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Abstract 

We calculate ab initio interaction potentials for electron-methane 

scattering and use them to perform converged scattering calculations for 

the electronically and vibrationally elastic rotational-state-to-rotational-

state cross sections at 10 eV,impact energy. The effective potential has 

static, local exchange, and polarization terms calculated from extended-basis­

set Hartree-Fock wavefunctions for both unperturbed and polarized methane 

molecules. The polarization potential includes nonadiabatic effects in the 

semiclassical local-kinetic-energy approximation, and for comparison we also 

perform calculations based on the adiabatic polarization potential. Five 

to twelve terms are retained in the angular expansion of the various parts 

of the interaction potential, and the coupled channels claculations involved 

41 total angular momenta, with 1-33 coupled channels for each. The resulting 

rotationally summed integral cross sections are in excellent agreement with 

recent experiments for scattering angles 40° and larger, but are larger than 

experiment at small scattering angles. The rotationally inelastic cross 

sections for the full potential are smaller than those for the adiabatic 

potential by about a factor of two. 



-1-

I. INTRODUCTION 

Most quantum mechanical calculations of electron-molecule scattering 

have been for linear molecules. In that case there are important simplifi-

cations in the calculation of the target wavefunction and effective inter­

action potential and in the solution of the scattering equations. 1 Burke 

2 et al. have developed a formalism for treating electron scattering by general 

polyatomic molecules in the fixed-nuclei approximation. The scattering ampli-

tudes of this method may be used to calculate state-to-state cross sections 

in the vibrational-rotational sudden approximation, which is expected to be 

a good approximation for non-dipole cases except near thresholds. In this 

article we present a laboratory-frame calculation for electron scattering by 

a· nonlinear molecule, namely methane. This has the advantage of yielding 

state-to-state cross sections directly. We make the rigid-rotator approximation 

and calculate differential and integral cross sections for pure elastic scat-

tering and for state-to-state rotational excitation processes. We use a: 

general formalism that takes full advantage of the Td symmetry of the rigid 

methane molecule. The calculations are carried out for an impact energy of 

10 eV. This energy is at the border of the low- and intermediate-energy 

regions; as far as computational difficulty this energy involves a compromise 

between the simplification of the rapid convergence of the sum over orbital 

angular momentum contributions at low energy and the greater validity at inter­

mediate and high energy of local approximations3 for the electron-target 

' exchange interactions. The border of low- and intermediate-energy is also 

a crucial one for testing approximations in the treatment of charge polarization 

(see next paragraph), and it allows for comparison to the experimental differ-

4 5 entia! cross section measurements of Rohr, Tanaka and coworkers, and 

6 Newell ~ al. and to the model potential calculations performed by Gianturco 
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7 8 and Thompson ' using a simple model potential and the formalism of Burke 

et al. 2 ' 9 
--

Although it has been demonstrated in previous work that nonempirical 

scattering calculations based on neglect-of-differential-overlap molecular 

orbital theory, local exchange approximations, and minimum-basis-set polar-

ization potentials can yield useful accuracy for e--N
2

, e--CO, e--c
2
H

2
, and 

- 10 e -co
2 

scattering at 10 eV and above, it. is also of interest to explore 

more ab initio treatments. In the present paper we again use local exchange 

approximations, but we calculate the static potential and the target density 

for the exchange potential by extended-basis-set Hartree-Fock calculations. 

Furthermore we approximate the effect of charge polarization in ~wo different 

way~: by an ab initio extended-basis-set adiabatic polarization potential 

VPa and also by the local-kinetic energy semiclassical polarization potential 

VPlke. The latter is an approximation11 to the true polarization potential, 

defined as the difference between the real part of the exact optical potential 

and the static-exchange potential. Plke . V is computat1onally convenient 

because it can be calculated from the ab initio static and adiabatic polar­

Pa ization potentials, and hence it provides a way to modify V to account for 

nonadiabatic effects. 

'• 
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II. SCATTERING ~HEORY 

In this section we present a laboratory-frame formalism for scattering 

of a structureless particle by a spherical top molecule with Td symmetry. 

12 It is very similar to the formalism used by Secrest and coworkers for 

Ar-CH4 scattering; however their formalism only took advantage of the T 

subgroup of Td. Furthermore we present our formalism in a general way so 

that it is reasonably clear how to modify it to treat the scattering of 

structureless particles by other nonlinear molecules having different sym-

metry point groups. 

The total wavefunction of definite total angular momentum J and projec-

tion M on the laboratory z-axis is expressed as 

JM ......... 
'¥ (r,G) = 

co amax(j) 

r 
a=l 

J ~ j -1 J . .JM " ...I> 
[. r f. n(r) Y~--n(r,G) 

R.= I J-jl Ja~ Ja~ 
(1) r 

j=O 

In practice, the close coupling approximation cuts off the sum over j at 

~ 

some finite j which is a decreasing function of J. The vector G specifies max 

the orientation (a, S, y) of the molecule with respect t.o the laboratory-frame 

axes, r is the distance from the center of mass of the rotor to the scattering 

electron, and r specifies the angular position (e,~) of the incident electron, 

again with respect to laboratory-frame axes. 
... ,._.~ 

The expansion coefficients 

f~ n(r) are the scattering particle radial wavefunctions. The total-angular-
Ja~ . 

momentum eigenfunction ~R.' where j is the rotational quantum number, a 

specifies a particular member of the degenerate set for a given j, and R. 

specifies the orbital angular momentum of the scattering particle, is defined 

in terms of rotor and projectile angular functions as 



.. 

! 
m.=-j 

J 
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(2) 

(All angular momentum where (tm1jmjjJM) is a Clebsch-Gordan coefficient. 

coupling coefficients are defined as in Edmonds. 13) ~jam. (a,B,y) is a rotor 
J 

wavefunction. The rotor wavefunctions for spherical tops are the rotation 

matrices13 Dj k(a,B,y) 
mj 

for the finite rotations specified by the Euler angles 
... 

a, e, and y, which are collectively denoted as G. In the rotor function m. 
J 

is the projection of j on the laboratory z axis, and k is its projection on 

the rotor z-axis. The spherical top rotor states have a degeneracy of (2j + 1)
2

, 

i.e., 

= Bj (j + 1) n;,.k (a, B,y) 
J 

(3) 

for ·-j ~ k < j and -j ~ mj ~ j, where B is the rotational constant; thus we 

may take any convenient linear combinations as our basis functions. We choose 

linear combinations that transform as the irreducible representations of the 

Td point group, i.e., 

1/J~~ (a,B,y) 
J j 

PJJ 1 PJJ j = A . hm l bJ. hk D m . k (a , B , y) 
J j k=-j J 

(4) 

where APJJ is a normalization constant, p specifies the symmetry (A
1

, A
2

, 
jhmj 

E, T1 , or T2), 1J specifies the component of the representation (JJ = 1 for A1 

and A2 , 1 or 2 forE, and 1, 2, or 3 for T
1 

and T2), and h specifies the h-th 

basis function of rotational quantum number j for a given p and p. Now the 

sum over a in (1) becomes a sum over p, JJ, and h. 

We will require the matrix elements of the interaction potential between 

total-angular-momentum eigenfunctions: 

J I "I ~ . .JM* ..... ..... ~ . .JM ..... V. "j' ,,,(r) = dr dGY~--,(r,G) V(r,G) y~-,- ,,,(r,G) 
Ja"- a "' Ja"- J a "' 

(5) 
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The interaction potential may be written as 

CXI 

-l ~ ~ 
V(r,G) = 1. (6) 

A.=O 

where i (>..) is max the number of Al basis functions with A. nodes in the a 

variable, and 

A. A. A. A.* s 
TA.i(9,<jl,a,8,y) = I;; A. r r ai D (a,S,y) YA. (9,$) (7) 

s=-A. q=-A. q sq 

where t;;A. is a phase factor chosen as 

{+1 
even A. 

I;; A. = (8) 
-i odd A. 

so that VA.i(r) is always real, and A. 
is chosen so that TA.i(a,q,,a,S,y) a. 

