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Abstract. Density-reconstruction sharpens the baryon acoustic oscillations signal by undoing

some of the smoothing incurred by nonlinear structure formation. In this paper we present an

analytical model for reconstruction based on the Zeldovich approximation, which for the first time

includes a complete set of counterterms and bias terms up to quadratic order and can fit real and

redshift-space data pre- and post-reconstruction data in both Fourier and configuration space

over a wide range of scales. We compare our model to n-body data at z = 0 from the DarkSky

simulation [1], finding sub-percent agreement in both real space and in the redshift-space power

spectrum monopole out to k = 0.4hMpc−1, and out to k = 0.2hMpc−1 in the quadrupole, with

comparable agreement in configuration space. We compare our model with several popular exist-

ing alternatives, updating existing theoretical results for exponential damping in wiggle/no-wiggle

splits of the BAO signal and discuss the usually-ignored effect of higher bias contributions on the

reconstructed signal. In the appendices, we re-derive the former within our formalism, present

exploratory results on higher-order corrections due to nonlinearities inherent to reconstruction,

and present numerical techniques with which to calculate the redshift-space power spectrum of

biased tracers within the Zeldovich approximation.
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1 Introduction

Density field reconstruction [2] is a means of improving the determination of the distance-redshift

relation using baryon acoustic oscillations (BAO) [3]. The BAO method is a “standard ruler” test

which seeks to measure the scale of a feature in the 2-point function whose physical size is known.

Comparison with the observed size of this feature gives the angular diameter distance and Hubble

parameter as a function of redshift. While the large size of the BAO feature (100 Mpc) makes it

relatively immune to systematic effects, nonlinear evolution erases the the oscillations on small

scales, or broadens the peak in the correlation function, and reduces the accuracy with which the

scale can be measured [4–8]. However much of the peak broadening comes from motions sourced
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by very long wavelength fluctuations [8] which are well measured by surveys aiming to measure

BAO. This insight led ref. [2] to propose that density-field reconstruction could be applied to

regain much of the information lost to non-linearities. It has been used in all recent BAO surveys

to improve their constraints (e.g. see ref. [9] and references therein).

BAO reconstruction has been studied both numerically [10–12] and analytically [2, 13–27]. Our

work builds upon these analytic calculations. Where earlier work made simplifications aimed at

highlighting important physical effects, neglected complications such as redshift-space distortions,

applied heuristics or otherwise simplified the calculations for explanatory effect, we aim to produce

a consistent dynamical theory which can be compared directly to upcoming observational data.

Hence we generalize these calculations to also consider the power spectrum and extend the model

to include the complete set of quadratic bias terms. To our knowledge this is the first dynamical

model with a full bias scheme that can produce consistent real and redshift-space results in both

Fourier and configuration space, allowing it to be used for consistent fitting of upcoming data.

There has been significant theoretical work on reconstruction since the first algorithm [2] was

suggested. Most recently, a variety of iterative or alternative reconstruction approaches have

been developed [15, 20, 22–25]. Though our calculations give some insights into these methods,

for near-future experiments and for BAO scales these iterative methods do not lead to significant

improvements and so we defer consideration of these more complex algorithms to future work.

The outline of this paper is as follows. Section 2 reviews the formalism of Lagrangian pertur-

bation theory within which we work. Section 3 describes the reconstruction algorithm we seek to

model, while Section 4 gives our results in Fourier space, comparing to the configuration-space

results where appropriate (Section 5). We discuss alternative statistics in Section 6. To assess

the range of validity of our models we compare to N-body simulations in Section 7. A comparison

with earlier work is given in Section 8 before we conclude in Section 9. Some technical details

are elaborated in the appendices.

2 Lagrangian Perturbation theory

The Lagrangian framework [28–35] describes cosmological structure formation by tracking the

displacements Ψ(q) of infinitesimal parcels of the matter fluid from their initial (Lagrangian)

positions q. In this picture the present day matter over- and underdensities are a result of the

clustering of the displaced Eulerian positions x(q, τ) = q + Ψ(q, τ). The displacements follow

the equation of motion Ψ′′(q) + HΨ′(q) = −∇xΦ(x), where Φ(x) is the gravitational poten-

tial which is in turn sourced by the clustered matter fluid via Poisson’s equation ∇2Φ(x, τ) =
3
2Ωm(τ)H2(τ)δ(x, τ) with τ the conformal time. This set of equations can be solved perturbatively

in terms of the linear overdensity, δ0, and the first order solution is given by Ψ = −D(τ)∇∇−2δ0,

where D(τ) is the linear growth factor [28].

The Lagrangian picture treats tracer bias and advection separately. Given a biased tracer, a,

with initial overdensity F a(q) = F a
[
∂2Φ(q), ...

]
, the time-evolved tracer overdensity at conformal

time τ is given by number conservation as [34]

1 + δa(x, τ) =

∫
d3q F a(q) δD (x− q−Ψ(q, τ)) . (2.1)
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The cross power spectrum between two biased tracer populations a and b is then

P ab(k) =

∫
d3q eik·q 〈F a(q2)F b(q1) eik·∆

ab〉q=|q2−q1| , ∆ab = Ψa(q2)−Ψb(q1), (2.2)

where we have used that the integrated expectation value can only depend on q = q2 − q1, due

to the translation invariance of the underlying theory. The bias functionals, F a,b, can be Taylor

expanded in terms of bias coefficients

F a(q) = 1 + ba1δ0(q) +
1

2
ba2
(
δ0(q)2 − 〈δ2

0〉
)

+ bas
(
s2(q)− 〈s2〉

)
+ ba∇2∇2

qδ0(q) + · · · , (2.3)

where s2 = sijsij is the square of the shear field, i.e. the traceless part of ∂∂Φ. Following ref. [36],

we also consider contributions from a “derivative bias” b∇2 , i.e. corrections to the bias expansion

at scales close to the halo radius Rh proportional to ∇2δ0; such contributions will, however,

be essentially degenerate with counterterms renormalizing nonlinearities in the Zeldovich power

spectrum and we will therefore not enumerate them separately in the rest of this work unless

otherwise stated.

In this work our focus will be on modelling reconstruction within the Zeldovich approximation

[28, 37], which keeps only the linear order term in the dynamics of Ψ but re-sums the effects of the

displacement to all orders in a Galilean-invariant manner (this is true for reconstruction also if we

take it to mean that all displacements transform the same way). This is specifically accomplished

by evaluating the exponential in Equation 2.2 via the cumulant expansion, and evaluating the

bias expansion using functional derivatives (see e.g. refs. [34–36]). Following standard techniques,

as outlined in the references above, the resulting expression for the cross spectrum is

P ab(k) =

∫
d3q eik·q e−

1
2
kikjA

ab
ij

[
1 + α0k

2 + ibb1k · Ua + iba1k · Ua + ba1b
b
1ξL +

1

2
ba2b

b
2ξ

2
L

− 1

2
kikj (bb2U

a
i U

a
j + ba2U

b
i U

b
j + 2ba1b

b
1U

a
i U

b
j ) + iki(b

b
2b
a
1U

a
i + bb1b

a
2U

b
i ) ξL

− 1

2
kikj(b

a
sΥ

b
ij + basΥ

b
ij) + iki(b

a
1b
b
sV

ab
i + bb1b

a
sV

ba
i )

+
1

2
(ba2b

b
s + bb2b

a
s)χ

12 + basb
b
sζ + · · ·

]
(2.4)

where we have defined1 the quadratic two point functions

Aabij = 〈∆ab
i ∆ab

j 〉, U bi = 〈∆ab
i δ0(q2)〉, ξL = 〈δ0(q2)δ0(q1)〉 (2.5)

and shear correlators

ζ = 〈s2(q2)s2(q1)〉, Υb
ij = 〈∆ab

i ∆ab
j s

2(q2)〉, V ab
i = 〈∆ab

i δ0(q2)s2(q1)〉, χ12 = 〈δ2
0(q1)s2(q2)〉.

(2.6)

Note that in the above calculations we have, without loss of generality, associated tracers a

and b with Lagrangian positions q2 and q1, respectively. The quantities in Equation 2.4 with

a and b swapped can also be calculated by swapping the positions q1 ↔ q2. As an example,

U b = −〈Ψb(q1)δ0(q2)〉 is the two-point function between the displacement of tracer b and the

1These are generalizations of the similar auto-spectrum quantities defined in refs. [35–37].
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matter overdensity. The vector and tensor two point functions defined above can be decomposed

via rotational symmetry into scalar components, e.g. Aij = X(q)δij + Y (q)q̂iq̂j and Ui = U(q)q̂i.

Formulae for these functions, expressed as Hankel transforms of power spectra, are given in

Appendix A. Finally, we include the contribution α0k
2 in the square brackets of Equation 2.4

as the lowest-order counterterm renormalizing sensitivities to small-scale power in Aij — in

practice this simply modifies the matter contribution PZel(k) (∝ 1 in the square brackets) to

(1 + α0k
2)PZel(k) (see e.g. refs. [38, 39]). Each term in Equation 2.4 can be evaluated as Hankel

transforms (see e.g. ref. [36]) using the identities given at the end of [38], which we carry out

using the mcfit package2.

The Lagrangian formalism allows a straightforward translation between real and redshift space

via a mapping of the Lagrangian displacements. In particular, assuming the plane-parallel ap-

proximation3 and working in the Zeldovich approximation, quantities in redshift space are given

simply by substituting Ψi → ΨR
i = RijΨj [34]. Here Rij = δij + fn̂in̂j , where n̂ denotes the

line-of-sight direction and f = d lnD/d ln a is the linear-theory growth rate. To lowest order,

transforming into redshift space requires the inclusion of a second counterterm dependent on the

line-of-sight angle ν = k̂ · n̂. We can see this explicitly, for example, in the UV-sensitive zero-lag

term in Aij , which gains an angular dependence

kikj〈(Ψi + n̂in̂lΨ̇l)(Ψj + n̂jn̂mΨ̇m)〉 ≡ k2(X(0) + (2Ẋ(0) + Ẍ(0))ν2), (2.7)

where Ψ̇ is the velocity in Hubble units equal to fΨ in the Zeldovich approximation4; roughly

speaking, we need one angle-independent counterterm α0k
2 to absorb the UV dependence of

X(0) and another α2k
2ν2 to absorb the UV dependence of the velocities. The complete set of

counterterms in redshift space thus makes a contribution of the form (α0 +α2ν
2)k2PZA(k); since

PZA(k) is equal to (1+fν2)2PL(k) to linear order, an equivalent viewpoint—which we will adopt

in this work— is to have constant counterterms ᾱ0k
2 and ᾱ2k

2 for the monopole and quadrupole,

respectively, where the barred counterterms are linear combinations of the unbarred quantities.

3 Reconstruction algorithm

In this section we describe two possible methods for reconstruction in redshift space, both built

around the Zeldovich approximation. The standard procedure for reconstruction was developed

in ref. [2] and involves displacing both observed galaxies and a spatially uniform distribution

by a calculated shift field, χ, then taking the relative density contrast between the two sets of

particles as the reconstructed density field. For a suitably chosen χ, this can reduce the effect of

large scale (IR) bulk flows that “blur” the BAO feature. However there is no consensus in the

community on the correct procedure for handling redshift-space distortions: the implementation

in ref. [43] chose to multiply χ by 1 + f in the line-of-sight direction for δd but not for δs. This

‘undoes’ the supercluster infall effect [44] and reduces the ` > 0 moments of the 2-point function

on large scales. Ref. [16] suggested a symmetric treatment of δd and δs, which recovers linear

2https://github.com/eelregit/mcfit
3This should be an excellent approximation on BAO scales [40], but if necessary the formalism can be modified

to include “wide-angle” effects [41].
4See refs. [36, 42] for a more detailed exposition of the “dot notation.”
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theory on large scales. This is more natural from the point of view of perturbation theory and

better behaved near the boundaries, but is less often implemented on data. A number of other

choices were explored in ref. [18] but in this work we will restrict our attention to the two methods

described above.

The reconstruction procedure consists of the following steps [2]:

1. Smooth the observed galaxy density field δg with a kernel S to filter out small scale (high k)

modes, which are difficult to model. We use a Gaussian smoothing of scale Rs, specifically

S(k) = exp[−(kRs)
2/2], though none of our analytic results will depend specifically on this

choice. For galaxy surveys Gaussian smoothing has been universally adopted (though with

different conventions for Rs) but in other contexts it may be advantageous to implement a

Wiener filter instead (e.g. ref. [19]).

2. Compute the shift, χ, by dividing the smoothed galaxy density field by a bias factor b

and linear RSD factor [44] and then take the inverse gradient. Assuming linear theory with

scale-independent bias and supercluster infall holds on large scales, the calculated shift field

should approximate the negative smoothed Zeldovich displacement. In a simulation with a

periodic box, these first two steps can be implemented using FFTs as

χk = − ik
k2
S(k)

( δg(k)

b+ fν2

)
≈ −S(k)Ψ(1)(k) (3.1)

where the bias factor is related to the Lagrangian first-order bias by b = 1 + b1 and we

have defined the line-of-sight angle ν = n̂ · k̂. For non-periodic data the relevant differential

equation can be solved by multigrid5 or by linear algebra techniques [43] or iteratively using

FFTs [45].

