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ABSTRACT OF THE THESIS

Ranking Inverse Kinematic Solutions for the Control of a CT-compatible Robotic Platform

by

Taylor West Henderson

Master of Science in Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California San Diego, 2020

Professor Michael Yip, Chair

Robotic systems have been widely employed for many needle biopsy applications, such

as transthoracic lung biopsies that enable early diagnosis of primary lung cancers with small,

distal lesions. The CRANE robot, a robotic needle positioning system for CT guided procedures,

is one such system that has demonstrated a low-profile, high dexterity, and a large number of

degrees of freedom. In this thesis, we present an end-to-end automated control scheme for the

CRANE robotic platform that optimizes a robotic configuration over several defined metrics

relevant to the successful completion of a transthoracic needle biopsy procedure. For a given

needle tip target pose, multiple viable arm configurations are generated and ranked based several

metric criteria. Once a configuration is chosen, a planner is run to find a collision-free path from

x



the robot’s initial position outside of the CT-bore to this final configuration within the bore.
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Chapter 1

Introduction

1.1 Lung Biopsy Overview

For many years, primary lung cancer has remained the leading cause of cancer-related

death in both men and women worldwide, with only a 17% five-year survival rate after the

appearance of related symptoms [1]. Respiratory and other physicians play a pivotal role in

performing initial evaluations for patients with suspected lung cancer, with one of their key

goals being the collection of an early tissue diagnosis. Over the past 20 years, the complexity

of this task has grown with the changes in precision and efficacy of lung cancer treatments, the

epidemiology of lung cancer, and the tools available for obtaining a tissue diagnosis [2].

In large central lesions, tissue sampling with traditional bronchoscopy methods have a

high diagnostic yield of approximately 88%. This sensitivity declines significantly, however, as

lesions decrease in size and become more distal [3], with one study giving diagnostic yields as

low as 14% for lesions less than 2cm in size and located in the outer third of the lung [4].

As a result, radiologically guided transthoracic needle biopsy is increasingly being

employed for the diagnosis of lung cancer, with published studies suggesting a diagnostic yield

of about 90% in peripheral lesions [5]. However, lesion size also adversely affects the sensitivity

of transthoracic needle biopsies, and the yield of these hand-guided biopsies reduces significantly

in lesions under 1cm in size [6].

Additionally, there are associated complications with a transthoracic needle biopsy. To
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pinpoint and subsequently sample a pulmonary lesion several centimeters below the surface of

the skin, the radiologist must alternate between placing the patient in a CT scanner to view the

position of the nodule and needle, and moving them out of the scanner to manually advance

the needle. The lack of real-time scans and frequent, manual adjustments often lead to the

necessitation of multiple punctures [7]. Rates of pneumothorax (collapsed lung) have been

reported as high as 60% [8], with the risk of complication increasing as the lesions become

smaller and deeper, as well as with patients who are older, current smokers and those with

emphysema [9],[10]. Because this biopsy method is hand-guided, there is only a small range of

angles in which the needle can be stepped with confidence, restricting the likelihood of reaching

lesions that require an atypical approach to avoid sensitive nerves, vessels or bone. Finally, there

is also a risk of secondary imaging-induced cancer due to repetitive CT scans. These limitations

and risks have driven recent developments in techniques to more safely and efficiently localize

and sample peripheral lung cancers, namely, in the realm of robotics [11].

1.2 Robots for Lung Biopsy: Previous Work

Many robotic systems have been designed for needle biopsy applications, but only a

select few have been developed with the specific challenges of performing lung biopsies in

mind [11],[12],[13],[14],[15],[16],[17],[18],[19]. These robotic lung biopsy approaches can be

generally categorized based on their physical approach to lesions, mechanical stiffness, number

of active joints, and controllers.

While these CT-compatible systems have shown successes illustrating the utility of CT-

guided needle biopsy robots as a whole, each comes with its own limitations. Systems that secure

to the patient’s chest have better precision for positioning instruments as the body shifts but have

a limited reach [20],[21]. Those with passive setup joints for transthoracic biopsy may be well

suited for smaller anatomies with single approach vectors but have a restricted active range of mo-

tion [15],[22]. Platforms that utilize industrial robot arms have increased dexterity but can achieve
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only a few feasible biopsy approaches as their size limits their reach into the bore [15],[19].

Other robotic systems bypass the transthoracic risks by offering a bronchoscopic approach via

intraluminal steerable needles, but unfortunately have low diagnostic yield in peripheral lungs

and for lesions smaller than 20mm [23],[24],[25],[26],[27],[28],[29],[30],[31],[32],[33].

When developing these robotic platforms, the specific clinical requirements for a lung

biopsy must be considered. The biopsy needle at the end of the system should be able to hit

10mm biopsy targets with an average needle placement depth of 73mm [34]. Commonly used

biopsy needles have a length ranging between 8cm and 30cm, and the average human lung

is 10-15cm in width and 25-35cm in length. Both rib bones and vasculature prevent certain

approaches, while other approaches have a high risk of puncture to the heart or diaphragm. This

motivates a highly dexterous robot with a large working volume and radiolucent properties that

minimize visual artifacts in the CT images.

The challenges faced when performing these precise needle biopsies, such as the com-

pact working conditions and severe material limitations, are extremely difficult to overcome.

Each of these existing robot systems have specific deficiencies in their reachable collision-free

workspace and operating area, which prevent them from being used in general purpose applica-

tions. However, the recent design of CRANE (CT Robotic Arm and Needle Emplacer), a highly

dexterous, low-profile, 8 degree-of-freedom (DoF) robotic arm for interventional radiology (IR)

procedures overcomes several of these challenges by utilizing both high-stiffness industrial robot

arm methods and low-stiffness intra-bronchoscopic needle approaches [35],[36].