~q 

transforms under the symmetry operators of the Td point group according 
A 

to the A1 irreducible representation. Thus, for any a,q,, if S reorients 
-l 

the rotor (i.e., G) according to a symmetry operation of Td, then 

s TA.i (9,<jl,a,8,y) = (+l)TA.i (a,q,,a,S,y) (9) 

Of course one can also hold the rotor fixed at a= 8 = y = 0, for which 

A. D (0,0,0) = o , and reorient the scattering particle (i.e., a,q,). Equation sq sq 

(9) holds for this kind of symmetry operation too. The latter i.t)-_~erpretation 

A. 
provides a more convenient method for deriving the coefficients a. , and 

~q 

they have been derived by Altmann and Crackne1114 in this way. Their choice 

of axes corresponds to reflections in the xy, xz, and yz planes all being 

symmetry operators; to be consistent with this we let a= S = y = 0 correspond 

to "H "" yH = zH < 0 when "H' yH, and zH are the cartesian coordinate of one 

of the hydrogen atoms. For this choice the required coefficients can be 
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obtained from the following expression 

{-t m = 0 

= :m712 
R. (10) a gm 

m :/: 0 m 

-i where a is the quantity tabulated by Altmann and Cracknell for the g-th 
m 

component for a given R. of the A1 representation. Note there is a sign error 

. -11 l.n a2 in their Table I(a); the correct value is -0.66536331. 

Substituting (2), (4), (6), and (7) into (5) yields 

A 
A A* .... p'JJ' -[ L a. D (G)] ljl.'h' {G) 

q=-A J.q sq J mj, 
(11) 

... 
According to the discussion above [first interpretation of Sin eq. (9)], 

15 . -the quantity in brackets has A1 symmetry; therefore the integral over G 

is proportional too ,o ,. Thus the problem is block diagonal in p and JJ. 
PP JJJJ 

We restrict our attention in the rest of this paper to the case where 

the rotor is initially in the ground rotational state. This state is non-

degenerate with A1 symmetry, hence we can rigorously restrict our basis set 

to rotor functions with A
1 

symmetry. For convenience, for A
1 

basis functions, 

we rewrite (4) in the normalized form 

where 

ljljhm. (a,S,y) 
J 

= N. eikmax{j,h)n/4 
J 

k (. h) max J, 

~ 
(12) 

k = -km~x (j , h) 

(13) 



.. 

-7-

where k (j,h) is the highest value of k for which ahjk is nonzero. Using max 

basis function (12), the matrix element (11) becomes 

VJJ"hnj'h'n'(r) = N.N., exp[i(k' -k )1r/4] L r r r 
~ ~ J J max max 

mR. mj mR., mj , 
r r r r r r 
R. i s k k' q 

* 
J 

A mR. A s A m f A J ~ j* .. A.* ~ j f ~ 
drYR. (r)YA.(r)YR.,(r) dGDm.k(G)Dsq(G)Dm.,k(G) 

J J 

The in.tegral over r can be done in terms of 3j symbols using equations (2.5.6) 

13 ~ 
and (4.6.3) of Edmonds, and the integral over G can be done in terms of 3j 

symbols using his equations (4.2.7) and (4.6.2). This yields 

V~hij'h'R.'(r) = Nj---f 8'1T
2

[(2.1!.+1)(2R.' +1)(2A.+l)/4'1T]~. 
q 

m +m -s-k-qc U') ( 1 A. 
X (-1) .\!. j 

0 0 0 -m s 
R. 

A. A. 

1') 
m' 

R. 

(14) 

X C. ~.'.) ( ~k j') (15) 
-s -q k' 

J J 

where the--- denotes that the beginning of the right-hand side·~s the same 

as in the previous equation. This expansion may be further simplified by 

introducing a 6j symbol as defined in eq. (6.1.5) of Edmonds, i.e., 



J 
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= (-1)J+R.+R.' 8n2 N. N~ exp[i(k' -k )n/4] 
J J max max 

x [(21+1)(21'+1)/4n]~ L 1';).(2).+1)~ 
). 

x L (-1) -k aj I j' I (-1)-q ). 

'lt'k' aiq k hk k' q 

c ). j') 
X 

-q k' 
(16) 

This expression simplifies for ). = 0, hence it can be rewritten in the following 

convenient form· 

J 
vjhij 1 h 1 1 1 (r) 

(17) 

where 

B~hR.j'hiR.';).i = (-l)J+). exp[i(k~ax-kmax)n/4][(21+1)(21 1 
+1) 

X (2). + 1) (2j + 1) (2j I+ 1) /4n]~ I;A 

c R.' :){:. R. 
J l. I -k j 

X (-1) ahk 
0 j I ).j k 

j I c· j') 
X I ah 1 k 1 I (-1)-q a~ (18) 

k' 
l.q k' q -k -q 

in which we replaced Nj and Nj by their corresponding expressions and per-

(
R. ). R-

1
) (i i 1 

).) muted the 3j symbol 
0 0 0 

to 
0 0 0 

. The selection rules associated 

.. 
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with the 3j symbols in eq. (18) restrict the number of nonzero matrix elements 

as follows: 

max(jj' -jj ,ji' -tl) <A< min(j' +j,R.' +R.) (19) 

R. + R.' +A =even (20) 

and 

k' - k - q = 0 (21) 

The potential matrix is symmetric and real. Its reality is ensured by 

the proper phase factor chosen above, namely r,;, exp[i(k' - k )1T/4]. 
1\ max max 

Notice that according to the conventions adopted here the spherical average 

~ of the potential becomes v
01

(r)/(4n) , not v01 (r). 

Substitut;ing equations (1)-(3) and (12) into the complete Schrodinger 

equation and requiring 

..;3, • .JM* ,. ~ JM ~ _. I dr I dG Yj'h'R.'(r,G) (H-E)'¥ (r,G) = o 

yields the close coupling equations 

where 

"fi2 d2 J t 2
k: J 

[-2m dr2 + vjhR.jhR.(r) - ~]fjhR.(r) = 

k: = (2m/i12) [E - Bj (j + 1)] 
J 

t 
j'h'R.' 

(23) 

VJ ' ' fJ ( ) 
j hR. j I h t .Q. 1 \ r) j I h I .Q. 1 r 

.. , .. 

(25) 

and E is the total energy. These equations are to be solved subject to the 

usual scattering boundary conditions to yield the transition matrix elements 

J 
TjhR.j'h'R.'. From these the differential and integral cross sections dojj 1 /dQ 

. 16,17 and o .. , may be calculated by the formulas of Blatt and B1edenharn and 
JJ 

the momentum transfer cross sections may be calculated by 

1T 

= 21T I 
0 

d6 Sin 6 (1 - COS 6) dO,. I /dQ 
JJ 

(26) 

(24) 
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To the extent that the interaction potential for the rigid rotator approxi-

mates that for the vibrationally averaged rotor the electronically and vibra-

tionally elastic total cross sections may be obtained by summing over j' for 

j =0. The resulting cross sections will be called the vibrationally elastic 

m cross sections and labelled da0/dn, a
0

, and a0 . 

The restriction to A1 symmetry states greatly reduces the number of 

channels that couple to the ground state. The number of channels that must 

be considered is further reduced by parity. The parity of a channel state 

"+1 
defined by (2) and (12) is (-l)J • The parity of the ground-state channel 

is thus (-l)J. The resulting savings are summarized in Table I. For typical 

low-j values the number of channels that must be considered is (j +1), as 

compared to the degeneracy of (2j +1) 2 for a given j if neither symmetry 

nor parity is considered. The last column of Table I is actually the maximum 

number of channels that must be considered and applies in the large-J limit. 

