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Abstract

Droplet single-cell RNA-sequencing (dscRNA-seq) has enabled rapid, massively parallel profiling 

of transcriptomes. However, assessing differential expression across multiple individuals has been 

hampered by inefficient sample processing and technical batch effects. Here we describe a 

computational tool, demuxlet, that harnesses natural genetic variation to determine the sample 

identity of each cell and detect droplets containing two cells. These capabilities enable multiplexed 

dscRNA-seq experiments in which cells from unrelated individuals are pooled and captured at 

higher throughput than in standard workflows. Using simulated data, we show that 50 SNPs per 

cell are sufficient to assign 97% of singlets and identify 92% of doublets in pools of up to 64 

individuals. Given genotyping data for each of 8 pooled samples, demuxlet correctly recovers the 

sample identity of >99% of singlets and identifies doublets at rates consistent with previous 

estimates. We apply demuxlet to assess cell type-specific changes in gene expression in 8 pooled 

lupus patient samples treated with IFN-β and perform eQTL analysis on 23 pooled samples.

Droplet single cell RNA-sequencing (dscRNA-seq) has increased substantially the 

throughput of single cell capture and library preparation1, 10, enabling the simultaneous 

profiling of thousands of cells. Improvements in biochemistry11, 12 and microfluidics13, 14 

continue to increase the number of cells and transcripts profiled per experiment. But for 

differential expression and population genetics studies, sequencing thousands of cells each 

from many individuals would better capture inter-individual variability than sequencing 

more cells from a few individuals. However, in standard workflows, dscRNA-seq of many 

samples in parallel remains challenging to implement. If the genetic identity of each cell 

could be determined, pooling cells from different individuals in one microfluidic run would 

result in lower per-sample library preparation cost and eliminate confounding effects. 

Furthermore, if droplets containing multiple cells from different individuals could be 

detected, pooled cells could be loaded at higher concentrations, enabling additional 

reduction in per-cell library preparation cost.

Here we develop an experimental protocol for multiplexed dscRNA-seq and a computational 

algorithm, demuxlet, that harnesses genetic variation to determine the genetic identity of 

each cell (demultiplex) and identify droplets containing two cells from different individuals 

(Fig. 1a). While strategies to demultiplex cells from different species1, 10, 17 or host and graft 
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samples17 have been reported, simultaneously demultiplexing and detecting doublets from 

more than two individuals has not been possible. Inspired by models and algorithms 

developed for detecting contamination in DNA sequencing18, demuxlet is fast, accurate, 

scalable, and compatible with standard input formats17, 19, 20.

Demuxlet implements a statistical model for evaluating the likelihood of observing RNA-seq 

reads overlapping a set of single nucleotide polymorphisms (SNPs) from a single cell. Given 

a set of best-guess genotypes or genotype probabilities obtained from genotyping, 

imputation or sequencing, demuxlet uses maximum likelihood to determine the most likely 

donor for each cell using a mixture model. A small number of reads overlapping common 

SNPs is sufficient to accurately identify each cell. For a pool of 8 individuals and a set of 

uncorrelated SNPs each with 50% minor allele frequency (MAF), 4 reads overlapping SNPs 

are sufficient to uniquely assign a cell to the donor of origin (Fig. 1b) and 20 reads 

overlapping SNPs can distinguish every sample with >98% probability in simulation 

(Supplementary Fig. 1). We note that by multiplexing even a small number of individuals, 

the probability that a doublet contains cells from different individuals is very high (1 – 1/N, 

e.g., 87.5% for N=8 samples) (Fig. 1C). For example, if a 1,000-cell run without 

multiplexing results in 990 singlets with a 1% undetected doublet rate, multiplexing 1,570 

cells each from 63 samples can theoretically achieve the same rate of undetected doublets, 

producing up to a 37-fold more singlets (36,600) if the sample identity of every droplet can 

be perfectly demultiplexed (Supplementary Fig. 2, see Methods for details). To minimize the 

effects of sequencing doublets, profiling 22,000 cells multiplexed from 26 individuals 

generates 23-fold more singlets at the same effective doublet rate (Supplementary Fig. 3).

