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ABSTRACT

This paper presents computationally efficient and accurate semi-empirical models of light
transfer for real-time diffuse reflectance spectroscopy. The models predict the diffuse re-
flectance of both (i) semi-infinite homogeneous and (ii) two-layer media exposed to normal
and collimated light. The two-layer medium consisted of a plane-parallel slab of finite thick-
ness over a semi-infinite layer with identical index of refraction but different absorption and
scattering properties. The model accounted for absorption and anisotropic scattering as
well as for internal reflection at the medium/air interface. All media were assumed to be
non-emitting, strongly forward scattering, with index of refraction between 1.0 and 1.44 and
transport single scattering albedo between 0.50 and 0.99. First, simple analytical expressions
for the diffuse reflectance of the semi-infinite and two-layer media considered were derived
using the two-flux approximation. Then, parameters appearing in the analytical expression
previously derived were instead fitted to match results from more accurate Monte Carlo
simulations. A single semi-empirical parameter was sufficient to relate the diffuse reflectance
to the radiative properties and thickness of the semi-infinite and two-layer media. The
present model can be used for a wide range of applications including non-invasive diagnosis
of biological tissue.
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1 INTRODUCTION

Diffuse reflectance spectroscopy consists of determining the radiative properties of an ab-
sorbing and scattering sample from diffuse reflectance measurements. It has been applied
to non-invasive health-monitoring of in-vivo biological tissues [1–7], quality control in agri-
cultural applications [8–12], and remote terrestrial sensing [13–16], for example. In many
biological applications, the irradiated medium can be modeled as a strongly scattering multi-
layer medium whose radiative properties are constant within each layer but differ from layer
to layer. For example, the human cervix [17], colon [18], and skin [19] have been modeled
as two-layer optical systems. Skin consists of an outer layer called the epidermis and of an
underlying layer called the dermis. The epidermis is characterized by strong absorption in
the ultraviolet and visible part of the spectrum due to melanin. On the other hand, the
blood and connective tissues are responsible for absorption and scattering in the dermis. In
addition, the absorption characteristics of blood depend on the concentrations of oxy- and
deoxy- hemoglobin [20].

Light transfer through turbid media such as biological tissues is governed by the radiative
transfer equation (RTE). The latter expresses an energy balance in a unit solid angle dΩ,
about the direction ŝ at location r̂. The steady state RTE in a homogeneous, absorbing,
scattering, but non-emitting medium is expressed as [21,22],

ŝ · ∇Iλ(r̂, ŝ) = −µa,λIλ(r̂, ŝ)− µs,λIλ(r̂, ŝ) +
µs,λ

4π

∫

4π

Iλ(r̂, ŝi)Φλ(ŝi, ŝ)dΩi (1)

where the intensity at location r̂ and in direction ŝ is denoted by Iλ(r̂, ŝ) and expressed in
W/cm2 · sr · nm. The linear spectral absorption and scattering coefficients are denoted by
µa,λ and µs,λ, respectively and are expressed in cm−1. The scattering phase function denoted
by Φλ(ŝ, ŝi) represents the probability that radiation propagating into the elementary solid
angle dΩi around direction ŝi will be scattered in direction ŝ. The first and second terms on
the right-hand side of Equation (1) represent the attenuation of the radiation intensity due to
absorption and out-scattering, respectively. The last term corresponds to the augmentation
of radiation due to in-scattering from all directions ŝi into direction ŝ. The contribution of
scattering to the overall extinction is represented by the single scattering albedo ωλ expressed
as,

ωλ =
µs,λ

µa,λ + µs,λ

(2)

The Henyey-Greenstein scattering phase function is an approximate expression that ac-
counts for the anisotropic nature of scattering and is given by [23],

Φλ(ŝi, ŝ) =
1− gλ

(1 + g2
λ − 2gλ cos Θ)3/2

(3)

The Henyey-Greenstein asymmetry factor gλ is the first moment of the scattering phase
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function and is defined as [23],

gλ =
1

4π

∫

4π

Φλ(ŝi, ŝ) cos ΘdΩi (4)

It varies between −1 and 1. If scattering is isotropic, then the phase function is constant and
gλ equals 0. For gλ close to -1 and 1, scattering is strongly backward or forward, respectively.
The Henyey-Greenstein phase function depends only on gλ and has been used extensively in
tissue optics [4, 24,25], computer animation [26,27], and astronomy [28,29], to name a few.

For the sake of clarity, the dependence of the radiative properties on wavelength will be
assumed and the subscript “λ” omitted henceforth. Furthermore, all analysis and results
will be presented in terms of the transport single scattering albedo ωtr defined as,

ωtr =
µs,tr

µs,tr + µa

=
µs(1− g)

µs(1− g) + µa

(5)

Here, µs,tr = µs(1 − g) is the transport scattering coefficient which accounts for both the
magnitude and anisotropy of the scattering phenomenon [21]. For example, in case of com-
plete forward scattering, i.e., g = 1.00, scattering has no effect on the propagation of light
through the medium and µs,tr = 0.0 [21].

The objective of this study is to develop simple and accurate expressions for the diffuse
reflectance a of semi-infinite and a two-layer absorbing and scattering media. Such expres-
sions could be combined with an inverse method to retrieve the radiation properties and
thickness of these media based on spectral diffuse reflectance measurements.

2 BACKGROUND

Explicit analytical solutions of the RTE can be found only for a limited range of geometries
and for simplified scattering phase functions [21,30]. Approximate or numerical solutions can
be obtained based on the two-flux approximation or Monte Carlo simulations, for example.