1.3 CRANE: CT Robotic Arm and Needle Emplacer

This new robotic system for intra-bore radiologically guided needle interventions lever-

ages a redundant serial linkage design. With 8-DoF cable-driven control that minimizes backlash

and ensures smooth positioning and insertion of biopsy needles, CRANE’s robot arm allows for

numerous approach vectors to peripheral tissue targets. The robot has a large working volume and
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can move and sweep through the entire CT bore. This system enables fast nodule localization and

precise adjustments to the needle’s trajectory for biopsy. This reduces the number of punctures

and scans needed for a needle-biopsy procedure and the likelihood of some of the associated

risks.

Up until recently, the CRANE robotic platform was fully remotely controlled (teleop-

erated) by the radiologist. Teleoperation enables direct “surgeon in-the-loop control,” where

the radiologist can compensate for small initial placement errors and needle deflections that

occur due to tissue non-homogeneity. While this type of control method makes sense for needle

movement directly into and within the tissue, it can raise some issues when the robot arm is

moving within the CT bore and setting the needle’s initial placement for biopsy. For those not

intricately familiar with its design, this seven-jointed arm can be unintuitive to control over large

distances and in a tightly confined space. If only the end-effector is controlled, it can result in

sub-optimal joint configurations of the arm within the bore and limit the adjustability of the

needle during the biopsy procedure.

In parallel with this thesis, early steps have been taken to automate the movement of the

robot arm from its initial position to its target position above the surface of the body. Given a

single target pose specified by the radiologist, a joint configuration is found via inverse kinematics

and a collision-free path to that configuration is executed. However, this process stops short of

evaluating the chosen configuration for its ability to facilitate the rest of the biopsy procedure. The

radiologist must teleoperate the remainder of the procedure in simulation to determine whether

or not the given configuration will allow for a successful biopsy. If not, a new configuration must

be generated and the process repeated. Only with a successful full procedure in simulation can

the CRANE be physically moved into position and the actual procedure executed.

4



1.4 Our Goal: Ranked Options for Robot Configurations

Thus, we present an end-to-end control scheme for this robotic platform which finds

multiple arm configurations for transthoracic needle insertion and plans a feasible collision-free

path to the optimal configuration from its initial position. These optimal configurations are

generated based on several ranking metrics. For a given needle tip target pose, multiple viable

arm configurations are generated and then ranked based on how well they meet the metric criteria.

This allows the radiologist to choose among multiple options for an arm configuration for a given

target needle pose based on their specific needs, and also allows them to effectively compare

the feasibility and optimality of several potential entry points to a tissue nodule. Given a chosen

configuration, a planner is then run to find a collision-free path from the robot’s initial position

outside of the CT-bore to this final configuration within the bore. The robot is subsequently

moved, and the biopsy procedure can be directly and immediately performed.
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Chapter 2

System Overview and Simulation

Our ranked control scheme has been implemented in CoppeliaSim (a robot simulator

developed by Coppelia Robotics formerly known as V-REP) through the PyRep toolkit on an HP

Z8 G4 Workstation running at 2.2 GHz. Section 2.1 will give an overview of the chosen system

and its initialization, while Section 2.2 gives an overview of the simulator.

2.1 System Overview

2.1.1 CRANE Design

The 8 DoF system is composed of two distinct structures: a 4 DoF intra-bore structure

with needle driving clutches and a 4 DoF exo-bore structure (Figure 2.1). The intra-bore

structure’s serial-link arm is cable-driven by motors located on the exo-bore structure. The

mechanical benefits of this system include:

1. low gear ratio motors for faster motion and inherent safety via torque-sensing,

2. small intra-bore link lengths (7cm) and large joint ranges of motion for improved dexterity,

3. incorporation of joint mounted high resolution absolute magnetic encoders for improved

system state tracking,

4. a novel clutch mechanism using Shape Memory Alloy (SMA) actuators that are helicaly

wrapped around a flexure, allowing infinite depth needle insertion and retraction with a

6



Figure 2.1. CRANE with serial-link redundant 8-DoF arm. A) back-end positioning stage, B)
remote 4-DoF arm and clutching needle driver

short insertion stage.

In addition, the exo-bore backend is composed of a revolute axis on the trunnion and an

X-Y-Z cartesian stage driven by ballscrew actuators, which allows for incredibly precise and

accurate motions.

2.1.2 Current and Proposed Clinical Workflow

The system’s current clinical workflow is as follows:

1. The robot-to-scanner calibration transform is calculated using preliminary CT scans.

2. The physician manipulates the needle into the desired setup pose. Once this setup pose is

confirmed, the robot configuration is generated.

3. A collision-free path from the initial configuration to the generated configuration is found

and executed in simulation.
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4. The physician performs the biopsy procedure in simulation to verify that the setup configu-

ration will lead to a successful needle biopsy.

5. Following physician confirmation, the robot follows this trajectory to the setup pose.

6. The physician iterates between simulated needle motions, robot teleoperation, and CT

confirmation scans until the target is reached.

We propose, however, to vastly improve upon this workflow by optimizing the proposed

joint configurations according to various metric criteria and allowing for the direct comparison

of configurations generated from samples across the body. This gives the radiologist options not

only in the choice of configuration for a give target pose based on their criteria, but also in the

choice of target entry pose to reach a particular tissue sample. The proposed workflow is thus:

1. The robot-to-scanner calibration transform is calculated using preliminary CT scans.

2. Using the scans, the physician indicates a potential needle pose(s) for the biopsy procedure.

3. Multiple randomly seeded robot configurations are generated for this pose(s) and each is

given a score based on joint limits, collision distance, maneuverability, etc (more on this

in Chapters 4 and 5).

4. A collision-free path from the inital configuration to the highest scoring setup configuration

(and corresponding target if applicable) is found and executed.

5. The physician proceeds with the teleoperated needle biopsy procedure.

2.2 Simulations

2.2.1 PyRep and CoppeliaSim

To conduct experiments and run simulations, we utilize CoppeliaSim, a virtual robotics

experimentation platform from Coppelia Robotics formerly known as V-REP [37]. Our two main

reasons for choosing this platform are:
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Figure 2.2. Needle biopsy simulation environment. A) a full CAD model of the CRANE robot,
B) CT bore, and C) a human body model.

1. Collision-checker: CoppeliaSim has an embedded collision checker for fast interference

checking between any mesh, octree, point cloud, or collection of those.