3. Move the galaxies by χd = Rχ and compute the “displaced” density field, δd.

4. Shift an initially spatially uniform distribution of particles by

• Rec-Sym: χs = Rχ, i.e. the same amount as the observed galaxies, or,

• Rec-Iso: The un-redshifted χs = χ.

to form the “shifted” density field, δs. Note that we have borrowed the nomenclature of

ref. [18] for the latter, which “isotropizes” the reconstructed field on large scales. For the

former we use “Rec-Sym” to indicate the symmetry of the treatment of δd and δs.

5. The reconstructed density field is defined as δr ≡ δd−δs with power spectrum Pr(k) ∝ 〈
∣∣δ2
r

∣∣〉.
Throughout we shall assume that the fiducial cosmology and halo bias are properly known during

reconstruction (see e.g. refs. [27, 46] for relaxation of this assumption), and take the approximation

in Eq. 3.1 to be exact. For further discussion of this point see refs. [17, 21]. The procedure in

real space can be straightforwardly obtained by setting f = 0, in which case Rec-Sym and Rec-

Iso become equivalent. Taking the limit S → 0 or χ → 0 returns the ‘raw’ spectrum, before

reconstruction.

5https://github.com/martinjameswhite/recon code
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4 Reconstructed power spectrum

There has been significant earlier work on modeling density-field reconstruction within pertur-

bation theory [2, 13–27]. In particular ref. [16] presented a calculation of the configuration-space

two-point function (the correlation function) under the assumption of Zeldovich dynamics and

that χ = −SΨ. In this paper we generalize that calculation to a more complete bias model

(see §5), including all terms allowed by symmetries up to quadratic order as well as a proper

set of counterterms, and we show how to implement the model in Fourier space. We have ex-

plicitly checked that the Hankel transform of our Fourier-space expressions matches the direct

configuration-space calculation to 1% in all terms, and we release code which makes consistent

predictions for both statistics with a common set of parameters. To our knowledge this is the

first calculation which provides self-consistent predictions in both spaces, uses a dynamical rather

than a heuristic model, works in redshift space and has a full set of bias and counterterms.

Our focus in this section will be to model the reconstructed power spectrum using Lagrangian

perturbation theory in both real and redshift space (the expression for the ‘propagator’ is given in

Appendix B for completeness). Following the algorithm outlined above, the reconstructed power

spectrum in real space is given by Precon = P dd + P ss − 2P ds. Within the Lagrangian framework

we can write the displaced density field as

1 + δd(r) =

∫
d3x (1 + δ(x)) δD [r− x− χd(x)]

=

∫
d3x

∫
d3q F (q) δD [x− q−Ψ(q)] δD [r− x− χd(x)]

=

∫
d3q F (q) δD [r− q−Ψ(q)− χd(q + Ψ(q))] , (4.1)

where we performed the x integral using the first δ-function to go from the second to third lines.

Importantly while the fluid displacement, Ψ, is evaluated at the Lagrangian position, q, the shift

field is evaluated at the shifted Eulerian position, q + Ψ. The above equalities hold both when

the pre-reconstruction coordinate, x, is in real or redshift space, with the implicit substitution of

Ψ → RΨ in the latter case, as long as the appropriate shift field χd is chosen. The expression

for the shifted density can be similarly derived or found by setting Ψ(q) = 0 and χd → χs in the

above expression. In Fourier space this translates to

(2π)3δD(k) + δd(k) =

∫
d3q e−ik·q F (q) e−ik·

[
Ψ(q)+χd(q+Ψ(q))

]
(2π)3δD(k) + δs(k) =

∫
d3q e−ik·q e−ik·χs(q). (4.2)

Below we will make the approximation χ(q+Ψ) ≈ χ(q). The nonlinearities from the Lagrangian-

to-Eulerian mapping can be understood as a perturbation series in Ψ/R, whereR is the smoothing

scale, and we explore their consequences in Appendix E (see also refs. [17, 21] and the discussion

in ref. [16]). Within this approximation we can treat the displaced and shifted field as tracers

with displacements

Ψd = Ψ + χd, Ψs = χs, (4.3)
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where the Zeldovich displacements should be understood as being in redshift space for the dis-

placed field and in either redshift or real space for the shifted field depending on the method

used. In this picture the “displaced” tracer has the same bias functional as the original galaxies

(F d ≡ F g) while the “shifted” tracer is unbiased (F s ≡ 1). A straightforward consequence of

the reconstruction procedure is that, like that of any discrete tracer, the shift field autospectrum

will contain an independent shot noise term P ssSN = 1/ns, where ns is the number density of the

uniform random particles. The full shot noise contribution to the reconstructed spectrum is the

the sum of the galaxy and random particle shot noises.

4.1 Real space

In real space both the displaced and shifted fields are moved by the same, smoothed negative

Zeldovich displacement, χd = χs = −S ?Ψ, such that in Fourier space

Ψd(k) = [1− S(k)] Ψ(k), Ψs(k) = −S(k)Ψ(k). (4.4)

and the auto- and cross-spectra can be calculated using Equation 2.4 and the correlators in

Appendix A, using linear theory spectra

P ddL (k) = [1− S(k)]2 PL(k), P dsL (k) = −S(k) [1− S(k)]PL(k), P ssL (k) = S(k)2PL(k) (4.5)

as well as tracer-matter power spectra

P dmL (k) = [1− S(k)]PL(k) , P smL (k) = −S(k)PL(k). (4.6)

Note that the shifted field is negatively correlated with both the matter and displaced fields by-

construction, since the random particles are displaced in the opposite direction of the (smoothed)

Zeldovich displacement.

The Lagrangian space two-point correlation functions required to calculate the pre- and post-

reconstruction power spectra, normalized to their present-day values, are shown in Figure 1. For

simplicity we have excluded the shear correlators and refer readers to Appendix A for further

details. The components X and Y describe correlation functions of two displacements, while

the U ’s involve those with only one displacement, such that the former are Hankel transforms

of the linear tracer-tracer spectra, while the latter involve the linear tracer-matter spectra. As

expected, the Y ’s and U ’s for the displaced and shifted fields contain the behavior of the full

matter contribution and small and large scales, respectively, and cross correlations between the

shifted field and the displaced or matter fields is negative.

The X(q) components however, especially the cross-correlation Xds, display more subtle be-

havior. In particular, we have

Adsij (q)
q→0
= 〈Ψd

iΨ
d
j 〉+ 〈Ψs

iΨ
s
j〉 − 2〈Ψd

iΨ
s
j〉 ≡ Σ2δij , (4.7)

such that Xds(q)→ Σ2 as q → 0. This is because, when evaluated at the same point, Ψd−Ψs =

Ψ, i.e. the difference between the displaced the shifted displacements is none other than the

original Zeldovich displacement. This in turn implies that the cross spectrum is damped at

small scales ∝ exp[−k2Σ2/2] due to the nonzero displacement between the displaced and shifted
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Figure 1. Lagrangian space two point functions used to compute reconstructed power spectra. Dashed

quantities have been multiplied by an overall negative sign, and reflect that the shifted field is defined to

be negatively correlated with the underlying matter field. Roughly speaking, the shifted and displaced

correlators reproduce the general trend for the total matter correlators, shown in black, on large and small

scales, respectively. An exception is Xds, whose non-vanishing value on small scales reflect that the point

values of Ψd and Ψs differ exactly by the Zeldovich displacement. Note also the small but visible features

around q = 100h−1 Mpc, i.e. the BAO scale.

fields. Similar behavior is seen in the evaluation of unequal-time correlation functions [47] and

the baryon-cold dark matter cross-correlation [48, 49], though the physical mechanisms are of

course different. At large scales, we similarly have

Adsij (q)
q→∞

= 〈Ψd
iΨ

d
j 〉+ 〈Ψs

iΨ
s
j〉 ≡

(
Σ2
dd + Σ2

ss

)
δij , (4.8)

such that Xds asymptotes to the average of Xdd and Xss at large separations. For completeness,

we give explicit expressions for the displaced and shifted Xab here:

Xdd(q) =
2

3

∫
dk

2π2

[
1−

(
j0(kq) + j2(kq)

)] (
1− S(k)

)2
PL(k)

Xds(q) =
2

3

∫
dk

2π2

[ 1

2

(
(1− S(k))2 + S(k)2

)
+ S(k)

(
1− S(k)

)(
j0(kq) + j2(kq)

)]
PL(k)

Xss(q) =
2

3

∫
dk

2π2

[
1−

(
j0(kq) + j2(kq)

)]
S2(k)PL(k). (4.9)

The corresponding expressions for Y ab can be directly obtained by calculating −3 times the j2
components. As we shall discuss further in Section 8, the signs for the Bessel function coefficients

in our expression for Xds differ from those in ref. [26]. We note also, as has been emphasized

before [13], each of the three contributions to Precon has a different damping factor which can

only be roughly approximated by a single Gaussian term.

The lowest-order bias terms in the reconstructed real-space power spectrum at z = 0 are shown

Figure 2. The pure-matter piece (i.e. the “1” in Equation 2.4) is the only term that includes

contributions from all three combinations of d and s, while the b21 piece consists of only the dd
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Figure 2. (Top) Real-space power spectra contributions, displaced-displaced, displaced-shifted and

shifted-shifted, for the lowest order bias terms 1, b1, b21, and their sum, compared to linear theory at

z = 0. The pure matter piece is the only term that receives contributions from all three combinations of

d and s, and the b21 term consists only of the dd contribution. All three bias terms tend to linear theory

on large scales but exhibit somewhat different broadband behavior at high k. (Bottom) The ratio of the

above bias terms with the linear theory power spectrum, compared with the pre-reconstruction Zeldovich

power spectrum. While both the pre- and post-reconstruction Zeldovich spectra differ with the linear

spectrum in the broadband at small scales, the Zeldovich approximation predicts that the the oscillatory

features in the reconstructed spectrum are almost identical to those in the linear spectrum, such that the

wiggles are almost completely normalized out for the reconstructed spectrum.

contribution. While each piece individually differs from the linear power spectrum, compared

to the pre-reconstruction power spectrum, the Zeldovich approximation predicts that the post-

reconstruction power spectrum largely recovers the oscillatory features in the linear spectrum,

as seen in the lower panels of Figure 2. We note that the structure of the breakdown into P dd,

P ds and P ss shown in Figure 2 proceeds similarly in the higher-order bias contributions: bias

terms like b21, that are products of two bias parameters (e.g. b1b2, b2bs, ...), do not involve any

displacements (Ψ) and can thus only enter in the autospectrum of the biased “d” tracer P dd,

while those like b1 that involve only one bias parameter (e.g. b2, bs) involve two-point functions

with one displacement contracted and thus contribute to the cross spectrum P ds as only one of

the constituent tracers needs to be biased. The autospectrum P ss does not contain any bias

terms.

Figure 3 shows all the contributions to the reconstructed galaxy power spectrum and cor-

relation function, up to the quadratic bias and shear terms. As seen in the top panel, the

reduced damping in the lowest-order bias term “wiggles,” barely visible in log-log plots of the

reconstructed power spectrum, translate to significantly sharper and less shifted BAO features
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Figure 3. Contributions to the pre- and post-reconstruction (dashed and solid) power spectra and cor-

relations functions (left and right columns) in real space from linear through quadratic bias terms at

z = 0. Note that the matter (blue) and b21 (green) curves in the top right panel are essentially degenerate,

especially at the large scales shown.

(right column). In the quadratic bias contributions (middle panels), reconstruction can be seen

to dampen the amplitude of the BAO feature in the b2 and b1b2 contributions, which “wiggle”

in Fourier space, while leaving the spectrally smooth b22 contribution essentially intact. Since

the BAO feature in the quadratic bias contributions will tend to smear and shift the observed

BAO peak from its linear theory position, reconstruction serves to remove these confounding

nonlinearities as expected. The shear terms have less pronounced (i.e. smoother) features at the
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BAO scale—which we will show in Section 8 as being essentially in-phase with the linear theory

oscillations— that are less affected by reconstruction.

Finally, as noted in the discussion below Equation 2.4, the exponentiated Aij in Zeldovich

power spectra are assumed to be long wavelength, IR modes which can be resummed while con-

tributions from the rest of the shorter modes are perturbatively expanded. These expanded modes

thus carry also a UV (small-scale) sensitivity that should be renormalized by adding the appropri-

ate counterterms, quadratic in wavenumber and proportional to the Zeldovich power spectrum:

αabk
2P abZel. In principle, we expect such counterterms in all three pieces of our reconstructed

power spectrum, however given that the P ss consists of mostly IR modes we expect its countert-

erm contribution to be suppressed relative to similar terms in P dd and P ds, though it could still

be non-vanishing due to contributions we neglected in approximating Equation 3.1. While the

counterterms αdd and αds are highly nondegenerate due to the different supports of P dd and P ds

(see Figure 2) in k-space, in this work we will also explore modelling the reconstructed power

spectrum using only one counterterm, ∝ k2PZel, for both P dd and P ds contributions, since such

a contribution would also be degenerate with any potential derivative biases (see e.g. ref. [36]).

