprising

50% of the traffic for the ISP-EU trace (top). Cache miss rates with
random DoS traffic for the ISP-US trace (bottom). 39

6.1 Ripcord architecture and event flow diagram 46
6.2 App configuration example (PortLand). Each app is assigned a unique

app ID. It also specifies a routing pipeline in the form of a list of routing
modules. 49

6.3 Global routing policy example. 50
6.4 Fat Tree topology and CDF of 1-to-many host ping delays on the soft-

ware test using the topology. Leaf nodes in the topology represent end
hosts. Proactive means proactively installed APSP. 57

6.5 Clos topology and CDF of 1-to-many host ping delays on the software
testbed using the topology. Leaf nodes in the topology represent end
hosts. 58

6.6 CDF of 1 to many host ping delays on the hardware testbed. 59
6.7 Simultaneous running of multiple Ripcord Management Applications 62

vi

List of Tables

3.1 Forwarding API. The core calls are for receiving/sending packets, “InPkt”
and “OutPkt” are for packet operations, while “Control” is for control
plane parts of the application. 16

3.2 Cache insertion/deletion performance of the NetFPGA prototype. . . 24
3.3 Throughput of the NetFPGA prototype. 24

5.1 Traces used in the cache hit-rate evaluations. 35

6.1 Network events that Ripcord expects from switch. 43
6.2 Switch commands expected by Ripcord. 44
6.3 Ripcord’s routing pipeline stages. Earlier stages in the table cannot

appear later in routing pipeline. Each routing module should be in one
of these stages. 47

6.4 Information included in a monitoring snapshot. 51
6.5 API exposed by the monitoring module for active statistics collection. 52
6.6 Lines of code of sample routing implementation 53
6.7 OpenFlow entries realizing compact VL2 routing. 54
6.8 The number of flow entries installed at each switch by VL2 implemen-

tation with no flow idle timeout. 60
6.9 The number of flow entries installed at each switch by VL2 implemen-

tation with flow idle timeout of 3 seconds. 61

vii

Acknowledgments

It is always difficult to write acknowledgements, since I am afraid of accidentally
excluding people who really deserve appreciation. My life as a graduate student at UC
Berkeley would never have been possible without help from my outstanding advisors,
talented colleagues, and supportive friends and family. Therefore, my graduation
is merely an opportunity to acknowledge their valuable help and great kindness to
me. In a sense, this space is too small to enumerate all their names. Despite a
dissertation bearing only a single name, I believe that it must be they who most
deserve the recognition.

My appreciation for my research advisor, Professor Scott J. Shenker, has no bounds.
He was the best source of research ideas and the most dependable person to ask for
feedback throughout my Ph.D. course. The ideas in this dissertation could not have
been fully explored without his great insight and guidance. Not only has he guided
me in research, he has also treated me as an individual and encouraged me when I
was at my most difficult moments. I also believe that I have learned a lot from his
humility and respect for others.

I am very grateful to my dissertation committee members Professor Ion Stoica and
Professor Tapan Parikh for their valuable feedback during my qualifying exam and
review of this dissertation. I also greatly enjoyed working with Ion as his teaching
assistant. I also have to thank Professor Randy H. Katz for serving on my qualifying
exam committee and providing valuable comments.

It is my great fortune to have had the chance to work with Martin Casado and
Teemu Koponen. It was Martin who has occasionally provided me with high-level
research direction and inspired me to pursue this dissertation. I marveled at Teemu’s
broad and in-depth understanding of computer networking and technologies. I learned
a lot from discussion with him and from his source code.

I also deeply appreciate the help of my colleague students in the Shenker group.
Projects with them has taught me about teamwork and collaboration. Especially, I
thank Andrey Ermolinskiy and Byung-gon Chun for the Minuet project and Junda
Liu, Igor Ganichev and Kyriakos Zarifis for the SDF project and NOX-related projects.
I also have to thank Brandon Heller, David Erickson and Professor Nick McKeown
at Stanford for their amazing collaboration during the Ripcord project.

I am grateful to my parents who have remained consistently supportive throughout
my studies. Finally, I thank Hayan Yoon for encouraging me throughout the last
three years.

1

Chapter 1

Introduction

It is a tired cliché to remark on the success that the Internet has over the last
two decades, but that success is undeniable and unprecedented. Much of this success
is due to the structure of the Internet architecture, with its “narrow waist” of IP
enabling radical innovations both above and below this internetworking layer. The
networking industry has in turn built equipment (i.e. routers and switches) with
rapidly improving performance/cost ratios by embedding IP and other features in
the forwarding hardware.

Although the use of specialized hardware has succeeded in offering high perfor-
mance, it often requires a major infrastructure upgrade to implement changes in
network architecture. This hardware rigidity has created an innovation deadlock;
new ideas require infrastructure support to evaluate and verify, while operators won’t
deploy new ideas until they are verified through experiments and implemented in
hardware. By relying on specialized hardware for its implementation of the forward-
ing path, the networking industry has given up the ability to innovate on the for-
warding path in return for performance. Therefore, the today’s Internet has difficulty
accommodating new networking requirements (e.g., security, management, etc.) and
operating environments (e.g. data centers, developing regions, etc.).

Researchers have tried to overcome this innovation impasse. For example, research
on overlay networks blossomed in early 2000s, and these networks have great flexi-
bility, but their performance is lacking. Many thought network processors would the
answer in this regard, but they have not proven capable of providing the necessary
performance for a reasonable price.

The lack of innovation is not only felt in the standard networking settings, but also
in more recent operating environments such as data center networking and network-
ing in developing regions. Designs for these new operating environments often adopt

2

home-brewed solutions to tackle domain-specific problems (e.g., full bisectional band-
width in the data center, delay-tolerance in developing regions, etc.). Hence, solutions
are barely interchangeable, even in the same domain. This means new operating en-
vironments are at the risk of being locked into non-standard architectures/protocols
by their hardware rigidity.

For instance, the many proposals (e.g., [12, 14, 17, 20, 32]) for data center network-
ing make specific assumptions about the low-level topology or are otherwise limited
in their applicability. A more flexible approach, that can apply to a broader set of
use cases, would be far more desirable. In this way, achieving flexibility in data cen-
ter networking shares many high-level ideas with accomplishing flexibility in packet
forwarding.

1.1 Problem statement

This dissertation focuses on how to achieve both high flexibility and low cost in
two networking domains: classical packet forwarding and data center networking.

1.2 Contribution

Our contribution is twofold:

1. We present a new hardware design approach called “Software Defined Forward-
ing” to the classical high-speed packet-forwarding problem. We have imple-
mented and evaluated the proposed approach in both software and hardware.

2. We propose a general routing and management platform called “Ripcord” for
data center networking. We have implemented a prototype and evaluated it by
running recent data center routing algorithms.

1.2.1 Software Defined Forwarding

In packet forwarding, we propose a hybrid design that attempts to combine the
high speed and low cost of hardware with the superior flexibility of software. We mo-
tivate our approach by noting that current hardware-accelerated packet-forwarding
implements the forwarding logic in hardware. In contrast, in our approach all for-
warding decisions are first made in software and thereafter imitated by hardware.
The hardware uses a classification engine to match software-made decisions with the
incoming packets to which they apply (e.g., all packets destined for the same prefix).
Thus, the hardware does not need to understand the logic of packet forwarding, it
merely stores the results of forwarding decisions (previously made by software) and

3

applies them to packets with the appropriate headers. In short, hardware caches the
decisions made by software and executes them at high-speed.

Similarly, the forwarding software is not tied to a particular hardware implementa-
tion. Instead, forwarding algorithms are programmed against a high-level API, which
increases portability and reduces the complexity of implementation. This forwarding
software is not speed-critical, so it can be written in a high-level language (in our
implementations we have used Python as well as C++).

For lack of a better term, we call this decision-caching approach Software-Defined
Forwarding (SDF), since all forwarding decisions are made in software. To demon-
strate the viability of SDF, we built a complete system in hardware and software. On
top of it, we have implemented a number of conventional forwarding algorithms (L2
Ethernet forwarding and L3 longest-prefix-matching), ported an existing code base
(XORP), as well as implemented several recently proposed algorithms (SEATTLE,
i3, Chord). We have also implemented a virtualization layer in software that allows
multiple forwarding algorithms to operate in parallel on the same hardware; doing so
did not require any change to the hardware forwarding model.

1.2.2 Ripcord: Data Center Routing/Management Platform

In data center networking, we present (based on joint work with the Stanford
team) a new routing and management platform, called Ripcord. Ripcord provides
a uniform control interface to a physical network so as to abstract high-level data
center networking solutions from underlying network. This control interface is logi-
cally centralized so that schemes using the interface do not suffer from the need to
implement complex distributed algorithms.

In addition, Ripcord supports multiple tenants. Each tenant on Ripcord is a logical
entity (e.g., data center customers, services, jobs, etc) requiring a separate treatment
in routing/management. These tenants are isolated from each other and can cus-
tomize their routing and management with Ripcord modules. A researcher may use
this capability to evaluate two schemes side by side (or even simultaneously); an ex-
perimental data center can host multiple researchers at the same time; a multi-tenant
hosting service may provide different customers with different logical networks; and
a multi-service data center may use schemes optimized for different services. For ex-
ample, one scheme could be for MapReduce, alongside another for video streaming.
We later illustrate this by running VL2 [12] and Portland [32] at the same time.

Ripcord is also modular in order to facilitate code re-use and rapid prototyping.
Ripcord consists of a collection of key components with a well-defined interface and

4

additional routing/management modules. Thus, data center operators may develop
a new module for their data centers or share modules to add features into their data
centers. Tenants can easily benefit from the new features in additional modules.

We guided the development of Ripcord from our observation that recent data cen-
ter networking proposals (e.g., VL2 [12], Monsoon [14], BCube [17], PLayer [20],
and PortLand [32]) present solutions based on specific requirements, some of which
overlap across solutions, but may be prioritized differently in each solution. As a con-
sequence, specific architectural choices often make it difficult to accommodate new
requirements, changes to data center environments or modifications to the solution
that attempt to tailor/tweak it for another data center environment. Ripcord is not in
direct competition with any of these networking proposals; rather, it provides a plat-
form that allows network administrators to experiment with one or more data center
networking proposals (side by side if necessary), make modifications, and evaluate
the proposal in their own data center environments.

1.3 Dissertation Organization

In the following chapter, we review the limitation of current design options to build
packet-forwarding devices and discuss the incompatibility of data center networking
solutions. Chapter 3 presents the SDF approach and describes our prototype imple-
mentation, followed by the use case study and performance study of SDF in Chapters 4
and Chapter 5. In Chapter 6, we describe the Ripcord framework and demonstrate
how Ripcord can achieve flexibility in data center networking by implementing recent
data center algorithms.

5

Chapter 2

Background

This chapter reviews the shortcomings of current design approaches to building
packet forwarding devices and discuss the inability of data centers to implement
changes.

2.1 The Status Quo in Packet Forwarding

As network speeds increase, and network requirements diversify, networking hard-
ware vendors are being pressed on two distinct fronts. To remain competitive, they
must continually improve their cost/performance ratio at a pace faster than Moore’s
Law. Over the past fifteen years, enterprise network speeds have increased by three
orders of magnitude, from 10Mbps to 10Gbps, requiring that the cost of a unit of
bandwidth (a gigabit port, or Gport) drop precipitously. At the same time, networks
are expected to address myriad application, management and security requirements
that were unheard of fifteen years ago, creating pressure to develop network forward-
ing devices that can flexibly accommodate these new demands as they arise. This
trend is reflected in the many “open” platform initiatives launched by system ven-
dors [29, 9, 21].

Despite significant research and engineering efforts, the industry has failed to simul-
taneously achieve low cost/performance and high flexibility.1 There are three basic
approaches to building network forwarding devices currently pursued in the field and,
as we relate below, they offer quite different tradeoffs between these two goals.

1When we refer to flexibility, we mean the flexibility in forwarding algorithms, not general pro-
grammability for sophisticated packet processing. As we clarify later, we are not addressing network
“appliances” that provide deep packet inspection. Our concern here is only for packet forwarding
decisions: to which output port does this packet go, and how should its header be rewritten?

6

In the commercial world, where cost concerns dominate, the most prevalent ap-
proach to building network forwarding devices (this includes both switches and routers,
but hereafter we will use the term “switch” as shorthand) involves embedding the
basic forwarding logic in ASICs. There are commodity forwarding chips (from, for
example, Broadcom, Marvell, and Fulcrum) that cost as little as $20/10Gport, a price-
point that would have been unthinkable only a few years ago. Multi-layer switches
using these commodity chips support 240Gbps (24x10Gbps) of capacity for under
$100/10Gport, and 640Gbps (64x10Gbps) chipsets will be generally available this
year which should lower the cost even further. However, one cannot modify the hard-
ware forwarding algorithm without respinning the chip. This forces packet forwarding
to evolve on hardware design timescales, which are glacially slow compared to the rate
at which network requirements are changing.

In the research community, where flexibility is paramount, there has been renewed
interest in purely software-based switches (i.e., switches running commodity operat-
ing systems on general-purpose CPUs); see, for example, [10]. These designs have
the requisite flexibility, since new forwarding algorithms merely require additional
programming, but their port-density and cost/performance remains poor. For exam-
ple, software routers on general CPUs have been shown to support 10Gbps of trivial
forwarding for minimum size packets [10], achieving roughly $1000/10Gport, an or-
der of magnitude more than the ASIC-based switches. While prevalent in low-speed
wireless devices, pure software switches have made almost no penetration into the
high-speed, high-fanout wireline market.

The industry has tried to bridge the divide between these two extremes with “net-
work processors”, whose goal was to provide programmable functionality at near-
commodity hardware costs. Unfortunately, network processors have not realized this
goal, as designers have yet to find a sweet-spot in the tradeoff between hardware
simplicity and flexible functionality. The cost/performance ratios have lagged well
behind commodity networking chips and the interface provided to software has proven
hard to use, requiring protocol implementors to painstakingly contort their code to
the idiosyncrasies of the particular underlying hardware to achieve reasonable per-
formance.2 These two problems (among others) have prevented network processors
from dislodging the more narrowly targeted commodity packet-forwarding hardware
that dominates the market today. One area in which network processors are widely
used is in network appliances, which go beyond mere forwarding to do deep packet
inspection; but even here, after initial success, network processors are starting to
lose market share as the forwarding performance of general-purpose CPUs has signif-
icantly improved. Today many market-leading middleboxes (such as load balancers)
are implemented on standard x86 platforms.

2However, CAFE [27] is a promising approach for datacenter forwarding.

7

2.2 Data Center Networking Aspects

The meteoric growth of data centers over the past decade has redefined how they
are designed and built. Today, a large data center may contain over one hundred thou-
sand servers and tens of thousands of individual networking components (switches,
routers or both). Data centers often host many applications with dynamic capacity
requirements, and differing service requirements. For example, it is not uncommon for
the same data center to host applications requiring terabytes of internal bandwidth,
and others requiring low-latency streaming to the Internet.

Their sheer scale, coupled with application dynamics and diversity, makes data
centers unlike any systems that have come before. And to construct and manage
them, network designers have had to rethink traditional methodologies. A prevailing
design principle is to use “scale-out” system design. Scale-out systems are generally
characterized by the use of redundant commodity components. Managed workloads
are constructed so the system can gracefully tolerate component failures. Capacity
is increased by adding hardware without requiring new configuration state or system
software.

While scale-out design is well understood for building compute services from com-
modity end-hosts, it is a relatively new way to build out network capacity while
retaining a rich service model to applications. Researches [12, 32] have explained
clearly how traditional data center networks stood in the way of supporting highly
dynamic applications, scale-out bandwidth, and the commodity cost model such sys-
tems are suited for.

