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Behavioral representational similarity
analysis reveals how episodic learning is
influenced by and reshapes semantic
memory

Catherine R. Walsh 1 & Jesse Rissman 1,2,3,4

While semantic and episodic memory have been shown to influence each
other, uncertainty remains as to how this interplay occurs. We introduce a
behavioral representational similarity analysis approach to assess whether
semantic space can be subtly re-sculpted by episodic learning. Eighty partici-
pants learned word pairs that varied in semantic relatedness, and learning was
bolstered via either testing or restudying. Next-day recall is superior for
semantically related pairs, but there is a larger benefit of testing for unrelated
pairs. Analyses of representational change reveal that successful recall is
accompanied by a pulling together of paired associates, with cue words in
semantically related (but not unrelated) pairs changing more across learning
than target words. Our findings show that episodic learning is associated with
systematic and asymmetrical distortions of semantic space which improve
later recall by making cues more predictive of targets, reducing interference
from potential lures, and establishing novel connections within pairs.

Despite early theories that proposed a psychological and neuro-
biological separation between semantic and episodic memory
systems1,2, there is an increasing body of work that suggests the
two systems are more intertwined than previously believed3,4.
Neuroimaging experiments have demonstrated shared neural
activation5 and functional connectivity6,7 during episodic and
semantic memory processes, and pre-existing semantic knowl-
edge can act as a scaffold to facilitate the acquisition of new epi-
sodic memories8–10. Moreover, semantic relatedness has been
shown either facilitate11–16 or impair17,18 episodic memory perfor-
mance, depending on factors such as recall delay, degree of
relatedness within the to-be-learned pairs, and the semantic
relatedness of the broader stimulus set15. Episodic experiences can
also influence semantic knowledge by integrating new information
as learning occurs, or by emphasizing task or context-relevant
semantic features in pre-existing semantic space19–21. However,

further specification of the mechanisms of these putative bidir-
ectional episodic/semantic interactions is needed.

One common assessment of episodic memory involves present-
ing pairs of items and later probing retention of the associations.
Although one-shot learning of paired associates is possible, many
paradigms have participants with re-engage with the material through
retrieval practice or restudying, and there is a well-established benefit
of the former, known as the testing effect22–28. There is debate as to
whether the “desirable difficulty”29,30 or effortfulness31 of searching for
and retrieving a target association is what strengthens memory or
whether testing is advantageous because the episodic experience of
retrieval practice is more contextually similar to the final test32.

While researchers have increasingly acknowledged the inter-
dependenceof episodic and semanticmemory, there are relatively few
studies of the testing effect that directly manipulate the semantic
information within to-be-learned pairs of items28 or integrate its role
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into mechanistic accounts. Carpenter33 proposed that retrieving
information from memory necessitates elaborative processes that
induce spreading activation to semantically related information34,35,
which can provide additional retrieval cues31. Consistent with this fra-
mework, one recent study showed that when to-be-learned images do
not contain meaningful semantic information, there is no benefit for
retrieval practice compared to restudying the images36. A separate
account suggests that testing supports memory by facilitating
semanticisation37 (i.e. a shift towards more generic semantic repre-
sentations as opposed to detail-rich episodic representations) and
relational processing, which promotes attention to semantic
information38.

The degree to which to-be-learned items have a pre-existing
semantic relationship may influence how they are associated in
memory. The episodic binding of two items need not be symmetrical,
in the sense that the ability of item A to predict item B does not
necessarily equate with the ability of item B to predict item A. For
instance, when pairs of words are learned in one direction (cue word
A→target word B), the act of testing an unrelated pair in the forward
direction (A→?) also improves associative memory in the reverse
direction (B→?), yet when related pairs are tested in the forward
direction (A→?), it does not improve recall of the reverse direction
(B→?)39,40. Recent neuroimaging work has also shown asymmetrical
integration of associative pairs41. For example, when novel faces are
paired with famous faces, the neural representation of the novel face
becomesmore similar to the representation of the paired famous face,
which itself showsminimal representational change. In contrast, when
a novel face is paired with another novel face, the neural representa-
tions of the two faces become more similar, but change equally.

One neurobiologically-inspired computational modeling account
of associative learning known as the non-monotonic plasticity
hypothesis (NMPH) attempts to explain the testing effect and account
for the role of semantic information through the relative co-activation
of to-be-learned items and the associated representational change.
This framework proposes that changes in memory strength are driven
by the relative activation of items, such thatmemory for items that are
strongly co-activated is strengthened, while items that are moderately
co-activated areweakened or differentiated42,43. When paired items are
restudied and brought to mind together, they are strongly co-acti-
vated, and thus strengthened44. When paired items undergo retrieval
practice, there is also strong co-activation, but because retrieval is
often imprecise, itwill also tend tomoderately co-activate semantically
related concepts34,35. According to the NMPH, thismoderate activation
suppresses memory for the related items and differentiates the target
to reduce interference and strengthen memory more than
restudying42,43,45–48.

In the present preregistered study, we sought to investigate the
influence of semantic relatedness on the testing effect and understand
how episodic paired associate learning might sculpt pre-existing
semantic space. We had participants learn semantically related and
unrelated pairs of words via testing or restudying and assessed their
memory the next day. Although we were interested in how cued recall
accuracy would vary depending on semantic relatedness and learning
condition, our primary focus was on whether and how the semantic
representations of the words changed over learning. For this, we
developed a behavioral representational similarity analysis approach,
which we applied to data from a similarity-based word arrangement
task that participants performed before and after learning. This
allowed us to investigate the bidirectional interaction of episodic
learning and semantic knowledge by indexing changes in the asso-
ciative structure and semantic representation of individual words.
Given the existing computational modeling work and literature on the
role of semantic information, we expected to see an overall memory
benefit for semantically related pairs. We thus predicted that these
already-advantaged pairs would have less to gain from testing than

unrelated pairs. We anticipated that tested pairs would undergo more
representational change, and that the amount of representational
change would be correlated with behavioral performance. Finally, we
expected to see asymmetric change in the semantic structure of rela-
ted pairs, where representations of targets would get drawn towards
those of the cues, and symmetric changes for unrelated pairs of words.

In this work, we show that the testing effect is reduced for
semantically related pairs of words due to the relative improvement in
recall of restudied pairs. We also show that when pairs lack a prior
semantic relationship, testing is necessary to induce representational
change and that this change draws cues and targets together sym-
metrically. Testing also weakens the relationship of the cuewordswith
other moderately related non-target associates. In contrast, prior
semantic knowledge can rescue restudied pairs by inducing asym-
metric representational semantic change, which makes cues more
predictive of their associated targets. Finally, we show that the rela-
tionship between representational change and recall accuracy of word
pairs depends on the interaction of word position, semantic related-
ness, and learning condition, where greater representational change in
the cue is associatedwithbetter recall, regardlessof learning condition
or semantic relatedness, but representational change in the target is
only associated with better recall when pairs are semantically unre-
lated and tested.

Results
Recall accuracy
We began by probing whether recall accuracy for the targets of each
cue-target pair systematically varied based on the semantic related-
ness (related vs. unrelated) and the learning condition (testing vs
restudying, following two initial exposures); Fig. 1.

On Day 1, we could only assess recall accuracy for tested pairs,
since performance for restudied pairs merely reflected participants’
ability to type the visible target word. As expected, semantically rela-
ted word pairs were recalled better than semantically unrelated pairs
(t(79) = 9.979, p < 0.001, d = 1.12, 95% CI = [0.19 0.28]); Fig. 2A. After a
24-hour delay (Day2), a RM-ANOVA revealed significantmain effects of
semantic relatedness (F(1,79) = 362.227, p < 0.001, ηG

2 = 0.462) and
learning condition (F(1,79) = 25.240, p < 0.001, ηG

2 = 0.045) but no sta-
tistically significant interaction (F(1,79) = 0.076, p =0.78,
ηG

2 = 9.94 × 10−5); Fig. 2B. Comparison of marginal means at the final
test showed that related pairs (M=0.629, SD = 0.183) had a higher
probability of recall than unrelated pairs (M=0.281, SD = 0.202), and
tested pairs (M=0.496, SD = 0.258) were more likely to be recalled
than restudied pairs (M=0.415, SD =0.256).