At low J the number of channel functions is further restricted by the triangle 

inequality 

(27) 

We would like to emphasize the enormous savings that are achieved by 

considering both symmetry and parity conservation, as compared to the 

case when only parity is considered. For example, for J=3, the number of 

channels for j =11 is reduced from 562 when only parity is considered max 

to 33 when the full symmetry of CH4 is considered. This reduction in the 

number of channels corresponds to a savings of a factor of about 5 x 103 

in computer time. 
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III. CALCULATION OF THE INTERACTION POTENTIAL 

For all calculations the C-H bond distance is fixed at 2.0441 a
0

, which 

is the optimum value at the Hartree-Fock level for the basis set of Scanlon 

et a1. 18 
--

The present calculations were performed using an extended basis set 

including polarization functions and diffuse functions. This basis set was 

chosen by analogy to the nitrogen and water molecules, for which we had pre-

viously made extensive comparisons of polarization potentials and polariza-

bilities calculated with various basis sets. The basis chosen for CH
4 

is 

denoted (12,8,3/8,3)/[9,7,3/7,3] in the usual notation. This basis was 

obtained by starting with the Huzinaga (11,7) carbon basis19 and contracting 

the first four s functions with the atomic ls coefficients and the first two 

p functions with the sp coefficients. Diffuse s and p functions were added 

by geometric expansion. Valence 3d polarization functions were added with 

i 1 (1 50 35) k f D .. ld 20 d . h exponent a parameters · • , • ta en rom van u~Jneve t, an anot er 

polarization function was added with an exponential parameter (0.08) optimized 

' 21 for the polarizability of methane by Werner and Meyer. For hydrogen we used 

H . ' 22 f i i h h f" d 1 . d"ff uz~naga s sevens unct ons w t t e ~rst two contracte p·us a ~ uses 

function obtained by geometric expansion. Three p functions with exponential 

parameters 1.8, 0.6, and 0.2 were also added. The value 0.2 is ·faken from· 

21 Werner and Meyer and the other functions have parameters differing by 

factors of 3 and 9. Putting these functions together yields 122 primitives 

and 112 contracted functions, which are combined into canonical orthonormal 

orbitals. To avoid linear dependency, onlj 111 of the canonical orthonormal 

orbitals are kept for the final calculations. 
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The wavefunctions, all the polarization potentials, and many of the 

static potentials were calculated on a CDC 7600 computer using the program 

MDHONDo. 23 The rest of the static potentials were calculated on a VAX 

computer using a slightly modified version of the NYU gaussian properties 

24 program. 

S ~ ~ SPa~·~ 
The static and adiabatic polarized potentials V (r,G) and V (r,G) 

are defined elsewhere. 25 In particular they represent the interaction of 

a negative test charge with the unperturbed and fully relaxed target charge 

clouds, respectively. 

The adiabatic polarization potential is then defined by 

(28) 

E~~ 
The energy-dependent exchange potential V (r,G,E) was calculated from the 

static target density by the semiclassical exchange approximation3 

..... ~ 
where p(r,G) is the electronic charge density of the unperturbed target. 

The adiabatic model overestimates the polarization effect, even at low 

impact energies, because the scattering electron is speeded up by the field 

of the target and the target polarization does not have enough time to respond 

fully to the scattered ·charge. We attempt to account for this effect by the 

11 local-kinetic-energy semiclassical polarization model presented elsewhere. 

In this model the polarization potential is 

(30) 

where ~ is the effective excitation energy, T
1 

(~,G) is the local kinetic 
oc 

energy 

.. 
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..a .A SE ........ 
T1 (r,G) = E - V (r,G,E) oc 

SE _. _. 
and V (r,G,E) is the static-exchange potential 

SE .... ~ S ~.... E ~ ~ 
V (r,G,E) = V (r,G) + V (r,G,E) 

" The total potential used in the scattering calculations is the sum of 

SE -' _.. . Pa _. _. Plke _,. -"' 
V (r,G,E) and e~ther V (r,G) or V ~r,G,E). 

(31) 

(32) 

The effective excitation energy is most readily evaluated by the method 

used by Slater and Kirkwood26 for approximating the dispersion interaction 

between two atoms or molecules. This yields27 , 28 

where N 1 is the number of electrons in the outer shell of the molecule and 
va . 

ad is the static dipole polarizability. Using N 1 =8 and the most accurate va 
28 available value for ad yields ~ = 18.52 eV, which is somewhat higher than 

the ionization potential (12.98 eV) • 29 

... -The actual orientation (r,G) at which the potentials were calculated 

are most conveniently specified in relative coordinates (x,~X). These are 

values of (9,~) when G is chosen to put one C-H bond on the positive z axis. 

Then the region to be covered by actual calculations is 0 ~ x ~ 4T and 

0 .=:. ~X < 60°. Here T is one eighth the HCH bond angle and equal~, .. l3.68°. 

Values of x and ~ outside the region all correspond by symmetry to a value 
X 

within the region. The static and exchange potentials were calcu~ated for 

twelve different orientations (x,~) = (0,0), (2T,0), (2T,60), (4T,0), 
X 

(4T,60), (0.5T,30), (T,30), (2T,30), (3T,0), (3T,30), (3T,60), and (4T,30) 

for each of 26 values of r in the range 0.1-6.4 a0 and for the first five 

of these orientations for each of three values of r in the range 10-30 a0 • 

Additional calculations at (T,O) and (T,60) were carried out for r = 1.0-3.1 a0 • 
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The adiabatic polarization potential was calculated for the first five orienta-

tions for each of 19 values of r in the range 0.1-30 a
0

• These values are 

used to generate a combined analytic and spline representation of the full 
...l -1. 

potentials (SEPa and SEPlke) for all (r,G) as described in the next section. 

At large r the adiabatic polarization potential has the asymptotic form 

3 Using the calculated values at r = 30 a0 yields ad = 15.9 a0 , which may be 

28 3 compared to the accurate value of 17.27 a
0

• The difference of 8% is 

probably ~ue mainly to correlation effects. 

·. 
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IV. FITTING THE POTENTIAL 

For computational purposes we write the potential in three parts 

(34) 

where 

eeE ~ ~ ee ~ .... E ....i ~ 
V (r,G,E) = V (r,G) + V (r,G,E) (35) 

ee ... ... en ....i .... 

V (r,G) and V (r,G) are the electron-electron and electron-nucleus parts 

P ~ ~ Pa _. .... Plke ~ .... 
of t~e static potential, and V (r,G,E) denotes either V (r,G) or V (r,G,E). 

The electron-nucleus part of the static potential may be calculated 

analytically as the sum .of five coulomb interactions. If the coordinates 

of the hydrogen atoms when ex=: B = y = 0 are denoted (R,9Hk'q,Hk), then the 

expansion of this contribution in symmetrized harmonics is given by 

where 

and 

(I) 

ven(~,G) = L 

en 
VA.i(r) = 

A.=O 

i (A.) 
max 

I 
i=l 

41T 
2A. + 1 

r< = min (r,R) 

en ~ 
VA.i (r) TA.i (9,1jl,G) 

A. = 0 

A. :/: 0 

.. , .. 

(36) 

(37) 

(38) 

r = max (r,R) (39) 
> 

In practice the sum over A. must be truncated at A. • We found that the sum max 

is very slowly convergent to the sum of the five coulomb interactions, espe-

cially for the electron near a hydrogen nucleus. However the addition 

or deletion of a few higher-A. terms has only a small effect on the scat­

tering. For example the T matrix eleme11ts for J = 0 differ by only 0.5-2% for 
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calculations with ~ = 13 and 11, which correspond to 12 and 9 terms in max 

the expansion respectively. Thus for all production runs we set ~ = 13. 
max 

eeE ~ ~ 
V (r,G,E) was calculated by subtracting the five coulomb interactions 

SE ..... ~ 
from V (r,G). It was expanded as 

~ max 
I 

~=0 

i (~) 
max 

I 
i=l 

eeE ~ 
Vki (r,E) T~i (6,<j>,G) 

by retaining N terms on the right side of (40), substituting N values of 

eeE ~ .... 
V (r,G,E), and solving the resulting N simultaneous equations for the 

ee~ 
first N of the V~i (r,E). We tried various sets of N points and found 

that an optimum set must be chosen carefully for an accurate expansion. 

