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Abstract of the Dissertation

Searching for the key to musical scale-sensitivity through rhythm, speech, and pitch

By

Joselyn Ho

Doctor of Philosophy in Cognitive Sciences

University of California, Irvine, 2021

Professor Charlie Chubb, Chair

This dissertation investigates the sources of musical scale-sensitivity, or the sensitivity to

musical mode. In Chapter 1, I introduce the concept of scale-sensitivity, the tone-scramble

“3-task” paradigm that can be used to measure this skill, and the open questions surrounding

the bimodal distribution of scale-sensitivity in the general population. In Chapter 2, I inves-

tigate whether the temporal structure of tone-scramble stimuli influences scale-sensitivity.

By manipulating the speed and the grouping of tones in the stimuli, I find that inserting

regular, brief rests into the tone sequences heightens sensitivity to musical mode, and that

specific note sequences can strongly bias listeners to perceive a stimulus as one type over an-

other. In Chapter 3, I investigate whether scale-sensitivity is related to sensitivity to speech

prosody. I find evidence that scale-sensitivity and speech sensitivity may depend on shared

processing resources that are largely unaffected by musical training. In Chapter 4, I explore

the relationship between scale-sensitivity and pitch-difference threshold by testing listeners

in variations of a pitch comparison task. I find that having a pitch-difference threshold be-

low 50 cents on a roved pitch comparison task is required to achieve high scale-sensitivity.

Finally, in Chapter 5, I discuss the implications of these findings on music and emotion

perception and present next steps in continuing to understand the source of scale-sensitivity.
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Chapter 1

Introduction

Music is found in every human culture examined so far and connects with us deeply. One

of several ways that music can convey emotions is through mode, referring to particular

combinations of musical notes. For example, on average, across listeners, music in the major

(Ionian) mode tends to sound “happy” while music in the minor (Aeolian) mode tends to

sound “sad” (Cunningham & Sterling, 1988; Gagnon & Peretz, 2003; Gerardi & Gerken,

1995; Heinlein, 1928; Hevner, 1935; Kastner & Crowder, 1990; Leaver & Halpern, 2004;

Peretz, Gagnon, & Bouchard, 1998; Temperley & Tan, 2013). As a result of this striking

qualitative difference, the major and minor scales have come to play a central role in western

music. This difference in perceived emotional quality might imply that listeners can naturally

tell apart major from minor melodies; however, many listeners, including musicians, struggle

to differentiate the two types (Halpern, 1984; Halpern, Bartlett, & Dowling, 1998; Leaver &

Halpern, 2004).

Sensitivity to major vs. minor musical modes appears to be bimodally distributed across

listeners. This effect was first made apparent in the results of Crowder (1985b). In a task

replicating Blechner (1977), listeners strove to classify triadic chords as major vs. minor.

Each stimulus was a 300-ms triad from the equal-tempered scale in either root position (note-

order from low to high: tonic, third, fifth) or first inversion (note-order from low to high:

1



third, fifth, tonic). Across trials, the tonic varied randomly (between 6 notes). The fifth of

the triad was 7 semitones above the tonic, and the third of the triad was 1 to 9 logarithmic

steps between the minor and major third, relative to the tonic. The task was to classify the

triad according to whether the third was closer to the minor vs. the major third. Despite the

small sample size (19 subjects), Crowder (1985b) observed that the psychometric functions

(relating the third in the triad to the probability that the subject responded “major”) fell

into two distinct groups. The psychometric function was either very steep, suggesting that

the listener was highly sensitive to the major-minor difference, or flat, suggesting that the

listener had little or no sensitivity to the major-minor difference. Only three listeners fell in

the middle between these two extremes.

A bimodal distribution of performance has also been observed in a major-minor “tone-

scramble” task (e.g., Chubb et al. (2013)). In the following chapters of this dissertation, the

tone-scramble “3-task” paradigm (described below) is implemented to investigate listeners’

musical sensitivity.

1.1 Tone-scramble “3-Task”

In the basic version of the tone-scramble task (the “3-task”), the participant listens to

rapid (923 BPM), randomly-ordered sequences of pure tones and attempts to classify each

as major (happy) or minor (sad). Feedback is given after every trial. The stimuli, called

“tone-scrambles,” contain 8 each of the notes G5, D6 and G6 (to establish G as the tonic);

in addition, major tone-scrambles contain 8 B5’s (degree 3 of the G major scale) whereas

minor tone-scrambles contain 8 B[5’s (degree 3 of the G minor scale). Data pooled from

multiple studies (Chubb et al., 2013; Dean & Chubb, 2017; Mednicoff, Mejia, Rashid, &

Chubb, 2018; Ho & Chubb, 2020) shows that 70% of listeners perform near chance on this

task, while the remaining 30% perform almost perfectly (Fig. 1.1).

2



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Proportion correct in the 3-task

0

10

20

30

40

50

60

N
um

be
r o

f l
is

te
ne

rs

Figure 1.1: Histogram of performance in the 3-task combining results from Chubb et al.
(2013), Dean and Chubb (2017), and Mednicoff et al. (2018).

1.1.1 Musical training

The striking bimodal distribution of performance on the 3-task suggests that high-performers

possess capabilities that low-performers lack. Interestingly, skill on this task is only weakly

related to one’s musical background (measured in years of formal musical training). Fig.

1.2 plots 3-task-d′ against years-musical-training for the same 293 listeners whose results

are plotted in Fig. 1.1. The correlation of 0.35 is highly significant showing that listeners

with musical training tend to perform better than those without musical training. However,

this correlation is due mainly to a large group of listeners with no musical training who

perform poorly. Notably, there are also many low-performers with many years of musical

training (aqua ellipse) as well as other high-performers who have few years of musical training,

suggesting that years-musical-training is neither necessary nor sufficient for high performance

on the 3-task. Perhaps the positive correlation between years-musical-training and 3-task-

d′ arises because listeners with high scale-sensitivity are more likely to seek out musical

training than listeners with low scale-sensitivity. This idea is supported by the finding

that 6-month-old infants show the same distribution of performance in the 3-task as adults
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(Adler, Comishen, Wong-Kee-You, & Chubb, 2020), suggesting that a listener’s level of

scale-sensitivity may be hereditary or formed early in life.
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Figure 1.2: Scatterplot of d′ achieved in the 3-task as a function of years of musical training,
combining results from Chubb et al. (2013), Dean and Chubb (2017), and Mednicoff et al.
(2018). Aqua ellipse (lower right) indicates listeners with many years of musical training
who perform poorly in the 3-task. Yellow ellipse (upper left) indicates listeners with little
or no musical training who perform well in the 3-task.

Indeed, evidence from both behavioral and genetic studies demonstrate that other factors

besides musical training (e.g., pre-existing abilities) may contribute to individual differences

in musical abilities (Correia et al., 2020; Kragness, Swaminathan, Cirelli, & Schellenberg,

2020; Hambrick & Tucker-Drob, 2015; Mosing, Madison, Pedersen, Kuja-Halkola, & Ullén,

2014). For example, a study by Kragness et al. (2020) found a positive relationship between

musical training and musical ability in young children, but not when prior musical ability is

held constant. Additionally, musical ability assessed at an earlier time point predicted the

duration of subsequent musical training over the next 5 years, providing further evidence

that the connection between musical training and musical ability is not a straightforward

causal relationship. Genetic studies investigating twins have also found genetic influences

on musical accomplishment, and these effects were enhanced in individuals receiving musical
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training (Hambrick & Tucker-Drob, 2015). Therefore, musical training alone cannot account

for individual differences on the tone-scramble task – high-performers may possess a process-

ing resource that confers heightened sensitivity to the difference between the major-minor

stimuli.

1.2 Current Work

The studies described in the following chapters explore the source of major-minor sensitivity

on the tone-scramble task and possible influences. Chapter 2 addresses whether this sensi-

tivity is affected by repetition and temporal grouping. If sensitivity depends on temporal

structure, then introducing manipulations such as rests and cyclic sequences into the stim-

uli may heighten the sensitivity of listeners to the differences between the stimulus types.

Chapter 3 investigates the relationship between major-minor sensitivity and speech prosody

perception. Substantial evidence supports a close link between music and speech perception,

particularly in the processing of pitch cues; therefore, there may be overlap between the com-

putational resources required for processing speech prosody and musical mode. Chapter 4

investigates whether pitch-difference threshold is a contributing factor to musical mode sen-

sitivity. Chapter 5 discusses the implications of these findings and suggests potential studies

that can be conducted to further our understanding of the tone-scramble task phenomenon.
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Chapter 2

Temporal structure of tone-scrambles

influences sensitivity to mode

2.1 Abstract

When classifying major versus minor tone-scrambles (random sequences of pure tones), most

listeners (70%) perform at chance while the remaining listeners perform nearly perfectly.

The current study investigated whether inserting rests and cyclic sequences into the stimuli

could heighten sensitivity in such tasks. In separate blocks, listeners classified tone-scramble

variants as major versus minor (“3” task) or fourth versus tritone (“4” task). In three “Fast”

variants, tones were played at 65 ms/tone as a continuous, random stream (“FR”), or with

a rest after every fourth tone (“FRwR”), or as a repeating sequence of four tones with a rest

after every fourth tone (“FCwR”). In the “Slow” variant, tones were played at 325 ms/tone

in random order. In both the “3” and “4” tasks, performance was ordered from best to worst

as follows: FRwR > FR > FCwR > Slow. Post-hoc analysis revealed that performance was

suppressed in the Slow and FCwR task-variants due to a powerful bias inclining listeners

to respond “major” or “fourth” (“minor” or “tritone”) if the 4-note sequence defining the

stimulus ended on a high (low) note. Overall, the results indicate that inserting regular rests
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into random tone sequences heightens sensitivity to musical mode.

2.2 Introduction

A bimodal distribution in performance is observed in a task requiring listeners to classify

major vs. minor “tone-scrambles” (Chubb et al., 2013; Dean & Chubb, 2017; Mednicoff et

al., 2018). In the basic major-minor task (the “3-task”), each tone-scramble contains 32,

65-ms tones including 8 copies each of the notes G5, D6, G6 (to establish G as the tonic of

each stimulus), and a target note. The target note in major tone-scrambles is B5 (the third

degree of the G major scale), and the target note in minor tone-scrambles is B[5 (the third

degree of the G minor scale). On each trial, the listener hears a single tone-scramble and

attempts, with feedback, to classify it as major or minor.

Dean and Chubb (2017) tested listeners in a range of tasks akin to the 3-task but using

different pairs of target notes. For example, in the “4-task”, the target notes that differ-

entiated the two stimulus types were C6 (fourth scale degree of both the G major and G

minor scales) and D[6 (a tritone above G5, included in neither the G major nor G minor

scales). The results were well-described by a bilinear model which proposes that sensitivity

of listener k to the difference between the two types of tone-scramble stimuli used in task t

(d′k,t) is determined by the listener’s amount of scale-sensitivity (Rk) and the strength with

which scale-sensitivity facilitates performance in task t (Ft). Specifically,

d′k,t = RkFt. (2.1)

Dean and Chubb (2017) concluded that performance in all of the tasks t used in their

study was determined predominantly by a single processing resource, R. Like in Chubb

et al. (2013), listeners’ performance took the form of a bimodal distribution: 70% percent

of listeners possessed levels of R near zero which yielded near-chance performance in all

tasks, while 30% of listeners possessed levels of R that yielded higher performance. R also
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facilitated different tasks with different strengths. Since the target notes used in most of the

tasks were unrelated to the difference between the major vs. minor scales, Dean and Chubb

(2017) concluded that R confers general sensitivity to variations in scale with a fixed tonic.

They therefore called R “scale-sensitivity,” proposing that listeners possess different levels

of this resource which determines their ability to discriminate tone-scramble types.

It has also been shown that performance in the 3-task does not improve if stimuli are

presented more slowly (Mednicoff et al., 2018). Listeners in this study were tested in major-

vs-minor tone-scramble classification tasks in which the stimuli were played at different

rates. In the slowest condition (which we refer to below as the Slow-3 task), each tone-

scramble contained 4, 520-ms tones: G5, D6, G6, and a target note (B[5 or B5). Listeners

who performed poorly in any condition performed poorly across all conditions. Surprisingly,

performance was the worst in the slowest condition, and listeners’ responses were strongly

affected by the order of the four tones in each tone-scramble, regardless of whether the

stimulus was major or minor. Specifically, even though note-order is irrelevant to the task,

listeners were biased to respond “major” if a tone-scramble ended on a high note. In the

slowest condition, the responses of more than half of all listeners were influenced more

strongly by this shared bias than they were by whether the target note was B[5 vs. B5.

The current study explores the following question: Does scale-sensitivity depend on tem-

poral structure? If so, then perhaps scale-defined properties (e.g., majorness vs. minorness)

can be made more legible by introducing rhythmic and/or sequential structure into tone-

scramble stimuli. It has long been recognized that chunking isolated pieces of information to-

gether can improve processing (Miller, 1956). Music typically comprises phrases, or subunits

of a longer melody, that can be defined through temporal structure. For example, sequences

of tones that occur within a rhythmic pattern are better remembered than sequences that

span rhythmic patterns (Dowling, 1973). Further, sequences with regularly-occurring rests

are better remembered than sequences that occur as a continuous stream, and the tones

between each rest tend to be recalled or forgotten as a unit (Deutsch, 1982).
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Therefore, introducing temporal structure into tone-scramble stimuli may heighten the

sensitivity of listeners to the differences between the stimulus types. In the current study,

we focused on the effects of rests and cyclic sequences (i.e. repeating sets of 4 tones).

We also sought to more deeply explore the relationship between scale-sensitivity and the

note-order-specific response biases that tend to subvert performance in the Slow-3 task of

Mednicoff et al. (2018). There was a strong, shared tendency to classify the Slow-3 stimuli

as “major” if they ended on a high note (especially the high tonic). We speculated that this

effect was provoked by the suggestion (made in the response prompt presented visually after

each trial) to classify stimuli as major if they sounded “happy” and minor if they sounded

“sad.” The prevalence of the ending-on-a-high-note bias (across all listeners other than those

with very high scale-sensitivity) suggests that, perhaps for some reason rooted in language-

processing, the stimuli in the Slow-3 task of Mednicoff et al. (2018) naturally sound happier

if they end on a high note vs. a low note.