Given that participants were provided with no feedback, it is
possible that tested pairs that were not successfully retrieved on Day 1
would not benefit from testing, potentially obscuring an interaction
between semantic relatedness and learning condition on Day 2. To
investigate this, tested pairs were split into those that were correctly
recalled at initial learning and those that were not, revealing a sig-
nificant relatedness by learning condition interaction for Day 2 recall
performance (F(2,154) = 23.531, p <0.001, ηG

2 = 0.054); Fig. 2C, D. Follow
up paired t-tests revealed significant testing effects (i.e. the contrast of
pairs that were tested and correctly recalled at Day 1 versus pairs that
were restudied) for both relatedpairs (t(79) = 9.575,p <0.001,d = 1.070,
95% CI = [0.187 0.285]) and unrelated pairs (t(79) = 12.361, p <0.001,
d = 1.382, 95% CI = [0.283 0.391]), with a larger effect of learning con-
dition for unrelated pairs. Pairs that were tested but recalled incor-
rectly at Day 1 showed significantly lower accuracy on Day 2 than both
restudied pairs (related: t(77) = 13.602, p < 0.001, d = 1.540, 95% CI =
[0.354 0.476]; unrelated: t(79) = 9.692, p <0.001, d = 1.084, 95% CI =
[0.149 0.226]) and tested pairs that were recalled correctly at Day 1
(related: t(77) = 22.293, p < 0.001, d = 2.524, 95% CI = [0.543 0.710];
unrelated: t(79) = 18.870, p < 0.001, d = 2.110, 95% CI = [0.469 0.580]).
These results indicate that semantic relatedness reduces the
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magnitude of the testing effect by improving recall of related rest-
udied pairs. The benefit of semantic relatedness overcomes the rela-
tively ineffective learningmethod of restudying, leaving less to gain by
testing.

Change in pairwise representational similarity
While differences in recall accuracy based on semantic relatedness and
learning condition show that these factors are consequential for
memory, they cannot show how this happens. To gain mechanistic
insight, we turned to the changes in pairwise representational simi-
larity (measured by the difference between within pair similarity at the
final and initial Similarity-Based Word Arrangement Task (SWAT)
assessments; Fig. 3), which provides a more direct measurement of
how the semantic representations of our word set change across
learning; Fig. 4.

First, we ran a linear mixed-effects model (LMM) testing whether
there were differences in the change in similarity for pairs that were
correctly recalled atDay2 relative to those incorrectly recalled at Day2
and to a control condition of random word pairings that were never
experienced during learning. Pairs that were correctly recalled atDay 2
changed more than those that were incorrectly recalled (t(158) = 2.566,
p =0.023, d =0.20, 95% CI = [1.84 × 10−5 6.29 × 10−4]) and random pairs
(t(158) = 3.112, p = 0.007, d = 0.25, 95% CI = [8.73 × 10−5 6.98 × 10−4]), but
the change in pairs that were incorrectly recalled at Day 2 was not
statistically significantly different from that of random pairs
(t(158) = 0.547, p =0.585, d = 0.04, 95% CI = [−3.74 × 10−4

2.36 × 10−4]); Fig. 5A.
We next ran a series of one-sample t-tests (with Holm-Bonferroni

corrections formultiple comparisons) to determinewhether change in
similarity in our conditions of interest was significantly different from
zero; Fig. 5B. For this analysis (and all hereafter), we opted to exclude
tested pairs thatwere incorrectly recalled atDay 1 because they didnot
incur the benefit of testing. Significant changes in similarity were
observed for related pairs that were correctly recalled at Day 2,
regardless of learning condition (tested: t(79) = 3.788, p =0.002,
d =0.423, 95% CI = [3.045 × 10−4 9.804 × 10−4]; restudied: t(79) = 4.258,
p <0.001, d =0.476, 95% CI = [3.763 × 10−4 1.037 × 10−3]), and unrelated
pairs that were tested and correctly recalled at Day 2 (t(74) = 3.085,
p =0.017, d =0.356, 95% CI = [2.736 × 10−4 1.272 × 10−3]). All other
comparisons were not statistically significantly different from zero
(p values > 0.1; Supplementary Table 2). When change in similarity
across conditions was analyzed in an LMM with fixed effects of relat-
edness, learning condition, and final recall success, therewere nomain
effects or interactions between relatedness and learning condition;

there was, however, a significant main effect of final recall success
(t(528) = 1.965, p=0.050, ηp2 =0.0073, 95% CI = [1.348 × 10−6 6.372× 10−4]),
where pairs that were correctly recalled at Day 2 showed significantly
more change in similarity than those that were not.

Although correctly recalled pairs showed the most overall repre-
sentational change, it is also possible that there might be changes
within the local semantic neighborhoods of the learned cue words that
reflect the repulsion of potential competitor words (i.e. potential lures)
to reduce interference; Fig. 4A. To test for this, we first characterized
the strength of potential lures for each cue word using the LSA cosine
similarity between the cue word and all other words in our 120-word
set. For example, for the pair GENDER – FEMALE, the word MOTHER
might interfere with recall, while CAVERN likely would not. We then
calculated the change in similarity across learning for cues in suc-
cessfully recalled to-be-learned pairs and their potential lures (e.g.,
GENDER –MOTHER). We used this change in similarity as the outcome
variable of an LMMwithfixedeffects of relatedness, learning condition,
and lure strength and random effects of relatedness and learning
condition. This model showed a significant learning condition by lure
strength interaction (t(248400) = 2.840, p =0.005, ηp

2 = 3.25 × 10−6, 95%
CI = [−3.130 × 10−4 −5.740 × 10−5]); Fig. 5C. Follow up t-tests revealed
that very strong lures are drawn together more than weak/non-lures
when they were associated with both tested (z = 6.029, p <0.001,
d =0.12, 95% CI = [4.90 × 10−4 1.22 × 10−3]) and restudied pairs
(z = 6.689, p <0.001, d =0.15, 95% CI = [6.59 × 10−4 1.48 × 10−3]). In con-
trast, moderate lures associated with tested pairs were pulled together
less than tested weak/non-lures (z = 4.182, p <0.001, d =0.03, 95%
CI = [7.48 × 10−5 3.13 × 10−4]). Because there was generalized semantic
change even forweak/nonlures (see SupplementaryNote 3), we further
probed this interaction by contrasting each lure bin with the weak/
nonlures across learning condition. This analysis revealed that mod-
erate lures associated with tested pairs are drawn together less than
those associated with restudied pairs (z = 2.840, p =0.014, d = 0.03,
95% CI = [5.740 × 10−5 3.129 × 10−4]). All other baseline-corrected com-
parisons were not statistically significant (p values > 0.05); these com-
parisons, in addition to pairwise comparisons between other lure bins
and other significant effects, are reported in Supplementary Note 3.

These results show that successful recall not only pulls to-be-
learned word pairs closer together in representational space, but also
sculpts the overall representational space by drawing highly similar
words closer to the cueword to potentially serve as additional retrieval
cues for the to-be-learned target. Testing additionally repels moderate
lures that are unlikely to serve as retrieval cues and could potentially
interfere with successful recall.
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Fig. 1 | Procedural overview. The experiment took place over two days. Prior to
learning, participants performed the Similarity-based Word Arrangement Task
(SWAT), where they rated the similarity of subsets of words across four trials (60
words per trial). Next, participants had three opportunities to learn 60 pairs of
words. During the first two opportunities (Rounds 1 and 2), participants made

judgements about the relatedness of the words within the pair. For the third
opportunity (Round 3), pairs were either restudied (illustrated here with maroon
border) or tested (blue border). OnDay 2, participants completed a final cued recall
test for all learned pairs, followed by another four trials of the SWAT.
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Change in overall representational similarity structure
A complementary approach to our analyses of the relationship of
words within a to-be-learned pair is to investigate how the semantic
relationship of each word changes with respect to all other words in
the set. To explore this, we extracted from the full representational
similarity matrix the row vector reflecting a word’s similarity to its 20
nearest semantic neighbors and compared this across learning; Fig. 4B.
For example, the representation of GENDER can be defined by its
similarity to its nearest semantic neighbors, including CHILDREN,
MOTHER, TEACHER, and PARENT. By comparing the similarity of
GENDER to each of these words across learning, we can quantify how
much the representation of GENDER changes. When Fisher
z-transformed correlation values were entered into an LMMwith fixed
effects of relatedness, learning condition,final recall success, andword
position (cue vs target), and random effects of word position and
learning condition, there was a significant relatedness by word posi-
tion by final recall success interaction (t(967) = 2.607, p = 0.009,
ηp

2 = 0.007, 95% CI = [−0.206 −0.030]), Fig. 6A, in addition to sig-
nificant relatedness by final recall success interaction (t(967) = 1.986,
p =0.047, ηp

2 = 0.0041, 95% CI = [0.0014 0.153]), and position by final
recall success interaction (t(964) = 2.581, p =0.009, ηp

2 = 0.0068, 95%

CI = [0.024 0.175]). Additionally, there was a main effect of final recall
success (t(963) = 2.660, p =0.007, ηp

2 = 0.0073, 95% CI = [−0.135
−0.021]). Follow-up t-tests revealed that for related pairs that were
successfully recalled at Day 2, target words underwent more learning-
induced representational change than cue words (t(372) = 3.546,
p =0.002, d =0.18, 95% CI = [0.039 0.137]).

