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Abstract

Microorganisms are in constant competition for growth niches and environmental resources. In 

Gram-negative bacteria, contact-dependent growth inhibition (CDI) systems link the fate of one 

cell with its immediate neighbor through touch-dependent, receptor-mediated toxin delivery. 

Though discovered for their ability to confer a competitive growth advantage, CDI systems also 

play significant roles in inter-sibling cooperation, promoting both auto-aggregation and biofilm 

formation. In this review, we detail the mechanisms of CDI toxin delivery and consider how toxin 

exchange between isogenic sibling cells could regulate gene expression.

INTRODUCTION

Within the polymicrobial communities that predominate in nature, bacteria adapt their 

physiology in response to the myriad of metabolites and signaling molecules in their 

environment. This dynamic interplay reflects the continuous adjustment to fluctuating 

nutrient/chemical landscapes in the environment and within animal and plant hosts. For 

example, some enteric pathogens establish transient syntrophic relationships with members 

of the microbiota, using the sugars released by saccharolytic bacteria to fuel growth and 

colonization (1). Invaders also compete with resident bacteria whose metabolic requirements 

overlap with their own. For example, beneficial commensal bacteria appear to suppress 

pathogen colonization by competing for preferred carbohydrates sources (2, 3). As 

metabolic demands evolve, so does the demeanor of established microbial interactions. Such 

changes can be abrupt when antibiotics or host immune responses impinge on the 

community. Previously antagonistic associations may turn collegial or vice versa, sometimes 

leading to co-infections (4–6).

Bacterial contact-dependent growth inhibition (CDI) is a common mechanism used by some 

Gram-negative bacteria to either initiate hostilities or forge cooperative interactions. CDI 

was discovered in Escherichia coli isolate EC93, which rapidly kills laboratory strains of E. 
coli K-12 during co-culture (7, 8). E. coli EC93 uses its CdiB and CdiA two-partner 
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secretion proteins to deliver an ionophoric toxin into other E. coli cells (9). CdiA is an 

extended filamentous protein that is exported to the cell surface by the outer-membrane 

localized CdiB transporter. Upon binding its receptor on a neighboring cell, CdiA delivers 

its C-terminal toxin domain (CdiA-CT) into the target (Fig. 1). E. coli EC93 cells protect 

themselves from toxins delivered from neighboring siblings with CdiI immunity proteins. 

Thus, CDI imparts a competitive growth advantage over strains that lack immunity. 

However, CDI systems also promote cooperation between sibling cells, facilitating social 

behaviors that underlie biofilm formation and pathogenesis. Here, we review the molecular 

mechanism of CDI mediated competition and cooperation.

DISTRIBUTION AND ORGANIZATION OF cdi LOCI

Since its discovery in E. coli EC93, cdi loci have been identified in a wide variety of Gram-

negative proteobacteria (10, 11). The systems are invariably encoded within genomic/

pathogenicity islands or plasmids (12); therefore not all strains of a given species necessarily 

carry cdi genes. Further, CdiA-CT and CdiI sequences are extraordinarily polymorphic 

between bacteria, such that strains often deploy different toxin-immunity pairs (10, 11, 13). 

CDI systems are typically organized as cdiBAI gene clusters, though most loci in the 

Burkholderiales are arranged in an alternative cdiAIB order (Fig. 2). In all instances, the 

toxic 3´-coding sequence of cdiA is closely linked to the downstream immunity gene, with 

the cdiI initiation codon often overlapping the cdiA termination codon. Consistent with their 

presence on mobile genetic elements, cdiA-CT/cdiI sequences appear to be shared between 

bacteria through horizontal gene transfer. Moreover, related toxin-immunity modules are 

often associated with bacteriocins and type VI and type VII secretion systems (10, 11, 14–

19), indicating that the toxins are deployed by several competition systems. Further evidence 

of horizontal exchange is manifest by the tandem arrays of 'orphaned' cdiA-CT/cdiI gene 

pairs often found downstream of cdiBAI gene clusters (Fig. 2) (15, 17, 20). Insertion 

sequence elements, integrases and transposases are usually interspersed amongst the orphan 

toxin-immunity gene pairs. The function of orphan gene clusters remains largely 

unexplored. Because a number of orphan toxin-immunity pairs retain growth inhibition and 

immunity functions, they may expand the cell's toxic repertoire through recombination with 

the upstream cdiA gene (17, 20). Alternatively, orphan pairs may represent ancestral toxins 

that were displaced during the integration of new incoming cdiA-CT/cdiI sequences.