The Two-Flux Approximation

The one-dimensional RTE can be solved by the well-known two-flux approximation [31, 32]
(also called the Kubelka-Munk theory) in which the forward and backward fluxes are defined
as,

F+(z) = 2π

π/2∫

0

I(z, θ) cos θ sin θdθ and F−(z) = −2π

π∫

π/2

I(z, θ) cos θ sin θdθ (6)

where z is the depth within the medium estimated from the front surface and θ is the angle
measured from the inward normal (see Figure 1). Then, the RTE simplifies to a set of two
coupled linear equations [31,32],

1

S

dF+

dz
= −aF+ + F− (7)

1

S

dF−

dz
= −F+ + aF− (8)
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with a = (S +K)/S where K and S are the Kubelka-Munk (K-M) absorption and scattering
coefficients, respectively. They do not have any physical meaning [33] but are related to the
radiative properties µa and µs,tr and depend on the scattering phase function.

Equations (7) and (8) have been solved for a variety of slab geometries and boundary con-
ditions. Saunderson [34] used the two-flux approximation to predict the diffuse reflectance,
denoted by R̃−(a), of a semi-infinite homogeneous medium exposed to collimated and nor-
mally incident radiation with index mismatch at the air/medium interface as [34],

R̃−(a) = ρ01 + (1− ρ01)(1− ρ10)
R̃d(a)

1− ρ10R̃d(a)
(9)

where R̃d(a) = a − √
a2 − 1 is the diffuse reflectance of semi-infinite medium exposed to

diffuse irradiation as predicted by the two flux approximation. Note that the first term
ρ01 corresponds to the specular reflection of incident radiation by the surrounding/medium
interface while the second term accounts for the back-scattered radiation. The specular
reflectivity for normally incident radiation denoted by ρ01 is defined as [21],

ρ01 =

(
n1 − n0

n1 + n0

)2

(10)

The hemispherical-hemispherical reflectivity ρ10 is the fraction of radiation from within the
medium reflected back into the medium due to index mismatch [35] and assumed to be
diffusely incident upon the medium/air interface. It is given by [34–36],

ρ10 =

π/2∫

0

ρ′′(θi) sin 2θidθi (11)

where ρ′′(θi) is the directional specular reflectivity of the interface for angle of incidence θi

expressed as [21],

ρ′′(θi) =





1
2

[
sin2(θi − θt)
sin2(θi + θt)

+
tan2(θi − θt)
tan2(θi + θt)

]
for θi ≤ θc

1 for θi > θc

(12)

where θt is the angle of transmittance given by Snell’s law (i.e., n0 sin θt = n1 sin θi) and θc

is the critical angle defined as θc = sin−1(n0/n1) [21].
Moreover, the diffuse reflectance of a two-layer system composed of a plane-parallel slab

(layer 1) of thickness L1 over a semi-infinite layer (layer 2) exposed to collimated and normally
incident irradiation has been derived as [34,35],

R̃=(a1, a2, Y1) = ρ01+
(1− ρ01)(1− ρ10)[b1R̃d(a2) + (1− a1R̃d(a2)) tanh(Y1)]

b1(1− ρ10R̃d(a2)) + [a1(ρ10R̃d(a2) + 1)− ρ2
10 − R̃d(a2)] tanh(Y1)

(13)

where aj = (Sj + Kj)/Sj, bj =
√

a2
j − 1 where subscript “j” refers to medium 1 or 2, and

the K-M optical thickness is given by Y1 = b1S1L1.
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If the medium is isotropically scattering then K = 2µa and S = µs,tr [21, 37]. However,
when scattering is anisotropic, K and S depend on ωtr. To find this relationship, the following
approximate phase function can be used to reduce the RTE into a form that can be solved
analytically [21,22,30,38],

Φλ(ŝi, ŝ) = [4gδ(1− cos Θ) + (1− g)] (14)

It has the same zeroth and first moments as the Henyey-Greenstein phase function [Equation
(3)] which are equal to 1 and g, respectively. Van Gemert and Star [22] showed that the
expression of the diffuse reflectance and transmittance found by solving the 1D RTE assuming
Equation (14) has the same algebraic form as the solution developed from the two-flux
approximation. Then, they developed the following relationship between the K-M absorption
and scattering coefficients K and S on the one hand and µa and µs,tr on the other,

µa = ηK and µs,tr = χS (15)

where, η = (φ− 1)(1− ωtr)/ζ(φ + 1) and χ = −ωtr(φ− φ−1)/(2ζ) (16)

The parameter φ is given by [22],

φ =
ζ + ln(1− ζ)

ζ − ln(1 + ζ)
(17)

where ζ is the root of the characteristic equation [30],

ωtr =
2ζ

ln [(1 + ζ)/(1− ζ)]
(18)

To simplify the estimation of the diffuse reflectance, we solved Equation (18) numerically
and fitted a third order polynomial to yield,

ζ2 =
47

52
+

31

49
ωtr − 49

54
ω2

tr −
17

27
ω3

tr (19)

The relative difference between Equation (19) and the exact solution of Equation (18) was
found to be less than 1% for 0.40 < ωtr < 1.00. Finally, the K-M optical thickness is given
by,

Y1 = ζ(µa + µs,tr)L1 = ζτtr,1 (20)

where, τtr,1 = (µa + µs,tr)L1 is the transport optical thickness of a slab of thickness L1 [21].

Monte Carlo Methods

Alternatively, Monte Carlo methods are commonly used to numerically solve the RTE [39–
43]. To do so, a stochastic model is constructed such that the expected value of a certain
random variable is equivalent to the value of physical quantity that is determined by the
exact differential equation [44]. The expected value is estimated by sampling the random
variable multiple times. In effect, by repeating the simulation, the variance of the estimate
diminishes. Thus, the solution may be found with arbitrary accuracy by increasing the
number of simulations, albeit at the cost of time [45].
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Therefore, Monte Carlo simulations are difficult to use in inverse methods associated with
diffuse reflectance spectroscopy [21]. Indeed, the forward problem of evaluating the diffuse
reflectance must be solved numerous times to iteratively determine the medium’s radiative
properties. Instead, Gardner et al. [41] developed a semi-empirical model for one-dimensional
light transfer through a semi-infinite medium exposed to collimated incident radiation based
on Monte Carlo simulations. An analytical model of the fluence profile in the medium was
developed using the diffusion approximation. The constants of integration, instead of being
determined analytically, were found by fitting them to results from Monte Carlo simulations.
The predictions of local fluence by the semi-empirical model compared well with results from
Monte Carlo simulations and could be rapidly estimated.