We first assess the performance of multiplexed dscRNA-seq through simulation. The ability 

to demultiplex cells is a function of the number of individuals multiplexed, the depth of 

sequencing or number of read-overlapping SNPs, and relatedness of multiplexed individuals. 

We simulated 6,145 cells (5,837 singlets and 308 doublets) from 2 – 64 individuals from the 

1000 Genomes Project21. We show that 50 SNPs per cell allows demultiplexing of 97% of 

singlets and identification of 92% of doublets in pools of up to 64 individuals 

(Supplementary Figs. 4–5, see Methods for details). Simulating a range of sequencing 

depths, we determined that 50 SNPs can be obtained with as few as 1,000 unique molecular 

identifiers (UMIs) per cell (Supplementary Fig. 6), and recommended sequencing depths of 

standard dscRNA-seq workflows would capture hundreds of SNPs. To assess dependence on 

the relatedness of multiplexed individuals, we simulated 6,145 cells from a set of 8 related 

individuals from 1000 Genomes21. In this simulation, 50 SNPs per cell would allow 

demuxlet to correctly assign over 98% of cells (Supplementary Fig. 7). These results suggest 

optimal multiplexed designs where cells from tens of unrelated individuals should be pooled, 

loaded at concentrations 2–10x higher than standard workflows, and sequenced to at least 

1,000 UMIs per cell.

We evaluate the performance of demuxlet by analyzing a pool of peripheral blood 

mononuclear cells (PBMCs) from 8 lupus patients. By sequential pairwise pooling, three 

pools of equimolar concentrations of cells were generated (W1: patients S1-S4, W2: patients 

S5-S8 and W3: patients S1-S8) and each loaded in a well on a 10X Chromium instrument 
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(Fig. 2a). 3,645 (W1), 4,254 (W2) and 6,205 (W3) cell-containing droplets were sequenced 

to an average depth of 51,000, 39,000 and 28,000 reads per droplet.

In wells W1, W2 and W3, demuxlet identified 91% (3332/3645), 91% (3864/4254), and 

86% (5348/6205) of droplets as singlets (likelihood ratio test, L(singlet)/L(doublet) > 2), of 

which 25% (+/− 2.6%), 25% (+/− 4.6%) and 12.5% (+/− 1.4%) mapped to each donor, 

consistent with equal mixing of individuals in each well. From wells W1 and W2, each 

containing cells from two disjoint sets of 4 individuals, we estimated a demultiplexing error 

rate (number of cells assigned to individuals not in the pool) of less than 1% of singlets (W1: 

2/3332, W2: 0/3864) (Fig. 2b).

We next assess the ability of demuxlet to detect doublets in both simulated and real data. 

466/3645 (13%) droplets from W1 were simulated as synthetic doublets by setting the 

cellular barcodes of 466 cells each from individuals S1 and S2 to be the same. Applied to 

simulated data, demuxlet identified 91% (426/466) of synthetic doublets as doublets or 

ambiguous, correctly recovering the sample identity of both cells in 403/426 (95%) doublets 

(Supplementary Fig. 8). Applied to real data from W1, W2 and W3, demuxlet identified 

138/3645, 165/4254, and 384/6205 doublets corresponding to doublet rates of 5.0%, 5.2% 

and 7.1%, consistent with the expected doublet rates estimated from mixed species 

experiments (Fig. 2c).

Demultiplexing of pooled samples allows for the statistical and visual comparisons of 

individual-specific dscRNA-seq profiles. Singlets identified by demuxlet in all three wells 

cluster into known immune cell types (Fig. 2d) and are correlated with bulk RNA-

sequencing of sorted cell populations (R=0.76–0.92) (Supplementary Fig. 9). For the same 

individuals from different wells, t-distributed stochastic neighbor embedding (t-SNE) of 

dscRNA-seq data are qualitatively consistent, and estimates of cell type proportions are 

highly correlated (R = 0.99) (Fig. 2e and Supplementary Fig. 10). Further, t-SNE projections 

of the pool and each individual are not confounded by well-to-well effects (Supplementary 

Fig. 11a). While 6 genes were differentially expressed between wells W1 and W2 (DESeq2 

on pseudobulk counts, FDR < 0.05), only 2 genes were differentially expressed between W1 

and W2 individuals in well W3 (FDR < 0.05) (Supplementary Fig. 11b), suggesting 

multiplexing reduces technical effects due to separate sample processing22, 23.