Though cdiB, cdiA and cdiI constitute the minimal core of a CDI system, some loci contain 

additional genes that are important for function. A subset of Burkholderia systems encode a 

small lipoprotein (BcpO) between cdiI and cdiB (Fig. 2). BcpO plays a significant role in 

CdiA secretion and toxin delivery for these systems (21). Other loci encode a putative lysyl 

acyltransferase related to the hemolysin activator HlyC (Fig. 2) (22, 23). This latter 

association suggests that some CdiA effectors may be subject to post-translational 

modification with fatty acyl chains. We also note that Citrobacter rodentium ICC168 

encodes an unusual CdiA annotated as a fimbrial adhesin (Fig. 2). This protein contains the 

characteristic hemagglutinin-peptide repeats and pretoxin-VENN domain of CdiA, but lacks 

the N-terminal TPS transport domain required for export by CdiB (Fig. 3). Instead, the 

Citrobacter effector contains an N-terminal domain that is closely related to the StbD 

fimbrial protein from Salmonella species (Fig. 3). Collectively, these observations suggest 
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that the fimbrial chaperone and usher proteins encoded immediately upstream mediate 

secretion and presentation of this unique CdiA effector (Fig. 2).

TOXIN DELIVERY AND ACTIVATION

Outer membrane receptors

CdiA binds to specific cell-surface receptors on target bacteria (Fig. 1). The molecular basis 

of CdiA-receptor interactions is best understood for CDI systems deployed by E. coli strains 

EC93 and 536. The CdiAEC93 effector binds to BamA – a key subunit of the essential outer 

membrane β-barrel assembly machine (BAM) complex (24, 25). BamA is found in all 

Gram-negative bacteria, and its sequence is highly conserved amongst the 

Enterobacteriaceae. However, E. coli EC93 cells are unable to inhibit the growth of closely 

related enterobacteria because the surface exposed loops of BamA vary considerably 

between species (8). Expression of E. coli bamA in Salmonella Typhimurium, Citrobacter 
freundii and Enterobacter aerogenes sensitizes these bacteria to CdiAEC93-mediated growth 

inhibition. Similarly, exchange of E. coli bamA with alleles from E. cloacae or S. 
Typhimurium protects cells from growth inhibition and abrogates CdiAEC93-dependent cell-

cell adhesion (8, 25). CdiAEC536 recognizes heterotrimeric complexes of OmpF and OmpC 

(26). OmpC and OmpF are highly expressed outer membrane osmoporins that are subject to 

intense selective pressure from bacteriophages and adaptive immune systems (27–29). 

Consequently, the surface exposed residues of OmpC vary between E. coli isolates and this 

antigenic variation protects many potential target strains from CdiAEC536 activity (26). 

Intriguingly, group A colicins appear to use OmpF as a conduit to translocate nuclease 

domains across the outer membrane (30, 31). It is presently unclear whether CdiAEC536 also 

uses OmpC/OmpF for toxin translocation. However, because CdiA proteins exploit a variety 

of cell-surface receptors, including lipopolysaccharide ((32) and unpublished data), it 

appears that porins are not an obligate part of the CDI toxin translocation pathway.

Recent work has localized the receptor-binding domain within the CdiA filament. Alignment 

of the closely related CdiAEC93 and CdiAEC536 proteins shows divergence in a central region 

between the FHA-1 and FHA-2 peptide repeats (Fig. 3), suggesting that this region could be 

responsible for differential receptor binding activity (26). This conclusion is somewhat 

unexpected, because prevailing models predict that the C-terminal toxin domain forms the 

distal end of the CdiA filament. However, truncated CdiAEC93 lacking ~1,000 C-terminal 

residues retains BamA-binding activity (25), demonstrating that the C-terminus is not 

required to bind target cells. Further, CdiAEC93 fragments containing the central region bind 

directly to purified BamA, and receptor specificity is altered when this region is exchanged 

between CdiA proteins (33). These findings underscore the modular nature of CdiA, but also 

raise important questions about effector structure and topology on the inhibitor cell surface.