We will return to the difference between these options in Section 7.

4.2 Redshift space

In this section we develop analytic expressions for the redshift-space reconstructed power spec-

trum in both Rec-Sym and Rec-Iso. Methods recently developed in ref. [50] allow us to extend

the LPT redshift-space power spectrum calculation to include bias and the specifics of reconstruc-

tion, which we summarise here and present in detail in Appendix C. As we will show shortly,

Rec-Sym and Rec-Iso are not equivalent even to linear order. Specifically, we have

Psym(k) = (b+ fν2)2PL(k) +O(P 2
L) (4.10)

Piso(k) =
[
(b+ fν2)(1− S) + S

]2
PL(k) +O(P 2

L), (4.11)

i.e. while Rec-Sym restores supercluster infall at linear order, Rec-Iso removes redshift-space

distortions at large scales while keeping them at small scales. As we will see, this produces a

smooth modulation in the broadband power nondegenerate with the BAO wiggles.

Since both the smoothed and displaced fields are uniformly multiplied by Rij in Rec-Sym, it

is straightforward to calculate the reconstructed power spectrum using Equation 2.4 with

Ψd(k) = [1− S(k)] RΨ(k) , Ψs(k) = −S(k)RΨ(k) . (4.12)

In particular the angular structure of the q integral follows as in the calculation of the galaxy

power spectrum without further modifications, and the set of bias terms in the dd, ds and ss

spectra are identical to the real space case. The reconstructed power spectrum can then be

calculated as one would the unreconstructed redshift space power spectrum. We develop the

formalism to do the latter in Appendix C.3 and comment on the changes required to go to the

reconstructed case therein.

The cross spectrum in Rec-Iso is slightly different since only the displaced field is multiplied

by the redshift space transformation, Rij . The displaced and shift fields in this case are thus

– 11 –



instead

Ψd(k) = [1− S(k)] ΨR(k) = [1− S(k)] RΨ(k) , Ψs(k) = −S(k)Ψ(k). (4.13)

Since the displaced and shift moves thus lie in redshift and real space, respectively, their auto

spectra can also respectively be calculated as in Rec-Sym and real space reconstruction; how-

ever, the cross spectrum is only “half transformed” into redshift space and thus requires special

attention. The exponentiated two-points displacements are given by

Ads,Isoij = 〈Ψd
iΨ

d
j 〉+ 〈Ψs

iΨ
s
j〉 − 2〈Ψd

i (q2)Ψs
j(q1)〉

= RinRjm〈Ψd
nΨ

d
m〉RealSpace + 〈Ψs

iΨ
s
j〉RealSpace − 2Rin〈Ψd

n(q2)Ψs
j(q1)〉RealSpace, (4.14)

such that the zero-lag piece due to the displaced-displaced correlation is fully transformed into

redshift space, the zero-lag piece due to the shifted-shifted correlation is untransformed, and the

coordinate dependent displaced-shifted correlation is“half transformed.” In particular, defining

as usual q = q q̂ and k̂ · q̂ = µ, the last piece is

kikj〈Ψd
i (q2)Ψs

j(q1)〉 = kikj(δik + fn̂in̂k)(X̃
dsδkj + Ỹ dsq̂kq̂j)

= k2(1 + fν2)X̃ds + k2(µ2 + fµν(q̂ · n̂))Ỹ ds, (4.15)

where we have defined the tilded quantities without the usual zero lag piece6

〈Ψd(q2)Ψs(q1)〉Real Space = X̃ds(q) δij + Ỹ ds(q) q̂iq̂j .

Note that 2Ỹ = −Y since Y does not posess a zero-lag piece. The azimuthal-angle dependence

in q̂ · n̂ will require us to do the integral (Appendix C.2)∫
dφ

2π
eAµ
√

1−µ2 cosφ =
∞∑
`=0

H
(0)
` (A) (Aµ2)`,

where we have defined

H
(0)
` (A) =

∑̀
m=0

(−1)`−mA2m−`Γ(m+ 1
2)

√
πΓ(2m+ 1)Γ(2m− `+ 1)Γ(`−m+ 1)

.

Note that the Γ functions in the denominator will kill any terms in the sum for which 2m− ` is

negative, such that the sum really only contains `/2 terms and is always convergent in A. The

full cross spectrum is then given by

P (ds)(k) =e−
1
2
k2(α0Σ(dd)2+Σ(ss)2 )

∫
d3q eikqµ+k2(1+fν2)(X̃(ds)+µ2Ỹ (ds))

∞∑
`=0

H
(0)
` (A)A`µ2`

(
1 + ib1kµU

(d)(q)− 1

2
b2k

2µ2U (d)(q)2 + ...

)
(4.16)

where A = k2fν
√

1− ν2Ỹ (ds) and we have defined Σ2 = X̃(0) and α0 = 1 + f(f + 2)ν2. The

remaining integrals can then be performed using the usual tricks for powers of µ using the series

described in Appendix C.1, and are explicitly given at the end of Appendix C.2.

6For notational simplificity, the functions X and Y are always defined in real space.
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Figures 4 and 5 show the various bias contributions to the reconstructed redshift space power

spectrum monopoles and quadrupoles within Rec-Sym and Rec-Iso, respectively. A significant

difference between the two methods can be seen by comparing the matter (i.e. “1”) pieces in

the top panels of the two figures. While all three linear bias contributions to the reconstructed

power spectrum monopole (∝ 1, b1, b21) approach the Zeldovich monopole in the large scale

limit in Rec-Sym, the matter contribution to the Rec-Iso monopole instead approaches the b21
contribution, which does not receive redshift space distortions in the linear theory limit. This is

because the power spectrum at the largest scales is dominated by the autospectrum of the un-

redshifted shift field, P ss. While the matter and b1 contributions to the reconstructed quadrupole

approach linear theory in Rec-Sym, they vanish on large scales in Rec-Iso. On the other hand,

the majority of the higher bias contributions (excluding b2 and bs) are sourced only by P dd

and are thus identical between the two methods, as can be seen by comparing the lower two

rows of Figures 4 and 5. This corresponds to our intuition that redshift-space distortions are

less prominent for highly biased tracers, and that the differences between Rec-Iso and Rec-Sym

disappear if we remove RSD. In addition, the contributions enumerated above are supplemented

by counterterms (α`dd, α
`
ds, α

`
ss), where we need a separate counterterm for each pair and multipole

as discussed below Equation 2.7, though as in the real space case we also explore the possibility

of only fitting one counterterm each for the net reconstructed monopole and quadrupole.

5 Reconstructed correlation function

The configuration space two-point function (the correlation function) can be obtained from our

Fourier-space results by Hankel transform. It is also possible to rewrite the q-dependent integrals

to compute ξ(r, νr) directly, where νr = n̂· r̂. Here we reprise the calculation of ref. [16], extending

it to include the additional bias terms and commenting explicitly on several numerical issues

which arise. We have checked that our Fourier and configuration space results agree numerically

to significantly sub-percent levels in both real and redshift space for both Rec-Sym and Rec-Iso.

The general formula for the cross spectrum of two tracers a and b given in Equation 2.4 can

be Fourier transformed to give [36–38, 42]

1 + ξab(r) =

∫
d3q

(2π)3/2|Aab|1/2
e−(1/2)(qi−ri)(A−1

ab )ij(qj−rj)

×
{

1− (bb1U
a
i + ba1U

b
i )gi + ba1b

b
1ξL +

1

2
ba2b

b
2ξ

2
L

−1

2
[bb2U

a
i U

a
j + ba2U

b
i U

b
j + 2ba1b

b
1U

a
i U

b
j ] Gij − [ba1b

b
2U

a
i + bb1b

a
2U

b
i ] ξLgi

−1

2
[basΥ

b
ij + bbsΥ

a
ij ] Gij − [ba1b

b
sV

ab
i + bb1b

a
sV

ba
i ] gi

+
1

2
(ba2b

b
s + bb2b

a
s)χ

12 + basb
b
sζ + αabtrG+ ...

}
, (5.1)

where we have defined

gi = (A−1
ab )ij(qj − rj), Gij = (A−1

ab )ij − gigj (5.2)
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Figure 4. Bias contributions to the pre- and post-reconstruction (dashed and solid) z = 0 redshift space

power spectra monopole and quadrupoles in the Rec-Sym scheme. The color scheme and line styles follow

those in Figure 3. The lowest-order contributions to the reconstructed monopole and quadrupole due to

the linear bias b1 tend to the Kaiser approximation at large scales. Note the different y-axis ranges on

different panels.

and placed the superscript ab in Aab into the subscript for notational convenience. In the con-

figuration space calculation above, the Lagrangian two-point functions (e.g. Aij , Ui, Υij) can

be computed using the formulae provided in Appendix A. The above formula can be translated

into redshift space by multiplying the Lagrangian two-point functions with vector indices by

the appropriate factors of Rij = δij + fn̂in̂j . Taking the line-of-sight to be in the z direction
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Figure 5. Same as Figure 4, but for Rec-Iso at z = 0. Unlike in Rec-Sym, the linear bias contributions

to the monopole and quadrupole do not tend to the Kaiser limit on large scales but to the real space linear

power spectrum, as evidenced by reduced power in the monopole compared to the pre-reconstruction

Zeldovich power spectrum, and contributions to the quadrupole vanishing on large scales. However, many

of the higher bias contributions are identical to those in Rec-Sym (Fig. 4).

without any loss of generality, this is equivalent to multiplying by the matrix diag(1, 1, 1 + f).

When calculating the un-reconstructed redshift space correlation function, this multiplication is

equivalent to multiplying each z component index of vector and tensor quantities (e.g. Uaz or

Aabyz) by 1 + f , and dividing the corresponding components in the matrix inverse, A−1
ab , by the

same factor. The redshift-space counterterm α2k
2ν2 can be included in the correlation function

– 15 –



by adding α2n̂in̂jGij , which similarly is equivalent to α2Gzz when picking z as the line-of-sight

direction.

The reconstructed correlation function in real and redshift space can be calculated using

Equation 5.1 by defining “displaced” and “shifted” tracers as in the case of the power spectrum

(Sections 4.1 and 4.2) and calculating the combined quantity ξrecon = ξdd + ξss − 2ξds. For

reconstruction using Rec-Sym, the same shortcuts of multiplying by factors of 1 + f in lieu

of matrix multiplication and inversion apply, since all vector and tensor quantities undergo the

same transformation by Rij . The calculation for Rec-Iso is more complicated. As was the case

in Fourier space, the displaced-displaced and shifted-shifted auto-correlation functions are equal

to their counterparts in Rec-Sym and real-space reconstruction, while the displaced-shifted

cross-correlation function contains a mix of real and redshift space factors. In particular, from

Equation 4.14 we see that the two zero-lag pieces and one q-dependent piece of Adsij in Rec-Iso

are independently transformed by different numbers of Rij ’s. For this reason, when calculating

the correlation function in Rec-Iso, the matrix inverse of Ads in redshift space cannot be simply

obtained by dividing the real space inverse by factors of 1+f ; rather, the uninverted matrix must

be redshifted piece by piece as in Equation 4.14 and then inverted numerically (we use Cholesky

decomposition).

6 Other statistics

While the correlation function and power spectrum are the most frequently considered 2-point

functions, there are other variants that have some advantages. Since these can all be written in

terms of the correlation function or power spectrum, our model provides a consistent prediction

for them as well. Of particular interest for BAO is the ω` statistic of ref. [51], which combines

the scale-localization of the Fourier-space methods with the compactness and easy treatment of

masks of the configuration-space methods.

In principle ω` can be calculated from either the configuration-space or Fourier-space expres-

sions given above, but we have found it more convenient to start from the Fourier expressions.

Since these are computed using FFTlog they naturally cover a very wide range of k, making the

transforms to ω` easy to implement. For example

ω0(rs) =

∫
k2 dk

2π2
P0(k)W̃0(k rs) (6.1)

with W̃0 given in ref. [51] (see their Fig. 1 and Appendix A). At large scales W̃0 ∝ k2 while at

small scales W̃0 ∝ k−4. Our formalism naturally provides predictions for ω` using the same set

of bias and nuisance parameters as for ξ` and P`.

7 Comparison to N-body

To look at the domain of validity of our analytic results we compare to the DarkSky N-body

simulation suite7, specifically simulation ds14 a [1]. This simulation used the 2HOT code [52] to

evolve 102403 particles in an (8h−1Gpc)3 volume to model the growth of structure in a ΛCDM

7http://darksky.slac.stanford.edu
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lgM Redshift n̄ b

12.0− 12.5 0.0 3.45 0.87

12.5− 13.0 0.0 1.18 1.05

13.0− 13.5 0.0 0.38 1.30

Table 1. Number densities and bias values for the halo samples we use. Halo masses are log10 of the mass

in h−1M�, number densities are times 10−3 h3Mpc−3.

cosmology with ΩM = 1− ΩΛ = 0.295, h = 0.688, ns = 0.968 and σ8 = 0.835. Initial conditions

were generated from a glass using 2nd order Lagrangian perturbation theory at z = 93. Halos

were found using the Rockstar code [53]. We extracted the positions, velocities and masses of

halos more massive than M200b = 1012 h−1M� from the publicly available data at z = 0 (data at

higher z, which would have been a more relevant comparison, were not available). We computed

the halo correlation functions and power spectra, in real and redshift space. For the redshift-space

quantities we assumed the plane-parallel approximation with the line-of-sight being the z-axis.