We used multiplexed dscRNA-seq to characterize the cell type specificity and inter-

individual variability of response to IFN-β, a potent cytokine that induces genome-scale 

changes in the transcriptional profiles of immune cells24, 25. From each of 8 lupus patients, 

PBMCs were activated with recombinant IFN-β or left untreated for 6 hours, a time point we 

previously found to maximize the expression of interferon-sensitive genes (ISGs) in 

dendritic cells (DCs) and T cells26, 27. Two pools, IFN-β-treated and control, were prepared 

with the same number of cells from each individual and loaded onto the 10X Chromium 

instrument.

We obtained 14,619 (control) and 14,446 (stimulated) cell-containing droplets, of which 

demuxlet identified 83% (12,138) and 84% (12,167) as singlets. The estimated doublet rate 

of 10.9% in each condition is consistent with predicted rates (Fig. 2C) and the observed and 
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expected frequencies of doublets for each pair of individuals are highly correlated (R=0.98) 

(Supplementary Fig. 12). Detected doublets form distinct clusters near the periphery of other 

clusters defined by cell type (Supplementary Fig. 13).

Demultiplexing individuals enables the use of the 8 individuals within each pool as 

biological replicates to quantitatively assess cell type-specific IFN-β responses in PBMCs. 

Consistent with previous reports from bulk RNA-sequencing data, IFN-β stimulation 

induces widespread transcriptomic changes observed as a shift in the t-SNE projections of 

singlets24 (Fig. 3A). As expected, IFN-β did not affect cell type proportions between control 

and stimulated cells (Supplementary Fig. 14), and these were consistent with flow cytometry 

measurements (R=0.88) (Supplementary Fig. 15). Estimates of abundances for ~2000 

homologous genes in each cell type and condition correlated with similar data from mice 

(Supplementary Fig. 16). We identified 3,055 differentially expressed genes (logFC > 2, 

FDR < 0.05) in at least one cell type (Supplementary Table 1). For 709 genes, estimates of 

fold change in response to IFN-β stimulation in myeloid and CD4+ cells are consistent with 

estimates in monocyte derived dendritic cells28 and CD4+ T cells27, respectively 

(Supplementary Fig. 17) and correlated with qPCR results of sorted CD4+ T cells 

(Supplementary Fig. 18). Differentially expressed genes cluster into modules of cell type-

specific responses enriched for distinct gene regulatory programs (Fig. 3B, Supplementary 

Table 2). For example, genes upregulated in all leukocytes (Cluster III: 401 genes, logFC > 

2, FDR < 0.05) or only in myeloid cells (Cluster I: 767 genes, logFC > 2, FDR < 0.05) are 

enriched for general antiviral response (e.g. KEGG Influenza A: Cluster III P < 1.6×10−5), 

chemokine signaling (Cluster I P < 7.6×10−3) and pathways active in systemic lupus 

erythematosus (Cluster I P < 4.4×10−3). The five clusters of downregulated genes are 

enriched for antibacterial response (KEGG Legionellosis: Cluster II monocyte down P < 

5.5×10−3) and natural killer cell mediated toxicity (Cluster IV NK/Th cell down: P < 

3.6×10−2). The analysis of multiplexed dscRNA-seq data recovers cell type-specific gene 

regulatory programs affected by interferon stimulation consistent with published IFN-β 
signatures in mouse and humans29.

