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Abstract

Dynamic 18F-FDG PET with tracer kinetic modeling has the potential to noninvasively evaluate 

human liver inflammation using the FDG blood-to-tissue transport rate K1. Accurate kinetic 

modeling of dynamic liver PET data and K1 quantification requires the knowledge of dual-blood 

input function from the hepatic artery and portal vein. While the arterial input function can be 

derived from the aortic region on dynamic PET images, it is difficult to extract the portal vein 

input function accurately from PET images. The optimization-derived dual-input kinetic modeling 

approach has been proposed to overcome this problem by jointly estimating the portal vein input 

function and FDG tracer kinetics from time activity curve fitting. In this paper, we further 

characterize the model properties by analyzing the structural identifiability of the model 

parameters using the Laplace transform and practical identifiability using computer simulation 

based on fourteen patient datasets. The theoretical analysis has indicated that all the kinetic 

parameters of the dual-input kinetic model are structurally identifiable, though subject to local 

solutions. The computer simulation results have shown that FDG K1 can be estimated reliably in 

the whole-liver region of interest with reasonable bias, standard deviation, and high correlation 

between estimated and original values, indicating of practical identifiability of K1. The result has 

also demonstrated the correlation between K1 and histological liver inflammation scores is 

reliable. FDG K1 quantification by the optimization-derived dual-input kinetic model is promising 

for assessing liver inflammation.

1. Introduction

Nonalcoholic steatohepatitis (NASH) is a progressive nonalcoholic fatty liver disease 

(NAFLD) affecting approximately 5–10 million patients in the United States [Michelotti et 

al., 2013, Musso et al., 2011]. The hallmark of NASH is hepatic inflammation and injury in 

the setting of hepatic steatosis [Wree et al., 2013]. Clinical assessment of liver inflammation 

can only be made by invasive liver biopsy [Lee and Park, 2014]. There is currently no 

effective noninvasive imaging method in the clinic. PET imaging of translocator protein 

(TSPO) has shown some promise in small-animal studies [Xie et al, 2012]. Its translation 

gbwang@ucdavis.edu. 

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2020 September 11.

Published in final edited form as:
Phys Med Biol. ; 64(17): 175023. doi:10.1088/1361-6560/ab1f29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and adoption as a clinical tool, however, is likely to take time. On the other hand, 18F-

fluorodeoxyglucose positron emission tomography (FDG-PET) is widely accessible in 

clinics. While static FDG-PET imaging provides information mainly related to hepatic 

steatosis [Keramida et al, 2014a, Keramida et al, 2014b] and does not show a potential for 

measuring liver inflammation [Wang et al., 2018], dynamic FDG-PET with improved kinetic 

modeling has been demonstrated to be promising for non-invasively assessing liver 

inflammation by quantifying the FDG blood-to-tissue transport rate K1 [Wang et al., 2017, 

Sarkar et al., 2017, Wang et al., 2018, Sarkar et al., 2019]. Because the liver receives dual 

blood supplies from the hepatic artery and portal vein [Keiding, 2012], accurate liver PET 

kinetic modeling and quantification of K1 require the knowledge of dual-blood input 

function (DBIF) [Wang et al., 2018, Brix et al., 2001, Munk et al., 2001]. Although the 

arterial input function can be derived from the aortic region on dynamic PET images, it can 

be difficult to extract the portal vein input function from PET images. The limited spatial 

resolution of PET and small anatomic size of the portal vein can result in serious partial 

volume effects and high noise in the image-derived input function [Mourik et al., 2008].

Traditional single-input kinetic modeling neglects the difference between the hepatic artery 

input function and portal vein input function, resulting in inaccuracy in kinetic parameter 

estimation [Brix et al., 2001, Munk et al., 2001]. Existing population-based DBIF 

approaches [Brix et al., 2001, Munk et al., 2001, Winterdahl et al., 2011] use the model 

parameters pre-determined by population means that were commonly derived using arterial 

blood sampling in animal studies, which however can become ineffective in human studies. 

Modified models ([Kudomi et al., 2009, Garbarino et al., 2015]) have been proposed but still 

have certain limitations, for example requiring extraction of multiple different liver time 

activity curves (TACs) or an additional gut TAC, which may present challenges in clinical 

applications. In contrast, the optimization-derived DBIF model [Wang et al., 2018] employs 

mathematical optimization to jointly estimate the parameters of DBIF and liver FDG 

kinetics. It directly utilizes image-derived arterial input function, requires no invasive arterial 

blood sampling or additional ROI operations, and is more adaptive to individual patients. 

With the improved kinetic modeling, the FDG blood-to-liver transport rate K1 was 

statistically associated with histopathologic grades of liver inflammation, while K1 by the 

traditional single-blood input function (SBIF) model and population-based DBIF model did 

not show a statistical significance [Wang et al., 2018].

Identifiability analysis is crucial for examining the stability of a kinetic model [Gunn, 1996, 

Mankoff et al., 2006, Delbary et al., 2016]. It characterizes whether or not the unknown 

parameters of a specified model can be uniquely determined from noise-free data (i.e., 

structural identifiability [Bellman and Astrom, 1970, Anderson, 1983]) and how reliably 

these parameters can be estimated from noisy measurements (i.e., practical identifiability 

[Miao et al., 2008, Miao et al., 2011]). Depending on the condition under which the mapping 

from the parameter space to the input/output space is one-to-one, there is global structural 

identifiability (one-to-one mapping is valid in the whole parameter space) and there is local 

structural identifiability (one-to-one mapping is valid locally in the parameter space). Note 

that even if a parameter is structurally identifiable, it may not be estimated with adequate 

accuracy from real measurements. Among different methods for identifiability analysis 

[Miao et al., 2011], the Laplace transform [Bellman and Astrom, 1970] is frequently used 
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for structural identifiability analysis, and computer simulation based on Monte Carlo 

sampling is the most effective method for analyzing practical identifiability [Miao et al., 

2008].