We also obtained the linear theory power spectrum used to generate the initial conditions, which

we take as the input to our model.

We implemented the algorithm described in §3 using the periodicity of the box and FFTs to

perform the smoothing and computation of the shifts. As for the power spectrum and correla-

tion function, the plane-parallel approximation with line-of-sight the z-axis was assumed for the

redshift-space quantities. The code takes as input an assumed large-scale bias, b, and growth

parameter, f , in addition to a Gaussian smoothing length, R. We used the b obtained from the

ratio of the linear theory and real-space halo power spectra at low k (see Table 1), and f ' 0.508

appropriate to the simulation cosmology at z = 0, and note in passing that the goodness-of-fit

of our results did not seem to be greatly improved by substituting the linear bias thus obtained

with the value of 1 + b1 obtained by fitting the pre-reconstruction data with our model up to

quasi-nonlinear scales.

We computed the reconstructed field in both real and redshift space. In each case the shifted

and displaced positions were computed using a 20483 FFT, which resolves the (Gaussian) smooth-

ing length by 2.5 − 5 grid cells for R ' 10 − 20h−1Mpc. We used as many “random” positions

as halos in each case, for simplicity, and computed the power spectra and correlation functions

for dd, ds and ss assuming periodic boundary conditions. The reconstructed power spectrum

or correlation function can then be computed as dd − 2ds + ss, and we can look at each of the

contributions separately. Note that our choice of equal numbers of randoms and data points

means the shot noise on the reconstructed power spectrum is twice that of the pre-reconstructed

field.

We compare the N-body results to our model with b1 and b2 and include the minimal set of

counterterms as described in the preceding sections (one and three pre- and post-reconstruction,

respectively, in real space) as well as a constant shot noise component fit to the data. For brevity

our discussion will focus on halos with masses between 12.5 < log10(M/h−1M�) < 13.0., though

we obtained qualitatively similar results in the lower and higher mass bin as well, and show fits of

the reconstructed redshift space power spectrum in the latter at the end of this section. We have
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checked that including nonzero shear bias bs does not visibly improve the goodness-of-fit. The

top-left pair of panels of Figure 6 compares the unreconstructed real-space power spectrum in

our model with (b1, b2) = (0.02,−0.8) with that in DarkSky. The quadratic bias, b2, accounts for

a non-negligible fraction of the total power at essentially all scales and significantly reduces the

constant shot noise term in the fit. We find that with a counterterm α ≈ 11 h−2Mpc2 our model

agrees with the data at the percent level out to k ' 0.4hMpc−1. The counterterm accounts for

roughly a 10% correction at k = 0.1hMpc−1, and it is worth noting that even in its absence our

model accurately captures the BAO features in the power spectrum, as evidenced by the lack of

oscillatory features in the fit residuals.

The remaining panels of Figure 6 show the fit for the reconstructed power spectra at three

smoothing scales R = 10, 15, 20h−1Mpc. We have tested whether the data could be reproduced

using only one counterterm, α (shown in orange), or equivalently from one derivative bias b∇2 ,

and find that such a choice dramatically reduces the range-of-validity of the model compared

to three counter terms. While we adopted a rather conservative approach in fitting these data,

prioritizing the accuracy of our predictions at low k rather than producing reasonable-looking

fits to smaller scales, our model with three counterterms (αdd, αds, αss) nonetheless reproduces

both the broadband power and oscillatory features of the reconstructed power spectrum out

to k = 0.2hMpc−1 at the percent level for R = 15 and 20h−1 Mpc. That each of the three

constituent spectra in P recon = P dd + P ss − 2P ds has distinct short-wavelength behavior and

k-space supports underlies the success of our model with three counterterms—each of which has

highly nondegenerate scale dependence—versus the one-counterterm alternative. We have found

that setting αss = 0 does not qualitatively alter the degree to which our model fits the data; we

have made this choice in all of our fits below, but note that as αssk
2 vanishes quadratically towards

low k, the data are also naturally rather insensitive to it. Indeed, since nonlinear corrections are

typically of order k2Σ2, and the smoothing scale is chosen such that (Σ/R)2 � 1, the insensitivity

of P ss to these corrections follows almost by construction. However, a bump-like feature around

k = 0.1hMpc−1 is persistent across all the fits, peaking at less than half a percent when R =

20h−1Mpc and growing to a full percent at R = 10h−1Mpc. The appearance of such a feature,

growing towards smaller smoothing scales, is consistent with our neglect of nonlinear corrections

to the smoothed displacements, which should increase towards smaller smoothing scales roughly

as Ψ/R; we discuss one such nonlinearity in Appendix E. For sufficiently small smoothing scales,

even the assumption that the smoothing of the BAO feature can be essentially captured with

resummed linear displacements Ψd,s will break down, and indeed our fit residuals begin to show

noticeable oscillatory behavior at the smallest smoothing scale shown (R = 10h−1Mpc). At R =

15h−1Mpc and in the sample variance limit with Gaussian errors, the feature at k = 0.1hMpc−1

should be detectable with χ2 = Vobs/(2h
−3 Gpc3), where Vobs is the total observed volume. If

we were to instead smooth using the larger R = 20h−1Mpc, the χ2 is roughly halved. For such

a smoothing this feature represents a χ2-penalty of 0.2 for a sample variance limited survey of

14 000 deg2 covering 0 ≤ z ≤ 0.3, and would be slightly smaller for finite number density.

The pre- and post-reconstruction real-space correlation functions can be directly compared

by computing the Fourier transforms of the above fits. However, in comparing our theory with

DarkSky we found that the z = 0, pre-reconstruction halo power spectra all have significant excess

power at low k compared to the predictions of linear theory with scale-independent bias. The
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Figure 6. Fits to the pre- and post-reconstruction real-space halo power spectra in DarkSky for halos

of mass between 12.5 < log10(M/h−1M�) < 13.0 at three smoothing scales (R = 10, 15, 20hMpc−1),

assuming Zeldovich power spectra with biases (b1, b2) and one counterterm per spectrum (three total for

the reconstructed case). The upper plot of each vertical pair of panels shows the product of the wavevector

magnitude and power spectrum k P (k) while the lower plot shows the fit residuals as a fraction of measure

power ∆P/P = (Pfit−Pnbody)/Pnbody. In the top-left pair of panels we show the incremental contributions

from b2 and the counterterm α (which contributes close to 10% of the power at k = 0.1hMpc−1) to the fit,

which agrees with the simulation at the percent level (dotted line in the lower plots) at all scales shown. In

the remaining panels we use the same bias parameters to fit the reconstructed power spectrum, allowing

only counterterms to vary. Our model with three counterterms can fit the data at the percent level out

to k = 0.2hMpc−1, though a bump-like feature at k = 0.1hMpc−1 becomes more prominent at smaller

smoothing scales, where nonlinear corrections beyond the Zeldovich approximation presumably become

more important (see text). Also shown in orange are fits using one counterterm – or equivanlently one

derivative bias – which fit less well past k = 0.1hMpc−1. We fined that setting the counterterm αss to

zero does not materially affect our fits. Note that there is excess power in the data at the largest scales

shown, as discussed in the text.
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origin of this excess is unclear, and is not addressed in ref. [1]. It appears to arise from a significant

number of low k modes, and so is unlikely to be simply a statistical fluctuation in the initial

conditions. It shows up in all of our halo samples, and is highly correlated among mass bins. This

excess power is small for modes to the right of the power spectrum peak and probably has only a

small impact on the dynamics on BAO scales. In Fourier space we simply confine our fitting and

modeling to k > 0.01hMpc−1. In configuration space, however, the additional long-wavelength

power slightly distorts the shape of the BAO peak, and to enable a fair comparison we have

added appropriate long-wavelength modes to our theoretical predictions assuming linear theory;

specifically, we find that the fitting form Plw(k) = A (k/k0)n, where A = 3.5 × 104h−3 Mpc3,

k0 = 10−3 hMpc−1 and n = −1.7, describes well both the long-wavelength excess seen in the

power spectrum below k < 0.01hMpc−1 and dramatically improves the agreement between the

unreconstructed correlation function in theory and DarkSky. The contribution to the pre- and

post-reconstruction power spectra and correlation function of these long wavelength modes is

shown in Figure 7. Without the long-wavelength correction, the DarkSky results do not agree

with theory on the large scales to the right of the BAO peak, which should be well-described

within linear theory, nor in the BAO “dip,” both pre- and post-reconstruction. Due to the ad-hoc

nature of our correction, in the remainder of this section we will focus our comparisons on Fourier

space, wherein long-wavelength modes must decouple. However, we caution that small, localized

features in Fourier space can cause extended distortions in configuration space where data points

are highly correlated. In Figure 8, we show the effect of the k = 0.1hMpc−1 bump described in

the previous section by additively “filling” it with a small, localized Gaussian profile, as shown

in the left panel. The effects of this bump, Fourier-transformed, are shown in the right panel:

while sub-percent in Fourier space, the k ' 0.1hMpc−1 feature gives rise to visible distortions

to the BAO feature in configuration space.

Finally, fits for the pre- and post-reconstruction power spectra in redshift space are shown

in Figure 9. We have chosen to summarize the angular dependence of the redshift-space power

spectrum in terms of its monopole and quadrupole, though our model predicts the full P (k, µ) and

higher multipoles as well. As in real space, we have fitted for the bias parameters (b1, b2) using the

unreconstructed data and applied the same set of bias parameters to predict the power spectra in

both Rec-Sym and Rec-Iso. We adopt the full set of six counterterms, three each α`dd, α
`
ds, α

`
ss

for the monopole (` = 0) and quadrupole (` = 2), but also explore the possibility of utilizing only

one counterterm α` per multipole (corresponding to a derivative bias for both the halo density

and velocity). In all cases, our base model with six counterterms fits the data at the percent level

or below past k = 0.2hMpc−1 in both the monopole and quadrupole moments. Notably the

Zeldovich approximation produces oscillation-free residuals even in the absence of counterterms

(green), with the counterterms providing a physics-based broadband model (∼ α`abk
2P`,ab) that

reproduces the N-body results at the percent level. Our fits do not explicitly include nonlinear

redshift space distortions such as fingers-of-god, though such effects are perturbatively accounted

for by velocity counterterms to lowest order. For completeness, in Figure 10 we show the same

fits for the mass bin 13.0 < log(M/h−1M�) < 13.5, where our model fits the data at percent

level over a similar range of scales using the parameters (b1, b2) = (0.23,−1.0).

Lastly, let us comment on the comparison fits in pre- and post- reconstructed cases. Given

that our shift field, χ, is constructed only from long-wavelength modes explicitly isolated from
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Figure 7. Halos in DarkSky exhibit significant excess power compared to theory at large scales in Fourier

space which should be well-described by linear theory. (Left) Fits to the real-space power spectrum with

and without our ad hoc correction Plw = A (k/k0)n, shown in blue and orange respectively. At the largest

scales shown, the excess power is significantly larger than the scatter. The fits prefer slighly different,

though qualitatively similar, bias values. (Right) The same fits in configuration space. The uncorrected

data systematically trends below the data at separataions above the BAO peak and in the BAO “dip,”

while the fit with Plw added goes through all the data points.
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Figure 8. A sub-percent level feature in the power spectrum near k = 0.1hMpc−1 can lead to visible

distortions in the BAO feature in ξ(r). (Left) Residuals for the fit as a fraction of total measured power

in the simulations, as defined in the caption of Figure 6. The orange curve shows the residuals when our

theory is corrected using a Gaussian profile localized at k = 0.1hMpc−1 compared to the fiducial fit (blue),

whose residuals exhibit a dip centered at k = 0.1hMpc−1. (Right) The fiducial and corrected correlation

functions. The bump in the left panel, whose Fourier transform is shown magnified in the green curve,

induces distortions in the BAO feature across a range of separations r ∼ 60− 120h−1Mpc.
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observed field, δ, by filtering out the nonlinear scales larger than k & 1/R, we have no reason to

suppose that the perturbative structure of our results will significantly change. In other words, by

performing the mapping in Equation (4.1), we have reconstructed only the long modes, thereby

reducing nonlinear smoothing due to large scale (infrared) modes, while the bulk of the small-

scale nonlinear modes, as well as FoG effects, should remain unreduced. In addition, Lagrangian

perturbation theory (PT) conveniently separates nonlinearities due to long and short modes,

exponentially resumming the former while expanding the latter order-by-order [38, 39]. Because

of this, we do not expect dramatically different PT behavior in the pre- and post-reconstructed

results. These arguments are also supported by Figures 9 and 10, which show our model exhibits

quantitatively similar degrees of fit pre- and post reconstruction.

8 Comparison to earlier work

There has been significant theoretical activity in modeling post-reconstruction clustering (see

references in the introduction). Our framework encompasses most of these previous perturbation

theory expressions when appropriate approximations and phenomenological choices are accounted

for. To the best of our knowledge, the framework presented here captures for the first time all

of the relevant post-reconstruction effects and is unique in accurately handling both Fourier

and configuration space results, in real and redshift space and includes all the bias operators to

quadratic order.

