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ABSTRACT OF THE DISSERTATION 

 

Epigenetic fluctuations underlie gene expression  

timescales and variability 

 

by  

 

Ryan Lannan 

Doctor of Philosophy in Biochemistry, Molecular and Structural Biology 

University of California, Los Angeles, 2019 

Professor Roy Wollman, Chair 

 

The human body is a patchwork of tissues working collectively to maintain homeostasis and 

achieve fitness objectives. Within these tissues are cells, the smallest units of life, which 

produce a tissue’s morphology through emergent behavior defined by a specific pattern of gene 

expression. However, the observation and interpretation of this behavior clash, creating serious 

contradictions that need to be resolved. Isogenic populations of cells exhibit significant 

phenotypic heterogeneity but are still treated as monolithic entities exhibiting homogenous 

behavior under equilibrium. Holding this contradiction together are theories of cell behavior that 

posit stochastic fluctuations as responsible for heterogeneity, treating it as different snapshots of 

a memoryless, dynamical, process. To test this theory, we’ve tested the persistence of distinct 

cellular states, such as the allele-specific variability of an exogenous reporter system and the 
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intracellular calcium response to ATP, finding a lack of ergodicity. For the former we have also 

measured the co-fluctuation of underlying chromatin states, linking expression variability to 

variability in histone modifications. This work challenges existing paradigms of cellular 

heterogeneity, implying deeper regulation of cell state and more functionally stratified cell 

biology. 
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Introduction 

 Since the discovery of cells as the smallest unit of life, biology has aimed to catalog and 

classify cells by form and function. Prior to quantitative biological measurements, early 

classification of human cells relied on qualitative visual differences in morphology and behavior. 

But the dawn of molecular biology brought with it a new understanding, defining “cell types” as 

groups of cells exhibiting distinct patterns of gene expression, of which morphology and 

behavior are emergent properties. Using this definition, researchers have identified over 210 

different cell types in the human body [14]. Up until recently, these types were each treated as 

the limit of functional stratification within the body’s hierarchical organization. Supporting this 

view were the techniques available to researchers. Measurements of cell populations oftentimes 

captured ensemble averages, and this data was interpreted with the assumption that this 

reflected the biological mechanisms acting within individual cells.  

 

The advent of technologies such as fluorescent tagging and single-cell genomics have 

produced a wealth of information undermining this assumption. Even within isogenic populations 

of cells, significant cellular heterogeneity exists, and single-cell transcriptomic studies affirm that 

cells occupy a large and varied landscape of possible states [4,7,9,15]. But does this 

heterogeneity provide meaningful biological information, i.e., is this functional heterogeneity [1]? 

The definition of “functional” may be vague, but it is safe to say that heterogeneity that affects 

cell fate, or any other irreversible phenotypic consequences, would qualify. Cellular 

heterogeneity in cell fate decision-making is seen in eukaryotic systems such as the selection of 

color photoreceptors in Drosophila [8] and the selection of blood cell lineages in mammalian 

cells [5]. Resistance to cancer drugs has been linked to epigenetic states inhabited by 

subpopulations of cells [10,11].     
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Where do we draw the line between this functional heterogeneity and the concept of cell 

types? One starting point may be whether this heterogeneity is stochastic or deterministic, that 

is, whether these cells are receiving the same molecular instructions and behaving differently 

due to stochastic chemical processes, or whether these cells are receiving different instructions, 

leading to different outcomes [12]. If there are persistent deterministic differences between 

isogenic cells, it would deconstruct the concept of cell types and raise doubts as to whether they 

are discrete entities [6]. Persistent cellular identities would also challenge studies relying on the 

assumption of ergodicity [2,13]. The assumption of ergodicity allows researchers to assume that 

snapshots of cell populations accurately represent the time averaged behaviors of small 

numbers of cells, as each cell is able to move through the entire state space [3]. An approach 

that doesn’t rely on this assumption is decomposing heterogeneous distributions into more 

homogenous subpopulations [16]. The two-state model of gene expression relies on both the 

assumption of ergodicity, and the assumption that intrinsic protein-level heterogeneity is the 

product of stochastic RNA bursting. By testing the persistence and determinism of gene 

expression variability, we can better understand its emergent property, phenotypic variability. 

 

 In order to study cellular heterogeneity, we developed a reporter system designed to 

isolate allele-specific gene expression. We imaged this system to measure the persistence of 

allele-specific expression identity and compared this data to in silico models. We then isolated 

distinct subpopulations from our reporter system and let them relax over long timescales. This 

relaxation was correlated with allele-specific chromatin states. In further work we also measure 

the timescale of identity of the intracellular calcium response to stress, isolating a persistent 

identity generated by pre-existing factors as opposed to intrinsic fluctuations. From this body of 

work, we propose more deterministic mechanisms underlying phenotypic and expression 

variability that challenge current models of gene expression and imply more granular functional 

stratification in multicellular systems. 
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CHAPTER 1 

Persistence of gene expression variability and underlying factors 

 

Abstract 

Isogenic populations of mammalian cells exhibit significant gene expression variability. This 

variability can be separated into two components, allele-specific and global processes. A 

popular theoretical model, the two-state model of gene expression, explains expression 

heterogeneity as arising from stochastic RNA bursting, an allele-specific process. However, this 

model does not leave room for cell state variability and assumes ergodicity of cell populations. 

We created a reporter system that isolates allele-specific variability and measures its 

persistence in imaging and long-term fluctuation analysis experiments. Our fluctuation analysis 

experiment was then used to measure the enrichment of histone modifications associated with 

transcriptional activation, such as H3K4me3, and discovered co-fluctuation with expression. 

This work challenges the two-state model, and posits a competing model that accounts for 

chromatin fluctuations as an upstream regulator of expression variability. 

 

Introduction 

When faced with a changing environment, cells must constantly attune their responses 

to match inputs and maintain homeostasis. Naively, one would expect that clonal populations 

faced with a homogenous environment would have an optimized, monolithic, response. 

However, this is not the case with single protein expression, which varies widely across clonal 

populations of mammalian cells. This variability may provide functionality, producing specialized 
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roles in complex tissues [1,15,14]. However, this variability can also have drastic consequences 

for cell fate and phenotype [8,25]. Determining the degree to which variability is due to defined 

cellular stratification or due to stochastic processes requires decomposing the contributions 

towards protein expression variability.  

 

The empirical split in protein expression variability is between extrinsic sources and 

intrinsic sources of variability. This split has been defined in the context of covariance between 

reporter genes, where covarying signal is defined as extrinsic variability and the non-covarying 

signal is defined as intrinsic variability [16]. In a cellular context, we would refer to extrinsic 

variability as global factors related to the underlying cell state, and intrinsic variability as allele-

specific factors. Not represented in this dichotomy are trans-regulatory elements, which can be 

quantified as intrinsic or extrinsic variability depending on the presence of identical regulatory 

elements in both genes of interest. Without controlling for this regulation, upstream allele-

specific variability can influence downstream variance [35]. However, when using two reporters 

with identical regulatory elements, the remaining intrinsic variation has two possible 

contributors, cis-regulatory elements and stochastic RNA bursting.  

 

The current model of gene expression, the two-state model, assumes that intrinsic 

variability is defined by stochastic RNA bursting, creating an over-dispersed, non-Poisson 

distribution of expression [10,11,36]. The initial evidence for bursting protein expression was 

heterogeneous responses to stimuli [24], and was only directly observed thanks to live imaging 

technologies nearly two decades later [41]. According to the two-state model, these “bursts” are 

caused by stochastic transitions between a gene’s ON and OFF states [23]. When ON, a gene 

produces a burst of mRNA transcripts, which subsequently causes a sharp increase in 

translation further downstream. Intuitively, we understand this model because of the low copy 
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number of DNA and other molecules regulating expression, making transcription dependent on 

stochastic chemical processes [16,30].  

 

The two-state model accounts for the high level of variability seen across cell 

populations, intuitively follows our understanding of transcription, and is consistent with 

observations tracking transcript number in single cells [28]. Yet this model makes the implicit 

assumption that cells are identical and interchangeable once extrinsic factors are removed [38]. 