The objective of this study is to develop a semi-empirical model for the diffuse reflectance
of a non-emitting, absorbing and strongly forward scattering medium consisting of two layers
exposed to collimated incident radiation. An approach similar to that used by Gardner et
al. [41] but based on the two-flux approximation is developed in this study.

3 METHODS

Model Geometry and Radiative Properties

Figure 1 shows the one-dimensional geometries investigated in this study. First, a homoge-

Figure 1: Schematic of the semi-infinite and two-layer media considered along with coordi-
nate system and boundary conditions.

neous semi-infinite slab characterized by µa, µs, g, and n1 was considered. A wide range of
property values was explored namely 0.3 ≤ ωtr ≤ 0.99, 0.70 ≤ g ≤ 0.90, and n1=1.00, 1.33,
1.44, 1.77, and 2.00.

Moreover, a two-layer medium was considered. It consisted of a plane-parallel slab (Layer
1) characterized by µa,1, µs,tr,1, g1, n1 and thickness L1 supported by a semi-infinite sub-
layer (Layer 2) characterized by µa,2 and µs,tr,2, and g2. The polar angle θ is taken relative
to the inward surface normal. The physical distance from the surface is denoted by z and
measured in centimeters. The thickness of Layer 1, denoted by L1, was considered between
0 and infinity. The incident light source was modeled as a collimated, monochromatic, and
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normally incident beam of infinite radius and intensity I0 = q0δ(θ). The quantity q0 denotes
the radiative flux of the collimated beam and δ(θ) is the Dirac delta function. The air/slab
interface and the interface between the slab and the semi-infinite sub-layer are assumed to
be optically smooth. Under these conditions, radiative transfer can be considered as one-
dimensional [21, 46]. Light scattering was assumed to dominate over absorption in both
layers and to be strongly forward. The transport single scattering albedo of the slab ωtr,1

and of the sub-layer ωtr,2 varied between 0.50 and 0.99. The Henyey-Greenstein asymmetry
factors of the two layers g1 and g2 varied between 0.70 and 0.90. These ranges correspond,
but are not limited to, biological tissues such as the skin, muscle, and brain [4]. Finally, the
index of refraction was assumed to be identical within the two layers but different from that
of the surroundings. The values of refractive index investigated were n1 = n2 = 1.00, 1.33,
and 1.44, corresponding to vacuum, water in the visible [47], and biological tissues in the
visible and near-infrared part of the electromagnetic spectrum [4,24]. The surrounding was
assumed to be air or vacuum so that n0 = 1.00.

The one-dimensional RTE given in Equation (1) was solved numerically for both geome-
tries after specifying the boundary conditions and selecting the method of solution.

Boundary Conditions

Due to index mismatch, the collimated intensity incident onto the air/slab interface is re-
flected and refracted according to Fresnel’s equations and Snell’s law, respectively. The flux
transmitted through the air/slab interface is (1− ρ01)q0 while the reflected flux is ρ01q0. In
addition, light from within the slab and incident onto the slab/air interface at an oblique
angle θi is specularly reflected with intensity ρ′′(θi)I(0, π − θi). On the other hand, light
back-scattered from within the medium that is incident on the slab/air interface at an angle
θi larger than the critical angle undergoes total internal reflection, as illustrated in Figure
1. Therefore, the boundary conditions of the RTE at the slab/air interface (z = 0) can be
expressed as [21],

I(0, θ) = (1− ρ01)q0δ(θ) + ρ′′(θ)I(0, π − θ) for 0 ≤ θ ≤ π/2 (21)

Furthermore, the intensity vanishes as z tends to infinity, i.e.,

I(z →∞, θ) = 0 for − π ≤ θ ≤ π (22)

Note that no reflection or refraction takes place at the slab/sub-layer interface since they
have the same index of refraction. Thus, no boundary conditions need be imposed.

Method of Solution

The RTE was solved using the Monte Carlo simulation software developed by Wang and
Jacques [48] for simulating light transfer through multilayer non-emitting, absorbing and
scattering media. The Henyey-Greenstein scattering phase function, given by Equation
(3), was used to account for anisotropic scattering. A complete and detail description of
the implementation and theoretical underpinnings of this software is given in Ref. [48].
The variance in the prediction of the diffuse reflectance increases with decreasing single
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scattering albedo since absorption by the medium dominated over scattering resulting in
fewer back-scattered photons. Thus, the number of simulated photon packets per simulation
was increased until the variance associated with the estimate of the diffuse reflectance fell
below 1% the most stringent case of a homogeneous medium with ωtr = 0.50. Each simulation
required 1,000,000 photon packets or less to achieve the convergence criteria.

Diffuse Reflectance

The total intensity of the light reflected from semi-infinite or two-layer media is the sum
of the specularly reflected intensity and the intensity back-scattered by the medium and
transmitted through the slab/air interface. In practice, this quantity can be measured in-
vivo by a variety of optical instruments such as an integrating sphere coupled to a detector [4].
It is denoted by Ir(θt) and expressed as,

Ir(θt) = ρ01q0δ(π − θt) + [1− ρ′′(θi)]I(0, π − θi) for 0 ≤ θi ≤ π/2 (23)

where θi is given by Snell’s law. The specularly reflected intensity ρ01q0δ(π−θt) was ignored in
this study. In practice, this is achieved by illuminating the medium with polarized light [49].
The specularly reflected intensity remains polarized and can be filtered by a linear polarizer
before reaching the detector [49]. The back-scattered light is depolarized due to multiple
scattering in the medium and passes unattenuated through the polarizer filter to reach the
detector. Thus, the diffuse reflectance R is defined as the ratio of the back-scattered radiative
flux qr to the incident radiative flux, q0, i.e., R = qr/q0, where qr is expressed as,

qr = −2π

π∫

π/2

[1− ρ′′(θt)]I(0, π − θt) cos θt sin θtdθt (24)

The goal of the study is to develop an expression to rapidly predict the diffuse reflectance of a
two-layer medium as a function of its radiative and geometrical properties, namely n1 = n2,
L1, µa,1, µs,1, µa,2, µs,2, g1, and g2. As an intermediate step, an expression for the reflectance
of a semi-infinite medium is developed.