To test this possibility, we included four task conditions that might provoke sequence-

specific biases. In two of these tasks, the stimuli differ in majorness vs. minorness (as in the

study of Mednicoff et al. (2018)). In the other two tasks, the stimuli differ in a quality that

might be described as harmoniousness vs. dissonance. The target notes in the major-minor

tasks are the third scale degrees of the major and minor scales. The target notes in the

other task are the fourth scale degree (which is in both the major and minor scales) and the

tritone (which is in neither).

2.3 Method

All methods were approved by the UCI Institutional Review Board.
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2.3.1 Participants

Ninety-eight listeners participated in this study and were all undergraduate students at

the University of California, Irvine, with self-reported normal hearing. Sixty-nine listeners

reported having at least one year of formal musical training. The mean number of years

of musical training across all 98 listeners was 4.5 (standard deviation: 4.9). All listeners

received course credit for participating in the study.

2.3.2 Stimuli

The experiment used eight stimulus variants with two types each (determined by which

target note it contained), for a total of 16 stimulus types (Table 2.1). Stimuli were tone-

scrambles, which are sequences of pure tones comprising equal numbers of a target note T

plus three other notes from the standard equal-tempered chromatic scale: G5 (783.99 Hz),

D6 (1174.66 Hz), and G6 (1567.98 Hz). In the “3-task” variants, the target note T was B[5

(932.33 Hz) for “low-target” (Minor) stimuli or B5 (987.77 Hz) for “high-target” (Major)

stimuli. In the “4-task” variants, T was C6 (1046.50 Hz) for “low-target” (Fourth) or D[6

(1108.73 Hz) for “high-target” (Tritone) stimuli. Thus, in all tasks, the high target note was

a semitone higher in pitch than the low target note.

Stimuli in the six “Fast” task variants contained twenty, 65-ms tones. Tones in the FR-

3 and FR-4 (“Fast Random”) tasks were presented in a continuous stream. Tones in the

FRwR-3 and FRwR-4 (“Fast Random with Rests”) tasks were presented as five bursts of

four tones. Each burst contained a random sequence of the notes G5, D6, G6 and T, and

bursts were separated by 130-ms rests. Tones in the FCwR-3 and FCwR-4 (“Fast Cyclic

with Rests”) tasks were presented in five repeating bursts of the same sequence of four tones

(one each of G5, D6, G6 and T), and bursts were separated by 130-ms rests.

The stimuli in the Slow-3 and Slow-4 tasks comprised one each of the notes G5, D6, G6

and T, played in random order at 325 ms per tone.

In all tasks, each individual tone per stimulus was windowed by a raised cosine function
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with a 22.5-ms rise time.

2.3.3 Procedure

At the start of the experiment, listeners completed a brief survey to report (among other

information) their number of years of musical training.

Listeners were then tested in each of the FR-3, FRwR-3, FCwR-3, Slow-3, FR-4, FRwR-4,

FCwR-4, and Slow-4 tasks. Task order was randomly generated for each listener.

At the start of each task, the listener heard eight example stimuli labeled as either “Type

1” or “Type 2.” In 3-task variants, Type 1 corresponded to high-target (major) stimuli; Type

2 corresponded to low-target (minor) stimuli. In 4-task variants, Type 1 corresponded to

low-target (fourth) stimuli; Type 2 corresponded to high-target (tritone) stimuli. These

distinctions were not explicitly told to the listener. Then, on each trial, the listener heard a

single stimulus and strove to judge which type was presented by entering “1” or “2” for their

response. Correctness feedback was printed to the screen after each trial, and proportion

correct was given at the end of each block.

Each task consisted of two blocks of 48 trials. Stimulus type (high- vs. low-target) was

determined randomly on each trial. To shorten the experiment duration, the number of trials

Table 2.1: The temporal and sequential properties of the stimuli used in the 8 tasks. The
number in the task name (i.e., 3 or 4) indicates that task’s set of target notes (B[5/B5 and
C6/D[6, respectively).

Tasks Number of tones Tone duration Rests Order

FR-3, FR-4 20 65 ms no random

FRwR-3, FRwR-4 20 65 ms yes random

FCwR-3, FCwR-4 20 65 ms yes cyclic

Slow-3, Slow-4 4 325 ms no random
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in the first block of the FR-3, FR-4, FRwR-3, and FRwR-4 tasks was reduced to 24 for the

last 70 listeners. For the basic analysis (Sec. 2.4), we computed listeners’ d′ values from the

second block of trials and treated the first block of trials as practice, as has been done in

previous tone-scramble studies (Chubb et al., 2013; Dean & Chubb, 2017; Mednicoff et al.,

2018). In analyzing the sequence-specific biases that occur in the FCwR-3, FCwR-4, Slow-3,

and Slow-4 tasks (Sec. 2.6), we used both blocks of 48 trials to increase statistical power.

The experiment took place in a quiet lab on a Windows Dell computer with a standard

Realtek audio/sound card using Matlab. Stimuli were presented at the rate of 50000 sam-

ples/s, and listeners wore JBL Elite 300 noise-cancelling headphones with volume adjusted

to their comfort level.

2.4 Results

Listeners’ d′ values, our basic dependent measure, were computed using the last 48 trials of

each task. The first block of 24 or 48 trials per task was treated as practice. If a listener

was tested on n high-target (low-target) stimuli over the course of the last 48 trials and

responded correctly on all of them, then the probability of a correct response was adjusted

to n−0.5
n

(as suggested by Macmillan and Kaplan (1985)). This implies that d′ values around

4.1 correspond to near-perfect performance on all 48 trials of a task.

Comparisons of the d′ values achieved by listeners in different tasks suggest that tasks

differed in difficulty. Table 2.2 lists the results of paired samples t-tests of the null hypothesis

that the mean value of d′ is equal for two tasks. Some of the main trends revealed by

this table are: (1) performance in each of the FRwR-3, FR-3, FCwR-3, Slow-3 tasks is

significantly better than performance in the corresponding 4-task; and (2) for each of n = 3, 4,

performance in the Slow-n task is significantly worse than in the FRwR-n, FR-n, and FCwR-

n tasks.

Performance showed a significant tendency to improve across tasks. Specifically, we
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computed the linear trend Lk in the vector of eight d′ values achieved by each listener k

across the eight tasks in the order in which the listener was tested. The mean value of the

Lk’s was 0.18. A 1-tailed t-test of the null hypothesis that the true mean was 0 yielded

t97 = 2.30, p = 0.012.

2.4.1 Bilinear model results

Using the bilinear model (Eq. 2.1), we estimated Ft and Rk values. Following the analysis

procedure of Mednicoff et al. (2018), we set the constraint that

∑
tasks t

Ft = 8 (where 8 is the number of tasks). (2.2)

This constraint has convenient properties. First, if all tasks are equally facilitated by R,

then Ft will be 1 for all tasks. Second, Eq. 2.2 makes Rk the average value of d′ achieved by

Table 2.2: Results from paired samples t-tests of d′ achieved by all listeners in each pair of
tasks. The values shown are t-statistics for 2-tailed tests of the null hypothesis that the
mean value of d′ is equal for the two tasks. All t-statistics have 97 degrees of freedom. *
p < 0.05/28 = 0.0018 (Bonferroni correction).

Task FR-3 FRwR-3 FCwR-3 Slow-3 FR-4 FRwR-4 FCwR-4 Slow-4

FR-3 — 1.14 -0.34 5.52* 4.59* 1.40 4.20* 5.24*

FRwR-3 — 0.74 5.71* 5.76* 2.70 5.53* 6.27*

FCwR-3 — 6.41* 5.76* 2.08 6.04* 6.41*

Slow-3 — 0.23 3.35* 0.15 1.79

FR-4 — 4.56* 0.05 1.72

FRwR-4 — 4.14* 4.47*

FCwR-4 — 1.72

Slow-4 —
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listener k across all 8 task-variants.

The estimated values of Ft for all tasks t are displayed in Fig. 2.1. As suggested by the

d′ results, and consistent with the results of Dean and Chubb (2017), Ft is higher for each

3-task variant t (t = FRwR-3, FR-3, FCwR-3, and Slow-3) than it is for the corresponding

4-task variant.

For n = 3, 4, FFRwR−n > FFR−n ≈ FFCwR−n > FSlow−n. In particular, FSlow−n is much

lower than Ft for each of the “Fast” conditions (t = FRwR-n, FR-n, FCwR-n). This is

consistent with the finding of Mednicoff et al. (2018) that listeners perform worse when

tone-scrambles are played more slowly.
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Slow-4
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Figure 2.1: Estimated values of Ft for the eight tasks. Error bars are 95% Bayesian credible
intervals. Figure reproduced from [Ho, J., & Chubb, C. (2020). How rests and cyclic se-
quences influence performance in tone-scramble tasks. The Journal of the Acoustical Society
of America, 147(6), 3859-3870.], with the permission of AIP Publishing.

The left panel of Fig. 2.2 displays the histogram of Rk estimated for the 98 listeners

k. Similar to the histogram of R values observed by both Dean and Chubb (2017) and

Mednicoff et al. (2018), this histogram is positively-skewed with most listeners possessing R

values near 0. This histogram does not appear bimodal. However, as seen in the right panel
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of Fig. 2.2, the histogram of proportion correct that these listeners would be predicted to

achieve in the FR-3 task (assuming they used optimal criteria) yields the bimodal distribution

of performance that is typically observed for this task-variant (Chubb et al., 2013; Dean &

Chubb, 2017; Mednicoff et al., 2018).
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Figure 2.2: Left panel: Histogram of estimated R levels for the 98 listeners. This histogram
is positively-skewed with most listeners possessing R values near 0. Right panel: Histogram
of predicted proportions correct in the FR-3 task corresponding to the R levels in the left
panel. This histogram appears bimodal although the histogram of R levels does not. Figure
reproduced from [Ho, J., & Chubb, C. (2020). How rests and cyclic sequences influence
performance in tone-scramble tasks. The Journal of the Acoustical Society of America,
147(6), 3859-3870.], with the permission of AIP Publishing.

The results are well-described by the bilinear model. Fig. 2.3 plots the estimates of d′k,t

for each listener k in each task t against the values predicted by the bilinear model, and a

strong relationship is observed. The bilinear model accounts for 73.8% of the variance in the

values of d′k,t for the 98 listeners across the eight tasks.

2.4.2 Relationship with music training

Fig. 2.4 plots each listener’s R against his-or-her self-reported years of musical training,

showing a significant correlation of 0.364 (p<0.01). In the group of 37 listeners with at least

five years of musical training, 21 listeners had R values below 1. Three of the listeners in
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Figure 2.3: Scatterplot of observed d′ values against estimated d′ values from the bilinear
model. Each point corresponds to a given listener k in a given task t. Tasks are indicated
by the symbols displayed in the legend. Figure reproduced from [Ho, J., & Chubb, C.
(2020). How rests and cyclic sequences influence performance in tone-scramble tasks. The
Journal of the Acoustical Society of America, 147(6), 3859-3870.], with the permission of
AIP Publishing.

this group of 21 had at least 15 years of musical training.

The highest R value attained by the 35 listeners with fewer than two years of musical

training was 2.2. Among the six listeners who attained R values above 3, four listeners had

at least five years of musical training. Therefore, listeners with high values of R tend to

have more years of musical training, which follows the pattern observed by Dean and Chubb

(2017) and Mednicoff et al. (2018).

2.5 Discussion

The current study explored the degree to which scale-sensitivity (Dean & Chubb, 2017)

is modulated by basic variations in temporal structure, which were implemented through

periodic rests and cyclic note sequences.

Similar to the results of Dean and Chubb (2017) and Mednicoff et al. (2018), performance
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Figure 2.4: The relationship between musical training and Rk. Figure reproduced from [Ho,
J., & Chubb, C. (2020). How rests and cyclic sequences influence performance in tone-
scramble tasks. The Journal of the Acoustical Society of America, 147(6), 3859-3870.], with
the permission of AIP Publishing.

.

was well-described by the bilinear model (Eq. 2.1) across all listeners k in all tasks t, implying

that performance on the tasks in this study is primarily determined by a single processing

resource. The current study is linked to Mednicoff et al. (2018) and Dean and Chubb (2017)

in the shared use of the FR-3 task. This commonality suggests that a single processing

resource (called “scale-sensitivity” by Dean and Chubb (2017)) underlies performance in all

three studies.

We also note that for each of n = 3, 4, FFRwR−n > FFR−n. The current study does not

clearly determine the basis of this effect because the stimuli in the FRwR-n task differ from

those in the FR-n task in two ways. First, the FRwR-n task stimuli contained a rest between

each burst of four notes. Second, each burst contained one each of the notes G5, D6, G6, and

T. Either or both of these features may have contributed to the heightened performance in

the FRwR-n task, compared to in the FR-n task.

For each of n = 3, 4, FFRwR−n > FFCwR−n. In the FCwR-n task, the five bursts in each

17



stimulus repeat the same randomly-ordered sequence of the four notes G5, D6, G6, and T.

By contrast, in the FRwR-n task, each of the five bursts in each stimulus contains a random

sequence of the four notes. In Sec. 2.6, we present evidence suggesting that the heightened

difficulty of the FCwR-n task vs. the FRwR-n task stems from systematic response biases

associated with individual sequences of the four notes G5, D6, G6, T. These biases operate

more strongly to subvert performance in the FCwR-n task than they do in the FRwR-n

task.

2.6 Note-Order Effects

In this section, we focus exclusively on the FCwR-3, FCwR-4, Slow-3, and Slow-4 tasks

because a given stimulus in any of these tasks is completely determined by a single sequence of

four notes. (This is not true in any of the other tasks.) In this section, we investigate whether

specific permutations of these notes influence listeners’ responses. Following Mednicoff et al.

(2018), we first use a “Descriptive” model to capture the detailed structure in the data. We

then show that the results from the Descriptive model can be captured by a much simpler

“Note-function-biased” model.

2.6.1 Notation

We refer to the notes G5, B[5, B5, C6, D[6, D6, and G6 by their respective pitch height values

(1, 4, 5, 6, 7, 8, 13), which represent the notes’ locations in the chromatic scale starting at

G5.

In each of the FCwR-3, Slow-3, FCwR-4 and Slow-4 tasks, a given stimulus corresponds

to a particular 4-note sequence. We refer to individual notes as “pips;” the symbol S

refers to the four-pip sequence that determines a stimulus in a task. For t = 1, 2, 3, 4, S(t)

is the note assigned to pip t. Also in each task, all stimuli are constructed from a set

Notes = {1, T−, T+, 8, 13}, where T− denotes the lower of the two target notes and T+
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denotes the other (a semitone higher in pitch). In the FCwR-3 and Slow-3 Tasks, T− = 4

and T+ = 5, and in the FCwR-4 and Slow-4 Tasks, T− = 6 and T+ = 7. The symbol

T refers to the target note in a stimulus. We call a stimulus with target note T− (T+) a

low-target (high-target) stimulus.