Due to these limitations, the research community, and the largest data center oper-
ators – those with the deepest pockets – innovate fast, moving towards new schemes
that allow them to construct systems with the requisite properties for their operations.
While many schemes remain proprietary and unpublished, some notable data center
network designs have been described. VL2 [12] uses Valiant load balancing [24, 53]
and IP-in-IP encapsulation to spread traffic over a network of unmodified switches.
On the other hand, PortLand [32] modifies the switches to route based on a pseudo-
MAC header, and aims to eliminate switch configuration. Other researchers have
proposed Monsoon [14] and FatTree [1]; Trill [51] and DCE [8] have been proposed
as standards.

Each proposal holds a unique point in the design space, and subtle differences can
have large ramifications on cost and performance, leading research questions that how
we can evaluate which scheme is best for a given data center (or service) and how

8

we can build on the work of others, modifying an existing scheme to suit particular
needs.

2.3 Summary

In this chapter, we have described the current practices to design packet forward-
ing hardware and data center networking. All the traditional approaches to building
packet forwarding equipments have limitations to simultaneously achieve flexibility
and low cost/performance. In data center networking, due to use of home-brewed
solutions data centers suffer inability to compare solutions and to adopt foreign solu-
tions.

In the next chapter, we present software defined forwarding (SDF) and explain how
SDF enables packet forwarding equipments both high flexibility and low cost/perfor-
mance, leaving our solution to data center networking for Chapter 6.

9

Chapter 3

Software Defined Forwarding

As described in Chapter 2, current design approaches to building switches do not
simultaneously guarantee flexibility in forwarding algorithms and high performance-
to-cost rate. In this chapter, we explore a new design point, called “Software Defined
Forwarding (SDF)”, in the design spectrum. SDF is a hybrid approach that attempts
to combine the high speed and low cost of hardware with the superior flexibility of
software. In SDF, all the forwarding decisions are first made in software and then
mimicked by hardware by caching them in a classification engine.

In the rest of the chapter, we first clarify the goals and limitations of SDF, then
present its design details, and finally, describe our prototypes in software and hard-
ware. In the following Chapter 4 and 5, we illustrate how a wide range of forwarding
behaviors can be implemented on top of SDF and present its performance study
results, respectively.

3.1 Goals, Limitations, and Applicability

Before delving into design details and performance results, we first articulate
SDF’s goals, limitations and applicability.

3.1.1 Goals

The immediate goal of the SDF approach is to build switches with more forward-
ing flexibility by having all forwarding decisions determined completely in software
and then imitated by hardware. This will allow networks to deploy new forwarding
algorithms (such as to support a new protocol) without changing their networking
hardware. In fact, as we discuss later, this will enable networks to run several different
forwarding algorithms in parallel on the same switch.

10

The longer term goal is to create an environment where both hardware and software
designers can independently focus on their respective tasks. Hardware designers can
focus on building “decision caches” with higher speeds, greater fanouts, larger mem-
ory, lower power and lower cost. Similarly, software designers can address emerging
networking requirements by implementing new forwarding algorithms against a sim-
ple and fixed hardware interface. This strict separation of concerns should engender
rapid progress in both hardware and software.

3.1.2 Limitations

We reiterate that the SDF approach only supports standard header-based forward-
ing and does not apply to more complex networking behaviors such as deep-packet
inspection or arbitrary packet modification (like encryption). More specifically, the
forwarding decisions can depend only on the header of the incoming packet (where
the definition of “header” is the first n bits of the packet, where n is flexible) and on
the internal state of the forwarding logic implementation. The output packets can
differ from the incoming packet in the content (and the length) of the header, but this
new header content can not depend on any forwarding logic state modified per packet
(that is, for all packets matching a particular entry, the headers must be modified in
the same way). Thus, the model does not include, for example, en/de-capsulation,
en/de-cryption, nor complex modifications to the packet payload. Such operations
requiring unique modifications per packet are handled outside the model, by a logical
output port to which the packet is forwarded to. We note this is consistent with the
model commonly used in routers and switches of using logical interfaces for tunneling
(e.g., IPsec or GRE).

While the packet processing model is limited, we have been surprised by how
broadly it applies to traditional and newly proposed forwarding paradigms. For exam-
ple, the SDF approach can implement aggregation, basic tagging, address overwrit-
ing (e.g., VLAN, or layered addressing), dynamic learning and filtering, all without
changes to the hardware forwarding model.

3.1.3 Applicability

The SDF approach is most relevant in settings that need a high degree of flexibility.
Research is an obvious arena where it would be important to deploy new forward-
ing algorithms, running at high speeds on commercial-grade equipment, merely by
rewriting the forwarding software. In addition, the ability to run several forwarding
algorithms in parallel, as is envisioned in GENI and other networking testbeds, would
be very valuable.

11

However, it is an open question whether production networks need this degree of
flexibility. Some have predicted that the future of networking lies in the ability to vir-
tualize low-level packet transport, in which case this flexibility would be crucial. But
it is also true that current forwarding algorithms evolve slowly, which suggests that
perhaps flexibility is not relevant to production networks. The question is whether
this slow evolution reflects the inability to evolve more quickly or the lack of a need
to. We don’t pretend to know the answer.

Since SDF, as described so far, relies on “decision-caching”, it would be natural to
assume that its applicability is limited to regimes where caching is effective. However,
as we describe later, SDF can also be run in a “proactive” mode, where all software
forwarding decisions are made proactively and stored in hardware. In this case, SDF
functions at hardware speeds.

There are some cases where, in order to reduce the state required to cache decisions,
it would be advantageous to augment the hardware with a few basic computational
primitives — such as decrement by 1, compute a checksum, or compute a hash — that
can be applied to a specified set of bits. These primitives are trivial to implement in
hardware, and would only be required in cases where performance was critical (e.g.,
Internet backbone). We discuss this more fully in Chapter 4.

3.2 Overview

In this section we present a high-level overview of our approach, leaving design
details for Section 3.3 and a description of our implementation for Section 3.4. Below
we first discuss the system functionality and components, then walk through the
various steps in forwarding a packet.

3.2.1 System Functionality and Components

System Software

Forwarding Application

Forwarding Hardware

Figure 3.1: High-level view of software defined forwarding.

12

Figure 3.1 provides a high-level view of the proposed forwarding architecture: it
contains three components: the system software, the forwarding hardware, and the
forwarding software. In SDF, a forwarding device accepts an (in port, in packet)
pair, and then outputs one or more (out port, out packet) pairs. Packets can take
one of two paths through the system. A packet matching an entry in the hardware
is immediately forwarded out the appropriate port(s). A received packet without a
matching entry in the hardware is passed to the forwarding application, which makes
a forwarding decision and sends the packet out. The system software then stores this
decision in the hardware.

The hardware performs packet header lookup, header rewriting, and forwarding
(passing the packet from the input port to the appropriate output port). In our
implementation, a central component of the hardware is a wide TCAM, which per-
forms packet classification based on the packet header (e.g., the first 576 bits of the
packet); and, if a match is found, the hardware sends the packet to the specified
output port(s) after modifying the packet headers. The hardware also maintains hit
counters for TCAM entries but it does not manage the entries without instructions
from the system software; in particular, it does not implement inactivity timeouts of
any sort.

Forwarding logic (in the form of a forwarding application) is built on the API
provided by the system software. The system software is responsible for translating
the forwarding application’s decisions into entries in the packet classification engine (a
TCAM in our design); it is also responsible for revoking these entries when the relevant
internal forwarding application state changes. More specifically, for a forwarding
decision the system records a) the incoming port, b) the relevant header bits of the
incoming packet (i.e., which header bit should match and what the bit values should
be in order for the decision to apply), c) the outgoing ports, and d) the associated
outgoing packet headers. It also records what forwarding application internal state
the forwarding decision was based on, so it can revoke the classification engine entry
corresponding to the decision when the internal state changes. For example, with
standard L3 forwarding, the forwarding decision depends on the matching (software)
FIB entry, and if that changes the TCAM entry would be revoked.

The forwarding application is written in a high-level language such as C/C++,
Java, or even Python. Our goal is to provide a high-level programming model which
approaches that of a pure software router. However, due to the difficulty in inferring
state dependencies precisely and efficiently, in our current implementation the for-
warding application has the responsibility to explicitly mark which header bits and
internal state it relied on in a forwarding decision. We discuss the API in more detail
in Section 3.3.

13

3.2.2 Forwarding Steps

We now step through a simplified IP forwarding decision to illustrate hardware state
setup and revocation. For clarity we ignore TTL decrement and header checksum
recomputation in this example (and discuss them in Cahpter 4).

Step 1. A packet is received on portin.

Step 2. Packet classification hardware checks the incoming port and the packet header
against its lookup table. Assuming there is no matching entry, the hardware
forwards the packet to the system software which passes it on to the forward-
ing application.

Step 3. The application checks for the Ethernet type in the packet and reads the
destination IP address.

Step 4. The application looks into its software-FIB and finds a matching entry.

Step 5. The application reads the destination MAC address from the ARP cache and
overwrites the destination MAC address in the packet header with it.

Step 6. The forwarding application sends the packet out of portout.

Step 7. The system software intercepts the outgoing packet, saving the new packet
header with any changes it may have.

Step 8. The system software creates a hardware packet classification entry which
matches on the Ethernet type, and the destination IP address. It creates and
associates with the entry an action of overwriting the header with the new
header (which has a modified destination MAC), and the action of sending
the packet out of portout.

Step 9. The system software also maintains a mapping from the dependent software-
FIB and ARP entries to the new hardware forwarding entry.

Step 10. Assuming a second packet is received to the same destination IP address
(whether or not from the same transport connection), the hardware will
match on the Ethernet type and destination IP address, overwrite the header
with the correct destination MAC, and forward it out of port1.

Step 11. If the FIB or ARP entries are modified (e.g., due to a routing update or
timeout), the system software removes the associated forwarding entry from
the hardware.

14

3.2.3 Sound Familiar?

Superficially, SDF seems much like flow or route caching, a technique popular a
decade ago (see [22] for a recent revival of the concept). Roughly, flow caching expects
the software to use the first packet of every network flow to make a complex forwarding
decision (such as IP lookup using LPM) after which the flow is added to a flow cache.
The cache entry is only valid for the duration of that flow. However, due to the small
average flow sizes (e.g., 10 packets), hit rates tend not to be sufficient for overcoming
the difference between hardware and software processing speeds (i.e., the switch is
limited by the rate at which software can forward, because it must handle roughly
one out of every ten packets). Our approach differs from the classic flow and route
caching in three essential ways.

First, we do not couple hardware state to network flows, but to forwarding decisions
(which usually apply to many flows and do not time out, but instead are explicitly re-
voked as needed). Thus, the forwarding hardware experiences vastly lower miss rates,
similar to other soft state commonly found in networks today such as L2 learning ta-
bles and ARP caches. We explore the performance of decision caching in Chapter 5.

Second, flow caching is generally tied to a particular forwarding mechanism (tradi-
tionally LPM) and was not designed to increase the flexibility of the system, merely to
reduce state requirements. In contrast, our approach is intended to support arbitrary
forwarding logic over arbitrary headers with the same simple hardware.

Finally, the SDF approach is not limited to reactively populating the hardware for-
warding state after a cache miss, as is done in route/flow caching. As we describe later
in Section 3.3, our proposed implementation supports proactively pushing decisions
into the hardware before any cache miss occurs. Doing so avoids all caching-related
performance issues and allows the system to forward at hardware speeds. Thus, while
we believe SDF is capable of running reactively in many production deployment en-
vironments, it can also be used in environments where caching is not applicable.

It is also important at this point to clarify the relationship between this work and
ongoing work on OpenFlow [28] and NOX [15].1 The goal of OpenFlow is to provide a
low-level interface to the hardware that is sufficiently general for network innovation.
The goal of NOX is to build a centralized network operating system on top of this
hardware interface. SDF lies somewhere in between.

1This discussion also applies to Orphal [29]; there are important technical differences between
Orphal and OpenFlow but they are not relevant for our discussion here.

15

In contrast to OpenFlow, we are not focusing on the definition of the hardware
interface, but instead are investigating how to build the hardware and software for
a router-like system in which the forwarding logic is insulated from the hardware.
This requires us to focus on a high-level API instead of just the low-level hardware
interface. We envision OpenFlow as a natural candidate for the underlying hardware
interface to our higher-layer software forwarding layer, but don’t limit ourselves to
that choice since our point is more general; forwarding applications should be written
to the SDF interface, and in turn SDF could use OpenFlow as an interface to manage
the switch hardware, or could use the chip vendors native SDK.

In contrast to the NOX, we are not advocating a centralized management paradigm,
but only whether single-box routers and switches could be built in a far more flexible
manner.2 To this end, we provide trace-based performance numbers of this approach,
which can be seen as evidence that an OpenFlow-like hardware interface provides
sufficient performance for a variety of today’s forwarding tasks.

3.3 System Design

In this section we first describe the API we designed while implementing our system.
This API reflects lessons learned while implementing a range of protocols (described
in Chapter 4), but it is only one example of many possible software interfaces. We
then discuss the system software design, followed by an overview of the hardware
design.

3.3.1 API

Basic operations

For basic packet sending and receiving, our API is modeled around a standard
datagram socket interface. To gain access to traffic, a forwarding application invokes
listen() while providing a callback to be signaled on each new received packet for
which there is no matching hardware entry and which is ready for the application
to retrieve using receive(). On packet receipt, the forwarding application can then
process the packet internally (e.g., if the packet is control traffic), or it can make a
forwarding decision, modify the packet, and send it out of one or more ports through
a call to send().

2The NOX approach is sometimes referred to as Software-Defined Networking; our use of the
term Software-Defined Forwarding is intended to emphasize this distinction between our narrow
focus on forwarding in a single box, and NOX’s emphasis on global network abstractions.

16

Function signature Description

C
o
re

listen(callback) Registers a callback to be signaled on every
packet ready to be received.

receive() Fetches a packet and returns (in port, in pkt).
send(out pkt, final) Sends a packet. If final is true, the system

knows the decision is complete.

In
P
k
t

mark(in pkt, bit pos, len) Marks packet header bits as used in the decision.
mark ingress(in port) Marks the ingress port as used in the decision.
unmark(in pkt, bit pos, len) Unmarks matching bit markings.
clear(in pkt) Cancels all earlier bit markings.
new in pkt(in port) Prepares a new synthetic inbound packet. Used

in proactive caching.

O
u
tP

k
t

new out pkt(in pkt) Prepares a new outbound packet. If it is to be
forwarded and not self-generated, a reference to
a received packet is required and used to copy
the packet contents.

register(out pkt, state id) Registers an application state used in a forward-
ing decision resulting in the outbound packet.

add dest(out pkt, port) Adds a destination port to send the packet to.
clear(out pkt) Cancels all earlier state identifiers bindings, bit

modifications, and port additions.

C
o
n
tr
o
l

new state id() Constructs a state identifier to store into appli-
cation state data structures.

removed(state id) Informs system of application state change.
get ports() Returns a list of port identifiers the system has.
create port(type) &

remove port(id)

Creates/removes a virtual port. Type defines
the type of tunneling/encryption (possibly im-
plemented in hardware) to use.

set property(port id, key, val) Sets a port property. (e.g., configuring encryp-
tion in IPSec tunnel ports).

get property(port id, key) Retrieves a current port property value.
get stats(port id) Reads the latest port statistics. Format of

statistics is port type specific.

Table 3.1: Forwarding API. The core calls are for receiving/sending packets, “InPkt”
and “OutPkt” are for packet operations, while “Control” is for control plane parts of
the application.

17

In addition to basic sending and receiving, the API provides methods for the for-
warding software to declare the state dependencies of the forwarding decision. This
includes methods for annotating which header bits and what application state the
decision relied on, and signaling when the application state has changed (to induce a
revocation of any cached state). Modifications to packets are mimicked by the system
software by simply copying the modified outgoing header bits of each sent packet and
forcing an overwrite of them for every match. Because these additional methods com-
prise the portion of the API which constrains the programmer beyond the traditional
software model, we describe them in more detail below. For a complete summary of
the API, see Table 3.1.