In dynamic PET, most of the popular kinetic models follow the first-order ordinary 

differential equations with linear parameters and are commonly structurally identifiable. 

Hence, previous identifiability studies in dynamic PET focused on practical identifiability 

analysis [El Fakhri et al., 2009, Mankoff et al., 1998, Muzi et al., 2006, Doot et al., 2010, 

Muzi et al., 2005]. For dual-input kinetic modeling, the optimization-derived DBIF model 

contains two additional parameters when compared with traditional SBIF and population-

based DBIF model. While the new model has improved the practical correlation of FDG K1 

with histology, the increased number of free parameters may potentially increase variance in 

kinetic parameter estimation, but little is known so far on the quantitative aspects of the 

modeling.

In this paper, we conduct a theoretical analysis using the Laplace transform to assess the 

structural identifiability and conduct a computer simulation to evaluate the practical 

identifiability using patient data of liver inflammation. The results from this study can be 

used to indicate the quantification accuracy and precision of model parameters and provide 

guidance for further improving kinetic modeling of dynamic liver PET data.

2. Structural identifiability analysis using the Laplace transform

2.1. Compartmental modeling by differential equations

Most compartmental models in dynamic PET imaging can be described by the following 

first-order ordinary differential equations:

dc t
dt = Ac t + bu t , (1)

CT t = wTc t + vu t , (2)

c 0 = 0, (3)

where t is time; c(t) = [c1(t), c2(t), …, cn(t)]T is the system states which are assumed to be 

zero at initial time, where ci represents the time activity of the i-th compartment and n is the 

number of tissue compartments; u(t) is the system input, often representing the blood input 

function in dynamic PET; CT(t) is the system output, i.e., the measured time activity curve 

(TAC) by PET; A is a n by n matrix, b is a n by 1 vector, w is a n by 1 vector and v is a 

scalar vector. A, b, w and v are composed of the kinetic parameters θ = (θ1, θ2, …, θm) to 

be determined.

For a commonly used 3-compartment model (Fig. 1) such as for dynamic FDG-PET 

imaging, we have
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u t = Cp t , (4)

c t = Cf t , Cm t T , (5)

A =
− k2 + k3 k4

k3 −k4
, (6)

b = K1, 0 T , (7)

w = 1 − vb, 1 − vb
T , (8)

v = vb, (9)

where Cp(t) is the plasma input function; Cf(t) and Cm(t) are the concentration in the free 

FDG and metabolized FDG compartments, respectively. The superscript “T ” denotes matrix 

or vector transpose. θ = [vb, K1, k2, k3, k4] with K1, k2, k3, k4 denoting the rate constants of 

FDG transport among compartments. vb denotes the fractional blood volume.

The optimization-derived DBIF model [Wang et al., 2018] for analyzing dynamic liver PET 

data is shown in Fig. 2 and can be described using the following expressions:

u t = CA t , (10)

c t = Cf t , Cm t , CPV t T , (11)

A =
− k2 + k3 k4 K1 1 − fA

k3 −k4 0
0 0 −ka

, (12)

b = K1fA, 0, ka
T , (13)

w = 1 − vb, 1 − vb, vb 1 − fA
T , (14)

v = vbfA (15)

where CA(t) denotes the blood input function extracted from the hepatic artery; CPV(t) is the 

portal vein input function; ka is the rate constant with which FDG flows through the 
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gastrointestinal system. fA is the fraction of hepatic artery contribution to the overall liver 

blood flow. The parameters to be determined are θ = [vb, K1, k2, k3, k4, ka, fA]T.

2.2. Laplace transform for structural identifiability analysis

The Laplace transform method is a popular method in the field of system theory for 

analyzing differential equations [Oppenheim et al., 1996, Tsien, 1954]. After the transform, 

the time derivative ∂/∂t becomes a multiplication of frequency s, thus simplifying the 

mathematical analysis. Taking the Laplace transform of equations (1) – (2) and making use 

of equation (3), one has

sc s = Ac s + bu s , (16)

o s = wTc s + vu s , (17)

Where

f s = ∫
0

∞
f t e−stdt (18)

represents the Laplace transform of any function f in the time domain.

The system input-output relation can then be expressed as

O s = Φ s u s , (19)

where Φ(s) is called the transfer function in the frequency domain,

Φ s = wT sI − A −1b + v, (20)

with I denoting the identity matrix. Φ(s) can be further expressed as a fractional function

Φ s = N s
D s , (21)

where both the numerator N(s) and denominator D(s) are a polynomial of the frequency s:

D s ≜ ∑
i = 0

r
Disi = ∑

i = 0

r
αi θ si, (22)

N s ≜ ∑
i = 0

r
Nisi = ∑

i = 0

r
βi θ si, (23)

with r being the highest order of the polynomials of s. Ni is the coefficient of order i in N(s) 

and Di is the coefficient of order i in D(s). αi(θ) and βi(θ) describe the theoretical model of 

Ni and Di with respect to θ, respectively.
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The structural identifiability analysis examines if the unknown parameter set θ can be 

uniquely determined from Ni, Di i = 0
r  following the equation set:

αi θ = Di, (24)

βi θ = Ni, (25)

for i from 0 to r. If there are arbitrary solutions for the equations, the model structure is non-

identifiable. If the equations have a unique solution for any admissible input and in the 

whole parameter space, the model structure is called globally identifiable. If the solution 

only holds unique for a neighborhood of some points θ* in the parameter space, the structure 

is then locally identifiable. The single-input compartmental model for dynamic FDG-PET is 

globally identifiable [Gunn, 1996]. A brief proof is provided in the Appendix for the reader 

convenience.