Over all PBMCs, the variance of mean expression across individuals is higher than the 

variance across synthetic replicates whose cells were randomly sampled (Lin’s concordance 

= 0.022, Pearson correlation= 0.69, Fig. 3C). The variance across synthetic replicates whose 

cells were sampled matching for cell type proportions is more concordant with the variance 

across individuals (Lin’s concordance = 0.54, Pearson correlation = 0.78, Fig. 3C–D), 

suggesting a contribution of cell type composition on expression variability. However, for 

each cell type, the variance across individuals22, 30 is also higher than the variance across 

synthetic replicates (Lin’s concordance = 0.007–0.20) suggesting additional inter-individual 

variability not due to cell type composition (Supplementary Fig. 19). In CD14+CD16− 

monocytes, the correlation of mean expression between pairs of synthetic replicates from the 

same individual (>99%) is greater than from different individuals (~97%), further indicating 

inter-individual variation beyond sampling (Fig. 3E). We found between 15 to 827 genes 

with statistically significant inter-individual variability in control cells and 7 to 613 in 

stimulated cells (Pearson correlation, FDR < 0.05), with most found in classical monocytes 

(cM) and CD4+ helper T (Th) cells. Inter-individual variable genes in stimulated cM and to a 

lesser extent in Th cells (P < 9.3×10−4 and 4.5×10−2, hypergeometric test, Fig. 3F) are 
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enriched for differentially expressed genes, consistent with our previous discovery of more 

IFN-β response-eQTLs in monocyte-derived dendritic cells than CD4+ T cells26, 27. 

Comparing to 407 genes previously profiled in bulk monocyte-derived dendritic cells, the 

proportion of variance explained by inter-individual variability is more correlated in myeloid 

cells after stimulation (R = 0.26 – 0.3) than before (R = 0.05 – 0.19).

To map genetic variants associated with cell type proportions and cell type-specific 

expression using multiplexed dscRNA-seq, we sequenced an additional 15,250 (7 donors), 

22,619 (8 donors) and 25,918 cells (15 donors; 8 lupus patients, 5 rheumatoid arthritis 

patients, and 2 healthy controls). Demuxlet identified 71% (10,766/15,250), 73% 

(16,618/22,619) and 60% (15,596/25,918) of droplets as singlets, correctly assigning 99% of 

singlets from the first two pools, W1 and W2 (10,740/10,766 and 16,616/16,618). The 

estimated doublet rates of 18%, 18% and 25% are consistent with the increased 

concentrations of loaded cells (Fig. 2C). Similar to the IFN-β stimulation experiment, we 

found that expression variability was determined by variability in cell type proportion (Fig. 

4A) and reproducible between batches (Supplementary Fig. 20). Associating >150,000 

genetic variants (MAF > 20%) with the proportion of 8 major immune cell populations, we 

identified a SNP (chr10:3791224) significantly associated (P = 1.03×10−5, FDR < 0.05) with 

the proportion of NK cells (Fig. 4B).

Across 23 donors, we conducted an expression quantitative trait loci (eQTL) analysis to map 

genetic variants associated with expression variability in each major immune cell type. We 

found a total of 32 local eQTLs (+/− 100kb, FDR < 0.1), 22 of which were detected in only 

one cell type (Fig. 4C, Supplementary Table 3). Previously reported local eQTLs from bulk 

CD14+ monocytes, CD4+ T cells and lymphoblastoid cell lines are more significantly 

associated with gene expression in the most similar cell types (cM, Th and B cells, 

respectively) than other cell types (Fig. 4D). We used an inverse variance weighted meta-

analysis to identify genes with pan-cell type eQTLs, including those in the major 

histocompatibility complex (MHC) class I antigen presentation pathway including ERAP2 
(P < 3.57×10−32, meta-analysis), encoding an aminopeptidase known to cleave viral 

peptides34, and HLA-C (P < 1.74×10−29, meta-analysis), which encodes the MHC class I 

heavy chain (Fig. 4E). HLA-DQA1 has local eQTLs only in some cell types (P 

<2.11×10−15, Cochran’s Q) while HLA-DQA2 has local eQTLs in all antigen presentation 

cells (P < 1.02e10−43, Cochran’s Q). Among other cell type-specific local eQTLs are CD52, 

a gene ubiquitously expressed in leukocytes that only has eQTLs in monocyte populations, 

and DIP2A, a gene with an eQTL only in NK cells that is associated with immune response 

to vaccination in peripheral blood35. These results demonstrate the ability of multiplexed 

dscRNA-seq to characterize inter-individual variation in immune response and when 

integrated with genetic data, reveal cell type-specific genetic control of gene expression, 

which would be undetectable when bulk tissues are analyzed.