Annotating dependencies

It is difficult to build a system software layer that can automatically – without
any help from the developer – infer header and state dependencies without incurring
exorbitant runtime overheads. Rather than aiming at full transparency, we chose
instead to put the onus on the programmer to explicitly mark headers and state used
in forwarding decisions.

This is done through so-called state identifiers. State identifiers are used to track
application state that is used to make forwarding decisions. The canonical example
of such state is the routing table. For each uniquely identifiable component of system
state used for forwarding decisions, such as a RIB entry, the forwarding application
must request and associate a new state identifier from the API.

This identifier is used to signal state changes to the system. For example, when
removing an entry from an internal data structure representing the forwarding table,
the application is responsible for calling the removed() call on the associated state
identifier. This will trigger the system to revoke all hardware entries associated with
that particular entry. If instead of deleting the entry, the application modifies it,
the application still must obtain a new identifier to replace the old one which is now
invalid.

While making a forwarding decision for a received packet, the application is re-
quired to register() any state it uses in a decision; since the state identifiers are
conveniently stored in the data structures, the application can register() the ap-
plication state used into the outbound packet (abstraction) while traversing the ap-
plication data structures and making the forwarding decision. Once the application
then sends the packet, the system records the state identifiers related to the decision
to be cached. If the application subsequently removes the data structure entry (and
informs the API about it), the system can identify the cached decisions to remove
from hardware, and hence, maintain the correctness of the forwarding function.

18

Similarly to annotating state, in order to provide bit-level dependency information
for the packet header, the application uses the mark() method to mark the header bits
it used in making a forwarding decision on a given packet. For headers in which the
forwarding application marked the bits, the system software will generate a hardware
classification entry whose bits matched those of of the packet. All other header bits
are set to “don’t care”.

The system software can infer packet header modifications by observing the packets
as they are sent by the application. This works so long as for each incoming packet,
the resulting outgoing packets are modifications of the original packet. Unfortunately,
this is not always the case. In certain protocols, incoming packets require intermediate
packets to be sent before forwarding decisions are made. For example, if the MAC
address is not cached for a given next hop IP address, the packet is queued and an
ARP packet is sent instead. To aid in such scenarios, our API considers the special
case of no packet header bits nor state dependencies marked as a sign not to cache
anything. Hence, the application can respond to the ARP request by itself.

Finally, the forwarding application must send the packet to one or more destination
ports. As with standard forwarding software, ports are represented via a program-
matic abstraction. When a forwarding application sends a packet out of a port,
the system software uses the information annotated by the application during the
forwarding decision and sets up a hardware entry correspondingly.

Prioritizing control protocols

Networking forwarding software can often be divided into a control plane and a
data plane. Under this model, the data plane is responsible for performing packet
lookups against one or more data structures which are maintained by the control
plane. The control plane maintains the data structure(s) by sending control traffic
between participating nodes.

In our approach both standard network traffic and control traffic share the (limited)
bandwidth between the hardware and the CPU. Further, on failure conditions such
as a link failure, many hardware entries may be invalidated causing a flood of packets
to the CPU. This has the potential of starving out the control traffic when it is most
needed. To prevent such cases, the API provides a method for setting up entries in
hardware that have prioritized service to the CPU. Thus, during failure conditions
such as routing instabilities, the control traffic is given precedence allowing the system
to converge quickly.

The entries for control traffic have the same expressibility as other hardware entries
(they can be defined over any header field or incoming port). However, instead of

19

sending to an egress port, the forwarding application can send the control traffic
packets to a logical “control” port, which represents ingress queues given weighted
priority compared to the queue reserved for sending data plane packets from hardware
to CPU.

The method for identifying control traffic is identical to other forwarding operations.
If the data plane makes a decision to send a packet to the logical “control” port, a
corresponding entry to the hardware is put in place by the system software. Generally
these entries are maintained in hardware for the lifetime of the forwarding application.

Proactive decisions

In the reactive mode, the API operates in pull mode; whenever the system soft-
ware receives a packet from the hardware requiring a forwarding decision, it asks the
application for the decision. While this allows the application to remain oblivious to
the decision replacement process, the simplicity comes with a cost; a new decision
about a revoked decision can only be made when a new packet requiring the old
entry arrives. This causes some additional forwarding delay for this first packet, as
it takes some time for the decision to be made and the entry installed, but for some
applications this is of little concern. However, if the stream of packets that would
use this revoked entry exceeds the capacity of the bus and/or the system CPU, the
system has to drop packets until the new entry has been inserted into hardware.

For these demanding environments and applications, the API provides a mecha-
nism to proactively push replacement decision(s) at the same time the corresponding
hardware entries are removed. This is done by having the application create an ap-
propriate synthetic packet(s) whenever an entry is revoked, so a new entry is installed
at the same time the old one is revoked. The system software does not forward these
synthetic packets, it only uses them to construct and enqueue update(s) to hardware
entries.

3.3.2 System Software

The system software is responsible for implementing and exposing the program-
matic API used by the forwarding application, and directly managing the hardware.
While designing the API, we tried to strike a balance between relatively unconstrained
program design, and the ability to efficiently implement the system software. The
API itself imposes few restrictions on how the system software realizes the required
functionality for applications.

20

Language support

One can consider the proposed API as the low-level “Sockets API” for router-
s/switches; in a manner similar to the Sockets API, how the functionality is exposed
for applications depends on the programming language and development environ-
ment in question. Moreover, how the API relates to other interfaces provided for the
forwarding applications also depends on the chosen language and environment. For
example, for C/C++ applications, it is natural to align our API next to the Sockets
API and provide it as a part of the basic system libraries, while for applications writ-
ten in Java, Python, or C#, the API would be written using the design patterns of
the object-oriented networking APIs.

Application portability

From an application perspective, the system software implementation is irrelevant
as long as the application’s language is supported and the different API implementa-
tions for the same language remain binary compatible. In Section 3.4, we discuss our
implementation in which the system software is implemented entirely in user-space
providing both a C and Python interface, both backed by an FPGA-based hardware
forwarding plane.

3.3.3 Hardware

Figure 3.2: A distributed forwarding architecture.

At a component-level, the idealized hardware design is the standard high-speed,
high-fanout distributed forwarding architecture (as shown in Figure 3.2). A system-
level CPU manages the shared state between CPUs local to each line card. The
line card-local CPUs directly manage a packet classification engine, which is used by
the high-speed packet processing logic to perform the lookups. The line cards also
contain high-speed random access memory to store the forwarding actions; the packet

21

processing logic uses the random access memory to retrieve the required modifications
for packets, as well as to determine the destination port(s) to forward the packet to.
All line cards are interconnected via a high-speed backplane.

A less scalable version can be implemented in a manner similar to commodity
switches and routers available today. In such an instantiation, a control CPU controls
a single hardware forwarding engine (consisting of classification engine and high-
speed packet processing logic). This is the approach we took with our prototype
implementation which we describe in Section 3.4.

In these designs, the feasibility and implications of performing packet classifications
using wide search masks are most essential. While our design does not dictate a
particular packet classification component, for the following discussion we consider
the use of TCAMs [47, 52] since they are widely used in networking hardware.3

The largest TCAMs on the market today are 36Mbits in size and have an entry
with of 288 or 576 bits. Assuming standard protocols, a 576 bit entry is sufficient for
lookups covering the Ethernet header, the IP header (without options), as well as the
TCP/UDP headers, while 288 bits is sufficient for both the Ethernet and IP headers.
Given these wide entries, the maximum number of rules a TCAM chip can store is
either 128k or 64k, respectively for 288 and 576 bit entries. In addition, TCAMs
are designed to support stacked use in backs of 4 or 8, allowing for the (expensive)
possibility of building a forwarding engine which contains 512K, 576-bit entries.

While TCAMs cannot match header values against 576 bit wide entries in a single
clock cycle, they still manage extremely high throughput. For example, to match 576
bits, a modern TCAM typically requires 4 clock cycles. Therefore, at 200MHz a chip
which sells for roughly $300 can support 40Gbps of bandwidth. A TCAM with 288
bit wide entries uses less cycles for lookups, and therefore, can sustain 80Gbps. Given
our design, if the additional hardware logic does not introduce additional overhead, a
wide TCAM (576 bits) can support four 10Gbps Ethernet ports, or a more standard
configuration of 24 ports of gigabit Ethernet.

The main complexity of the system software is the optimal management of entries
in TCAMs and forwarding actions in SRAMs on line cards; i.e., keeping the cards
busy forwarding without dedicating extensive periods of time to updating the entries
in TCAMs and in SRAMs. As long as the TCAM entries are non-conflicting, the
system software can implement a simple cache replacement policy and remove the
least used entries from a TCAM and SRAM as necessary; this is possible since as

3Some of the information here are gathered from private discussions with a TCAM vendor. Public
information regarding commercially available TCAMs are available at [19, 31].

22

the order of non-conflicting TCAM entries doesn’t matter. If the number of required
TCAM entries is less than the number of TCAM entries available in total, the task
is even simpler. The maximum update speed is determined by bandwidth available
on CPU bus towards line card(s) (and by the CPU itself).

A commonly raised concern with the use of TCAMs (besides price) is power con-
sumption. It is true that TCAMs consume more power and are more expensive than
either DRAM or SRAM, however a single TCAM can sustain considerable traffic
bandwidth. When compared to a commodity processor (which has been argued as a
flexible alternative to standard switching hardware [3, 11]), TCAM power use is far
more modest. For instance, in practice a TCAM can consume up to 30 watts, which
is significantly less than the typical power consumption of a Pentium 4 at 2.8GHz
rated at 68 watts. Certainly when measured in terms of power consumed per packet
forwarded, TCAMs are far more attractive than commodity processors.

3.4 Implementation

We have implemented a prototype system to validate the design, as well as to bet-
ter understand the implications of our design decisions. We have implemented the
API with two language bindings: C/C++ and Python. We choose to support the
latter because we believe it emphasizes the flexibility of the approach. In particu-
lar, it demonstrates that we can use a (very) high-level language for implementing
forwarding algorithms and still achieve wire forwarding speeds. Indeed, even though
Python is a scripting language and performs roughly 20 times slower than an equiv-
alent C/C++ program, we were able to get hit rates which allowed us to take full
advantage of the hardware datapath.

The Python forwarding applications run on a Python interpreter embedded within
a C++ system software implementation. The system software manages two “line
cards” we implemented (for now, we do not support their simultaneous use): one
running as a process in user-space and written in C/C++ (and running in the same
host as the system software, connecting to it over TCP); and one implemented as
a NetFPGA [30] device. The user-space line card uses the network interfaces of the
host it runs on; its implementation is straightforward and not of independent interest.
We describe the NetFPGA implementation below.

3.4.1 NetFPGA prototype

We have implemented a NetFPGA based hardware “line card” with a simulated
TCAM with thirty-two 512-bit wide matching entries and four 1Gbps Ethernet ports.

23

Figure 3.3: Packet processing pipeline of the NetFPGA prototype. User data path
refers to custom logic on the FPGA.

Figure 3.3 depicts the packet processing pipeline implemented in our NetFPGA pro-
totype. The pipeline is organized in five stages. The first stage, the Rx Queues, reads
packets from the CPU or from the Ethernet. The Input Arbiter stage selects which
of the Rx Queues to service, and pushes the packet to the Output Port Lookup mod-
ule. The Output Port Lookup module looks for matches and does any replacements
required on the packet. The packet is then stored in the Output Queues module until
the output port is ready to receive it. The Tx Queues are responsible for delivering
the packet from the Output Queues to the CPU or to the Ethernet.

As a packet arrives into the Output Port Lookup module it gets stored in an input
FIFO and at the same time is sent to a “rule selector” that creates 64-bit words to
match against. The module then reads the rule from the memory and compares it to
the output of the rule selector using the mask read from the memory. Each packet
match requires nine 64-bit rule words to be matched. The first word contains the
input port and the other eight are packet data words. To simplify the matching, the
memory is organized in 512 byte blocks. Entries are written vertically into memory
so that the first memory block contains the first rule word (64 bits) of both match
data and match mask, of all 32 entries. Similarly, the subsequent memory blocks
contain the remaining eight rule words. Therefore, as the words read from the packet
(header) arrive from the rule selector, they can be matched a block-by-block to all
rule words. However, we note this simple implementation doesn’t scale to larger entry
numbers well; as the number of entries grows, the number of required clock cycles to
match a packet increases accordingly.

24

The memory is also used to store the lookup results: the replacement data, the
replacement mask, and the hit packet and byte counters. The entries are written
horizontally such that each memory word contains all the data for a single match.
When a match is found, the Output Port Lookup module reads the packet out of the
input FIFO, and uses the result from the match to replace the first 64 bytes (512
bits) of the packet headers as required. If a match is not found, the module reads the
packet from the input FIFO and sends it to the CPU over PCI.

3.4.2 Microbenchmarks.

Table 3.2 contains latency and throughput rates for cache entry insertion and dele-
tion for our NetFPGA prototype. The entry insertion is far slower because it requires
writing the full lookup entry, the header modifications, and it requires overwriting
the packet and byte counts. Deletion on the other hand simply overwrites the enable
bit for the entry.

Overhead Latency Throughput

Entry insert 300 bytes 55.5 ms 18,018/s

Entry delete 4 bytes 740 ns 1,351,351/s

Table 3.2: Cache insertion/deletion performance of the NetFPGA prototype.

We also performed throughput testing for the data path using a hardware packet
generator which can perform line speed testing of various packet sizes (Table 3.3).
Tests were performed with full line rate on all four ports. Results include the Ethernet
CRC, the inter-packet gap, and the packet preamble.

Packet size (bytes) 64 128 512 1500

Throughput (Gbps) 3.8 3.8 3.8 3.8

Table 3.3: Throughput of the NetFPGA prototype.

3.5 Summary

In this chapter, we have presented SDF architecture, core API and prototypes
in both software and NetFPGA hardware. SDF is a hybrid approach combining the
superior flexibility of software and the high speed and low cost of hardware. In SDF,

25

all the forwarding decisions are first determined by software and then cached in hard-
ware to expedite forwarding similar packets. SDF API is designed after the Socket
API and allows packet manipulation and internal state tagging. Our prototypes sup-
port the API in both C/C++ and Python. The following chapter explores a wide
spectrum of forwarding supported by SDF.

26

Chapter 4

SDF Use Cases

The goal of SDF is to allow software to define a wide range of forwarding behaviors,
all of which can then be accelerated by the same underlying hardware. To illustrate
the kinds of forwarding that can be supported, this chapter describes several use
cases.

4.1 Accelerating Existing Software Routers

We first briefly explain how existing software routers such as XORP [18] and
Quagga [36] can integrate with SDF. Software routers typically consist of a con-
trol plane (which implements a set of routing/switching protocols) that exports the
resulting FIB to a forwarding plane such as XORP’s Forwarding Engine Abstraction
(FEA). To port a software router to SDF, it is sufficient to provide the control plane
with a forwarding plane implementation built on the APIs SDF provides (which we
describe in Section 3.3). This SDF-based forwarding plane implementation stores the
FIB it receives from the control plane and makes forwarding decisions when invoked
by the SDF system software (Figure 4.1). As long as the software router has a well-
defined forwarding engine abstraction, implementing the forwarding engine based on
SDF’s APIs is easy.

To demonstrate the simplicity of the task, we have modified XORP’s FEA to push
its FIB entries over TCP to a Python forwarding application built on top of the
SDF APIs. In our prototype implementation, adding the required TCP integration
mostly involved copy-pasting from the existing FEA source code, while the forwarding
application required only 220 lines of Python. Thus, we think SDF offers an extremely
easy path to provide hardware acceleration to existing software routers.

27

Routing
Protocols Suite

(XORP, ...)