Toxin translocation into the cytoplasm

Most characterized CDI toxins are nucleases, which must be translocated into the target-cell 

cytoplasm to degrade substrates. Crystallography and comparative sequence analyses 

indicate that the variable CdiA-CT region is often composed of two domains with distinct 

functions during CDI (22, 34, 35). The extreme C-terminal domain is responsible for 
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toxicity, whereas the N-terminal domain governs transport from the periplasm into the 

target-cell cytoplasm (Fig. 3). Genetic evidence suggests that the N-terminal domain 

interacts directly with membrane protein receptors to mediate this translocation (Fig. 1) (36). 

Integral membrane proteins implicated in CDI include several ABC-transporters (GltJ/GltK, 

RbsC and MetI), the D-glucose transporter PtsG, the ATP-dependent zinc metallopeptidase 

FtsH, and a predicted inner-membrane protein of unknown function (YciB) (36). How these 

disparate membrane proteins mediate toxin translocation is not clear. One possibility is that 

N-terminal CdiA-CT domains use membrane proteins as receptors to bring tethered nuclease 

domains into close proximity with the lipid bilayer. Because toxin transport requires the 

proton-motive force (37), this electrochemical gradient could energize translocation. 

Additionally, the proton gradient lowers the periplasmic pH, which could induce toxin 

unfolding for insertion directly into the lipid bilayer. This mechanism is similar to that 

proposed for the import of colicin nuclease domains, which adopt a molten globule-like state 

upon interaction with membrane lipids (38–40). This destabilization of tertiary structure 

suggests that the toxins must unfold during transport across the cytoplasmic membrane.

Toxin activation

In some instances, CDI toxins are inherently inactive, with activation occurring only upon 

entry into target cells. The CdiA-CTEC536 toxin deployed by uropathogenic E. coli 536 is a 

latent anticodon nuclease that is only active when bound to the cysteine biosynthetic enzyme 

CysK (41). Purified CdiA-CTEC536 does not cleave tRNA in vitro unless the reaction is 

supplemented with CysK, and ∆cysK mutants are completely resistant to CdiA-CTEC536 

toxin (41, 42). Intriguingly, CdiA-CTEC536 inserts its C-terminal GYGI peptide into the 

active-site cleft of CysK, mimicking the highly conserved 'cysteine synthase' complex, in 

which CysE uses its C-terminal GDGI motif to bind the CysK active site (43, 44). CysK 

significantly increases toxin thermostability and also promotes binding to tRNA substrates 

(44, 45). Because CDI toxins must presumably unfold to enter target cells, the interaction 

with CysK may have evolved to compensate for the toxin's intrinsic instability. In this 

model, the binding partner ensures that the toxin refolds efficiently after delivery into the 

cytoplasm. More recently, we have discovered that diverse CdiA-CT toxins from E. coli 
strains EC869, NC101 and 96.154 interact functionally with translation factors EF-Tu and 

EF-Ts (46). CdiA-CTEC869 specifically cleaves within the aminoacyl acceptor stem of 

tRNAGln and tRNAAsn molecules and binds to EF-Tu with high affinity. Remarkably, the 

toxin only cleaves substrate in the context of tRNA•EF-Tu•GTP ternary complexes (46), 

suggesting that the interaction with EF-Tu is required for nuclease activity. Moreover, EF-Ts 

is required for toxin activity in vivo, though guanine nucleotide exchange activity per se is 

not required for the nuclease reaction. Instead, it appear that EF-Ts promotes the formation 

of tRNA•EF-Tu•GTP complexes for rapid cleavage by CdiA-CTEC869. Finally, the trimeric 

integral membrane protein AcrB may play a role in the activation of membrane-pore toxins. 

E. coli ∆acrB mutants are resistant to the CdiA-CTEC93 pore-forming toxin during CDI (24), 

but also grow normally when the toxin is produced intra-cellularly (unpublished data). Thus, 

AcrB is required for intoxication regardless of whether the toxin is delivered from a 

neighboring cell or expressed internally. These observations raise the possibility that AcrB 

anchors CdiA-CTEC93 in the membrane or perhaps activates the toxin to allow ion flow.
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THE YIN AND YANG OF BACTERIAL COMPETITION AND COOPERATION

Cell-cell adhesion and cooperative behavior

The fitness advantage of E. coli EC93 over laboratory strains led to the competition model of 

CDI function. However, the adhesive properties of CdiA also promote collaboration between 

sibling cells (Fig. 4). Expression of cdi is associated with auto-aggregation and biofilm 

formation in several species including Erwinia chysanthemii (47), Xylella fastidiosa (48), 