2. Physics engine: CoppeliaSim allows one to run both kinematic (i.e., with no physics

engine running) and dynamic playbacks of planned motions.

With inverse and forward kinematics as well as a motion planning library, CoppeliaSim allows

for the construction of an accurate and dynamic simulator that is capable of generating real-time

control data for the physical robot system. To run CoppeliaSim externally from Python, we

utilize PyRep [38]: a toolkit for robot learning research built on top of CoppeliaSim.

Our virtual environment contains a 65cm CT bore, a human dummy model, and a CAD

model of the robot (Figure 2.2). The base of the robotic system is placed approximately 50cm

superior to the patient’s head outside of the CT bore, with the robot arm positioned directly

into the center of the bore parallel to the CT bed. This initial position and configuration remain

consistent in each of the simulations and experiments presented in this work.
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2.2.2 Workspace Evaluation

In order to understand the usability of this robot, we have to evaluate its reachable

workspace (i.e. all of the points in space its end-effector can reach from its fixed base). How-

ever, since this robot’s intended use is for transthoracic procedures, we are only interested in

evaluating its reachability across the surface of the human body – in this case, our human body

model. Additionally, because the orientation of the needle end-effector is very important for the

applications of this robot, we not only evaluate whether the poisiton of a point can be reached,

but if it can be reached for a specified needle angle. Thus we sample points across the human

body model and evaluate how ”reachable” that point is by how many different collision-free

configurations the robot can achieve that place its end-effector on the target point at a specified

orientation.

To evaluate the robot reachable, collision-free work-space within the CT bore, three

sets of over 7500 target needle end-effector poses across the full surface of the human body

were uniformly sampled and evaluated for feasible joint configurations (more detail on finding

joint configurations in Chapter 3). For consistency, the target orientation of each of these

samples was held constant for each separate set. These orientations were set at 160◦, 180◦,

and 200◦ with respect to the z-axis of the CT bed, respectively. Figure 2.3 gives a heat map

for each set depicting the number of unique achievable configurations for a given target pose.

For each sample, up to 10 joint configurations were sampled with a maximum of 100 trials per

sample. These maps give us insight into what areas of the body are reachable when approached

from various needle orientations, allowing more flexibility in the biopsy approach as well as

highlighting the flexibility of the robot. Additionally, we can see how CRANE can be useful

across multiple interventional radiology procedures, as it can reach a large area of the body given

its initial position and configuration.
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(a) (b)

(c)

Figure 2.3. The reachable workspace for target poses with a) 160◦, b) 180◦, and c) 200◦ α

angles.
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Chapter 3

Obtaining Inverse Kinematics Solutions

The CRANE robot is a rigid multibody system consisting of a set of rigid links, joined

together by both revolute (rotational) and prismatic (translational) joints. Therefore, we can

control its movement via inverse kinematics (IK). For our scenario, it is presumed that a specified

point at the end of the biopsy needle link, called the end effector, is assigned a target position

and orientation. To solve this IK problem, we have to find settings for the joint angles such that

the resulting configuration of the multibody places the end effector at its target position.

There are several methods for solving IK problems originating from robotics applications.

These include Jacobian transpose methods [39],[40], pseudoinverse methods [41], the Levenberg-

Marquardt damped least squares methods [42],[43], cyclic coordinate descent methods [44],

quasi-Newton and conjugate gradient methods [44],[45], and neural net and artificial intelligence

methods [46],[47]. For this paper, we utilize the first-order damped least squares (DLS) method

due to its numerical stability.

3.1 Preliminaries

The complete configuration of the rigid multibody system is specified by [q1, ...,qn]
T ∈Q,

where Q is the configuration space (C-space), which describe the joints’ configurations. Each q j

value represents either a joint angle or joint position for revolute and prismatic joints, respectively.

For our model, we use only the first 7 joints of the robot, as the final insertion joint is used for
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needle insertion once reaching the target pose. It is therefore excluded as we do not wish to

change its joint position.

The distal tip of the biopsy needle is identified as the end-effector, with a pose that is a

function of the joint angles and is denoted by s ∈ Y , where Y is our task space. In CoppeliaSim,

the Euler angles describing the orientation of this end-effector and the entire rigid body are α , β

and γ . They describe a rotation composed of three elemental rotations:

Q = Rx(α) ·Ry(β ) ·Rz(γ) (3.1)

where Rx, Ry and Rz represent elemental rotations about the x, y and z axes respectively in the

absolute reference frame. We write s as the column vector s = [x,y,z,α,β ]T , where the γ angle

is not considered as the needle is symmetric around its γ axis (the z-axis of the end-effector

frame is in line with the length of the needle). Finally, we denote our target pose for insertion as

t = [x,y,z,α,β ]T . We let e = t− s, the desired change in position of the end-effector.

The IK problem is to find values for the q j’s such that

ti = si(q), for all i (3.2)

As there is no closed-form solution for this equation in our robot system, we use iterative

methods to approximate a good solution. To do this, the functions si are linearly approximated

using the Jacobian matrix, J. The Jacobian matrix is a function of the q values and is defined by

J(q) = (
∂ si

∂q j
)i, j (3.3)

The equation for forward dynamics that defines the velocity of the end effector can be written as

ṡ = J(q)q̇ (3.4)

Thus, the change in end-effector pose caused by a change in joint positions/angles can be
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estimated as

∆s≈ J∆q (3.5)

At each iteration, we update the joint angles q by ∆q: q := q+∆q.

The joint angles are updated iteratively until a value of s is obtained that is sufficiently

close to a solution. We therefore want to choose a ∆q value such that ∆s is approximately equal

to e. One approach to this problem is to solve the equation

e = J∆q (3.6)

for ∆q. However, for this robotic platform, this equation cannot be solved uniquely as the

Jacobian is not square.