This assumption is made not due to evidence of absence of distinguishing features, but due to a 

lack of high resolution data. As resolution in single-cell data increases, the possibility that a 

“hidden variable” explaining this heterogeneity will be found also increases. The local chromatin 

environment has been implicated in impacting protein expression at different genomic positions 

[13]. Furthermore, specific transcription start site (TSS) associated histone modifications such 

as H3K4me3 and H3K79me2 have been shown to have impacts on gene activity [31] and 

expression variability [5] respectively. If the impacts of these variables have any heterogeneity 

across cell populations, then they could act as potential “hidden variables” creating a 

deterministic distribution of expression states.  

 

Another consequence of the assumptions inherent to the two-state model is that intrinsic 

protein expression must have a rapid mixing timescale. The stochastic transitions of genes 

between ON and OFF states are memoryless in the two-state model, so the timescale of mixing 

must follow the timescale of protein dilution and degradation. This makes any expression 

identity persisting longer than cell cycle suspect, as it would seem to contradict the two-state 

model. Sigal et al., 2006 saw persistent expression identity but attributed it to upstream trans-

factors [35]. Phillips et al., 2019 saw correlations in transcriptional activity between sister cells 

[29], but couldn’t determine whether inherited factors or cellular microenvironment were 
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responsible for this phenomenon. One possible refutation of the two-state model would be the 

identification of a long term expression identity that is directly attributed to a specific cis-

regulatory mechanism. 

 

Using imaging on a two reporter system, we have determined that allele-specific 

variability decays at a timescale longer than predicted by the two-state model. A new model that 

incorporates this finding would need to both explain the breadth of allele-specific variability while 

also providing a mechanism that accounts for the slow fluctuations in expression identity. Our 

model incorporates a modular transcription rate (Km(t)) that is heterogeneous across a cell 

population and proposes that this modularity is tuned through the presence of different levels of 

histone modifications. To test this model, we implemented a fluctuation analysis technique that 

allowed for the measurement of allele-specific gene expression across ten days. This technique 

was then utilized to measure the levels of histone modifications using ChIP-qPCR. This 

fluctuation analysis demonstrates the co-fluctuation of allele-specific gene expression variability 

and the histone modification H3K4me3 at the promoter region, demonstrating the 

incompleteness of the two-state model. This cis-fluctuating component may act as a “hidden 

variable” creating a distribution of expression states within a population, implying more defined 

cellular stratification within clonal populations than previously predicted. 

 

Results 

In order to accurately quantify the contribution of allele-specific variability, we need to 

decompose the contributions towards protein expression variability using a multiple reporter 

system [16]. In a two reporter system, covariance between the reporters is defined as extrinsic 

variability while non-correlated noise maps to allele-specific variability for each reporter. Given 
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our interest in quantifying allele-specific variability for one reporter, but not the whole system, 

our design incorporates multiple copies of our co-varying reporter. This eliminated the allele-

specific component for our co-varying reporter by diluting the cis-effects affecting each copy, 

leaving a signal more defined by global fluctuations.  

 

These global fluctuations can affect system dynamics and stochasticity, creating 

statistical dependence between intrinsic and extrinsic noise [33]. Given this we represented the 

relationship between intrinsic and extrinsic variability using the definition of variance and the 

double expectation theorem, shown in Equation 1. Here, A represents a random variable, such 

as our singly-integrated reporter, while C represents the extrinsic factors influencing A, 

empirically defined by our multiply-integrated covarying reporters.   

 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑉𝑎𝑟(𝐴|𝐶)) + 𝑉𝑎𝑟(𝐸(𝐴|𝐶))   (Equation 1) 

  total              intrinsic               extrinsic 

 

We applied this equation to single cell data through binning on C and calculating 

appropriate expectation values and variability, isolating a conditioned A signal (Supplementary 

Fig. 1.1). This data was gathered on a system designed in K562, a suspension cell line derived 

from chronic myelogenous leukemia. We performed long term imaging (41 hours) on our system 

in order to quantify the timescale of allele-specific variability. The signal of our singly integrated 

reporter was conditioned on our multiply integrated co-varying reporters, removing extrinsic 

factors including trans-regulatory components, and isolating its allele-specific components (Fig. 

1.1a). We then calculated the autocorrelation of these conditioned cell traces over the imaged 

time span (Fig. 1.1d).  
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Figure 1.1: In vitro imaging shows persistent expression identity longer than cell cycle 

(a) Cell traces of singly-integrated fluorescent reporter (mVenus) conditioned on multiply-
integrated reporter signal (mTurquoise2) in K562. Both reporters are regulated by the ubiquitin 
promoter. Fluorescence imaging was performed for 41 hours. (b) Distributions of in vitro system 
and in silico two-state model traces at the first time point. Cost function for simulated annealing 
was evaluated on the absolute difference between the curves when binning on protein signal.         
(c) Cell traces of in silico two-state model fit to distribution of in vitro system using simulated 
annealing. (d) Autocorrelation plots of in vitro system traces (mVenus) 
versus in silico two-state model traces over 41 hours.  
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To contextualize this autocorrelation against the two-state model we developed a 

simulation comprised of seven first order biochemical reactions that capture its structural 

assumptions (Supplementary Table 1.1). From our starting parameter values we applied a 

Gillespie stochastic simulation [18] to generate single cell protein level traces (Fig. 1.1c). The 

distribution of these values was compared against the distribution of experimental values to 

generate a cost function (Fig. 1.1b) Simulated annealing was used to find an optimal parameter 

space for five parameters until our cost function showed less than 10% difference between 

experimental and simulated distributions (Fig 1b) (final values in Supplementary Table 1.1). The 

autocorrelation of the optimized traces was then compared to imaging data (Fig. 1.1d) showing 

a more persistent identity exists in vitro than in our in silico theoretical assumptions. 

 

This slow timescale of expression identity could originate from an upstream component 

(Sigal, 2006). As our reporter system shares trans-regulatory elements, they cannot be 

responsible for the slow timescale. However, TSS-associated histone modifications such as 

H3K4me3 or H3K79me2 remain as possibilities. A distribution in enrichment of these 

modifications could lead to impacts in downstream gene expression, contributing both to the 

breadth of expression variability as well as its long relaxation timescale. We developed a 

simulation exemplifying this hypothesis (Fig. 1.2b), altering the original model (Fig. 1.2a) by 

adding an upstream component influencing a time-dependent transcription rate, translating into 

variability in burst size. Synthesis and decay processes were incorporated into our model for the 

upstream component, representing enrichment and removal of histone modifications. These 

random birth/death events create a time-dependent transcription rate for any given cell (Fig. 

1.2c), which has precedence in previously published models [12,21,34].  
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Figure 1.2: Slow fluctuating epigenetic factors can explain persistent timescale 

(a) Representation of the two-state model of gene expression. (b) Representation of our slow-
fluctuation model, with a spectrum of states holding different transcription rates. (c) Plot showing 
distribution of transcription rates for both the two-state model and our slow fluctuation model 
which was fed into their respective simulations. (d) Distributions of in vitro system and our in 
silico slow fluctuation model traces at the first time point. Cost function for simulated annealing 
was evaluated on the absolute difference between the curves when binning on protein signal. 
(e) Autocorrelation plots of in vitro system traces (mVenus) versus in silico slow fluctuation 
model traces over 41 hours. 
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We tested our slow cis-fluctuation model in a parallel approach to the one used to 

validate the two-state model. Our new model consists of nine first order biochemical reactions 

that can be subjected to a Gillespie stochastic simulation in order to generate single cell protein 

traces (Supplementary Table 1.2). The distribution of these traces was also compared against 

experimental data to generate a cost function (Fig. 1.2d). Simulated annealing was used to find 

an optimal parameter space for five parameters while the remaining four parameters were 

preset (final values in Supplementary Table 1.2). The autocorrelation of the optimized traces 

was compared to imaging data (Fig. 1.2e), demonstrating the slow cis-fluctuation model’s 

confluence with our in vitro study. This demonstrates the plausibility of an upstream component 

influencing a time-dependent transcription rate as an underlying mechanism contributing to both 

the distribution of allele-specific variability and its long timescale. 

 

Verifying our slow cis-fluctuation model requires further characterization of this timescale 

and exploration of its mechanistic underpinnings. Isolating this slow timescale can be 

accomplished by multi-day tracking, removing the influence of short-term promoter fluctuations. 