4 ANALYSIS

Semi-Empirical Diffuse Reflectance of Semi-Infinite Media

This section aims to determine the relationship between the diffuse reflectance R− from a
semi-infinite layer and its transport single scattering albedo ωtr with higher accuracy than the
original two-flux approximation. Prediction accuracy was calculated relative to results from
Monte Carlo simulations. Figure 2 shows the diffuse reflectance R− as a function of ωtr for
n1 = 1.00 for different values of g along with the predictions from the two-flux approximation
given by Equations (9) and values of a obtained from Equations (15) to (17) and Equation
(19). It is evident that the diffuse reflectance R− increases with ωtr as scattering dominates
over absorption and more light is back-scattered by the medium. Furthermore, the diffuse
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Figure 2: Diffuse reflectance of a homogeneous semi-infinite medium predicted by Monte
Carlo simulations (symbols) and the two-flux approximation [Equations (9) and (19)] (dash
line) for n1 = 1.00, 0.3 ≤ ωtr ≤ 1.00, and 0.70 ≤ g ≤ 0.90.

reflectance is almost completely determined by ωtr and nearly independent of the Henyey-
Greenstein asymmetry factor g in the range of interest. This is known as the similarity
relation [38].

Moreover, the reflectance predicted by the two-flux approximation follows a similar trend
as that predicted by Monte Carlo simulations (Figure 2). However, the relative difference
varies from 100% to 5% as ωtr increases from 0.3 to 1.0 for all values of g considered. This
can be attributed to the fact that Equation (11) used to determine ρ10 was derived with the
assumption that intensity at the medium/air interface was diffuse [34, 35]. Unfortunately,
it is not the case [50]. Thus, unlike Monte Carlo simulations, ρ10 used in the two-flux
approximation does not accurately account for the optical phenomena at the medium/air
interface.

Consequently, Equation (9) predicting the reflectance of a semi-infinite medium was
replaced by the following semi-empirical expression,

R−(ωtr) = [1− ρ01][1− ρ̂10(ωtr)]
R̂d(ωtr)

1− ρ̂10(ωtr)R̂d(ωtr)
(25)

where ρ01 is given by Equation (10). To account for the fact that intensity I(z = 0,−1 ≤
µ ≤ 0) inside the medium is not diffuse, the reflectivity ρ10 and the reflectance R̃d appearing
in Equation (9) were respectively replaced by ρ̂10 and R̂d assumed to be polynomial functions
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of a(ωtr),

ρ̂10(ωtr) = ρ10 +
i=N∑
i=0

Ai[a(ωtr)]
i (26)

R̂d(ωtr) = R̃d(a(ωtr)) +
i=N∑
i=0

Bi[a(ωtr)]
i (27)

where (Ai)0≤i≤N and (Bi)0≤i≤N are regression coefficients and N is the polynomial order.
These parameters were found by minimizing the sum of the squared residuals between the
reflectance R− obtained by Monte Carlo simulations and that predicted by Equations (25)
through (27). Numerical results were found for n1 = 1.00, 1.33, 1.44, 1.77, and 2.00. The
polynomial order N was increased until the residual between the diffuse reflectance deter-
mined by Monte Carlo simulations and Equation (25) was small and random. This condition
was met with N = 3. More precisely, for 0.70 ≤ g ≤ 0.90, the residual was less than (i) 10%
for ωtr ≥ 0.40, (ii) 5% for ωtr ≥ 0.50, and (iii) 2% for ωtr ≥ 0.70.

Figure 3 shows the diffuse reflectance from a semi-infinite medium as a function of its
transport single scattering albedo ωtr for different values of n1 and g. Predictions by Equa-
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Figure 3: Diffuse reflectance of a semi-infinite homogeneous medium predicted by Monte
Carlo simulations and Equations (25) for n1 = 1.00, 1.33, 1.44, 1.77, and 2.00, 0.3≤ ωtr ≤
1.0, and 0.7 ≤ g ≤ 0.9.

tions (25) through (27) are also plotted for the regression coefficients (Ai)0≤i≤3 and (Bi)0≤i≤3

reported in Table 1. The similarity relationship previously observed for the case of n1 = 1.00
(Figure 2) was also valid for other values of n1. Thus, the diffuse reflectance of a semi-infinite
medium R− is only a function of (i) the index of refraction n1 and (ii) the transport single
scattering albedo ωtr.
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Table 1: Regression coefficients, (Ai)0≤i≤3 and (Bi)0≤i≤3, used in Equation (26) to estimate
the diffuse reflectance R− of a semi-infinite homogeneous medium with index of refraction
n1 = 1.33, 1.44, 1.77, and 2.00.

n1 i = 0 1 2 3
1.00 Ai = 0 0 0 0

Bi = −6.387× 10−2 −1.282× 10−2 5.701× 10−3 −4.503× 10−4

1.33 Ai = −6.738× 10−1 1.767 −1.554 5.855× 10−1

Bi = −9.898× 10−2 6.117× 10−3 3.774× 10−1 −6.291× 10−1

1.44 Ai = −6.696× 10−1 1.853 −1.732 6.791× 10−1

Bi = −1.189× 10−1 7.524× 10−3 5.606× 10−1 −9.807× 10−1

1.77 Ai = −6.322× 10−1 1.716 −1.625 6.574× 10−1

Bi = −1.192× 10−1 7.863× 10−3 7.001× 10−1 −1.254
2.00 Ai = −4.688× 10−1 1.234 −1.139 4.544× 10−1