3.2 Damped Least Squares (DLS) Method

It would seem natural to directly compute the inverse or Moore-Penrose pseudoinverse

of J in equation 3.6, but this often leads to poor performance of the system due to instability

near singularities. The DLS method (also known as the Levenberg-Marquardt method [42])

avoids this problem and gives a numerically stable method of selecting ∆q. Rather than find the

minimum vector ∆q that provides a best solution to equation 3.6, we find the value of ∆q that

minimizes the quantity

||J∆q− e||2 +λ
2||∆q||2 (3.7)

where λ = {λ ∈ R|λ > 0} is a damping constant. This is equivalent to minimizing the quantity

∥∥∥∥∥∥∥
 J

λ I

∆q−

e

0


∥∥∥∥∥∥∥ (3.8)

14



And the subsequent normal equation becomes

 J

λ I


T  J

λ I

∆q =

 J

λ I


T e

0

⇒ (JT J+λ
2I)∆q = JT e (3.9)

It can be shown that (JT J + λ 2I) is non-singular, and thus the damped least squares

solution becomes

∆q = (JT J+λ
2I)−1JT e (3.10)

Because JT J ∈ Rm×m, where m is the number of degrees of freedom (i.e. length of ∆q),

we can show that (JT J+λ 2I)−1JT = JT (JJT +λ 2I)−1 and therefore

∆q = JT (JJT +λ
2I)−1e (3.11)

The advantage of equation 3.11 is that it can be computed without needing to carry out the matrix

inversion. Instead, row operations can solve for some vector v such that (JJT +λ 2I)v = e. Since

v = (JJT +λ 2I)−1e, the solution to equation 3.11 then becomes ∆q = JT v.

The damping constant used is dependent on the multibody itself and the target poses, and

must be chosen such that equation 3.11 is numerically stable. It should large enough such that

solutions for ∆q are well-behaved near singularities, but not so large that the convergence rate is

too slow. For this system, we choose λ = 0.01.

3.3 Task Augmentation

A manipulator is considered kinematically redundant if the number of DoF’s is higher

than the number of task space coordinates. For our needle placement scenario, the 7-DoF design

(excluding the 1 DoF corresponding to needle advancement access) and five end-effector pose

constraints allows for two redundant DoF. This space of redundant solutions can be exploited
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to obtain a more versatile manipulator while having no affect on the overall motion of the

end-effector. For our case, redundancy can be used to meet constraints on joint range availability

and obtain trajectories in the joint space which are collision-free in the presence of obstacles

along the motion.

In CoppeliaSim, this is done using the augmented or extended Jacobian matrix [48],

where the kinematics of the CRANE arm are appropriately augmented to include the previously

mentioned constraints, resulting in an efficient, fast, closed-loop algorithm which only makes

use of the direct kinematics of the manipulator. The full method is given in Algorithm 1 and

described in the following subsections.

For the sake of clarity, the two cases of obstacle avoidance and limited joint range are

treated separately in the following subsections, but can be simultaneously considered when

extending the task space vector and solving the inverse kinematic problem.

3.3.1 Obstacle Avoidance

One of the ways we utilize this kinematically redundant robotic system is the using

the redundant DOF’s to avoid contact with obstacles. Even if the arm is tracking a desired

collision-free end-effector trajectory in the task space, one or more of its kinematic links may be

too close to an obstacle in the workspace. As a result, one or more constraints must be introduced

to avoid a collision with the obstacle.

It can be assumed that a link has avoided an obstacle if its minimum distance from the

obstacle is greater than a given threshold distance (more on the calculation of this minimum

distance in Chapter 5). If at each iteration all links satisfy this condition, the solution algorithm

(equation 3.11) will select one of the infinite possible configurations, depending on the initial

joint configuration. However, if the distance between one of the links and an obstacle becomes

less than the threshold, the solution is modified.

We denote the threshold distance as d̂o. Once the minimum distance between a link

and the closest obstacle is calculated, we denote the position vector of the point of interest
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on the obstacle as c and the position vector of the point of interest on the link as po. Both of

these vectors are defined with respect to the world frame. It should be noted that the position

of the minimum distance point moves as the robot arm moves about the obstacle and po must

be recomputed along the trajectory. If the distance ||do|| = ||po− c|| between the two points

becomes less than d̂o, the joint velocities must be modified. From our original error definition of

e = t− s between desired and actual end-effector pose, an analogous definition of the obstacle

avoidance error is defined in [49] as

eo = 0.5(d̂2
o−dT

o do) (3.12)

where do is the minimum distance between the link and the obstacle . Differentiating (3.12) with

respect to time results in

ėo = d̂o
˙̂do−dT

o ċ− jT
doq̇ (3.13)

Assuming that all obstacles remain static and the threshold remains constant (as is the case in

our environment), we get

ėo =−jT
doq̇ (3.14)

where

jT
do = dT

o Jpo (3.15)

and Jpo is the Jacobian matrix ∂po
∂q of the obstacle avoidance point po. This vector, jT

do, represents

the additional obstacle avoidance constraint row added to the end of the original Jacobian matrix

to form the augmented Jacobian matrix. Once the minimum distance surpasses the threshold,

this constraint can be released.
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3.3.2 Limited Joint Range

Similarly, we can activate a mechanical constraint on a joint variable. We assume that

each joint position or angle, q j, is kinematically constrained between two constant extremal

values: q j,min ≤ q j ≤ q j,max. These extrema are known as joint limits of the joint q j.

If the joint position or angle approaches either of these limits while the IK solver is

executing, the solution is modified. Like what was done for obstacle avoidance, a threshold

distance d̂q can be defined as the minimum distance allowed between the current q j and either of

its two limits. We thus define the corresponding error as

eq = d̂q−dq (3.16)

where dq = q j−q j,min or dq = q j,max−q j depending on which limit is involved. Differentiating

(3.16) with respect to time and assuming d̂q is constant gives

ėq =−uT
j q̇ (3.17)

where

u j =



0
...

j =±1
...