Comparing the correlation of representations across learning can
identify asymmetry of change for paired words but does not provide
information about how the structure of the pair changes. For instance,
our previous analyses showed that GENDER changes relatively more
than its target FEMALE, but it cannot tell us whether GENDER becomes
more similar to FEMALE, orwhether the changes areunrelated to its to-
be-learned target; Fig. 4B. To investigate this, we calculated a single
asymmetry measure by subtracting the correlation of the cue after
learning and target before learning from the correlation of the cue
before learning and target after learning todeterminewhether howthe
representations change relative to each other. Here, a positive value
would suggest the representationof the target isdrawn towards that of
the cue, a negative value would suggest the cue is drawn towards the
target, and a value of zero would suggest that the relative repre-
sentational change of the cue and target is symmetric. An LMM on our
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Fig. 2 | Retrieval accuracy across days as a function of semantic relatedness and
learning manipulation. A On Day 1, a two-tailed t-test revealed that pairs that
underwent testing during Round 3 showed a significant effect of relatedness (blue
bars; t(79) = 9.979, p <0.001, d = 1.12, 95%CI = [0.19 0.28]). Restudiedpairs fromDay
1 are shown (maroon bars) but were not analyzed since the Day 1 restudy score
merely reflects the ability to re-type the target word that was displayed on the
screen, rather than memory strength. B On Day 2 (our critical measure of learning
outcomes), a RM-ANOVA revealed that there was better cued recall of target words
from related pairs than unrelated pairs (F(1,79) = 362.23, p <0.001, ηG

2 = 0.462), and
better recall for tested pairs (blue bars) than restudied pairs (maroon bars)
(F(1,79) = 25.24, p <0.001, ηG

2 = 0.450), but no statistically significant interaction.
C Splitting tested word pairs based on whether or not they were successfully
recalled on Day 1 reveals a significant semantic relatedness by learning

manipulation interaction (F(2,154) = 23.53, p <0.001, ηG
2 = 0.045), showing a larger

testing effect (i.e. an advantage for tested pairs that were correctly recalled at Day 1
over restudied pairs) for unrelated pairs than for related pairs. Solid blue bars
reflect tested pairs that were recalled correctly at Day 1, striped bars reflect tested
pairs that were not recalled correctly at Day 1. D The interaction was driven by a
larger testing effect (i.e. an advantage for tested pairs thatwere correctly recalled at
Day 1 over restudied pairs) for unrelated pairs (yellow) than for related pairs
(green). Across all panels, open circles reflect means of individual participants
(N = 80), with connecting lines showing within-subject differences across condi-
tions. Error bars reflect standard error of the mean. Symbols reflect statistically
significant differences across conditions using Holm-Bonferroni corrections for
multiple comparisons (*p <0.05, **p <0.01, ***p <0.001).
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asymmetry measure with fixed effects of relatedness, learning condi-
tion, and final recall success and a random effect of learning condition
showed a significantmain effect of relatedness (t(452) = 2.414, p =0.016,
ηp

2 = 0.01, 95% CI = [0.006 0.064]), where the asymmetry value for

related pairs was significantly different (more negative) from the
asymmetry value for unrelated pairs; Fig. 6B. We additionally found
that unrelated pairs did not show any significant asymmetry relative to
zero (t(78) = 0.814, p = 0.418, d =0.18, 95% CI = [−0.023 0.055]). In
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contrast, related pairs showed a numerically negative asymmetry
value; however, despite a moderate effect size, this effect was only a
nonsignificant trend after corrections for multiple comparisons
(t(79) = 2.157, p =0.068, d =0.49, 95% CI = [−0.049 −0.001]).

Relating Recall Accuracy to Representational Change
To further probe the behavioral relevance of representational change
for learning outcomes, we conducted an item analysis (with each word
pair considered an ‘item’). The average accuracy at final test across

1. How do learned pairs change
 as a function of learning?

2. How semantic lures change 
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4. Do word representations change
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Fig. 4 | Analyses of representational change. A Schematic of representational
similarity matrices (RSMs) derived from the Similarity-Based Word Arrangement
Task (SWAT) procedure before learning (purple RSM) and after learning (orange
RSM); note thatour realmatriceswouldbe60×60words rather than the 5 × 5words
used in this toy example. Using the pair GENDER-FEMALE for illustrative purposes,
we illustrate four of our key analyses. A. Analyses of pairwise representational
changes across learning. In Analysis 1, cells outlined in yellow highlight the pairwise
distance of the cue word GENDER to its target FEMALE, and we compare how this
distance changes across learning. In Analysis 2, we examine the change in pairwise
distance across learning between cue words (e.g., GENDER) and semantically
related non-target words (lures; green outlines). B Analyses of individual word
representations across learning. Pink outline reflects cue word GENDER, blue out-
line reflects target word FEMALE. We define the representation of an individual

word as its row vector from the RSM (i.e. by its pairwise relationships to all other
words in our set). In Analysis 3, we test how the representation of each word
changes across learning by taking the Pearson correlation of the row vectors from
the pre- and post-learning RSMs. In Analysis 4, we test whether the word repre-
sentations in the to-be-learned pair change asymmetrically. In this analysis, we
correlate the representation of the cue word before learning with that of the target
word after learning and the representation of the cue word after learning with that
of the target word before learning. The difference between these two values is
calculated as a measure of asymmetry, where a positive value reflects the target
being drawn towards the cue, a negative value reflects the cue being drawn towards
the target and a value of zero reflects the cue and target being drawn towards each
other symmetrically (or no representational change).
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participants for each word pair (regardless of learning condition or
semantic relatedness) was significantly correlated with its similarity
after learning (Fig. 7A; r(58) = 0.46, p <0.001, 95% CI = [0.232 0.638])
and average change in similarity (Fig. 7B; r(58) = 0.39, p =0.002, 95%
CI = [0.154 0.583]), suggesting that word pairs that are considered
more similar after learning and that show greater learning-induced
representational change are more likely to be remembered. Despite
the relationship between pairwise change in similarity and behavioral
accuracy, there was no statistically significant correlation between the
magnitudeof an individual’s behavioral testing effect and their average
change in similarity for tested and restudied pairs when averaging
across words (r(78) = −0.163, p =0.149, 95% CI = [−0.369 0.059]).

Although comparing the average pairwise change in similarity to
average accuracy across participants provides a valuable link between
the re-sculpting of semantic space and behavioral performance, it
overlooks the fact that semantic relatedness and learning condition
may have differential effects on the recall success of a word pair. To
investigate the relative contribution of these processes to behavioral
performance, we conducted a mixed effects logistic regression pre-
dicting the Day 2 recall outcome of each individual word pair. Echoing
our previous analyses, this model showed a significant relatedness by
learning condition interaction (z = 2.424, p =0.014, ηp

2 = 0.0016, 95%
CI = [0.124 1.109]), in addition to significantmain effects of relatedness
(z = 10.572, p < 0.001, ηp

2 = 0.028, 95% CI = [−2.046 −1.406]) and
learning condition (z = 6.324, p <0.001, ηp

2 = 0.010, 95% CI = [0.815
1.547]). Follow-up tests revealed that there was a larger benefit of
testing over restudying pairs on the probability of successful recall at
Day 2 for unrelated pairs (z = 12.431, p < 0.001, d =0.20, 95%CI = [−1.96
−1.43]) than related pairs (z = 9.706, p < 0.001, d = 0.16, 95% CI =
[−1.55 −1.03]).

Additionally, this model revealed a significant main effect of the
change in similarity of the cue representation (z = 2.453, p = 0.014,
ηp

2 = 0.0015, 95% CI = [−0.772 −0.086]), suggesting that more change
in the representation of the cue across learning is associated with a
higher probability of recall at Day 2; Fig. 7C. Finally, thismodel showed
a significant relatedness by condition by change in target representa-
tion across learning interaction (z = 2.075, p = 0.038, ηp

2 = 0.0011, 95%
CI = [−1.678 −0.048]). Investigation of the slopes revealed that for
tested unrelated pairs, there was a significant negative relationship
between the probability of final recall success and the change of the
representation of the target across learning (z = 2.691, p = 0.007,
d =0.16, 95%CI = [−0.266 −0.042]), suggesting thatmore change in the
target across learning (i.e. lower correlation values) is associated with
higher probability of subsequent recall. This slope was significantly
more negative than the slope fromunrelated restudied pairs (z = 2.321,
p =0.020, d =0.11, 95% CI = [0.023 0.275]); Fig. 7D. There was no sta-
tistically significant relationship between change in target repre-
sentation and probability of subsequent recall across learning for
related pairs (p values > 0.1; Supplementary Table 5). Together, these
results show while the magnitude of representational change that a
pair undergoes is associated with its probability of subsequent recall,
there may be multiple processes underlying the change that depend
on both the characteristics of the word pair itself and the learning
conditions, and that these processes do not all impact the probability
of successful recall.