Exploring its mechanism requires a form of tracking that provides for batch analysis. To cover 

both we developed a fluctuation analysis protocol that isolates discrete gene expression states, 

namely the top, middle, and bottom quintile of the allele-specific expression distribution, and 

tracks their expression across ten days using flow cytometry (Fig. 1.3a). Isolated quintiles were 

conditioned on covarying signals through modified fluorescence-activated cell sorting (FACS) 

(Fig. 1.3b). BD FACSDiva files were written by MATLAB scripts, creating customizable gates. 

Internal controls were introduced by permanent lentiviral fluorescent labelling of the original cell 

population and spiking isolated quintiles with these labeled subpopulations, allowing for the 

removal of well-to-well variability by normalizing quintile signal with the full labeled population 

(Fig. 1.3c).  
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Figure 1.3: Multi-day expression identity not due to upstream transcription factors or 
stochastic fluctuations  
 
(a) Cell traces of imaging (mVenus conditioned on mTurquoise2 signal) separated into the 
bottom, middle, and top quintiles and tracked by percentile over 41 hours. (b) Diagram of multi-
day fluctuation analysis protocol using FACS. Example input population is a K562 system 
containing singly-integrated EGFP reporter and multiply-integrated TagBFP reporters, each 
regulated distinctly (ubiquitin and CMV respectively). Bottom, middle and top quintiles of EGFP 
expression as conditioned on TagBFP signal using our FACSHack were isolated. Photobleach 
control population was isolated simultaneously on same gate as bottom quintile. (c) Internal 
control (lentivirally labeled) populations are shown as green histograms with the isolated 
populations (no labelling) they were spiked into for normalization of inter-well variability and 
percentile measurement. (d) Relaxation of EGFP signal after conditional isolation by FACS. 
Initial timepoint based on FACS isolation data. Subsequent data gathered from daily flow 
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experiments, with percentiles being determined by normalization against spiked population.    
(e) Relaxation of EGFP signal for photobleach control experiment. Control generated by 
artificially lowering fluorescence signal of full reporter system population using 474 nm light too 
approximately lowest quintile signal. Relaxation compared against relaxation of naturally 
isolated bottom quintile. In silico populations also shown, simulated using slow fluctuating model 
and recapitulating similar dynamics. (f) Relaxation of EGFP signal for control utilizing shared 
upstream regulation. Input system contains singly-integrated EGFP reporter, singly-integrated 
tdTomato reporter and multiply-integrated TagBFP reporters. Both EGFP and tdTomato share 
regulation by ubiquitin promoter. Input isolation used standard conditioning on TagBFP signal as 
well as differential isolation on all permutations of top half/bottom half tdTomato as well as top 
decile, middle decile and bottom decile EGFP.  
 
 

Several reporter systems were evaluated using our fluctuation analysis protocol. Figure 

1.3d depicts the analysis of a system with a single reporter regulated by the ubiquitin reporter 

and covarying multiple reporters regulated by the CMV reporter. These relaxation curves 

demonstrate multi-day timescales, with the top quintile demonstrating a half-life of 0.95 days 

and the bottom quintile demonstrating a half-life of 1.40 days. However, this system doesn’t 

adequately remove trans-regulation and doesn’t quantify the relative timescale of allele-specific 

promoter fluctuations. To exclude the possibility of trans-regulation, a second system (Fig. 1.3f) 

demonstrates the lack of influence of a co-regulated reporter. Discrete expression states were 

isolated through two conditioned gates, the first isolating the top half and bottom half of 

expression for a RFP reporter and then separated into the top, middle and bottom deciles for an 

eGFP reporter, both of which are co-regulated by the ubiquitin reporter. The lack of significant 

change in timescale or relaxation for any given eGFP decile given different RFP expression 

levels demonstrates a lack of correlation and implies that the slow timescale is due to an allele-

specific factor, not upstream trans-regulation. 

 

Assuming that the distribution of allele-specific variability is due to both the heterogeneity 

generated by promoter fluctuations and a cis-fluctuating component, by isolating discrete 

expression states we would also enrich for specific states within the distribution of this 

component. However, the full expression distribution would average out these states, so if this 
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distribution was artificially depressed, its relaxation to the mean wouldn’t be defined by the slow 

component, it would be defined by protein birth/death rates and promoter fluctuation timescales. 

To create an artificially depressed state, we used photobleaching prior to FACS sorting, altering 

the reporter signal to be fluorescently identical with the bottom quintile of the expression 

distribution, then isolated the cells with the same gate as the bottom quintile (Fig. 1.3b). 

Relaxation of this artificially depressed population is more rapid than the bottom quintile of 

allele-specific variability, suggesting a fundamental difference between these populations (Fig. 

1.3e). This confirms the presence of a cis-fluctuating component with a multi-day timescale that 

impacts gene expression variability. 

 

Identifying the mechanism of our cis-fluctuating component requires the linking of an 

epigenetic and allele-specific factor to gene expression variability. TSS-associated histone 

modifications like H3K4me3 or H3K79me2 are productive avenues of exploration due to their 

known impact on gene expression across different loci [5,31]. Moving down this avenue, our 

approach was using our fluctuation analysis protocol to gather large numbers of cells from 

discrete expression states and assess their enrichment for likely histone modifications 

immediately upon isolation, and after ten days of relaxation (Fig. 1.4a). Isolation was performed 

on the bottom, middle and top deciles of ubiquitin-regulated EGFP signal as conditioned on 

forward scatter. Assessment was performed by ChIP-qPCR at the transcription start site of the 

ubiquitin promoter. An immunoglobulin G (IgG) negative control showed minimal background, 

validating further antibody pulldowns (Fig. 1.4b). Enrichment levels of H3K79me2 remained 

constant across discrete expression states and across time, showing no significant pattern that 

can be linked to our cis-fluctuating component (Fig. 1.4c). However, enrichment of H3K4me3 is 

heterogeneous after initial isolation, showing a higher enrichment for the top decile of 

expression relative to the middle and bottom deciles (Fig. 1.4d). This pattern relaxes by day 11, 

showing lessened enrichment (Fig. 1.4d), which is confluent with our observations in Figure 1.3.  
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Figure 1.4: H3K4me3 enrichment co-fluctuates with gene expression variability 
 
(a) Diagram of expression isolation protocol for ChIP analysis using FACS. Example input 
population is a K562 system containing singly-integrated EGFP reporter. Bottom, middle and 
top deciles of EGFP expression as conditioned on forward-scatter signal using our FACSHack 
were isolated. Post-isolation, populations were separated for analysis immediately following 
isolation as well as analysis ten days after isolation. Populations were immunoprecipitated by 
IgG negative control, anti-H3K79me2, and anti-H3K4me3 antibodies. (b) Bar graph showing 
relative enrichment as measured by qPCR signal (percent input as metric) with the negative 
control IgG antibody (c) Bar graph showing relative enrichment as measured by qPCR signal 
(percent input as metric) with the anti-H3K79me2 antibody. (d) Bar graph showing relative 
enrichment as measured by qPCR signal (percent input as metric) with the anti-H3K4me3 
antibody. Day 0 shows significant enrichment (p = 0.0087) for the top 10% population. Day 11 
shows a relaxation of this enrichment (p = 0.16268).   
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This links our slow cis-fluctuations in allele specific variability with H3K4me3 enrichment, 

implying that a hidden distribution of epigenetic states underlies the breadth of gene expression 

variability. 

 

Discussion 

In this work we isolate a cis-fluctuating component of gene expression which we linked 

to the histone modification H3K4me3. Our approach was to compare the timescale of relaxation 

of in vitro allele-specific variability against both a model representing the assumptions of the 

two-state model and an experimental control that approximates the timescale of relaxation due 

to stochastic RNA bursting. In both of these cases, a long term allele-specific component 

persisted beyond the expectations of the two-state model. This component was then found to 

relax on a similar timescale as enrichment of the histone modification H3K4me3, which is 

associated with high levels of expression at the loci we measured. This demonstrates cellular 

heterogeneity in underlying chromatin states that influence gene expression, disproving the 

assumption that expression variability is a snapshot of identical processes stochastically 

fluctuating between different states. 

 

This finding seems overdue given the breadth of work implicating positional effects and 

histone modification as impacting transcription regulation [4,30]. The acknowledgement that 

chromatin regulation impacts transcriptional activity seems to already imply a distribution of 

epigenetic states underlying expression variability. The likelihood of uniform enrichment levels 

across isogenic cell populations is low due to the same molecular stochasticity cited by the two-

state model, and any deterministic effects of heterogeneous enrichment levels would be carried 

downstream. Despite this intuition, the two-state model is popular in the literature, with multiple 

papers modeling the distribution of expression variability using its assumptions [13,25,27,36]. 
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Moving forward this approach seems incomplete, as it is clear that upstream epigenetic 

components can also play a role in downstream heterogeneity, but as genomic position is a 

large determinant of the nature of chromatin regulation at a given loci, this is not an absolute 

across all cases.  