0


(3.18)

The + and - signs apply to qi,min and qi,max respectively to move the joint position/angle in the

appropriate direction. Once the minimum distance surpasses the threshold, this constraint can be

released.
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3.3.3 Overall Solution

Using the results of the two previous subsections, the overall solution algorithm to the

IK problem for our constrained redundant manipulator can be established. Modifying our DLS

control scheme in equation 3.11 results in

∆q = JT
a (JaJT

a +λ
2I)−1ea (3.19)

where

Ja =


J

Jdo

U

 (3.20)

is the augmented Jacobian matrix which includes the original end-effector Jacobian J, Jdo (k×7)

whose rows jT
do

are the k obstacle constraints defined in (3.15), and U (r×7) whose rows are the

r joint limit constraints defined in (3.18). We also have

ea =


e

eo

eq

 (3.21)

which is the augmented error vector in the task space including the original end-effector error

vector e, eo (k× 1) with components defined in (3.12), and the error vector eq (r× 1) with

components defined in (3.16).

It should be noted that

m = k+ r ≤ 2 (3.22)

so as to implement at most 2 constraints for our system’s two redundant DoFs. If m is greater than

2, our system becomes overconstrained; however, the DLS control method can still compute a

minimum-norm solution at each IK iteration. Based on the relative simplicity of our environment
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and the initial configuration of the CRANE arm, we assume that the system will not often be

overconstrained.

Algorithm 1. Task Augmentation

Input: t ∈ R5

1: q← q0
2: for n in IK steps do
3: s← getPose(needleTip)
4: e← t− s
5: J← getJacobian(robot)
6: for l in links do
7: dl,o←minDistToObstacle(l)
8: if ||dl,o||< d̂o then
9: el,o, jT

l,do
← obstacleAvoidance(dl,o)

10: end if
11: end for
12: for j in joints do
13: d j,q←minDistToJointLimits(q j)
14: if d j,q < d̂q then
15: e j,q,uT

j ← limitedJointRange(d j,q)
16: end if
17: end for
18: Ja← [J,Jdo,U ]T

19: ea← [e,eo,eq]
T

20: q← DLS(Ja,ea)
21: end for

3.4 Randomized Search to Obtain Multiple “Unique” IK
Solutions

In order to move the robot from its initial position to its specified final insertion position,

it may be necessary to move the end-effector over a relatively large distance. Because inverse

kinematics is only stable for small ∆q steps, the tip pose may be too far from the target pose

to run IK successfully. Thus, we first use a randomized search in joint configuration space to

place the end-effector within some specified threshold distance from the target position. The first

seven joints are given a random joint position or angle, and forward kinematics is used to find

the end-effector position in space. The Euclidean distance between the end-effector and target is
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then computed and compared to a threshold. If the distance is within the threshold, IK is run to

bring the tip onto the target. Else, the joints are given a new set of configurations and the process

repeats. To limit this computation for unreachable targets, a maximum time of 10ms is assigned

after which the search is aborted.

As we intend to rank multiple IK solutions for each needle target, we must find multiple

“unique” joint configurations that achieve a given end-effector pose. For our particular problem,

we define “unique” solutions as those that satisfy some distance threshold in C-space when com-

pared to one another. We do not limit unique solutions to those that lie on separate configuration

manifolds, as determining these self-motion groupings is a difficult and open research area and

outside the scope of this thesis. For our purposes, it is less important that we determine the exact

uniqueness of a solution than that we are able to generate multiple solutions with reasonably

different behaviors. Once these configurations are collected, we implement the ranking metrics.
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Chapter 4

Cone Maneuverability

For our transthoracic biopsy application, one of the criteria for a valid final joint configu-

ration is manipulability around the target pose. While our goal is to place the robot in a final

configuration that requires only linear translation of the needle to extract a tissue sample, we

recognize that kinematic model inconsistencies with the real robot and tissue deformations may

result in errors between the end-effector and specified target pose, or between the specified pose

and the actual pose needed to reach the nodule.

To this end, for each joint configuration we densely sample nearby configurations that

maneuver the biopsy needle around a local cone surface. We fix the end-effector position but

adjust the rotation about the x axis of the needle by ∆αneedle. We assume that any adjustments

that are made to the needle once it has entered the patient will be small (a few millimeters to a

centimeter), and thus limit ∆α to small values such as 5−10◦. We then make 1◦ incremental

adjustments to the rotation about the z axis in the absolute frame, ∆γw, such that the trajectory

of the length of the needle moves 360◦ in a counter-clockwise direction and forms the surface

of a cone (see Figure 4.1). At each step, we use IK to find a new joint configuration and move

the robot arm accordingly. This process terminates either when the entire cone surface has been

traversed or when any of the joints have exceeded their limits. Finally, during post-processing,

collision-checking is implemented at each step of the cone trajectory. This entire process is then

repeated in the clockwise direction. Refer to Algorithm 2 for the step-by-step implementation.
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Figure 4.1. Depiction of conical movement of biopsy needle for maneuverability metric.

Figure 4.2 gives a simulated depiction of both a complete and incomplete cone trajectory. We

see that for the incomplete trajectory, the joint configuration is initially so close to joint limits or

singularities, that moving 10◦ along its x-axis is impossible.

The sampled joint configurations for a given target pose are denoted by [q1, ...,qM]T

where each qi represents the vector of joint positions/angles for the ith configuration. Each joint

configuration is given a discrete score, hcone(qi), corresponding to the number of trajectory steps

taken in each direction that were not in collision.

hcone(qi) =
360

∑
ψ=1

1{q ∈ Q f ree}+
−360

∑
ψ=−1

1{q ∈ Q f ree} (4.1)

Configurations with higher scores are deemed more maneuverable within a local cone volume

around the target pose, giving radiologists more room to make slight adjustments to the nee-

dle when extracting a tissue sample, as well as giving them more confidence that the setup

configuration will result in a successful procedure.
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Algorithm 2. Cone Maneuverability
Input: ∆α ,∆γw,q0

1: hcone← 0
2: [α,β ,γ]← getOrientation(needleTip)
3: α ← α +∆α

4: for i in 2π/∆γw do
5: T ← rotateAboutWorldZAxis(∆γw)
6: t← setTargetTransformationMat(t,T )
7: q← IK(t)
8: if q then
9: setRobotJointPositions(q)