A permutation of the four symbols “1”, “8”, “13”, and “T” produces a “note-order.”

Substituting “T−” for T in a given note order Q yields a symbol string corresponding to a

stimulus S−Q . Substituting T+ for T yields a symbol string corresponding to a stimulus S+
Q .

2.6.2 Modeling framework

In the general modeling framework, a listener k computes an internal statistic for each

stimulus S and compares it to a criterion ηk which is fixed across all trials in a given task.

Let Mk,S be the expectation of this internal statistic. Then both of the models we consider

assume

Response of listener k to stimulus S =

 “high-target” if Mk,S +X > ηk

“low-target” if Mk,S +X < ηk

, (2.3)

where X is a standard normal random variable.

2.6.3 Fitting procedures

In the following sections, we fit the Descriptive and Note-function-biased models to the data

in the FCwR-3, Slow-3, FCwR-4, and Slow-4 tasks. We derive maximum likelihood estimates

of all parameters. In addition, we use a Bayesian fitting procedure to derive credible intervals

around these estimates. Specifically, we assume a jointly uniform prior distribution with

wide bounds on all model parameters. Then, using Markov chain Monte Carlo simulation,

we extract a sample of vectors from the posterior joint density characterizing the parameters.

In the figures in this section, line markers show maximum likelihood estimates of parameters,
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and error bars give the 0.025 and 0.975 quantiles of posterior, marginal parameter densities.

2.6.4 The Descriptive model

For listeners k with high values of Rk, we expect Mk,s to depend strongly on the value of

τS =

 1 if S is a high-target stimulus,

−1 if S is a low-target stimulus.
(2.4)

As Mednicoff et al. (2018) discovered in the Slow-3 task, many listeners also exhibit

shared, systematic, S-dependent response biases. In the Descriptive model, these biases are

captured by free parameters βS corresponding to all 48 possible stimuli S (24 note-orders ×

2 target notes). The Note-function-biased model (described below) uses a simplified rule to

predict the βS values.

Both the Descriptive and Note-function-biased models assume that

Mk,S = fτ (Rk)τS + fβ(Rk)βS (2.5)

where the function fτ (R) reflects the strength with which τS influences the response of a

listener with scale-sensitivity R, and the function fβ(R) reflects the strength with which βS

influences the response of a listener with scale-sensitivity R.

In order to uniquely specify the descriptive model, we impose several constraints on the

parameters; these are described in Sec. 2.6.6.

2.6.5 The Note-function-biased model

The Note-function-biased model describes a simple theory of how the βS’s are computed. For

a task with low and high target notes T− and T+, let Notes = {1, T−, T+, 8, 13}. Under the

Note-function-biased model, there exist functions fnote : Notes→ R and fpip : {1, 2, 3, 4} →
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R such that

βS =
4∑
t=1

fnote(S(t))fpip(t), (2.6)

where S(t) is the note occurring at pip t in the sequence defining S.

The “Pitch-height-biased” model used by Mednicoff et al. (2018) is a special case of the

Note-function-biased model in which

fnote = fPH(n) = n−MNotes for all n ∈ Notes, (2.7)

where MNotes is the mean of the notes n ∈ Notes.

In order to uniquely specify the Note-function-biased model, we impose several con-

straints on the parameters; these are described in Sec. 2.6.6.

2.6.6 Model Constraints

We impose several constraints on the parameters for each of the two models.

The stimulus-specific biases βS from the Descriptive model are constrained as follows:

∑
S

βS = 0 and
1

48

∑
S

β2
S = 1, (2.8)

where each sum is over all 48 stimuli S. The first constraint prevents βS values from trading

off with the threshold values ηk. The second constraint prevents βS values from trading off

with fβ, and also enables comparison of their magnitudes to those of the τS values (which

also satisfy 1
48

∑
S τ

2
S = 1).

Following Mednicoff et al. (2018), we forced the functions fτ (R) and fβ(R) from the

Descriptive model to assign a fixed value to all Rk in a given sextile of the distribution of

scale-sensitivities observed across all listeners k in the study.

The parameters of the Descriptive model are the 48 βS values, the six values each of fτ and
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fβ, and the 98 ηk values. Therefore, taking into account the two degrees of freedom sacrificed

by imposing the constraints of Eq. 2.8 on the βS values, the model absorbs 48+12+98−2 =

156 degrees of freedom.

The reader will note that the Note-function-biased model is under-constrained. For

example, for any choice of the functions fnote and fpip in the model, and any non-zero scalar

α, if we replace fnote and fpip with f̂note = αfnote and f̂pip =
fpip
α

, the new model will yield

exactly the same predictions. To uniquely determine model parameters, we must specify

the relative signs and amplitudes of fβ, fnote, and fpip. We impose particular constraints

to facilitate comparison of results from the FCwR-3, Slow3, FCwR-4, and Slow-4 tasks and

also from Mednicoff et al. (2018).

To make the results from the Note-function-biased model comparable to those of the

Pitch-height-biased model of Mednicoff et al. (2018), we constrain fnote to sum to 0 and also

to have the same sum of squares as fPH (Eq. 2.7). To ensure that the βS values that result

from Eq. 2.6 will satisfy Eq. 2.8, fpip is constrained to sum to 0, and scaled to make βS’s

satisfy the right side of Eq. 2.8. In addition, fpip(4) is constrained to be positive (which

makes the fpip’s from all four tasks similar in form). Finally, the sum of fβ taken across

sextiles 3, 4, 5 of the R distribution is constrained to be positive (which makes the fβ’s from

all four tasks similar in form).

Thus, the total number of degrees of freedom absorbed by the Note-function-biased model

is 115: fpip uses 2 degrees of freedom; fnote uses 3; the ηk’s use 98; and each of fτ and fβ

uses 6.

2.6.7 Modeling results

Instead of considering directly the parameters βS for all sequences S, it is useful to focus

instead on the equivalent, alternative parameters

µQ =
βS+

Q
+ βS−

Q

2
and δQ =

βS+
Q
− βS−

Q

2
(2.9)
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for all note-orders Q. For a given note-order Q, µQ reflects the bias injected by the note-order

Q regardless of target note, and δQ reflects the difference in influence exerted by T+ vs T−

in the context of Q. (Note that βS+
Q

= µQ + δQ, and βS−
Q

= µQ − δQ.)

Across the four tasks, many of the µQ values estimated from the descriptive model (plot-

ted as black circles in Fig. 2.5) deviate significantly from 0, confirming that note-order exerts

strong influence on stimulus-specific biases regardless of the target note. By contrast, very

few of the δQ values estimated from the descriptive model (black circles in Fig. 2.6) devi-

ate significantly from 0 suggesting that note order does not strongly influence the relative

influence exerted by T+ vs T−.

In Figs. 2.5 and 2.6, the gray triangles plot the results from the Note-function-biased

model. As described in the Appendix, fnote uses only 3 degrees of freedom and fpip uses only

2 as a result of the model constraints. Thus the Note-biased-function model uses only five

degrees of freedom to account for all of the 24 µQ’s and 24 δQ’s. As reflected by the descriptive

model fit, it captures the overall structure in the data remarkably well. In particular, for

each of the four tasks, a likelihood ratio test (Hoel, Port, & Stone, 1971; Wilks, 1944) fails to

reject the nested Note-function-biased model in favor of the fuller Descriptive model. Under

the null hypothesis, the test statistic X is chi-square distributed with 41 degrees of freedom.

For the FCwR-3 task, X = 44.7, p = 0.32; for the Slow-3 task, X = 26.7, p = 0.96; for the

FCwR-4 task, X = 47.4, p = 0.23; and for the Slow-4 task, X = 54.8, p = 0.07.

Fig. 2.7 plots the functions fτ (black) and fβ (gray). As expected, fτ increases with Rk.

For all four tasks, the Descriptive model estimates of fβ are, on average, significantly above

0 and roughly equal for listeners with scale-sensitivity levels in sextiles 4, 5, and 6. Thus, the

biases reflected by the black circles in Fig. 2.5 operate with roughly equal strength across

all listeners with scale-sensitivity greater than ≈ 0.3.

The relative influence of the biases βS on the judgments of our listeners varies strongly

across the four tasks. Consider a listener k with Rk in the sixth sextile. In the FCwR-3

task, fτ (Rk) is around 6 times greater than fβ(Rk); this implies that the identity of the
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Figure 2.5: The note-order-specific biases µQ for the 24 note-orders Q in each of the four
tasks. The note-order Q of a given stimulus S is represented along the horizontal axis,
running downward. Values estimated from the Descriptive model (Note-function-biased
model) are plotted in black circles (gray triangles). Markers show maximum likelihood
estimates; error bars show 95% Bayesian credible intervals. Figure reproduced from [Ho,
J., & Chubb, C. (2020). How rests and cyclic sequences influence performance in tone-
scramble tasks. The Journal of the Acoustical Society of America, 147(6), 3859-3870.], with
the permission of AIP Publishing.

target note exerts roughly 6 times more influence on the response of this listener than do the

sequence-specific biases. At the other extreme, however, in the Slow-4 task, fτ (Rk) is only

around twice as great as fβ(Rk). In the Slow-3 task, fτ (Rk) is around 4 times greater than

fβ(Rk), and in the FCwR-4 task, fτ (Rk) is around 3.5 times greater than fβ(Rk).

The left panel of Fig. 2.8 plots the temporal weighting function fpip for all four tasks.

As described in the appendix, fpip is constrained to sum to 0 and to have fpip(4) > 0; thus,

all four functions rise up similarly.

The differences between the 3- and 4-task variants are concentrated in the note weights

function fnote (right panel of Fig. 2.8). In each of the FCwR-3 and Slow-3 tasks, fnote
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Figure 2.6: The note-order-specific differences in influence exerted by T+ vs T− for the 24
note-orders Q in each of the four tasks. The note-order Q of a given stimulus S is represented
along the horizontal axis, running downward. Values estimated from the Descriptive model
(Note-function-biased model) are plotted in black circles (gray triangles). Markers show
maximum likelihood estimates; error bars show 95% Bayesian credible intervals. Figure
reproduced from [Ho, J., & Chubb, C. (2020). How rests and cyclic sequences influence
performance in tone-scramble tasks. The Journal of the Acoustical Society of America,
147(6), 3859-3870.], with the permission of AIP Publishing.

is similar to fPH (Eq. 2.7). This is not true for the FCwR-4 and Slow-4 tasks: fnote

reaches its maximum at T+ and descends to its minimum at note 13. It should also be

noted that fnote(T
−) ≈ fnote(T

+) in the FCwR-3 task. In the other three tasks, however,

fnote(T
−) < fnote(T

+).

2.6.8 Discussion of note-order effects

The note-order effects first observed by Mednicoff et al. (2018) were unanticipated and

mysterious. The judgment required in the Slow-3 task depends only on which of the two

target notes (pitch height values 4 or 5) occurs in the stimulus; the order of the notes is
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Figure 2.7: The functions fτ and fβ in the four tasks. The values of Rk along the horizontal
axis are the mean values of the six sextiles of Rk observed across the 98 listeners. fτ is plotted
in black; fβ is plotted in gray. Solid (dashed) lines show the fits from the Descriptive (Note-
function-biased) model. Error bars are 95% Bayesian credible intervals. Figure reproduced
from [Ho, J., & Chubb, C. (2020). How rests and cyclic sequences influence performance in
tone-scramble tasks. The Journal of the Acoustical Society of America, 147(6), 3859-3870.],
with the permission of AIP Publishing.

irrelevant. Nonetheless, the listeners’ judgments were strongly influenced by shared biases

that depend on the note-order of the stimulus. Mednicoff et al. (2018) accounted for their

results in terms of the Pitch-height-biased model, which proposed that listeners’ responses

to a given stimulus S are influenced by a bias βS according to Eq. 2.6, with fnote equal to

the function fPH (Eq. 2.7) and fpip similar in form to the functions plotted in Fig. 2.8.

The current experiment sought to broaden our understanding of these biases by probing

two questions:

1. How do the biases depend on the target notes used in a given task?
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Figure 2.8: The functions fpip (left panel) and fnote (right panel) for the four tasks. The
gray lines in the right panel show the form of fnote predicted under the Pitch-height-biased
model (Mednicoff et al. 2018). Markers show maximum likelihood estimates; error bars are
95% Bayesian credible intervals. Figure reproduced from [Ho, J., & Chubb, C. (2020). How
rests and cyclic sequences influence performance in tone-scramble tasks. The Journal of the
Acoustical Society of America, 147(6), 3859-3870.], with the permission of AIP Publishing.

2. How do the biases depend on the temporal structure of the stimuli of a given task?

Sequence-specific biases are influenced more strongly by the target notes of a

stimulus than by temporal structure.

The stimuli in the FCwR-task variants differ strongly in temporal structure from the stimuli

in the Slow-task variants. Individual tones last five times as long in the Slow-task variants

than they do in the FCwR-task variants. In addition, the 4-note sequence that determines

a stimulus in the Slow-task variants occurs only once, but is repeated five times in the

FCwR-task variants.

Nonetheless, as revealed by the Note-function-biased model fits, the overall pattern of

biases in the FCwR-3 (FCwR-4) task is similar to that in the Slow-3 (Slow-4) task. The left

plot of Fig. 2.8 demonstrates that the last pip seems to play a more important role in the

FCwR-task variants than in the Slow-task variants. For both FCwR-3 and FCwR-4 tasks,

fpip is fairly flat across pips 1, 2, and 3, and then jumps up abruptly on pip 4. By contrast,

fpip rises more gradually for the Slow-3 and Slow-4 tasks.

Differences between the note-functions of the 3-task variants and the note-functions of the
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4-task variants are strikingly clear in the right panel of Fig. 2.8. The 3-task note-functions

assign maximally positive values to note 13 (the high tonic) whereas the 4-task note-functions

assign maximally negative values. In conjunction with the fact that the functions fpip are

maximally positive at pip 4, the note-functions for both 3-tasks imply that ending on note

13 biases listeners to respond “high-target” (“major”). In contrast, in both 4-tasks, ending

on note 13 biases listeners to respond “low-target” (“fourth”).