 Forwarding plane
 (as a Forwarding App)

Pushing FIB

Forwarding Hardware
(Packet classification engine)

System Software

Proposed Architecture

Invoking for
cache misses

FIB in
DRAM

Control-plane
activities

Data
Pkts

Data
Pkts

Figure 4.1: Supporting an existing software router by a simple forwarding application
implementing the forwarding engine abstraction of the software router.

4.2 Virtualization

There is a growing research literature (see [2, 5, 39] for a small sampling) on network
virtualization, which is the ability to run separate network architectures in parallel
each within their own “slice” of the network. These slices can implement their own
routing and forwarding algorithms, and essentially operate as independent networks.1

To create slices, the network traffic must be partitioned in some way so that it is clear
which packets belong to which slices. This demultiplexing criterion can be defined in
terms of input ports or VLANs or other fields in the packet header.

The key challenge in network virtualization is to support separate forwarding algo-
rithms on the same hardware infrastructure. Note that it is simple to do so in software
by having separate forwarding processes. When a packet arrives at a software switch,
it is sent to the appropriate forwarding process based on the demultiplexing criterion,
and that process then makes the forwarding decision for that packet.

1We are using the term network virtualization as it is primarily used in the research community.
In the commercial world, network virtualization does not involve different forwarding algorithms but
is mostly focused on sharing physical infrastructure, managing logical link topology, and supporting
virtual server mobility.

28

Initial attempts at producing the same virtualization behavior in hardware were
cumbersome and expensive, involving separate network processors for each slice. This
is because traditional hardware-based packet forwarding embeds the forwarding logic
directly in the hardware, and it is difficult to implement several different forwarding
logics simultaneously in the same ASIC.

However, because SDF uses software for all forwarding decisions, and these deci-
sions are merely imitated in hardware, supporting multiple forwarding algorithms is
relatively straightforward (as long as each forwarding algorithm individually is com-
patible with the SDF forwarding model). This is because the ability to imitate a
forwarding decision based on a packet header is architecture-neutral. Also, the de-
multiplexing step is based on either the input port or the packet header, and thus
demultiplexing is codified in the resulting decision entry in the hardware. That is,
SDF treats the demultiplexing decision as part of the overall forwarding decision.2

To do this in a manner in which each forwarding application gets its fair share of
system resources, the system software should segment the classification engine (e.g.,
TCAM) between each of the applications. This requires either the applications be
trusted to provide a unique segment ID, or for the system software to be able to
determine which application made a particular forwarding decision. Of course this
is only a first order protection measure as errant applications could still consume
disproportionate amounts of CPU or control bandwidth. Protecting against such
cases requires isolation measures, which are orthogonal to our proposal and well
understood by the research community (see e.g., [34]).

Figure 4.2 depicts our virtualization prototype based on Linux-VServer [26]. Each
forwarding application runs in its own slice, on top of a local copy of system software.
These system software instances in the slices are then connected to the master sys-
tem software instance in the “root” slice, which maintains a table of demultiplexing
keys (e.g., VLAN IDs) to uniquely identify the destination slice for incoming packets
requiring a forwarding decision. The master system software is also responsible for
ensuring fair resource allocation. In our prototype, we assume administrator config-
ures the slices, their demultiplexing key and resource allocation a priori. We have
used our prototype to run several different forwarding algorithms simultaneously, in-
cluding XORP, Chord [49], i3 [48], and VL2 [12], and have achieved hardware speeds
and good isolation.

2This virtualization approach is similar to FlowVisor (in the submission of SIGCOMM ’2010):
these two pieces of work were done simultaneously. The FlowVisor work explores the applications of
virtualization while the study here focuses on the software API and merely identifies virtualization
as a natural and straightforward byproduct of software-defined networking.

29

Forwarding Hardware

Master System
Software

Pkts Pkts

(De)Muxing

System Software

Forwarding
Application

Slice 1

System Software

Forwarding
Application

Slice 2

Resource Allocation

Virtualization platform

System Software

Forwarding
Application

Slice N

Slices

Figure 4.2: Supporting network virtualization in SDF.

Network virtualization does not impose hard requirements on the platform virtual-
ization; we only assume that a) the master system software runs somewhere, isolated
from the forwarding slices, within the physical host, and b) there is a communication
channel between the master system software and the system software running virtu-
alized forwarding applications. Therefore, depending on the platform virtualization
approach, the master system software may run as a Unix process in a special man-
agement virtual machine or even within the virtual machine monitor itself. Similarly,
the interconnection between the master system software and slices can use the com-
munication mechanism most suitable to the chosen platform virtualization solution.

4.3 Implementing Forwarding Algorithms

In this section, we explore the suitability of our API for implementing various
protocols. We describe the implementations of two standard protocols (L2 learning
and IP forwarding), as well as more recent research proposals (SEATTLE [23], i3,
Chord). All implementations were built in and tested on our prototype described in
Section 3.4.

4.3.1 L2 Learning Switch

An L2 learning switch operates by maintaining a mapping between MAC addresses
and the physical ports on which they can be reached. These mappings are “learned”
by watching the source addresses of packets as they traverse the forwarding software.

30

Learned addresses expire after some period of inactivity, and each entry is updated
when the switch receives a frame with the same source address through a different
port (e.g., during host movement). Incoming packets for which there is no learned
MAC address are flooded.

When a packet arrives and there is a mapping for its destination MAC address, an
entry is created in the TCAM with the destination MAC address field marked as a
dependency. We also mark the incoming port as a dependency to ensure that we can
see packets from other hosts on the network. If the switch does not find a mapping,
the cached forwarding decision is simply to broadcast the packet. In addition, to
revoke the entry when the mapping changes, we annotate the forwarding decision
with a particular state identifier associated to the mapping entry.

4.3.2 IPv4 and IPv6 Forwarding

IP forwarding proved to be a challenging forwarding algorithm to support on our
platform. The challenges stem from both the contents of the IP header as well as
from the complicated lookup algorithm involved, LPM.

To forward IPv6 packets, the forwarding software has to inspect the destination
address and modify the TTL. Thus, the dependencies are the address and TTL, and
the rewritten packet header modifies the TTL. IPv4 is more complicated, because
in addition the forwarding software must verify the IP header checksum and then
recompute the checksum after the TTL has been modified – and therefore, it needs to
mark the entire packet header as a dependency (because the entire packet header is
involved in the header checksum recomputation). The obvious remedy is to support
checksumming and TTL decrementing in hardware, as is currently done. This can be
done by providing some basic arithmetic primitives (decrementing, checksum, hash,
etc.) that can be applied to specified sets of bits (i.e., the hardware does not have to
understand where the TTL field is). The SDF API could be extended with these ad-
ditional operation-specific calls to convey enough information to the system software
from the forwarding application to imitate these operations in hardware, assuming
the forwarding hardware supports them.

LPM as a lookup algorithm is challenging for our API due to its implicit use of a
conflict resolution scheme (longest match) for deciding the correct forwarding action.
In our Python implementation of a simplified IPv4 router, the router pre-loads a
FIB (from a RIB obtained from RouteViews [38]) and builds a trie. When it is
invoked by cache misses, it looks up the trie to figure out the next hop address. Since
this next-hop result is valid until the FIB changes again for that entry, the software
marks the destination IP address and TTL, and associates the sent packet with the

31

corresponding “IP-to-next hop” mapping entry in the FIB data structure. When
updating the FIB, the software creates a new trie and checks whether the new trie
yields the same next hop for each IP address in the old trie. If the result differs for
an address, the software revokes the corresponding old entry and constructs a new
one, otherwise using the old entry in the new trie. To maintain the correctness of the
forwarding, the router implementation calls revoke() for all FIB entries sharing the
same prefix as the newly added prefix.

In our approach, the software is oblivious to the existence of the TCAM.3 Further,
because the software is deterministically making a forwarding decision over the packet
headers, and the system software is revoking these decisions as the system state
changes, the TCAM should never contain conflicting entries. The trade-off of using
non-conflicting entries is that there is the potential for substantial hardware state
explosion which is generally ameliorated through the use of priorities. For example,
the default entry in longest prefix match (LPM) conflicts with every other entry.
In our approach, this would require every non-conflicting destination address prefix
which matches the default route to be added as a separate hardware entry.

Although, SDF doesn’t assume the use of priorities in hardware classification rules,
the system software could maintain the header bit values and the masks of cached
decisions in an order suitable for TCAMs to reduce the number of TCAM entries
using the following algorithm:

Step 1. First consider only decisions not having a “don’t-care” bit set in the beginning
of the search mask. Assign these decisions to groups based on their longest,
first consecutive exact match; the group having the longest exact match of
all will have the highest priority and the group with least exact match bits
will have the lowest priority.

Step 2. Then assign all the remaining headers (which all have a “don’t-care” bit or
more set in the beginning of their masks) to groups based on the number of
consecutive “don’t care” bits; the decisions in a group with only one “don’t-
care” bit get a priority number just below the lowest priority assigned for
group in the step one. The group with most “don’t -care” bits gets the
lowest priority of all groups processed in the steps one and two.

Step 3. Repeat steps one and two, recursively, for each group to sort the entries
within the group. Repeat until no cached decision has search mask bits left
for processing.

3Modulo API calls aiding the system in tracking the header bits and internal application state
used in forwarding decisions.

32

However, this does not solve the problem of determining how to update TCAM en-
tries without requiring the rewriting of all entries, which could result in relatively long
periods of time (even seconds) when TCAMs cannot be used in packet forwarding.
We do not present a fast update algorithm here, but view the algorithms for per-
forming incremental updates developed for IP addresses [40] and for general packet
classification [46] as excellent starting points.

4.3.3 Floodless in SEATTLE

We also implemented SEATTLE [23] within our prototype. Like i3, SEATTLE
demonstrates that our approach can support hardware forwarding speeds of nonstan-
dard protocols. SEATTLE performs host discovery without resorting to flooding [23].
It does so by forming a link-layer DHT, that stores information about host locations
(i.e., associated switches), IP addresses, and MAC addresses. Briefly, when a switch
S1 detects a directly connected host H1, it learns H1’s MAC address and IP address
from traffic and publishes the IPH1 → (MACH1

, S1) and the MACH1 → S1 mappings
in the DHT. When a remote host H2 then sends a packet to H1, H2’s local switch S2

resolves H1’s address and location through the DHT, and tunnels the packet to S1

on behalf of H2. If the mapping changes (e.g., host migration or NIC replacement),
S1 performs DHT operations to update the mapping.

We limit the description of our implementation to location resolution since address
resolution is handled in a similar manner in SEATTLE. On receipt of an Ethernet
frame from a host, our Python forwarding software first publishes the “MACSRC →
Switch” mapping if the address has not been published before. Next, if it finds an
entry in its local mapping table, it sends the frame to the cached location (i.e., the
associated switch) via the shortest path. To do so, the switch encapsulates the frame
by sending it out of a logical port which maintains a tunnel to the destination switch.
The software marks the destination MAC of the received packet as a dependency
thereby ensuring that the decision remains cached until the mapping changes.

If there is no mapping entry found, the forwarding software initiates the DHT
lookup process, and marks the destination address in the packet header as a depen-
dency; then the software sends the packet to a special “null port”; this caches the
decision to drop frames destined to the address. This decision is also annotated with
state identifiers corresponding to the (pending) mapping lookup sent to the DHT;
once the DHT reply arrives (or software timeouts while waiting for it), the cached
decision will be revoked. On receipt of a DHT message, our SEATTLE implementa-
tion performs the appropriate DHT operation (i.e., insert, delete, lookup). Note that
since DHT messages are control messages, they are not subject to caching.

33

Finally, when the software receives an outer frame, it inspects the encapsulating
header to determine whether it requires further forwarding or not. If the frame
requires forwarding, it marks the destination address of the outer header and forwards
the packet further without en/decapsulation. Since this decision is valid until the
switch topology changes, the sent frame is annotated by the relevant entries in the
data structure holding the information about switch topology. If the frame does not
require forwarding to another switch (i.e., the frame is addressed to the switch itself),
the switch marks the destination address of the encapsulating header and sends the
frame to a “decapsulation port” (coupled to the actual physical output port connected
destined to a host) removing the encapsulation header before sending the packet out
on the wire. Forwarding the packet to the decapsulation port signals the system
software to include hardware-implemented decapsulation in the cached decision.

4.3.4 i3 and Chord

We used our prototype to implement another non-standard design, i3 (Internet
Indirection Infrastructure) [48]. In i3 servers register listeners (i.e. triggers) in the
network and obtain trigger identifiers, which they publish to allow senders to find
them. In our implementation, trigger identifiers are published in a DHT for which
we used Chord [49]. To send a packet to a server registered with i3, the sender looks
up the server in the DHT by traversing Chord’s node ring until it finds the server’s
trigger identifier, which it can use to forward the packet to the trigger. The trigger
then forwards the packet to the server.

We have implemented both Chord and i3 forwarding on SDF. This required match-
ing packet headers below the transport layer at the Chord and i3 layers, demonstrating
the flexibility of the SDF approach. Both Chord and i3 forwarding require only exact
matches on their respective identifier fields. Specifically, Chord’s cached decisions
include the 8 bit packet type field, the 160 bit Chord identifier, and the 8 bit Chord
TTL. For i3, the cached decisions include the 32 bit identifier stack size (the number
of stacked identifiers) and a 256 bit i3 identifier. The required TCAM search mask
length is therefore well beyond the standard maximum of 576 bits.

4.4 Summary

This chapter has demonstrated SDF’s flexibility in forwarding algorithms by im-
plementing the following forwarding examples on top of the proposed architecture:
a) accelerating XORP software router, b) network virtualization, c) classical L2/L3
forwarding and d) more recent i3 and SEATTLE. In the following chapter, we present
the performance study result of SDF.

34

Chapter 5

SDF Performance Study

Our design contains both a software component (the forwarding application and
the system software, running on a general CPU) and hardware component (based on
a classification engine, in our case a TCAM). If the system is run in proactive mode,
and the hardware can store enough state to capture all possible forwarding decisions,
then the system will run at hardware forwarding speeds. This is how we imagine the
system will be run in performance-critical scenarios (such as the Internet backbone).
If the system is run in reactive mode, as would be appropriate for most experimental
uses where performance is not critical but a simple and convenient programmatic
API is essential, then the resulting speed depends on how many packets are handled
by software, and the relative speed of the hardware and software forwarding actions.
This is our focus in this chapter.

5.1 Assumption

While the ability of commodity CPUs to perform packet forwarding has increased
significantly over the last few years, TCAMs remain significantly faster. For example,
an 8-core PC supports forwarding capacities of 4.9 million packets/s [11], while mod-
ern TCAMs can achieve rates of 150–200 million packets/s.1 Even special purpose
general processors which include network hardware on die (e.g. [7]) are an order of
magnitude slower than TCAMs.

In order to marry a slower software path with a much faster hardware path in a
manner that takes full advantage of the system, the ratio of the number of packets
processed by hardware versus software must be commensurate with the differential

1The classification rate largely defines the maximum hardware forwarding speed since applying
packet modifications is easier than classification. Similarly, the high-speed switch fabric connecting
ports is not a limiting factor.

35

Name Source Date Duration #Packets Anon.

L2 Enterprise [25] LBNL Dec 2004 1 hour 1,977,405 Yes

L3

OC12 [41] CAIDA Jan 2007 2 hours 29,092,430 Yes
OC48 [44] CAIDA Aug 2002 1 hour 419,720,983 Yes

OC192-A [42] CAIDA May 2008 1 hour 741,205,934 Yes
OC192-B [43] CAIDA Feb 2009 1 hour 111,839,231 Yes
OC192-C [43] CAIDA Mar 2009 1 hour 1,551,424,452 Yes

ISP-US US ISP 1 hour 598,534,072 No
ISP-EU European ISP Mar 2005 NA 17,526,284 No

Table 5.1: Traces used in the cache hit-rate evaluations.

between the speeds of the two layers.2 For purposes of analyzing these issues we
assume software forwarding performs two orders of magnitude slower than the for-
warding engine implemented in the hardware. This assumes that the switch employs
one or more high-speed multicore CPUs (as is true for many newer switches [4]), and
is a conservative estimate of the speed ratio given the TCAM and CPU figures cited
above. With this assumption, in order to fully realize the forwarding potential of our
system, the cache hit rates must exceed 99%. The hit rates depend on the nature of
the traffic, and the size of the cache.