2.3. Structural identifiability of dual-input kinetic modeling

For the optimziation-derived DBIF model, based on the derivations detailed in the 

Appendix, we can derive

ka
3 − D2ka

2 + D1ka − D0 = 0, (26)

which is a cubic equation of ka. In the real parameter space, the number of roots for ka is at 

least 1 and at most 3.

Similarly, for fA we have,

N0fA
3 − N1ka ⋅ fA

2 + N2ka
2 ⋅ fA − N3ka

3 = 0, (27)

which is also a cubic equation when ka is fixed. The number of roots for fA with given ka in 

the non-negative parameter space is at least 1 and at most 3.

These results indicate that ka and fA are not globally identifiable because they may have 

multiple solutions. However, given there is at least one nonnegative root for ka and fA, they 

are locally identifiable. In practice, this requires a proper definition of initial estimates, 

lower and upper bounds for the parameters. Once ka and fA are determined, K1, k2, k3, k4 

can then be determined respectively.

3. Practical identifiability analysis using computer simulation

3.1. Computer simulation

3.1.1. Overall description—The process of the computer simulation is described in 

figure 3. For each simulation, the nominal kinetic parameters θ0 and the input function CA(t) 
were extracted from one of the human patient datasets and used to generate the noise-free 

liver tissue time activity curves (TAC). Independently and identically distributed noise was 

then added to the noise-free TAC using random sampling, following a defined time-varying 
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Gaussian noise model to generated N = 1000 realizations of noisy tissue TAC. We then fit 

the noisy liver tissue TACs and estimate the kinetic parameters of the optimization-derived 

DBIF kinetic model using nonlinear least-square fitting with the Levenberg-Marquardt 

algorithm described in our previous work [Wang et al., 2018]. Normalized bias, standard 

deviation (SD) and root mean square error (RMSE) were calculated to assess the statistical 

properties of each kinetic parameter estimation. This same simulation was done for multiple 

patient data sets.

In addition to the kinetic parameters directly estimated by the model, the FDG net influx rate 

Ki = K1k3/(k2 + k3) was also evaluated.

3.1.2. Human liver FDG kinetics and histological data—Fourteen patients with 

NAFLD were included in this study to provide nominal kinetic parameters [Wang et al., 

2018]. These patients had a liver biopsy as a part of routine clinical care or for enrollment in 

clinical trials. Liver biopsies were scored according to the nonalcoholic steatohepatitis 

clinical research network (NASH-CRN) criteria. An overall liver inflammation score (range 

0–5) is obtained by combining the scores of lobular inflammation and ballooning 

degeneration (hepatocyte injury) as both reflect the inflammatory status in the total NAFLD 

activity [Sarkar et al., 2019]. Dynamic PET studies were performed using the GE Discovery 

690 PET/CT scanner (axial field-of-view: 16 cm) at the UC Davis Medical Center. Each 

patient was injected with 10 mCi 18F-FDG. One-hour dynamic PET scanning was performed 

for a single bed position with the liver centered in the scanner field-of-view. A transmission 

CT scan was performed at the end of PET scan for attenuation correction. Dynamic PET 

data were reconstructed into 49 time frames (30×10s, 10×60s, and 9×300s) using the vendor 

software with the standard ordered subsets expectation maximization algorithm with 2 

iterations and 32 subsets.

Eight spherical regions of interest (ROI), each with 25 mm in diameter, were placed on eight 

segments of the liver excluding the caudate lobe and avoiding any major blood vessels. An 

illustration is shown in Figure 4. A TAC was extracted from each liver-segment ROI. The 

average of these TACs was used to represent the tissue TAC in the whole-liver region. An 

additional volumetric ROI was placed in the descending aorta region to extract image-

derived aortic input function. The optimization-derived DBIF model was used to derive the 

regional liver FDG kinetics at both the whole-liver ROI level and liver-segment ROI level. 

Hence there are a total 14 whole-liver FDG kinetic parameter sets and 112 liver-segment 

kinetic parameter sets from the 14 patient scans.

3.1.3. Noise model of TACs—The reconstructed time activity in the frame m, cm, can 

be approximately modeled by an i.i.d. Gaussian distribution [Wu and Carson, 2002, Carson 

et al., 1993],

cm Gaussian cm, Sc ⋅ δm (28)

where cm  denotes the noise-free TAC and Sc is a scaling factor adjusting the amplitude of 

the unscaled standard deviation (SD) δm,
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δm = cmexp λtm
Δtm

, (29)

where tm is the mid-time of frame m, Δtm is the scan duration of the time frame m, and λ = 

ln 2/T1/2 is the decay constant of radiotracer with T1/2 (min) being the half-life. For 18F-

FDG, T1/2 = 109.8 minutes.

Equivalently, the normalized residual difference follows a zero-mean Gaussian with the SD 

Sc:

Δcm ≜ cm − cm
δm

Gaussian 0, Sc . (30)

From our patient study, we have a total 14 patients × 49 frames/patient = 686 samples for 

Δcm extracted at the whole-liver ROI level. The scale Sc can then be determined by 

approximating the histogram of Δcm using the Gaussian with the standard deviation Sc. 

Similarly, we have a total 686× 8 = 5488 samples to estimate Sc for the noise level at the 

liver-segment ROI level. Note that Eq. (30) is only used for deriving the global scaling factor 

of the noise level, not indicating the noise is uniform across frames. The actual noise of 

dynamic time frames, as modeled by Eq. (28), is time-varying and depends on the activity 

and scan duration of each frame.