In itself, this observation might be taken to suggest that the 4-task note-functions are

negatives of the corresponding 3-task note-functions. This would imply that the effects that

operate in the 3-tasks to bias listeners to respond “major” also operate in the 4-tasks to

bias listeners to respond “fourth.” However, this does not appear to be true. Negating the

note-functions for the FCwR-4 and Slow-4 tasks in the right panel of Fig. 2.8 does not

convert them into the note functions of their 3-task counterparts. Furthermore, 4-task note-

functions reach their maximal values at T+ whereas both 3-task note-functions assign T+ a

value near 0. These findings imply that features of the stimuli other than the difference in

pitch between the target notes are critical in determining the pattern of the sequence-specific

biases in the task.

The difference in pitch between the target notes T− and T+ is the same in the FCwR-3,

Slow-3, FCwR-4, and Slow-4 tasks; however, the sequence-specific biases are dramatically

different between the two 3-task variants versus the two 4-task variants. This implies that

it is not the difference in pitch between target notes that determines the biases. Plausibly,

the pattern of sequence-specific biases in a given task is determined by the intervals formed

between the two target notes and the context-defining notes 1, 8, and 13. Several features

of the note-functions provide clues to the nature of this effect.

First, ending on note 13 (the high tonic) exerts a powerful influence on the biases in both

3- and 4-task variants; by contrast, ending on 1 (low tonic) exerts much less influence in the

3-task variants and little or no influence in the 4-task variants.

Music theory suggests that the high and low tonic should play similar roles in controlling
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the scale-defined qualities of a tone sequence. The different roles of the high and low tonic in

influencing the sequence-specific biases in both the 3- and 4-task variants thus suggest that

the source of these biases may lie outside the scope of standard music theory. We discuss

some possibilities in Sec. 2.7.

Sequence-specific biases may not be intrinsic to the system that is recruited to

classify tone-scrambles.

If sequence-specific biases are intrinsic to tone-scramble classification, then we might ex-

pect these biases to operate with increasing strength in listeners with higher levels of scale-

sensitivity. However, in each of the four tasks, the fβ(Rk) are flat across listeners k with Rk

above the median. In addition, in the Slow-3 and FCwR-4 tasks, fβ(Rk) also appears to be

greater than 0 for some listeners with Rk near or below 0.

2.7 General Discussion

Previous research (e.g., Chubb et al. (2013)) has shown that ≈ 70% of listeners perceive

little or no difference between major vs. minor tone-scrambles. Moreover, a single processing

resource predominates in controlling performance in a range of tone-scramble tasks that use

target notes unrelated to the difference between the major vs. minor scales (Dean & Chubb,

2017). This suggests that the resource recruited in these tasks confers general sensitivity

to the qualities that music can achieve by establishing a tonic and selecting a scale, i.e., a

distribution of intervals relative to the tonic used in the music. This led Dean and Chubb

(2017) to call this resource “scale-sensitivity.” Plausibly, the sensitivity of a listener to

scale variations in actual music is also controlled (at least in part) by his-or-her level of

scale-sensitivity.

The current study shows that the temporal structure of a task’s stimuli exerts substantial

influence on the ease with which listeners can extract scale-defined qualities from proto-
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musical stimuli. For example, for n = 3, 4, scale-sensitivity facilitates performance with

roughly twice the strength in the FRwR-n task vs. the Slow-n task.

Across the four stimulus temporal-structures tested (the FR-, FRwR-, FCwR-, and Slow-

task variants) the facilitation strengths vary intuitively. For n = 3, 4, scale-sensitivity was

found to facilitate performance in the FRwR-n task most strongly, less strongly and approx-

imately equally in the FR-n and FCwR-n tasks, and most weakly in the Slow-n task.

Stimuli in the FRwR-n task include five bursts of four notes, with each burst containing

a randomly-ordered sequence of the low tonic, target note, dominant, and high tonic (notes

1, T, 8, and 13, respectively). Stimuli in the FR-n task also contain five sets of these notes;

however, they are presented in random order as a single, unbroken stream. Thus, the stimuli

in the FRwR-n task work in two ways to structure the note sequence to enhance performance:

(1) they break up the stream into separate bursts, and (2) they homogenize the stream by

forcing each burst to contain one each of the four notes defining the stimulus. Either or both

of these features may underlie the difference between FFRwR-n vs. FFR-n evident in Fig. 2.1.

Stimuli in the FCwR-n task have the same temporal structure as those in the FRwR-n

task; however, each of the five bursts contains the same sequence of four notes (one each of

notes 1, T, 8, and 13). As shown in Sec. 2.6, performance in the FCwR-n is undermined by

sequence-specific biases. Plausibly, these biases tend to cancel out in the FRwR-n stimuli to

yield the difference between FFRwR-n vs. FFCwR-n evident in Fig. 2.1.

The difference between FFCwR-n vs. FSlow-n is more interesting. Stimuli in the Slow-n

task contain the same information as those in the FCwR-n task: in each case, the stimulus

is defined by a 4-note sequence. Moreover, the total duration of the stimuli from both tasks

is roughly equal. Nonetheless, FFCwR-n is substantially greater than FSlow-n. This shows

clearly that speeding up and repeating a sequence can increase the legibility of its scale-

defined qualities. Increasing the frequency of occurrence of tones in a musical sequence is

known to establish a stronger perception of tonal hierarchy (Knopoff & Hutchinson, 1983;

C. Krumhansl, 1990; C. L. Krumhansl & Kessler, 1982; Youngblood, 1958; Rosenthal &
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Hannon, 2016). However, increasing tone duration should enhance the perception of tonal

hierarchy by an even greater magnitude (Lantz & Cuddy, 1998; Smith & Schmuckler, 2004).

For example, (Lantz & Cuddy, 1998) found that when the total duration of tone sequences

are held constant, the sequences that contain fewer tones of longer duration correspond to

higher ratings of tonal stability. Our results and those of Mednicoff et al. (2018) regarding

duration are at odds with these findings. The results of the current study may be explained

by the repetition in the stimuli. Playing the same sequence of tones several times in a loop

enhances the musicality of a tone sequence (Margulis & Simchy-Gross, 2016). Thus, perhaps

the scale-defined qualities in our stimuli became clearer as a result of the increased musicality

and the reorganization of the tones into a regularly-occurring rhythmic structure.

We might expect that using repetition in the Slow conditions (i.e., 5 repetitions of the

same 4 tones) would improve performance in the Slow task; however, we are skeptical of

this prediction. Based on anecdotal observations of our tasks, we predict that combining the

slow speed of the tones with an overall longer stimulus length (resulting from the repetitions)

would lead listeners to quickly become bored of the task and consequently not attend to the

full stimulus length. Further, as demonstrated in Sec. 2.6, listeners are susceptible to

sequence-specific biases for stimuli that are defined by a 4-note sequence.

The sequence-specific biases analyzed in Sec. 2.6 remain mysterious. This analysis reveals

a striking difference in the pattern of biases in the 3-task variants vs. the 4-task variants. No-

tably, ending on note 13 (the high tonic) biases listeners to respond “high-target” (“major”)

in the FCwR-3 and Slow-3 tasks; by contrast, ending on the same note biases listeners to

respond “low-target” (“fourth”) in the FCwR-4 and Slow-4 tasks. The first part of this effect

resembles an observation by Burnham, Long, and Zeide (2020) that listeners are more biased

to categorize a melody as major (minor) if it is ascending (descending) in pitch. Burnham

et al. (2020) speculate that listeners respond in this manner because major mode and as-

cending pitch both activate concepts related to positivity, while minor mode and descending

pitch both activate concepts related to negativity. Mednicoff et al. (2018) suggest that the
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bias in the 3-task may be explained by theories about the relationship between music and

speech (Patel, 2005; Patel, Iversen, & Rosenberg, 2006). Specifically, intonation of speech

that is spoken happily tends to end on a higher pitch (Juslin & Laukka, 2003; Swaminathan

& Schellenberg, 2015; Curtis & Bharucha, 2010). Shared emotional expressiveness between

music and speech would therefore suggest that a tone sequence that ends on a high note

might be perceived as more happy (major). Although the happy-vs-sad distinction applies

most naturally to major-vs-minor stimuli, we speculate that consonant-vs-dissonant stimuli

might also differ along this spectrum. Listeners prefer consonance in music (Trainor, Tsang,

& Cheung, 2002), which is associated with harmoniousness and stability based on pitch

intervals (Meyer, 2008). On the other hand, the tritone interval (which is present in the

high-target 4-task stimuli) is highly dissonant and associated with unpleasantness (Meyer,

2008; Plomp & Levelt, 1965), which listeners may relate to sadness more easily than the

consonant fourth interval. Thus, if a tone sequence that ends on a high note is perceived as

more happy, then perhaps listeners are biased to associate it with the more pleasant interval

(fourth). Further research is needed to explore these ideas in depth.
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Chapter 3

Mode Sensitivity Predicts Sensitivity

to Speech Independently of Musical

Training

3.1 Abstract

On each trial in the “3-task,” the listener hears a rapid (923 BPM), randomly-ordered

sequence comprising eight each of the notes in either an octave-doubled, G-major or G-

minor triad and strives (with feedback) to judge which he-or-she heard. This task yields a

bimodal distribution in performance with approximately 70% of listeners near chance and the

other 30% near perfect. This study investigated whether performance in this task correlates

with performance in processing speech prosody. Listeners were tested in the 3-task and also

in two speech prosody tasks: In the Rating Task, listeners rated the similarity of pitch accent

patterns between trisyllabic, nonsense words; in the Shape Task, listeners matched the pitch

accent patterns of trisyllabic, nonsense words to visual pitch contours. Performance in the 3-

task correlated significantly with performance in both prosody tasks even after effects due to

years of musical training were removed. Conversely, years of musical training failed to predict
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any additional variance in prosody-task performance after effects due to 3-task performance

were removed. These results suggest that sensitivity to musical mode and speech prosody

depend on shared processing resources that are largely immune to musical training.

3.2 Introduction

What is the nature of the relationship between music and speech perception? Music and

speech are similar not only in their acoustic properties, but also in their use of pitch cues

to convey information (e.g., Heffner and Slevc (2015); Juslin and Laukka (2003)). In mu-

sic, for example, specific pitch intervals and contours can communicate mode, emotion, and

boundaries of melodic phrases. Similarly, the rise and fall of a speaker’s voice during speech

can communicate emotion, lexical information in tonal languages, and boundaries of phrases

or sentences. It is therefore unsurprising that substantial evidence supports an overlap in

the processing of music and speech. For example, musical expertise correlates with skill

in speech processing (Glushko, Steinhauer, DePriest, & Koelsch, 2016; Gordon, Magne, &

Large, 2011; Hoch, Poulin-Charronnat, & Tillman, 2011; Ott, Langer, Oechslin, & Jancke,

2011; Roncaglia-Denissen, Bouwer, & Honing, 2018; Strait & Kraus, 2011; Patel, 2011). Mu-

sical training programs have been shown to improve speech-processing (Degé & Schwarzer,

2011; Kraus, Slater, Thompson, Hornickerl, & Strait, 2014). In children, phonological aware-

ness is correlated with production and perception of pitch intervals (Loui, Kroog, Zuk, Win-

ner, & Schlaug, 2011), and children with specific language impairment are also impaired

relative to age-matched controls in various musical tasks using melodies as stimuli (Loui

et al., 2011; Sallat & Jentschke, 2015). Furthermore, the ability to detect small frequency

differences in musical stimuli seems to transfer to the ability to detect small frequency dif-

ferences in linguistic stimuli, and this sensitivity improves with musical expertise (Schön,

Magne, & Besson, 2004; Wong, Skoe, Russo, Dees, & Kraus, 2007).

The connection between music and speech likely has evolutionary roots. Juslin and
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Laukka (2003) document many similarities in the emotional expressivity of music and speech

and propose that sensitivity to the emotional content of both speech and music is conferred

by a brain module that originally evolved to process non-verbal vocal expressions for their

emotional content. Under this theory, the brain contains separate modules for processing

speech and music; however, both modules make use of the evolutionarily more primordial

module that confers sensitivity to the emotional meaning of non-verbal vocal expressions.

Juslin and Laukka (2003) also argue that the similarities between speech and music in emo-

tional expression only applies to properties that the performer can manipulate (e.g., tempo,

loudness) and not to the more fixed properties in music such as harmony and mode. Thus,

in particular, according to Juslin and Laukka (2003), the emotional content of a musical

piece should not depend on its mode.

This conclusion is at odds with a substantial body of work supporting the claim that, on

average across listeners, music in the major (Ionian) mode sounds “happy” whereas music

in the minor (Aeolian) mode sounds “sad.” (Cunningham & Sterling, 1988; Gagnon &

Peretz, 2003; Gerardi & Gerken, 1995; Heinlein, 1928; Hevner, 1935; Kastner & Crowder,

1990; Leaver & Halpern, 2004; Peretz et al., 1998; Temperley & Tan, 2013). Because of this

striking qualitative difference, the major and minor scales have come to play a central role

in western music.

It has been argued that the “happiness” and “sadness” of music in the major and minor

modes is in fact rooted in the resemblance of melodies in the major and minor modes to

happy and sad speech respectively. For example, Huron (2008) begins with the observation

that the prosodic variations in sad speech are suppressed in size compared to those in happy

speech. He then analyzes a large corpus of minor- and major-key themes from Western

classical music and shows that the average interval size was smaller for minor- than for

major-key themes. Huron and Davis (2012) add to this story by showing that if one starts

with melodies in the major mode and asks what modification of the major scale leads to

melodies with the smallest variations in pitch, the answer is the harmonic minor scale. Cross-
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cultural comparisons also support the idea that the association between musical modes and

emotions is rooted in the vocal characteristics of different emotional states. For example,

Bowling, Sundararajan, Han, and Purves (2012) show that (1) variations in emotional state

alter the prosody of English and Tamil speech in similar ways, and (2) the tonal relationships

used to express happiness and sadness in classical South Indian music parallel those used in

Western music.

On the other hand, as Peretz (2002) notes, musical variation in pitch differs dramatically

from prosodic variation in pitch. Nearly all music is constructed using a small, discrete set

of pitches (the scale of the music). Typically one of the notes of the scale is singled out to

serve as the “tonic” of the music. This note plays a special role in the music; for example,

music typically starts and ends on the tonic, and ending on notes other than the tonic tends

to make the music sound incomplete.