For N too small the sum is not well converged; for N too large or for the 

(40) 

~ ~ eeE 
wrong choice of (r,G) values, the V~i (r,E) are inaccurate, presumably because 

eeE ~ ..... 
the differences between some of the included V (r,G,E) become relatively 

small and sensitive to small numerical errors. For the final fits we chose 

N = 5 (~ = 7) for r = 0.1-1.0 a
0 

and 3.1-6.4 a
0 

and N = 8 (~ = 10) for max max 

r=l.3-2.8 a
0

• The N=5 set was (x,<PX) = (0,0), (2T,O), (2T,60), (4T,O), 

and (4T,60), and the N=8 set consisted of these points plus (3T,0), (3T,60), 

and (4T,30). A measure of the accuracy of the resulting representation 

was obtained by using the truncated sums of equation (40) to calculate 

VeeE(~,G,E) at points other than the ones used to generate the components 

eeE 
VAi (r,E). These checks indicate that the present representation is accurate 

to 1% or better for r ~ 1.6 a
0 

and r > 2.5 a
0

, with a worst error of less 

than about 5% occurring for the case where the electron is close to an H. 

eeE 
Each resulting V~i (r,E) for ~ = 0-7 is represented by the analytic 

form 
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_ _x X A dX X+l 
V"~i (r,E) = cAi r + Air (41) 

. h E f 0 1 b 14 d 1· f. 30 f 0 1 2 044 w~ t X = ee or r ~ • a
0

, y a -no e sp ~ne ~ t or r = • - . a
0

, 

where there is a cusp, by another 14-node spline fit for r= 2.044-7.0 a
0

, 

.. and by 

(42) 

and 

(43) 

for r 2:. 7.0 ao. 
eeE The VA (r,E) components with A= 8-10 are set equal to zero 

for r ~ 1.0 a
0 

and r 2:. 3.1 a
0

; each of these components is represented by a 

s.:..node spline fit for r = 1.0-2.044 ao and by a 6-node spline fit for r = 2.044-

3.1 ao. 

The adiabatic polarization potential was expanded as 

A 
max 

I 
A=O 

i (A) 
max 

I (44) 
i=l 

with A =7. max 
Pa 

Each component V A.i (r) is represented by (41) with X= Pa for 

r ~ 0.1 a
0

, by a 17-node spline fit for r = 0.1-7.0 a
0

, and by 

X X X 
aOlAOl BOl COl 

4 +6+-7 
2r r r 

=-

" and 

Ax Bx 
V~a;(r) Ai A.i 

I\... = A.+2 + A+4 
r r 

with X= Pa and A~~= (4~)~ for r ~ 7.0 a
0

. 

cally averaged static dipole polarizability. 

3 culated value of 15.9 a
0

• 

.. , .. (45) 

(46) 

The parameter aOi is the spheri­

For the fit we used our cal-
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. SE ..... ..... Pa ~ ~ Plke _. _. 
Using the above fits to V (r,G,E) and V (r,G) we calculated V (r,G,E) 

at the eight (x,~) values (0,0), (2T,O), (2T,60), (3T,O), (3T,60), (4T,O) 
X 

(4T,30), and (4T,60) and fit it by 

A max 
I 

A=O 

i (A) 
max 
r 

i=O 
V~1l.ke(r,E) T (8 ~ ~G) 

1\ Ai ''~'' 

with A = 10 for all r. max The 8-term expansion has much larger relative 

Plke ~..... eeE ~ ~ 
errors for V (r,G,E) near the nuclei than it has for V (r,G,E), but 

(47) 

SE ~ ~ Plke .......... 
these errors are not very important because V (r,G,E) dominates V (r,G,E) 

..J. 

there. Checking the values produced by (47) at (e,~,G) values not used 

for the fit indicates that the error in fitting VPlke(~,G,E) is at most 

SE .......... 
about 2% of V (r,G,E). 

Plke 
The components VAi (r,E) were represented by (41) with X = Plke for 

eeE r ~ 0.1 a
0

, by a spline fit with the same nodes as for VAi (r,E) at r = 

0.1-7.0 a0 , and by (45)-(46) with X= Plke and A~ike = (41T)~(l+E/t.)-l at 

r::. 7.0 ao. 
Various aspects of the interaction potentials are illustrated in Figures 

1-5. Notice that the adiabatic (Pa) and local-kinetic-energy nonadiabatic 

(Plke) polarization potentials differ substantially for r = 0-4 a0 for all 

three directions of approach shown in Figures 1-3; however, the static-exchange 

part of the effective potential dominates the polarization part at short and 

intermediate r, so differences between the SEPa and SEPlke are usually less 

than about 20%. Larger differences occur in the tail region where the polar-

ization potential domin~tes; in these regions the SEPa effective potential 

is higher than the SEPlke one by as much as 35%. The A components of the 

potentials, Figures 4 and 5, show cusps at the C-H bond distance. The cusp 
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in the spherical average is not a very significant feature, but it is quite 

distinct for A= 3 and all the higher A's. 

.. , .. 
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V. NUHERICAL SOLUTION OF THE CLOSE COUPLING EQUATIONS 

In order to solve the close coupling equations, the Minnesota Numerov 

31 code (MNN, version 80-lOA) was used to compute T matrix elements for total 

angular momenta ranging from J = 0 to J = 40. Convergence of the numerical 

solutions was carefully checked for all integration parameters. The starting 

point of the numerical integration was increased gradually from R
0 

= 10-5 a
0 

for J = 0 to R0 = 20 a0 for J =40. The criterion used for large J (J ~ 11) was 

RO = (!I. • /2) a0 m1.n 

where !I. • is the minimum relative angluar momentum in any of the coupled 
m1.n 

channels. The ending point of the integration varied from R = 30 a
0 

for max 

J = 0 to R = 100 a
0 

for J = 40. The first 4 steps were carried out with max . 
-5 an optimized initial stepsize of 5 x 10 a

0
, then the stepsize was controlled 

by a variable-stepsize algorithm31 with a parameter DELTA. For J ~ 10 the 

stepsize was allowed to increase according to the algorithm with no constraint, 

and it grew as large as 0. 4 a0 in some cases. For J ~ 11, an upper limit 

of 0.064 a
0 

had to be enforced to insure good convergence since at large J 

the solutions become quite sensitive to the accuracy of the large-r integration. 

The convergence of the solutions relative to the parameter DELTA was monitored 

for J=O, 1, 3, 13, 20, and 30, and DELTA was chosen for other J by general-

izing this experience. -8 A typical converged value was DELTA = -1.5 x 10 • 

There has been interest recently in comparing the performance of various 

numerical integration schemes for the solution of coupled channel scattering 

equations. The hybrid variable-interval variable stepsize VIVAs 32 has been 

judged by Thomas et a1. 33 to be the most generally efficient code. We made 

a careful comparison of the efficiency of our Numerov code to that of the 
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34 VIVAS code (our version 82-2) for the present problem. We carefully opti-

mized both codes to obtain the most efficient integrations consistent with 

1% accuracy in the first row of the T matrix. Both codes were optimized 

with respect to initial and maximum stepsizes and the starting and ending 

points of the integration. MNN was also optimized with respect to DELTA; 

VIVAS was also optimized with respect to the switchover from the log derivative 

(LODG) method35 at small r to the variable-interval variable-step (VIVS) 

36 
method at large r, with respect to the number of steps per interval in 

VIVS, and with respect to the parameter TOFF that controls the stepsize at 

which perturbation corrections of the wavefunction and its derivatives are 

made in VIVS. The parameters were optimized for a 2-channel J = 0 run and 

then re-optimized for a 4-channel J = 30 run. The optimized parameters for 

J = 0 were also used for a 10-channel run and the resulting T matrix elements 

in the first row still agreed to 1%. The computation times for these runs 

are shown in Table II. We conclude that the efficiencies -of the two codes 

are the same within a factor of about 1.7; this is consistent with the con-

33 37 
elusion reached by Thomas et al. for an electron-N

2 
test case. Since 

the MNN code has less parameters to optimize we .found it to be·more convenient, 

and we used MNN for the production runs. 
.., .. 
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VI. RESULTS 