10: if qmin ≤ q≤ qmax and q ∈ Q f ree then
11: hcone← hcone +1
12: end if
13: else
14: Break
15: end if
16: end for
17: q← q0
18: for i in 2π/∆γw do
19: T ← rotateAboutWorldZAxis(−∆γw)
20: t← setTargetTransformationMat(t,T )
21: q← IK(t)
22: if q then
23: setRobotJointPositions(q)
24: if qmin ≤ q≤ qmax and q ∈ Q f ree then
25: hcone← hcone +1
26: end if
27: else
28: Break
29: end if
30: end for
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(a)

(b)

Figure 4.2. Example of a a) complete and b) incomplete cone movement of the CRANE needle.
The brown orb at the end of the arm represents the needle tip end-effector. The pink curve in a)
represents the movement of the needle end around the cone surface, with a starting position in
the center of the circle.
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Chapter 5

Ranking IK Solutions and Planning

5.1 Additional Metrics

In addition to scoring joint configurations based on their maneuverability within a

local cone volume, we consider several other ranking metrics when evaluating possible joint

configurations for a desired needle tip pose. These include: distance from joint limits, distance

to collision, and distance to singularities.

5.1.1 Joint Limit Avoidance

Each of the 8 joints in this robotic system have degrees of freedom which are subject to

joint limits. While obtaining valid joint configurations for a needle target, our IK solver uses the

nullspace of the system for joint limitation constraints. However, this constraint only serves to

keep the joint positions and angles within their limits, and does not try to maximize the distance

from the joint limits.

When comparing across multiple valid joint configurations for a given target, we want to

maximize the joint’s “distance” from both of its limits. Again, the sampled joint configurations

for a given target pose are denoted by [q1, ...,qN ]
T where each qi represents the vector of

joint positions/angles for the ith configuration. Given qi, j ∈ [qi, j,min,qi, j,max] where qi, j value

represents the jth joint angle/position in the ith configuration, we find the minimum distance (in

meters) from the joints limits and use a 2-norm to find the total distance from joint limits of each
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sampled joint configuration:

h joint(qi) =

√√√√ 7

∑
j=1

(min[qi, j−qi, j,min,qi, j,max−qi, j])2 (5.1)

This total distance measurement is used as a joint limit score for each configuration.

5.1.2 Distance to Collision

As the CRANE robot operates within the limited free space inside the CT bore and

around the patient, it is imperative that all sampled joint configurations are out of collision.

CoppeliaSim uses its own collision checking and minimum distance calculation routines. The

method is based on a hierarchy of object-oriented bounding boxes that wrap triangles composing

mesh shapes in the scene [50]. Using this method, detection and distance calculations are

triangle-triangle exact. Using nullspace control during configuration sampling, our IK solver

finds valid configurations that are out of collision. However, similar to the joint limit constraint,

this collision-free constraint only serves to keep the robot out of collision, and does not try to

maximize the distance from collision.

Thus, for each configuration, we find the minimum distance to collision for each of the

robot arm links that enter the CT bore. These include the four links of the 4-DoF intra-bore

stage, as well as the final link in the 4-DoF exo-bore stage that partially enters the bore. The

collision obstacles considered are the CT bore, the CT bed, and the patient themselves. For our

obstacle avoidance metric, we want to maximize the minimum distance to Cartesian obstacles

(also known as clearance) using the Euclidean 2-norm.

hcoll(qi) = min
a∈robot links
b∈obstacles

||a(qi)−b||2 (5.2)

This total distance measurement in meters is then used as a distance to collision score for each

configuration.
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5.1.3 Distance to Singularities

The final metric we evaluate over is a configuration’s distance from singularities. When

controlling a manipulator in Cartesian space, we sometimes run into singularities or degeneracies

when mapping from Cartesian space to joint configuration space. Some types of singularities

include:

1. ”Losing a DoF”: At a singularity, the mobility of a manipulator is reduced and usually,

arbitrary motion of the manipulator in a Cartesian direction is lost.

2. Boundary Singularities: A common type of singularity, usually caused by a full extension

of a joint, where the manipulator is asked to move beyond where it can be positioned.

Typically, this is trying to reach out of the workspace at the farthest extent of the workspace.

3. Internal Singularities: These singularities are generally caused by an alignment of the

robot’s axes in space. For example, if two axes become aligned in space, the rotation

of one can be canceled by counter-rotation of the other, leaving the actual joint location

indeterminate. Additionally, certain kinematic alignments specific to the manipulator can

cause these.

At a joint space singularity, infinite inverse kinematic solutions may exist, and small Cartesian

motions may require infinite joint velocities.

It is important then to consider these singularities when evaluating potential joint con-

figurations for a target needle pose. Even if the configuration itself is not a singularity, it may

be near a singularity that will cause issues when slight adjustments to the arm are made during

the biopsy procedure. We therefore evaluate the distance in C-space to singularities using the

Jacobian matrix of the arm. Yoshikawa’s manipulability index introduced a quality measure

for redundant manipulators which describes their distance to singular configurations [51]. The

measure is based on analyzing the manipulability ellipsoid that is spanned by the singular vectors

of the Jacobian. The equation for this singularity distance metric is
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hsing(qi) =
√

det[J(qi)JT (qi)] = s1s2...sN (5.3)

where each si represents the singular values of the Jacobian matrix. Thus, this metric is propor-

tional to the volume of the manipulability ellipsoid of the arm when in a specific configuration.

5.2 Weighting Scores

Given all of our defined ranking metrics, we can now linearly combine the scores using

appropriate weightings.

hweighted(qi) = ρconehcone(qi)+ρ jointh joint(qi)+ρcollhcoll(qi)+ρsinghsing(qi) (5.4)

where each ρ is the corresponding weighting of that score. We place a constraint on this linear

combination, requiring that the sum of all ρ values is equal to 1.

Additionally, we scale each unweighted score in order to rectify the differences in order

of magnitude across the various metrics and make our final score unitless. For simplicity, we

choose average normalization. Thus each score is divided by the average score obtained across

all targets for that particular metric.