The capability to demultiplex and identify doublets using natural genetic variation reduces 

the per-sample and per-cell library preparation cost of single-cell RNA-sequencing, does not 

require synthetic barcodes or split-pool strategies36–40, and captures biological variability 

among individual samples while limiting unwanted technical variability. We find the optimal 

number of samples to multiplex is approximately 20, based on sample processing time and 
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empirical doublet rates of current microfluidic devices and anticipate that number to increase 

with automated sample handling and lower doublet rates.

Compared to sorting known cell types followed by bulk RNA-seq, multiplexed dscRNA-seq 

is a more efficient and unbiased method for obtaining cell type-specific immune traits41. 

Demuxlet enables reliable estimation of cell type proportion, recovers cell type-specific 

transcriptional response to stimulation, and could facilitate further genetic and longitudinal 

analyses in relevant cell types and conditions across a range of sampled individuals, 

including between healthy controls and disease patients42–44. While demuxlet could in 

principle be applied to sequencing solid tissue, standardizing sample processing and 

preservation remain major challenges. Although we developed demuxlet specifically for 

RNA-sequencing, we anticipate that the computational framework could be easily extended 

to other single cell assays where synthetic barcodes or natural genetic variation are measured 

by sequencing.

Methods

Identifying the sample identity of each single cell

We first describe the method to infer the sample identity of each cell in the absence of 

doublets. Consider RNA-sequence reads from C barcoded droplets multiplexed across S 
different samples, where their genotypes are available across V exonic variants. Let dcv be 

the number of unique reads overlapping with the v-th variant from the c-th droplet. Let bcvi 

∈ {R, A, O}, i ∈ {1, ⋯ , dcv} be the variant-overlapping base call from the i-th read, 

representing reference (R), alternate (A), and other (O) alleles respectively. Let ecvi ∈ {0,1} 

be a latent variable indicating whether the base call is correct (0) or not (1), then given ecvi = 

0, bcvi ∈ {R = 0, A = 1} and ~ Binomial  when g ∈ {0,1,2} is the true genotype of 

sample corresponding to c-th droplet at v-th variant. When ecvi = 1, we assume that Pr(bcvi|g, 

ecvi) follows Supplementary Table 4. ecvi is assumed to follow Bernoulli  where 

qcvi is a phred-scale quality score of the observed base call. We use the standard 10X 

pipeline to process the raw reads which estimates the phred-scale quality score based on the 

alignment of each read to the reference human transcriptome using the STAR aligner49.

We allow uncertainty of observed genotypes at the v-th variant for the s-th sample using 

, the posterior probability of a possible genotype g given external DNA 

data Datasv (e.g. sequence reads, imputed genotypes, or array-based genotypes). If genotype 

likelihood Pr(Datasv|g) is provided (e.g. unphased sequence reads) instead, it can be 

converted to a posterior probability scale using  where Pr(g) ~ 

Binomial(2, pv) and pv is the population allele frequency of the alternate allele. To allow 

errors ε in the posterior probability, we replace it with . The overall 

likelihood that the c-th droplet originated from the s-th sample is
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(1)

In the absence of doublets, we use the maximum likelihood to determine the best-matching 

sample as argmaxs[Lc (s)].

Screening for droplets containing multiple samples

To identify doublets, we implement a mixture model to calculate the likelihood that the 

sequence reads originated from two individuals, and the likelihoods are compared to 

determine whether a droplet contains cells from one or two samples. If sequence reads from 

the c-th droplet originate from two different samples, s1, s2 with mixing proportions (1 − 

α) : α, then the likelihood in (1) can be represented as the following mixture distribution18,

To reduce the computational cost, we consider discrete values of α ∈ {α1, ⋯ , αM}, (e.g. 5 

– 50% by 5%). We determine that it is a doublet between samples s1, s2 if and only if 

 and the most likely mixing proportion is estimated to be 

argmaxαLc(s1, s2, α). We determine that the cell contains only a single individual s if 

, and less confident droplets are classified as ambiguous. While 

we consider only doublets for estimating doublet rates, we remove all doublets and 

ambiguous droplets to conservatively estimate singlets. Supplementary Fig. 8 illustrates the 

distribution of singlet, doublet likelihoods and the decision boundaries when t = 2 was used.