Neisseria meningitidis (49), Xanthomonas axonopodis (50), B. thailandensis (21), E. coli 
(25), and Pseudomonas aeruginosa (51). Biofilm formation is a prime example of 

cooperative behavior, in which individual bacteria collaborate to build multi-cellular 

structures. Such communities are beneficial because they protect inhabitants from predation 

and antimicrobial compounds. Moreover, this collective behavior often contributes to 

virulence, perhaps accounting for the large number of bacterial pathogens that carry CDI 

systems. For example, HecA/CdiA of Erwinia (Dickeya) chrysanthemii promotes adherence 

to leaf epidermal cells and allows planktonic bacteria to join pre-established cell aggregates 

(Fig. 4) (47). Similarly, CdiA homologs from N. meningitidis (HrpA) (52), Moraxella 
catarrhalis (MhaB) (53) and X. fastidiosa (HxfA) (54, 55) are proposed to mediate initial 

adhesion to host cells. For X. fastidiosa, HxfA/CdiA contributes to the colonization of insect 

vectors, thereby promoting subsequent transmission into plant hosts. In some instances, CDI 

may play a more active role in pathogenesis. N. meningitidis hrpA/cdiA mutants are less fit 

inside human cells and are also defective for endosomal escape into the cytoplasm (56).

The role of CDI in cooperative biofilm formation has been examined most extensively in B. 
thailandensis E264. The B. thailandensis cdi locus is critical for wild-type biofilm formation, 

and the number and size of pillar structures are altered in cdiA mutants (Fig. 4) (57). 

Further, B. thailandensis cells that constitutively express cdi genes produce abnormally 

dense and flat biofilms that lack discrete pillar structures. This latter finding demonstrates 

that cdi expression must be precisely regulated for cooperation. Transcription of the B. 
thailandensis cdi locus is induced by quorum-sensing homoserine lactones (58), and there is 

evidence of complex spatiotemporal regulation (21). Thus, cdi genes are preferentially 

expressed at high cell densities when cell-cell contacts are maximized. Of course, CDI-

mediated cooperation is only possible between cells that express the appropriate cognate 

CdiI immunity protein. Non-isogenic bacteria are excluded from the biofilm community 

through toxin delivery (59). However, when non-isogenic cells are provided with the 

appropriate immunity gene, the unrelated populations are able to congregate and form mixed 

pillars. These studies demonstrate that self/non-self discrimination in bacteria can be 

controlled by specific toxin-immunity protein binding interactions.

Contact-dependent cell-cell signaling

Remarkably, CdiA-mediated cell-cell adhesion is not sufficient to promote full biofilm 

formation in B. thailandensis, and the exchange of catalytically active toxin domains is also 

required (57). This observation suggests that delivered toxin domains have an unanticipated 

signaling function when delivered into immune sibling cells. Recent work from Cotter and 

colleagues has revealed that toxin delivery is associated with changes in gene expression, 

including the upregulation of a putative transcriptional regulator involved in biofilm 
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formation (60). The molecular pathway linking toxin delivery to transcriptional regulation is 

not yet known, but there are several possible mechanisms. CdiA-CTE264 has Mn2+-

dependent DNase activity (21, 61), and therefore its intrinsic DNA-binding activity could 

contribute to signaling. Consistent with this model, we have found that the neutralized CdiA-

CT•CdiIE264 complex binds to DNA (unpublished data), suggesting that the toxin-immunity 

protein complex could act as a transcription factor to regulate gene expression (Fig. 4). 

Alternatively, the complex may exhibit residual (and sub-lethal) 'nickase' activity, thereby 

modulating DNA supercoiling and indirectly influencing transcription. Whether contact-

dependent cell signaling extends to other types of toxins remains an open question. We note 

that many CDI toxins cleave tRNA (34, 61, 62), and that tRNA fragments regulate protein 

synthesis and contribute to stress responses in vertebrates (63). Angiogenin represents an 

intriguing example of RNase-mediated response regulation. Angiogenin is a potent 

angiogenesis factor and a paralog of RNase A/RNase 1. Circulating angiogenin is 

endocytosed and trafficked to the nucleolus, where it cleaves a promoter-associated RNA to 

de-repress transcription of ribosomal RNA (64–66). The resulting increase in ribosome 

production is critical to support cell growth and proliferation. In addition, cytoplasmic 

angiogenin is activated to cleave the anticodons of mature tRNA during stress (67, 68). The 

resulting tRNA fragments inhibit protein synthesis, promote stress granule assembly and 

enhance cell survival (69, 70). Though these regulatory mechanisms have only been 

described in vertebrates, tRNA fragments accumulate in Streptomyces coelicolor during 

aerial hyphae formation and diminish later in development as spores are produced (71). 