5.3 Path Planning

Finally, given the weighted scores for each sampled configuration for a specified end-

effector pose, we choose the configuration with the highest score and use a planner to find a

collision-free path from our initial robot configuration to this configuration in C-space. Cop-

peliaSim offers path/motion planning functionality via a plugin wrapping the OMPL (Open

Motion Planning Library). Due to its convergence towards an optimal solution, we utilize the

RRT* algorithm for path planning. An example of a generated path found in simulation between
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the initial robot pose and the highest ranked configuration for the specified target pose is depicted

in Figure 5.1.
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(a)

(b)

Figure 5.1. Example of a) an IK setup configuration and b) corresponding path generated using
RRT* algorithm. The brown orb at the end of the arm represents the needle tip end-effector. The
pink curve represents the end-effector path to the desired joint configuration and target needle
pose.
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Chapter 6

Experimental Results

6.1 Evaluation of Chosen Metrics

Figure 6.1 depicts the total scores, average scores, as well as the spread of scores across

each metric for approximately 1000 targets sampled on the anterior surface of the body model

with target vectors perpendicular to the CT bed (i.e. the needle is pointing directly down into

the patient). Note that this data presented only includes targets which generated at least one

successful IK configuration and a maximum of 50 configurations.

For our cone maneuverability metric data below, we chose a ∆α value of 10◦ It is

interesting to note that for the vast majority of targets, ”fully maneuverable” configurations

within this cone are possible, as seen by the large number of configurations that achieve the

maximum cone maneuverability score (Figure 6.1a). However, in the same subfigure we can see

that there are also a significant number of configurations that have little to no range of movement

within this volume. Similarly, when looking at the score spread across each target (Figure

6.1b), we can see that a vast majority of targets have both very maneuverable configurations and

configurations that essentially lock the arm in place. This further motivates our cone metric, as it

is evident that even if an arm setup configuration is valid and reaches the target, it can be vastly

superior or inferior to others.

When looking at the distance to joint limits and distance to collisions scores, we see a

similar phenomenon as with the cone maneuverability metric, but with greater variability in
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scores for each metric. The average scores per target for each of these metrics (Figure 6.1f and

Figure 6.1i) display approximately Gaussian patterns, showing that on average the distance to

joint limits and distance to collisions of the setup configurations for each target are approximately

equidistant from the minimum and maximum allowable values.

Turning our attention to the distance to singularities, we see that in Figure 6.1j, many of

the configurations generated are very near singularities in the C-space. Looking closely at the

spread of scores in Figure 6.1k, it is evident that the difference in singularity distance between

configurations reaching the same target pose can be great. As mentioned in Chapter 5, these

singularities can arise in various forms, but as the configuration space of this robot has yet to

be thoroughly explored and studied, these results may motivate further work on the subject.

However, even without full knowledge of CRANE’s C-space, this singularity metric allows us to

find at least one configuration per target that lies reasonably within the bounds of a particular

manifold.

6.2 Weighting Scores Across Needle Orientations

As we are interested in comparing the feasibility of various configurations to a particular

target, we are also interested in comparing the feasibility of targets themselves. For one particular

tissue nodule of interest, it may be possible to approach from several different positions and

corresponding orientations. Because of how we define our ranking metrics and optimization over

them, we can compare possible robot arm configurations across multiple targets in a straightfor-

ward manner. Figure 6.2 presents the average weighted scores received by configurations for

each target position at various orientations and with various weighting combinations. We see

particularly that as the weighting for cone maneuverability is increased, the number of targets

with high average scores decreases. Additionally, as the α-orientation value is increased, the

average scores tend to decrease as well. These results display the trade offs encountered when

selecting a target approach vector and achieving high confidence in maneuverability of the robot
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Figure 6.1. Scores for each configuration metric including: 1) all scores across all targets, 2)
average scores across all targets, and 3) spread of scores across targets. Approximately 1000
targets are sampled on the anterior surface of the body model with target vectors perpendicular
to the CT bed.

34



Figure 6.1. Scores for each configuration metric including: a) all scores across all targets, b)
average scores across all targets, and c) spread of scores across targets. Approximately 1000
targets are sampled on the anterior surface of the body model with target vectors perpendicular
to the CT bed, Continued.
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once it has reached its setup configuration.

To visualize the effects of these weighting scores and confirm our results, Figure 6.3

presents examples of the highest ranked configurations for our different weighting combinations.

We see that increasing the cone maneuverability weighting somewhat straightens the last few

links of the robot arm to make it them more easily maneuverable in the local cone volume around

the end-effector (Figure 6.3b). This is at the expense of the distance to collision, however, as we

see that the 5th link of the arm extending into the CT bore is very close to the top of the CT bore.

As expected, when increasing the relative weighting of the distance to collision metric (Figure

6.3c), the CRANE arm moves away from the top of the CT bore.

Figure 6.4 depicts the average weighted scores for a single target on the anterior surface of

the chest at various needle -orientations. The weightings used for this experiment are ρcone = 0.4

and ρ joint = ρcoll = ρsing = 0.2. We can see that the scores trend downward as the needle is

moved further and further from its original α-orientation with some intermittent fluctuation.

These fluctuations can be attributed to several possible phenomena, including randomness in the

configuration seeding or reaching the edge of a configuration manifold before moving to another

one in the subsequent orientation step. Based on this plot, we see that while many approach

vectors for a single target are possible, as the robot arm is forced to rotate the needle further from

its starting orientation, other attributes such as range of motion and ease of maneuverability must

be somewhat sacrificed.