 

The persistence of gene expression identities in select populations of cells also 

challenges the ergodic hypothesis; that a subset of a population of cells can replicate the 

behavior of the full population given time. Invalidating this assumption has consequences for 

interpretation of previous work [6,39], including measurements of information capacity in 

signaling networks [9,32]. Acknowledging that isogenic populations of cells have a spectrum of 

long-term identities also has implications for our understanding of developmental biology, 

reinterpreting the deep wells of Waddington’s landscape as shallow and multistable. From a 

systems interpretation of cell state, you could say that multiple cell states exist within isogenic 

populations [17].  

 

Alternatively, you could treat this as confluent with recent reports of broad gene 

expression continuums within cell types [7,20,40]. That selective forces haven’t removed this 

defined heterogeneity implies functionality. Extremes of functional expression continuums could 

serve as specialist types within a spatially stratified tissue [1], or allow for population-level 

computation [14]. Lastly, traditionally defined cell types could contain snapshots of “pre-

differentiation” states that are actively undergoing novel canalisation.  

 

Novel canalisation of the epigenetic landscape seems to match data from our fluctuation 

analysis of allele-specific gene expression in our system (Fig. 3d, Fig 3f). The lack of ergodicity 

of our discrete expression states implies semi-permanent expression identities that could map 
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to “pre-differentiation” subpopulations of cells. This provides a new context to questions of cell 

fate as well as a new approach to cancer cell reprogramming [19,37]. However, we’ve only 

linked distinct expression identities with histone modifications for the top quintile of allele-

specific expression, not the bottom quintile. That H3K4me3 doesn’t have depressed enrichment 

for the bottom quintile of expression (Fig. 4d) may imply bistable chromatin regulation poised 

between the middle and top quintiles of expression. This asymmetry of cell fate may be only 

part of the bigger picture, as this doesn’t discount different overlapping loci-specific mechanisms 

determining expression variability between the bottom and middle quintiles.  

 

While the mechanisms we’ve discovered don’t produce “functional” variability at our 

contrived loci [2], these same mechanisms are loose in the genomic environment. This means 

their influence is likely felt at other loci which could generate functional diversity. While protein 

network architecture can act as an effective regulator of expression noise [22], tightly regulated 

distributions of chromatin states across a cell population could act as a secondary constraint on 

variability for housekeeping genes, possibly loosening given ageing [3]. And at other loci where 

variability is desirable in order to respond more effectively to fluctuating environments, 

distributions in histone modifications could act as diversity generating in order to stimulate 

cellular stratification within isogenic populations.  

 

Recent advances in single-cell measurements will allow for greater resolution into 

underlying cell states. The development of technologies such as single-cell ChIP may make 

batch methods like the ones used in this work no longer necessary for measuring histone 

modification levels effectively, allowing for far more nuance and throughput in population level 

heterogeneity measurements. It is an obvious epistemic bias that the importance of cellular 

heterogeneity has become evident now, just as more single-cell measurements become 
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available. However, the mental models researchers use to assess this data aren’t contingent on 

its quality. The understanding that functional stratification of isogenic cell populations exists is 

key to interpreting population level data and moving towards less reductive models of gene 

expression that don’t rely on RNA bursting to explain over-dispersed variability. The introduction 

of contingent position effects as time-dependent upstream factors can better account for the 

persistence of expression identity and connects better to the nascent literature on enhancers, 

histone modifications, and other cis-regulated elements. 
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Materials and methods 

K562 cell culture 

A K562 suspension cell line provided by Sigma-Aldrich was grown at  37 °C in RPMI 1640 

medium (Gibco) supplemented with 10% FBS (Gibco), 1% penicillin-streptomycin (Gibco) and 

1% GlutaMAX (100x) (Gibco) under 5% CO2 atmosphere. 
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Reporter plasmids 

The following elements were included in the base plasmid in order to allow for viral packaging 

and integration. HIV-1 truncated 5’ LTR, HIV-1 packaging signal, HIV-1 Rev response element 

(RRE), HIV-1 truncated 3’ LTR and Central polypurine tract (cPPT). Five distinct transcription 

elements were used as expression reporters. Ubiquitin promoter (ubi) driving mVenus, ubi-

mTurquoise2, ubi-EGFP, ubi-TdTomato and cytomegalovirus promoter (CMV) driving 

expression of TagBFP.    

 

Lentiviral production and cell line generation  

Reporter and third generation lentiviral packaging plasmids were transfected into HEK 293T 

cells to generate reporter vectors. Transfected HEK293T culture supernatant was collected and 

concentrated by Lenti-X-concentrator (Takara) 48 hours post transfection. K562 cells were 

transduced with reporter-containing lentivirus in media supplemented with 5 μg/ml polybrene 

and 20mM HEPES for 2 hours of spinoculation and left to incubate for 24 hours. To generate 

singly-integrated cell lines, an MOI of 0.01 was used to ensure that the majority of transduced 

cells integrated with a single reporter copy. To generate multiply-integrated cell lines, multiple 

rounds of transduction were performed at saturating MOI. Founder cells were then singly sorted 

by fluorescence-activated cell sorting (FACS) at 72 hours post-transduction to generate unique 

cell lines.  

 

Time-lapse microscopy 

Imaging was performed using a Nikon Plan Apo λ 10×/0.45 objective with a 0.7× demagnifier 

and Nikon Eclipse Ti microscope with a sCMOS Zyla camera. All imaging was done using 

custom automated software written using MATLAB and Micro-Manager (Edelstein et al., 2010). 

Image analysis was accomplished using a custom MATLAB code published previously 

(Selimkhanov et al., 2014). 

https://www.molbiolcell.org/doi/10.1091/mbc.e16-10-0695#B14
https://www.molbiolcell.org/doi/10.1091/mbc.e16-10-0695#B38
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Gillespie stochastic simulation and simulated annealing 

Parameter values for first order biochemical reactions were optimized by a combined approach 

of simulated annealing and stochastic simulation algorithms (SA+SSA). A parameter set of rate 

constants was generated in each SA iteration and fed into the SSA to generate cell traces. The 

difference of the generated distribution to the experimental distribution was compared to create 

our cost function: 

𝐶𝑜𝑠𝑡 =∑ |𝑋𝑒𝑥𝑝(𝑃𝑖) − 𝑋𝑠𝑖𝑚(𝑃𝑖)|
𝑘

𝑖=1
 

Xexp(Pi) and Xsim(Pi) are the probabilities of protein level at the ith point for experimental and 

simulation respectively, whereas k is the total number of grid points in the distribution of protein 

levels. Cost was minimized with each SA step, with a termination criteria of Cost < 0.1. 

 No boundary constraints were applied on parameter values during optimization. 

Perturbation does not exceed 5% of the previous value, following the below equation: 

𝑃𝑎𝑟𝑎𝑚𝑛+1 = 𝑃𝑎𝑟𝑎𝑚𝑛 + 𝑃𝑎𝑟𝑎𝑚𝑛 𝑥 (−1)
𝑚𝑥 𝛿 𝑥 𝑟𝑎𝑛𝑑 

Param represents a single parameter value, n represents the iteration number, m is a random 

integer [0 or 1], δ is the magnitude of perturbation (0.05) and rand is a uniform random number 

between 0 and 1. After perturbation, the updated parameter set is ran through SSA, generating 

a protein histogram that can be assessed by our cost function. If the current Cost value is lower 

than the prior value, then the updated parameters are accepted for the next SA step. Otherwise, 

they are subjected to the Metropolis test for judgement as to whether they should be accepted 

or rejected (Metropolis et al., 1953).  

 

Internal control labelling 

Lentiviral vectors were created with a reporter plasmid for cell labelling. The transcription 

element contains the cytomegalovirus promoter driving iRFP670 expression. Reporter cell lines 

were transduced with an MOI of 1.39 in order to label approximately 25% of the population. 
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Cells were incubated for 72 hrs to dissipate stress prior to sorting. All cells were sorted for 

presence of iRFP670 (as measured by APC-A). APC-A(+) cells were used as control cells while 

APC-A(-) cells were processed into desired quintiles downstream. APC-A(+) cells were then 

spiked into quintiles. Percentiles of quintile populations were then judged by their relative signal 

to the APC-A(+) control population in order to remove well-to-well variability.        