Discussion
Three primary questions were addressed in the current work. First, we
sought to determine how semantic relatedness between paired words
influences the testing effect. Second, we created an extension of a
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Fig. 5 | Learning-induced changes in representational similarity for
paired words. A Linear mixed effects modeling revealed that pairs of words that
were experienced as to-be-learnedpairs (regardless of whether testedor restudied)
and that were correctly recalled at final test (regardless of learning manipulation;
orange bar) became more similar after learning than pairs that were not success-
fully recalled at final test (pink bar; t(158) = 2.566, p =0.023, d =0.20, 95%
CI = [1.84 × 10−5 6.29 × 10−4]) and arbitrary pairings of words that were never
experienced as to-be-learned pairs (blue bar; t(158) = 3.112, p =0.007, d =0.25, 95%
CI = [8.73×10−5 6.98 × 10−4]). Y-axis indicates change in similarity (post-learning
assessmentminus pre-learning assessment).B Two-tailed one-sample t-tests reveal
significant learning-induced similarity change for pairs of words that were tested
(regardless of semantic relatedness; related: t(79) = 3.788, p =0.002, d =0.423, 95%
CI = [3.045 × 10−4 9.804× 10−4]; unrelated: t(74) = 3.085, p =0.017, d =0.356, 95%
CI = [2.736× 10−4 1.272 × 10−3]) and for semantically related restudied pairs
(t(79) = 4.258, p <0.001, d =0.476, 95% CI = [3.763 × 10−4 1.037 × 10−3]). Green indi-
cates semantically related pairs, yellow indicates semantically unrelated pairs. For
both panels A and B, open circles reflect means of individual participants (N = 80),
with connecting lines showing within-subject differences across conditions.
C Words that may interfere with successful recall of to-be-learned pairs (i.e. lures)
were defined by their LSA cosine similarity to a given to-be-learned cue. Change in

similarity of these potential lure pairs was calculated across learning and entered
into a linearmixed effectsmodel basedondata from248,408 pairs ofwords across
80 participants. This model revealed a significant learning condition by lure
strength interaction (t(248400) = 2.840, p =0.005, ηp

2 = 3.25 × 10−6, 95%
CI = [−3.130 × 10−4 −5.740× 10−5]), where very strong lures are drawn towards a
given cue word regardless of learning condition (restudy: z = 6.689, p <0.001,
d =0.15, 95% CI = [6.59 × 10−4 1.48 × 10−3]; test: z = 6.029, p <0.001, d =0.12, 95%
CI = [4.90 × 10−4 1.22 × 10−3]), while strong lures showed no statistically significant
change relative to weak/non-lures (restudy: z = 1.707, p =0.32, d =0.022, 95%
CI = [−3.94 × 10−4 7.93 × 10−5]; test: z = 1.964, p =0.200, d =0.022, 95%
CI = [−3.76 × 10−4 5.02 × 10−5]). In contrast, moderate lures are pushed away from
cue words (relative to baseline weak/non-lures) more when the associated to-be-
learned pairs are tested than restudied (z = 2.840, p =0.014, d =0.03, 95%
CI = [5.740× 10−5 3.129 × 10−4]). Maroon lines reflect lures associated with restudied
pairs, blue lines reflect lures associated with tested pairs. Dotted line reflects
average change in similarity for baseline weak/non-lure pairs. Across all panels,
errorbars reflect standard error of themean. Symbols reflect statistically significant
differences using two-tailed tests across conditions (panels A and C) or versus zero
(panel B) using Holm-Bonferroni corrections for multiple comparisons (*p <0.05,
**p <0.01, ***p <0.001).
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multi-arrangement similarity paradigm49 to investigate how paired
associate learning, supported by either testing or restudying, can
shape the semantic representations of individual words. Finally, we
assessed whether learning-induced changes in semantic representa-
tion were associated with behavioral performance.

To evaluate our first question, we systematically manipulated
semantic relatedness between the cue and target with a to-be-learned
pair of words and compared accuracy between tested and restudied
pairs after approximately 24 h. We found that although relatedness
increases overall performance, it decreases the magnitude of the
testing effect by substantially improving performance for restudied
pairs, such that the relative additional benefit conferred by testing is
less than for unrelated pairs. Crucially, we only observed this interac-
tion between semantic relatedness and learning conditionwhen tested
items were split between those successfully and unsuccessfully recal-
led at the initial testing. This is consistent with previous work29,50,51

showing that, in the absence of feedback, the mnemonic benefits of
testing only occur if the target item is successfully recalled during the
initial test.

Accuracy alone, however, can only provide limited insight into
exactly how semantic relatedness differentially improves memory for
tested and restudied pairs of words. To address this gap, we devel-
oped an extension of a multi-arrangement paradigm to simulta-
neously measure the semantic similarity of sixty words at a time and
impute the semantic similarity ofwords in to-be-learned pairs without
them ever being directly measured against one another. In this ana-
lysis, we showed that successful learning, especially of related pairs,
draws paired words closer together in semantic space more than
unsuccessful learning attempts and pairs that did not undergo
learning.

Showing that pairs are drawn together, however, does not show
how they become more similar. It is possible that both items within a
pair change symmetrically to become more similar to each other;
alternatively, one item may remain relatively stable while the other
changes. Extant literature investigating these potential
hypotheses39,40,52–54 tends to compare outcomemeasures like accuracy
and reaction times when probing pairs in the forward (i.e. A→B) vs
backward (i.e. B→A) directions. These measures, while useful for
answering some questions, are less effective for exploring associative
asymmetry of changes in semantic space, as they cannot compare the
overall representations of concepts.

To this end, we compared the semantic representations of indi-
vidual words across learning. We found that for related pairs, learning-
induced greater representational change in the semantic structure of
cuewords than targetwords, while therewasno statistically significant
difference in the change in unrelated cue and target words. We then
adapted an approach from neuroimaging literature for investigating
asymmetrical representational change41,55. If the correlation between
pre-learning cues with post-learning is less than the correlation
between post-learning cues with pre-learning targets, this implies that
learningdraws cues towards targets in semantic space. Thiswas indeed
the patternwe observed for relatedword pairs (although as an isolated
effect, the negative asymmetry value narrowly failed to survive cor-
rections for multiple comparisons; however, the change in asymmetry
relative to unrelated pairs was significant).

The idea that testing creates a directionally-specific (i.e. asym-
metric) associative relationship, where the cue-to-target relationship is
strengthened without influencing the backward associative target-to-
cue link, is consistent with prior theoretical accounts. According to the
dualmemory theory56 this process occurs by creating an episodic “cue
memory” where the cue and target are encoded in the context of a
retrieval task, whereas restudying creates a bidirectional association.
The transfer-appropriate processing account32 posits that the benefit
of testing stems from greater episodic contextual similarity between
retrieval practice and the final test, relative to restudying.

