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Dose-dependent treatment of engineered T cell therapy in cancer

Recent advances in cell-based immunotherapy have enabled doctors to overcome this limitation
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Highlights
Study of dose-dependent combination immunotherapy using engineered T cells and IL-2 in cervi-
cal cancer
Heyrim Cho,Zuping Wang,Doron Levy

• A mathematical model for combination therapy using engineered T cells and IL-2
• The results provide a TCR T cell dose window for a successful therapy
• Combination therapy does not always provide a better outcome
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ABSTRACT
Adoptive T cell based immunotherapy is gaining significant traction in cancer treatment. Despite its
limited efficacy so far in treating solid tumors compared to hematologic cancers, recent advances in
T cell engineering render this treatment increasingly more successful in solid tumors, demonstrating
its broader therapeutic potential. In this paper we develop a mathematical model to study the efficacy
of engineered T cell receptor (TCR) T cell therapy targeting the E7 antigen in cervical cancer cell
lines. We consider a dynamical system that follows the population of cancer cells, TCR T cells, and
IL-2 treatment concentration. We demonstrate that there exists a TCR T cell dosage window for a
successful cancer elimination that can be expressed in terms of the initial tumor size. We obtain the
TCR T cell dose for two cervical cancer cell lines: 4050 and CaSki. Finally, a combination therapy
of TCR T cell and IL-2 treatment is studied. We show that certain treatment protocols can improve
therapy responses in the 4050 cell line, but not in the CaSki cell line.

1. Introduction
Adoptive T cell therapy, also called cellular adoptive im-

munotherapy or T cell transfer therapy, is an immunother-
apy that uses T cells to help patients overcome diseases such
as cancer. In adoptive T cell therapy, T cells are typically
collected from the patient, engineered to improve their abil-
ity to target the patient’s cancer cells, and cultured to large
numbers before being introduced back to the patient [30, 15].
Adoptive T cell therapy includes tumor-infiltrating lympho-
cyte (TIL) therapy [8, 39], T cell receptor (TCR) T cell ther-
apy [12, 17, 45], and chimeric antigen receptor (CAR) T cell
therapy [18, 2]. The use of immune cells from donors is be-
ing studied as well. This therapy has been of growing inter-
est as a potential anti-cancer treatment in recent years. How-
ever, at present, its applicability has been mostly limited to
blood cancers. Recent studies are focusing on broadening
the applicability of the therapy to other types of cancer in-
cluding solid tumors [18, 30]. Other issues that are being
investigated are the enhancement of the T cell production
and activation, including the selection of T cell subsets, as
well as adjusting the clinical protocols.

Mathematicalmodels that describe the interaction of can-
cer and immune cells date back to [23], where a dynamical
system involving the tumor and cytotoxic T lymphocyteswas
studied. Periodic treatment and time delay were included
to model persistent oscillations in [42], followed by a sta-
bility analysis in [7]. Further developments of the model
included adding new types of cells, such as Natural Killer
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(NK) cells and normal cells, as well as various cytokines
[20, 6, 27]. These models capture the immune escape of tu-
mors and explain multiple equilibrium phases of coexisting
immune cells and cancer cells. Although the parameteri-
zation and analysis become difficult, dynamical systems in
higher dimensions, stochastic models, agent-based and cel-
lular automata models, as well as partial differential equa-
tions have all been used to test different biological hypothe-
ses including multiple immune cell populations and signal-
ing molecules [32, 33, 19, 9]. The recent surge of clini-
cal trials and the success of adoptive immunotherapies in-
spired the adaptation of these mathematical models to the
new therapies [21], including adoptive T cell therapies [43].
For instance, CD19 CAR T cell therapy targeting acute lym-
phoblastic leukemia ismodeled in [28] with a dynamical sys-
tem that also includes healthy B cell populations and circu-
lating lymphocytes. However, this model was not calibrated
with experimental data. CD19 CAR T cell therapy applied
to chronic lymphocytic leukemia is studied in [14] where
the relationships between T cell doses and disease burden
are being explored. To study the cytokine release syndrome,
which is one of the primary side effects of adoptive T cell
therapy, a dynamical system of nine cytokines responding
to T cell therapy is developed and studied in [16]. More re-
cently, CAR T cell therapies for glioblastoma are modeled in
[40]. Another approach to immunotherapy, immune check-
point inhibitor therapies are modeled in [31, 29, 36].