We now analyze hit rates using standard L2 and L3 forwarding algorithms on
real network traces to see whether a 99% hit rate is a reasonable expectation for
feasible cache sizes. We used the set of traces described in Table 5.1. All the traces
except the last contained full packet headers and timestamps. The last trace only
included a series of destination addresses without timestamps. However, because
this trace was not anonymized (but the last few bits were elided), we could use the
accompanying FIB to make accurate forwarding decisions; for the other traces except
the second last we had to assume that forwarding decisions were done at either the
/16 or /24 granularity. In this performance study, we assumed the naive hardware
implementation of a managed TCAM in which each matching rule fills up an entry.
The system uses LRU when replacing cache entries and we assume that the FIB does
not change during the period of analysis.3 We warmed up the cache for half of the
trace, and then measured the hit-rate for the remainder of the trace.

2In addition, the bus between the hardware and software must not be saturated, and the hardware
should be able to update the classification rules as fast as the system software updates them, and
these too depend on the cache hit rate.

3Routes to popular destinations are quite stable [37].

36

5.2 L2 learning

Our MAC learning implementation uses 15 second timeouts. For analysis, we
have used the first trace in Table 5.1, and the resulting cache hit rates are shown in
Figure 5.1.

 0.0001

 0.001

 0.01

 0.1

 1

 16 32 64 128 256

M
is

s
 r

a
te

 (
lo

g
 s

c
a

le
)

The number of cache entries (log scale)

L2 switch

Figure 5.1: Simulations of cache miss rates for L2 learning with the enterprise trace.

The cache miss rate is less than 1% for cache sizes larger than 64, and is nearly
0.01% for a cache with 256 entries. Note that these TCAM state sizes are significantly
smaller than today’s commercial Ethernet switches, which commonly hold 1 million
Ethernet addresses (6MB of TCAM). Thus, using our approach in reactive mode
would easily reach the requisite 99% hit rate with very moderate state requirements
in this particular enterprise setting. We have looked at other enterprise traces, and
found similarly encouraging results.

5.3 IPv4 forwarding

We next explore the cache behavior of standard IPv4 forwarding, assuming that
the hardware supports TTL decrementing and checksum recomputation (so the for-
warding decision depends only on the destination address). We had two traces with
associated FIBs, which are the ISP-US trace and ISP-EU in Table 5.1. In order to
obtain conservative results, we used no warm-up period, so every cache entry experi-
ences at least one miss. The cache hit rates of this analysis are shown in Figure 5.2.

There are three curves: one assuming that the forwarding decisions are based on
the FIB, one assuming that the forwarding decisions are based on /16 prefixes, and
one assuming that the forwarding decisions are based on /24 prefixes. For now we
focus on the FIB-based curve, since that represents what would happen in practice.
Here, the miss rate is less than 1% when the cache holds more than about 16K entries
for the ISP-US trace and 64k entries for the ISP-EU trace, which is a small amount
of state for an ISP-class router.

37

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

8K 16K 32K 64K 128K

M
is

s
ra

te
 (l

og
 s

ca
le

)

The number of cache entries (log scale)

LPM
/16
/24

0.001

0.010

0.100

1.000

10K 20K 40K 100K 200K 400K

M
is

s
 r

a
te

 (
lo

g
 s

c
a

le
)

The number of cache entries (log scale)

LPM
/16
/24

Figure 5.2: Cache miss rates for ISP-US trace (top) and ISP-EU trace (bottom).

We do not know the link’s speed for these traces, so to investigate hit-rates on
very high-speed links we used several traces from CAIDA. For these traces we did not
have an associated FIB (because the traces were anonymized); we therefore measured
the hit-rates assuming that the forwarding decisions were done on either a /16 or /24
granularity. The data from the ISP traces indicate that, in that example, the /16
granularity is a better estimate of the hit rate, and that the /24 granularity is very
conservative (roughly two orders of magnitude higher miss rate than the FIB results
for large caches).

Figure 5.3 shows the results for the OC-48 trace and the OC-192C trace (the results
for the other OC-192 traces are qualitatively similar). When using /16 forwarding,
even tiny cache sizes (2k entries for OC-48 and 1k entries for OC-192; the 1k point lies
off the graph in Figure 5.2) are sufficient to achieve 1% miss rates. For /24 forwarding
(which the ISP trace suggests is a very pessimistic estimate), cache sizes of 20k entries
and 40k entries are required for 1% miss rates, which is again quite reasonable for ISP-
class routers. If these traces are representative, these results suggest only moderate-
sized caches are needed to achieve sufficiently high cache hit rates in both enterprise
and ISP networks.

38

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

1K 2K 4K 10K 20K 40K 100K

M
is

s
 r

a
te

 (
lo

g
 s

c
a

le
)

The number of cache entries (log scale)

/16
/24

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

10K 20K 40K 100K 200K 400K

M
is

s
 r

a
te

 (
lo

g
 s

c
a

le
)

The number of cache entries (log scale)

/16
/24

Figure 5.3: Cache miss rates with forwarding on the /16 and /24 granularities for the
OC-48 (top) and the OC192-C trace (bottom).

5.4 Performance under stressful conditions

We now discuss two situations where caching’s performance may get stressed: when
the software FIB changes and when the switch is under attack. First, when the FIB
changes, this will change a large number of forwarding entries. In traditional flow
caching, this requires flushing the cache and enduring a high miss rate until the cache
is warmed up again. However, in our approach, when the routing state changes, the
application can push updated decisions to the hardware after revoking the invalid
decisions, rather than merely revoking them. This does require a fast channel to
update the hardware component, which may be the limiting factor, but there is no
need for a long cache warmup period after a routing event.

Second, in a denial-of-service attack, attackers can inject spurious traffic in the
hope of dislodging valid cache entries, which would increase the miss rate. Once the
miss rate goes over 1% (assuming the two order of magnitude difference between line
speeds and the CPU), then some of the cache-miss packets will be dropped. We

39

 0.001

 0.01

 0.1

10K 20K 40K 100K 200K 400K

M
is

s
 r

a
te

 (
lo

g
 s

c
a

le
)

Cache sizes (log scale)

w/o attack
w/ attack

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

s
ra

te
 (l

og
 s

ca
le

)

The ratio of DoS traffic to total traffic

16K entries
64K entries

Figure 5.4: Cache miss rates with (and without) random DoS traffic comprising 50%
of the traffic for the ISP-EU trace (top). Cache miss rates with random DoS traffic
for the ISP-US trace (bottom).

now investigate how effective such an attack might be, assuming the cache uses a
least-recently-used cache replacement policy.4

Using the ISP-US trace and ISP-EU trace in Table 5.1 (again, with no warm-
up period), we examine the effect of a DoS attack that sends traffic with random
destinations. The top graph in Figure 5.4 compares the miss rate with no attack
to the miss rate when the attack traffic comprises half of the total traffic. With
an attack of this magnitude, overloading the link is likely to be more of a problem
of cache misses, but we wanted to look at an extreme scenario. Somewhat to our
surprise, this massive attack only has a very limited impact on the miss rate; this
is because the long-tailed distribution of network destinations makes it unlikely that
any of the frequently used cache entries is ever evicted. In fact, for the larger cache
sizes, the miss rate with the attack traffic is lower than without the attack traffic

4The network can take more explicit measures against such attacks, such as rate-limiting the
number of new flow entries from any port, which would limit the scope of such an attack. However
here we just focus on the attack traffic’s impact on the cache miss rate.

40

(this is because the random addresses tend to fall on the large prefixes, whereas the
trace traffic more systematically explores the address space). Another experiment
using the ISP-US trace shows a consistent result (the bottom graph in Figure 5.4)
that random denial-of-service attack only has limited impact on cache performance.

5.5 Summary

This chapter has evaluated SDF under a conservative assumption that slower
software components perform two orders of magnitude slower than hardware. Thus,
to keep up with the hardware speed the hit rates of decision caching must exceed
99%. Our experiments based on real packet traces have shown that SDF would easily
be able to achieve the 99% hit rates goal. In addition, our experiments have indicated
that stressful conditions like denial-of-service attacks might have only limited impact
on cache performance due to high skewness in address access patterns.

We do not claim to have solved all performance problems associated with caching.
However, if caching is mainly used in environments where performance is not critical,
then these issues discussed above (and other performance issues) may not be fatal.
While the proactive mode is clearly safer, the reactive mode may still be an attractive
choice considering how small the state requirements are to achieve low miss rates.

41

Chapter 6

Ripcord: Platform for Data Center
Routing and Management

This chapter presents a new platform, called Ripcord, for data center routing and
management. Ripcord provides a uniform, high-level interface to an underlying phys-
ical network so that a data center can free itself from a particular solution tightly
coupled with its physical network, and have flexibility in routing and management.
Ripcord enables to quickly prototype new data center network solutions, and (per-
haps more interestingly) to run several schemes simultaneously on the same physical
network. A researcher may use this capability to evaluate two schemes side by side;
an experimental data center can host multiple researchers at the same time; a multi-
tenant hosting service may provide different customers with different networks; and a
multi-service data center may use schemes optimized for different services (e.g., one
scheme for map-reduce, alongside another for video streaming).

In the following section, we briefly review core criteria on which data center net-
working solutions focus. Then, Section 6.2 describes Ripcord’s architecture to sup-
port the key criteria, followed by our prototype implementation in Section 6.3. In
Section 6.4, we illustrate the generality of Ripcord by implementing recent data center
proposals (e.g., VL2 [12] and PortLand [32]) and running them in tandem in software,
and individually in both software and on a test data center made from commercial
hardware. We present their performance comparison in Section 6.5 and conclude the
chapter.

6.1 Overview

This section outlines Ripcord’s high-level design decisions after describing design
requirements at which Ripcord targets, and challenging criteria that a data center
networking platform must address. In the next section, we describe the Ripcord’s

42

design in greater detail.

6.1.1 Design Requirements

Ripcord’s design follows directly from four high-level design requirements: a) The
system must allow researchers to prototype quickly, with minimum interference from
the platform itself. b) Ripcord must allow experimenters to evaluate a new scheme,
and c) compare it side-by-side with others. d) Finally, it must be easy to transfer
and deploy a new scheme to physical hardware.

6.1.2 Key Criteria for Data Center Networking

If we are to help experimenters evaluate and compare different schemes, we need
to understand the main criteria they will use, and how a platform housing those
schemes support the criteria. Based on recent proposals [12, 32] (and the needs of
data centers) the most challenging criteria are:

• Scalability : Large data centers scale to thousands of servers or millions of vir-
tual machines (VMs). The experimenter will need ways to compare topologies,
routing and addressing schemes and their consequences on forwarding tables
and broadcasts.

• Location Independence: Dynamic resource provisioning in data centers is much
more efficient if resources can be assigned in a location-agnostic manner and
VMs can migrate without service-interruption. Ripcord must support routing
that operates at different layers, and novel addressing schemes.

• Failure Management : Scale-out data centers are designed to tolerate network
failures. Ripcord must provide a means to inject failures to links and switches,
to explore how different schemes react.

• Load balancing : Data centers commonly spread load to avoid hotspots. Ripcord
must enable randomized, deterministic and pre-defined load-balancing schemes.

• Isolation and Resource Management : If multiple experiments are to run simul-
taneously - just as multiple services run concurrently in a real data center -
Ripcord must isolate one from another.

6.1.3 Ripcord’s Design Principles

The requirements and criteria presented above have led to the following high-level
approach. The next section explores the design in details.

43

• Logically centralized control: At the heart of Ripcord is a logically central-
ized control platform. Ripcord’s centralized approach reflects a common trend
in recent proposals (e.g., VL2’s directory service, PortLand’s fabric manager).
While logically centralized, Ripcord can scale by running several controllers in
parallel.

• Multi-tenant: In Ripcord, each “tenant” manages a portion of the data center
and controls routing. A tenant can be a real customer sharing the data center,
an experiment requiring a separate management and/or routing control, or even
a service (e.g., MapReduce job or content delivery). Ripcord supports multiple
tenants concurrently by managing the resources they use in the network and
enforces resource isolation between tenants.

• Modular: The central platform is modular and includes a collection of library
components to facilitate code re-use and fast prototyping. Its capability can
be extended by simply adding library modules (e.g., DHCP module, firewall
module, etc), and Ripcord users may share modules to quickly prototype new
routing/management schemes. Tenants can also select among a variety of rout-
ing schemes, arranged as modules connected in a pipeline.

6.1.4 Prototype

Our Ripcord prototype builds upon and replaces the default applications of NOX [16].
NOX is a logically centralized platform for controlling network switches via the Open-
Flow [28] control protocol. We summarize NOX and OpenFlow briefly in the ap-
pendix. We have chosen these particular technologies because they provide a clean
vendor-agnostic abstraction of the underlying network, and NOX provides a well-
defined API to control the network as a whole. In principle, however, our prototype
could be built on any network control abstraction offering the set of events and com-
mands listed in Table 6.1 and Table 6.2.

Events Semantics

SWITCH JOIN Switch joined network.

SWITCH LEAVE Switch left network.

PACKET IN Packet without matching flows came in.

STATS REPLY Flow stats are available.

Table 6.1: Network events that Ripcord expects from switch.

44

Commands Semantics

FLOW MOD Installs/removes flows.

PACKET OUT Sends out a given packet.

STATS REQUEST Polls flow stats.

Table 6.2: Switch commands expected by Ripcord.

6.2 Design

To help orient the reader we use an example walkthrough as a a high-level intro-
duction to key components in the system. The following steps describe how Ripcord
handles incoming flows by passing them to the correct tenant for routing and setup
in the network.

6.2.1 Example Walkthrough

Configuration phase. The first step in the deployment of a Ripcord data center
is to provide the “Configuration and Policy Database” with the particulars of the
network. This includes topology characteristics (e.g., FatTree, Clos, etc), the tenants,
and a mapping from the tenants to the available routing applications (e.g., PortLand,
VL2, etc).

Startup phase. The “App Engine”, “Routing Engine” and “Topology Engine”
are instantiated based on administrative information fed to the Configuration and
Policy Database. At this point, optional network bootstrap operations (e.g. proactive
installation of flows) are carried out. In addition, the Routing Engine and the App
Engine register to receive notification on each incoming flow.

Running phase. In this phase, Ripcord listens for incoming routing requests.
These requests are generated as events by switches each time they receive a packet
for which there is no existing flow table entry. When Ripcord receives the routing
request it makes sure that the packet is either processed by a responsible (per-tenant)
“Management App” and its routing pipeline or discarded. The sequence of steps for
handling routing requests is outlined below:

Step 1. When a switch receives a packet for which there is no matching flow-table
entry it creates a routing request containing the packet and notifies the
“Authenticator-Demultiplexer”.

Step 2. The Authenticator-Demultiplexer, receives the routing request, tags it with
the identifier of the tenant that should handle it, and, if the routing request is
legitimate, notifies the “App Engine”. If the routing request is not legitimate

45

(e.g., it would result in traffic between isolated networking domains), it is
denied and the packet is discarded.

Step 3. The App Engine dispatches routing requests to the point of contact associated
with each tenant – its “Management App”. The Management App determines
whether it should discard the incoming packet, process it (e.g., to handle
control requests like ARP), or propagate the request to the “Routing Engine”.

Step 4. When the Routing Engine receives the routing request it invokes the tenant’s
predefined routing pipeline, which computes a route and then the Routing
Engine informs the “Flow Installer”.

Step 5. Finally, the Flow Installer sends out commands to select switches, along the
path inserting flow entries in their tables thus establishing the new flow on
the selected path.