Theoretical expectation of deconvoluting singlets

The theoretical distribution of expected singlets with multiplexing (presented in 

Supplementary Fig. 2) is as follows. Let do (e.g. 0.01) be the proportion of true multiplets 

when xo (1,000) cells are loaded when multiplexing was not used. Then the expected 

multiplet rates when x cells are loaded can be modeled exponentially as 

. Let α be the fraction of true singlets incorrectly classified as non-

singlets (i.e. doublet or ambiguous), and β be the fraction of multiplets correctly classified as 

non-singlets. When multiplexing x cells equally from n samples, the expected multiplet rates 

are d(x), and  are expected to be undetectable doublets mixed between the cells from 

the same sample. Therefore, the overall effective multiplet rate is . 

Similarly, the expected number of correctly identified singlets becomes 

. Given α, β the expected number of singlets can be calculated by 
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fixing the multiplet rate d(x) = d0. We used d0 = 0.01, x0 = 1000 for the simulation in 

Supplementary Fig. 2.

Dependence of demultiplexing performance on experimental design parameters

The demuxlet ‘plp’ option was used to generate a pileup format of 6,145 cells from one well 

of PBMC 10x data. The reads in the pileup were then modified to reflect the genotypes of 

individuals sampled from the 1000 Genomes Phase 3 cohort. The pileup was downsampled 

to obtain different numbers of read-overlapping exonic SNPs (ranging from 5,000 to 

100,000) for the whole cohort. To create simulated doublets, we randomly sampled and 

merged pairs of barcodes within a dataset, resulting in a 5% doublet rate in the original data. 

For simulations with related individuals, we simulated transcriptomes from 8 individuals in 

1000 Genomes with varying degrees of relatedness, ranging from unrelated to parent-child 

(HG00146, HG00147, HG00500, HG00501, HG00502, HG00512, HG00514, and 

HG00524).

Isolation and preparation of PBMC samples

Informed consent was obtained from all patients sequenced in this study. Peripheral blood 

mononuclear cells were isolated from patient donors, Ficoll separated, and cryopreserved by 

the UCSF Core Immunologic Laboratory (CIL). PBMCs were thawed in a 37°C water bath, 

and subsequently washed and resuspended in EasySep buffer (STEMCELL Technologies). 

Cells were treated with DNAseI and incubated for 15 min at RT before filtering through a 

40um column. Finally, the cells were washed in EasySep and resuspended in 1x PBMS and 

0.04% bovine serum albumin. Cells from 8 donors were then re-concentrated to 1M cells per 

mL and then serially pooled. At each pooling stage, 1M cells per mL were combined to 

result in a final sample pool with cells from all donors.

IFN-β stimulation and culture

Prior to pooling, samples from 8 individuals were separated into two aliquots each. One 

aliquot of PBMCs was activated by 100 U/mL of recombinant IFN-β (PBL Assay Science) 

for 6 hrs according to the published protocol26. The second aliquot was left untreated. After 

6 hrs, the 8 samples for each condition were pooled together in two final pools (stimulated 

cells and control cells) as described above.

Fluorescence-activated cell sorting and analysis

1M PBMCs from each donor were stained using standard procedure (30 min, 4 C) with the 

following surface antibody panel (CD3-PerCP clone SK7 (BioLegend), CD4-APC clone 

OKT4 (BioLegend), CD8-BV570 clone RPA-T8 (BioLegend), CD14-FITC clone 63D3 

(BioLegend), CD19-BV510 clone SJ25C1 (BD), and Ghost dye A710 viability stain 

(Tonbo)) (Life Sciences Reporting Summary). Samples were then analyzed and sorted using 

a BD FACSAria Fusion instrument at the UCSF flow cytometry core. To calculate cell type 

proportions, the number of events in each of CD3+ CD4+ CD8− (CD4+ T cells), CD3+ CD4− 

CD8+ (CD8+ T cells), CD3− CD19+ (B cells), and CD3− CD14+ (monocytes) were divided 

by the sum of events in these gates (Supplementary Fig. 21).
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Quantitative polymerase chain reaction analysis

RNA was isolated from sorted CD4+ T cells following the RNeasy micro kit protocol 

(QIAGEN), and cDNA was prepared using MultiScribe Reverse Transcriptase (Applied 

Biosystems cat #4368814). The qPCR primers were chosen from the PrimerBank reference 

when available 50. Each sample was run in triplicate with the Luminaris HiGreen qPCR kit 

(Thermo Scientific #K0992) according to standard protocol using a Roche Light Cycler 96 

instrument and fold change was calculated from ΔΔCT between control and stimulated 

samples with GAPDH as a reference gene.