3.2. Analysis methods

3.2.1. Sensitivity analysis—The sensitivity of a model TAC CT(t) with regard to a 

kinetic parameter k is defined by

Sθk t = ∂CT t
∂θk

(31)

and the normalized sensitivity is defined as

Sθk t = Sθk t ⋅ θk
CT t (32)

where k denotes the kth element of the kinetic parameter set θ and ∂CT(t)/∂θk denotes the 

partial derivative of CT(t) with respect to θk [Mankoff et al., 2006].

The sensitivity function Sθk t  illustrates how much the model TAC would change over time 

in response to a small change in the individual parameter θk. The larger the absolute value of 

the sensitivity is, the more sensitive the TAC would be to the change in the chosen 

parameter. While Sθk t  is used to evaluate the sensitivity over time for a specified parameter 

θk, the normalized sensitivity function Sθk t  is more appropriate to compare the sensitivities 

across different parameters.

To evaluate the interference between different kinetic parameters, a correlation matrix M is 

defined using the sensitivity functions [Miao et al., 2011]:
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Mij = corr Sθi, Sθj (33)

and can be equivalently calculated using the Pearson’s correlation coefficient ‘corr’. Mij 

denotes the interaction between θi and θj in producing a change in the model TAC. Values 

close to ±1 indicate the parameters cannot be estimated independently.

We evaluated the sensitivity functions and correlation matrix based on the mean of the 

kinetic parameters of the 14 patient datasets.

3.2.2. Quality of parameter estimation—For each true kinetic parameter θk
0, the 

normalized bias, SD and RMSE of the kinetic parameter estimate θ  are calculated as

Bias θk =
Mean θk − θk

0

θk
0 × 100% (34)

SD θk = 1
θk

0
1

N − 1 ∑
n = 1

N
θk − Mean θk

2 × 100% (35)

RMSE θk = 1
N ∑

n = 1

N θk − θk
0

θk
0

2
× 100% (36)

where Mean(·) represents the mean of the kinetic parameter estimates θk, respectively.

3.2.3. Comparison of different fitting options—The initial values of the kinetic 

parameter set [vb, K1, k2, k3, k4, ka, fA] were set to [0.01, 1.0, 1.0, 0.01, 0.01, 1, 0.01] with 

lower bound [0, 0, 0, 0, 0, 0, 1, 0] and upper bound [1, 10, 10, 1, 0.1, 10, 1]. The weighting 

factor for the fitting was also initially set to be uniform as used in our previous study [Wang 

et al., 2018]. Nevertheless, our initial analysis indicates that this initialization may result in 

significant bias in K1 for some patient datasets. To solve this problem, we proposed two 

modifications to improve the fitting and K1 quantification. Instead of using a single initial 

value 1.0, we repeated the TAC fitting using different K1 initial values (0.5, 1.0, 1.5, 2.0, 2.5, 

3.0). The one with minimum least-squares of TAC fitting was used as the optimal. This 

modification can reduce the effect of getting stuck at a local solution of K1. In addition, we 

also tested a nonuniform weighting scheme wm = Δtm · exp(−λ · tm) versus the uniform 

weighting scheme wm = 1. As K1 is the major parameter of interest, these different 

approaches were compared for reducing the bias of K1.

3.2.4. Comparison with simplified kinetic models—Based on our previous results 

[Wang et al., 2018], the optimization-derived DBIF model can fit the patient data well. 

However, it is a more complex model involving additional free parameters. An open 

question is whether a simplified model can provide a similar performance of quantification 

as the complex model, assuming the DBIF model is physiologically correct.
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Here we evaluated two simplified models: (1) traditional SBIF model, which corresponds to 

the optimization-derived DBIF model with fA = 1 and ka = 0; (2) population-based DBIF 

model (see [Wang et al., 2018] for detail). In addition, we found in our previous work [Wang 

et al., 2018] that the optimization-derived DBIF model with free k4 can better fit the patient 

data than neglecting k4 (i.e., k4 = 0) during the fitting. So we also further evaluated the 

differences between these two options. We evaluated the bias, SD and RMSE of the kinetic 

parameter estimation for each model.

3.2.5. Parameter estimation accuracy over clinical range—In addition to 

evaluating the bias and SD for each individual kinetic data set, we also evaluated the overall 

performance of the model over a wide parameter range following the approach used in 

[Mankoff et al., 1998]. We conducted a Pearson’s linear correlation analysis to assess the 

closeness between θk
0 and θk of all patients. The closer the correlation coefficient r is to 1, 

the more reliable the parameter can be estimated by the model over a wide range. In this 

study, we used the liver-segment kinetic parameter sets to allow a wide range of valuates to 

form the correlation plot.

3.2.6. Variation of the correlation between FDG K1 and liver inflammation—
Our previous study of a patient cohort of 14 patients had demonstrated that the FDG K1 

parameter correlated with histological liver inflammation score with a statistical 

significance. Here we evaluated the reliability and uncertainty associated with the correlation 

between PET K1 and histology. This was done by repeating the estimation of 14 patient 

kinetic parameter sets at the whole-liver ROI level for N = 1000 noisy realizations using the 

computer simulation study (Fig. 3). The Pearson’s correlation r between liver inflammation 

score and K1 was calculated for each realization. The bias, standard deviation and 95% 

confidence interval of r were then calculated to assess the reliability.

3.3. Results

3.3.1. Sensitivity analysis—Figure 5 shows the plots of original sensitivity functions 

for different kinetic parameters in the optimization-derived DBIF model. The parameter set 

was the population means θ = 0.0185, 1.0013, 1.1400, 0.0149, 0.0586, 1.9849, 0.0405 T . 