The rotational close coupling calculations were carried out using the 

laboratory-frame formalism of section II. In this scheme, a basis set of 

rotational-orbital quantum numbers is determined by specifying a maximum 

total angular momentum J and for every J a maximum rotational quantum max 

number jmax· The centrifugal sudden de-coupling index n defined by38 

{ 
IJ- j I 

n = R. - max 
J 

was assigned a maximum value n = 2 for J !! 4, but for J = 0-3 it was not max 

(48) 

restricted beyond the limitations imposed by jmax· Convergence with respect 

to nmax was checked at J = 3 and jmax = 11 and at J = 10 with jmax = 7. The 

first row T matrix elements changed by only 0.5-2.0% as n was changed max 

from 2 to 3 and by 1.0-3.0% as n was changed from 2 to ~, with the least max 

errors made in the largest elements. Thus the limitation on n causes max 

negligible truncation error in these tests. These tests are actually more 

strict than required for our procedure since we always converge with respect 

to jmax at a given nmax· 

In order to illustrate the overall degree of convergence relative to 

J , j , and the number of channels N, results for the SEPa potential max max 

will be presented for three basis sets (to be called I, II, and III). The 

maximum rotational angular momentum quantum numbers j , the number of max 

channels N, and the CPU time on the VAX 11/780 computer are tabulated for 

each total angular momentum J or range of J. The criterion for constructing 

basis III was that the larger first-row T matrix elements are converged 

to 1% or better and that relative errors in less important first-row elements 

do not exceed 3%. The other bases are used only for demonstrating convergence. 



-23-

Assuming that the molecule is initially in its electronic and rotational 

ground state, the first-row T matrix elements obtained from the numerical 

solution of the coupled differential equations were used to compute state-

to-state rotationally elastic and inelastic integral cross sections aOj'' 
m doOj' 

momentum transfer cross sections oOj'' and differential cross sections· dn (e). 

These cross sections were summed over :t' (j' = 0-11) to obtain the (electronically 

and vibrationally elastic) 
do0 
dn (e), respectively. 

m rotationally summed cross sections o
0

, a
0

, and 

State-to-state and vibrationally elastic differential cross sections 

obtained using the 3 bases of Table III are given in Table IV for the SEPa 

potential and all three scattering bases at 4 scattering angles, and in 

Tables V and VI for the SEPa and SEPlke potentials and basis III at 21 scat-

terirtg angles. Basis III is our largest and consequently most converged 

basis set. The SEPa and SEPlke rotationally elastic (j = 0, 0-+ 0) and the 

largest rotationally inelastic (0 + j ') differential cross sections are 

compared in Figure 6; while the rotationally summed differential cross 

. 4-6 
sections are compared in Figure 7 toeach other, to experiment, and to 

other theoretical results. 8 

In Table VII, the SEPa integral and momentum transfer cross sections 

obtained using the 3 bases are compared to one another and to th~· correspo~ding 

SEPlke cross sections obtained with basis III. Table VIII gives the partial 

wave contributions q
1 

to the integral state-to-state and rotationally summed 

cross sections. Elastic and momentum transfer cross sections are compared 

. 5,39,40 d h h . 7,41 . T bl IX to exper1ment an to ot er t eor1es 1n a e • Finally, in 

Table X we compare the various experimental5 ' 6 and theoretical8 values of 
do

0 
the ratio of dn (e) 

basis III. 

do 
to d~(e' =/: 0); our own results in this table are for 
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The two previous theoretical studies to which we compare are those 

of Buckingham et al. 41 and Gianturco and Thompson.
8

' 9 Buckingham et al. 

made a spherical average of the proton field to CH4 to obtain central-field 

SCF orbitals. They then calculated the integral cross section by phase 

shifts for the resulting static potential. The Gianturco-Thompson calcula-

tion is more in the spirit of the present results. However it is less com-

plete in several ways. Instead of an exchange potential they used an ortho-

gonalization procedure. Instead of an ab initio polarization potential 

they used the spherical approximation given by 

p 4 ' 6 
V (r) = -(a/2r ){1 - exp[ -(r/r

0
)]} (49) 

Both the form of (49) and the parameter r
0 

were chosen by comparison of the 

scattering results to experiment. In the expansion of the static potential 

they used 5 terms as compared to 8 or 12 terms for parts of the present 

potential. They used a body-frame treatment of the scattering involving 

four symmetries with 5 coupled channels each. A converged body-frame 

treatment, which would be equivalent to a converged space-frame treatment 

such as employed here, would involve five symmetries and more coupled 

channels per symmetry. 

..., .. 
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VII. DISCUSSION AND COMPARISON TO EXPERIMENT 

Tables IV and VII show that the rotationally summed SEPa differential, 

integral, and momentum transfer cross sections are converged to better than 

1.5% in most cases. The convergence of the state-to-state integral cross 

sections for j' ~ 7 and the state-to-state differential cross sections for 

j' ~ 3 is not as good, but we note that_the worse relative errors occur in 

comparatively small state-to-state cross sections, and the convergence of 

the important cross sections is acceptable. We also note that the j = 0 

~ j' = 10 or 11 cross sections were of negligible mangitude and poorly con-

verged, hence we chose not to report them in any of Tables IV-VIII. 

As discussed at the end of section IV, the differences between the 

SEPa and SEPlke effective potentials are not large. Nevertheless, the 

' 
scattering is quite sensitive to the choice of potential, especially for 

low total angular momenta (J = 0-3). This is most clear in the partial 

cross sections of Table VIII and in the changes in the cross sections of 

Gianturco and Thompson when their empirical parameter is changed by only 

0.04 a0 ; these changes are illustrated in Table X. Tables V-VIII and Figures 

6 and 7 all illustrate that the rotationally summed cross sections are less 

sensitive to the choice of potential than are the individual state-to-state . 

cross sections. The nonadiabatic SEPlke potential is the theoretically 

best justified one, and the results for the SEPa potential are presented 

only for reference and to test how important the nonadiabatic corrections 

are. It is encouraging therefore that Figure 7 shows the SEPlke results to 

be in excellent agreemPnt with the experimental rotationally summed differ-

entia! cross sections. This agreement is also exhibited in the ratios of 

differential cross sections in Table X. The SEPa results are also in quali-

tative agreement with experiment, but the agreement is definitely worse than 
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than for the SEPlke results. While the rotationally summed cross sections 

for the two potentials are similar, Tables V-VIII and Figure 6 show that 

SEPa scattering is much less elastic. Both the agreement of rotationally 

summed cross sections with experiment and the theoretical reasonableness 

of the model favor the SEPlke results. Thus the SEPlke results are the 

final predicted values of this study, and in particular we believe that 

the SEPlke rotationally inelastic cross section of 10.5 a~ is a more reliable 

prediction than the SEPa rotationally inelastic cross section of 23.3 a~. 

No experiments that resolve j' are available yet for CH
4

• 

The proper choice of the potential deserves a further comment. Although 

it is well established in the literature42 that the adiabatic polarization 

potential is too attractive, there have been only a few studies that incoi-

porate nonadiabatic effects in a nonempirical way. Since the target does 

not have infinite time to respond to the field of the incident electron, 

and since the time available depends on the local kinetic energy of the 

incident electron, a realistic local approximation to the polarization 

potential should be explicitly energy dependent. However the usual practice 

has been to use energy-independent empirical cutoff parameters· to account 

for nonadiabatic results. Not only is this practice unsatisfactory from 
., .. 

a fundamental point of view, but also the scattering results can be very 

sensitive to the parameter. Table X shows that the ratio of the differential 

cross section at 60° to its value at 120° computed by Gianturco and Thompson 

changes by nearly an order of magnitude when the parameter r
0 

is changed 

by 9.5%. In previous work10 we have successfully used semiempirical minimum-

basis-set calculations to compute polarization potentials, and we have obtained 

good scattering results for a variety of systems at several energies. The 
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minimum-basis-set restriction in these calculations mimics the nonadiabatic 

effects by not letting the target completely relax to its minimum energy 

configuration. The present treatment involves a less empirical procedure 

for diminishing the adiabatic response of the target,. namely the semi-

classical local-kinetic-energy approximation derived from- a formal expansion 

. . 11 
of the exact optical potent1al. As d~scussed in the previous paragraph, 

it is gratifying that this ab initio model is so successful. 