In this paper, we focus on engineered T cells therapy tar-
geting human papilloma virus (HPV) E7 antigen in solid tu-
mor that is developed and studied in Jin et al. (2018) [17].
The viral oncoprotein E7 is an attractive therapeutic target
due to its constructive expression in HPV-associated cancers
but not in healthy tissues. Through a uterine cervix biopsy of
a woman with cervical intraepithelial neoplasia II/III, Jin et
al. (2018) discovered an HPV-16 E7 antigen-specific, HLA-
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Dose-dependent treatment of engineered T cell therapy in cancer

A*02:01-restricted TCR. In vitro, genetic engineered T cells
that express E7-targeting TCR demonstrated effector T cell
functions, including IFN-
 production and CD8 coreceptor
independent tumor cell killing. To investigate the potential
for E7 TCR T cells to mediate regression of cancers in vivo,
immunodeficient, NOD/SCID 
 (NSG) mice were treated
with 12-day subcutaneous HPV-16+ cervical cancer tumors
with a single intravenous injection of E7 TCR T cells. [17]
used E7 TCR T cells at multiple doses of 1×105, 1×106, or
1 × 107 cells per mouse, or untransduced T cells at doses of
1 × 107 cells per mouse, either with or without adjuvant in-
traperitoneal 198,000 IU of IL-2 per mouse daily for 3 days.
This motivated our model and study of dose dependent com-
bination treatment. The perpendicular diameters of each tu-
mor from E7 TCR T cells treatment group and the untreated
group (5 mice per group) was measured at days 2, 5, 9, 12
and beyond after T cell injection in two independent exper-
iment that is the data we use to calibrate our model. The
authors in [17] demonstrates that administration of E7 TCR
T cells at doses of 1× 106 or 1× 107 cells induced complete
regression of 4050 tumors; while, administration of E7 TCR
T cells at a dose of 1 × 107 cells resulted in suppression but
not elimination of CaSki tumors. Moreover, either E7 TCR
T cells alone or in combination with IL-2 could mediate an-
titumor activity against human cervical cancers, compared
with the untreated group or the untransduced T cell group.

The goal of this study is to demonstrate the potential role
of mathematical modeling in improving the administration
of adoptive TCR T cell therapy for cancer treatment. In
Section 2, we present a cancer-immune interaction model
that follows the dynamics of cancer cells, TCR engineered
T cells, and the cytokine IL-2 drug concentration. We de-
scribe the model parameters and assumptions, and the pro-
cedure of sequential model calibration. In Section 3.1, sta-
bility analysis of the model is conducted, resulting with con-
ditions for therapy success. In Section 3.2, we study the
dose-dependent response of two cancer cell lines, 4050 and
CaSki to TCR T cell treatment. We demonstrate the exis-
tence of a TCR T cell dose-dependent therapeutic window.
The combination of TCR T cell and IL-2 treatment is studied
in Section 3.3, where we investigate the effect of different IL-
2 treatment schedules, and show that IL-2 treatment given in
a longer period of time is effective in the 4050 cell line, but
not in the CaSki cell line. A summary and future outlook are
provided in Section 4.

2. Model
We denote cancer cells by C(t), TCR engineered T cells

by T (t), and the recombinant cytokine IL-2 drug (Aldesleukin)
concentration in the blood stream by I(t). The dynamics of
cancer-immune interactions is then modeled as

Ċ = aC(1 − bC) − nTC, (1)
Ṫ = sT (t) − dT + pT C

g + C
− mCT + p1T

I
g1 + I

,

(2)

İ = sI (t) − kI + p2T
C

g2 + C
. (3)

The system (1)–(3) is adapted from existing models de-
scribing the interaction of cancer cells and T cells [23, 20,
34].