Overall, the sensitivities of the TAC to K1 and k2 reached their extreme values (peak or dip) 

at early times and became decayed at late times. In contrast, the sensitivities of the TAC to 

k3 and k4 had larger magnitudes at late times than early times. This suggests the early-time 

data may contribute more to the estimation of K1 and k2 and late-time data dominate more 

the estimation of k3 and k4. The TAC was also sensitive to the vascular-related kinetic 

parameters vb, ka, fA mainly at early time.

Figure 6 shows the normalized sensitivity functions, which allow a better comparison across 

different kinetic parameters. In the first 60 minutes, the TAC is more sensitive to K1 and k2 

than to k3 and k4. The correlation between the normalized sensitivity functions is 

summarized in Table 1. The curves of K1 and k2 have opposite signs. Their shapes are 

similar at late times but are different at early times, resulting in a modest correlation with 

each other (r = −0.67). A similar effect also holds true between k3 and k4 (r = −0.87). The 

curve of vb is almost fully overlapped with that of fA, indicating the correlation is high and it 
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is difficult to differentiate them from each other. Because the curve shape of vb or fA is 

different from the shape of K1, the coupled effect of vb and fA should have a minimal effect 

on the estimation of K1, as indicated by the small correlation.

3.3.2. Determination of the noise model parameter—Figure 7 shows the 

histograms of the normalized residual error Δcm at the whole-liver ROI level and the liver-

segment ROI level. Note that all 49 frames with various scan durations (10s, 60s, 300s) of 

each patient scan are included for this analysis. The obtained Sc values are 0.3 and 0.6, 

respectively. The distribution of Δcm approximately follows a Gaussian in both cases. We 

therefore used these two Sc values to define the noise standard deviation for the whole-liver 

ROI level and liver-segment level in the simulation studies. Note that the size of whole-liver 

ROI is 8 times that of the liver-segment ROI, which ideally should reduce the noise standard 

deviation by a factor of 8 ≈ 2.8. However, pixels in the liver ROI are not fully independent 

of each other and therefore the reduction in Sc may be smaller than that suggested by the 

ROI size increase.

3.3.3. Comparison of different fitting options—Figure 8 shows the comparison of 

different initialization and weighting schemes for each patient at the whole-liver ROI level 

(Sc = 0.3). The K1 single-initialization strategy resulted in bias in K1 in several patient 

datasets. The bias can be reduced when the multi-initialization strategy was used, which 

however did not provide a universal improvement over all patients. On the other hand, use of 

nonuniform weighting for TAC fitting led to reduced bias in some patients. The benefit of 

these two modifications were maximized when they were used together and the bias in K1 

remained small in all patients. Thus, the multi-initialization for K1 and nonuniform 

weighting scheme were used in this work for all subsequent analysis.

3.3.4. Bias of simplified kinetic models—Figure 9 show the bias and SD of K1 and 

Ki estimated by three different kinetic models at the noise level of Sc = 0.3. When the 

traditional SBIF model was used for fitting the TAC, K1 was underestimated with an average 

37% bias. K1 by the population-based DBIF was also underestimated by 26%. In 

comparison, the mean absolute bias of K1 by the optimization-derived DBIF model was only 

about 3% and the biases of individual patients all remain small. For the estimation of Ki, the 

SBIF and population-based DBIF resulted in an underestimation of approximately 60%, as 

compared with an average bias of less than 5% by the optimization-derived DBIF model.

The bias reduction achieved by the optimization-derived DBIF model came with the price of 

increased SD, as shown in Figure 9(c) and (d). The average SD was 11% for K1 and 18% for 

Ki by the optimization-derived DBIF, as compared to less than 6% by the other two models. 

This can be explained by the increased number of free parameters in the optimization-

derived DBIF model.

The results of the averaged absolute bias and SD across different patients are summarized in 

table 2 for all FDG transport rate parameters. Generally, with the assumption of the TACs 

following the DBIF model, the simplified SBIF model resulted in greater than 35–85% bias 

and the population-based DBIF model led to greater than 20–90% bias in all kinetic 

estimates. The more accurate optimization-derived DBIF model still had a bias of about 3–
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8% in all the kinetic estimates, which can be explained by the highly nonlinear noise 

propagation and by the structural identifiability of the model being local as opposed to 

global.

Note that as compared to the simplified SBIF and population-based DBIF models, the 

increase of SD by the optimization-derived DBIF model was generally smaller than the 

corresponding bias reduction. This indicates the overall gain of the new model is greater 

than its loss, as reflected by the RMSE evaluation in table 3. This has led to the 

improvement in correlating FDG K1 with histology as we observed in the previous patient 

study [Wang et al., 2018].

3.3.5. Effect of neglecting k4—Figure 10 compares the bias and RMSE of K1 and Ki 

between the two fitting options with free k4 or fixed k4 = 0 for the optimization-derived 

DBIF model. The averaged bias of K1 over 14 patient data sets was 3.2% versus 11.9% and 

the averaged bias of Ki was 4.5% and 48.8% for the two options. While with lower SD, the 

approach with k4 = 0 generally resulted in higher RMSE especially in Ki estimates than the 

approach with free k4.

3.3.6. Effect of noise levels on kinetic quantification—Table 4 shows the average 

absolute bias and SD of kinetic parameters estimated by the optimization-derived DBIF 

model under three noise levels: noise-free (Sc = 0.0), noise at the whole-liver ROI level (Sc = 

0.3), and noise at the liver-segment ROI level (Sc = 0.6). While other kinetic parameters had 

a small bias, the bias of vb and fA were surprisingly large even at the noise-free case (Sc = 

0.0). This can be explained by the fact that the model is locally identifiable with potential 

multiple solutions. The result is also consistent with the observation on the indifferentiable 

sensitivity curves of vb and fA in figure 5. Despite the large bias in vb and fA, the bias of K1 

remained small (<8%). The SD of K1 increased from 7% to 18% when the noise level was 

changed from the whole-liver ROI level to liver-segment ROI level. The estimation of Ki is 

more sensitive to noise, with the SD being 18% for the whole-liver ROI level and 37% for 

the liver-segment ROI level. k2 had similar accuracy and precision as K1 and k3 had similar 

accuracy and precision as Ki. k4 had a much higher bias and SD because the scan time (1-

hour in our study) is not sufficient enough for robust estimation of k4, which can be justified 

from its sensitivity curve.