It is mentioned above that the largest differences between the scat-

tering results for the adiabatic and nonadiabatic potentials are in the s, 

p, d, and f waves. The last column of Table VIII shows that d-wave scat-

tering dominates for both potentials, contributing 76% for the SEPa potential 

and 61% for the SEPlke potential; this accounts for the d-wave dominated 

shapes of the rotationally summed differential cross sections in Figure 7. 

Pure d-wave scattering would have local minima at 55° and 125° and a local 

maximum at 90°. The results for the SEPa potential actually show two local 

minima and a local maximum, but in the experimental results and SEPlke results 

the first local minimum is replaced by a shoulder due to the larger contri-

butions from other partial waves. The SEPlke results also show a deeper 

local minimum than the SEPa results at large angles, and again this is in 
.. , .. 

better agreement with the most recent experiments. These shape features 

of the differential cross sections are summarized in Table X, which shows 

that our SEPlke results are within the experimental range for the shape of 

the differential cross section at 40°-120°. This table also shows the great 

sensitivity (mentioned above) of the Gianturco-Thompson results to small 

variations in their empirical parameter. (The value of this parameter used 

for Figure 7 was chosen to maximize agreement with experiment.) This great 
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sensitivity of the shape of the rotationally summed differential cross 

section makes the good agreement of the present nonempirical SEPlke results 

even more satisfying. 

The comparisons of integral cross sections in Table IX are harder to 

interpret because the experimental result of Tanaka includes an extrapolated 

contribution from the small-angle scatt~ring that they did not measure. 

5 The error estimate of the integral cross section given by Tanaka et al. 

and given in Table IX is stated by them to include only the uncertainty 

due to the precision of their individual measurements of da
0

/dn. It does 

not include the other errors that affect their value of a
0

, in particular 

the quality of the fit and the extrapolation used to compute a
0 

by integration. 

Their extrapolation would appear to be particularly sensitive to error in 

this case because of the large (38%) uncertainty at 10 eV of their differ-

ential cross section at the smallest scattering angle (30°) for which they 

measured it. A further indication of the uncertainty of the 30° measure-

ment is provided by the 30/90 column of Table X; this column shows a large 

5 discrepancy between the measurement of Tanaka et al. at 30° and their fit 

at this angle. The uncertainty in the small-angle experimental differential 

cross section and in the extrapolation of this cross section to compute 

the integral cross section explains why the SEPlke differential cross section 

agrees bettern with Tanaka et al.'s5 measurement than the SEPlke integral 

cross section agrees with the integral cross section they calculated from 

their measurements. Nevertheless it is disturbing that the present calcula-

tion of the integral cross section also exceeds the recent direct measurement 

of Barbarito et al. Both Barbarito et al. 's 40 value and Tanaka ~ al. 's5 

value are considerably lower than the values obtained in the older (1927-1930) 
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measurements reviewed by Kieffer. 39 The comparison to reference 40 may 

indicate that the forward peak in the elastic differential cross sections 

predicted by both potentials studied here is too large. 

In summary, we have presented an ab. initio calculation of electron­

methane cross sections at 10 eV using energy-dependent local potentials. 

We have used the full molecular symmetry of the target to reduce the number 

of coupled channels in the scattering calculations. The calculated differ­

ential cross sections for the effective potential based on the nonadiabatic 

semiclassical local-kinetic-energy polarization potential are in good agree­

ment with experimentally measured results for electronically and vibrationally 

elasti,c scattering for a wide range of scattering angles (40°-140°). The 

results are consistent with the importance of nonadiabatic effects even at 

low energy• It remains an open problem to resolve the apparent discrepancy 

in the calculc.-tec and. apparent· experimental cross sections for small scat­

tering angles (e ~ 30°). 

.. , .. 
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Table I. Decomposition of the rotational basis in Td symmetry 

. number of terms number of A1 number of channel . 
functions with in potential j rotational symmetry A1 and (with A1 symmetry) basis functions parity (-l)J 

0 1 0 1 1 

1,2 0 1,2 0 0 

3,4 1 3,4 2j + 1 j+1 

5 0 5 0 0 

6-11 1 6-11 2j + 1 j+l 

12 2 12 so 26 

13,14 1 13,14 2j + 1 j+l 

... , .. 

.... ~ . 
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Table II. Comparison of efficiences of close coupling codes 

eigenphase cpu 

J 
no. of code sum time 

channels (mod 1r) (s) a 

0 2 VIVAS 2.6598 24 

NNN 2.6599 24 

0 10 VIVAS 2 .• 9392 75 

MNN 2.9397 126 

30 4 VIVASb 6.535 X 10-4 60 

MNN 6. 538 X 10-4 40 

aCentral processor unit time (in seconds) for execution in double 
precision on the University of Minnesota Chemistry Department 
Digital Equipment Corporation VAX 11/780 computer. 

b In this case the optimum mode of operation of the VIVAS code 
was to use the VIVS method over the whole region of integration . 

.. , .. 

. 
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Table III. Basis sets for electron-methane scattering 

Basis I Basis II Basis III 
J . 

CPU CPU CPU . 
. (J) jmax(J) Jmax N (min) N (min) jmax(J) N (min) 

0 12a 10 3.5 12a 10 3.5 13b 12 11.9 

1 11 17 13.5 11 17 13.5 -12a 19 40.9 

2 10 22 26.6 10 22 26.6 11 25 41.4 

3 9 25 28.4 10 29 64.3 11 33 66.7 

4c 9 19 7.4 10 24 15.8 11 28 27.0 

5 9 20 8.5 10 22 10.9 11 27 22.0 

6 9 24 16.0 9 24 16.0 10 27 22.3 

7 8 23 14.1 8 23 14.1 9 27 21.8 

8 6 13 3.7 7 18 9.0 8 24 19.7 

9 6 13 4.1 7 18 9.8 8 24 20.8 

10 6 13 4.1 6 13 4.1 7 18 9.6 

11-19 6 13 45.0 6 13 45.0 6 13 45.0 

20 4 8 1.9 4 8 1.9 6 13 5.7 

21-29 4 8 18.0 4 8 18.0 4 8 18.0 

30 0 1 0.4 3 4 0.7 4 8 2.0 
.. , .. 

31-35 0 0. 1 1.9 3 4 3.3 

36-40 0 0 0 1 2.0 

Total CPU 
195 255 380 . (min) 

aThis includes only the first j = 12 basis function, i.e., the one for which b~~k 
is nonzero for k = 0. 

bThis includes both j = 12 basis functions. 

cFor J .$. 3, there is no limit on the centrifugal sudden decoupling index n. For 
J ~ 4, n = 2. max 



2 Table tV, State-to-state and vibrationally elastic differential cross sections (a
0
/sr) at selected scattering 

e 
(deg) 

0 

60 

120 

180 

angles, using the SEPa potential. 

Basis 
j I= 0 

I 4.07(+1) 

II 4.09(+1) 

III 4.11(+1) 

I 2.26 

II 2.25 

III 2.26 

I 8.99(-2) 

II 8.70(-2) 

III 9.01(-2) 

I 1. 74 (+1) 

II 1.74(+1) 

III 1. 73(+1) 

3 

5.78(-4) 

6.63(-4) 

5.38(-4) 

1.12 

1.12 

1.13 

4.04(-1) 

4.05(-1) 

4.04(-1) 

5.05(-1) 

5.18(-1) 

5.14(-1) 

. 
' 

4 

1.04 

1.04 

1.04 

1.10 

1.10 

1.10 

1.11 

1.11 

1.11 

1.55 

1.55 

1.55 

do0j,/dn do0 

6 7 8 9 d'J 

7.62(-3) 8.15(-6) 6.94(-7) 4.80(-8) 4.17(+1) 

8.03(-3) 9.43(-6) 7.31(-7) 4.62(-8) 4.19(+1) 

8.18(-3) 9.18(-6) 8.21(-7) 4.51(-8) 4.22(+1) 