These latter findings suggest that tRNA fragments have regulatory activities in prokaryotes 

and raise the possibility that CDI delivered RNase toxins could also participate in signaling. 

Determining how CDI toxin exchange regulates gene expression represents an outstanding 

and exciting challenge for the field.
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Figure 1. CDI-mediated toxin delivery
CdiA is exported to the cell surface following Sec-dependent secretion across the inner 

membrane. CdiA binds to outer-membrane protein (OMP) receptors on target bacteria using 

a centrally located domain. Following receptor recognition, the C-terminal toxin domain is 

delivered into the periplasm where it presumably interacts with specific integral membrane 

proteins (IMP) to enter the lipid bilayer (for pore-forming toxins) or cross the membrane to 

enter the cytosol. Target bacteria are usually inhibited through dissipation of the proton-

motive force or degradation of nucleic acids. Toxin domains delivered into sibling cells are 
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neutralized by the direct binding of cognate CdiI immunity proteins. The outer-membrane 

(OM), peptidoglyan (PG) and cytoplasmic membrane (CM) are indicated.
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Figure 2. Variation in cdi gene clusters
The cdi loci of selected bacterial strains are presented. Where available, ordered locus 

designations are provided below each cdiA gene. Secretion and accessory genes (cdiB, bcpO 
and hlyC) are depicted in yellow, and predicted immunity genes are shown in green. Genes 

encoding transposases, integrases and other proteins associated with mobile genetic 

elements are presented in light cyan. Orphan cdiA-CT/cdiI gene pairs are indicated by 

number (e.g. o1, o2, etc.) corresponding to their position downstream of the main cdiBAI 
cluster. The downward pointing carats indicate the position of sequences encoding VENN 

(or ELYN) peptide motifs that demarcate the variable CdiA-CT toxin region. Asterisks 

indicate that the orphan cdiA-CT sequence harbors mutations that are predicted to inactivate 

the encoded toxin domain.
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Figure 3. CdiA protein domain architecture
Predicted domain structures of CdiA effectors from E. coli STEC_O31 (NCBI identifier: 

WP_001385946.1) and C. rodentium ICC168 (WP_012907078.1). The N-terminal extended 

signal peptide region (ESPR) and TPS transport domain (Pfam: PF05860) are required for 

CdiA secretion across cytoplasmic and outer membranes, respectively. FHA-1 peptide 

repeats likely form a right-handed β-helix, and FHA-2 repeats are also predicted to form a 

predominately β-structure. The pretoxin-VENN domain (PF04829) demarcates the variable 

C-terminal (CT) region. The CdiA-CT region is often composed of two variable domains. 

The N-terminal domain mediates translocation across the target-cell cytoplasmic membrane, 

and the extreme C-terminal domain is responsible for toxicity. The toxin domain of 

CdiASTECO31 is a predicted bacterial EndoU RNase (PF14436), and the toxin domain of 

CdiAICC168 is a predicted cysteine protease (PF12385).
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Figure 4. Cellular interactions mediated by CDI
CDI systems mediate antagonistic and cooperative interactions in polymicrobial 

communities. During initial surface colonization, CDI mediates competition between strains 

of the same species (1). CDI+ cells (pink) use CdiA effectors (blue filaments) to inhibit 

CDI− strains (gray cells) of the same species. Inhibited CDI− bacteria are depicted as empty 

cells with dashed envelopes. CdiA adhesin activity promote auto-aggregation and the 

development of single-species microcolonies (2). Interactions between CdiA and its receptor 

also contribute to self/nonself discrimination, because unrelated species usually lack the 

specific receptor required for CDI-dependent cell adhesion (2). Finally, CDI appears to 

mediate cell-cell signaling to promote pillar formation in mature biofilms (3). Signaling 

entails changes in biofilm gene expression, suggesting that neutralized CdiA-CT•CdiI 

complexes could influence transcription as depicted in the expanded CDI+ cell.
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