Bi = −8.223× 10−2 5.441× 10−3 6.325× 10−1 −1.123

Diffuse Reflectance of Two-Layer Media - Two-Flux Approximation

Figure 4a shows the diffuse reflectance of the two-layer medium R̃=(a1, a2, Y1) predicted by
Equation (13) as a function of the K-M optical thickness Y1 for 9 pairs of parameters a1 and
a2 varying between 1 and 6 while ρ01 = 0.033 and ρ10 = 0.56. These values corresponds to
ωtr,1 and ωtr,2 varying between 0.50 and 1.00, n0 = 1.00 and n1 = n2 = 1.44. Figure 4a shows
that the diffuse reflectance of the two-layer medium progresses from R̃−(a2) to R̃−(a1) as Y1

increases from 10−3 to 6. Indeed, there are two asymptotic cases,

R̃=(a1, a2, Y1) −→
Y1→0

R̃−(a2) and R̃=(a1, a2, Y1) −→
Y1→∞

R̃−(a1) (28)

where R̃−(a) is given by Equation (9) and shown in Figure 4a. In other words, the two-layer
medium behaves as a semi-infinite medium as the top layer becomes either optically thin or
thick. This behavior suggests the definition of a reduced reflectance as,

R̃∗ =
R̃=(a1, a2, Y1)− R̃−(a2)

R̃−(a1)− R̃−(a2)
(29)

where R̃∗ increases from 0 to 1 as Y1 varies from 0 to infinity. After combining Equations
(13) and (29), the reduced reflectance can be expressed as a function of two dimensionless
parameters α̃ and Y1,

R̃∗(α̃, Y1) =
tanh(Y1)

1/α̃ + (1− 1/α̃) tanh(Y1)
(30)

where α̃ is given by

α̃ = 1 +
ρ10 + R̃d(a2)a1[ρ10R̃d(a2) + 1]√

a2
1 − 1[ρ10R̃d(a2)− 1]

(31)

Figure 4b shows R̃∗ as a function of Y1 for the same values of a1 and a2 used to produce Figure
4a. Unlike R̃= showed in Figure 4a, R̃∗ is nearly independent of a1 and a2. Furthermore, α̃
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Figure 4: (a) Diffuse reflectance of two-layer optical medium R̃=(a1, a2, Y1) as a function of Y1

predicted by Equation (13). Asymptotic values of R−(a) were computed from Equation (9).
(b) Reduced diffuse reflectance R̃∗ given by Equation (29) as a function of Y1 for different
values of a1 and a2, ρ01 = 0.033 and ρ10 = 0.56. The legend applies to both Figures.

was found to be nearly constant and equal to 2.0 for a1 and a2 between 1.0 and 6.0 or ωtr,1

and ωtr,2 between 0.50 and 0.99. Similar results were obtained for other values of n1 = n2

between 1.00 and 2.00.

Diffuse Reflectance of a Two-Layer System - Semi-Empirical Ex-
pression

A semi-empirical approach similar to that presented above for a semi-infinite medium was
applied to the two-layer medium described in Figure 1 to improve the accuracy of the two-
flux approximation in predicting the diffuse reflectance of two-layer media. Results from
Monte Carlo simulations presented in this section correspond to the case where g1 = g2.
However, similar results holds for a given pair of ωtr,1 and ωtr,2 when g1 and g2 are different
and regardless of their values between 0.7 and 0.9. This will be shown numerically in the
following section.

Figures 5a and 5c show the diffuse reflectance R= of a two-layer system determined
by Monte Carlo simulations as a function of Y1 for ωtr,2 = 0.479 and ωtr,2 = 0.958 with
g1 = g2 = 0.77, n1 = n2 = 1.44 and ωtr,1 ranging between 0.50 and 0.99.

The asymptotic values for smaller and larger values of Y1 were calculated using Equations
(25) through (27). The slope of R=(Y1) was found to be positive for ωtr,1 > ωtr,2 and negative
otherwise. Furthermore, the slope of R=(Y1) with respect to Y1 increases as the difference
between ωtr,1 and ωtr,2 increases.

Here also, a reduced reflectance R∗ can be defined by analogy with R̃∗ given by Equation
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Figure 5: Diffuse reflectance R= predicted by Monte Carlo simulations as a function of Y1

and corresponding reduced reflectance R∗ [Equation (32)] for n1 = 1.44 and (a, b) ωtr,2 =
0.479 and (c,d) ωtr,2 = 0.958. Predictions of R= by Equations (33) and (34) are also shown
(solid line).
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(29),

R∗ =
R= −R−(ωtr,2)

R−(ωtr,1)−R−(ωtr,2)
(32)

Note that the predictions of the single layer diffuse reflectance by the two-flux approximation
R̃−(a1) and R̃−(a2) are replaced by the more accurate R−(ωtr,1) and R−(ωtr,2) predicted by
Equation (25). Figures 5b and 5d show the reduced reflectance R∗ as a function of Y1 for
the same parameters used to produce Figures 5a and 5b, respectively. It establishes that R∗

collapses onto a single curve for ωtr,1 ranging between 0.50 and 0.99. In fact, no value of R∗

deviates from the mean value of R∗ by more than 10% for all ωtr,1.
The evolution of R∗ differs significantly from R̃∗ predicted by the two-flux approximation

and given by Equations (30) and (31). However, Equation (30) can be used if the parameter
α̃ is replaced by an empirical parameter α, i.e.,

R∗ =
tanh(Y1)

1/α + (1− 1/α) tanh(Y1)
(33)

where α was found by least squares fitting of Monte Carlo simulations for R∗. A single value
of α was sufficient to fit the results from Monte Carlo simulations for given values of n1 and
ωtr,2 and different values of ωtr,1 and g, i.e., α = α(n1, ωtr,2). Predictions of the reduced
reflectance R∗ as a function of Y1 by Equation (33) using α = 1.104 are in close agreement
with the more accurate Monte Carlo simulations. Thus, the diffuse reflectance of a two-layer
medium can be expressed as,