 

Fluorescence activated cell sorting and flow cytometry 

Sorting was accomplished with a BD FACSAria cell sorter. Tracking of expression after sorting 

was accomplished with a BD LSRII. Cells were initially filtered using forward scatter (FSC-A) 

and side scatter (SSC-A). EGFP signal was measured with FITC-A or GFP-A. TagBFP signal 

was measured with DAPI-A or Pac-Blue-A. TdTomato signal was measured with PI-A or RFP-A. 

iRFP670 signal was measured with APC-A.      

 

FACShacking 

Prior to rewriting sorting gates, reporter cell line was run through cytometer (using BD 

FACSDiva software), gathering population data. Gate was constructed around desired 

population for use as “parent” gate. Flow cytometry standard (.fcs) files were gathered from 

parent gate population as well as the configuration file for sorting session (.xml). Both of these 

files were imported to MATLAB for manipulation. The population of the parent gate was binned 

by the covarying reporter. In each bin, the bottom, middle, and top quintiles of our allele-specific 

signal were assessed, determining the minimum and maximum values of each quintile within 

the bin. These values were then stitched together across all bins, forming three polygons. The 

“parent” gate within the configuration file was used as a template to form new gates. Copies of 

the “parent” gate were nested one level below, then altered to fit the polygons determined from 
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the cell population data. This configuration file was re-introduced into the cell sorter, resetting 

the session with conditioned quintile gates.      

 

Photobleach control 

For the photobleach control, cells were seeded in 384 well plates to allow for full saturation by 

light exposure. Photobleaching was achieved through 900 repeated exposures to 474 nm light 

at an interval of 4 s ON 8 s OFF. After photobleaching, cells were isolated by the same gating 

as the bottom 5% population. 

 

ChIP-qPCR 

All ChIP experiments were preceded by the isolation of the bottom, middle and top deciles of 

ubiquitin-regulated EGFP signal (as conditioned on forward scatter). After isolation, cells were 

split into two pools, Day 0 measurement (500K cells) and Day 11 measurement (50K cells). The 

Day 0 pool was immediately processed by ChIP-qPCR, while the Day 11 measurement was 

incubated for ten days, then processed. The LowCell# ChIP protein A kit from Diagenode was 

used for all replicates. Fixation was performed as per kit protocol. Sonication was performed on 

a S220 focused-ultrasonicator from Covaris, using M220 microTUBE, snap-cap tubes. Fourteen 

cycles of 1 min ON/1 min OFF were performed on samples to reach a target fragmentation size 

of 100-200 bp.  

Three antibodies were used for immunoprecipitation, Rabbit IgG polyclonal antibodies IgG 

(ab37415), anti-histone H3 (tri methyl K4) ChIP grade antibodies (ab8580), and anti-histone H3 

(di methyl K79) ChIP grade antibodies (ab3594). DNA was isolated and purified using the IPure 

v2 kit from Diagenode (C03010015). Isolated DNA was then assessed by qPCR using primers 

that amplify -929 to -810 relative to the TSS of our reporter gene. Sequences are as follows, 

Forward: acagcagagatccagtttggtta 
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Reverse: agtctgcttcccgcgtcc 

Positive and negative control primers were bought from Active Motif, human positive control 

primer set ACTB-1 (71003) and human negative control primer set 1 (71001). qPCR results 

were analyzed relative to ChIP input percentage. Analysis of variance (ANOVA) was used to 

determine significance.  

qPCR thermocycler protocol 

1. 95C for 3:00 
2. 95C for 0:05 
3. Annealing T for 0:30 
4. Take picture, GOTO #2 x 45 
5. 65C -> 95C, 0.5C and take picture per 0:05 
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Supplemental Figures 

 

 

Supplementary Figure 1.1: Signal compensation by co-varying reporters for flow and 
imaging  
 
(a) Heatmap of reporter system run on flow cytometry. The system used contains a singly-
integrated mVenus reporter and multiply-integrated mTurquoise2 reporters. The black line 
represents line of best fit across population which is equivalent to the variance of the 
expectation value according to the double expectation theorem. (b) Heatmap of reporter system 
imaged by fluorescence microscopy. The system used contains a singly-integrated mVenus 
reporter and multiply-integrated mTurquoise2 reporters. The black line represents line of best fit 
across population which is equivalent to the variance of the expectation value according to the 
double expectation theorem. (c) Original distribution of mVenus signal measured by flow as 
compared to the compensated distribution through removal of co-varying noise. (d) Original 
distribution of mVenus signal measured by imaging as compared to the compensated 
distribution through removal of co-varying noise. 
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Supplemental Tables 

Supplementary Table 1.1: Reactions and parameter values for in silico two-state model 

 

 Supplementary Table 1.2: Reactions and parameter values for in silico slow fluctuation model 

 

 

 

 

 Reaction  Parameter value Description 

1. G𝑜𝑓𝑓 → G𝑜𝑛 2.64 h-1 Activation of Gene 

2. G𝑜𝑛 → G𝑜𝑓𝑓 0.212 h-1 Deactivation of Gene  

3. G𝑜𝑛 → G𝑜𝑛 +𝑚𝑅𝑁𝐴 0.907 h-1 mRNA synthesis from 
active state of Gene 

4. G𝑜𝑓𝑓 → G𝑜𝑓𝑓 +𝑚𝑅𝑁𝐴 0.0686 h-1 mRNA synthesis from 
inactive state of Gene 

5. mRNA → ∅ 0.1 h-1 mRNA decay 

6. mRNA → mRNA + P 0.43 h-1 Protein synthesis 

7. P → ∅ 0.03 h-1 Degradation of Protein 

 Reaction  Parameter value Description 

1. ∅ → 𝑚𝑑 0.2 h-1 Upstream factor 
synthesis/accumulation 

2. 𝑚𝑑 → ∅ 0.01 h-1 Upstream factor 
decay/dissipation 

3. G𝑜𝑓𝑓 → G𝑜𝑛 2.64 h-1 Activation of Gene 

4. G𝑜𝑛 → G𝑜𝑓𝑓 0.212 h-1 Deactivation of Gene  

5. 
G𝑜𝑛

𝑚𝑑/〈𝑚𝑑〉
→      G𝑜𝑛 +𝑚𝑅𝑁𝐴 

1.56 h-1 mRNA synthesis from 
active state of Gene 
driven by upstream 
factor 

6. G𝑜𝑓𝑓 → G𝑜𝑓𝑓 +𝑚𝑅𝑁𝐴 0.0686 h-1 mRNA synthesis from 
inactive state of Gene 

7. mRNA → ∅ 0.1 h-1 mRNA decay 

8. mRNA → mRNA + P 0.25 h-1 Protein synthesis 

9. P → ∅ 0.03 h-1 Degradation of Protein 
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CHAPTER 2 

Persistence of the intracellular calcium response to extracellular ATP 

 

Abstract 

In mammalian cells, extracellular ATP acts as a damage-associated molecular pattern (DAMP), 

creating a downstream release of intracellular calcium that triggers the innate immune 

response. This calcium spike encodes spatial information on a population level, with both the 

number of cells responding and average response level varying depending on the local ATP 

concentration. However, beyond this dose-dependent variability is further response variability, 

degrading total information capacity. The non-exclusive mechanisms underpinning this 

variability are intrinsic and pre-existing factors. To interrogate these mechanisms and identify 

the presence of distinct response archetypes within the population, we developed a ratiometric 

reporter system that allowed for the isolation of response variability. We then used this system 

to measure the persistence of response identity, intuiting a ceiling of intrinsic variability and 

determining the relative decay of pre-existing factors comprising calcium response identity up to 

18 hours.   

 

Introduction 

When responding to stimuli, isogenic populations of mammalian cells exhibit significant 

cell-to-cell variability [5,10,22]. The underlying causes for this variability are unclear, but 

possible causes can be broken down into two groups, intrinsic fluctuations and variability in pre-

existing factors [8,15]. Intrinsic fluctuations are defined as the stochastic chemical processes 

directly involved in the response, while pre-existing factors can include any deterministic factors, 
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such as expression variability of upstream network components, and global factors such as cell 

cycle and volume [9,16]. These factors are non-exclusive, and could all contribute to variability, 

allowing for accumulation of their fluctuations, but it has been estimated that the majority of 

variability is generated by pre-existing factors [9,23].  