Monitoring phase. Under normal operation, the Monitoring module tracks switches
as they join or leave the network. With “always-on” passive monitoring, the network
is constantly supervised for abnormalities. If an aberrant behavior is detected, the
operator can invoke active monitoring commands to delve into the problem and trou-
bleshoot.

6.2.2 Components

Figure 6.1 depicts Ripcord’s high-level architecture. It consists of the following
seven components:

Configuration & Policy DB. This component is a simple storage for platform-
level configuration and data center policy information. Administrators configure the
Database with global network characteristics as well as tenant-specific policies. This
centralized configuration provides ease of management. As this module merely stores
the configuration, the actual policy enforcement is delegated to other components
such as Authenticator-Demultiplexer (explained below).

Topology Engine. This component maintains a global topology view by tracking
SWITCH JOIN as well as SWITCH LEAVE events. This allows for real-time network vi-
sualization, expedites fault-detection and simplifies troubleshooting. The component
also builds per-tenant logical topology views which are used by App and Routing
Engines when serving a specific tenant.

46

Physical
DC Network Programmable Switches

Authenticator &
Demultiplexer

App Engine

Tenants

Monitor

Topology Engine

Raw
Topo DB

Logical
TopoViews

Routing Engine

Routing Pipelines

Flow
Installer

Flow In

Flow In

Flow Out

SWITCH_JOIN
SWITCH_LEAVEPACKET_IN

SWITCH_JOIN
SWITCH_LEAVE

STATS_REQ
STATS_REP

Event flow
Command

FLOW_MOD
PACKET_OUT

Config &
Policy

DB

Topo	 Update

Figure 6.1: Ripcord architecture and event flow diagram

Authenticator-Demultiplexer. It performs admission control and demultiplexes
to the correct application. Upon receipt of a PACKET IN event, it invokes the Configu-
ration/Policy DB and resolves the tenant in charge of the packet. If the packet is not
legitimate, the component drops it. Otherwise, it passes on the routing request to
the App and Routing Engines, as a FLOW IN event tagged with the packet and tenant
information.

App Engine. Each tenant can have its own management app. Hence, management
app can be seen as a centralized controller for a particular tenant. This component
typically inspects incoming packets in a FLOW IN event and updates its internal state.
For example, PortLand’s fabric manager can be implemented as a management app
on Ripcord. On receipt of a FLOW IN event, the App Engine dispatches the event to
a proper app based on tenant information associated with the event.

Routing Engine. This module calculates routes through a multi-stage process:
starting as a loose source route between the source-destination pair, a path is gradu-
ally filled through each of the routing pipeline stages. One pipeline stage may consist
of zero or more routing modules. Ripcord does not limit the size of routing pipeline.
It does, however, enforce the order of stages so as to help verify routing modules’
composability. Table 6.3 describes these stages.

47

Routing Stage Description

TweakSrcDst The source/destination information is altered at this stage.
This is usually for the purpose of loadbalancing among hosts.

InsertWayPoints This stage inserts particular switches or middleboxes to traverse (e.g.
for security reasons)

Loadbalance This stage can alter a loose source route computed so far to loadbalance
among switches and links.

ComputeRoute This stage completes route(s). If previous stages generated multiple
routes, this stage selects a final one.

TriggerFlowOut This stage triggers Flow Out event with the computed route.

Table 6.3: Ripcord’s routing pipeline stages. Earlier stages in the table cannot appear
later in routing pipeline. Each routing module should be in one of these stages.

This small routing module is far easier to verify and manage than a larger, all-
in-one routing algorithm package. At the same time, it gives great flexibility as
the routing algorithm is not predetermined, but defined by the arrangement of the
routing modules. Hence, new routing algorithms can be easily deployed as long as
the underlying topology supports them. One can, for instance, shift from shortest-
path to policy-based routing merely by replacing one of its routing modules in the
“ComputeRoute” stage. The routing pipeline for each Ripcord tenant is configured
in the Configuration/Policy DB as a list of routing modules. We envision that open
source developers will contribute routing modules and datacenter administrators will
evaluate new routing algorithms on Ripcord.

Flow Installer. This component is in charge of translating FLOW OUT event into
hardware-dependent control message to modify the switch flow table (e.g., OpenFlow
message). We introduce this indirection layer to make Ripcord independent of a
particular switch control technology.

Monitor. Monitor component provides support for passive and active statistics
collection from network elements. Passive collection periodically polls switches for
aggregate statistics, while active collection is targeted to probe a particular flow in
the network. When a switch joins the network, the component records its capabilities
(e.g., port speeds supported) and then maintains a limited history of its statistics
“snapshots”. Snapshots contain aggregate flow statistics (e.g., flow, packet and byte
counts for a switch), summary table statistics (e.g., number of active flow entries and
entry hit-rates), port statistics (e.g., bytes/packets received, transmitted or dropped)
and their changes since the last collection.

48

6.3 Implementation

Our Ripcord prototype consists of a technology-independent core library (imple-
menting the seven components explained in Section 3.2), and NOX-dependent wrap-
per code. It totals 6,988 lines of Python code plus NOX’s standard library.

6.3.1 Configuration & Policy Database

When Ripcord starts, this module reads a directory of configuration files describing
the configuration and policy, expressed as key-value pairs. The configuration language
is described in JSON because of its ability to richly express dictionary and array
types. New configurations can be loaded dynamically via command line arguments,
for example to instantiate a new tenant or debug a running system. The policy
database needs to be quite general: For example, an administrator might set a policy
such as ‘Packets sent from the host with MAC address A to the host with IP address
B should be routed by tenant Y’. The policy may be based on any combination of the
following fields: the unique ID of the switch the packet was received at, the incoming
port on that switch, source MAC and IP addresses, and destination MAC and IP
addresses.

6.3.2 Topology Engine

When Ripcord starts, this module loads the topology from a configuration file. We
assume the topology is known in advance, has a regular layered structure (e.g. tree,
multi-root tree, fat-tree, Clos, etc), and is relatively static. Each layer is assumed
to consist of identical switches; but the number of layers, ports and link speeds may
vary. The regular structure makes it quick and easy for the routing engines to traverse
the topology. Routing engines may view the entire topology, or be restricted to view
only the part of the topology they control. The module has APIs to filter by layer
or power status, or return the physical port numbers connecting two switches. See
Figure 6.4 and Figure 6.5 below for examples of pre-existing Ripcord topologies.

6.3.3 Authenticator-Demultiplexer

When Ripcord starts, this module builds a lookup table from the Configuration
and Policy Database, to map incoming traffic to the correct tenants. The process
is triggered by a new PACKET IN event when a switch doesn’t recognize a flow. The
Authenticator-Demultiplexer generates a FLOW IN event and hands the App Engine a
tenant ID identifying which tenant(s) to alert.

49

"app_engine" : [

{"id": 1,

"class": "ripcord.apps.PortLand",

"param": ["firewall=false", "verbosity=debug"],

"routing": {

"modules": [

{"class": "ripcord.routing.PLComputeRoutes",

"param": ["max_selection=4"]},

{"class": "ripcord.routing.PLPickRoute",

"param": ["selection_criteria=random"]},

{"class": "ripcord.routing.PLOpenFlowTrigger",

"param": []}

]

}

}

]

Figure 6.2: App configuration example (PortLand). Each app is assigned a unique
app ID. It also specifies a routing pipeline in the form of a list of routing modules.

6.3.4 App Engine and Management Apps

When Ripcord starts this module instantiates the management application for each
tenant; Figure 6.2 shows how a management application is configured. In the example,
the App Engine instantiates a Python class ripcord.apps.PortLand and assigns it
AppID 1. AppID is the demultiplexing key sent by the Authenticator-Demultiplexer
module.

The App Engine is responsible for dispatching FLOW IN events to the correct tenant
management application. The App Engine instantiates applications without knowing
their internal implementation, and so is independent of the details of each tenant.
A management application is free to implement whatever it chooses, so long as it
provides an event handler for FLOW IN.

For example, in our implementation of PortLand, the management application
performs ARPs and maintains the AMAC-PMAC mapping table. A management
application may tag an event with additional information for its routing modules; by
default the event is propagated to the routing engine when the management applica-
tion returns CONTINUE.

50

6.3.5 Routing Engine and Per-tenant Routing Pipeline

"default": {

"routing": {

"expandable": true,

"modules": [

{"class": "ripcord.routing.FixSwitch",

"param": [],

"mandatory": true},

{"class": "ripcord.routing.InsertMB",

"param": ["10.0.0.2", "10.0.0.3"],

"mandatory": true}

]

}

}

Figure 6.3: Global routing policy example.

The Routing Engine is responsible — for each tenant — for passing FLOW IN

events to the correct sequence of routing modules (based on the AppID). When Rip-
cord starts, the module generates a pipeline for each tenant from the configuration
database. For example, Figure 6.2 shows how a pipeline of three routing modules is
defined for PortLand. The name of each routing module is its Python class name so
that the routing engine can correctly locate the module. The routing pipeline can be
of any length, although each routing module must be in one of the routing stages in
Table 6.3 and follows the order of routing stages as described in Section 3.2. Each
stage invokes associated routing modules to progressively complete a source route.
The last stage triggers FLOW OUT to convert the computed source route into a series
of flow entries and to program switches.

In addition to per-tenant routing pipelines, the data center operator may want to
impose global routing constraints. For example, traffic for all tenants may be forced
to pass through a firewall; or, each tenant may be required to run on isolated paths.
Ripcord represents these constraints by a global routing policy. For instance, the
policy represented in Figure 6.3 means that an application can define its own routing
pipeline (i.e., expandable), but is subject to two mandatory routing modules.

51

6.3.6 Monitoring Implementation

The Monitoring module listens for SWITCH JOIN/SWITCH LEAVE events, and period-
ically collects switch-level aggregate statistics, flow table statistics and port statistics.
The module maintains statistics in the same time frame as a “snapshot” (Table 6.4)
so that operators can detect and debug networking anomalies.

Fields Semantics

dpid switch id
collection epoch collection cycle
epoch delta distance from previous cycle
collection timestamp time captured
ports active number of active ports
number of flows flows currently active
bytes in flows size of active flows
packets in flows packets in active flows
total rx bytes total bytes received
total tx bytes total bytes transmitted
total rx packets dropped receive drops
total tx packets dropped transmit drops
total rx errors receive errors (frame,crc)
total tx errors transmit errors
delta rx bytes change in bytes received
delta tx bytes change in bytes transmitted
delta rx packets dropped change in receive drops
delta tx packets dropped change in transmit drops
delta rx errors change in receive errors
delta tx errors change in transmit errors

Table 6.4: Information included in a monitoring snapshot.

The module keeps snapshot histories, and operators can tune how the history is
managed (e.g., the size of the history, collection frequency and the location of old
snapshots) through the Configuration/Policy Database module. In addition, the
module also provides an API for “active” statistics collection, for detailed metrics
of a particular switch or a flow (Table 6.5). Hence, it can be used to build high-level
modules to visualize the entire network or for troubleshooting.

6.3.7 Flow Installer

When the route for a particular flow has been decided, the switches need to be
programmed. The Flow Installer module takes FLOW OUT events, and generates binary
OpenFlow control packet(s) which are passed to NOX for delivery to the correct

52

Functions Description

get all switch stats(swid) returns all snapshots for a switch
get latest switch stats(swid) returns last snapshot for a switch
get all port capabilities(swid) returns the port capability map for SW
get port capabilities(swid,port id) returns capabilities of a specific port
get flow stats(swid, flow spec) returns specific flow statistics

Table 6.5: API exposed by the monitoring module for active statistics collection.

switches. The FLOW OUT event includes the <header match, action> pair for each
switch the flow traverses.

6.3.8 Virtual-to-Physical Mapping

When we have a working implementation in software, we need to transfer it to
hardware. Ideally, we would have access to a huge network of switches each with
large numbers of ports. Given this is unlikely, we can slice a physical switch into
multiple “virtual” switches. Some OpenFlow switches can be sliced by physical port.
For example, a k=4 three layer Fat Tree, which requires twenty 4-port virtual switches,
can be emulated by two 48-port physical switches and a number of physical loopback
cables. Unfortunately, not every OpenFlow switch supports slicing.

Instead, we chose to slice switches at the controller, by implementing a virtual-
to-physical mapping layer between Ripcord components and the NOX API. Since
in Ripcord the base topology is known in advance, the mapping can be statically
defined. The result is that Ripcord routing engines and applications use virtual
addresses, while NOX sees physical addresses. For example, when a switch connects,
it has an ID that must be translated from physical to virtual, which may cause one
physical switch join event to become multiple virtual switch join events. Almost
every OpenFlow message type must undergo this virtual-physical translation in both
directions, including flow modifications, packet ins, packet outs, and stats messages.
In many ways the slicing layer resembles FlowVisor [45] which also sits between the
switch and controller layers.

Ripcord’s slicing layer has been used to build k=4, 80-port Fat Trees from a range
of hardware configurations, including two 48-port switches, one 48-port switch and
two 24-port switches, and even from eight 4-port switches combined with a 48-port
switch, for the testbed described in Section 6.5.

53

6.4 Case studies

To illustrate Ripcord’s generality, we have implemented three data center routing
algorithms on Ripcord: Proactive L2 routing, VL2 and PortLand. As a metric of
complexity, Table 6.6 reports the lines of code needed for each implementation.1 The
rest of this section details how we have implemented the routing schemes.

Implementation Lines of code (Python)

Proactive L2 200

VL2 576

VL2 w/ middlebox traversal 616

PortLand 627

Table 6.6: Lines of code of sample routing implementation

6.4.1 Proactive L2 routing

This is the simplest base design. Host addresses and locations are loaded from the
topology database, paths are chosen using spanning-tree, hashes, or random selection,
and corresponding flow entries are installed into the switches. This eliminates flow
setup time for applications which cannot tolerate reactive flow installation, at the
expense of more entries in the flow table. As an extension—although really as a
baseline—Ripcord can also learn MAC addresses, and reactively install flows using
the listed path selection methods, similar to today’s traditional layer-2 networks.

Our VL2 routing engine uses a pipeline with three routing modules. The first
module VL2LoadBalancer is in the Loadbalance stage, and implements the Valiant
load balancing. It picks a random intermediate core router (from the set that are up),
creating a partial route with the source, intermediary and destination (and optionally
other nodes such as middle boxes, or switches added for QoS). We add the optional
optimization to route flows directly when the source and destination share a common
Top-of-Rack (or ToR) switch.

6.4.2 VL2

Next, in the ComputeRoute stage, the VL2ComputeRoute module completes the
route by identifying the shortest path from source to intermediary, and intermediary
to destination. If there are multiple shortest paths, one is chosen at random (but
only if the switches are up). If a switch is marked down (e.g., for maintenance) it is
not used.

1Because we do not have the source code from the authors’ implementations, our versions are
from our own implementations of their schemes.

54

Switch &
Direction

Match Action

ToR, Up in port, src mac, dst mac Replaces dst ip with destination’s ToR IP
addr and inserts coreID into the highest or-
der byte of src ip

ToR, Down in port, src mac, dst mac Restores original dst ip and src ip

Aggr, Up in port, highest order
byte of src ip

Forwards to a port

Aggr, Down in port, dst ip Forward to a port

Core, Down dst ip Forwards to a port

Table 6.7: OpenFlow entries realizing compact VL2 routing.

Finally, VL2OpenFlowTrigger calculates the flow entries to realize the chosen route.
We use the design described in [50] because it is simple, and supports middle-box
traversal. Table 6.7 shows OpenFlow match and action for each switch type.

Comparing VL2 as defined by its authors with VL2 implemented on Ripcord, we
make the following observations. VL2 uses double IP-in-IP encapsulation to route
packets from the source to the core switch (anycast and ECMP), and then onto the
destination ToR. In Ripcord, our implementation simply overwrites the destination
IP address with the IP address of the destination’s ToR switch, and explicitly routes
it via a randomly chosen core switch. In VL2, the destination’s ToR decapsulates the
packet to restore its original form, whereas we directly instruct the destination’s ToR
to overwrite the IP addresses with original values. The implementation is different,
but the outcome is identical.