Consistent with this framework, our results show asymmetric
change in cue and target representations across learning; however,
this asymmetric change depends on the pre-existing semantic relat-
edness, rather than learning condition, suggesting that the asymme-
trical change within a pair may be driven by the semantic information
within the to-be-learned pairs, rather than the creation of an episodic
“cue memory” during testing. Other work has suggested that prior
knowledge plays a crucial role in the symmetry of concept repre-
sentations after learning39,41,52. For instance, when pairs of famous and
novel faces are learned, multivariate neural representations of novel
target faces are drawn towards those of their paired cue faces only
when there is pre-existing knowledge about the cue face41. While this
asymmetric representation is in the opposite direction to the one we
observed in our data, it is important to note that in that study therewas
no pre-existing relationship between the paired faces and no prior
knowledge surrounding the novel faces. In contrast, the word stimuli
used in our study had a rich network of semantic associations prior to
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Fig. 6 | Symmetry of representational change within pairs across learning.
A Linearmixed effectsmodeling revealed that target words in semantically related
pairs showed less representational change (i.e. a higher correlation between their
initial representation and final representation) across learning than did cue words
when correctly recalled at Day 2 (t(372) = 3.546, p =0.002, d =0.18, 95% CI = [0.039
0.137]). This effectwasnot observedwhencomparing cues and targets inunrelated
pairs. Green indicates semantically related pairs, yellow indicates unrelated pairs;
solid bars indicate cuewords, striped bars indicate target words.BRelated pairs of

words show a significantly different (more negative) asymmetry in representa-
tional change than unrelated pairs (t(452) = 2.414, p =0.016, ηp

2 = 0.01, 95% CI =
[0.006 0.064]). All displayed correlation values are Fisher r-to-z transformed.
Opencircles reflectmeansof individual participants (N = 80), with connecting lines
showing within-subject differences across conditions. Error bars reflect standard
error of the mean. Symbols reflect statistically significant differences using two-
tailed tests across conditions using Holm-Bonferroni corrections for multiple
comparisons (~p <0.10, *p <0.05, **p <0.01, ***p <0.001).
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learning, with pre-existing semantic relationships between half of the
pairs. It is possible that the assimilation of a target item representation
into that of its paired cue item only occurs when existing semantic
information about the cue can scaffold the integration of the novel
information into the existing knowledge. When there is pre-existing
knowledge about both items in a pair, as was the case in our study, the
cue representation instead changes asymmetrically to become more
predictive of the upcoming target55,57.

Although words in our corpus that are strongly associated with a
given cue word are drawn towards that cue word regardless of the
learning condition or relatedness of the associated to-be-learned pair,
we only show learning-induced asymmetric sculping of the overall
semantic space for semantically related pairs. Accounts of the testing
effect such as the elaborative encoding account58 or the semantic
mediator hypothesis31,33,59 propose that mental elaboration during the
search for correct answer during testing facilitates later recall by
dynamically creating additional retrieval routes via the activation of
concepts connecting cues and targets33,59 or by increasing relational

processing relative to restudying38,60. Other work has shown that pre-
existing semantic relationships between words facilitate integration of
the pair, potentially amplifying these effects61. It is possible that even
though semantic associates of the cues in unrelated pairs create new
links within the to-be-learned pair, the paired words are less likely to
co-activate shared concepts enough to change the overall semantic
space42.

We additionally conducted a set of analyses comparing parti-
cipants’ idiosyncratic semantic representations (derived from the
SWAT) to normative semantic representations (derived from
word2vec) to test whether these elaborative connections made
during learning are truly novel or reflect the sculpting of existing
features; see Supplementary Note 4 and Supplementary Fig. 6. We
show that after learning, words in tested pairs are drawn closer to
their normative representations, suggesting that even though
learning drives novel connections, testing shapes features that
already exist, rather than adding entirely new features to a
representation.
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Fig. 7 | Relating representational change to recall accuracy on the final test.
A/B.When averaging across 80participants, wordpairs that showedgreaterwithin-
pair similarity after learning (A; r(58) = 0.46, p <0.001, 95% CI = [0.232 0.638]), and
those that showed more representational change (difference in within-pair simi-
larity between final and initial assessment) (B; r(58) = 0.39, p =0.002, 95%CI = [0.154
0.583]) were recalled with greater accuracy at the final test. N = 60 word pairs.
Closed circles reflect average similarity (A) or change in similarity (B) and average
final test accuracy across 80 participants. Shaded area reflects 95% CI. C More
change in cue representation after learning (i.e. lower correlation between initial
and final) is associated with a higher probability of recall at Day 2 (z = 2.453,
p = 0.014, ηp

2 = 0.0015, 95% CI = [−0.772 −0.086]). D The impact of the change in
target representation across learning on subsequent recall depended on the
semantic relatedness of thepair andwhether thepairwas tested or restudiedatDay
1. For unrelated pairs that were tested at Day 1, more change in the representation

of the target across learning (i.e. lower values on x-axis) was associated with higher
probability of subsequent recall (z = 2.691, p =0.007, d =0.16, 95% CI = [−1.678
−0.048]). No other relationships between target word representational change and
behavior were significant. Green indicates semantically related pairs, yellow indi-
cates semantically unrelatedpairs. Dashed lines indicate tested pairs ofwords, non-
dashed lines indicate restudied pairs of words. For both C and D, N = 3902 pairs of
words from 80 participants. Values on x-axis reflect Fisher’s z-transformed corre-
lation of cue representations across learning (C) and of targets across learning (D);
values on y-axis reflect average marginal predicted probability (probability of
subsequent recall across all participants across change of the predictor of interest,
holding other predictors constant). Shaded areas reflect 25th–75th percentile of
the average marginal predicted probability. All tests were two-tailed and no cor-
rections were made for multiple comparisons.
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The non-monotonic plasticity hypothesis (NMPH) may also help
explain the effects we observed of testing on representational change.
This account posits thatwhile testing and restudying both strongly co-
activate representations of the paired items, testing additionally
requires a search process for the to-be-learned target that induces
moderate co-activation of other similar items (as has been previously
shown to occur during the retrieval of highly similar episodic
memories62,63), weakening these connections and reducing
interference42. This is precisely what we found in our analyses of lure
representations – testing exerted the biggest impact on moderate-
strength lures, which were significantly repelled away from cue words,
relative to weak/non-lure pairings. This effect is not only consistent
with the predictions of NMPH, but alsowith an emerging body of work
showing that competition adaptively distorts and repels overlapping
episodic representations so they become less similar46,64,65.

Our last goal was to evaluate the linkage between learning-
induced changes in semantic representations and final recall success.
To do so, we examined how the mean retrieval success of each word
pair (averaged across participants) relates to its mean learning-
induced change in representational similarity, and how individual
differences inmultiple factors affecting representational change relate
to the subsequent recall of a given pair. Using the first approach, we
showed that word pairs that undergo a greater amount of pairwise
representational change (regardless of learning condition) are more
likely to be remembered at the final test. Our individual differences
approach showed that pairs are more likely to be recalled after a delay
when the representation of the cue changes more across learning,
while learning-induced change in the representational space of the
target is only associated with final recall success in unrelated pairs that
underwent testing. These findings highlight how changes in the
representation of the cue (tomake it more predictive of the target) are
crucial regardless of learning condition, but itmayonly benecessary to
sculpt the representation of the target to create elaborative links
between words in a pair if they do not already exist.

One potential limitation of our work comes from our use of
pairwise similarity metrics derived indirectly via imputation. If our
imputation method was unreliable, it might cast doubt on our beha-
vioral representational change results. We believe that this is not the
case and have performed extensive validation analyses of our impu-
tations (see Supplementary Note 2). We believe that our ability to
impute the subjective semantic relatedness of pairs without ever
having participants directly judge them is a key innovation of our work
over existing approaches such as semantic priming and free associa-
tion that can only show the relative magnitude of the effects of
semantic relatedness through measures like accuracy and reaction
time. Moreover, we expect our imputation approach will allow
researchers to infer pairwise relationships without running the risk of
biasing participants by presenting to-be-learned pairs before learning,
nor evoking demand characteristics by having participants explicitly
judge the similarity of already-learned pairs, which may occur in tra-
ditional multi-arrangement paradigms.

Another potential limitation could come from our admittedly
restricted assay of semantic space. Due to experimental time con-
straints, we were unable to include additional words beyond those in
the to-be-learned pairs in our SWAT protocol that would enrich our
measurement of semantic space and serve as a null hypothesis test, as
they should undergo little or no representational change. We also
ensured that the distributions of semantic association across condi-
tions did not overlap so that we could treat relatedness as a dichot-
omous variable and actively avoided very strongly related pairs of
words so that participants could not easily guess the target word in the
absence of successful learning. These design constraints may have
resulted in a truncated range of semantic relatedness across all pairs.
Recent work has shown that the effect of semantic relatedness may
depend on the range of strength of association across the entire

stimulus set15, so future work may opt to choose a broader range to
determine if this impacts the results.

Despite the general stability of semantic knowledge over the
course of one’s lifetime, our results demonstrate that even a brief
session of episodic learning can subtly yet systematically re-sculpt
semantic space. Our behavioral representational similarity approach
identifies multiple processes supporting episodic memory, where new
connections are establishedbetween a cue and target, shared semantic
information asymmetrically changes cues to become more predictive
of their paired target and testing minimizes associations with poten-
tially interfering semantic lures. Together, these changes impart a
lingering residue on semantic memory that facilitates later episodic
recall. These results are consistent with recent neuropsychological,
behavioral, andneuroimaging evidence that the episodic and semantic
memory systems may interact through gradients of activation of
shared cognitive processes5–7. In this framework, episodes are com-
prised of both general conceptual reinstatement and episode-specific
sensory processing, while recall of semantic memory often includes
episodic information about when and where the information was
acquired3. Future studieswill be needed tobetter characterizewhether
these subtle learning-induced semantic distortions are short-lived or
whether they can endure for weeks or months.