 

Given that we could view pre-existing factors as deterministic mappings producing 

defined outputs [21], is this the same as saying that heterogeneity in cellular responses 

amounts to distinct, functional cell states? Not necessarily, deterministic heterogeneity doesn’t 

mean distinct clusters of behavior. Spectrums of phenotypic heterogeneity behavior occupying a 

Pareto front would be functional but not clustered [17,18]. To discern the difference, we could 

use clustering methods to decompose heterogeneous cell responses into more homogenous 

populations, seeking clear response archetypes [25]. But on its own, this approach wouldn’t 

uncover the mechanisms underlying response variability, making the nature of these distinct cell 

states unclear. As different physiological mechanisms have different timescales of turnover, a 

potential approach is the measurement of the persistence of response identity as an indication 

of mechanism.  

 

To study response variability, we focused on a single response network, the intracellular  

calcium response to ATP. ATP acts as a damage-associated molecular pattern (DAMP), which 

are endogenous signalling ligands released from the cell upon physical damage [6]. DAMPs act 

as the first indication of cellular damage, telling the surrounding healthy cells to activate 

transcriptional programs that trigger innate immune responses [4,24]. Depending on the nature 

of the propagation of DAMP signals, different kinds of information can be carried. Spatial 

information, that is, how far a cell is from the damage, could be determined if the DAMP signal 

acted as a gradient across distance [19]. If the DAMP is propagated through positive regulation, 
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then spatial information will likely be sacrificed in order to allow for long-distance signal 

transduction. This context has relevance to response variability as it informs how much 

variability could be allowed for while still transmitting functional information.  

 

ATP displays release and diffusion behavior as a propagation strategy [12], allowing for 

a graded response to the signal, with high sensitivity. This is because extracellular ATP levels 

are quite low (~1 nM), approximately six orders of magnitude less than cytoplasmic levels [7], 

2010). This means that any loss of membrane integrity leads to an immediate increase in 

extracellular ATP levels, allowing for this highly sensitive response to cellular damage. For a 

given cell, the response is mediated by the P2Y receptor, which is activated through 

phosphorylation by the binding of ATP. Phosphorylated P2Y then triggers phospholipase C 

(PLC) to degrade phosphatidylinositol 4,5-bisphosphate (PIP2), one of the products of which is 

inositol triphosphate (IP3) [2,3]. IP3 is then able to bind the IP3 receptor on the endoplasmic 

reticulum to release its store of calcium into the cytoplasm, creating an intracellular calcium 

spike. Calcium is then pumped back into the ER through the sarco/endoplasmic reticulum 

calcium ATPase (SERCA) channel, charging the system for another response [13]. This calcium 

release can be measured intracellularly through the use of a calcium indicator, GCaMP [14]. 

 

To interrogate the mechanisms of cellular heterogeneity, we measured the persistence 

of calcium response identity to extracellular ATP stimulation. We constructed a reporter system 

incorporating a ratiometric GCaMP-mCherry system into the MCF10A cell line. We performed a 

dual-stimulation experiment on this system, tracking cells for a variable period of time between 

simulations. For each time point and cell, the maximum GCaMP and average mCherry signal 

was taken, then compared to the other time point. These signals were then correlated across 

timepoints to understand the relationship between time and calcium response autocorrelation.   
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Results 

For our reporter system, we used the calcium activity biosensor GCaMP5 [1] fused to 

the fluorescent reporter mCherry [20]. On its own, the GCaMP signal would have noise 

introduced from its own gene expression. By normalizing the GCaMP signal with mCherry 

signal, we can remove this noise, leaving a ratiometric calcium response signal that reflects 

response variability while not perturbing the underlying physiology its measuring. This fusion 

protein was multiply integrated into MCF10A, a mammary epithelial cell line using transposase 

technology. This system was imaged by fluorescence microscopy using MATLAB image 

processing to track cells and obtain single-cell traces. Cells were segmented with distinct 

fluorophore labelling and fluorescent channels. Hoechst staining was used to identify nuclei 

(Fig. 1a), and mCherry fluorescence was used to identify cytoplasm, as our GCaMP-mCherry 

fusion protein was excluded from the nucleus due to size (~78.8 kDa) (Fig. 1b).     

 

Imaging was performed during dual-stimulation of our reporter system. The system was 

perturbed with 10 uM ATP, creating an intracellular calcium spike, then cells were tracked using 

their nuclear signal for a variable period of relaxation prior to a second perturbation (Fig. 2). To 

capture the calcium spike, the maximum GCaMP signal per stimulation was measured. This 

signal was normalized by the mean mCherry signal during each stimulation to generate a 

normalized, ratiometric, signal. Calcium spikes were compared and correlated, generating a 

mean correlation coefficient for a given period of relaxation. This allowed for us to measure the 

persistence of the calcium identity response through determining the decay in calcium response 

identity over time (Fig. 3). By measuring this persistence, we can infer which mechanisms are 

responsible for calcium response variability by comparing the timescale of these factors’ 

fluctuations.  
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Figure 2.1: Overview of nuclear segmentation and single-cell 
 
Processing of nuclear stain image (Hoechst) to segment and isolate nuclei, allowing for single-
cell definition and cell tracking.  
 

 

 

Figure 2.2: Features of the intracellular calcium response to extracellular ATP 
 
Averaged intracellular calcium response (as measured by GCaMP-mCherry construct) to ATP. 
Major features of response labeled, including basal signal, peak calcium and decaying 
oscillations after perturbation. 
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Measuring the correlations of mCherry and maximum GCaMP signal separately (Fig. 

3a), we can determine the relative persistence of reporter gene expression to response 

variability. GCaMP’s signal is contingent on fluctuations in both response variability and reporter 

expression variability, but mCherry’s signal is only contingent on the latter. The elevated 

correlation coefficients of mCherry over GCaMP (Fig. 3a) then imply that the response variability 

component of the GCaMP signal is fluctuating at a faster timescale than reporter expression 

variability. This expression variability is more reflective of global fluctuations than allele-specific 

effects, as our reporter was multiply integrated, diluting these effects.     

 

The decay of the ratiometric calcium response reflects the removal of the shared reporter 

expression variability, leaving the faster fluctuating components behind. Consequently, the 

coefficients of the ratiometric signal are depressed relative to the original signals. However, the 

decay starts to level off around 0.5, suggesting a possible multi-component mechanism. The 

intrinsic variability of the calcium response would be removed merely by performing a second 

stimulation at any time point, as this would reflect stochastic chemical fluctuations that are 

independent across time points [16]. This means decay below the highest correlation coefficient 

measured (~0.82) is due to pre-existing factors. By comparing correlation decay with 

fluctuations of key pre-existing factors, such as the protein expression of upstream components 

like the P2Y receptor, we can determine the mechanisms responsible for generating variability 

in this system. 
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Figure 2.3: Overview of dual ATP stimulation experiment  
 
Breakdown of aspects of dual stimulation experiment. Plots represent stimulations of 10 µM 
ATP and concurrent imaging of calcium signal for six minutes. Inter-stimulation period consists 
of intermittent imaging to capture Hoechst and mCherry signal.  
 

 

 
Figure 2.4: Correlation of peak calcium response over time 
 
(a) Correlations of fluorescent signals given different time periods. Correlations broken down by 
GCaMP and mCherry signal prior to normalization. GCaMP correlation is calculated by 
comparing maximum values (peak feature), while mCherry correlation is calculated by average 
signal over stimulation period. mCherry signal is best indication of tracking error rate.              
(b) Correlations of calcium peaks given different time periods. Ratiometric signal provided by 
normalizing GCaMP signal per cell by mCherry signal per cell. Peak calcium is then calculated 
and correlated to other stimulation, creating correlation versus time. 
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Discussion 

In this work we developed a fusion reporter system that eliminated reporter expression noise 

while accurately measuring calcium response. We then utilized that system in an ATP dual 

stimulation experiment that allowed for the isolation of response variability in intracellular 

calcium release. Comparing signals within our reporter we confirmed that this response 

variability fluctuates on a faster timescale than the expression variability of our reporter. Utilizing 

our isolated signal, we demonstrated a definitive ceiling of intrinsic variability within the calcium 

response, and consequently intuited that the remainder of correlation decay is due to the 

fluctuations of key pre-existing factors. 