R= = R∗[R−(n1, ωtr,1)−R−(n1, ωtr,2)] + R−(n1, ωtr,2) (34)

where R− and R∗ are given by Equations (25) and (33), respectively. The reconstruction
of the diffuse reflectance R= from Equation (34) agrees well with predictions from Monte
Carlo simulations. The primary source of disagreement lies in the 2 to 5% relative error
in R−(ωtr,1) and R−(ωtr,2) between Monte Carlo simulations and predictions by Equations
(25) to (27) for ωtr ≤ 0.70. For example, in Figure 5a, for ωtr,1 = 0.479, the reduced diffuse
reflectance predicted by Equations (33) deviate from Monte Carlo simulations by up to 6%.
On the other hand, for ωtr,1 = 0.958, the predictions do not deviate by more than 2%.

The above analysis was repeated for 0.50 ≤ ωtr,1 ≤ 0.99, 0.70 ≤ g1 = g2 ≤ 0.90, and
0.50 ≤ ωtr,2 ≤ 0.99 for different values of n1 = n2. Figure 6a shows the parameter 1/α found
for n1 = 1.44 and 0.70 ≤ g1 = g2 ≤ 0.90 as a function of ωtr,2. It is apparent that 1/α
varies slightly with g1 = g2 and ωtr,1 for a given ωtr,2. Figure 6b shows 1/α as a function of
ωtr,2 for n1 = 1.00, 1.33 and 1.44 and 0.70 ≤ g1 = g2 ≤ 0.90. Also shown are the following
approximate polynomial expressions for 1/α given by,

1/α = C(n1)ω
2
tr,2 + D(n1)ωtr,2 + E(n1) (35)

where C, D, and E depend on n1 and are given in Table 2 for n1 = 1.00, 1.33, and 1.44.
Unlike a polynomial or other series expansion, expressing R∗ by Equation (33) is well behaved
in and outside the pertinent range of Y1. It is attractive, also, because it can be estimated
using the single semi-empirical parameter α. In other words, the diffuse reflectance of a
two-layer medium, which, a priori, depends on eight parameters (µa,1, µs,1, L1, µa,2, µs,2, g1,
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Figure 6: (a) Relationship between ωtr,2 and 1/α determined for n1 = n2=1.44 and 0.70 ≤
g1 = g2 ≤ 0.90. (b) Relationship between ωtr,2 and 1/α [Equation (35) and Table 2] for
n1 = n2 = 1.00, 1.33 and 1.44 and 0.70 ≤ g1 = g2 ≤ 0.90.

g2, and n1 = n2) was reduced to a function of only three dimensionless parameters, namely
(Y1, ωtr,1, α). The parameter α(n1, ωtr,2) provides intuitive insight into the effects of the top
layer on the diffuse reflectance of the two-layer medium. Differentiating Equation (33) with

respect to Y1 and setting Y1 = 0 yields α, i.e., ∂R∗
∂Y1

(Y1 = 0, ωtr,1, ωtr,2) = α. In other words,

α is a measure of how effectively the top layer optically “shields” the semi-infinite layer. For
larger α, R= quickly progresses from R−(ωtr,1) and R−(ωtr,2).

For a given ωtr,2, 1/α varies with g1 = g2 up to 7% about the quadratic fits. However,
the reduced diffuse reflectance R∗ was found to be relatively insensitive to these variations.
In fact, for the index matched case (n1 = n0), 1/α can be treated as a constant equal to
1/α = 0.656. This results in difference in the predictions of R= by Equation (34) less than
0.1%.

Table 2: Regression coefficients in the expression of 1/α given by Equation (35).

n1 C D E
1.00 0.529 -0.759 0.831
1.33 -0.324 -0.016 0.874
1.44 -0.569 -0.055 0.993
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5 RESULTS AND DISCUSSION

Comparison of Model Predictions with Monte Carlo Simulations

The accuracy of Equations (33) through (35) with values of C, D, and E from Table 2 was
assessed numerically for 10−2 ≤ Y1 ≤ 6, 0.50 ≤ ωtr,1 ≤ 0.99, and 0.50 ≤ ω2,tr ≤ 0.99,
0.70 ≤ g1 ≤ 0.90, 0.70 ≤ g2 ≤ 0.90 and n1 = 1.00, 1.33 and 1.44 for values different
from those used to generate the semi-empirical model. For Y1 outside of the said range, the
two-layer model [Equations (25), (33) and (35)] can be replaced by the single-layer model
[Equation (25)]. For comparison, an additional 10,000 Monte Carlo simulations of light
transfer through the two-layer medium were performed.

Figure 7a illustrates the relative error between predictions by Equation (34) and results
from Monte Carlo simulations as a function of the diffuse reflectance R= for n1 = 1.44,
ωtr,1 ≥ 0.50, ωtr,2 ≥ 0.50 and Y1 ≥ 0. Similar results were obtained for different values of
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Figure 7: (a) Relative error between predictions by Equation (34) and Monte Carlo simu-
lations for n1 = n2 = 1.44. (b) Histogram of the relative error for 10,000 simulations for
n1 = n2 = 1.00, 1.33, and 1.44.

n1. The relative error ranged from -15% to 17%. It is evident that as the absolute value
of R= decreases, the maximum relative error increases. Figure 7b shows the frequency of
the relative error for n1 = 1.00, 1.33, and 1.44. It is established that the relative error is
similar for each index of refraction and less than 20%. Quantitatively, the mean and standard
deviation of the relative error averaged over all n1 are -0.16 and 1.72%, respectively. While
the method performs well on average, the relative error can be larger than 10%. This is
caused by two factors: (i) the inaccuracy of 1/α [Equation (35)] in describing the two layer
system and (ii) inaccuracy of Equation (25) in predicting R−(ωtr). It was determined that the
effects of the latter dominate over the former and that larger relative error occurs for small
ωtr,1 and ωtr,2. The accuracy of Equation (25) in predicting R−(ωtr) decreases for decreasing
ωtr. This, in turn, increases the relative error in Equation (34) since R= is a function of
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R−. In fact, the maximum relative error of R= predicted by Equation (34) compared with
Monte Carlo simulations was less than (i) 17% for 0.50 < ωtr,1 and 0.50 < ωtr,2, (ii) 10% for
0.60 < ωtr,1 and ωtr,2 ≥ 0.60, (iii) 4.5% for ωtr,1 and ωtr,2 ≥ 0.75, and (iv) 1.5% for ωtr,1 and
ωtr,2 ≥ 0.85.