The current project addresses the following question: Is there overlap between the com-

putational resources required for processing speech prosody and musical mode? On average

across listeners, music in the major mode tends to sound “happy” whereas music in the

minor mode tends to sound “sad” (Bonetti & Costa, 2019; Crowder, 1984, 1985a, 1985b;

Cunningham & Sterling, 1988; Gagnon & Peretz, 2003; Gerardi & Gerken, 1995; Heinlein,

1928; Hevner, 1935; Kastner & Crowder, 1990; Leaver & Halpern, 2004; Peretz et al., 1998;

Temperley & Tan, 2013). Further, Fourier spectra drawn from major music resemble those

of happy or excited speech whereas spectra from minor music resemble those of sad or sub-

dued speech (Juslin & Laukka, 2003; Curtis & Bharucha, 2010), suggesting that sensitivity

to musical mode variations may be conferred by processes that originally evolved to extract

emotional content from speech (Huron, 2008; Huron & Davis, 2012; Koelsch et al., 2004;

Patel, 2005).

In the current study, we compared listeners’ performance on the 3-task (measured as

3-task-d′) to their accuracy on two speech prosody perception tasks. We expected that

3-task performance would positively correlate with prosody-task-performance. This result
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alone, however, would not prove that sensitivity to speech prosody is heightened by mode

sensitivity. An alternative possibility is that listeners who are highly sensitive to musical

mode are more likely to seek out musical training, and musical training increases sensitivity

to prosody. Under the latter story, years-musical-training should account for variance in

prosody-task-performance beyond that accounted for by 3-task-d′. As we shall see, however,

the reverse is true: 3-task-d′ accounts for significant variance in prosody-task-performance

that is not explained by years-musical-training; by contrast, years-musical-training fails to

account for significant variance in prosody-task-performance that is not explained by 3-

task-d′. This result suggests that mode sensitivity is important for processing prosody, and

any apparent effect of musical training on prosody-task performance is due to the fact that

listeners high in mode sensitivity are more likely to seek out musical training.

3.3 Methods

All methods were approved by the UCI Institutional Review Board.

3.3.1 Participants

Fifty-two listeners participated and were all undergraduates at the University of California,

Irvine with self-reported normal hearing. All received course credit for their participation.

Twenty listeners reported having at least one year of formal musical training. To limit

the influence of outliers, the number of years of musical training was counted as 12 if it was

greater than 12 (N=2). With this restriction in force, the mean number of years of musical

training across all listeners was 2.1 (standard deviation: 3.4).

Thirty-three listeners were native English speakers, and 15 listeners spoke only English.

Thirty-seven listeners were multilingual. Eighteen listeners spoke Spanish, and 9 listeners

reported that their primary language was tonal (Chinese dialects or Vietnamese). For these

speakers, we unfortunately neglected to confirm that their primary language was also their
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native language. Among the tonal language speakers, the mean number of years of musical

training was 5.78 (standard deviation: 4.60). Among the non-tonal language speakers, the

mean number of years of musical training was 1.86 (standard deviation: 4.40).

3.3.2 Procedure

The experiment consisted of three tasks, and task order was counterbalanced across listen-

ers. Before beginning, listeners completed a general questionnaire to report their musical

and language background. The only pieces of information from this questionnaire that are

used below are the listener’s (1) number of years of musical training, and (2) native language.

The last 28 listeners to participate in the experiment also completed the Ollen Musical So-

phistication Index (OMSI) questionnaire (Ollen, 2006), which yields a score that reflects

the likelihood that a music expert would categorize the listener as “more musically sophis-

ticated” (e.g., knowledgeable about music, can play an instrument or sing, can understand

and create music).

The experiment took place in a quiet lab on a Windows Dell computer with a standard

Realtek audio/sound card using Matlab. Stimuli in the 3-task were presented at a rate of

50000 samples/s. Listeners wore JBL Elite 300 noise-cancelling headphones with volume

adjusted to their comfort level.

3.3.3 The 3-task

Stimuli were tone-scrambles, which are sequences of 32 randomly-ordered pure tones com-

prising 8 copies each of the following notes from the standard equal-tempered chromatic

scale: G5 (783.99 Hz), D6 (1174.66 Hz), and G6 (1567.98 Hz). Major stimuli also contained

8 copies of B5 (987.77 Hz); minor stimuli contained 8 copies of B[5 (932.33 Hz). The dura-

tion of each tone was 65 milliseconds, for a stimulus duration of approximately 2.08 seconds.

Each individual tone was windowed by a raised cosine function with a 22.5-ms rise time.

Before beginning the task, listeners heard eight, visually labeled, example stimuli that al-
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ternated between “Type 1 (Major/Happy)” and “Type 2 (Minor/Sad).” Then, on each trial,

listeners heard a single stimulus and were asked to classify it as “Type 1 (Major/Happy)”

or ‘Type 2 (Minor/Sad).” Correctness feedback was printed to the screen after each trial,

and proportion correct was given at the end of each block. Listeners completed two blocks

of 50 trials.

3.3.4 Speech shape task

Stimuli

We used 36 recordings of trisyllabic, nonsense words that were completely voiced and con-

tained a pitch accent on the first, second, or third syllable. These recordings were drawn

from a stimulus database developed by Gupta et al. (2004). The words in this database,

which are all spoken by a female native speaker of American English, contain CV non-final

syllables and a CVC final syllable (e.g., ba-le-vel). We were able to obtain trisyllabic words

from the database that contained pitch accents on the first or second syllable, but not the

third syllable. Therefore, we modified some stimuli to create words with a pitch accent on the

third syllable. To make this set of words, we selected five-syllable words from the database

(which contained a pitch accent on the third syllable) and smoothly edited out the fourth

and fifth syllables, resulting in trisyllabic words with a pitch accent on the third syllable.

Visual pitch contour curves were generated for each word using Praat software (Boersma

& Weenink, 2017). To create these shapes, the pitch contour was extracted from each stim-

ulus recording via autocorrelation and smoothed (see Figure 3.1 for example contours). The

stimulus contour images are available for download at https://github.com/joselyngithubs/Speech-

Stimuli/.

Task

At the start of the task, listeners heard 9 example words and viewed their corresponding

visual pitch contour shapes. They could play these examples repeatedly. When they were
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ready to begin, they completed 36 trials of the task. On each trial, they listened to a word

and viewed three pitch contour shapes. They were instructed to select the shape that best

matched the pitch contour of the word that they had heard (see Figure 3.1 for a sample

screen display). They had the option to replay the word before selecting the shape. They

received feedback on each trial that indicated which of the three options was correct, and

they received proportion correct at the end of the task.

Figure 3.1: A sample trial of the Speech Shape Task. The listener heard a word and selected
the pitch contour shape that best matched the word’s pitch pattern. The listener had the
option to replay the word before making their selection.

3.3.5 Speech rating task

Stimuli

Seventy-two recordings of trisyllabic, nonsense words were selected from the stimulus database

by Gupta et al. (2004). Some of these stimuli were identical to those of the Speech shape

Task. Each word contained a pitch accent on the first, second, or third syllable.

Words were presented as 36 pairs, and all listeners received the same pairs in different
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order. Pairs were arranged such that the possible combinations of pitch accent positions in

the two words were counterbalanced as fully as possible. Each possible word occurred only

once in the entire stimulus set. Half of the word pairs had matching accent positions.

Task

Before beginning the task, listeners heard three example trials of two words with matching

pitch accent positions, and three example trials of two words with different pitch accent

positions. They could listen to the examples repeatedly. When they were ready, they

completed 36 trials of the task. On each trial, they listened to two words (played sequentially)

and clicked a button on the screen to rate the similarity of the two words’ pitch accent

positions on a scale of 1-6 (1 = extremely dissimilar, 6 = extremely similar). They had the

option to re-listen to the words before they selected their rating.

3.4 Results

Listeners’ performance in the 3-task is summarized by d′ values, using the last 75 trials of

the task (the first 25 trials were treated as practice). If a listener responded correctly to all n

of the major (minor) stimuli in those last 75 trials, then the probability of a correct response

was adjusted to n−0.5
n

(as suggested by Macmillan and Kaplan (1985)). This implies that a

d′ value around 4.4 corresponds to near-perfect performance on the 75 trials. (A d′ value of

0 corresponds to chance performance.)

Fig. 3.2 displays the histogram 3-task-d′ values. As found in other studies, the distribu-

tion of 3-task-d′ values has a large concentration of listeners near 0 and is skewed positive. In

the current sample, 64% of the listeners had 3-task-d′ values less than 1 (which corresponds

to proportion correct ≤ 0.69).

As seen in Fig 3.3, listeners’ 3-task-d′ values correlated with their self-reported years of

musical training (r = 0.54, p = 0.000). However, as seen in Fig. 3.2, this correlation is
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driven primarily by a large group of low-performers with no musical training.
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Figure 3.2: Histogram of 3-task-d′ values (estimated from the final 75 out of 100 trials)
achieved by the 52 listeners.
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Figure 3.3: The relationship between musical training and 3-task-d′.

The last 28 listeners who participated in the experiment also took the Ollen Musical So-

phistication Index questionnaire. Their 3-task-d′ values did not correlate significantly with

their musical sophistication index (r = 0.08, p = 0.69). However, none of these listeners

achieved an index above 500, which is the score corresponding to “more musically sophisti-

cated,” and most of these listeners only had 0-2 years of musical training. Thus, this sample

does not provide a strong test of the relationship between Ollen score and performance in

the 3-task.

For each participant in each of the two prosody tasks, a score was derived by applying

the logit function to proportion correct. The scores for the two prosody tasks were strongly

correlated (r = 0.91, p = 0.000). Therefore, we took the average of the scores for the two

tasks to compute an overall prosody-score for each listener.

Fig 3.4A shows that across our 52 listeners, 3-task-d′ was positively correlated with

prosody-score (r = 0.68, p = 0.000). Similarly, Fig 3.4B, shows that years-musical-training
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was correlated with prosody-score (r = 0.42, p = 0.002). Fig. 3.4C shows that when we

orthogonalize the 52-dimensional vector of 3-task-d′ values with respect to the correspond-

ing 52-dimensional vector of years-musical-training, the resulting vector still has a highly

significant, positive correlation with prosody-score; by contrast, Fig. 3.4D shows that when

we orthogonalize years-musical-training with respect to 3-task-d′, the resulting vector does

not correlate significantly with prosody-score. This shows that 3-task-d′ overshadows years-

musical-training as a predictor of prosody-score in the following sense: 3-task-d′ explains

significant variance in prosody-score that cannot be explained by years-musical-training;

however, years-musical-training fails to explain any appreciable variance in prosody-score

that cannot be explained by 3-task-d′. Thus, the results shown in Fig. 3.4 suggest that

the correlation between years-musical-training and prosody-score is produced indirectly by

(1) the relation between years-musical-training and 3-task-d′ and (2) the relation between

3-task-d′ and prosody-score.
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Figure 3.4: Listeners’ prosody-task summary scores plotted against (A) 3-task-d′, (B) Years-
of-musical-training, (C) 3-task-d′ orthogonalized with respect to Years-of-musical-training,
(D) Years-of-musical-training orthogonalized with respect to 3-task-d′. The prosody-task
summary scores reflect the average of (1) the logit function applied to proportion correct in
the rating task and (2) the logit function applied to proportion correct in the shape task.

3.5 Discussion

The current experiment shows that 3-task-d′ is correlated with prosody-score. This suggests

that some underlying factor, rooted in either or both of the genetic make-up and/or expe-
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rience of our listeners, influences 3-task-d′ and prosody-score in a similar way. Our analysis

indicates that this underlying factor is not musical training. All effects of years-musical-

training on prosody-score seem to be mediated by 3-task-d′.

What then might this underlying factor be? We shall argue that it is sensitivity to

differences in pitch across time. Evidence supporting this contention comes from Mann

(2014) who tested 111 listeners in the 3-task as well as several other basic musical tasks,

one of which, the “pitch comparison task,” is especially relevant for current purposes. Each

listener performed 200 trials in the 3-task. The values of 3-task-d′ plotted in Fig. 3.5 are

derived from the last 150 trials. On each trial in the pitch comparison task, the listener heard

two, 500 ms pure tones (windowed by a raised cosine with a 20 ms rise-time) separated by

1-sec of silence and had to judge whether the second tone was higher or lower in pitch than

the first. The frequency f1 of the first tone was random, uniformly distributed on the linear

frequency interval from 300 to 2000 Hz. The frequency f2 of the second tone was equally

likely to be higher or lower than f1, and the difference between f2 to f1 was adaptively

controlled by two, randomly interleaved staircases. Correctness feedback was given after

each trial. Each listener performed 100 trials in this task, and the pitch difference threshold

(i.e., the absolute value of the log of the frequency ratio, expressed in cents in Fig. 3.5)

was estimated for each listener. Specifically, a Weibull function was fit to the data for each

listener, and the threshold was taken to be the absolute number of cents between f1 and f2

required for the listener to achieve 80% correct.
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Figure 3.5: Scatterplot of pitch-difference-threshold (PDT) as a function of 3-task-d′ (from
Mann, 2014). PDT’s are plotted (on a log scale) with values decreasing from bottom to top
to reflect increasingly good performance. The dashed line is at 50 cents (a quarter-tone).
Out of the 59 listeners whose PDT’s were higher than 50 cents, only 3 listeners (the filled
circles) achieved d′ values greater than 0.75 (which corresponds to proportion correct ≤ 0.65)
in the 3-task.

The scatter plot of the results from Mann (2014) of 3-task-d′ vs. pitch-difference-threshold

(PDT) is shown in Fig. 3.5. In this figure, PDT’s are plotted on a log scale decreasing from

bottom to top to reflect increasing levels of performance. There are two things to note about

this figure:

1. All except three of the 59 listeners whose PDT’s were higher than 50 cents performed

near chance in the 3-task. The 3 listeners marked with filled circles are outliers – these

listeners most likely did not give the same amount of effort in all tasks.

2. Across the 52 listeners whose PDT’s are lower than 50 cents, the distribution of 3-

task-d′ values is approximately uniform from 0 to ceiling.

It is striking that (excluding the 3 outliers) the PDT-value required for high performance
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in the 3-task is 50 cents (a quarter tone)–i.e., the interval exactly half way between two

successive notes in the chromatic scale, and in particular between the two notes, B[5 and B5

that differ in the major and minor tone-scrambles in the 3-task. The relationship between

PDT and 3-task d′ reveals that a threshold less than 50 cents is necessary to successfully

differentiate the major-vs-minor stimuli of the 3-task. However, simply having this low

threshold is by no means sufficient to guarantee good performance in the 3-task.