6.3 End-to-End Control Scheme

An important question to ask is how long this proposed end-to-end control scheme we

have presented takes to execute. In real applications and procedures, we want our algorithm to

generate IK solutions, evaluate and rank them, and plan to the optimal configuration within a

reasonable amount of time, such that the benefits of this robotic approach to needle biopsies are

not offset by its run-time. Table 6.1 depicts the average speed of various checks and calculations
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(a) α = 160◦

ρcone = 0.4 and ρ joint = ρcoll = ρsing = 0.2
(b) α = 180◦

ρcone = 0.4 and ρ joint = ρcoll = ρsing = 0.2
(c) α = 200◦

ρcone = 0.4 and ρ joint = ρcoll = ρsing = 0.2

(d) α = 160◦

ρcone = 0.7 and ρ joint = ρcoll = ρsing = 0.1
(e) α = 180◦

ρcone = 0.7 and ρ joint = ρcoll = ρsing = 0.1
(f) α = 200◦

ρcone = 0.7 and ρ joint = ρcoll = ρsing = 0.1

(g) α = 160◦

ρcoll = 0.4 and ρ joint = ρcone = ρsing = 0.2
(h) α = 180◦

ρcoll = 0.4 and ρ joint = ρcone = ρsing = 0.2
(i) α = 200◦

ρcoll = 0.4 and ρ joint = ρcone = ρsing = 0.2

Figure 6.2. Average weighted scores across targets on the human body model at various
needle orientations and weighting combinations. Each row of the subfigure grid corresponds
to a different weighting combination, while each column corresponds to a different needle
orientation.
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(a) ρcone = 0.4 and ρ joint = ρcoll = ρsing = 0.2

(b) ρcone = 0.7 and ρ joint = ρcoll = ρsing = 0.1

(c) ρcoll = 0.4 and ρ joint = ρcone = ρsing = 0.2

Figure 6.3. Highest ranked configuration for a given target with various metric weighting
combinations.

38



Figure 6.4. The average weighted configuration scores for a single target on the anterior surface
of the chest at various needle α-orientations. 180◦ corresponds to the negative z-axis of the
needle aligned perpendicular to the CT bed, representing a 90◦ rotation from the original needle
z-axis orientation.

of interest within the algorithm, as well as the speed of execution for the entire algorithm given

one target of interest.

Table 6.1. Speed of execution for calculations of interest and entirety of end-to-end control
scheme. The full algorithm used for these calculations samples up to 10 valid configurations per
target.

Calculation Execution Time
Collision Checking 4.2µs

Distance to Collision 2µs
Joint Distance from Limits 57µs

Full Cone Movement 4.36s
(Per Configuration)

Path Planning and Execution 24.14s
Full Algorithm 94.09s

We can see that in the span of one and a half minutes, we are able to take a specified

needle pose, optimize a valid IK configuration to it, plan a collision-free path to it, and execute

that plan. It should also be noted that if several targets poses are given as input, the speed of
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execution will be less than the linear sum of the speed for those individual targets. This is

because the path planning and execution will only execute once for the chosen configuration

(and corresponding target pose).

Finally, we find that for 100 randomly chosen needle target poses across the ”reachable

workspace” of our environment on the anterior surface of the human model, we are able to

successfully generate collision-free paths to the highest-ranked configuration for every one.
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Chapter 7

Conclusion

7.1 Discussion and Future Work

The goal of this thesis was to show a fully automated control scheme for the CRANE

robotic platform that chooses a ”best” setup configuration by optimizing over several defined

metrics and planning to that configuration. In addition to this, we have validated these metric

choices by showing their ability to distinguish well among several candidate solutions.

It is important to note that while our choice of cone metric was well-informed, we

acknowledge that it is somewhat arbitrary and that there are potentially other methods that could

perform just as well if not better. However, our intention is to introduce the idea of evaluating a

configuration based on its maneuverability within some local volume near the final end-effector

pose and the chosen metric performed well in distinguishing among solutions. Other methods

could include a conical spiral pattern, that moves the needle around cones of ever-increasing

diameter. Similarly, our score normalization method is one of many possible choices and future

work may experiment with these other methods.

A disadvantage of several of our current metrics are their non-differentiability. Our cone

metric is a discrete function and our distance to collision metric is a max-min problem. This

prevents us from taking the gradient of these metrics with respect to the joint values, q, and

tuning our configurations to optimize these scores. We also note that our distance to joint limits

metric is non-differentiable when qi, j−qi, j,min = qi, j,max−qi, j for a given joint.
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While the intention of this thesis is not to critically evaluate the mechanical design of

this robot, our results give some interesting insight into its collision-free configuration space.

Almost half of all configurations generated were at or very near singularities, which speaks both

to the complexity of this 8-DoF robotic design, as well at the complexity of an imaging bore

environment. A further extension to this work would be to evaluate configuration space, as well

as the self-motions and homotopies of this redundant robotic manipulator. While we currently

evaluate and score every randomly seeded configuration generated for a specific target pose,

grouping configurations that lie on the same nullspace manifold allows us to simply produce

one score for each grouping of configurations, thus reducing computation time and omitting

potentially redundant solutions.

Additional future work will also include evaluating targets and corresponding configura-

tions on other areas of the surface of the body. For a specific tissue sample or patient, it may

be ideal to approach from the lateral or posterior surface of the body. As we are already able

to compare across potential targets on the anterior surface, it would be a simple extension to

compare across targets on multiple surface areas of the body.

Finally, another future goal of this work is to further automate the procedure by specifying

potential target vectors without requiring an input from the radiologist. Given CT scan data,

learning methods can be employed to generate one or several potential approach vectors to the

nodule. This result can then be used as an input to the control scheme presented here. We still

maintain the human-in-the-loop by allowing for validation steps at each stage of the process

and maintaining manual insertion and adjustments of the needle once it has reached its setup

configuration.

7.2 Summary

In this thesis, we demonstrated a ”smart” end-to-end automated control scheme for the

CRANE robotic platform that optimizes a robotic configuration over several defined metrics
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relevant to the successful completion of a transthoracic needle biopsy procedure. Given the

significant challenges faced when performing precise needle biopsies within a CT bore, our

chosen ranking metrics are able to successfully tease out the subtle differences between config-

urations and delineate between them effectively. This allows for a highly informed selection

of setup needle targets and corresponding robot configurations, providing greater confidence

that the procedure can be completed successfully without the need for simulation verification

while also allowing for slight adjustments due to kinematic inaccuracies. In less than a few

minutes, our control scheme can take several potential target approach vectors, find the optimal

ranked configuration for each target and the optimal one among them, and execute a feasible,

collision-free path to the chosen configuration.
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