Reflectance of Human Skin

This section focuses on diffuse reflectance spectroscopy of human skin as a way to demon-
strate the usefulness and accuracy of the developed model. Optical properties of skin reported
in the literature are summarized before predicting the spectral diffuse reflectance between
490 and 650 nm. For these wavelengths, the epidermis and the dermis have large and signif-
icantly different absorption coefficients so that human skin behaves optically as a two layer
medium. In contrast, the epidermis is essentially transparent in the near infrared and the
scattering albedo approaches unity [51]. Then, the present semi-empirical model is no longer
valid.

The optical properties of the human skin in the visible range depend on various biological
factors and can be found in the literature [4]. The epidermis is composed mainly of dead
cells, keratinocytes, melanocytes, and langerhans [40]. Melanocytes synthesize melanin, the
skin protein that dominates light absorption in the epidermis (Layer 1). The absorption
coefficient of the epidermis µa,1(λ) can be expressed as [52],

µa,1(λ) = µa,melfmel + (1− fmel)µa,back (36)

where fmel is the volume fraction of melanocytes in the epidermis and µa,back(λ) is the
background absorption of human flesh given by [52,53],

µa,back(λ) = 7.84× 108λ−3.255 (37)

Furthermore, the absorption coefficient of a single melanocytes as a function of wavelength
has been approximated as [54],

µa,mel(λ) = 6.60× 1011λ−3.33 (38)

Here λ is expressed in nm and µa,back(λ) and µa,mel(λ) are in cm−1.
The absorption coefficient of the dermis (Layer 2) is determined primarily by the absorp-

tion of blood [55,56] and can be written as [51,57],

µa,2(λ) = fbloodµa,blood(λ) + (1− fblood)µa,back(λ) (39)

where fblood is the volume fraction of the dermis occupied by blood. Visible light absorption
by blood is dominated by the presence of oxyhemoglobin and deoxyhemoglobin so that
µa,blood = µa,oxy + µa,deoxy. The absorption coefficient of oxyhemoglobin is given by [51,57],

µa,oxy(λ) = εoxy(λ)ChemeSO2/66, 500 (40)

where εoxy is the molar extinction coefficient of oxyhemoglobin [in cm−1/(mole/L)] with
molecular weight of 66,500 g/mole, Cheme is the concentration ratio of hemoglobin in blood
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[g/L], and SO2 is the oxygen saturation defined as the mass ratio of oxyhemoglobin to total
hemoglobin (0 ≤ SO2 ≤ 100%) [20]. Similarly, the absorption coefficient of deoxyhemoglobin
is given by [51,57],

µa,deoxy(λ) = εdeoxy(λ)Cheme(1− SO2)/66, 500 (41)

where εdeoxy is the molar extinction coefficient of deoxyhemoglobin. Unlike the blood vol-
ume fblood and oxygen saturation SO2 which may vary from location to location and with
metabolic state, the average value of Cheme = 150 g/L is typically used [51, 58, 59]. Fur-
thermore, the molar extinction coefficients of oxy- and deoxy- hemoglobin for a wide range
of wavelengths are available in the literature [51, 60–63] and reproduced in Figure 8 in the
visible range 450 to 700 nm.

500 550 600 650 700
0

1

2

3

4

5

6
x 10

4

Wavelength, λ (nm)

M
ol

ar
 e

xt
in

ct
io

n 
co

ef
fic

ie
nt

, 
ε 

[c
m

−1
/(

m
ol

e/
L)

]

 

 

Oxyhemoglobin
Deoxyhemoglobin

Figure 8: Spectral molar extinction coefficient of human oxy- and deoxy- hemoglobin in the
visible range (480 to 700 nm) [51].

The transport scattering coefficient of biological media has been shown to follow a power
law dependence on wavelength [64],

µs,tr = Ctrλ
k (42)

where λ is expressed in nm and µs,tr in cm−1. For both epidermis and dermis, the values
of Ctr and k were taken as 5.50 × 105 cm−1 and −1.30, respectively [65]. The thickness
of the epidermis on the hand and arm ranges between 50 and 130 µm [66]. The blood
volume fraction and melanocyte volume fraction range from 0.2 to 7% and from 1 to 43%,
respectively [52]. In this simulation, the epidermal thickness was taken as L1 = 100 µm. The
epidermis and dermis were assumed to have the same index of refraction equal to 1.44 [24].
The blood volume and melanin concentrations were taken as fblood = 2.5% and fmel = 1.0%
which are typical of healthy, lightly pigmented human skin [52].
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Figure 9 shows the diffuse reflectance of human skin for SO2 = 0 and 100% as predicted
by Monte Carlo simulations and Equations (33) through (35) as a function of wavelength.
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Figure 9: Comparisons of diffuse reflectance of skin predicted by Monte Carlo simulations
and by Equation (34) as a function of wavelength for fmel = 1.0%, fblood = 2.5%, Lepi = 100
µm and SO2 = 0 and 100%.