Overall, these results from Mann (2014) strongly suggest that listeners with high PDT

are impaired in comparing two distinct pitches across time. To consider the results of the

current experiment in this context, we note that 82% of the listeners with 3-task-d′ < 0.75

in Fig. 3.5 had elevated PDT. There are 26 listeners in the current experiment with 3-task-

d′ < 0.75. The results of Mann (2014) might suggest that of these 26 listeners, roughly

21 = 0.82 × 26 have elevated PDT. The mean prosody score across the 26 listeners with

3-task-d′ < 0.75 is 0.44; by contrast, the mean prosody score across the other 26 listeners

with 3-task-d′ > 0.75 is 1.17. This difference suggests that just as 3-task-d′ is suppressed for

listeners with elevated PDT, so is prosody-score.

A follow-up experiment (data collection still ongoing) supports this prediction. 93 listen-

ers were tested in a series of tasks including the Shape Task and a pitch comparison task that

was similar to the task used by Mann (2014). The left panel of Fig. 3.6 shows the scatter

plot of 3-task-d′ vs. pitch-difference-threshold (PDT). The right panel of Fig. 3.6 shows

the scatter plot of the logit of the Shape Task scores vs. PDT. Across the 46 listeners with

PDT < 50, Shape Task score correlates with 3-task-d′ by r = 0.29, p < 0.05. Across the 47

listeners with PDT > 50, Shape Task score correlates with 3-task-d′ by r = 0.23, p = 0.12.

These results suggest that pitch-difference-threshold, rather than musical training, exerts

strong and similar influences on both the sensitivity to musical mode and the sensitivity

to pitch prosody of speech. We continue to explore the relationship between 3-task-d′ and

pitch-difference-threshold in the next chapter.
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Figure 3.6: Scatterplots of 3-task-d′ vs. PDT (left) and Shape Task score vs. PDT (right).
PDT’s are plotted (on a log scale) with values decreasing from bottom to top to reflect
increasingly good performance. The dashed line is at 50 cents (a quarter-tone). Dark circles
represent the 2 listeners whose PDT’s were higher than 50 cents but achieved d′ values
greater than 0.75 (which corresponds to proportion correct ≤ 0.65) in the 3-task.

A large body of research shows that musical training is associated with a wide range of

heightened abilities. For example, musicians are better than non-musicians at discriminating

simple tones (Buss, Taylor, & Leibold, 2014; Fujioka, Trainor, Ross, Kakigi, & Pantev,

2004, 2005; Micheyl, Delhommeau, Perrot, & Oxenham, 2006) and complex melodic stimuli

(Pantev et al., 1998). They also perform better than non-musicians in tasks requiring sound

segregation (Parbery-Clark, Skoe, Lam, & Kraus, 2009), auditory attention (Strait, Kraus,

Parbery-Clark, & Ashley, 2010), speech-processing (Besson, Chobert, & Marie, 2011a, 2011b;

Marie, Magne, & Besson, 2010; Marie, Delogu, Lampis, Belardinelli, & Besson, 2011; Morrill,

Devin, Dilley, & Hambrick, 2015; Parbery-Clark, Strait, Anderson, Hittner, & Kraus, 2011)

as well as executive control (Bialystok & DePape, 2009; Zuk, Benjamin, Kenyon, & Gaab,

2014). The results of the current experiment illustrate the hazards in trying to use correlation

to show that musical training heightens some particular skill. When one observes a positive

correlation between musical training and performance in a given task, it seems natural to

conclude that musical training is the cause of the improvement. However, this need not
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be true. For example, our findings suggest that (despite the positive correlation between

years-musical-training and prosody-score) musical training may well have little or no effect

on prosody-score. To recapitulate the reasoning behind this claim:

1. Musical training seems to have little or no effect on scale-sensitivity. The positive

correlation between years-musical-training and 3-task-d′ is plausibly due to the fact

that listeners with high scale-sensitivity are more likely to seek out musical training

than listeners with low scale-sensitivity. This conclusion is bolstered by the finding

that 6-month-old infants show the same distribution of sensitivity in the 3-task as

adults (Adler et al., 2020).

2. Scale-sensitivity explains nearly all of the variance in prosody-score that is explained

by years-musical-training; however, scale-sensitivity also explains a large (highly sig-

nificant) proportion of variance in prosody-score that years-musical-training fails to

explain. Thus 3-task-d′ almost entirely overshadows years-musical-training as a pre-

dictor of prosody-score. This is exactly what one would expect if musical training in

itself has no effect on prosody-score.

These observations echo those of Correia et al. (2020) who showed that skill in recogniz-

ing vocal emotions is better explained by innate musical predispositions than by musical

training. These authors express well-founded skepticism that musical training can improve

performance on tasks that are unrelated to music.

We propose that in any study investigating the relationship between musical training

and performance in some target task, the scale-sensitivity (SS, which can be represented by

3-task-d′) of all listeners should be measured as a matter of standard practice. The reasons

are as follows:

1. If performance in the target task is correlated positively with musical training, this

may be due to the fact that task performance depends on SS.
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2. Although SS and years of musical training are correlated, the two variables can be

readily dissociated due to the existence of listeners with little or no musical training

but high SS and other listeners with many years of musical training but very low SS.

3. It is easy to measure a variable that reflects SS by testing a listener in 100 trials of the

3-task and estimating d′ from the last 50 trials.

4. Only by partialling out effects on target task performance due to SS can one determine

whether musical training accounts for any of the variance in performance beyond the

effects due to SS.

Overall, our results support a connection between music and speech. However, the na-

ture of the link between prosodic sensitivity and musical sensitivity remains unclear. Patel

(2011) proposed that musical sensitivity drives speech sensitivity, which would explain why

musicians might experience music-to-language benefits. Musical processing is more demand-

ing than speech processing due to its precision (e.g., listeners are sensitive to fine-grained

changes in music, whereas speech can still be understood under broad changes); further,

musical experiences are emotionally rewarding. Therefore, this hypothesis suggests that

musical processing is more likely to promote plasticity in the networks shared with speech

processing. Abundant research suggests that the reverse is also possible. For example, ex-

perience with a tonal language seems to confer more precise pitch processing of music and

speech (Gandour et al., 2000; Krishnan, Xu, Gandour, & Cariani, 2005; Deutsch, Henthorn,

Marvin, & Xu, 2006). Therefore, the influence between the music and language domains

may be bidirectional (Bidelman, Hutka, & Moreno, 2013; Asaridou & McQueen, 2013).

Although we can not directly resolve these theories with our results, we can provide a case

that emotion is the common agent that links music and speech prosody. Music shares many

parallels with emotional speech, predominantly in pitch; for example, the spectra of major

and minor music resemble those of happy and sad speech, respectively (Juslin & Laukka,

2003; Curtis & Bharucha, 2010). Musicianship has been observed to correlate with recogni-
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tion of emotions in speech prosody (Farmer, Jicol, & Petrini, 2020; Lima & Castro, 2011).

Evidence also suggests that greater emotional intelligence, rather than musical expertise,

corresponds with more accurate recognition of emotions in speech and music (Trimmer &

Cuddy, 2008). In the context of our study, we speculate that major-vs-minor (happy vs.

sad) tone-scramble discrimination ability extends to speech prosody perception to aid the

processing of emotional content in speech. Given the bimodal distribution of performance

on the 3-task, our hypothesis would imply that only a small sample of the population are

highly sensitive to the emotional content in speech and music, while the majority of people

are not. Further research is needed to assess this possibility, since we did not directly assess

emotional processing in the current study.

We note some limitations in the study. First, the pitch and intensity contours of the

stimuli in the Speech Shape Task are correlated (r = 0.67, p = 0.00). Although listeners were

instructed to only pay attention to the words’ pitch patterns, it is possible that the listeners

made their judgments based on each word’s intensity pattern instead of (or in addition to)

the pitch pattern. Second, we did not assess whether our sample of listeners have amusia

(tone deafness). However, we administered a pitch discrimination task to the last 28 listeners

and found that no listener scored below 70% accuracy. We believe this provides sufficient

support that low performance on the tasks is not a result of tone deafness.

3.6 Conclusion

In summary, we found that sensitivity to mode (major-vs-minor) is related to sensitivity to

pitch variations in speech prosody. Additionally, any apparent influence of musical training

on sensitivity to prosody is actually due to differences in sensitivity to mode. These find-

ings suggest that sensitivity to variations in mode and sensitivity to variations in prosody

depend in part on overlapping mechanisms. We speculate that these mechanisms support

the processing of emotional content.
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Chapter 4

Many listeners have roved

pitch-comparison thresholds above a

quarter-tone; very few can

discriminate major from minor

tone-scrambles

4.1 Abstract

On each trial in the “3-task,” the listener hears a rapid, random sequence of tones containing

equal numbers of notes of either a G-major or G-minor triad and strives (with feedback) to

judge which type of “tone-scramble” they heard. This task yields a dramatically bimodal

distribution of performance. On each trial in a “pitch-comparison task,” the listener hears

two tones and judges whether the second tone is higher or lower than the first. When the

first tone is roved (rather than fixed throughout the task), performance varies dramatically

across listeners, with median threshold ≈ 50 cents. Strikingly, nearly all listeners with
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thresholds higher than 50 cents performed near chance in the 3-task. Across listeners with

thresholds below 50 cents, 3-task performance was uniformly distributed from chance to

ceiling; thus, the large, lower mode of the distribution in 3-task performance is produced

mainly by listeners with roved pitch-comparison thresholds greater than 50 cents.

4.2 Introduction

Western theories of music composition universally agree that variations in musical scale are

central to the meaning that music can convey (Rameau, 1971–orig., 1722; Schoenberg, 1978–

orig. 1922; Tymoczko, 2011), and within this tradition, the difference between the major

and minor scales is fundamental. At the core of this difference is the triad composed of the

tonic (scale degree 1), the dominant (scale degree five) and the mediant (scale degree three).

Among all seven scale degrees, the mediant is unique in the following respect: it alone differs

in the major scale and in all common variants of the minor scale. In the major scale, the

mediant is four semitones above the tonic, and in all of the natural, harmonic, ascending

melodic, and descending melodic minor scales the mediant is a semitone lower.

Thus, one might expect the qualitative difference between the major and minor scales to

be very vividly expressed by the major and minor stimuli used in the “3-task” (Chubb et al.,

2013; Dean & Chubb, 2017; Mednicoff et al., 2018; Ho & Chubb, 2020; Adler et al., 2020).

However, the 3-task yields a dramatic, bimodal distribution in performance: approximately

70% of listeners perform near chance while the remaining 30% perform near ceiling. This

result is consistent with previous findings of Blechner (1977) and Crowder (1985b) who

observed a similar bimodal distribution of performance in tasks requiring listeners to classify

triadic chords as major vs. minor. Previous research has ruled out musical training as

the source of high performance on the 3-task (Chubb et al., 2013; Dean & Chubb, 2017;

Mednicoff et al., 2018; Ho & Chubb, 2020).

This study investigates the possibility that individual differences in basic pitch-processing
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ability play a role in producing the bimodal distribution in 3-task performance. In particular,

we focus our attention on the relationship between performance in the 3-task and perfor-

mance in “roved pitch-difference” tasks (RPD-tasks). In an RPD-task, the listener hears

two pure tones on each trial; the first is chosen randomly from a large range of frequencies,

and the task is to judge whether the second tone is higher or lower than the first.

Building on previous studies focused on listeners with cortical lesions (Johnsrude, Pen-

hune, & Zatorre, 2000; Tramo, Shah, & Braida, 2002), Semal and Demany (2006) showed

that there exist listeners with otherwise normal hearing for whom RPD-tasks are highly

challenging for the following, unexpected reason: although they can tell when the two tones

in a given trial are different, these listeners are markedly impaired at discerning the direction

of the difference. In the main experiment of Semal and Demany (2006), the listener heard

two pairs of pure tones on each trial. In one pair, the tones were identical; in the other pair,

the tones differed in frequency. In the “detection” task, the listener judged which tone-pair

contained the change (without reporting the direction of the change). In the “identification”

task, the listener judged the direction of the change (without reporting which pair contained

the change). Semal and Demany (2006) demonstrated that for some listeners (whose hear-

ing was otherwise normal), the threshold frequency difference for the identification task was

substantially higher than the threshold difference for the detection task. We shall call such

listeners “RPD-challenged.” Mathias, Micheyl, and Bailey (2010) replicated the experiment

of Semal and Demany (2006) and showed in addition that the difficulties experienced by

RPD-challenged listeners (1) are greatly decreased if the first tone is fixed across trials (i.e.,

if the rove is removed), and (2) are most dramatic when the first tone is roved across a very

wide range of frequencies.

Each of the studies of Semal and Demany (2006) and Mathias et al. (2010) included unim-

paired listeners as well as RPD-challenged listeners. The RPD-challenged listeners used in

both studies were selected using a screening process in which a large group of potential

listeners were pretested (in the same room) in restricted versions of the identification and
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detection tasks. Only listeners whose performance was substantially worse on the identi-

fication test compared to the detection test were used in the actual experiment. We will

refer to the threshold frequency difference in the RPD-task as the listener’s PDT (for “Pitch

Difference Threshold”).

A study by Mann (2014) looked at how RPD-task performance is distributed across a

sizeable group of listeners. On each trial in this study’s pitch difference task, the listener

heard two, 500 ms pure tones (windowed by a raised cosine with a 20 ms rise-time) separated

by 1-sec of silence and had to judge whether the second tone was higher or lower in pitch than

the first. The frequency f1 of the first tone was random, uniformly distributed on the linear

frequency interval from 300 to 2000 Hz. The frequency f2 of the second tone was equally

likely to be higher or lower than f1, and the difference between f2 and f1 was adaptively

controlled by two, randomly interleaved staircases. Correctness feedback was given after

each trial. Each listener performed 100 trials in this task, and the threshold pitch difference

(i.e., the absolute value of the log of the frequency ratio, expressed in cents in Fig. 3.5)

was estimated for each listener. Specifically, a Weibull function was fit to the data for each

listener, and the threshold was taken to be the absolute number of cents between f1 and f2

required for the listener to achieve 80% correct. The results for this task revealed that PDT’s

vary widely across listeners, ranging from around 6 cents to around 2.5 octaves (3000 cents).