Droplet-based capture and sequencing

Cellular suspensions were loaded onto the 10x Chromium instrument (10x Genomics) and 

sequenced as described in Zheng et al17. The cDNA libraries were sequenced using a custom 

program on 10 lanes of Illumina HiSeq2500 Rapid Mode, yielding 1.8B total reads and 25K 

reads per cell. At these depths, we recovered >90% of captured transcripts in each 

sequencing experiment.

Bulk isolation and sequencing

PBMCs from lupus patients were isolated and prepared as described above. Once 

resuspended in EasySep buffer, the EasyEights Magnet was used to sequentially isolate 

CD14+ (using the EasySep Human CD14 positive selection kit II, cat #17858), CD19+ 

(using the EasySep Human CD19 positive selection kit II, cat #17854), CD8+ (EasySep 

Human CD8 positive selection kitII, cat#17853), and CD4+ cells (EasySep Human CD4 T 

cell negative isolation kit (cat #17952) according to the kit protocol. RNA was extracted 

using the RNeasy Mini kit (#74104), and reverse transcription and tagmentation were 

conducted according to Picelli et al. using the SmartSeq2 protocol51, 52. After cDNA 

synthesis and tagmentation, the library was amplified with the Nextera XT DNA Sample 

Preparation Kit (#FC-131-1096) according to protocol, starting with 0.2ng of cDNA. 

Samples were then sequenced on one lane of the Illumina Hiseq4000 with paired end 100bp 

read length, yielding 350M total reads.

Alignment and initial processing of single cell sequencing data

We used the CellRanger v1.1 and v1.2 software with the default settings to process the raw 

FASTQ files, align the sequencing reads to the hg19 transcriptome, and generate a filtered 

UMI expression profile for each cell17. The raw UMI counts from all cells and genes with 

nonzero counts across the population of cells were used to generate t-SNE profiles.

Cell type classification and clustering

To identify known immune cell populations in PBMCs, we used the Seurat package to 

perform unbiased clustering on the 2.7k PBMCs from Zheng et al., following the publicly 

available Guided Clustering Tutorial17, 53. The FindAllMarkers function was then used to 

find the top 20 markers for each of the 8 identified cell types. Cluster averages were 

calculated by taking the average raw count across all cells of each cell type. For each cell, 

we calculated the Spearman correlation of the raw counts of the marker genes and the cluster 

averages, and assigned each cell to the cell type to which it had maximum correlation.
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Differential expression analysis

Demultiplexed individuals were used as replicates for differential expression analysis. For 

each gene, raw counts were summed for each individual. We used the DESeq2 package to 

detect differentially expressed genes between control and stimulated conditions54. Genes 

with baseMean > 1 were filtered out from the DESeq2 output, and the qvalue package was 

used to calculate FDR < 0.05 55.

Estimation of inter-individual variability in PBMCs

For each individual, we found the mean expression of each gene with nonzero counts. The 

mean was calculated from the log2 single cell UMI counts normalized to the median count 

for each cell. To measure inter-individual variability, we then calculated the variance of the 

mean expression across all individuals. Lin’s concordance correlation coefficient was used 

to compare the agreement of observed data and synthetic replicates. Synthetic replicates 

were generated by sampling without replacement either from all cells or cells matched for 

cell type proportion. Cell type-specific variability estimated as the correlation between 

synthetic replicates was compared to variability estimates from 23 biological replicates of 

bulk IFN-stimulated monocyte-derived dendritic cells. Protein coding genes (407/414) 

originally measured using Nanostring (a hybridization based PCR-free quantification 

method) were assessed, and variability in the bulk dataset was estimated as repeatability 

using a linear mixed model56,26.