 

To best capture functional calcium response heterogeneity, an understanding of the 

informational content of the calcium response is necessary. That is, not every feature of the 

calcium response may contain encoded functional information and therefore shouldn’t be used 

as a feature to define heterogeneity. The calcium spike feature of the intracellular calcium 

response is a scalar quantity, which represents less information capacity than the full dynamic 

signal of the calcium response [16]. However, this feature represents the most information 

dense time interval in the full response [16], and can be explicative of gene expression 

variability in related networks [9]. Furthermore, the calcium peak encodes spatial information, 

allowing for an estimation of a cell’s distance from cellular damage [12]. This provides a new 

context, as variability in calcium response levels would degrade this spatial information, acting 

as “true noise”. A buffering mechanism for this noise may be paracrine signalling creating 

response fidelity through population averaging [11].  

 

By defining a maximum value for intrinsic variability and observing a persistent calcium 

response identity, we have clarified that this process isn’t memoryless. The network inducing 
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calcium release and recharge is deterministic, replicating a similar response upon a second 

stimulation. Any stochasticity in upstream factors becomes encoded as as an input for 

downstream factors. To determine which components of this network are responsible for the 

remaining identity loss, a co-fluctuation experiment could be carried out to link the turnover of a 

network component to the decay in calcium spike correlation. Suggested targets would be the 

P2Y or IP3 receptors, which both transduce a graded, and not saturated, response to 10 µM 

extracellular ATP. 

 

The persistence of calcium response identity has implications as to whether intracellular calcium 

response heterogeneity contains distinct cellular states. The ergodic nature of this variability can 

be tested through determining if there is a “floor” of calcium response autocorrelation. 

Performing more dual-stimulation experiments at longer timescales could determine whether the 

correlation decay levels off or completely decays. A multi-day persistent correlation would imply 

distinct clusters within the cell state space for the intracellular calcium response, confirming 

recent reports [25].  
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Materials and methods 
 
Cell Culture  

MCF10a cells were grown in complete media (above) and passaged at 70-90% confluency. 

Cells were seeded onto coated well of 96 well plate and grown to confluence before changing 

media to complete media without EGF and 1% horse serum, instead of normal 5%, 6-8 hours 

before imaging. Coating solution consists of sterile filtered 10ug/mL fibronectin, 10ug/mL bovine 

serum albumin, and 30ug/mL type I collagen in DMEM.  

 

mCherry GCaMP5 Fusion MCF10A Cell Line Creation 

To generate stable cell lines constitutively expressing cGamp5fusion-mcherry, MCF10A cells 

grown in the standard conditions and co-transfected using Neon transfection system (Invitrogen 

cat#MPK1025) and transposase expression vector pCMV-hyPBase (Sanger institute) in the 4:1 

ratio with 0.625 ug of transposase and 2ug of transposon plasmid per well in 6 well dish. 

Electroporation parameters: Pulse voltage (v) 1,100 2003 Pulse width (ms) 20 Pulse number 2 

Cell density (cells/ml) 2 x 10^5 Transfection efficiency 45% Viability 65% Tip type 10 μ Stable, 

polyclonal cell populations were established after blasticidin selection (10 μg/mL).  

 

mCherry GCamp5 Fusion Construct Creation  

For pPB - mCherry vector construction a PCR product encoding GCaMP5 sensor incorporating 

the CaMP3 mutation T302L R303P D380Y and no stop codon (Addgene plasmid #31788) was 

directionally ligated into pENTR/D-TOPO vector (Invitrogen K243520) resulting in a 

pEntry_GCaMP5G construct. 

(For:caccATGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGAC, REV: 

TTACTTCGCTGTCATCATTTGTACAAACTCTTCGTAG) pEntry_GCaMP5G was linearized with 

PCR reaction using standard Phusion® Hot Start Flex 2X Master Mix (NEB Cat# M0536L) 
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protocol ( FOR: cgcgccgacccag , REV: ctcgagggatccggatcctcccttcgctgtcatcatttgtacaaac). PCR 

product was then subjected to DpnI digestion (NEB cat# R0176S) and gel purification with 

Zymoclean Gel DNA Recovery Kit (ZYMO cat#D4001). A sequence encoding mCherry and a5' 

linker was PCR amplified (FOR : gaggatccggatccctcgagAccatggtgagcaagggc REV 

:aagaaagctgggtcggcgcgcttgtacagctcgtccatg). mCherry2-C1 was a gift from Michael Davidson 

(Addgene plasmid # 54563). GeneArt Seamless Cloning and Assembly Enzyme Mix (Invitrogen 

cat# A14606) was used to assemble a construct encoding for GCaMP5 sensor fused with a 

short linker to mCherry called pENTRY-GCaMP5fusedmCherry. LR recombination between this 

entry clone and a custom gateway PiggyBack transposon vector with 1 μl LR Clonase II enzyme 

(Invitrogen: cat #11791020) resulted in the final construct of 

pPB_CAG_GCaMP5fusedmCherry_blast. 

 

Longitudinal dual-stimulation experiment  

The system used for this experiment was MCF10A with the exogenous calcium activity reporter 

GCaMP5 [1] fused to mCherry [20]. For analysis purposes, GCaMP5 signal was normalized by 

the average mCherry signal over the local time period to create a ratiometric reporter signal. 

Wells in a 96 well plate were seeded with this system prior to the experiment as detailed in ‘Cell 

Culture’. Prior to stimulation, cells were first incubated in 1:2,000 dilution of 10 mg/ml Hoechst. 

Dual-stimulation experiments were performed by stimulation with 10 µM ATP. Imaging began 

prior to the calcium response and was then imaged for six minutes. Tracking was then 

performed with minimal imaging for Hoechst and mCherry signal for the time period of interest 

prior to a second stimulation, which  
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Measurements of single-cell calcium response to an increase in extracellular ATP 

perturbation  

Image acquisition of the 96-well plate was conducted on a Nikon Ti microscope using a 10× 

objective (Selimkhanov et al, 2014). The microscope was automated using micro-manager 

(www.micro-ma nager.org) through its MATLAB scripting interface. The images were 

segmented to locate the Hoechst signals as the positions of the nuclei. The calcium signals 

were mapped to the Hoechst images taken at different time points to establish single-cell 

trajectories. The procedure is identical to that described in Selimkhanov et al (2014).  

 
 
References 
 

1. Akerboom, Jasper, Tsai-Wen Chen, Trevor J. Wardill, Lin Tian, Jonathan S. Marvin, Sevinç Mutlu, 
Nicole Carreras Calderón, et al. 2012. “Optimization of a GCaMP Calcium Indicator for Neural 
Activity Imaging.” The Journal of Neuroscience: The Official Journal of the Society for 
Neuroscience 32 (40): 13819–40. 
 

2. Berridge, M. J., P. Lipp, and M. D. Bootman. 2000. “The Versatility and Universality of Calcium 
Signalling.” Nature Reviews. Molecular Cell Biology 1 (1): 11–21. 
 

3. Bootman, Martin D. 2012. “Calcium Signaling.” Cold Spring Harbor Perspectives in Biology 4 (7): 
a011171. 
 

4. Chen, Grace Y., and Gabriel Nuñez. 2010. “Sterile Inflammation: Sensing and Reacting to 
Damage.” Nature Reviews. Immunology 10 (12): 826–37. 
 

5. Cohen-Saidon, Cellina, Ariel A. Cohen, Alex Sigal, Yuvalal Liron, and Uri Alon. 2009. “Dynamics 
and Variability of ERK2 Response to EGF in Individual Living Cells.” Molecular Cell 36 (5): 885–93. 
 

6. Cordeiro, João V., and António Jacinto. 2013. “The Role of Transcription-Independent Damage 
Signals in the Initiation of Epithelial Wound Healing.” Nature Reviews. Molecular Cell Biology 14 
(4): 249–62. 
 

7. Corriden, Ross, and Paul A. Insel. 2010. “Basal Release of ATP: An Autocrine-Paracrine 
Mechanism for Cell Regulation.” Science Signaling 3 (104): re1. 
 

8. Elowitz, Michael B., Arnold J. Levine, Eric D. Siggia, and Peter S. Swain. 2002. “Stochastic Gene 
Expression in a Single Cell.” Science 297 (5584): 1183–86. 
 