Methods
The experimental design and data analysis plan were preregistered
prior to data collection on November 19th, 2020 on the Open Science
Framework at https://osf.io/5q6th/.

Participants
Participants were recruited via Prolific (https://www.prolific.co/) and
through the UCLA SONA Undergraduate Participant Pool. A power
analysis (see SupplementaryMethods for details) suggested we would
need a sample size of at least 73, so we aimed to collect useable data
from 80 participants. A total of 262 participants (145 from SONA, 117
from Prolific) completed the first session of the experiment. Of those,
183 returned for the second session within 28h of completing the first
(88 from SONA, 95 from Prolific). After excluding participants who did
not complete both sessions or who otherwise did not meet our strict
inclusion criteria (described in the Supplementary Methods), we were
left with 29 from SONA and 51 from Prolific. Participants from Prolific
received monetary compensation and participants from SONA
received course credit. The two samples were not significantly differ-
ent on any key measures, so the samples were combined for a final
N = 80 (29 male; age range = 18–39, mean age = 24.33, SD = 5.49). Par-
ticipants from SONA had all completed at least high school level
education; years of education was not collected from participants
from Prolific. All participants provided informed consent prior to
participating. This research was approved by the IRB of the University
of California, Los Angeles. Participants from the UCLA SONA Under-
graduate Participant Pool were compensated with course credit and
participants recruited on Prolific were compensated at a rate of
$7.00/hour.

Additionally, we noted in our pre-registration that we would
exclude participants who reported rehearsing word pairs between
sessions. Ultimately, we included the 8 participants who reported
rehearsing word pairs between sessions, as we did not explicitly
instruct participants not to rehearse and our survey question was not
specific enough to determine the extent to which they rehearsed (i.e. it
did not distinguishwhether they spent hours rehearsing all word pairs,
or just happened to spontaneously recall one or two of them).

Material
Stimulus materials included 60 cue-target word pairs. Thirty of these
pairs were semantically related and were drawn from the FSU Free
Association Norms66. We restricted words to nouns with no
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homographs, a concreteness norm greater than 3.5, and deemed by
Nelson et al. as appropriate for use in an experiment because they had
of an acceptable number of normed associates. In order to reduce the
possibility that a participant might simply guess the target word given
the cue word, pairs were restricted to have a forward strength of
association less than 0.5, meaning that fewer than half of people who
saw a given cue word would generate the target word in a free asso-
ciation task. Finally, any pairs of words that together made a com-
pound word or were similar to any English idiom were excluded.

For each of the related pairs, we compiled three measures of pair
similarity: (1) forward association strength, (2) cosine similarity from
latent semantic analysis (LSA) derived from a corpus of 100k English
words (http://www.lingexp.uni-tuebingen.de/z2/LSAspaces/) and the
LSAfunRpackage66,67, and (3)word2vec similarity, based off of amodel
trained on a subset of the Google News dataset, which contains 300-
dimension vectors for 3 million words and phrases (https://code.
google.com/archive/p/word2vec/). An additional 30 low relatedness
pairs were selected to form the remaining 30 unrelated pairs. Target
words of these pairs were shuffled until all 30 pairs had word2vec, LSA
cosine similarities and (if the pair was normed), cue-to-target asso-
ciation strengths that were lower than the entire list of related word
pairs to ensure no overlapping measures.

Procedure overview
Participation in this experiment took place over two days, with the
sessions occurring no more than 28 h apart (see Fig. 1 for a schematic
of the procedure). On Day 1, participants first performed a multi-
dimensional similarity rating task using a drag-and-drop interface
(Fig. 2A; similar to an approach from work in neuroimaging49, which
used picture stimuli instead of words). Following this similarity-based
word arrangement task (hereafter referred to as the SWAT), partici-
pants completed a learning task, where they were given two oppor-
tunities to initially learn a set of 60 words pairs (30 related; 30
unrelated). We note that in our pre-registration of this experiment we
had stated that participants would only have one initial learning
opportunity before the test/restudymanipulation; however, pilot data
suggested that one learning opportunity was not enough to yield
sufficient accuracy on Day 2. Then, participants were given a third
opportunity to engage with each pair via either testing or restudying.
Last, participants completed a short questionnaire about how dis-
tracted they were during the task. Participants received a link to the
second part of the experiment the following day; if they did not
complete the Day 2 session within 28 h (i.e. before they had a second
night of sleep), theywere excluded fromall analyses. TheDay 2 session
(Fig. 1) began with testing of all word pairs (“final test”), and then
participants performed another set of similarity judgements using the
SWAT protocol. Testing was performed prior to the SWAT protocol on
Day 2 to prevent the possibility that words encountered during the
SWAT trials would trigger additional retrieval practice or other
rehearsal, which could have influenced final test performance in
unpredictable ways.

Word pair learning
Participants performed three rounds of word pair learning. During
each of the first two rounds, all 60 pairs were presented on the screen
in randomized order, with the text written in capital letters. Each pair
appeared for 4 s with a 2 s ISI. For each pair, the cue word was pre-
sented on the left and the target word on the right. During the first
round, participants were asked to make a judgement about how rela-
ted the cue and the target word pairs were on a scale of 1−4, with 1
meaning “not related” and 4meaning “very related”. The second round
was structured the same as the first, but participants were asked to
judge how likely itwould be for those twowords to appear on the same
page of a book ormagazine on a scale of 1–4, with 1meaning “not at all
likely” and 4 meaning “very likely”. These judgements allowed for

incidental encoding and encouraged the relational processing of the
words in each pair. Relatedness judgements are described in Supple-
mentary Fig. 1 and Supplementary Note 1.

In the final learning round, 30 of the pairs underwent retrieval
practice (testing) and the other 30 were restudied. Participants were
instructed that if they saw the cue and target words together (just as
they had in the prior two rounds) their task was simply to type the
target word into the answer box; if they saw the cue word accom-
panied by four question marks (“????”) their task was to attempt to
recall the target word and type it into the answer box. If they could not
remember the target word, participants were encouraged to take a
guess, or they could leave the box blank. Asking participants to type
the paired words in the restudy condition, rather than having them
make an additional relatedness judgement as in the first two learning
rounds, allowed us to match the behavioral response with that of the
testing condition (i.e. typing a word). This also served to reduce the
differences betweenbehavioral responses in the restudy condition and
the final test, where all pairs would be probed by asking the participant
to type a word. The learning condition manipulation was randomly
interleaved; although this interleaved design necessitates task
switching within the learning opportunity block, there was no statis-
tically significant difference in final recall accuracy between trials
where the participant switched between testing and restudying and
those where learning condition was consistent across consecutive
trials (see Supplementary Note 1 for more detail).

Participants were not given a time limit on recalling the second
word in the pair. No feedback was provided, as feedback can provide
an additional restudying opportunity that can enhance final test per-
formance for tested items68 and inflate testing effects28.

The assignment of the word pairs to either the test or restudy
condition was counterbalanced by creating two matched sets of pairs
with 15 related and 15 unrelated pairs.Words were always presented in
the forward order (i.e. cue was always presented before the target).
The sets were matched on concreteness, frequency, length of cue and
target, word2vec and LSA cosine similaritymeasures. Each set ofwords
was randomly assigned to either the test or restudy condition inde-
pendently for each participant. Memorability of the pairs of words was
measured post-hoc by computing the average recall accuracy of the
pair across participants; there was a range of accuracy across pairs,
ranging from 91% (GENDER- FEMALE) to 5% (CHILDREN – BIRD) of
participants recalling any given pair (Supplementary Fig. 2). Despite
the range of memorability across all pairs, there was no statistically
significant difference in mean memorability across the two sets of
words pairs (see Supplementary Note 1 for more details).

Final test
In the final test, performed on Day 2, participants were presented with
cue words from pairs they had learned on the previous day (with the
cue word on the left and “????” on the right, just as in the testing
condition onDay 1) andwere asked to type in the corresponding target
word. There was no time limit on recall, and participants were
encouraged to guess if they couldn’t remember the pairs or otherwise
leave the box blank. Responses were scored as correct if they were
spelled correctly or if a spell-checking algorithm (https://textblob.
readthedocs.io/en/dev/) identified the correct target word as themost
likely word.