3.3.7. Parameter estimation accuracy over clinical range—Figure 11 shows the 

plots of linear correlation between the true values and noisy estimates of different kinetic 

parameters at the whole-liver ROI noise level. The correlation coefficients under different 

noise levels for all kinetic parameters are summarized in table 5. As the noise level 

increased, the correlation coefficients reduced. Both K1 and Ki were well repeatable against 

noise. While all other kinetic parameters including (k2, k3, k4, ka) can be repeated well, the 

two vascular parameters vb and fA are less repeatable.

3.3.8. Noise variation of the K1 correlation with liver inflammation—Figure 12 

shows the results of correlating the histological inflammation scores with the FDG K1 

estimates derived from 1000 noisy realizations (Sc = 0.3). This investigation quantitates the 

uncertainty (due to PET measurement noise) associated with the correlation estimation. The 
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Pearson’s correlation r between the original K1 values and liver inflammation scores in the 

cohort of 14 patients was r =−0.7618 (p=0.0012). The 95% confidence interval of the noisy r 
estimates was estimated to be [−0.8434, −0.6494] with the mean −0.7452 and standard 

derivation 0.0493. The percent bias in r was −2.2% and the SD was 6.5%, both 

approximately close to that in K1. The results indicate the noise stability of the estimation of 

the correlation between FDG K1 and liver inflammation.

4. Discussion

FDG K1 by the optimization-derived DBIF model can be a promising PET biomarker for 

evaluating human liver inflammation in fatty liver disease [Wang et al., 2018, Sarkar et al., 

2019, Wang et al., 2017, Sarkar et al., 2017]. A more detailed explanation of the possible 

physiological hypothesis is provided in our previous work [Sarkar et al., 2019]. The focus of 

the current work is to characterize the identifiability of the optimization-derived DBIF 

model structure and evaluate the accuracy and precision of K1 and other kinetic parameters 

in dynamic liver FDG-PET.

We first conducted a theoretical analysis of the structural identifiability of standard 3-

compartmental model and the new DBIF model using the Laplacian transform. While 

standard 3-compartmental model is globally identifiable, the new model is locally 

identifiable due to potential multiple solutions. This suggests that particular care should be 

given to set the initial values as well as the upper and lower bounds such that the kinetic 

parameter estimation can properly constrain the optimization problem of TAC fitting with 

the new model.

We then conducted computer simulations to examine the practical identifiability of the 

model parameters based on 14 patient datasets which include both dynamic FDG-PET data 

and histopathology data of human liver inflammation. While the estimation of some kinetic 

parameters (e.g. fA and vb) is associated with large bias and standard deviation, FDG K1, the 

parameter of major interest, has low bias (≈3%) and standard deviation (≈11%) at the 

whole-liver ROI level. As demonstrated in the simulation study, fitting liver TACs using the 

simplified SBIF model or population-based DBIF model may result in significant bias 

(>20%) in liver K1 quantification. These results explain why the K1 by the new model 

achieved a statistically significant association with liver inflammation in the patient study, 

while the other two models did not demonstrate success [Wang et al., 2018].

We also examined the reliability of the new model for liver K1 quantification over a wide 

range of values from 0.5 to 2.5 (Fig. 11). The true K1 values and their estimates are highly 

correlated (r > 0.9). The stability of K1 estimation against noise is also preserved in its 

correlation with liver inflammation (Fig. 12).

We further studied the effect of nonzero k4. Recent interests in whole-body parametric 

imaging have been growing with the implementation of multi-bed dynamic PET imaging for 

commercial scanners [Karakatsanis et al., 2013a, Hu et al., 2017] and the advent of total-

body PET scanners [Cherry et al., 2017, Badawi et al., 2019]. For parametric imaging of 

FDG Ki, k4 is usually neglected by standard whole-body Patlak parametric imaging 
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[Karakatsanis et al., 2013a, Karakatsanis et al., 2013b]. Our computer simulation study 

suggests that k4 should not be neglected in the liver if one-hour scan is used, which is 

consistent with past dynamic FDG studies [Messa et al., 1992, Okazumi et al., 1992, 

Miyazawa et al., 1993, Karakatsanis et al., 2014]. Full 3-compartmental modeling or the 

generalized Patlak method [Karakatsanis et al., 2015] can be thereby used to take into 

account the effect of nonzero k4 when the liver is involved in the field of view.

A disadvantage of the optimization-derived DBIF model is the increased standard deviation 

in kinetic parameter estimation, which is basically caused by the increased number of free 

parameters. To control the standard deviation of K1 and other parameters of interest, one 

potential strategy is to add additional constraints in the optimization problem. For example, 

Table 6 compares the bias and standard deviation of kinetic parameters for either estimating 

or fixing the input function parameter ka in the optimization of TAC fitting. If ka is fixed at 

its true values, the bias and standard deviation of K1 (and other kinetic parameters) can be 

largely reduced. This is not surprising because a fixed ka corresponds to a known portal vein 

input function. However, the result reported here indicates the potential improvement space 

if a modified method can be developed to incorporate the prior information of the portal vein 

input function.