44 
 

9. Foreman, Robert, and Roy Wollman. 2019. “Mammalian Gene Expression Variability Is Explained 
by Underlying Cell State.” bioRxiv. https://doi.org/10.1101/626424. 
 

10. Geva-Zatorsky, Naama, Nitzan Rosenfeld, Shalev Itzkovitz, Ron Milo, Alex Sigal, Erez Dekel, Talia 
Yarnitzky, et al. 2006. “Oscillations and Variability in the p53 System.” Molecular Systems 
Biology 2 (June): 2006.0033. 
 

11. Handly, L. Naomi, Anna Pilko, and Roy Wollman. 2015. “Paracrine Communication Maximizes 
Cellular Response Fidelity in Wound Signaling.” eLife 4 (October): e09652. 
 

12. Handly, L. Naomi, and Roy Wollman. 2017. “Wound-Induced Ca2+ Wave Propagates through a 
Simple Release and Diffusion Mechanism.” Molecular Biology of the Cell 28 (11): 1457–66. 
 

13. Lemon, G., W. G. Gibson, and M. R. Bennett. 2003. “Metabotropic Receptor Activation, 
Desensitization and Sequestration-I: Modelling Calcium and Inositol 1,4,5-Trisphosphate 
Dynamics Following Receptor Activation.” Journal of Theoretical Biology 223 (1): 93–111. 
 

14. Nakai, J., M. Ohkura, and K. Imoto. 2001. “A High Signal-to-Noise Ca(2+) Probe Composed of a 
Single Green Fluorescent Protein.” Nature Biotechnology 19 (2): 137–41. 
 

15. Rhee, David Y., Dong-Yeon Cho, Bo Zhai, Matthew Slattery, Lijia Ma, Julian Mintseris, Christina Y. 
Wong, et al. 2014. “Transcription Factor Networks in Drosophila Melanogaster.” Cell Reports 8 
(6): 2031–43. 
 

16. Selimkhanov, Jangir, Brooks Taylor, Jason Yao, Anna Pilko, John Albeck, Alexander Hoffmann, 
Lev Tsimring, and Roy Wollman. 2014. “Systems Biology. Accurate Information Transmission 
through Dynamic Biochemical Signaling Networks.” Science 346 (6215): 1370–73. 
 

17. Sheftel, Hila, Oren Shoval, Avi Mayo, and Uri Alon. 2013. “The Geometry of the Pareto Front in 
Biological Phenotype Space.” Ecology and Evolution 3 (6): 1471–83. 
 

18. Shoval, O., H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel, K. Kavanagh, and U. Alon. 
2012. “Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space.” 
Science 336 (6085): 1157–60. 
 

19. Sonnemann, Kevin J., and William M. Bement. 2011. “Wound Repair: Toward Understanding and 
Integration of Single-Cell and Multicellular Wound Responses.” Annual Review of Cell and 
Developmental Biology 27 (June): 237–63. 
 

20. Su, Steven, Siew Cheng Phua, Robert DeRose, Shuhei Chiba, Keishi Narita, Peter N. Kalugin, 
Toshiaki Katada, Kenji Kontani, Sen Takeda, and Takanari Inoue. 2013. “Genetically Encoded 
Calcium Indicator Illuminates Calcium Dynamics in Primary Cilia.” Nature Methods 10 (11): 
1105–7. 
 

21. Symmons, Orsolya, and Arjun Raj. 2016. “What’s Luck Got to Do with It: Single Cells, Multiple 
Fates, and Biological Nondeterminism.” Molecular Cell 62 (5): 788–802. 
 

https://doi.org/10.1101/626424


45 
 

22. Tay, Savaş, Jacob J. Hughey, Timothy K. Lee, Tomasz Lipniacki, Stephen R. Quake, and Markus W. 
Covert. 2010. “Single-Cell NF-kappaB Dynamics Reveal Digital Activation and Analogue 
Information Processing.” Nature 466 (7303): 267–71. 
 

23. Toettcher, Jared E., Orion D. Weiner, and Wendell A. Lim. 2013. “Using Optogenetics to 
Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module.” Cell 155 (6): 
1422–34. 
 

24. Vénéreau, Emilie, Chiara Ceriotti, and Marco Emilio Bianchi. 2015. “DAMPs from Cell Death to 
New Life.” Frontiers in Immunology 6 (August): 422. 
 

25. Yao, Jason, Anna Pilko, and Roy Wollman. 2016. “Distinct Cellular States Determine Calcium 
Signaling Response.” Molecular Systems Biology 12 (12): 894. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 



46 
 

Conclusions and future directions 

In this work we developed reporter systems designed to capture cellular heterogeneity in two 

different contexts, an exogenous, idealized, reporter system purely measuring gene expression, 

and a ratiometric system capturing an endogenous response to stimuli. These systems were 

both designed to isolate signal components and measure their persistence and behavior across 

time, with the aim of answering fundamental questions about cellular identity within isogenic 

populations. Through this work we have found a higher degree of cellular identity and 

stratification than imagined in previous paradigms, which focus on the ability of stochastic 

behavior to create variability in cellular processes.     

 

Our exogenous system was designed to isolate allele-specific variability of a single reporter 

through the removal of shared noise. The behavior and fluctuations of this signal were tracked 

through imaging and compared against an in silico version of the two-state model, and found to 

have a more persistent identity. In order to account for this persistence, we developed a model 

incorporating a time-dependent upstream component that influenced the transcription rate. To 

test this model further we developed a fluctuation analysis technique that tracked our system’s 

isolated allele-specific variability across ten days. Comparing this relaxation of distinct cell 

states against a control recapitulating the timescale of RNA bursting, we see a long term cis-

identity. This technique also allowed for the isolation of batches of distinct cell populations, 

which could be subsequently analysed using immunoprecipitation methods. Our batches were 

analyzed using ChIP-qPCR, measuring the enrichment of histone modifications associated with 

transcriptional activity near the transcription start site of our reporter. High expression was 

linked to enrichment of H3K4me3, demonstrating co-fluctuations of chromatin states and gene 

expression within populations of isogenic cells. 
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These results confirm our cis-fluctuating model, providing direct evidence of chromatin 

regulation influencing gene expression. Future studies, ideally using single-cell ChIP methods, 

will map out more of the epigenetic landscape, implicating other histone modifications in cellular 

heterogeneity. One question along this lineage of thought are the degree to which cells enriched 

by these modifications represent a permanent identity, or whether certain stresses can dislodge 

intractable subpopulations; a question that is relevant to both our understanding of cell fate as 

well as approaches towards cancer cell reprogramming. Another question is the influence of 

chromatin regulation across the genome, balancing reliability and diversity to generate optimal 

functional heterogeneity, and the consequences of this regulation going awry in ageing cell 

populations.   

 

Our ratiometric reporter system directly measured the intracellular calcium response to 

extracellular ATP by removing noise introduced by the gene expression of our reporter. We 

performed dual-stimulation experiments on this system, tracking the identity of individual cell 

responses between these two stimulations. By correlating these identities across a population, 

we gain an understanding of the mechanisms driving this response. Through looking at this 

correlation over time, we can immediately identify a ceiling for intrinsic fluctuations, and can 

surmise that the remainder of the correlation is due to deterministic, pre-existing factors. This 

correlation further decays but persists after a day, showing a semi-stable phenotypic identity. 

 

These results serve as an excellent starting point for interrogating the mechanisms of the 

intracellular calcium response. A possible approach could measure related network 

components, determining whether co-fluctuations exist, thus cementing a mechanistic link. 

Further time point measurements could confirm the ergodicity of this response, allowing us to 

discern whether distinct calcium response archetypes exist within isogenic populations of 
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MCF10A. The presence of these archetypes would raise questions as to how cells decode 

heterogeneous responses, including decoding the spatial information transmitted by the calcium 

response to ATP. 

 

Early indications of these findings were single-cell transcriptomic studies demonstrating that 

populations of cells occupy a large and varied phenotypic space [1,2,3,4]. The clash of these 

results with theoretical frameworks treating cell processes as simple stochastic mechanisms 

seemed obvious but without hard proof of deterministic states producing cellular heterogeneity, 

this phenomenology was insufficient. However, the demonstration of histone modification 

diversity creating phenotypic diversity challenges the two-state model of gene expression and 

invites new theory to catch up to the wealth of single-cell data being gathered.  
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