In Eq. (1), the cancer is assumed to follow a logistic
growth with growth rate a and tumor capacity 1∕b. The in-
teraction between cancer cells and T cells results with a tu-
mor death that is induced by the T cells with death rate n.

The TCR T cell therapy is represented by a source term
sT (t) in Eq. (2). These cells die exponentially at rate d. Theengineered TCR T cells are activated by the presence of the
cancer cells with E7 antigen, that is modeled with the param-
eter p denoting the rate of proliferation of T cells induced by
cancer. The saturation of this proliferation for large values
of cancer cells follows a Michaelis-Menten dynamics, and is
given by g, a parameter that represents the number of cancer
cells that reduce the maximal T cell activation by half. In
addition, we assume that the interaction between cancer and
T cells further reduces the T cell population at a rate m.

In Eq. (3), the IL-2 therapy ismodeled similarly to Eq. (2)
with a source term sI (t) and a decay rate k. The model
includes the interaction between the IL-2 provided through
therapy and T cells, where we assume that the two popula-
tions stimulate each other. Although the effect of IL-2 on
T cells is known to be both stimulating and inhibitory [4],
we assume that the net effect is positive, supported by the
data inn [17] that we use to calibrate the model. The rates of
T cell and IL-2 production stimulated by each other are de-
noted as p1 and p2, respectively. We also assume saturation
in the growth dynamics of T cells and IL-2 with parameters
g1 and g2.The treatments are given as follows. The T cell treat-
ment is given once at the initial time t0 = 0, while the IL-2
treatment is given d times at times t1, ..., td . Accordingly,
the source terms are defined as

sT (t) = s̄11t=t0 (t), sI (t) =
d
∑

i=1
s̄21t=ti (t).

The model parameters and their biological interpreta-
tions are summarized in Table 1.
2.1. Sequential model calibration

The experimental data in [17] was obtained in three ex-
perimental settings: (1) cancer growth without treatment;
(2) TCR T cell treatment; and (3) a combination of TCR
T cell and IL-2 treatments. These experiments allow us to
sequentially estimate the model parameters, and ensure their
robust identification. The ranges of parameters found in the
literature are presented in Table 2 with references. We em-
ploy aMarkov chainMonte Carlo (MCMC) algorithm, namely,
delayed rejection adaptivemetropolis (DRAM) [13]. The fit-
ted parameter values are shown in Table 3. Due to the lack
of IL-2 drug concentration data and internal IL-2 level in
vivo, we assume that the IL-2 drug concentration I(t) does
not interact with the internal IL-2, and also take p2 = 0 and
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parameter biological meaning
a tumor proliferation rate
b inverse of tumor carrying capacity
p rate of T cell proliferation induced by tumor
m T cell inactivation rate induced by tumor
n tumor death rate induced by T cells
d death rate of T cells
g steepness coefficient of T cell recruitment
p1 rate of T cell proliferation stimulated by IL-2
g1 steepness of T cell proliferation curve by IL-2
p2 rate of IL-2 production by T cell and tumor

interaction
g2 steepness of IL-2 production curve
k decay rate of IL-2

Table 1
Model parameters and their biological interpretation

parameter units range
a day−1 [0.01, 0.52]
b cell−1 [10−14, 10−4]
p day−1 [0.1, 0.4]
m day−1cell−1 [10−12, 5 ⋅ 10−7]
n day−1cell−1 [3.4 ⋅ 10−10, 3 ⋅ 10−7]
d day−1 [0.02, 0.04]
g cell [2 ⋅ 104, 2 ⋅ 107]
p1 day−1 [0.124, 2.971]
g1 IU [103, 2 ⋅ 107]
p2 IU cells−1day−1 [0, 5]
g2 cells 103
k day−1 5

Table 2
Model parameters and their ranges taken from [43, 34, 33, 37,
35, 32, 38, 11].