The study also indicates that kinetic quantification at the liver-segment ROI noise level (Sc = 

0.6) is less reliable than at the whole-liver ROI noise level (Sc = 0.3). Both bias and SD 

become nearly doubled, as shown in Table 4. It is worth noting that all the studies were 

conducted using standard clinical PET. The high-sensitivity EXPLORER scanner can 

increase sensitivity of PET by a factor of 4–5 for imaging a single organ [Poon et al., 2012, 

Cherry et al., 2018, Zhang et al., 2017, Badawi et al., 2019], which can reduce the liver-

segment ROI noise level from current Sc = 0.6 to Sc = 0.3, i.e., by a factor equal to the 

square-root of the sensitivity improvement, which is estimated to be approximately a factor 

of 4 for single-organ imaging. Thus, quantification of liver segmental heterogeneity may 

become reliable on EXPLORER. Equivalently, the whole-liver ROI noise level may also be 

reduced from current Sc = 0.3 to Sc = 0.15 if EXPLORER is used. The resulting bias and SD 

of K1 were 1.4% and 6.5%, respectively, according to our simulation study using Sc = 0.15.

This study has limitations. While the Monte Carlo-based 1D computer simulation approach 

used in this work is not different from other studies of kinetic modeling (e.g., [Wu and 

Carson, 2002]), the approach simulated the noise of TACs in the temporal domain but 

neglected potential spatial correlations of the noise. A fully 4D Monte Carlo simulation 

(e.g., by GATE) can be more realistic, though we do not expect that it would result in a 

significant difference in TAC noise modeling. The nonlinear least-square fitting in this work 

was solved by the classic Levenberg-Marquardt optimization algorithm, which only finds 

local solutions. Our preliminary study of multi-initialization indicated that a better 

optimization search could be beneficial. Thus, our future work will include the development 

of an improved optimization algorithm for this application. In addition, the model needs to 

be further modified if kinetic parameters (e.g., vb) other than K1 and Ki are of interest. A 

possible solution could be to include the gut compartment in a way similar to [Garbarino et 

al., 2015].
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5. Conclusion

This paper has conducted both theoretical analysis of structural identifiability and computer 

study of practical identifiability for the optimization-derived DBIF model in dynamic PET 

of liver inflammation. The theoretical analysis suggests that the parameters of the new 

model are identifiable but subject to local solutions. The simulation results have shown that 

the estimation of vascular kinetic parameters (vb and fA) suffer from high variation. 

However, FDG K1 can be reliably estimated in the new optimization-derived DBIF model. 

The bias of K1 by the new model is approximately 3% and the standard deviation is about 

11% at the whole-liver ROI noise level. The estimated values of K1 are also highly 

correlated with the original K1 values (r = 0.92). The correlation between liver FDG K1 by 

the new model and histological inflammation score is robust to noise interference. These 

results suggest that liver FDG K1 quantification is reliable for clinical use to assess liver 

inflammation at the whole-liver ROI level. Future work will include further development of 

the DBIF modeling and optimization approaches and use of EXPLORER for reduced bias 

and variance in K1.

Acknowledgment

The authors thank the anonymous reviewers for their helpful comments. The work of G. Wang was supported in 
part by the UC Davis Comprehensive Cancer Center under NIH Grant P30 CA093373 and K12 Dean’s Scholar 
Award.

6.: Appendix

6.1. Structural identifiability of single-input kinetic model

Substituting equations (4) – (9) into equation (20), we have

D s = s2 + α1 ⋅ s + α0, (37)

N s = β2 ⋅ s2 + β1 ⋅ s + β0, (38)

where the coefficients are defined by

α1 = k2 + k3 + k4, (39)

α0 = k2k4, (40)

β2 = vb, (41)

β1 = 1 − vb K1 + vb k2 + k3 + k4 , (42)

β0 = 1 − vb K1 k3 + k4 + vbk2k4 . (43)
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Using the equation set αi = Di and βi = Ni, we can obtain a unique solution for θ after some 

algebraic operations:

vb = N2, (44)

K1 = N1 − vbD1
1 − vb

, (45)

k2 = D1 − N0 − vbD0
1 − vb K1

, (46)

k4 = D0
k2

, (47)

k3 = D1 − k2 − k4 . (48)

Therefore, the traditional SBIF three-compartmental model structure is globally identifiable 

in the parameter space.

6.2. Derivation of the structural identifiability of dual-input kinetic 

modeling

Similarly, for the optimization-derived DBIF model, the numerator and denominator of the 

transfer function Φ(s) are given by

D s = s3 + ka + α1 ⋅ s2 + kaα1 + α0 ⋅ s + kaα0, (49)

N s = β2fA ⋅ s3 + kaβ2 + fAβ1 ⋅ s2 + kaβ1 + fAβ0 ⋅ s + kaβ0 (50)

where {αi, βi} are defined by equations (39)–(43). The equation set to determine θ is:

ka + α1 = D2, (51)

kaα1 + α0 = D1, (52)

kaα0 = D0, (53)

β2fA = N3, (54)
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kaβ2 + fAβ1 = N2, (55)

kaβ1 + fAβ0 = N1, (56)

kaβ0 = N0, (57)

Using equations (51) – (53), we obtain Eq. (26) for ka. Using equations (54) – (57), we 

obtain Eq. (27) for fA.
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Figure 1. 
Three-compartment (Cp(t), Cf(t), Cm(t)) model with single-blood input function (SBIF). 