Slightly more than half (59) of the 111 listeners tested had PDT’s greater than 50 cents

(1 quarter-tone). For this low-performing subset of listeners, PDT’s occur with probability

that is approximately inversely proportional to their magnitude; thus, there are roughly

equal numbers of PDT’s in each of the following intervals: 50-to-100 cents, 100-to-200 cents,

200-to-400 cents, 400-to-800 cents, 800-to-1600 cents, 1600-to-3200 cents (Fig. 3.5).

In the study by Mann (2014), these 111 listeners were also tested in the 3-task. Strikingly,

as shown in Fig. 3.5, nearly all of the listeners with PDT’s greater than a quarter-tone

perform very near chance in the 3-task. By contrast, for listeners with PDT’s lower than

a quarter-tone, sensitivity in the 3-task (as reflected by d′) is uniformly distributed from
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chance to ceiling.

The dark bars of the upper (lower) panel in Fig. 4.1 plot the histogram of d′ (proportion

correct) in the 3-task across all 111 listeners. Consistent with previous studies (Chubb et

al., 2013; Dean & Chubb, 2017; Mednicoff et al., 2018; Ho & Chubb, 2020), the histogram of

3-task-d′ has a large mode near 0 and strong positive skew, and the histogram of proportion

correct is bimodal with one mode near 0.5 (chance performance) and another at 1.0 (ceiling).

The lighter bars in the upper (lower) panel of Fig. 4.1 show the distribution of d′ (proportion

correct) in the 3-task when the listeners who achieved PDT’s above 50 cents are excluded.

The large peak near chance performance (d′ = 0 and proportion correct = 0.5) is greatly

reduced in each panel of Fig. 4.1 resulting in a roughly uniform distribution of 3-task-d′ and

a distribution of proportion correct with a single prominent mode at ceiling performance.
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Figure 4.1: Histograms of d′ values in the 3-task (across the last 150 of 200 trials) from Mann
(2014). Dark gray bars show the histogram for all listeners. The light gray bars show the
histogram for only those listeners who achieved PDT’s lower than 50 cents.

We can conclude the following points based on these results:

1. Having a PDT less than a quarter-tone is an important precondition to perform well

in the 3-task; however, it is not sufficient to insure high performance: there exist

many listeners with PDT’s below a quarter-tone who nonetheless perform poorly in

the 3-task.

2. The listeners with PDT’s greater than a quarter-tone produce the lower mode in the

bimodal distribution in 3-task performance; when they are removed from the sample of
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listeners, the distribution of 3-task performance becomes uniform. If proportion correct

in the 3-task is used as the measure of performance (instead of d′), this distribution

becomes unimodal (with the mode at ceiling).

The current experiment explores how variations in the pitch-comparison task influence

this pattern. A new group of listeners is tested in the 3-task as well as in four pitch-

comparison tasks. Previous research suggests that fixing the first tone across trials in a

pitch-comparison task makes the task much easier for nearly all listeners (e.g., Mathias et

al. (2010)). A possible reason for the improved performance observed in such “fixed pitch-

comparison” (FPC) tasks is that fixing f1 enables the listener to create a durable, internal

representation of f1 across trials with which to compare f2. Such a strategy is not available in

RPD-tasks. This suggests that low performers in RPD-tasks may have difficulty preserving a

temporary memory of f1 for comparison with f2. If so, then perhaps RPD-task performance

will degrade for RPD-challenged listeners if the delay between tone-1 and tone-2 is increased.

To investigate this question, we include two RPD-tasks, one with inter-tone interval (ITI)

0.5 sec. and the other with ITI 1.0 sec.

Finally, we include a task in which f2 can be either higher, lower or equal to f1, and

the listener is tasked with classifying the stimulus accordingly. If a listener can hear that

f2 differs from f1 but cannot discern the direction of the difference, then on trials in which

f2 differs from f1, the listener should tend to respond either that f2 < f1 or that f2 > f1;

however, the listener should make errors on roughly half of these trials. Let us call errors of

this sort, Type-A errors. By contrast, if a listener can discern the direction of the difference

between f2 and f1 as soon as they can hear that f1 6= f2, then most of the errors they make

when f2 differs from f1 should be to respond that f2 = f1. Let us call errors of this sort,

Type-B errors. As we report below, the ratio of type-A to type-B errors tends to increase

with increasing PDT, suggesting, in accordance with the results of Semal and Demany (2006)

and Mathias et al. (2010), that RPD-challenged listeners can often hear that f1 6= f2 but are

unable to discern the direction of the difference between them.
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4.3 Methods

All methods were approved by the UCI Institutional Review Board.

4.3.1 Participants

151 undergraduate students were recruited from the Social Science Human Subjects Pool

at the University of California, Irvine. All listeners had self-reported normal hearing and

received course credit for participating in the study. Data were excluded from analysis if

listeners scored below 5 on the Headphone Check (see Sec. 4.3.2) or if their data indicated

that they did not pay attention to the tasks (i.e., they continuously pressed the same button

response for half a task’s trials). As a result, data for 99 listeners were analyzed for this

study.

57 listeners reported having at least one year of formal musical training. Within this

group of listeners, the mean number of years of musical training was 4.39 (standard deviation:

4.32).

4.3.2 Procedure

The experiment took place online at https://pitchdiffrove.web.app/ for participants to begin

anytime and at their own pace. They were instructed to find a quiet room and wear head-

phones or earbuds for the entirety of the experiment. Listeners were free to adjust volume

to their comfort level. Sampling rate of stimulus presentation was adjusted according to the

sampling rate of the participant’s device. If the sampling rate was outside the range of 44100

to 48000 samples/s (which would be unusual for a typical computer), then the participant

was instructed to switch devices. The sampling rate was 44100 samples/s for 37 participants

and 48000 samples/s for 62 participants. The specific sound card of each participant’s device

was unknown.

Headphone/earbud wear was screened at the start of the experiment via a 3-alternative-
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forced choice task used by Woods et al. (2017). This task consists of 6 trials in which listeners

judge which of three 200-Hz pure tones is quietest. Unknown to the listener, one tone in

each trial is presented 180° out of phase across the stereo channels. This phase cancellation

causes the task to be difficult over loudspeakers but easy over headphones. Woods et al.

(2017) determined that listeners who score at least 5 correct trials can be assumed to be

wearing headphones.

Following this test, listeners completed a brief survey to report their native language

and number of years of musical training. They were then tested in the 3-task and 4 pitch-

difference tasks. Task order was randomly generated for each listener.

4.3.3 3-task

Stimuli

Stimuli were tone-scrambles. Each tone-scramble contained 3 copies each of the following

notes from the standard equal-tempered chromatic scale: G5 (783.99 Hz), D6 (1174.66 Hz),

and G6 (1567.98 Hz). In addition, major (minor) stimuli contained 3 copies of B5 (987.77 Hz)

(B[5 (932.33 Hz)). Each individual tone was 65 ms in duration and was windowed by a raised

cosine function with a 22.5-ms rise time. Thus, each stimulus lasted 0.78 sec.

Task

Before beginning the task, listeners heard two examples each of “Type 1 (Minor/Sad)” and

“Type 2 (Major/Happy)” stimuli. Then, on each trial, listeners heard a single stimulus and

were asked to classify it as “Type 1 (Minor/Sad)” and “Type 2 (Major/Happy)” by clicking

buttons on the screen. Type 1 stimuli corresponded to a button depicting a “sad” face emoji

on the left side of the screen; Type 2 stimuli corresponded to a button depicting a “happy”

face emoji on the right side of the screen. Feedback (“Correct” or “Incorrect”) was printed to

the screen after each trial, and proportion correct was given at the end of the task. Listeners

completed three blocks of 50 trials.
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4.3.4 Pitch-difference tasks

Stimuli and task

Stimuli were pairs of pure tones. Each tone had a duration of 500-ms and was windowed by

a raised cosine function with a 22.5-ms rise time.

The inter-stimulus interval and frequency of the first tone for each condition are listed in

Table 4.1. The inter-stimulus interval was 1-s in the Fixed, Gap-1, and Same-Higher-Lower

(SHL) conditions; the inter-stimulus interval was 500-ms in the Gap-0.5 condition.

In the Fixed condition, the first tone in each pair was fixed at 440 Hz. In the Gap-

0.5, Gap-1, and SHL conditions, the frequency of the first tone in each pair was uniformly

selected from the log frequency interval of 200-1600 Hz (a range of 3600 cents). In all cases,

the maximum frequency difference was 1200 cents (1 octave), such that the second tone of

all trials fell uniformly in the log frequency interval of 100-3200 Hz.

Table 4.1: The inter-stimulus interval (duration between the 2 tones in each stimulus, in ms)
and frequency of the first tone (in Hz) for each of the 4 pitch-difference task conditions.

Condition ISI (ms) Frequency 1 (Hz)
Fixed 500 440

Gap-0.5 500 Roved: 200-1600
Gap-1 1000 Roved: 200-1600

Same-Higher-Lower 500 Roved: 200-1600

In each pitch-difference task, the listener heard two tones per trial and responded whether

the second tone was higher or lower than the first tone. In the Same-Higher-Lower (SHL)

task, the listener could also respond “same.”

At the start of the SHL task, the listener heard 2 examples each of a “same” trial and 1

example each of a “higher” trial and a “lower” trial. At the start of the other tasks (Fixed,

Gap-0.5, Gap-1), the listener heard 2 examples each of a “higher” trial and a “lower” trial.

Each task consisted of 2 blocks of 50 trials. Feedback (“Correct” or “Incorrect”) was

printed to the screen after each trial, and proportion correct was given at the end of each

task.
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How the frequencies of the two tones were determined on each trial.

The absolute frequency difference between the two tones in a given trial in the Fixed, Gap-

0.5, and Gap-1 conditions was determined by two interleaved 3-down-1-up staircases. In a

given staircase, task-difficulty was controlled by a parameter θ whose value was adjusted

by the staircase. In Staircase 1, θ was set initially to 1 (corresponding to 100 cents); in

Staircase 2, θ was set initially to 7 (corresponding to 700 cents). After each trial, if the

previous three responses in Staircase 1 (Staircase 2) were correct, then θ was decreased to

0.9θ (0.7θ); otherwise θ was increased to 1.11θ (1.43θ). Frequency differences in the SHL

task was determined only by Staircase 2.

The direction of the frequency difference (higher or lower) was assigned independently

of the staircases. The second tone was higher in frequency than the first tone for half the

trials in the Fixed, Gap-0.5, and Gap-1 conditions. In the SHL condition, the second tone

was the same as the first tone for half the trials (regardless of the result of the staircase),

and the remaining trials were evenly split between higher and lower trials.

4.4 Results

4.4.1 3-task

Performance in the 3-task, measured as d′, was computed from the last block of 50 trials.

The first 2 blocks of trials was treated as practice. If a listener was tested on n major (minor)

stimuli and responded correctly on all of them, then the probability of a correct response

was adjusted to n - 0.5/n (as suggested by Macmillan and Kaplan (1985)).

The distribution of all listeners’ d′ values are plotted as a histogram in Fig. 4.2 in gray

bars. Similar to previous tone-scramble studies, we observe that the majority of listeners

achieved d′ values near 0, corresponding to chance performance, while the remaining listeners

achieved high d′ values near 4.1, corresponding to near-perfect performance. However, the

63



proportion of low-performing listeners in our sample (about 88% of participants) is much

greater than what we typically observe in previous studies (about 70% of participants).

Figure 4.2: Histogram of d′ values achieved on the 3-task by all listeners (gray bars). The
white bars (slightly shifted to the right for visualization purposes) represent the distribution
of d′ values when listeners who achieved Gap-0.5 thresholds above 50 cents are excluded.

4.4.2 Pitch-difference tasks

Pitch difference threshold (PDT), which we defined as the absolute value of the pitch-

difference (in cents) at which a listener achieves 80% accuracy, was estimated for the last 70

trials of each listener for each of the Fixed, Gap-0.5, and Gap-1 tasks. We fit the following

Weibull function to the data from each listener in each task:

Ψ(D) = 0.5 + 0.48

[
1− exp

(
−
(
D

A

)B)]
(4.1)

where D is the absolute value of the difference between f2 and f1 on a given trial, and A

and B are the Weibull function threshold and steepness parameter respectively. The reader

will note that

1. Ψ(0) = 0.5, reflecting the fact that chance performance is 0.5 in this task, and
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2. Ψ(D)→ 0.98 as D grows large. This limit on probability correct is intended to cover

the possibility of “finger errors,” i.e., incorrect responses that occur even when the

listener knows the correct answer.

We use the maximum likelihood estimate of A as the listener’s threshold. For D = A, pro-

portion correct is 0.8034; thus the PDT’s reported here are predicted to support performance

around 80% correct.

To check the accuracy of the PDT estimate for each listener, we used Markov chain

Monte Carlo simulation to derive samples from the posterior joint density characterizing the

parameters A and B. If the PDT of a listener was lower than 50 cents (a quarter-tone),

the 100 trials of data obtained from that listener typically sufficed to tightly constrain the

estimate of A (i.e., the Bayesian credible interval around A was small). However, if the

PDT of a listener was higher than 50 cents, this was often not true. The data from these

low-performing listeners was often very ragged, and the values visited by their staircases

tended to range widely; consequently, in such cases, the credible interval around A sometimes

spanned several orders of magnitude. Nonetheless, the maximum-likelihood Weibull function

estimates generally did a reasonable job of capturing the overall trends even in the most

aberrant data sets. Thus, although it would be a mistake to take the PDT estimate for a

given, low-performing listener too seriously, in each case, the estimated PDT appears sensible

based on the available data.
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Figure 4.3: Scatterplot of pitch-difference-threshold from the (A) Gap-0.5 task, (B) Gap-1
task, and (C) Fixed task as a function of 3-task-d′. Pitch-difference-thresholds are plotted
(on a log scale) with values decreasing from bottom to top to reflect increasingly good
performance. The dashed line is at 50 cents (half-a-semitone). The outlier in (A) and (B) is
plotted as a filled circle.