For high values of SO2, i.e., for highly oxygenated blood, the skin exhibits the absorption
peaks of oxyhemoglobin around 542 and 580 nm. For low SO2, or oxygen depleted blood, the
skin exhibits the single absorption peak of deoxyhemoglobin near 560 nm. In both cases, the
semi-empirical model developed in this study agrees with Monte Carlo simulations within less
than 8% relative error. The relative error is less than 3% for wavelength between 525 and 600
nm where absorption by oxy- and deoxy-hemoglobin is most distinct. Thus, the model can
be used in diffuse reflectance spectroscopy for monitoring oxygenation and microcirculation
of skin and wound.

Figure 10 shows in-vivo diffuse reflectance measurements from the top of the index finger
of a healthy, Caucasian male subject along with a reconstruction of the same reflectance
spectrum by the present model [Equations (33) through (35) and Equations (36) through
(42)]. The reflectance spectrum was measured using a FDA approved hyperspectral camera
(OxyVu, HyperMed Inc., Burlington MA). The reconstruction was performed by minimizing
the root mean square error between the observed and reconstructed diffuse reflectance while
varying fmel, fblood, SO2, and L1. The Levenberg-Marquardt algorithm [67] was used to
perform the non-linear fit. The best-fit parameters found were fmel = 1.03%, fblood = 2.79%,
and SO2 = 29.0% and L1 = 66 µm. The SO2 value predicted by the present method is
in close agreement with the measurement obtained with OxyVu (28%) [20]. Furthermore,
the retrieved value of fmel was consistent with that of Caucasian skin [52] and the estimate
of fblood and Lepi fell within the range of physiologically realistic values [52, 66]. Details
discussion of the capability and robustness of inverse method using the semi-empirical model
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Figure 10: Experimentally measured diffuse reflectance from the top of the index finger of
a healthy, Caucasian subject along with reconstructed reflectance predicted by Equations
(33) through (35) and Equations (36) through (42) with best fit parameters fmel = 1.03%,
fblood = 2.79%, SO2 = 29.0% and L1 = 66 µm.

developed in this paper paper and application to hyperspectral imaging of human skin will
be reported in a subsequent publication.

6 CONCLUSION

A model of diffuse reflectance was developed for non-emitting, absorbing, and scattering
semi-infinite and two-layer media. Scattering was assumed to be strongly forward and to
dominate over absorption. First, the two-flux approximation was used to find an approximate
expression for the diffuse reflectance of semi-infinite medium. Then, the coefficients of the
expression were modified with numerical data from Monte Carlo simulations resulting in a
semi-empirical model. Predictions from the semi-empirical model agree with results from
Monte Carlo simulations within 10% for ωtr > 0.50. This relative error decreases to less than
2% for ωtr > 0.70.

Similarly, an approximate reflectance R̃= and reduced reflectance R̃∗ were derived from
the two-flux approximation of a two-layer medium. It was shown that R̃∗ is a function
of the two-flux optical thickness Y1 and parameter α̃. To account for phenomena taking
place at the medium/air interface, α̃ was replaced by an empirical parameter α which was
fitted to match results from Monte Carlo simulations. Therefore, the reflectance of the two-
layer medium could be expressed as a function of a single empirical parameter. The diffuse
reflectance predicted by the semi-empirical model fell within 10% of results from Monte Carlo
simulations for 0.60 < ωtr,1 and 0.60 < ωtr,2 and the different values of n1 and τ1 considered
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in this study.
Finally, the semi-empirical model for two-layer media was applied to lightly pigmented

human skin with properties taken from the literature. The model developed in this study
agrees with Monte Carlo simulations within 3% relative error for wavelengths between 480
and 650 nm.

NOMENCLATURE

a, b K-M dimensionless parameters
Ai, Bi Single layer model fit coefficients
C, D,E Two layer fit coefficients
Ctr Scattering constant in Equation (42)
F−, F+ Diffuse backward and forward fluxes, W/cm2·nm
g Henyey-Greenstein asymmetry factor
I Radiation intensity, W/cm2·sr·nm
I0 Incident radiation intensity at the slab surface, W/cm2·sr·nm
Ir Intensity of reflected light, W/cm2·sr·nm
k Scattering constant in Equation (42)
K K-M effective absorption coefficient, 1/cm
L1 Thickness of slab layer, cm
n0 Index of refraction of the surrounding
n1,2 Index of refraction of layer 1 and 2
N Polynomial order
q0 Radiative flux of incident beam, W/cm2·nm
qr Back-scattered radiative flux, W/cm2·nm
r̂ Position vector, cm
R Diffuse reflectance
R∗ Reduced reflectance
ŝ Unit vector in a given direction
S K-M effective scattering coefficient, 1/cm
SO2 Oxygen saturation, %
Y K-M optical thickness
z Distance into the medium surface, cm

Greek symbols
α Empirical fit coefficient of the two layer reflectance model
β Total extinction coefficient, 1/cm
η, χ Parameters defined by Equation (15)
θ Polar angle, rad
θi Angle of incidence on interface, rad
θt Angle of transmitted radiation through interface, rad
θc Critical angle for total internal reflection, rad
φ Parameter defined by Equations (17)
Φ Scattering phase function, sr−1
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µ Director cosine, µ = cos θ
µa Linear absorption coefficient, 1/cm
µs Linear scattering coefficient, 1/cm
µs,tr Transport scattering coefficient (= µs(1− g)), 1/cm
ω Single scattering albedo
ωtr Transport single scattering albedo
Ω Solid angle, sr
ρ01 Specular reflectivity to normally incident light
ρ10 Hemispherical-hemispherical reflectivity
ρ′′(θi) Directional specular reflectivity
τtr,1 Transport optical thickness of the slab layer

Subscripts
1 Refers to layer 1
2 Refers to layer 2
λ Wavelength
= Refers to two-layer medium
− Refers to semi-infinite medium
back Background
deoxy Dexyhemoglobin
d Hemispherical-hemispherical reflectance with index matched boundary
oxy Oxyhemoglobin
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