CT(t) denotes the total activity that can be measured by PET.
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Figure 2. 
Optimization-derived dual-blood input function (DBIF) model. The FDG kinetic parameters 

(vb, K1, k2, k3, k4) and dual-input parameters (fA, ka) are jointly estimated by time activity 

curve fitting.
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Figure 3. 
Flowchart of the practical identifiability analysis using computer simulation.
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Figure 4. 
Illustration of volumetric ROIs in the liver segments and aorta in 2D planes. Top: a 

transverse plane showing the aortic ROI and four of eight spherical liver ROIs; Bottom: a 

coronal plane showing the aortic ROI and one of eight spherical liver ROIs. ROIs are 

overlayed on the PET image of one-hour duration. All the spherical liver ROIs are of 25 mm 

in diameter.
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Figure 5. 
Original sensitivity functions for different kinetic parameters: (a) K1, k2, k3, k4 and (b) vb, 

ka, fA.
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Figure 6. 
Normalized sensitivity functions for different kinetic parameters: (a) K1, k2, k3, k4 and (b) 

vb, ka, fA
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Figure 7. 
Fit of the histogram of normalized residual difference Δcm using a Gaussian distribution 

with the standard deviation Sc. (a) whole-liver ROI level, Sc = 0.3; (b) liver-segment ROI 

level, Sc = 0.6. Note that all time frames of different scan duration are included.
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Figure 8. 
Bias in K1 estimated using different fitting options. S refers to the use of single initial value 

for K1 and M refers to use multiple initial values. w0 means the uniform weighting scheme 

and w1 means the nonuniform weighting scheme.
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Figure 9. 
Bias and SD of K1 and Ki estimates in the optimization-derived (OD) DBIF model for 14 

patient data sets with Sc = 0.3, as compared with the inaccurate SBIF model and population-

based (PB) DBIF model.
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Figure 10. 
Bias and RMSE of K1 and Ki of the fitting approaches with and without fixing k4 at zero.
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Figure 11. 
Correlation between the true kinetic parameter values and estimated values from noisy data 

(Sc = 0.3). (a) K1, (b) Ki, (c) vb and fA.
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Figure 12. 
Noise variation of the correlation r between FDG K1 and histological liver inflammation 

score. (a) r values of 1000 noisy realizations, (b) box plot of the r values.
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Table 1.

Correlation matrix of the sensitivity functions.

K1 k3 k4 k2 vb ka fA

K1 1.00 −0.56 0.54 −0.67 −0.18 0.16 −0.27

k3 1.00 −0.87 0.14 −0.39 −0.40 −0.31

k4 1.00 −0.33 0.21 0.18 0.13

k2 1.00 0.68 0.59 0.73

vb 1.00 0.79 1.00

ka 1.00 0.77

fA 1.00
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Table 2.

Absolute bias and SD of liver FDG kinetic parameter estimates by different kinetic models. The absolute bias 

and SD are averaged over 14 patient data sets.

OD DBIF SBIF PB DBIF

Bias (%) SD(%) Bias(%) SD(%) Bias(%) SD(%)

K1 3.2 10.8 36.7 1.1 25.5 2.6

k2 3.5 11.6 40.1 1.1 21.7 2.4

k3 5.0 19.7 56.1 5.2 69.4 4.0

k4 8.1 44.0 85.1 9.4 90.7 8.5

Ki 4.5 18.3 53.8 5.2 66.1 4.2

Phys Med Biol. Author manuscript; available in PMC 2020 September 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zuo et al. Page 34

Table 3.

RMSE (%) of liver FDG kinetic parameter estimates by different kinetic models. The RMSE is averaged over 

14 patient data sets.

OD DBIF SBIF PB DBIF

RMSE (%) RMSE (%) RMSE (%)

K1 11.3 36.7 25.8

k2 12.1 40.1 21.9

k3 20.6 56.5 69.6

k4 45.2 86.1 91.8

Ki 19.1 54.1 66.3
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Table 4.

Bias and SD of the kinetic parameters in the optimization-derived DBIF model under three different noise 

levels: Sc = 0 (noise-free), Sc = 0.3 (whole-liver ROI level), and Sc = 0.6 (liver-segment ROI level).

Sc = 0 Sc = 0.3 Sc = 0.6

Bias (%) SD(%) Bias(%) SD(%) Bias(%) SD(%)

K1 0.6 0 3.2 10.8 7.4 18.3

k2 0.6 0 3.5 11.6 8.2 19.6

k3 0.2 0 5.0 19.7 12.4 40.3

k4 0.1 0 8.1 44.0 22.7 81.6

Ki 0.2 0 4.5 18.3 11.1 37.0

vb 16.2 0 71.8 206.5 182.6 484.6

ka 0.6 0 3.9 16.2 6.1 27.6

fA 16.9 0 38.3 121.9 41.6 142.5
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Table 5.

Coefficients of the linear correlation between estimated kinetic parameters and their true values.

vb K1 k2 k3 k4 ka fA Ki

Sc = 0.3 0.84 0.92 0.90 0.97 0.98 0.91 0.69 0.97

Sc = 0.6 0.78 0.88 0.83 0.90 0.91 0.79 0.66 0.90
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Table 6.

Normalized absolute Bias, SD and RMSE of a typical kinetic parameter set (population means) estimated by 

the optimization-derived DBIF model with ka freely estimated or fixed at its true value.

free ka fixed ka

Bias (%) SD(%) RMSE(%) Bias(%) SD(%) RMSE(%)

K1 3.2 10.8 11.3 0.3 3.0 3.0

k2 3.5 11.6 12.1 0.4 3.4 3.4

k3 5.0 19.7 20.6 1.9 17.7 17.9

k4 8.1 44.0 45.2 4.6 41.6 42.1

Ki 4.5 18.3 19.1 1.7 16.6 16.7

vb 71.8 206.5 158.1 47.9 116.9 91.0

ka 3.9 16.2 16.8 / / /

fA 38.3 121.9 93.6 40.0 106.0 81.4
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