parameters 4050 cell line CaSki cell line
a 0.1828 0.1212
b 2.6269⋅10−7 1.5201⋅10−7

p 0.1749 0.2144
m 7.2590⋅10−8 3.3315⋅10−8
n 1.2883⋅10−7 7.0924⋅10−9
d 0.0212 0.0330
g 1.7479⋅105 5.0880⋅105

p1 0.3388 0.3071
g1 1648.8 3718
k 5 5

Table 3
Parameter values obtained with the MCMC algorithm using
the [17] data for the 4050 cell line and the CaSki cell line.

g2 = 1000. A parameter sensitivity study and further com-
ments about identifiability of the parameters are presented in
Appendix B.

Fig. 1 shows the experimental data of tumor growthwith-
out treatment and the fitted logistic growth model (1), that is,
parameters a and b, for the two cancer cell lines, 4050 and
CaSki. The 4050 cell line reaches its full capacity around
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Figure 1: A calibration of the tumor growth model Eq. (1) to
the cancer growth data (∙) for the 4050 cell line (left) and the
CaSki cell line (right) without treatment [17].
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Figure 2: A calibration of the tumor–immune interaction
model Eqs. (1)–(2) to the cancer growth data with TCR treat-
ment [17]. Two cancer cell lines, 4050 (top) and CaSki (bot-
tom), are treated with TCR T cell with dose T (0) = 105, 106,
and 107.

30 days. This is faster compared to CaSki. The data with
TCR engineered T cell treatment is shown in Fig. 2, where
the dosage is given with three levels, T (0) = 105, 106, and
107. The data includes only the cancer cell dynamicswithout
the T cell dynamics. Therefore, we calibrate the tumor and
T cell interaction parameters in Eqs. (1)–(2) using all three
data sets simultaneously. We make one exception for the
case of the 4050 cell line with initial condition T (0) = 105
to improve the fit, where the tumor capacity parameter is re-
computed as b = 1.8482 ⋅10−7 assuming that the capacity of
each data can differ. In both 4050 and CaSki cell lines, the
low dose of T (0) = 105 does not prevent tumor progression.
However, the higher dose of T (0) = 107 results in tumor
regression. The medium dose of T (0) = 106 results with a
tumor decay in the 4050 cell line despite its higher growth
rate, but the tumor still grows in the CaSki cell line. This
illustrates different susceptibilities depending on the type of
cancer. The IL-2 treatment is shown to be effective in both
cell lines, where the data and fitted results are shown in sec-
tion 3.3.
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3. Results
3.1. Stability analysis reveals critical parameters

for therapy success
The experimental data reveals both scenarios of tumor

progression and regression depending on the initial T cell
dose. In this section, we study the steady states and their
stability to gain a better understanding of the interaction be-
tween cancer and T cells in the model. We first focus on the
steady states without the IL-2 treatment, that is, (C, T , I) =
(C, T , 0). We assume that all the parameters are non-negative.
We also assume that sT (t) = 0 with a nonzero initial condi-
tion for the T cells, since the T cell treatment is given as an
instant treatment at the initial time. The equilibrium states
of the system satisfy

0 = aC(1 − bC) − nTC = C[a(1 − bC) − nT ],

0 = −dT + pT C
g + C

− mCT

= T
[

−d + p C
g + C

− mC
]

,

where the linearized Jacobian is

L =
⎛

⎜

⎜

⎝

a − 2abC − nT −nC

T
[

pg
(g + C)2

− m
]

−d + p C
g + C

− mC

⎞

⎟

⎟

⎠

.

There exist four possible steady states (C, T ). However, the
steady states of interest are those with non-negative values.
In particular, the equilibrium point (C, T ) = (b−1, 0) is the
case of tumor cells reaching their maximum capacity, while
the T cells go extinct. This equilibrium state becomes stable
when −d + p(gb + 1)−1 − mb−1 < 0, which holds if

p <
(m
b
+ d

)

(gb + 1). (4)

See Appendix A for the derivation. Otherwise it is unstable.
This provides us with a necessary condition so that the T
cell therapy is successful, that is, the minimum level of the
proliferation rate of T cells that needs to be attained.