Not all models are based on perturbation theory calculations however, and many phenomeno-

logical models have been introduced in order to describe the post-reconstruction statistics. Re-

stricting ourselves just to models of the ‘standard’ reconstruction algorithm [2], §3.1 of ref. [10]

discusses early models (which were of the form P (k) = B(k)Plin(k) + A(k) with B(k) and A(k)

smooth functions). Starting with the first applications to data in ref. [10] the form used to fit

reconstructed power spectra is based upon a split between a “smooth” and “wiggle” contribu-

tion to P (k) = Pnw(k) + ∆Pw(k), with a phenomenological damping of the wiggle component

motivated by perturbation theory [8]. In ref. [10] the parameters of the model were fit to N-body

simulations, and this has become common. This approach has dominated the modeling of obser-

vations to date (e.g. refs. [54–56] for recent examples) though ref. [57] is an example of an analysis

that did not take this approach. However, we note that the choice of the wiggle/no-wiggle split

exhibits a certain amount of freedom in the separation of the wiggle and broadband part. This of

course implies that, in order to extract accurate information from the e.g. BAO, either both wig-

gle and broadband part have to be modeled to the same level of accuracy, or the extracted wiggle

part from the data needs to exactly correspond to the model (see also refs. [58, 59] for related

discussion). The latter requirement, even though implicitly assumed in most of the current BAO

treatments, is rarely subject to performance checks and scrutiny. In this context, it is also worth

noting that the common choice of Pnw derived in ref. [60] does not fully capture the broadband

linear power spectrum at the precision attained by modern Boltzmann codes. Figure 11 shows

three possible linear wiggle power spectra, based on no-wiggle spectra computed using the fitting

formula from ref. [60], B-splines [61] or a Savitsky-Golay filter; even the latter two, which agree

asymptotically with the full linear theory power spectrum, exhibit noticeably different oscilla-

tory behavior. This indicates that extracting the corresponding wiggle spectra from the data is
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Figure 9. Fits for the pre- and post-reconstruction redshift-space power spectrum monopole (left) and

quadrupole (right) for halos in the mass range 12.5 < log10(M/h−1M�) < 13.0. The fractional residuals

∆P/P are defined in Figure 6. All spectra were fit using a consistent set of bias parameters (b1, b2) =

(0.02,−0.8), whose independent contributions are shown in the top row, determined by fitting the pre-

reconstruction data, such that only the counterterms were fitted in constructing the curves in the bottom

two rows. Our model with the full set of six counterterms—three each for the monopole and quadrupole

respectively—fits both the reconstructed monopole and quadrupole in both schemes out to k = 0.2hMpc−1

to a few percent and reproduce the phase and amplitude of the oscillatory BAO wiggles.

a challenging and sensitive step which can, on the other hand, be avoided if the broadband is

included in the theoretical framework. Models phenomenologically relying on a wide separation

of scale, assuming scale-independent bias or sufficient smoothness that could be accounted for by
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Figure 10. Like Figure 9, but for halos in the mass bin 13.0 < log(M/h−1M�) < 13.5. Here, our model

prefers the bias parameters (b1, b2) = (0.23,−1.0) and accurately fits the data over a similar range of

scales.

nuisance parameters such as A(k) above, might suffer from overall systematic offsets. Finally, it is

also often the case that the nuisance parameters and BAO scaling parameters are not consistent

between the configuration-space and Fourier-space analyses (i.e. the two do not form a Fourier

transform pair) which could prove problematic if fits in both spaces are combined.

By contrast the Zeldovich calculation above gives a consistent framework for understanding the

nonlinear smoothing of the BAO feature, both pre- and post-reconstruction, in both configuration

and Fourier space. Roughly speaking, the Gaussian smoothing kernel in the empirical model
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Figure 11. The linear wiggle power spectrum for three choices of Pnw. The conventional choice (EH98

[60]) does not accurately capture the large scale power, and we have investigated two possible methods to

mitigate this discrepancy: one based on B-splines, described in ref. [61] and another based on a Savitsky-

Golay filter in ln(k). The wiggle power spectra isolated using these three methods exhibit visibly different

oscillatory behavior.

is replaced by a Lagrangian coordinate-dependent kernel exp[−kikjAij(q)/2]. One might thus

hope to formally extract the model for wiggle-only part as an approximation to the calculation

presented in the main body of this paper; indeed, such a calculation was performed in ref. [61] and

extended to terms involving linear bias, redshift space distortions and reconstruction in ref. [26]8.

Figure 12 compares the results of our full Zeldovich calculation in the Rec-Sym scheme, with the

broadband subtracted out by calculating the corresponding Zeldovich power spectrum using the

no-wiggle power spectrum, versus the resummed linear wiggle power spectrum (RWiggle; using

the proper exponential damping dependencies given in Appendix D), for the same linear bias

values and with all higher bias terms set to zero. The two are in excellent agreement, especially

in the case of the reconstructed power spectrum, with RWiggle slighly underdamping the BAO

wiggles towards small scales compared with the full Zeldovich calculation for the unreconstructed

power spectrum.

However, even though RWiggle and the full Zeldovich calculation exhibit a high level of agree-

ment on the shape of the wiggle component, the RWiggle method depends on the separation

procedure of the wiggle and broadband components while the full Zeldovich calculation requires

no such steps. Specifically, the Zeldovich calculation deals only with the combination PZel
w +PZel

nw ,

which is obviously invariant under the split, while RWiggle models only the split-dependent PZel
w .

This implies that in order to use RWiggle in practical analyses either the broadband part needs to

8We note that redshift-space reconstruction model presented in ref. [26] contains phenomenological damping

factors that do not capture the exact behaviour of Xds term given by in Equation (4.9). We repeat this calculation

and derive the proper damping factors for the wiggle component in Appendix D.
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be modeled to equally high accuracy or a highly accurate wiggle extraction procedure is needed

in order to guarantee feasible comparison of theoretical model and the data. The latter seems

to be a challenging task, potentially subject to systematic offsets and bias. On the other hand,

the resulting differences in the wiggle spectrum should still be broadband and could be fit away

using nuisance parameters using sufficiently general broadband models.

Finally, our model differs from most in the literature in taking into account higher bias

terms such as b2 and bs, allowing us to assess systematic effects introduced by assuming scale-

independent bias. These higher biases can contribute both significant broadband power (e.g. the

top-left panel of Figure 9) and modulate the phase and amplitude of BAO oscillations through

mode-coupling effects [13]. However, explicit calculation shows that the latter effect is only no-

ticeable at very high values of bias. Figure 13 shows the effects on the wiggle component of adding

nonzero quadratic density and shear biases b2, bs, for bias values (b1, b2) ≈ (5, 20) chosen accord-

ing to the peak-background split (PBS) on a Press-Schechter mass function [62], and assuming

bs ≈ b2, as compared to RWiggle. The quadratic density bias, b2, induces an apparent phase

shift towards large k, and can be seen to be essentially out-of-phase with the linear BAO wig-

gles; however, these out-of-phase contributions are dramatically reduced by reconstruction. By

contrast the shear bias, bs, produces oscillatory features roughly in-phase with the linear theory

contributions and is largely unaffected by reconstruction. For completeness, we have also plot-

ted the potential oscillatory contribution of a derivative bias, b∇2 , which modulates the overall

amplitude of the power spectrum and is degenerate with the various counterterms, αab.

To investigate the extent to which the broadband and oscillatory contributions of higher bias

terms can be mitigated by a suitable broadband model, we conducted an exploratory “fit” of the

redshift-space monopole and quadrupole pre- and post-reconstruction in the case where the truth

is given by the Zeldovich approximation including nonzero b2 and bs but fit by an empirical model

with only b1, an isotropic BAO scale paramter αBAO and polynomial broadband contributions of

the form employed in ref. [63] before reconstruction. Specifically, we assume an empirical model

of the form

Pl,fit(k) = α−3
BAOPl,b1

( k

αBAO

)
+
a1,l

k3
+
a2,l

k2
+
a3,l

k
+ a4,l + a5,lk, (8.1)

both pre- and post-reconstruction, where Pl,b1 denotes redshift-space multipoles in the Zeldovich

approximation with all higher biases set to zero. For this exercise we assumed a sample variance

limited survey at z = 0 and z = 1.2 with Gaussian covariances between the monopole and

quadrupole, fit up to kmax = 0.25hMpc−1 and note that the results are independent of survey

volume. In Figure 14 we have plotted the resulting shifts in the BAO scale assuming PBS values

for b1 and b2, taking values for bs as a function of b1 from ref. [64]. At z = 0, we find that

neglecting higher biases in favor of the empirical model induces shifts of less than half a percent

in the BAO scale over a wide range of halo masses both pre- and post-reconstruction, though

reconstruction more than halves the forecasted shift for essentially all values of bias surveyed

(Figure 14). At z = 1.2 the shifts are further reduced, amounting to less than a tenth of a

percent across a wide range of bias values prior to reconstruction and essentially vanishing post

reconstruction. These shifts would be well-within the margin of error of both current and next-

generation surveys like DESI [65], especially post-reconstruction, suggesting that nonlinearities

(e.g. higher bias) in the power spectrum should not hinder accurate recovery of the BAO signal.
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Figure 12. Comparison of Zeldovich with IR-resummed linear theory (RWiggle) for reconstructed and

unreconstructed spectra at z = 0 and ν = 0 and 0.5 with b1 = 0.5 using Rec-Sym with higher biases

set to zero. RWiggle slightly under-predicts damping at high k (but see footnote 14), especially for the

unreconstructed power spectra.

On the other hand, the value of the linear bias, b1, was significantly affected by the choice of

broadband model, with fits from the empirical model deviating from the true value by more than

five percent in many cases.

9 Conclusions

Baryon acoustic oscillations (BAO) are an important probe of fundamental physics and a prime

focus of upcoming surveys such as DESI [65] and EUCLID [66]. The BAO features act as a

“standard ruler” whose cosmological evolution is largely immune to astrophysical effects but

whose signal-to-noise ratio is lowered by nonlinear structure formation. BAO reconstruction

attempts to sharpen the BAO signal by removing some of the nonlinear smearing due to large

scale displacements [2]. In this paper we develop an analytical model, within the Lagrangian

perturbation theory framework, to study the algorithm for density-field reconstruction proposed

in ref. [2]. Linear Lagrangian perturbation theory (the Zeldovich approximation) provides an
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Figure 13. The z = 0 Zeldovich power spectrum at ν = 0.5, before and after reconstruction using Rec-

Sym, shown with and without contributions from the quadratic bias and shear biases when (b1, b2, bs) =

(5, 20, 10). For comparison, the RWiggle prediction is shown in the diamond points, and the isolated b2
contributions are shown as a black dot-dashed line multiplied by a factor of five. For the unreconstructed

spectrum, the b2 contributions (with shear bias set to zero) can be seen to be essentially out-of-phase

with the linear theory wiggles and induce a phase shift in the power spectrum. These contributions are

greatly reduced in the reconstructed spectrum. The shear contributions, on the other hand, are more-or-

less in phase with linear theory and unchanged by reconstruction. For completeness, we have also plotted

contributions from a possible derivative bias b∇2 , which modulate the amplitude of the wiggles in a manner

growing with wave number.

excellent description of these nearly linear displacements and BAO smoothing pre-reconstruction

[28, 37], making LPT a promising arena within which to model the effects of reconstruction.

We develop a self-consistent framework with which to calculate the two-point statistics of

galaxies, employing a consistent set of parameters to fit the power spectrum and correlation

functions, pre- and post-reconstruction in real and redshift space. The broad validity of such

LPT models allows for joint fits to the pre- and post-reconstruction two-point statistics enabling

e.g. a fit for redshift-space distortions and the linear growth rate, fσ8, simultaneously with Alcock-

Paczynski distortions constrained by BAO analyses [16]. Based on ref. [50], we derive explicit

formulae, to calculate the redshift-space power spectrum within the Zeldovich approximation,
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Figure 14. Shifts in the recovered isotropic BAO scale, αBAO, in redshift space fit using a model with

only b1 nonzero and polynomial broadband contributions in both the monopole and quadrpole, when truth

is given by the Zeldovich approximation with nonzero quadratic bias. Values of b1 and b2 were chosen

according to the peak-background split, while values for bs were taken from ref. [64]. (Left) Shifts in the

BAO scale at z = 0. Fitting with the empirical model results in only sub-percent shifts across a wide range

of halo masses, which are further more than halved after reconstruction. The solid and dashed lines show

the shift with and without the quadratic shear bias bs, whose effect is subdominant to b2. (Right) The

same shifts calculated at z = 1.2. Even prior to reconstruction, fitting with the empirical model results in

less than a tenth of a percent shift in the BAO scale over a wide range of biases; after reconstruction the

shift due to nonlinear bias becomes essentially zero.

both pre- and post-reconstruction, as an infinite series of spherical Bessel transforms. Our model

updates the developments for the reconstructed correlation function in ref. [16], and is – as far

as we are aware – the first model of reconstruction to include a consistent set of bias terms up

to quadratic order, including shear and derivative biases. We show that the oscillatory behavior

induced by the quadratic density bias, b2, are out of phase with the linear BAO feature and

greatly reduced post-reconstruction, while those due to the quadratic shear bias, bs, are in-phase

and essentially unchanged. In addition, we show that each multipole moment of the reconstructed

power spectrum should be, to lowest order, corrected for by a set of three counterterms each,

which perturbatively correct both nonlinear smoothing and broadband power.