Estimation of inter-individual variability within cell types

For each cell type, we generated two bulk equivalent replicates for each individual by 

summing raw counts of cells sampled without replacement. We used DESeq2 to generate 

variance-stabilized counts across all replicates. To filter for expressed genes, we performed 

all subsequent analyses on genes with 5% of samples with > 0 counts. The correlation of 

replicates was performed on the log2 normalized counts. Pearson correlation of the two 

replicates from each of the 8 individuals was used to find genes with significant inter-

individual variability.

Quantitative trait mapping in major immune cell types

Genotypes were imputed with EAGLE57 and filtered for MAF > 0.2, resulting in a total of 

189,322 SNPs. Cell type proportions were calculated as number of cells for each cell type 

divided by the number of total cells for each person. Linear regression was used to test 

associations between each genetic variant and cell-type proportion with the Matrix eQTL 

software58. Cis-eQTL mapping was conducted in each cell type separately. All genes with at 

least 50 UMI counts in 20% of the individuals in all PBMCs were tested for each cell type, 

resulting in a total of 4,555 genes. Variance-stabilized and log-normalized gene expression 

was calculated using the ‘rlog’ function of the DESeq2 package54. All variants within a 

window of 100kbp of each gene were tested with linear regression using Matrix eQTL58. 

Batch information for each sample as well as the first 3 principal components of the 

expression matrix were used as covariates.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Demuxlet: demultiplexing and doublet identification from single cell data
a) Pipeline for experimental multiplexing of unrelated individuals, loading onto droplet-

based single-cell RNA-sequencing instrument, and computational demultiplexing (demux) 

and doublet removal using demuxlet. Assuming equal mixing of 8 individuals, b) 4 genetic 

variants can recover the sample identity of a cell, and c) 87.5% of doublets will contain cells 

from two different samples.
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Figure 2. Performance of demuxlet
a) Experimental design for equimolar pooling of cells from 8 unrelated samples (S1-S8) into 

three wells (W1-W3). W1 and W2 contain cells from two disjoint sets of 4 individuals. W3 

contains cells from all 8 individuals. b) Demultiplexing single cells in each well recovers the 

expected individuals. c) Estimates of doublet rates versus previous estimates from mixed 

species experiments. d) Cell type identity determined by prediction to previously annotated 

PBMC data. e) t-SNE plot of two individuals (S1 and S5) from different wells are 

qualitatively concordant.
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Figure 3. Inter-individual variability in IFN-β response
a) t-SNE plot of unstimulated (blue) and IFN-β-stimulated (red) PBMCs and the estimated 

cell types. b) Cell type-specific expression in stimulated (left) and unstimulated (right) cells. 

Differentially expressed genes shown (FDR < 0.05, |log(FC)| > 1). Each column represents 

cell type-specific expression for each individual from demuxlet. c) Observed variance (y-

axis) in mean expression over all PBMCs from each of the 8 individuals versus expected 

variance (x-axis) over synthetic replicates sampled across all cells (light blue, pink) or 

replicates matched for cell type proportion (blue, red). d) Cell type proportions for each 

individual in unstimulated and stimulated cells. e) Correlation between sample replicates in 

control and stimulated cells. f) Number of significantly variable genes in each cell type and 

condition.

Kang et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2018 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Genetic control over cell type proportion and gene expression (N=23)
a) Observed variance (y-axis) in mean expression over all PBMCs from each individual 

versus expected variance (x-axis) over synthetic replicates sampled across batch 1 (left, 

N=8) and batch 3 (right, N=15). b) Association of chr10:3791224 with NK cell type 

proportions. c) Genome-wide and chromosome 6 Manhattan plots across all major cell 

types. Horizontal lines correspond to FDR < 0.1 (blue) and FDR < 0.05 (red). d) Q-Q plots 

across all genes and subsets of previously published eQTLs in relevant cell types are shown 

for B, cM, and Th populations. e) Notable cis-eQTLs across all major immune cell types are 

marked with *(FDR < 0.25), ** (FDR < 0.1), and *** (FDR < 0.05). Lack of association is 

marked with NS (not significant).
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