ARP packets are not broadcast to the whole network, but are forwarded to the
controller; the management application handles them and replies directly to the source
host. Unknown broadcast types can be rate limited, or sent to a host to be satisfied.

6.4.3 PortLand

PortLand routes traffic by replacing the usual flat MAC destination address (AMAC)
with a source-routed pseudo MAC (PMAC). The PMAC encodes the location of the
destination. The source server is “tricked” into using the PMAC when it sends an
ARP request — a special fabric manager replies to the ARP with the PMAC in-
stead of the AMAC. The egress ToR switch converts the PMAC back into the correct
AMAC to preserve the illusion of transparency for the unmodified end host.

55

Portland’s fabric manager is centralized, and is naturally implemented as a Ripcord
management application. The application assigns each AMAC a PMAC based on its
ToR switch. Like in PortLand, ARP requests are intercepted and the management
application replies (without routing the ARP request).

PortLand routes flows with a pipeline of three routing modules: PLComputeRoutes,
PLPickRoute and PLOpenFlowTrigger. Although the modules are sufficient to imple-
ment the PortLand’s routing, we allow it to be extended with other routing modules
(e.g., middlebox interposition module or load balancer). Hence, PLComputeRoutes,
which belongs to the ComputeRoute stage, first examines loose source routes com-
puted by the previous routing stages. If no route is given, it takes a pair of ingress
switch and the ToR switch of destination address as a loose source route. Then,
it completes each loose source route by computing a shortest path between each
two consecutive hops in the source route. Hence, this routing module results in a
list of complete source routes. PLPickRoute is also in the ComputeRoute stage and
it randomly selects a route among those computed by PLComputeRoutes. Finally,
PLOpenFlowTrigger converts the selected route into a sequence of flow entries to be
installed in OpenFlow switches along the path.

The ingress ToR replaces the source AMAC with the source PMAC for the return
journey. Aggregate switches and core switches route solely based on the destina-
tion PMAC. Because our OpenFlow implementation does not support longest prefix
matching on MAC addressesx, we currently match full destination address. A flow
entry in the egress ToR switch is to restore the destination PMAC back to AMAC.

6.4.4 Additional Capabilities

Because of its fine-grained control over routing, Ripcord can do many things a
current data center network cannot. We describe some examples below.

Middle-box Traversal

Flows can easily be routed through arbitrary middle-boxes by inserting a waypoint
in a loose source route (in the InsertWayPoints routing stage). In the ComputeRoute
stage, the complete path is calculated to traverse the waypoints. As an experiment,
we implemented a routing module VL2MiddleBoxInserter to insert a random middle-
box (specified in a configuration file) into the VL2 routing pipeline. Thus, the com-
plete VL2 pipeline becomes:

56

VL2MiddleBoxInserter

=⇒VL2LoadBalancer

=⇒VL2ComputeRoute

=⇒VL2OpenFlowTrigger

If the middle box doesn’t modify the packet header, our implementation handles
an arbitrary number of middle-boxes per path. If the packet header is changed, the
portion of the route after the middle-box needs to be recomputed. Alternatively,
we could define a model for each middle-box class. While out of the scope of this
dissertation, [20] indicates that this approach has potential.

Seamless fail-over

Topology changes are detected by the Topology Database and any management
application affected by the change is immediately notified, so it can take remedial
actions. This failure detection mechanism is superior in terms of detection latency to
time-out-based, classical approaches.

6.5 Evaluation

We evaluate Ripcord against its intended purpose, to evaluate and compare differ-
ent approaches in a consistent way. With this goal in mind, we demonstrate three
routing engines (All Pairs Shortest Path [APSP], PortLand, VL2) and an application,
Middlebox Traversal. We evaluate each one on a software OpenFlow implementation,
and then deploy it on a hardware testbed. We evaluate relative differences between
implementations, looking at how flow setup delays and switch state requirements vary.

6.5.1 Software testbed

The software testbed runs inside a Debian Lenny virtual machine, allocated one
CPU core and 256MB of memory, on a machine with Intel Q6600 quad-core 2.4GHz
CPU. The testbed spawns kernel-mode software OpenFlow reference switches (avail-
able from [33]), running version 0.8.9r2. The controller is NOX 0.6, with Ripcord
core components and applications on top.

6.5.2 Hardware testbed

The hardware testbed implements a k=4 three-layer Fat Tree topology running at
1Gbps. Aggregation and core switches are implemented by slicing a 48-port 1GE
switch (Quanta LB4G) running OpenFlow. Eight 4-port NetFPGAs act as edge
switches. The OpenFlow implementation on the NetFPGAs can rewrite source and

57

destination MAC addresses at line-rate (required for PortLand) and can append,
modify and remove VLAN tags to distinguish multiple simultaneous routing engines.

10-1 100 101 102

delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n

Portland - Hot

VL2 - Hot

Proactive

MBT - Hot

VL2 - Cold

MBT - Cold

Portland - Cold

Figure 6.4: Fat Tree topology and CDF of 1-to-many host ping delays on the software
test using the topology. Leaf nodes in the topology represent end hosts. Proactive
means proactively installed APSP.

6.5.3 Experiments on Software Testbed

Our first topology is the k=4 Fat Tree at the top of Figure 6.4. The graph at
the bottom of Figure 6.4 shows a CDF of the ping times from the left-most host
in our topology to all other hosts, sending one ping at a time. The graph contains
curves from all four routing engines: APSP, VL2, MBT (Middle Box Traversal us-
ing VL2), and PortLand. We further break up VL2, MBT, and PortLand into two
separate configurations. In the first configuration (Hot) permanent flow entries are
pre-installed into switches, resulting in no trips to the controller. In the second con-
figuration (Cold) the ARP caches are filled, but no flow entries are pre-installed into
the switches. When a packet arrives at an edge switch and there is no matching flow,

58

it heads for the controller, where its trip through the routing engine pipeline may
generate flow entries for multiple switches. The APSP routing engine only supports
Hot operation. It does no reactive lookups and simply pushes out all possible paths
directly to the switches.

10-1 100 101 102 103

delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n PortLand - Hot

VL2 - Hot

MBT - Hot

VL2 - Cold

PortLand - Cold

MBT - Cold

Figure 6.5: Clos topology and CDF of 1-to-many host ping delays on the software
testbed using the topology. Leaf nodes in the topology represent end hosts.

APSP experiences slightly higher delay compared to PortLand-Hot and VL2-Hot,
due to the higher number of wildcard flow entries in the software switch, which are
scanned linearly to determine a match. PortLand-Hot and VL2-Hot both show similar
curves, and since they leverage topology information to reduce flow state, switch
traversal is faster. MBT-Hot is roughly one and a half times worse than regular
VL2-Hot because it must traverse a middle box in both directions, and experiences
delays from our repeater agent running on the middle box. VL2-Cold, MBT-Cold,
and PortLand-Cold, as expected, trail by over two orders of magnitude, because
both the ping request and response must pass up to the controller and back. Note
that these numbers are from an unoptimized Python implementation, running on a

59

single thread, with a worst case traffic pattern. Thus, the specific ping time of 10
ms is unimportant; our goal here is functional correctness and relative comparison
between routing schemes. For example, we can see from the graph that our PortLand
implementation is slower than the VL2 implementation in the Cold setting, possibly
because of its unoptimized memory accesses (i.e. PMAC-AMAC mapping table) and
the latency to install more entries at core switches and aggregation switches.

Our second topology is a Clos network shown at the top of Figure 6.5. This is the
topology used in the VL2 paper’s evaluation, except instead of a mix of 10 Gb/s and
1 Gb/s links, we have one link speed of whatever the CPU will support. As with
the result of Fat Tree topology, the bottom graph of Figure 6.5 shows a CDF of ping
times from the left-most host in the topology. The general trends are the same; flow
setups are two orders of magnitude more expensive than forwarding (due to trip to
the controller). Middlebox traversal has an unexpected knee. We conjecture that
the additional flow entries required by multiple hops exceeds the CPU cache, which
given linear lookups, would cause poor cache locality. These graphs are useful for
comparing the different routing engines, but clearly CPU overheads from running in
software result in low performance fidelity.

6.5.4 Experiment on Hardware Testbed

The hardware testbed described in Section 6.5.2 implements a k=4 Fat Tree, with
twelve core and aggregation switches and eight NetFPGAs for edge switches. Indi-
vidual virtual switches are connected together via physical loopback cables, and all
packets are processed in hardware at line-rate. Both switch types use the OpenFlow
0.8.9 reference distribution.

100 101 102

delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n

Proactive

Portland - Hot

Portland - Cold

Figure 6.6: CDF of 1 to many host ping delays on the hardware testbed.

60

Figure 6.6 confirms our expectation of lower variance in hardware than in software
— overall we can expect greater performance fidelity. PortLand-Hot and APSP show
identical delay curves, with minimal variation. Next, we attempt to gain insight into
tradeoffs between state management and flow setup delay.

6.5.5 Flow Table Size

To test our implementation and to illustrate the consequences of choosing different
flow entry timeout intervals, we preformed the following two tests. First, we run
our VL2 Ripcord application on the Clos topology on the software testbed, with
permanent flow entries, and perform an all-to-all ping. After the test, we query all
the switches and record the number of flows entries in each switch. Table 6.8 presents
the result. The choice of a CRC-based hash function to pick a path, combined with
a symmetric test and topology, yields evenly distributed flow entries at each level.
The ToR switch has many entries because it keeps per flow state. As discussed in
section 6.6, one way to solve this problem is to move the per-flow packet manipulation
functionality to the hosts. Indeed, [12] performs the IP-in-IP encapsulation at the
host. In the context of OpenFlow, this solution can be best realized by running an
Open vSwitch [35] at the hosts. Ripcord would control it just like any other OpenFlow
switch because of vSwitch’s support for the OpenFlow protocol.

The second experiment is the same as the first one, except that the idle flow timeout
interval is set to 3 seconds. Every 10 ms, we poll the switches and record the number
of flow entries. Table 6.9 shows the average, maximum, and 95th percentile of the
number of flow entries in each switch. As the table shows, because only a few entries
are actively used at any given time, expiring the idle ones dramatically reduces the
table size.

Switch Type # Instances # Entries (per instance)

Core 2 4

Aggregation 4 10

ToR 4 2780

Table 6.8: The number of flow entries installed at each switch by VL2 implementation
with no flow idle timeout.

6.5.6 Running Simultaneous Ripcord Applications

To test Ripcord’s ability to run multiple management applications simultaneously,
we run several experiments with both VL2 and Portland controlling a subset of traffic.
We randomly divided the hosts into two groups and configured the Authenticator-
Demultiplexer to classify the traffic within the first group as belonging to VL2 and

61

Switch ID Switch Type Avg #Entries Max 95th percentile

0 Core 3.88 4 4

1 Core 3.86 4 4

2 Aggr 7.61 10 8

3 Aggr 7.50 10 9

4 Aggr 7.73 10 9

5 Aggr 7.75 10 9

6 ToR 142.78 336 74

7 ToR 140.00 292 190

8 ToR 141.40 294 64

9 ToR 143.69 325 154

Table 6.9: The number of flow entries installed at each switch by VL2 implementation
with flow idle timeout of 3 seconds.

the traffic within the second group as belonging to Portland. In each experiment, we
run pings between hosts in each group and repeated the experiments on both Clos
and FatTree topologies.

Figure 6.7 illustrates a simplified scenario and shows the informaton flow. Hosts
H1 and H3 belong to VL2 and hosts H2 and H4 belong to Portland. H1 is sending
packets to H3 (path is shown in bold), and H4 is sending packets to H2 (path is
shown with a dashed line). When the first packets from these flows hit the first hop
ToR switches, the switches do not have any matching entry, and hence they forward
the packets to Ripcord. There Authenticator-Demultiplexer classifies the traffic and
delivers the FLOW IN event to the appropriate application, which eventually installs
the necessary entries in all switches on the path.

As the figure shows, some switches can be common to both paths. These switches
will contain flow entries for both applications. Hence, it is critical to make sure
that applications do not install conflicting entries. In general, this separation can
be achieved by tagging traffic belonging to different applications with diffrent VLAN
IDs. In our case, because of the specifics of Portland’s and VL2’s implementations,
their flow entries could not possibly collide and we did not implement VLAN tagging
because our hardware testbed did not support this optional functionality.

6.6 Scalability

A primary goal of Ripcord is to provide a research platform for data center net-
work architecture experimentation. To this end, a fundamental requirement for the
platform is that it does not hinder experiments with reasonable network sizes or limit

62

H1 H2 H3 H4

Authenticator
-Demultiplexer

App Engine
VL2

PortLand

ToR

Aggr

Core

Routing Engine

PKT_IN

FLOW_IN
FLOW_IN

Flow
Installer

Flow Table

DST_IP

DST_MAC

FLOW_OUT

FLOW_MOD

OutPort1

OutPort2

Match Action

Figure 6.7: Simultaneous running of multiple Ripcord Management Applications

the experimentation to artificially small data center networks, which would have little
value for the community. After all, many of the challenges in data center networking
stem directly from their scaling requirements.

We consider two of the primary scalability concerns with dynamic state in the
network and introducing centralization into the architecture: a) the number of con-
current, active flows may exceed the capacity of the switches, and b) a single controller
may become overwhelmed by the number of flow setup requests. We consider each of
these cases in turn.

While it is our experience that long-lived, any-to-any communication in a data
center is rare, there still exists the potential for exhausting switch state in the net-
work. We first point out that for most approaches, this problem is limited to the
ToR switches as aggregation and core layers can often handle flows in aggregate.
Secondly, if per-transport flow policy is not required, flows can be set up on a per-
source/destination pair basis which is limited by the number of servers attached to
the switch. Today chipsets are available which can support tens of thousands of flows,
which is suitable for moderate to large size workloads.

Another approach described in [35] proposes pushing network switching state into
the hypervisor layer on end hosts to overcome the hardware limitations of ToR
switches. With such a software-based switch, the issue of exhaustion at first-hop
switch can also be alleviated.

63

Flow setups can become a scalability bottleneck of the platform in terms of flow
setup latencies and throughput. We’ll discuss the scalability of setup latency first.
While many of the data center applications like MapReduce tolerate delays on the
order of tens of milliseconds, applications that have strict latency requirements may
not tolerate any extra delay incurred by setting up flow entries. For such demanding
applications, assuming a large enough flow table at the ToR switch either in hard-
ware or software, Ripcord can pre-install flow entries towards all possible network
destinations into the switch. In this proactive mode, therefore, the network virtually
behaves as if MPLS-tunneled, and applications are not exposed to additional latency
for flow setup. If the luxury of large flow tables is not available, additional decision
hints such as application priorities or communication pair likelihood can be used to
select pre-loaded flows. In our current prototype, such information could be stored
in the Configuration/Policy database module and/or topology database module.

Scaling flow setup throughput beyond the limits of a single controller requires that
the platform support multiple controller instances. However, before diving into the
details, it is worthwhile to explicitly differentiate between the scalability requirements
research and production quality platforms for data center networks.

The goal of Ripcord, at least in its current incarnation, is not to provide a researcher
with a production quality implementation. The implementation lacks in many as-
pects, such as in efficiency, robustness, and importantly Ripcord is built around a
simple, centralized, single-host state sharing mechanism. If subjected to the extreme
scalability and availability requirements of data center networks in production, this
mechanism is clearly insufficient.

In research experiments the lack of extreme scalability and availability properties
is a non-issue as long as the programming abstractions offered for the application
developers are similar to the ones, which would be provided in systems designed to
scale for production use. To this end, we briefly overview the scalability approaches
of both Portland and VL2:

• Portland centralizes all state sharing into a fabric manager component, which
manages the switch modules over OpenFlow. As such, the fabric manager
corresponds directly with a single Ripcord controller instance.