Another set of equilibrium points are (Ci, Ti) for i = 1
and 2, where

Ci =
(p − d − mg) ±

√

(p − d − mg)2 − 4mgd
2m

,

and
Ti =

a(1 − bCi)
n

.

For these equilibrium points to be real and positive, it is re-
quired that p − d −mg ≥ 0 and (p − d −mg)2 − 4mgd ≥ 0,
or equivalently,

(
√

d +
√

mg)2 ≤ p. (5)
By ordering the points as 0 < C1 < C2, we have T1 > T2 >
0. We denote (C1, T1) as the T cell therapy success case that

has a relatively smaller cancer size with a large T cell pop-
ulation. The conditions derived above classify the scenario
of T cell therapy success, particularly relating the model pa-
rameters in terms of the cancer-induced proliferation rate p.
In particular, T cell therapy always fails if the cancer induced
proliferation rate is less than (√d+√

mg)2. This is the min-
imum level of proliferation rate that should be achieved for
the engineered T cells to be effective. On the other hand, if
the T cell proliferation rate is larger than (mb−1+d)(gb+1),
the tumor cannot achieve its maximum capacity and the ther-
apy will result in a relatively small tumor equilibrium.
Theorem 1 The T cell therapy fails regardless of the dose if
p < (

√

d+
√

mg)2. The therapy succeeds if (mb +d)(gb+1) <

p. If the T cell proliferation is in the range (
√

d +
√

mg)2 <
p < (mb +d)(gb+1), treatment success depends on the initial
cancer size and T cell dosage.

We note that this result can be used to restrict the search in-
terval when estimating the model parameters. For instance,
the experimental data in [17] show both scenarios of T cell
therapy success and failure, which indicates that the model
should be able to capture both cases. Therefore, we should
search for parameters that satisfy the condition

(
√

d +
√

mg)2 < p <
(m
b
+ d

)

(gb + 1). (6)

We remark that the trivial equilibrium state, (C, T ) = (0, 0),
and the relatively large tumor equilibrium, (C2, T2), are bothsaddle points. The results are summarized in Table 4 and the
stability analysis and the proof of theorem 1 can be found in
Appendix A.
3.2. A study of the TCR T cell dose depending on

the initial tumor size
The stability analysis of Section 3.1 suggests that if the

parameters satisfy the condition in Eq. (6), the system can
either converge to a therapy success or failure outcome. We
ensured that the parameters identified for the data of the 4050
cell line and the CaSki cell line in Fig. 2 fall into this cate-
gory, since the data shows both trajectories depending on the
initial T cell dosage.

With the identified parameters, the phase plane of the
system can provide the effective dose of T cell therapy with
respect to the initial cancer size. Fig. 3 presents the phase
plane of the 4050 and the CaSki cell lines in linear (left) and
log-scale (right). This result provides a suggested minimum
dose of T cell therapy that yields tumor reduction depending
on the initial cancer size, and in fact, a therapeutic window
of T cell dosages. In both cell lines, the smallest experimen-
tal dosage of 105 falls within the range of insufficient dosage,
and cancer eventually grows to its maximum capacity. How-
ever, the medium experimental dosage of 106 is within the
therapeutic window, and despite the initial increase in tumor
burden in the CaSki cell line, the T cells expand and the tu-
mor shrinks.
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condition (0, 0) (0, 1∕b) (T1, C1) (T2, C2)
p < (

√

d +
√

mg)2 saddle stable N/A N/A
(
√

d +
√

mg)2 < p < (m
b
+ d)(gb + 1) saddle stable stable saddle

(m
b
+ d)(gb + 1) < p saddle unstable stable saddle

Table 4
Stability of the equilibrium points as a function of the range of the TCR T cell proliferation
rate p.