We compare our analytic predictions with N-body data from the DarkSky simulation [1] at

z = 0, focusing on halos between 12.5 < log10(M/M�) < 13.0. Our base model, involving only b1
and b2 and appropriate counterterms, jointly fits the pre-reconstruction real-space power spectrum

and redshift-space monopole out to k = 0.4hMpc−1, and the quadrupole out to k = 0.2hMpc−1,

reproducing the oscillatory BAO wiggles in the data with high fidelity. Our model with the same

bias parameters performs equally well in configuration space around the BAO scale, though we

found it necessary to correct for a large excess in large-scale power encountered in the DarkSky

data. Utilizing the same values for the bias parameters but allowing counterterms to vary, we find

that our model performs similarly in real space post-reconstruction for smoothing scales R = 15

and 20h−1Mpc, reproducing both the oscillatory features and broadband past k = 0.2hMpc−1,
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but fails to reproduce the oscillatory features when R = 10h−1Mpc, likely due to the fact that we

have worked to lowest order and at z = 0 displacements on that scale are significantly nonlinear.

We point out a less severe feature in the residuals at k = 0.1hMpc−1 that diminishes with larger

smoothing scales which we believe arise from higher order terms and caution that neither our

calculation nor the standard reconstruction algorithm take these into account. A more complete,

iterative reconstruction scheme (e.g. ref. [20]) may reduce these features. The modeling of these

nonlinearities, and possible remedies, are beyond the scope of this paper, but as an exploratory

example we calculate the effects of one possible nonlinearity due to the mapping between Eulerian

and Lagrangian coordinates in Appendix E.

Our model also predicts the multipole moments of the redshift-space power spectrum and

correlation functions in both of the redshift-space schemes (Rec-Sym and Rec-Iso) we consider.

This is critical in order for it to be applied to data, since the most constraining BAO measurements

are performed in redshift space. The model provides a good fit to the monopole and quadruople

moments of P (k) measured in DarkSky in both the Rec-Sym and Rec-Iso schemes for smoothing

scales of R = 15h−1Mpc or larger (at z = 0). Again, for smaller smoothing scales the Zeldovich

model differs from the N-body results (as expected). These effects would be smaller at higher

redshift, where the theory is more likely to be applied.

Finally, there exists an extensive literature studying the modeling of reconstruction and the

BAO signal, and we compare our model to several existing alternatives. One popular technique,

based on ref. [8], is to separate the power spectrum into a smooth “no wiggle” component and an

oscillatory “wiggle component,” and to damp the latter by an exponential factor fit to simulations

while supplementing the former with a polynomial in wavenumber to fit the broadband power.

This technique can be more rigorously derived as a particular resummation of the nonlinear contri-

bution of long-wavelength modes much like our Zeldovich calculation itself [26, 61], in which case

the damping parameters can be derived theoretically. When the “wiggle” components are isolated

we find that the latter is in excellent agreement with our Zeldovich calculation, particularly after

reconstruction. In Appendix D we re-derive the IR-resummed “wiggle” power spectrum (RWig-

gle) directly within our Zeldovich framework, updating the exponential damping for the cross

term P ds. We highlight that our Zeldovich framework naturally encompasses broadband effects,

while methods depending on wiggle/no-wiggle splitting might be subject to additional systematic

offsets and biases. These could originate from the fact that the wiggle/no-wiggle splitting is not

unique, and thus relies on correctly predicting the broadband or extracting the corresponding

wiggle part from the data to high accuracy. On the other hand, the Zeldovich framework correctly

captures broadband power over a large range of scales in addition to reproducing the oscillatory

features in the reconstructed power spectrum. In fits to N-body data, we show how counterterms

correct the sharpness of the BAO feature and broadband power simultaneously and consistently.

Moreover, our model goes beyond linear bias to include quadratic density and shear bias, which

we show contribute oscillatory terms to P (k) that vary independently in amplitude and phase.

We close by noting a few avenues for future work. An obvious extension of our model is to

include nonlinearities arising both from gravitational clustering and the reconstruction itself (e.g.

Appendix E). The former may be most easily included in the context streaming models [36, 50],

wherein the real-space modifications due to reconstruction and those proportional to the growth

rate f can be separately treated as modifications to the statistics of the galaxy density and galaxy
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density-weighted velocities, respectively, and which in addition have the advantage of resumming

biased contributions to redshift-space distortions as well as nonlinear redshift-space phenomena

like fingers-of-god. It is, however, not a-priori obvious which type of nonlinearity will present the

most significant corrections. Other fruitful avenues would be to investigate the impact of wrong

parameters on reconstruction (e.g. refs. [27, 46]) or to update the present treatment to newer

reconstruction techniques. Finally, one could investigate the utility of our model for upcoming

surveys like DESI [65] or Euclid [66]. These surveys will operate at higher redshifts where our

calculations should perform even better, and our model will be a natural arena in which to

understand the effects of highly biased tracers and the effects of cosmic evolution (e.g. evolving

b and σ8) on the BAO feature measured in broad redshift bins.

We have publicly released our codes for configuration9 and Fourier10 space reconstruction,

with the hope that they will be useful to other researchers. We have checked that the Hankel

transform of the Fourier space code agrees, term by term, with the configuration space code to

better than 1%, except very close to zero crossings.
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A Cross-spectra correlators

In this appendix we give analytic expressions for the two-point functions required to calculate

cross-spectra, which are slightly different from those required to calculate the auto-spectra more

commonly seen in the literature.

The two-point function for the Lagrangian displacement between two species separated by

Lagrangian distance q is given by

Aabij (q) = 〈Ψa
iΨ

a
j 〉+ 〈Ψb

iΨ
b
j〉 − 2〈Ψa

i (q2)Ψa
j (q1)〉 ≡ Xab(q) δij + Y ab(q) q̂iq̂j (A.1)

where

Xab(q) =
2

3

∫
dk

2π2

[ 1

2

(
P aaL (k) + P bbL (k)

)
−
(
j0(kq) + j2(kq)

)
P abL (k)

]
Y ab(q) = 2

∫
dk

2π2
j2(kq)P abL (k). (A.2)

9https://github.com/martinjameswhite/ZeldovichRecon
10https://github.com/sfschen/ZeldovichReconPk
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Note that for cross spectra Xab(q) does not in general vanish as q → 0. Similarly we have

U bi = 〈∆ab
i δ0(q2)〉 ≡ U b(q)q̂i, Uai = 〈∆ab

i δ0(q1)〉 ≡ Ua(q)q̂i (A.3)

where

Ua(q) = −
∫
dk k

2π2
j1(kq)P amL (k) (A.4)

and P am is the linear theory cross spectrum between tracer a and matter, and the corresponding

expression for U b follows by direct substitution.

Finally, the non-scalar shear correlators are given by

V ab
i = V a(q)q̂i, Υa

ij = Xa
s2(q)δij + Y a

s2(q)q̂iq̂j (A.5)

where the functions of q are given by

V a(q) = 2

∫
dk k

2π2
P amL (k)

[ 4

15
j1(kq)− 2

5
j3(kq)

] ∫ dk k2

2π2
PmmL (k) j2(kq) (A.6)

and

Xs2(q) = 4(J a3 )2, Ys2(q) = 6(J a2 )2 + 8J a2 J a3 + 4J a2 J a4 + 4(J a3 )2 + 8J a3 J a4 + 2(J a4 )2 (A.7)

where following refs. [36, 37] we have defined

J a2 =

∫
dk k

2π2
P amL (k)

[ 2

15
j1(kq)− 1

5
j3(kq)

]
(A.8)

J a3 =

∫
dk k

2π2
P amL (k)

[
− 1

5
j1(kq)− 1

5
j3(kq)

]
(A.9)

J a4 =

∫
dk k

2π2
P amL (k) j3(kq). (A.10)

The remaining scalar shear correlators, ζ and χ12, are identical to those found in evaluating the

auto-spectrum, and we refer readers to refs. [36, 37].

B The pre- and post-reconstruction Zeldovich propagator

In this appendix we give expressions for the normalized cross-spectrum between the initial and

final or reconstructed field. This is essentially a correlation coefficient, though it is also referred to

as the propagator [67]. Specifically we define Ga(k) = 〈δ0(−k)δa(k)〉/〈δ0(−k)δ0(k)〉, within the

Zeldovich approximation, which quantifies the extent to which a tracer field a is (de)correlated

with the initial density δ0, and apply our results to derive the reconstructed field. Our results

generalize those in ref. [14] to include halo bias.

As defined, the propagator Ga is a special case of the cross spectrum and can be evaluated

using Equation 2.4 by assuming that the linear field δ0 is a tracer b with displacement Ψb = 0 and

bias functional F b = δ0, such that any Lagrangian two-point functions involving the displacement

Ψb (e.g. U b) or higher biases (e.g. bb2) vanish identically. Unlike in the conventional case, however,
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F b does not have a zero order piece equal to unity— we can thus compute our result directly by

taking the derivative of Equation 2.4 with respect to bb1 with the above assumptions. This gives

PL(k)Ga(k) =

∫
d3q eik·q e−k

2Σ2
aa/4

[
ikiU

a
i + ba1ξL

]
= e−k

2Σ2
aa/4

(
P am(k) + ba1P

mm(k)
)
, (B.1)

where we have used that

Aa0
ij (q) = 〈Ψa

iΨ
a
j 〉 ≡

1

2
Σ2
aaδij , (B.2)

only receives “half” of the zero-point contribution c.f. the power spectrum (where 〈ΨbΨb〉 6= 0).

Note that all higher bias contributions vanish. The generalization to the redshift space field can

be straightforwardly accomplished by multiplying by appropriate factors of Rij in the numerator,

though we will focus on real space in this appendix as RSD introduce an equally important but

parallel form of decorrelation into the problem.

From the above results, the reconstructed-field (δrec = δd − δs) propagator can be written as

Grec = Gd −Gs, where

Gd(k) =
e−k

2Σ2
dd/4
(
P dm(k) + b1P

mm(k)
)

PL(k)
, Gs(k) =

e−k
2Σ2

ss/4P sm(k)

PL(k)
, (B.3)

where the various linear spectra are defined as in Equation 4.6. The real-space post-reconstruction

propagator is then

Grec(k) = e−k
2Σ2

dd/4 [(1− S(k) + b1] + S(k)e−k
2Σ2

ss/4. (B.4)

The expression for Grec helps to quantify how much of the decorrelation between the initial

conditions and the final field arises due to bulk motions, and the manner in which this can be

restored by the standard reconstruction algorithm. Roughly speaking, reconstruction reduces the

decorrelation from the full matter Σ2 to Σ2
dd past the smoothing scale for the matter piece, with

the correlation at low k close to unity assuming that the damping due to Σ2
ss there is negligible.

C Integrals for redshift space distortions via direct Lagrangian expansion

In this section we describe how to perform the three-dimensional integrals that occur when

calculating redshift space power spectra in the Lagrangian formalism.

C.1 Angular Integrals

Calculations in Lagrangian perturbation theory frequently require evaluating integrals of the form

I
(n)
` (A,B) =

1

2

∫ 1

−1
dµ µ2`+neiAµ+Bµ2 . (C.1)
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These integrals can be conveniently expressed as infinite sums of spherical Bessel functions [50, 68],

e.g.

I
(0)
` =

(−1)`eB

B`

∞∑
n=0

U(−`, n− `+ 1,−B)
(−2B

A

)n
jn(A)

I
(1)
` = i

(−1)`eB

B`

∞∑
n=0

U(−`, n− `+ 1,−B)
(−2B

A

)n
jn+1(A)

I
(2)
` =

(−1)`eB

B`

∞∑
n=0

[
U(−`, n− `+ 1,−B) +

n

B
U(−`, n− `,−B)

] (−2B

A

)n
jn(A), (C.2)

where U(a, b, z) denotes the confluent hypergeometric function of the second kind.

C.2 Direct Lagrangian Expansion: Mi

Calculating the power spectrum in redshift space within the Zeldovich approximation requires a

few extra steps when compared to the calculation in real space due to the line-of-sight dependence

of RSD. In the following two sections we extend the two methods presented in ref. [50], Mi and Mii,

to include bias terms up to quadratic order. These two methods correspond, roughly speaking,

to active and passive transformations in Fourier space via Rij = δij + fn̂in̂j , respectively. For

the general case, we found Mii to be somewhat more convenient, and will therefore offer only

a cursory description of Mi, except for a special case involving the displaced-shifted field cross

spectrum in Rec-Iso.

In Mi, the (halo auto-) power spectrum in redshift space is given by

Ps(k) =

∫
d3q eik·q−

1
2
kikjA

s
ij

[
1 + 2ib1kiU

s
i + b21ξL + ...