Similarity-based word arrangement task (SWAT)
The SWAT was performed at the beginning of Day 1, prior to learning
word pairs, and again at the end of Day 2, after the final test. Each
session of the task was comprised of 4 trials. On each trial, participants
received 60 words in a “word bank” on the left side of the screen.
Participants clicked on a word to bring it over to a main arrangement
area (“the canvas”) and then dragged eachword to the location of their
choosing. Participants were instructed to take as long as they needed
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to arrange the words such that more similar words were closer toge-
ther and more dissimilar words were further apart. Trials lasted a
median duration of 7.14min.

Individual words were pseudo-randomly assigned to trials based
on the to-be-learned pairs. The list of cues and targets were each split
in half, to create 4 lists of 30words. Each listwas pairedwith eachother
list, except for the list that would form the to-be-learned pairs. This
procedure created 4 trials of 60 words each, ensuring that each word
would be arranged twice and that the two words in each to-be-learned
pair were never both encountered on the same trial. This was an
important constraint, as the mere act of thinking about the semantic
relationship of the words in the to-be-learned pairs (or learned pairs in
the case of the post-learning assessment) during a SWAT trial could
bias participants’ word placement decisions and corrupt our ability to
sensitively measure the behavioral consequences of our experimental
manipulations. The order of the 4 trials was randomized for each
participant, as was the order of the words in the word bank on
each trial.

Derivation of semantic similarity metrics
After participants completed the SWAT arrangements, semantic dis-
similarity was calculated for each pair of words by taking the Euclidean
distance between the locations of each pair of words on the canvas
(measured as the distance in pixels from the center of each word).
Trials were combined using an evidence-weighted average of scaled-
to-match distance matrices49. However, because words within to-be-
learned pairs were never included on the same trials, we could not
directly measure the distance between these words. Thus, by design,
our procedure produced an incomplete representational dissimilarity
matrix. In order to reconstruct one of our primarymeasures of interest
(i.e. the semantic distance between words in to-be-learned pairs, both
before learning and after learning), SWAT trials were combined using
an evidence-weighted average and the semantic dissimilarity of
unmeasured data pairs was imputed using K-nearest neighbors
imputation using the KNNImputer function69 from Python’s sci-kit
learn package70 with 40 neighbors (as was determined as an optimal
number of nearest neighbors for imputation in simulations) and the
“distance” weighting function (see Fig. 3B for a visualization of this
process). This imputation procedure was performed separately on
each participant’s pre-learning SWAT data and post-learning SWAT
data. Since the imputation of not-directly-measured semantic distance
ratings is a key innovation of our experimental paradigm, we con-
ducted a number of analyses to confirm the validity of the imputation,
and these are described in the Supplementary Note 2 and Supple-
mentary Figs. 3, 4. Finally, semantic dissimilarity measures were con-
verted to similarity measures for ease of interpretation by taking 1 –
dissimilarity and the upper triangle of the fully imputed similarity
matrixwas used for further analysis. This process resulted in a range of
similarity values from 0.9765 to 0.9963 for the pre-learning SWAT
(M =0.9890, SD =0.0028) and 0.9733 to 0.9972 (M =0.9894, SD =
0.0032) on the post-learning SWAT.

Statistical analyses
All statistical analyseswere conducted in R (version 4.1.2; RCore Team,
2021) and visualized using the ggplot2 R package (Wickham, 2016). A
list of packages used (including version information) is included in the
Supplementary Methods. Data and code are available on OSF at
https://osf.io/5q6th/. Tests of normality are not reported given that t-
tests, ANOVAs and linear mixed models are generally robust to viola-
tions of normality, especially with larger sample sizes71,72.

Preregistered analyses
To investigate how semantic relatedness influences the testing effect,
accuracy for tested and restudied pairs was calculated separately for
semantically related and semantically unrelated pairs for each

participant in the final session. A 2 × 2 (relatedness x learning condi-
tion) repeated measures ANOVA (RM-ANOVA) using the rstatix
package73 was performed to detect differences between conditions on
the final test. Furthermore, a single measure of the testing effect on
behavioral performance was calculated for each semantic relatedness
condition (related pairs, unrelated pairs) and all pairs (regardless of
condition) by taking the difference between the probability of a tested
item being correctly recalled and the probability of a restudied item
being correctly recalled. Next, tested pairswere split based onwhether
they were correctly recalled on Day 1. The accuracy on Day 2 was
assessed in another 3 × 2 RM-ANOVA (Day 1 condition (correctly
recalled, incorrectly recalled, restudied) x relatedness (related, unre-
lated). Although we initially preregistered that we would include all
trials in the remainder of our analyses, we ultimately opted to exclude
pairs that were tested and incorrectly recalled at Day 1 (mean number
of pairs excluded=11.23, SD = 4.57) because we were primarily inter-
ested in the effects of successful testing compared to restudying.
Effect sizes for RM-ANOVAs are reported using generalized eta-
squared (ηG

2), whichmeasures the effect size with variation fromother
effects and includes variance due to individual differences74.

Change in semantic similaritywas calculated for eachwordpair by
taking the difference between similarity on Day 1 and Day 2. With this
change measure, a negative value indicates that words within a pair
became less similar over time (initial similarity > final similarity), while
a positive value indicates thatwords within a pair becamemore similar
over time (final similarity > initial similarity). As a manipulation check,
the Day 2 semantic similarities of learned pairs (i.e. pairs of words that
were either tested or restudied in the main part of our experiment),
split by those that were correctly recalled at Day 2 and those that were
not, were compared to random, unlearned pairs (i.e. all possible pair-
ings of words from our stimulus set that were not restudied or tested
during the learning portion of the experiment). This test provides a
noise ceiling (as any changes in unlearned pairs can be thought of as
noise) and ensures that learned pairs indeed show more representa-
tional change than unlearned pairs. Next, values for the learned pairs
were entered into a linearmixed-effectsmodel (LMM)with fixed effect
predictors of semantic relatedness, learning condition, and final recall
success, and a random intercept of subject identity. We note that
although these analyseswere initially preregistered touseRM-ANOVAs
and paired t-tests, we report our results in an LMM framework to be
consistent with our exploratory analyses (see below) and account for
variance frompotential randomeffects and report the results from the
RM-ANOVA in the Supplementary Note 3. A testing effect measure for
similaritywascalculated in a comparablewayaswedid for thememory
recall performance data, by taking the difference between the raw
similarity on the final day and the change in similarity across days for
tested items and restudied items. These measures of the testing effect
from the similarity data were correlated with the testing effect mea-
sure for performance in the learning task across all pairs.

Additionally, we evaluated the asymmetrical representational
change of each individual word by extracting the vector of similarity
comparing each word to its top 20 nearest neighbors before and after
learning. Analyses were restricted to the 20 nearest neighbors to
reduce the influence of distant words in semantic space, which would
be relatively uninformative for the definition of a given word. For
example, it is muchmore useful to consider the definition of BLANKET
in relation to words like PILLOW or CLOTH (the top two closest
neighbors in our set, as defined byword2vec), where one can consider
the specific connection or compare features, than its relationship to
MATH or CHEF (the two least similar words in our set), where they
share few features or associates. Nearest neighbors were identified by
calculating the cosine similarity between the full semantic feature
vectors extracted from word2vec and selecting the top 20 largest
similarity values, excluding pairs of words where the distance is
imputed. The similarity values for these pairs as measured by the

Article https://doi.org/10.1038/s41467-023-42770-w

Nature Communications |         (2023) 14:7548 12

https://osf.io/5q6th/


SWAT were used as the vectorized representation for each word. The
representation of the cue in the initial pair was then correlatedwith the
target in thefinal pair rðCueDay1,TargetDay2Þ and the cue in thefinalpair
to the target in the initial pair rðCueDay2,TargetDay1Þ. Taking the dif-
ference between the Fisher z-transformed correlation values
rðCueDay1,TargetDay2Þ � rðCueDay2,TargetDay1Þ provided a single mea-
sure to index the amount of asymmetric change of each of the indi-
vidual words, where a positive value would indicate that the target
word becomes more similar to the cue word, while a negative value
would indicate that the cue was drawnmore towards the target, and a
zero valuewould indicate that therewas equal change for eachword in
the pair. Asymmetry values were Fisher z-transformed and entered
into a linear mixed-effects model (LMM) with learning condition (tes-
ted vs restudied), position of word in pair, and relatedness of pair as
fixed effect predictors and subject identity as a random intercept.
Semantic relatedness and learning condition were iteratively tested as
potential random slopes using likelihood ratio tests (using var-
CompTest from the varTestnlme R package75) and the variance of ran-
dom effects in the final model was estimated using restricted
maximum likelihood (REML). Follow up pairwise comparisons were
used to investigate significant effects with Holm-Bonferroni correc-
tions for multiple comparisons. Additionally, we tested whether the
Fisher z-transformed asymmetry values were significantly different
from zero using a series of two-tailed one-sample t-tests with Holm-
Bonferroni corrections for multiple comparisons.