3.50(-3) 3.01(-4) 1.95(-6) 1.57(-7) 4.49 

3.70(-3) 3.21(-4) 2.10(-6) 1.68(-7) 4.48 

3.77(-3) 3.27(-4) 2.23(-6) 1.54(-7) 4.50 

1.30(-2) 4.54(-4) 2.48(-6) 
I 

2. 34(-7) 1.61 

1.35(-2) 4.85(-4) 2.60(-6) 2.57(-7) 1.61 

1.36(-2) 4.94(-4) 2.86(-2) 2.19(-7) 1.62 

3.48(-2) 1.34(-3) 4.26(-6) 2.52(-6) 1.95(+1) 

3.61(-2) 1.40(-3) 4.55(-6) 2.67(-6) 1.95(+1) 

3.63(-2) 1.43(-3) 4.91(-6) 3.27(-6) 1.94(+1) 

a I' •·c 

w 
~ 
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Table v. State-to-state and vibrationally elastic differential cross sections (a~/sr) at selected scattering 

angles, using basis III and the SEPa potential. 

e 
da0j,/dn da

0 

(deg) j' = 0 3 4 6 7 8 9 
d(l 

0 4.11(+1) 5.38(-4) 1.04 8.18(-3) 9.18(-6) 8.21(-7) 4.51(-8) 4.22(+1) 

5 3.69(+1) 1.65(-2) 1.04 8.12(-3) 1.34(-5) 8.16(-7) 4.74(-8) 3.79(+1) 

10 3.10(+1) 6.73(-2) 1.045 7.95(-3) 2.59(-5) 8.06(-7) 5.42(-8) 3.21(+1) 

15 2.57(+1) 1.49(-1) 1.05 7.68(-3) 4.59(-5) 7 .96(-7) 6.48(-8) 2.69(+1) 

20 2.08(+1) 2.57(-1) 1.06 7.32(-3) 7.26(-5) 7.97(-7) 7.81(-8) 2.22(+1) 

30 1. 27 (+1) 5.15(-1) 1.08 6.41(-3} 1.40(-4) 8.77(-7) 1.08(-7) 1.43(+1) 

40 6.80 7.75(-1) 1.09 5.40(-3) 2.14(-4) 1.13(-6) 1.35(-7) 8.67 

50 3.44 9.89(-1) 1.10 4.47(-3) 2.80(-4) 1.60(-6) 1.51(-7) 5.54 

60 2.26 1.13 1.105 3.77(-3} 3.27(-4) 2.23(-6) 11.54(-7) 4.50 
w 
V1 

70 2.35 1.17 1.10 3.48(-3) 3.49(-4) 2.88(-6) 1.42(-7) 4.62 

80 2.80 1.11 1.09 3.76(--3) 3.51(-4) 3.39(-6) 1.14 ( -7) 4.80 

90 2.72 9.73(-1) 1.075 4.79(-3) 3.46(-4) 3.62(-6) 7.65(-8) 4.78 

100 1.88 7.85(-1) 1.07 6.73(-3) 3.55(-4) 3.53(-6) 5.00(-8) 3.74 

110 7.07(-1) 5.82(-1) 1.08 9.67(-3) 3.99(-4) 3.21(-6) 7.62(-8) 2.38 

120 9.01(-2) 4.04(-1) 1.11 1.36(-2) 4.94(-4) 2.86(-6) 2.19(-7) 1.62 

130 9.30(-2) 2.86(-1) 1.17 1.83(-2) 6.44(-4) 2.70(-6) 5.45(-7) 2.41 

140 3.64 2.52(-1) 1. 26 2.34(-2) 8.39(-4) 2.88(-6) 1.08(-6) 5.17 

150 7.85 2.99(-1) 1.36 2.84(-2) 1.05(-3) 3.40(-6) 1. 79(-6) 9.54 

160 1.25(+1) 3.92(-1) 1.45 3.26(-2) 1.24(-3) 4.09(-6) 2.51(-6) 1.43(+1) 

170 1.60(+1) 4.79(-1) 1.53 3.53(-2) 1.38(-3) 4.68(-6) 3.07(-6) 1. 80(+1) 

180 1. 73(+1) 5.14(-1) 1.55 3.63(-2) 1.43(-3) 4.91(-6) 3.27(-6) 1.94(+1) 



table VI. 2 State-to-state and vibrationally elastic differential cross sections (a0/sr) at selected scattering 

angles, using basis III and the SEPlke potential 

e 
da0j,/dr. da

0 

(deg) j' = 0 3 4 6 7 8 9 
dn 

0 5.04(+1) 1. 22 (-4) 6.05(-1) 1.24(-3) 4.73(-7) 4.60(-7) 7.16(-9) 5.10(+1) 

5 4.73(+1) 5.58(-3) 6.05(-1) 1.22(-3) 1. 93(-6) 4.52{-7) 7.26(-9) 4.79(+1) 

10 4.22(+1) 2.25{-2) 6.05(-1) 1.19(-3) 6.21(-6) 4. 28(-7) 7.56(-9) 4.29(+1) 

15 3.68(+1) 4.92(-2) 6.05(-1) 1.13(-3) 1.30(-5) 3.93(--7) 8.05(-9) 3.74(+1) 

20 3.12(+1) 8.48(-2) 6.04(-1) 1.06(-3) 2.19(-5) 3.53(-7) 8.72(-9) 3.19(+1) 

30 2.06(+1) 1. 73(-1) 6.02(-1) 8.89(-4) 4.35(-5) 2.85(-7) 1.06(-8) 2.14(+1) 

40 1. 24(+1) 2.67(-1) 5.98(-1) 7.20(-4) 6.62{-5) 2.77(-7) 1.32(-8) 1.33(+1) 

50 7.32 3.50(-1) 5. 90(-1) 6.19(-4) 8.50(-5) 3.58(-7) 1.63(-8) 8.26 

60 4.85 4.02(-1) 5.80(-1) 6.63(-4) 9.75(-5) 5. 20(-7) 1.88(-8) 5.84 

70 3.88 4.10(-1) 5.69(-1) 9.40(-4) 1.05(-4) 7. 20(-7), 1.87(-8) 4.86 w 

"' 
80 3.27 3.70(-1) 5.55(-1) 1. 54(-3) 1.13(-4) 9.08(-7) 1.49(-8) 4.20 

90 2.36 2.93{-1) 5.42(-1) 2.53(-3) 1.31(-4) 1.06(-6) 1.08(-8) 3.20 

100 1.17 2.03(-1) 5.31(-1) 3.96(-3) 1.73(-4) 1.19(-6) 2.01(-8) 1.90 

110 2.51(-1) 1.30(-1) 5.23(-1) 5.83(-3) 2.49(~4) 1.37(-6) 6.97(-8) 9.10(-1) 

120 3.79(-1) 1. 03 (-1) 5.20(-1) 8.06(-3) 3.64(-4) 1.69(-6) 1.97(-7) 1.01 

130 2.10 1.41(-1) 5.25(-1) 1.05 (-2) 5.17(-4) 2.23(-6) 4.36(-7) 2.78 

140 5.46 2.45(-1) 5.38(-1) 1. 30(-2) 6.93(-4) 2.98(-6) 7.95(-7) 6.25 

150 9.86 3.95{-1) 5.57(-1) 1.53(-2) 8.72(-4) 3.86{-6) 1.24(-6) 1.08(+1) 
' 

160 1. 43 (+1) 5.54(-1) ~ 5.77(-1) 1. 72(-2) 1.03(-3) 4.70(-6) 1.68(-6) 1.54(+1) 

170 1. 76 (+1) 6.75(-1) 5.92(-1) 1.84(-2) 1.13(-3) 5.31(-6) 2.01(-6) 1.88(+1) 

180 1.88(+1) 7.20(-1) 5.98(-1) 1.88(-2) 1.17(-3) 5.53(-6) 2.13(-6) 2 .01(+1) 

.. 
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Table VII. Integral and momentum transfer state-to-state, rotationally inelastic, 

and vibrationally elastic cross sections 2 
(ao>· 

SEPa SEPlke 
,; j' 

Basis I Basis II Basis- III Basis III 
-. ,_ 

crOj' 0 5.83(+1) 5.82(+1) 5.81(+1) 8.34(+1) 

3 8.93 8.96 8.96 - 3.44 

4 1.42(+1) 1. 42(+1) 1.42(+1) 7.00 

6 1.23(-1) 1.28(-1) 1.29(-1) 6. 28 ( -2i) 

7 5.22(-3) 5.55(-3) 5.65(-3) 3.43(-3) 

8 2.99(-5) 3.17(-5) 3.43(-5) 1.75(-5) 

9 4.29(-6) 4.60(-6) 4.94(-6) 3.03(-6) 

10 4.52(-9) 1.03(-7) 1.54(-7) 1.07(-7) 

3-10 2.32(+1) 2.33 (+1) 2.33(+1) 1.05(+1) 

0-10 8.15(+1) 8.15(+1) 8.14(+1) 9.39(+1) 

m 0 4.49(+1) 4.49(+1) 4.48(+1) 5.68(+1) crOj' 

3-10 2.26(+1) 2. 26(+1) 2.26(+1) 1.04(+1) 

0-10 6.75(+1) 6.75(+1) 6.74(+1) 6.72(+1) 
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Table VIII. Partial wave contributions, qR. . (a~)' to the integral cross sections of 

Table VII (Basis III). 