• VL2 assumes no single, centralized controller instance, but uses a distributed
directory system to share state among multiple controllers (agents). The direc-
tory system is essentially a strongly-consistent, reliable and centralized store,
which has an eventually consistent caching layer for reads on top.

64

The descriptions above suggest that the design of Ripcord is well aligned with
the scalability approaches of these individual proposals. In particular, Ripcord can
provide the platform for centralized single-controller designs like PortLand, while for
VL2 like designs, which rely on a distributed state sharing mechanism, Ripcord can
provide a single-host configuration database with the identical semantics. This is
clearly not scalable (nor highly-available), but the programming abstractions within
the controllers connected to the database will be the same as if a distributed state
sharing mechanism were used. Eventually, as Ripcord matures, it could also replace
this centralized, single-host configuration database with a distributed database.

6.7 Related Work

Ripcord is built on top of programmable switches and a logically centralized con-
trol platform. In our prototype we use OpenFlow [28] switches and NOX [16], an
open-source OpenFlow controller. OpenFlow is a vendor-agnostic interface to con-
trol network switches and routers. In particular, it provides an abstraction of the
flow-tables already present in most devices - they were originally placed there to hold
firewall rules. OpenFlow allows rules to be placed in a table, consisting of a <header
pattern, action> pair. If an arriving packet matches the header pattern, the as-
sociated action is performed. Actions are generally simple, such as forward to a port
or set of ports, drop, or send to the controller. Our use of OpenFlow was a matter
of familiarity and convenience. However, other than the table and port abstractions,
no low-level details of OpenFlow are exposed through Ripcord. Therefore, the Rip-
cord design should be compatible with other programmable switch technologies that
maintain table-entry level control of the network.

NOX is a network-wide operating system that controls a collection of switches and
routers using the OpenFlow protocol. NOX provides a global view of the topology,
and presents an API to hosted applications to both view and control the network state.
A hosted application might reactively respond to new flows, choose whether to allow
them and then install rules to determine their path. Otherwise, it could proactively
add rules to define how new flows will be routed. While NOX was designed to be a
general controller platform applicable to many environments, Ripcord was designed
around needs specific to the datacenter. This includes providing infrastructure for
managing structured topology, location independence, and service quality as well as
exposing higher-level abstractions, such as tenants. We chose NOX in large part due
to our familiarity with it, Ripcord could also have been implemented within other
centralized network control platforms such as Tesseract [13] or Maestro [6]. Like
NOX, both of these projects provide centralized development platforms on top of
which network control logics can be implemented.

65

Having described related technologies for programmable switches and controllers we
now discuss Ripcord in the context of recent data center networking proposals (e.g.,
VL2 [12], Monsoon [14], BCube [17], PLayer [20], and PortLand [32]). We note that
each of these networking proposals presents a solution based on specific requirements,
some of which overlap across solutions, but may be prioritized differently in each
solution. As a consequence specific architectural choices are made that may make it
difficult to accommodate new requirements, changes to data center environments or
modifications to the solution that attempt to tailor/tweak it for another data center
environment.

Ripcord is not in direct competition with any of these networking proposals, rather
it provides a platform that allows network administrators to experiment with one or
more of data center networking proposals (side-by-side if necessary), make modifi-
cations and evaluate the proposal in their own data center environments. Further,
whereas Ripcord does not include or propose any novel distributed algorithms for
managing data center networks, we posit that it provides a suitable platform for
experimentation in this space based on its modular design.

Ripcord is also similar in spirit to the broad testbased work which allows mult-
ple experiments to share the same infrastructure. Notable recent proposals include
VINI [5], and FlowVisor [45]. Ripcord differs from these and similar proposals in
that our goal is to construct a modular platform at the control level which provides
primitives useful in the data center context. To this end, we have designed multiple
components (such as the topology and monitoring interfaces) which aid (and limit!)
the applications suitable for running on Ripcord.

66

Chapter 7

Conclusion

7.1 Contribution Summary

This dissertation consists of two main contribution to achieve both high flexibility
and low cost/performance in packet forwarding and data center networking.

We have proposed SDF as a hybrid approach to building packet forwarding de-
vices. The SDF approach we have presented here contains nothing new; it merely
glues together two well-known components (software decisions and hardware classifi-
cation) into a complete forwarding solution. We have designed a high-level API that
allows forwarding solutions to be developed in a high-level language independent of
the low-level hardware implementation. The approach can be implemented on top of
OpenFlow or other similar hardware interfaces, or could be ported directly to com-
mercial switch SDKs. Our preliminary work suggests that this combination of known
components provides a flexible packet forwarding platform that, because it is based
on standard hardware (e.g., TCAMs), should offer competitive cost/performance.

Next we have presented Ripcord as a general platform for data center networking
and management. Instead of exposing a low-level interface, Ripcord provides a well-
defined, high-level interface across underlying networks. Ripcord is designed logically
centralized, multi-tenant friendly, and modular so as to have a complete network
view and to facilitate algorithms comparison and rapid prototyping. The platform
can be implemented on top of programmable switch technologies (e.g., OpenFlow
like our prototype) and centralized network controllers such as NOX. Our preliminary
experience with Ripcord suggests that Ripcord can be a good platform for data center
network architecture experiments.

67

7.2 Future Directions

More study on cache performance of SDF. Although our preliminary ex-
periments have shown promising results about cache locality and random denial-of-
service attacks, we do not claim to have solved all performance problems associated
with caching in SDF. While the proactive mode is clearly safer, the reactive mode
may still be an attractive choice considering how small the state requirements are to
achieve low miss rates. Thus, it would be interesting to evaluate more packet traces
and routing algorithms to figure out what operating environments well fit or does not
fit to SDF.

Forwarding flexibility in production networks? We think that SDF may prove
quite useful in building experimental networks. Especially, network architecture re-
searches could find a great value from SDF. However, its relevance to production
networks is more questionable, as the need for flexibility in that context remains an
open question.

Study on scalability of Ripcord. It is still an open question to what extent
the platform should scale to provide value to different communities. The research
community, which principally targets devising, rapidly developing, and evaluating
new ideas, could be an immediate beneficiary, even with networks on smaller scales.
For those networks, even our current Ripcord prototype can be an ideal vehicle since
it is capable of emulating a 100-node data center on a modern laptop computer and
it supports seamless porting from software emulation to real hardware testbeds. For
a designer of a production data center seeking radically new approaches to improve
networking performance, or trying to introduce competitive features, Ripcord may
also prove valuable, as long as the size of the testbed is not on the order of the
production network.

68

Bibliography

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. In SIGCOMM ’08: Proceedings of the
ACM SIGCOMM 2008 conference on Data communication, pages 63–74, New
York, NY, USA, 2008. ACM. pages 7

[2] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Over-
coming the internet impasse through virtualization. Computer, 38(4):34–41,
2005. pages 27

[3] Katerina J. Argyraki, Salman Baset, Byung-Gon Chun, Kevin R. Fall, Gianluca
Iannaccone, Allan Knies, Eddie Kohler, Maziar Manesh, Sergiu Nedevschi, and
Sylvia Ratnasamy. Can Software Routers Scale? In Proc. of PRESTO, 2008.
pages 22

[4] Arista Networks. http://www.aristanetworks.com. pages 35

[5] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford.
In VINI Veritas: Realistic and Controlled Network Experimentation. In Proc. of
SIGCOMM, Pisa, Italy, 2006. pages 27, 65

[6] Zheng Cai, Florin Dinu, Jie Zheng, Alan L. Cox, and T. S. Eugene Ng. The
Preliminary Design and Implementation of the Maestro Network Control Plat-
form. Technical Report TR08-13, Rice University, 2008. Available athttp:
//www.cs.rice.edu/~eugeneng/papers/Maestro-TR.pdf. pages 64

[7] Cavium Networks. http://www.caviumnetworks.com/. pages 34

[8] Cisco. Data Center Ethernet. http://www.cisco.com/go/dce. pages 7

[9] ControlPoint Developers Alliance. http://www.fulcrummicro.com/cda/. pages
5

[10] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin
Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.

69

Routebricks: exploiting parallelism to scale software routers. In SOSP ’09: Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 15–28, New York, NY, USA, 2009. ACM. pages 6

[11] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici,
and Laurent Mathy. Towards High Performance Virtual Routers on Commodity
Hardware. In Proc. of CoNEXT, 2008. pages 22, 34

[12] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. VL2: A Scalable and Flexible Data Center Network. In Proc. of
SIGCOMM, Barcelona, Spain, 2009. pages 2, 3, 4, 7, 28, 41, 42, 60, 65

[13] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer
Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A Clean Slate
4D Approach to Network Control and Management. ACM SIGCOMM CCR,
35(5):41–54, 2005. pages 64

[14] Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. Towards a next generation data center architecture: scalability and
commoditization. In PRESTO ’08: Proceedings of the ACM workshop on Pro-
grammable routers for extensible services of tomorrow, pages 57–62, New York,
NY, USA, 2008. ACM. pages 2, 4, 7, 65

[15] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick
McKeown, and Scott Shenker. Nox: towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, 2008. pages 14

[16] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick
McKeown, and Scott Shenker. Nox: towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, 2008. pages 43, 64

[17] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: a high performance,
server-centric network architecture for modular data centers. In SIGCOMM,
pages 63–74, 2009. pages 2, 4, 65

[18] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, and Pavlin Ra-
doslavov. Designing Extensible IP Router Software. In Proc. of NSDI, 2005.
pages 26

[19] Integrated Device Technology (IDT). http://www.idt.com/. pages 21

[20] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware switching
layer for data centers. SIGCOMM Comput. Commun. Rev., 38(4):51–62, 2008.
pages 2, 4, 56, 65

70

[21] James Kelly, Wladimir Araujo, and Kallol Banerjee. Rapid Service Creation
using the JUNOS SDK. In Proc. of PRESTO, 2009. pages 5

[22] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and Jennifer Rexford.
Revisiting Route Caching: The World Should Be Flat. In Proc. of PAM, 2009.
pages 14

[23] Changhoon Kim, Matthew Caesar, and Jennifer Rexford. Floodless in Seattle:
A Scalable Ethernet Architecture for Large Enterprises. In Proc. of SIGCOMM,
2008. pages 29, 32

[24] Murali Kodialam, T. V. Lakshman, and Sudipta Sengupta. Efficient and robust
routing of highly variable traffic. In In Proceedings of Third Workshop on Hot
Topics in Networks (HotNets-III, 2004. pages 7

[25] LBNL/ICSI Enterprise Tracing Project. http://www.icir.org/

enterprise-tracing. pages 35

[26] Linux-VServer, 2009. http://www.linux-vserver.org/. pages 28

[27] Guohan Lu, Yunfeng Shi, Chuanxiong Guo, and Yongguang Zhang. CAFE: A
Configurable pAcket Forwarding Engine for Data Center Networks. In Proc. of
PRESTO, pages 25–30, 2009. pages 6

[28] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: En-
abling Innovation in Campus Networks. ACM SIGCOMM CCR, 38(2):69–74,
2008. pages 14, 43, 64

[29] Jeffrey C. Mogul, Praveen Yalagandula, Jean Tourrilhes, Rick McGeer, Sujata
Banerjee, Tim Connors, and Puneet Sharma. Orphal: API Design Challenges
for Open Router Platforms on Proprietary Hardware. In Proc. of HotNets, 2008.
pages 5, 14

[30] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. NetFPGA: Reusable
Router Architecture for Experimental Research. In Proc. of PRESTO, 2008.
pages 22

[31] Netlogic Microsystems. http://www.netlogicmicro.com/. pages 21

[32] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson
Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin
Vahdat. Portland: a scalable fault-tolerant layer 2 data center network fabric. In
SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, pages 39–50, New York, NY, USA, 2009. ACM. pages 2, 3, 4,
7, 41, 42, 65

71

[33] OpenFlow Switch Consortium. http://www.openflowswitch.org. pages 56

[34] Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir. Experiences
Building PlanetLab. In Proc. of OSDI, pages 351–366, 2006. pages 28

[35] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado, and
Scott Shenker. Extending Networking into the Virtualization Layer. In 8th ACM
Workshop on Hot Topics in Networking (Hotnets), New York City, NY, October
2009. pages 60, 62

[36] Quagga Routing Suite. http://www.quagga.net. pages 26

[37] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. BGP Routing Stability
of Popular Destinations. In Proc. of IMW, pages 197–202, 2002. pages 35

[38] University of Oregon Route Views Project. http://www.routeviews.org. pages
30

[39] Gregor Schaffrath, Christoph Werle, Panagiotis Papadimitriou, Anja Feldmann,
Roland Bless, Adam Greenhalgh, Andreas Wundsam, Mario Kind, Olaf Maennel,
and Laurent Mathy. Network Virtualization Architecture: Proposal and Initial
Prototype. In Proc. of VISA, pages 63–72, Barcelona, Spain, 2009. pages 27

[40] Devavrat Shah and Pankaj Gupta. Fast Incremental Updates on Ternary-CAMs
for Routing Lookups and Packet Classification. In Proc. of HotI, 2000. pages 32

[41] Colleen Shannon, Emile Aben, kc claffy, and Dan Andersen. The CAIDA
Anonymized 2007 Internet Traces - Jan 2007. http://www.caida.org/data/

passive/passive_2007_dataset.xml. pages 35

[42] Colleen Shannon, Emile Aben, kc claffy, and Dan Andersen. The CAIDA
Anonymized 2008 Internet Traces - May 2008. http://www.caida.org/data/

passive/passive_2008_dataset.xml. pages 35

[43] Colleen Shannon, Emile Aben, kc claffy, and Dan Andersen. The CAIDA
Anonymized 2009 Internet Traces - Feb, Mar 2009. http:// www.caida.org/

data/passive/passive_2009_dataset.xml. pages 35

[44] Colleen Shannon, Emile Aben, kc claffy, Dan Andersen, and Nevil Brownlee.
The CAIDA OC48 Traces Dataset - Aug 2002. http://www.caida.org/data/

passive/passive_oc48_dataset.xml. pages 35

[45] Rob Sherwood, Michael Chan, Glen Gibb, Nikhil Handigol, , Te-Yuan Huang,
Peyman Kazemian, Masayoshi Kobayashi, David Underhill, Kok-Kiong Yap,
Guido Appenzeller, and Nick McKeown. Carving Research Slices Out of Your
Production Networks with OpenFlow, 2009. pages 52, 65

72

[46] Haoyu Song and Jonathan S. Turner. Fast Filter Updates in TCAMs for Packet
Classification. In Proc. of GLOBECOM, pages 147–160, 2006. pages 32

[47] Ed Spitznagel, David E. Taylor, and Jonathan S. Turner. Packet Classification
Using Extended TCAMs. In Proc. of ICNP, pages 120–131, November 2003.
pages 21

[48] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana.
Internet Indirection Infrastructure. In Proc. of SIGCOMM, 2002. pages 28, 33

[49] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In Proc. of SIGCOMM, pages 149–160, 2001. pages 28, 33

[50] Arsalan Tavakoli, Martin Casado, Teemu Koponen, and Scott Shenker. Applying
NOX to the Datacenter. In 8th ACM Workshop on Hot Topics in Networking
(Hotnets), New York City, NY, October 2009. pages 54

[51] J. Touch and R. Perlman. Transparent Interconnection of Lots of Links (TRILL):
Problem and Applicability Statement. RFC 5556 (Informational), May 2009.
pages 7

[52] Fang Yu, Randy H. Katz, and T. V. Lakshman. Efficient Multimatch Packet
Classification and Lookup with TCAM. In Proc. of HotI, 2004. pages 21

[53] Rui Zhang-Shen. Designing a predictable backbone network using valiant load-
balancing. PhD thesis, Stanford, CA, USA, 2007. Adviser-Mckeown, Nick. pages
7