We note that we initially pre-registered that we would complete
this analysis using all values from the row vector (rather than just the
top 20 nearest neighbors). This analysis was initially attempted and
resulted in no statistically significant results. However, this analysis
assumes that the measured representation of each word in our set is
independent from that of the other words in our set; in a
neuroimaging-based representational similarity analysis (which our
analysis was inspired by), this is indeed the case. However, in our
paradigm, the semantic representation of each individual word is
derived from its relationship to every other word in the set, and all of
these words also underwent learning. As such, when comparing the
representation of a givenword across learning to all other words in the
set, we are unable to isolate the change of that specific word from the
changes in all the other words in the set, thereby inducing additional
noise and making it more difficult to see any meaningful change for
any individual word.

Finally, we note that we deviated from our pre-registration for
both our analyses of the change in similarity and asymmetry values of
learned pairs by separating pairs into those that were subsequently
recalled at Day 2 and those that were forgotten at Day 2 (and include
this distinction as a fixed effect predictor in our models) to allow us to
test how our findings related to behavioral performance. Additionally,
although we include observations about trials that were tested but
incorrectly recalled at Day 1 in our basic behavioral analyses, we opted
to exclude those trials from our analyses of representational space as
we were primarily interested in the differential effects of our learning
conditions (which theoretically only occur when testing is
successful50), and we ultimately did not have a sufficient number of
trials that were tested and incorrectly retrieved at Day 1 to sufficiently
power any analysis of representational change for that trial type.

Exploratory analyses
As a complement to the preregistered analyses described above, sev-
eral exploratory analyses were also performed. First, we performed an
additional two-tailed paired t-test on the recall accuracy of tested pairs
at the initial Day 1 test to determine whether semantically related pairs
were recalled better than semantically unrelated pairs. Restudied pairs
were excluded from this analysis as the accuracy of these pairs
reflected the ability to correctly type the fully visible target word,
rather than memory recall performance.

In addition to conducting a 2 × 2 RM-ANOVA on the similarity
measures, we conducted a series of two-tailed one sample t-tests with
Holm-Bonferroni adjustments for multiple comparisons to test whe-
ther the change in similarity in each condition was different from zero.

To further probe the effects of learning on semantic representa-
tions and representational change, we performed a series of LMMs,
using the lmer function from the lmerTestRpackage76 to estimate fixed
and random effects. For each model, we included predictors of relat-
edness (related vs unrelated), learning condition (tested vs restudied),
and recall success at Day 2 (recalled vs forgotten). Additional pre-
dictors were included for some models as necessary. Subject identity
was entered as a random intercept for each model (which allows for
variance in the intercept over participants), and semantic relatedness,
learning condition, and position in pair (when relevant tomodel) were
tested as potential random slopes sequentially using likelihood ratio
tests (using varCompTest from the varTestnlme R package75) for each
model separately. Although the potential variance in the slopes was
not the primary target of these analyses, the inclusion of random
slopes allowed us to better explain variance in the model overall. All
models were run with a maximum of 200,000 iterations for con-
vergence. Once the final model was determined, significant main
effects and interactions were probed using pairwise comparisons
(using the emmeansRpackage77)withHolm-Bonferroni corrections for
multiple comparisons. All models were estimated using REML, and
two-tailed t-tests for fixed effects were estimated using Kenward-
Roger’s method. Effect sizes were estimated using partial eta-squared
(ηp

2), as measured from the effectsize R package78. Unless otherwise
noted, this procedure was used for all LMMs. Tables listing all coeffi-
cients, standard errors, degrees of freedom and t-values, in addition to
variance-covariance structure for each model are reported in Supple-
mentary Tables 3–15.

In addition to our preregistered analyses of representational
asymmetry described above, which operate on pairwise similarity
values of cues and targets before and after learning, we also sought to
analyze how eachwordwithin a given pair underwent representational
change. To test this, we first computed each word’s similarity with its
top 20nearest neighbors, and thus derived a 20-value representational
vector for each word before and after learning. We used the Fisher
z-transformed Pearson correlationbetween these vectors as ameasure
of change for each individual word. In addition to the fixed effect
predictors of relatedness, learning condition, and recall at Day 2, this
model included a fixed effect predictor of theword’s position in the to-
be-learned pair (cue vs target). This effect of word position was also
tested as a potential random effect using likelihood ratio tests, as was
done in previous models.

We additionally explored changes in the semantic distance of
potentially interfering lure pairs (i.e. words in our set that were
semantically related to the cue words of our to-be-learned pairs) to
further explore the sculpting of semantic space due to learning. To do
so, we calculated the semantic similarity (indexed by the LSA cosine
similarity) for all potential 118 pair combinations for a given cue word
in our to-be-learned set of words (excluding the associated to-be-
learned target word and a word’s similarity to itself). Given that these
pairs were identified post-hoc after creation of the to-be-learned pairs,
therewas awide range of similarity values.We then divided these lures
into four classes of lures: weak/non-lures (LSA cosine similarity less
than 0.2), moderate lures (LSA cosine similarity between 0.2 and 0.4),
strong lures (LSA cosine similarity between 0.4 and 0.6) and very
strong lures (LSA cosine similarity above 0.6); Supplementary Fig. 5.
For example, for the to-be-learned pair BLANKET – BED, SEMESTER
would act as a weak/non-lure, TEMPERATUREwould act as amoderate
lure, SEAM might act as a strong lure and PILLOW would act as a very
strong lure. Pairs that were not correctly recalled at Day 2 were
excluded from this analysis, as incorrect responses were often other
words from our corpus (which would be considered lures in this
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analysis) and this retrieval may have influenced the similarity judge-
ments in SWAT protocol (which was performed after the final test).
Additionally, as in our other analyses, we excluded tested pairs that
were incorrectly recalled at Day 1. This selection was repeated for the
cues of all to-be-learned pairs separately for each individual, resulting
in a range of 1652–5900 (mean=3106, SD = 981) semantic lure pairs per
participant. We used pairwise change in similarity across learning for
the semantic lures as the dependent variable for an LMM regression
with fixed effects of condition of the associated to-be-learned pair
(tested vs restudied), relatedness of the associated to-be-learned pair
(related vs unrelated), and strength of the lure pair (weak/non-lure,
moderate lure, strong lure and very strong lure). This model used a
BOBYQA optimizer to ensure model convergence. As in our previous
analyses, subject identity was included as a randomeffect in all models
and relatedness and learning condition were independently and
sequentially tested as potential random effects, as were potential two-
way and three-way interactions. Significant main effects and interac-
tions were probed by computing the contrast of the difference of each
lure class and the non-lure pairs and comparing across learning con-
dition (for example, the contrast [moderate lure – weak/non-lure for
tested pairs] – [moderate lure – weak/non-lure for restudied pairs])
with Holm-Bonferroni corrections for multiple comparisons. Addi-
tionally, pairwise comparisons of all lure classes across learning con-
dition were computed with Holm-Bonferroni corrections for multiple
comparisons and are reported in the Supplementary Note 3.

To supplement our analyses relating representational change and
semantic structure to final recall success, we ran a generalized LMM
with a logit link function (i.e. a mixed-effects logistic regression) using
the glmer function from the lme4 package79. This model was fit using
maximum likelihood estimation and a BOBYQA optimizer with a
maximum of 200,000 iterations. We included fixed effects of learning
condition (tested vs restudied), relatedness (related vs unrelated),
Fisher z-transformed correlation of the cue and target across learning,
difference of Fisher z-transformed correlation to normative semantic
space across learning for both cues and targets, and Fisher
z-transformedasymmetry value topredict theprobability offinal recall
success (recalled vs forgotten). As in our previous LMMs, the effect of
subject identity was included as a random effect, and random effects
of relatedness and learning condition were independently tested as
potential random effects using likelihood ratio tests. Significant main
effects and interactions were probed using pairwise comparisons with
Holm-Bonferroni corrections for multiple comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawbehavioral data generated in this study have beendeposited in
the Open Science Framework at https://osf.io/5q6th/ (https://doi.org/
10.17605/OSF.IO/5Q6TH). LSA cosine similarity data are available at
http://www.lingexp.uni-tuebingen.de/z2/LSAspaces/. Pre-trained
word2vec model is available at https://code.google.com/archive/p/
word2vec/.

Code availability
All code necessary to reproduce all analyses in this manuscript are
provided at https://osf.io/5q6th/ (https://doi.org/10.17605/OSF.
IO/5Q6TH).
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