~· 0 3 4 6 7 3-10 0-10 

0 5.47a 1.24 2.97(-2) 3.15(-5) 5.60(-7) 1.27 6.74 : 
1.46(+l)b 3.88(-1) 9.82(-3) 9.88(-6) 1.40(-7) 3.98(-1) 1.50(+1) 

1 1.31 1.96 5.12(-2) 5.54(-5) 1.81(-6) 2.01 3.32 

1.62(+1) 2.35(-2) 6.50(-3) 1. 7_5 ( -5) 2.22(-7) 3.00(-2) 1.62(+1) 

2 4.52(+1) 3.11 1.38(+1) 2.15(-2) 7.53(-4) 1.69(+1) 6.21(+1) 

4.94(+1) 1.26 6.85 1.30(-2) 4.23(-4) 8.12 5.75(+1) 

3 5.00 2.52 3.18(-1) 7.89(-2) 2.35(-3) 2.92 7.92 

2.73 1.69 1.02(-1) 3.51(-2) 1.33(-3) 1.83 4.56 

4 7.40(-1) 1.15(-1) 4.11(-2) 2.84(-2) 1.88(-3) 1.87(-1) 9.27(-1) 

3.32(-1) 7.28(-2) 2.92(-2) 1.45(-2) 1.27(-3) 1.+8(-1) 4.50(-1) 

5 2.02(-1) 1.05(-2) 1.13(-3) 1.05(-4) 6.54(-4) 1.24(-2) 2.15(-1) 

8.29(-2) 1.04(-2) 1.01(-3) 6.50(-5) 4.04(-4) 1.19(-2) 9.48(-2) 

6 8.04(-2) 3.24(-3) 1.50(-4) 4.07(-5) 6.57(-6) 3.44 ( -3) 8.38(-2) 

3.13(-2) 2.30(-3) 1.44(-4) 3.24(-5) 2.95(-6) 2.48(-3) . 3.38(-2) 

7 3.45(-2) 1.07(-3) 3.71(-5) 1.32(-6) 9.50(-7) 1.11(-3) 3.56(-2) 

1.45(-2) 7.91(-4) 2.90(-5) 9.20(-7) 5.22(-7) 8.21(-4) 1.53(-2) 

8 2.20(-2) 4.59(-4) 1.0(-5) 7.0(-8) 7.4(-8) 4.69(-4) 2.25(-2) 

7.65(-3) 3.56(-4) 8.0(-6) 7.0(-8) 5.4(-8) 3.64(-4) 8.02(-3) 

9 1.37(-2) 2.30(-4) 3.1(-6) 4.0(-8) 1. 9(-8) 2.33(-4) 1.39(-2) 

4 .. 41(-3) 1.84(-4) 2.0(-6) 2.0(-8) 1.4(-8) 1. 86 (~4·) 4.60(-3) 

10-40 2.12(-2) 3.53(-4) 7.0(-7) 2.0(-8) 2.5(-8) 3.53(-4) 2.16(-2) 

7.59(-3) 2.99(-4) 2.0(-6) 2.0(-8) 5.0(-9) 3.01(-4) 7.89(-3) 

0-40 5.81(+1) 8.96 1.42(+1) 1.29(-1) 5.65(-3) 2.33(+1) 8.14(+1) 

8.34(+1) 3.44 7.00 6.28(-2) 3.43(-3) 1.05(+1) 9.39(+1) 

a SEPa upper entry: 

b lower entry: SEPlke 



" ' 

39 

Table IX. Electronically and vibrationally elastic, rotationally summed 
2 integral and momentum-transfer cross sections (a0) at 10 eV. 

m ref. Authors ao ao 

Experiment: 

Kieffer (review) 84 39 

Barbarito et al. 60 ± 7a 40 --
Tanaka et al. 66 ± 8b 47 ± 6b 5 --

Theory: 

Buckingham, Massey, and Tibbs 64 c 41 

Gianturco and Thompson (r0 = 0. 84 ao) 76 c 7 

Present work SEPa (basis III) 81 67 

Present work SEPlke (basis III) 93 67 

athree standard deviations of measured integral cross section 

b propagated standard deviations of differential cross section measurements; 

integral cross sections then calculated·by fitting, extrapolating, and 

integrating 

cnot available 
.. , .. 
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Table X. Comparison between theoretical and experimental ratios of differential 

cross sections at 10 eV at different scattering angles. 

i 

do I dn ( 8) .;. do I dn ( 8 ' ) 
Authors ref. 

818' 30190 40190 60190 601120 

Experiment: 

Newell et al. 4.4 3.2 1.7 6.9 6 --
Tanaka et al. 5 

measurement 3.9 3.8 1.7 5.3 

fit 4.4 3.3 2.1 6.2 

Theory: 

.Gianturco & Thompson 8 

ro = 0.84 ao a 1.5 0.6 1.1 

ro = 0.88 ao a 1.9 1.1 2.7 

ro=0.92 ao a 2.1 1.5 9.5 

Present work: 

SEPa 3.0 1.8 0.9 2.8 

SEPlke 6.7 4.2 1.8 5.8 

a not available 

.. , .. 
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Figure Captions 

Figure 1. Polarization and total effective potentials for CH
4 

at 10 eV as 

functions of the radial position of scattering electron for the relative 

coordinates (x,$) = (0,0). Labels are as explained in the text. 
. X 

Figure 2. Polarization and total effective potentials for CH
4 

at 10 eV as 

functions of the radial position of scattering electron for the relative 

coordinates (x,$ ) = (4T,O). Labels are as explained in the text. 
X 

Figure 3. Polarization and total effective potentials for CH
4 

at 10 eV as 

functions of the radial position of scattering electron for the relative 

coordinates (x,$) = (4T,60). Labels are as explained in the text. 
X 

Figure 4. The A= 0 component (equivalently the spherical average) of the 

polarization and·total effective potentials for CH
4 

at 10 eV as functions 

of the radial position of the scattering electron. Labels are as explained 

in the text. 

Figure 5. The first asymmetric A= 3 component of the polarization and total 

effective potentials for CH4 at 10 eV as functions of the radial position 

of the scattering electron. Labels are as explained in the text. 

Figure 6. Differential cross sections for pure elastic scattering (labelled 

0 a or 0 lke where a and lke specify which polarization potential has 

been used) and state-to-state rotational excitation for j = 0 + j' = 3, 4, 
.. , .. 

6, and 7 as functions of the scattering angle. These cross sections · 

were calculated with basis III. 

Figure 7. Electronically and vibrationally elastic, rotationally summed 

differential cross sections as functions of the scattering angle for 

CH4 • The solid curves labelled SEPa and SEPlke represent calculations 

made with basis III. The dashed curve is the calculation of Gianturco 

et al. (reference 8) with their empirical parameter set equal to 0.88 a0 • 
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Figure 7 (continued) 

The experimental results are shown as symbols. All results are for 

10 eV except those of Gianturco and Thompson, which are for 9.5 eV. 
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