]
, (C.3)

where the superscript s denotes tensor quantities transformed by Rij , e.g. U si = RijUj . Each

quantity in the above integral can be written in terms of scalar functions and dot products between

three unit vectors (q̂, k̂ and n̂) whose angular structure underlies redshift space distortions; these

are, in particular,

n̂ · k̂ = ν, q̂ · k̂ = µ, q̂ · n̂ = µν +
√

1− µ2
√

1− ν2 cosφ, (C.4)

where φ is the azimuthal angle in a polar coordinate system where the zenith is given by k̂ and

the plane φ = 0 is spanned by k̂ and q̂. The effect of the transformation R can then be captured

by how the usual tensor basis q̂i, δij , etc. is affected:

kikjδij → kikjRinRjn = k2
[
1 + f(2 + f)ν2

]
(C.5)

kiq̂i → kiRij q̂j = kµ
[
1 + fν2 + fν2γ(µ, ν) cosφ

]
, (C.6)

where we have defined γ(µ, ν) =
√

1− µ2
√

1− ν2/µν. The azimuthal dependence of Asij requires

us to calculate polar-coordinate integrals of the form [50]

In(f, µ, ν) =

∫ 2π

0

dφ

2π
e−

1
2
k2Y (α2γ cosφ+α3γ2 cos2 φ)µ2(γ cosφ)n (C.7)
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where α2 = 2fν2(1 + fν2) and α3 = f2ν4. These can be calculated as analytic power series in µ

by taking derivatives of the identity

Iφ (α, β, µ) =

∫ 2π

0

dφ

2π
eαµ
√

1−µ2 cosφ+β(1−µ2) cos2 φ =
∞∑
`=0

F`(α, β)
(
α2µ2/β

)`
(C.8)

where

F`(α, β) =
∑̀
m=0

Γ(m+ 1
2)

π1/2Γ(m+ 1)Γ(1 + 2m− `)Γ(2`− 2m+ 1)

(
−β

2

α2

)m
×M

(
`− 2m; `−m+ 1

2 ;
α2

4β

)
M

(
m+

1

2
;m+ 1;β

)
and M(a, b, z) are hypergeometric functions of the first kind. Each term proportional to µn can

in turn be evaluated as a spherical Bessel transform as in Equation C.2.

A simplified but demonstrative example of this calculation can be found in the calculation

of the displaced-shifted cross spectrum in redshift space reconstruction via Rec-Iso. The H0
`

expansion in Equation 4.16 is essentially Equation C.8 in the limit where β → 0. To proceed from

Equation 4.16, we can use the identities in C.1 and refactor the resulting double sum over n and

` to get

P (ds)(k) = e−
1
2
k2(α0Σ(dd)2+Σ(ss)2 ) 4π

∞∑
n=0

∫
dq q2ek

2(1+fν2)(X̃ds+Ỹ ds)
(−2kỸ ds

q

)n
(1 + fν2)n[

K(0)
n (q)jn(kq)− b1kUd(q)K(0)

n (q)jn+1(kq)− 1

2
b2k

2Ud(q)2K(2)
n (q)jn(kq) + · · ·

]
(C.9)

where the redshift-space kernels are given by

K(0)
n (q) =

∞∑
`=0

(
− fν

√
1− ν2

1 + fν2

)`
H`(A) U(−`, n− `+ 1,−B)

K(2)
n (q) =

∞∑
`=0

(
− fν

√
1− ν2

1 + fν2

)`
H`(A)

[
U(−`, n− `+ 1,−B) +

n

B
U(−`, n− `,−B)

]
and, as before, A = k2fν

√
1− ν2 Ỹ ds and B = k2(1 + fν2) Ỹ ds. Deriving these kernels for the

other terms is entirely analagous11.

C.3 Direct Lagrangian Expansion: MII

An equivalent approach to rotating each Lagrangian displacement Ψ by R is to instead passively

transform the Fourier basis by RT, such that the wavenumber is given by Ki ≡ Rijkj . Defining

µ = K̂ · q̂ as the angle between the transformed wave vector and Lagrangian separation q, we

11The mater contribution was given in ref. [50].
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have the dot products

K ·K = k2
(
1 + f(2 + f)ν2

)
K̂ · n̂ = kν(1 + f)

n̂ · q̂ =
µν(1 + f)√

1 + f(2 + f)ν2
+
√

1− µ2

√
1−

( ν2(1 + f)2

1 + f(2 + f)ν2

)
cosφ

k · q = kq
(
cµ− s

√
1− µ2 cosφ

)
, c =

1 + fν2√
1 + f(2 + f)ν2

, s =
fν
√

1− ν2√
1 + f(2 + f)ν2

. (C.10)

The power spectrum in this frame is then simply given by substituting K for k in the real space

expression; e.g. the term in the exponential can be written in terms of the vector K as

− 1

2
kikjA

s
ij = −1

2
kikjRilRjmAlm = −1

2
K`KmA`m. (C.11)

In redshift space, unlike in real space, the Fourier product k ·q requires azimuthal angle integrals

due to the appearance of cosφ in the final line of C.10; however, in Mii the azimuthal dependence

is factored entirely into the Fourier factor ik · q such that the φ integral can be performed

analytically:

Ps(k) =

∫
dq dµ q2 eikqcµ−

1
2
K2(X+Y µ2)

(∫
dφ e−ikqs

√
1−µ2 cosφ

) [
1 + 2ib1KiUi(q) + ...

]
= 2π

∫
dq dµ q2 eikqcµ−

1
2
K2(X+Y µ2) J0(kqs

√
1− µ2)

[
1 + 2iµ b1KU(q) + ...

]
. (C.12)

The remaining q and µ integrals can then be calculated using the usual combination of spherical-

Bessel decompositions and Hankel transforms with the help of the identity [50]:∫
dµ eiµA+µ2BJ0(C

√
1− µ2) = 2eB

∞∑
`=0

(−2

ρ

)m
G̃

(0)
` (A,B, ρ)j`(ρ) , (C.13)

where ρ =
√
A2 + C2 and the function G̃m(A,B, ρ) is given by

G̃(0)
m (A,B, ρ) =

∞∑
n=m

fnm

(BA2

ρ2

)n
2F1(

1

2
− n,−n;

1

2
−m− n;

ρ2

A2
),

2F1 is the ordinary hypergeometric function, and we have defined

fnm =
Γ(m+ n+ 1

2)

Γ(m+ 1)Γ(n+ 1
2)Γ(1−m+ n)

. (C.14)

In our specific case, ρ = kq, B = −K2Y/2 and A = kqc. Defining

In =

∫
dµ (iµ)neiAµ+µ2BJ0(C

√
1− µ2) ≡ 2eB

∞∑
l=0

(−2

ρ

)l
G̃

(n)
l (A,B, ρ)j`(ρ) (C.15)

such that In = I
(n)
0 (A) is the nth full derivative of I0 with respect to A, we have recursively

G̃
(n)
l =

dG̃
(n−1)
l

dA
+
A

2
G̃

(n−1)
l−1 . (C.16)
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The first two derivatives of G̃(0) are given by

dG̃
(0)
m

dA
=
∞∑
n=m

(BA2

ρ2

)n
fnm

[(2n

A
− 2nA

ρ2

)
2F1(

1

2
− n,−n;

1

2
−m− n;

ρ2

A2
)

+
(
− 2ρ2

A3
+

2

A

)(1
2 − n)(−n)

(1
2 −m− n)

2F1(
3

2
− n, 1− n;

3

2
−m− n;

ρ2

A2
)

]
(C.17)

d2G̃
(0)
m

dA2
=
∞∑
n=m

(BA2

ρ2

)n
fnm

(ρ2 −A2

ρ4

)[
(2m− 1− 4n(m+ 1)) 2F1(

1

2
− n,−n;

1

2
−m− n;

ρ2

A2
)

+ (1− 4n2 +m(4n− 2)) 2F1(
3

2
− n,−n;

1

2
−m− n;

ρ2

A2
)

]
. (C.18)

These are sufficient to calculate all terms up to quadratic order in the bias expansion. In our

fiducial cosmology at z = 0 and along the line of sight (ν = 1) we find that the sums in G̃m
converge at the sub-percent level within thirty summands.

From the above, contributions to the redshift-space Zeldovich power spectrum can be calcu-

lated using spherical Bessel transforms of the specific form

Ps(k) 3 4π
∞∑
`=0

∫
dq q2 e−

1
2
K2(X+Y )

(−2

kq

)`
G̃

(n)
` (kqc,−1

2
K2Y, kq) An(q) j`(kq), (C.19)

where the scalar function An are tabulated in Table 2.

An n = 0 n = 1 n = 2 ...

1 1 0 0

b1 0 2KU(q) 0

b21 ξL(q) 0 K2U(q)2

b2 0 0 K2U(q)2

b1b2 0 KU(q)ξL(q) 0

b22
1
2ξL(q)2 0 0

bs −K2Xs2(q) 0 K2Ys2(q)

b1bs 0 2KV (q) 0

b2bs χ12(q) 0 0

b2s ζ(q) 0 0

Table 2. Table of power spectrum contributions in Mii.

D Wiggle/No-Wiggle split

Most analyses of BAO data to date have employed empirical models for the post-reconstruction

power spectrum or correlation function often motivated by theoretical calculations and calibrated

to N-body simulations. Refs. [26, 61] showed that the analytic form of these empirical models can
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be interpreted within perturbation theory as a resummation of bulk displacements at the BAO

scale. In this appendix we re-derive their results within our Zeldovich calculation, updating the

scale dependences and redshift-space factors where appropriate.

Let us first examine the displaced-displaced cross spectrum in redshift space. Following

refs. [26, 61] we split the displacement two-point function into Addij = Add,nw
ij + ∆Add,wij , where

the no-wiggle and wiggle pieces are calculated by substituting Pnw and ∆Pw into Equation A.2.

Making the assumption that the latter, ∆Add,wij , is small enough as to be perturbative12, we can

Taylor expand the exponential in the Zeldovich integrand to get

P dd(k) =

∫
d3q e−ik·q−

1
2
KiKjA

dd,nw
ij

(
1− 1

2
KiKj∆A

dd,w
ij +O(k4Σ4)

)(
1 + 2ib1KiU

d
i (q) + ...

)
,

where we have used the transformed Ki = Rijkj to encode redshift-space effects. Given that

the no-wiggle spectrum reproduces the broadband scale dependence of the linear theory power

spectrum, we can think of the no-wiggle exponential as resumming the non-BAO component of

large scale bulk flows. Since the wiggle component contributes negligibly to the displacement

power in the perturbative limit, keeping only one power of the wiggle power spectrum in our

calculations serves to distinguish the effect of the IR bulk flows from BAO phenomena. The

two-point functions entering the bias terms can likewise be split into no-wiggle and wiggle pieces,

e.g. U(q) = Unw + ∆Uw, where again, roughly speaking, the former will contribute only to to

the broadband power while the latter will give rise to oscillatory behavior. Keeping the above

expression to order13 O(k2Σ2), and discarding terms that don’t contain any no-wiggle pieces, we

then have

P dd(k) 3
∫
d3q e−ik·q−

1
2
KiKjA

dd,nw
ij

(
− 1

2
KiKj∆A

dd,w
ij + 2ib1Ki∆U

d,w
i (q) + b21ξ

w
L (q) + ...

)
≈ e−

1
2
KiKjĀ

dd,nw
ij

∫
d3q e−ik·q

(
− 1

2
KiKj∆A

dd,w
ij + 2ib1Ki∆U

d,w
i (q) + b21ξ

w
L (q) + ...

)
where in the final line we have used the fact that the wiggle contributions will be confined

in support around the BAO scale (q ∼ 100 Mpc) and the non-wiggle pieces vary smoothly at

this Lagrangian separation, so we can pull the exponentiated no-wiggle contribution out of the

integral as an average. Following ref. [61], we have defined the quantity Ādd,nw
ij as the “average”

of the un-barred quantity over the support of the wiggle component; to zeroth order in the

approximation this is equivalent to evaluating Aij at the peak qmax of the support of the wiggle

feature. Neglecting any angular effects in ν = q̂ · k̂, which will enter at higher order in the wave

number, we further have that Ādd,nw
ij ' (Xdd,nw + 1

3Y
dd,nw)δij

14. Plugging in for the expression

12Taking the nonlinear scale to be given by k2nlΣ
2(z) ∼ 1, we have knl ∝ D−1(z), such that the peak magnitude

of kikj∆A
w
ij is roughly in the few tenths of a percent range for our reference cosmology independent of redshift.

13Note, however, that terms involving more powers of the wiggle displacement will be more suppressed than

those involving no-wiggle displacements.
14The factor of a third, included also in ref. [61] but not in ref. [26], comes from the angular average 〈q̂iq̂j〉 = δij/3.