Fig. 4.3 plots each listener’s d′ on the 3-task against their threshold for the Fixed, Gap-

0.5, and Gap-1 pitch-difference tasks. Thresholds are plotted along the y-axis of each plot

on a log scale decreasing from bottom to top to reflect increasing levels of performance. The

horizontal dotted line at 50 cents marks sensitivity to half a semitone; listeners who are

plotted below this line struggle to judge the direction (higher or lower) of 2 tones unless

the tones are more than half a semitone apart. Listeners whose threshold exceeds 100 cents

and whose d′ is greater than 1 are plotted in filled circles - these listeners are considered

to be outliers. All listeners with thresholds greater than 50 cents (with the exception of

the outliers) achieve d′ < 1. The majority of the listeners with thresholds below 50 cents

are centered around d′=0 with few listeners achieving high d′, unlike in the experiment by

Mann (2014) which revealed a mostly uniform distribution of d′ for listeners with thresholds

below 50 cents. This inconsistency can most likely be attributed to the greater proportion

of listeners observed to perform near chance on the 3-task in the current experiment.

The lighter bars in Fig. 4.2 reveal the distribution of 3-task d′ values when the listeners

who achieved Gap-0.5 thresholds above 50 cents are excluded. Similar to the results from

Mann (2014), the large peak around d′=0 is greatly reduced, showing that most listeners
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whose thresholds exceed 50 cents are performing around chance on the 3-task. The reduction

of this peak is not as dramatic as in the results of Mann (2014), probably because a greater

proportion of listeners in Experiment 2 performed near a d′ of 0.

The reader will observe in Fig. 4.3 that the relationship between d′ and threshold is

similar for the Gap-0.5 and Gap-1 tasks: Listeners whose d′ values fall below 1 achieve a

wide range of thresholds both below and above the 50-cent line; as d′ increases, thresholds

are mostly less than 50 cents. This pattern also occurs in the Fixed condition; however,

threshold values are shifted such that a greater proportion of the listeners whose d′ values

fall below 1 achieve thresholds less than 50 cents. The histograms plotted in Fig. 4.4 further

illustrate the relationship between the thresholds achieved in the Fixed condition and the

two roved conditions. The log ratio of thresholds for Fixed vs. Gap-0.5 (gray bars, mean

= -0.58, standard error = 0.05) and Fixed vs. Gap-1 (white bars, mean = -0.57, standard

error = 0.04) both appear mostly normal with a nearly identical mean ratio. Therefore,

most listeners achieve Fixed thresholds that are nearly half of their threshold in either roved

condition. This effect was slightly greater in the Fixed-to-Gap-0.5 comparison for listeners

who achieved Gap-0.5 threshold below 50 cents. The mean log ratio of Fixed to Gap-0.5

threshold for these low-threshold listeners was -0.48, while the mean log ratio for high-

threshold listeners (Gap-0.5 threshold over 50 cents) was -0.69. A two-tailed, two-sample

t-test of the null hypothesis that the log ratio of Fixed to Gap-0.5 thresholds of low-threshold

listeners and the log ratio of Fixed to Gap-0.5 thresholds of high-threshold listeners come

from distributions with equal means, assuming unequal variances, yielded t(93.2) = 2.34, p

= 0.02. However, when applied to the Fixed to Gap-1 threshold comparison, the results of

the t-test was insignificant, yielding t(96.72) = 0.21, p = 0.84.

Performance on the Same-Higher-Lower task was analyzed separately from the other

pitch-difference tasks. Unlike the other tasks, the two tones presented on a given trial in

the SHL task could possibly be the same in pitch, and listeners were required to judge

whether the tones were the same, higher, or lower. Therefore, this task tested listeners’
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Figure 4.4: Histogram of ratios (plotted on a log scale) of pitch-difference thresholds for
Fixed vs. Gap-0.5 (gray bars, mean = -0.58, standard error = 0.05) and Fixed vs. Gap-1
(white bars, mean = -0.57, standard error = 0.04). The distribution for Fixed vs. Gap-1
(white bars) is slightly shifted to the right for visualization purposes. Both distributions
appear mostly normal with a nearly identical mean ratio.

ability to judge not only whether two tones have a pitch difference, but also whether that

pitch difference occurs in a higher or lower direction.

Each listener’s direction confusability statistic, or the ratio of Type-A errors (related to

pitch-direction) to Type-B errors (related to pitch-difference), was computed using the trials

following their 3rd error (to allow their staircase to stabilize):

direction confusability =
A+B

C + 0.5
(4.2)

where A is the number of “Lower” trials on which a listener incorrectly responds “Higher,”

B is the number of “Higher” trials on which the listener incorrectly responds “Lower,” and

C is the number of “Lower” and “Higher” trials on which the listener incorrectly responds

“Same.” A listener who is sensitive to pitch difference but has difficulty identifying the direc-

tion should yield a higher direction confusability statistic, because they correctly recognize
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when two pitches are different but make errors when judging whether a pitch is higher or

lower.

Fig. 4.5 plots each listener’s direction confusability statistic against their pitch-difference-

threshold on the Gap-0.5 task. We adjusted the direction confusability value of one outlier

(plotted as a filled circle) from 8.67 to 2. All listeners who achieve a statistic of 0 have

thresholds less than 75 cents. The majority of listeners whose threshold is less than 100 cents

achieve statistics less than 0.5. The distribution spreads out for listeners whose thresholds

exceed 100 cents, uniformly ranging from 0 to 2.

Figure 4.5: Relationship between direction confusability and pitch-difference-threshold.
Pitch-difference-thresholds are plotted (on a log scale) with values decreasing from bottom to
top to reflect increasingly good performance. The dashed line is at 50 cents (half-a-semitone).
The direction confusability value of one outlier (plotted as a filled circle) was adjusted from
8.67 to 2.

4.4.3 Effects of musical training

Fig. 4.6A plots each listener’s self-reported years of musical training against their 3-task-d′

(r = 0.41, p < 0.01). Fig. 4.6B plots years of musical training against each listener’s pitch-

difference-threshold (in cents) on the Gap-0.5 task (r = −0.34, p < 0.01). The correlation

between years of musical training and threshold on the Fixed task (not pictured) was lower
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(r = −0.21, p < 0.05).

Figure 4.6: Relationship between years of musical training and (a) 3-task-d′ and (b) pitch-
difference threshold.

In the group of 21 listeners with at least 5 years of musical training, 9 listeners had d′

below 1. Two of these 9 listeners, in addition to a listener with a d′ of 3.5 and 9 years of

musical training, had threshold higher than 50 cents. Among the four listeners with at least

14 years of training, only 1 achieved a d′ above 3, and 3 achieved thresholds less than 50

cents.

Among the 59 listeners with fewer than 2 years of musical training, a listener with no

years of training achieved the highest d′ (4.12) and the lowest threshold (6.98). Five of the

6 listeners who achieved d′ above 3 had at least 5 years of musical training.

4.5 Discussion

Consistent with previous studies (Chubb et al., 2013; Dean & Chubb, 2017; Mednicoff et al.,

2018; Ho & Chubb, 2020), most listeners achieved low d′ values around chance performance
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on the 3-task. However, we did not observe the usual 70%-30% distribution of low-vs-high

performance from previous experiments. A reasonable explanation is that the online format

of the current study resulted in increased inattention and non-compliance among listeners.

We had attempted to minimize non-compliance by conducting the headphone check test

at the start of the experiment to filter out listeners who did not follow instructions about

wearing headphones, and the number of these listeners was quite high (46 out of 151).

Furthermore, the distinct pattern of thresholds between the roved (Gap-0.5 and Gap-1)

and Fixed conditions of the pitch-difference tasks suggests that the remaining listeners were

paying attention during these tasks. A more likely explanation of the greater proportion of

low performers on the 3-task can be attributed to our usage of fewer notes in our 3-task

stimuli (12 notes compared to 32 notes in previous iterations). Preliminary data collected in

parallel with this study suggests that the 12-note stimuli are more difficult to discriminate

than the 32-note stimuli; thus, we speculate that several low-performing listeners in the

current study would attain more correct trials in the 32-note version.

Similar to the results from Mann (2014), listeners (with the exception of some outliers)

cannot achieve high performance on the 3-task if their PDT exceeds 50 cents. We also

observe that having a low PDT does not guarantee high performance on the 3-task.

As expected, PDTs were elevated when the f1 in each trial of a task was roved (as in the

Gap-0.5 and Gap-1 conditions), resembling findings from previous studies (Amitay, Hawkey,

& Moore, 2005; Demany & Semal, 2005; Harris, 1952; Jesteadt & Bilger, 1974; Mathias et

al., 2010). Mathias et al. (2010) found that novice listeners (without prior experience with

pitch-difference tasks) tended to demonstrate impaired pitch-direction identification for wide

frequency-roving ranges (3102 cents) compared to medium (310 cents) or narrow (31 cents)

roving ranges. The roving range in the current experiment was 3600 cents. Mathias et

al. (2010) hypothesize that frequency-roving increases stimulus uncertainty, contributing to

internal noise and therefore impairing listeners’ performance. This effect possibly has a

greater influence on the listeners who have higher PDTs. Connecting this idea to 3-task
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performance, we speculate that listeners with low 3-task-d′ struggle on the 3-task as a result

of having not only higher PDT but also greater susceptibility to informational masking. In

other words, these listeners may experience greater difficulty to perceive the target tones of

the 3-task stimuli because they are less able to suppress the internal noise exerted by the

non-target tones.

In tasks with a fixed f1 (i.e., the Fixed condition) which measure sensitivity to devia-

tions in frequency from a fixed standard, the listener can combine information across trials to

construct (and refresh) a durable “remembered standard” against which to compare new fre-

quencies. Roved-frequency tasks, in contrast, require the listener to retain a distinct memory

of the current f1 on any given trial. The manipulation of inter-stimulus interval in the cur-

rent experiment did not appear to drastically affect listeners’ perception of pitch differences.

However, the results from the comparisons of Fixed thresholds to either roved conditions’

thresholds imply that ISI had some (but very subtle) impact on pitch-comparison threshold.

In particular, low-PDT listeners (Gap-0.5 PDT < 50 cents) and high-PDT listeners (Gap-0.5

PDT > 50 cents) differed in their log ratio of Fixed PDT to Gap-0.5 PDT, but this was not

the case for the log ratio of Fixed PDT to Gap-1 PDT.

The results from the SHL task reveal that listeners seem to require a larger pitch difference

to recognize both pitch difference and pitch direction. Listeners achieved a direction confus-

ability statistic of 0 only if they did not make pitch-direction errors (responding ”Higher” to

a ”Lower” trial or responding ”Lower” to a ”Higher” trial). All listeners who fell into this

group had a threshold less than 75 cents. Some listeners with a higher threshold were able

to achieve low statistics near 0. We speculate that these listeners are somewhat sensitive to

pitch direction but require a larger pitch difference to identify the direction. The listeners

whose statistic exceeds 1 all have thresholds greater than 100 cents.

The results for musical training reiterate the findings from previous studies of the 3-task

that musicianship does not directly predict sensitivity to major-vs-minor. Many listeners

with little or no musical training achieved high 3-task-d′ and PDT below 50 cents. Thus,
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skill on the 3-task and PDT are possibly preexisting abilities that manifest independently of

musical training.

In summary, this experiment demonstrates that PDT may determine a listener’s ability

to do well on the 3-task. Specifically, a PDT below 50 may be necessary to achieve high

performance on the 3-task. Not all listeners with low PDT do well on the 3-task, but perhaps

these listeners are capable of improving if they receive additional intervention. The type of

intervention in question, whether it be general music training or intensive practice on the

3-task, is unclear at this time.
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Chapter 5

General Discussion and Future

Directions

This dissertation investigated the source of scale-sensitivity through various perspectives.

Chapter 2 revealed that changing the temporal structure of stimuli in the 3-task can make

the task easier for listeners. This result suggests that listeners with high scale-sensitivity (who

already perform near perfect on the standard 3-task) may possess more effective grouping

abilities to hear target note differences. Chapter 3 showed that the same processing resources

may underlie scale-sensitivity and speech prosody perception, and these resources are largely

unaffected by musical training. Chapter 4 suggested that one of these processing resources

might be pitch-difference threshold: only the listeners with pitch-difference thresholds below

50 cents can achieve high scale-sensitivity.

Considering the established link between major/minor with happy/sad emotions, it is

surprising that most listeners struggle to differentiate major-vs-minor, performing around

chance on the 3-task. If we were to extend this phenomenon to the greater population,

however, it would seem unlikely for most of the population to be unable to differentiate

between happy and sad music, and potentially be unable to separate happy from sad speech.

Natural music typically contains additional cues (such as tempo, volume, and lyrical content)
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that convey the intended mood, while tone-scramble stimuli are stripped down to vary only

by pitch. It makes sense, then, that pitch-difference threshold might be the factor that

determines a listener’s sensitivity to the different tone-scramble stimuli. A future study

could focus on testing the listeners with low pitch-difference threshold (below 50 cents) and

low 3-task-d′. If a low pitch-difference threshold is the main precondition for high 3-task

performance, then this group of listeners can potentially benefit from additional practice on

the 3-task or some other form of targeted training.

Altogether, these studies present evidence that scale-sensitivity is mostly an inherent skill,

rather than a product of musical training. Although taking music lessons can potentially

improve one’s musical (and non-musical) abilities in various ways, recent studies emphasize

the importance of taking preexisting musicality into account when attributing a listener’s

performance on any task to their musical background (e.g., Correia et al. (2020); Kragness

et al. (2020)). In future studies of the 3-task, we might administer questionnaires that

objectively assess musical ability, such as the Ollen Musical Sophistication Index (OMSI)

(Ollen, 2006), Goldsmiths Musical Sophistication Index (Gold-MSI) (Müllensiefen, Gingras,

Musil, & Stewart, 2014), or Profile of Music Perception Skills (PROMS) (Law & Zentner,

2012), to test whether scale-sensitivity correlates with scores on these surveys. We also hope

that other researchers in music cognition will recognize the value in measuring listeners’

scale-sensitivity in their own studies, since scale-sensitivity (rather than musical training)

may possibly underlie performance on their target task.

Future studies can also explore whether scale-sensitivity actually translates to emotion

perception by comparing scale-sensitivity to performance on tasks that require the listener

to judge the perceived emotions of different types of music or speech. Studies can also

investigate whether the shared connection between scale-sensitivity and speech perception

extends to other types of speech processing that largely involve tracking pitch over time,

such as the ability to track a speaker’s voice in multi-talker speech, or the ability to identify

tones in a tonal language. Finally, studies can also analyze scale-sensitivity from a neural
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perspective, such as through EEG, to explore whether scale-sensitivity is represented through

different electrophysiological responses (thus reflecting that listeners use different strategies

to classify major-vs-minor).
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