This can be justified by noting that the integral

1

2

∫
dµ eikqµ−

1
2
k2µ2Y/2 = e−k

2Y/6j0(kq) +O(k4Σ4) (D.1)

We note, however, that this prescription is only approximate; for example, the same integral with an additional
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of K = RTk, with K2 = (1 + f(f + 2)ν2)k2, the wiggle contribution to the power spectrum is

then approximately

P dd(k)wiggle ≈ e−
1
2
K2Σ2

dd

[(
K̂ · k̂

)2
P dd,w(k) + 2b1

(
K̂ · k̂

)
P dm,w(k) + b21P

mm,w(k)
]

= e−
1
2
K2Σ2

dd
[
(1 + fν2)2(1− S(k))2 + 2b1(1 + fν2)(1− S(k)) + b21

]
Pw(k)

= e−
1
2
K2Σ2

dd
[
(1 + fν2)(1− S(k)) + b1

]2
Pw(k) (D.2)

where in the penultimate equality we have used the definition of the displaced field and defined

Σ2
dd = (Xdd,nw + 1

3Y
dd,nw)(qmax) to be evaluated at the peak of the wiggle displacements. This

recovers the form of the empirical model in ref. [26] when we take the Eulerian bias to be

bE1 = 1 + b1, and stick to the damping expansion approximation introduced in ref. [61]. Explicit

expressions for X and Y are given in Equation 4.9. Taking S → 0 in the above expression gives

the unreconstructed power spectrum within this approximation.

We can now derive the analytical form of the reconstructed power spectrum for Rec-Sym in

this approximation. Explicitly, we have

P dswiggle(k) = −e−
1
2
K2Σ2

ds

(
(1 + fν2)(1− S(k)) + b1

)
(1 + fν2)S(k)Pw(k) (D.3)

P sswiggle(k) = e−
1
2
K2Σ2

ds(1 + fν2)2S(k)2Pw(k). (D.4)

The Σ2
ab are defined as in the dd case. These are the same expressions as derived in ref. [26],

though we differ on the expressions for the Σ2
ab that are involved. Our expressions also agree

with those in refs. [19, 27] in the limit that qmax →∞, though we note that this limit doesn’t as

accurately capture the damping of the feature since it resums the IR displacements at q beyond

the BAO scale. Adding the three spectra together, we recover the Kaiser limit as k → 0, with

different damping factors entering at different scales via Σ2
ab. Note that in Rec-Sym the angular

dependence of the damping is identical in each piece and is encoded within the ν dependence of

K2.

The reconstructed power spectrum with Rec-Iso requires a few additional modifications. The

displaced-displaced auto spectrum is unchanged, and the shifted-shifted auto spectrum can be

calculated by setting f = 0 in all formulae, as noted in the main body of the text. However,

the ds cross spectrum requires more care, since the zero lag pieces do not transform equally.

In particular, direct inspection of the exact expression in Equation 4.16 shows that we should

instead define

− 1

2
k2Σ2

ds,iso = −1

2
k2

[
(1 + f(f + 2)ν2)Σ(dd) + Σ(ss) − 2(1 + fν2)

(
X̃ds +

1

3
Ỹ ds

)]
q=qmax

.

(D.5)

Note this expression differs in detail from that in ref. [26]. The cross spectrum is then instead

P ds,isowiggle(k) = −e−
1
2
k2Σ2

ds,iso
[
(1 + fν2)(1− S(k)) + b1

]
S(k)Pw(k), (D.6)

factor of µ in the integrand, relevant for the b1 contribution, would instead yield exp[−3k2Y/10] j1(kq) at lead-

ing order. In general, bias contributions with more angular dependence will be damped more. This effect is

automatically included in the full Zeldovich calculation.
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where the angular dependence is subsumed into the defintion of Σds,iso. Unlike Rec-Sym, the

damping factor in Rec-Iso is not captured by a single angular dependence.

We end this section with a discussion of the inclusion of higher bias terms and other corrections.

As seen in the main body of the text, higher bias terms b2 and bs, incorporated in our Zeldovich

calculation, contribute not only to the broadband but also serve to shift and smear the BAO

feature itself. It might thus be of interest to extend the above approximation to include also

these higher bias contributions. A potential avenue has been highlighted in ref. [26], although an

approach closer to our perturbative bias expansion could also be explored.

Finally, the calculation in ref. [26] included a derivative bias, b∇2∇2δ, as a proxy to estimate

the contributions of the higher bias operators. These derivative bias terms can easily be included

in the above expressions by substituting b1 → b1 + k2b∇2 . However, there is another context in

which such a term might arise in which it would differ across the three pieces dd, ds and ss: if

the smoothing due to the Σ2
ab’s as defined above do not accurately capture the IR bulk flows – for

example if the broadband properities of Pnw are slightly off – but differ by some perturbatively

small k2δΣ2
ab, the resulting correction could be corrected for by terms of the form c2

abk
2P ab,w(k),

where c2
ab would constants fit individually to dd, ds and ss. Such corrections are essentially

identical to the EFT corrections described in the text for the full Zeldovich calculation.

E Nonlinearities from the Lagrangian to Eulerian mapping

In standard density field reconstruction, each galaxy is shifted by a smoothed displacement field

χ evaluated at the galaxy’s current Eulerian position x = q + Ψ(q) (Equation 4.2). In the main

body of the text, we worked in the approximation that χ(x) ≈ χ(q), with the understanding

that nonlinear corrections would be suppressed by the smoothing scale ∼ Ψ/R. The goal of this

appendix is to flesh out this statement by explicitly computing the leading order corrections to

the reconstructed matter power spectrum due to the mapping nonlinearity in real space. For the

sake of brevity we will defer the effects of other nonlinearities, such as those arising from dynamics

or from translating between displacements and densities, to future work. Earlier treatments of

such effects in Eulerian perturbation theory can be found in refs. [17, 21].

Assuming that the shift field χ(q) defined in Lagrangian space is Gaussian, the displaced field

with mapping nonlinearities unsuppressed is given by

Ψ̃
d
i (q) = Ψd

i (q) + Ψn∂nχi(q) +
1

2
ΨnΨm∂n∂mχi(q) + ... ≡ Ψd

i + Ψ
(d,2)
i + Ψ

(d,3)
i + ... (E.1)

where we have kept the convention used in the main text to refer to the linear piece as Ψd =

(1−S) ∗Ψ, referring to the nonlinear field as Ψ̃
d

= Ψ(q) + χ(q + Ψ). For the remainder of this

appendix we will focus on corrections due to Ψ(d,2).15

15At one loop order all corrections due to Ψ(d,3) are degenerate with the counterterms in our model. To see this,

note that such corrections contractions with linear displacements, e.g.

〈Ψa
1,iΨ

(d,3)
2,j 〉 = 〈Ψm∂m∂nχj〉〈Ψa

1,iΨ2,n〉+
1

2
〈ΨnΨm〉〈Ψa

1,i∂n∂mχ2,j〉, a = d, s. (E.2)

Multiplied by the appropriate factor of − 1
2
kikj , the two pieces on the right hand side Fourier transform into

∼ k2P amL (k) and ∼ k2P asL (k), respectively, thus taking the form of our counterterms ∼ k2P ab(k).
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From the above,we can write the nonlinear displaced-displaced autospectrum as

P dd(k)− P ddZel(k) =

∫
d3q eik·q−

1
2
kikjA

dd
ij

(
exp

[
− 1

2
kikjA

dd,1−loop
ij − i

6
kikjkkW

dd
ijk

]
− 1
)

+O(P 3
L)

where we have defined

Add,1−loop
ij =

〈
∆

(dd,2)
i ∆

(dd,2)
j

〉
c

+ 2
〈

∆
(dd,1)
i ∆

(dd,3)
j

〉
c

W dd
ijk =

〈
∆

(dd,1)
i ∆

(dd,1)
j ∆

(dd,2)
k

〉
c

+ (121) + (211). (E.3)

as in the case of the nonlinear matter power spectrum (e.g. [38]). To calculate these we note that

〈Ψ(d,2)
i (q2)Ψ

(d,2)
j (q1)〉c =

〈 (
Ψn∂nχi

)
(q2)

(
Ψm∂mχj

)
(q1)

〉
c

= 〈Ψn(q2)Ψm(q1) 〉 〈 ∂nχi(q2)∂mχj(q1) 〉+ 〈Ψn(q2)∂mχj(q1) 〉 〈Ψm(q1)∂nχi(q2) 〉

and

W dd,112
ijk = 2

〈
Ψd

1,iΨ2,n −Ψd
iΨn

〉〈
Ψd

1,j∂nχ2,k

〉
+
(
i↔ j

)
(E.4)

where numerical subscripts refer to coordinates q1,2 as usual.

The mapping corrections to the cross spectrum P ds can be similarly calculated. In this case

we need the displacement correlators

Ads,22
ij =

〈
Ψ

(d,2)
i Ψ

(d,2)
j

〉
= 〈ΨnΨm 〉 〈 ∂nχi∂mχj 〉 (E.5)

where all expectation values are evaluated at a point since Ψs receives no nonlinear corrections

from the Eulerian-Lagrangian mapping and similarly

W ds,112
ijk =

〈
Ψs
i,1Ψ

s
j,1Ψ

(d,2)
k,2

〉
−
〈

Ψd
i,2Ψ

s
j,1Ψ

(d,2)
k,2

〉
−
〈

Ψs
i,1Ψ

d
j,2Ψ

(d,2)
k,2

〉
=
( 〈

Ψs
1,iΨ2,n

〉
−
〈

Ψd
iΨn

〉) 〈
Ψs

1,j∂nχ2,k

〉
+
(
i↔ j

)
(E.6)

to one loop order.

As might have been expected, the mapping corrections above all take the form of products of

displacement two point functions and their derivatives. Roughly speaking these corrections each

have amplitudes given by powers of the Zeldovich displacement Σ2 and wavenumber k capped at

R−1 by the smoothing filter; we can thus expect the corrections to enter at order (Σ/R)4. For a

15h Mpc−1 filter at z = 0 this amounts to a percent-level effect, with smaller effects at higher z.

Concretely, these two point functions can be calculated using

〈 ∂nχi(q2)∂mχj(q1) 〉 = Ass(q)(δijδnm + ... ) + Bss(q)(q̂iq̂jδnm + ... ) + Css(q)q̂iq̂j q̂nq̂m
〈Ψn(q2)∂mχi(q1) 〉 = Dsm(q)(q̂iδnm + ... ) + Esm(q)q̂iq̂nq̂m

〈Ψa
n(q2)∂mχi(q1) 〉 = Das(q)(q̂iδnm + ... ) + Eas(q)q̂iq̂nq̂m
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Figure 15. Nonlinear corrections to the reconstructed matter power spectrum due to the Lagrangian-

to-Eulerian mapping at one loop order, for z = 0 and R = 15 h−1 Mpc. The left and right panels show

contributions to the ds and dd power spectra, respectively. Even for the worst case of z = 0, the corrections

are never more than a few percent of the total reconstructed power spectrum, though they can become

larger than the constituent dd, ds spectra at large or small scales.

where the ellipses denote all distinct permutations and the scalar functions are given by

Ass(q) =
1

105

∫
dk k2

2π2

(
7j0(kq) + 10j2(kq) + 3j4(kq)

)
P ssL (k)

Bss(q) = −1

7

∫
dk k2

2π2

(
j2(kq) + j4(kq)

)
P ssL (k)

Css(q) =

∫
dk k2

2π2
j4(kq)P ssL (k)

Dab(q) =
1

5

∫
dk k

2π2

(
j1(kq) + j3(kq)

)
P abL (k)

Eab(q) = −
∫
dk k

2π2
j3(kq)P abL (k) (E.7)

where we have used the identification χ = Ψs. The remaining correlator 〈Ψ2,iΨ1,j 〉 is simply

minus the non-zero lag piece of Aij . Finally, when some or all of the displacement correlators in

each product are contracted at the same point, as for example in the first term in Equation E.4

and Equation E.5, the resulting contribution becomes proportional to k2Pab,Zel and degenerate

with the counterterms included in our model. The above corrections from the nonlinear Eulerian-

Lagrangian mapping are plotted at z = 0 for the smoothing scale R = 15h−1 Mpc in Figure 15.

As expected, even at z = 0 they are never more than a few percent of the total reconstructed

power, though interestingly they can become comparable or larger than the Zeldovich P dd and

P ds individually on scales where the Zeldovich spectra lose support. We caution that these curves

do not include comparable corrections due to bias or dynamical nonlinearities.
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We close with some general comments about nonlinearities in reconstruction. Firstly, the

mapping corrections enumerated above are not the only ones at one-loop order; by focusing only

on corrections due to Ψ(d,2) we have explicitly avoided the (13) contributions due to third-order

mapping corrections. Moreover, as this was an exploratory exercise with which to evaluate the

magnitude of mapping nonlinearities, we chose not to include the effects of bias, which would

require the inclusion of terms such as 〈δ2
1Ψ

(d,2)
i 〉, though these will be in general decomposable

into components much like those in Equation E.7. Finally, in addition to mapping nonlinearities,

by approximating the shift vector χ with the smoothed Zeldovich displacement we have ignored

nonlinearities induced by translating between the density field and displacements. We expect

these will be of similar importance to the mapping corrections but defer their evaluation for

future work, noting that only that both nonlinearities can be trivially reduced by pushing the

smoothing scale R deeper into the linear regime. That these effects are expansions in Σ/R

distinguishes them from nonlinear bias or dynamics.
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