Figure 3: The phase plane of the model (1)–(2) for the 4050
cell line (top) and the CaSki cell line (bottom) in linear (left)
and log (right) scale. ’F’ denotes the initial tumor size and T
cell dosage for which therapy fails and the tumor grows to its
carrying capacity. ’S’ denotes the case when T cell therapy is
successful, and the tumor shrinks to 2.67 × 104 (4050 cell line)
and 1.04 × 105 (CaSki cell line).

To study the long-term behavior of the system, the dy-
namics of cancer and T cells up to 1000 days are shown in
Fig. 4. The initial tumor size is taken at the carrying ca-
pacity, that is T (0) = 3.81 × 106 for the 4050 cell line and
6.58 × 106 for the CaSki cell line. The therapeutic win-
dow for this initial cancer size is (1.3 × 106, 3.8 × 106) and
(5.2 × 106, 5.0 × 107), for the 4050 and the CaSki cell lines,
respectively. The results shown in Fig. 4 show the simula-
tion of a TCR T cell dosage that is below, within, and above
the therapeutic window. For the 4050 cell line, we test TCR
T cells dosages of 1.2 × 106, 3.0 × 106, and 5 × 106. The
dosage below the window drives the tumor growth to its ca-
pacity despite its initial decline. On the other hand, the T
cell dose within in the window effectively reduces the can-
cer size from 3.81 × 106 to 2.67 × 104, approximately, 100
times smaller in size.

An interesting observation is the case of a dosage that is
above the therapeutic window. In this case we observe tu-
mor regrowth. The initial reduction of cancer is overturned
and the cancer escapes the TCR T cell therapy after approx-
imately 200 days. The tumor immune escape has been re-
ported not only in an innate immune system [44], but also in

Figure 4: The long-term dynamics of the 4050 cell line and
the CaSki cell line with TCR T cell treatment for different
dosages. The dosages are chosen to be below (top), within
(middle), and above (bottom) the therapeutic window, that
is, (1.3×106, 3.8×106) and (5.2×106, 5.0×107) for the cell lines
4050 and CaSki, respectively. The initial tumor size is taken as
its carrying capacity, and we show that even in its largest size,
cancer can still be controlled by effective immune intervention
and an appropriate dosage. However, the T cells fail at low
dosages, but also at very high dosage level, due to presumed
premature T cell exhaustion and loss of anti-tumor activity.

Figure 5: The effect of TCR T cell therapy for different levels
of initial cancer size. Treatment with 5 × 105 T cells for the
4050 cell line (left) with size 1 × 106 (top) is successful, but
3×106 (bottom) is not. For the CaSki cell line (right) and the
same T cell dose, cancer of size 5×105 (top) can be successfully
treated, but not a tumor of size 1 × 106 (bottom).

an adoptive immune system [3]. In particular, [26] reports
that 40% of T cell therapy treated patients relapse within 12
months. The immune escape has been claimed to be related
to acquired resistance due to antigen loss of tumor and in-
trinsic T cell dysfunction [41, 1]. However, the entire mech-
anism is not fully understood. It is presumed that an extreme
dose with high levels of T cells may cause premature T cell
exhaustion due to an increased inflammation level inducing
a high expression of multiple inhibitory receptors and loss of
anti-tumor activity. However, determining the dosage level
that will not result with excessive toxicity in T cell therapy
is an ongoing study [5, 26, 10].
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For the CaSki cell line, similar results are shown in the
right column of Fig. 4. A TCR T cell dosage within the
range of (5.2×106, 5.0×107) results with a tumor reduction
of approximately 65 times from 6.58 × 106 to 1.04 × 105.
However, for other dosages, therapy fails. Once again we
verify the effective dosage characterized in Fig. 3 by con-
sidering different initial cancer sizes. The results shown in
Fig. 5 are obtained using the T cell dosage of 5×105 for both
cell lines, where the initial cancer size is taken as 1×106 and
3×106 for 4050, and 5×105 and 1×106 for CaSki. While the
dosage of 5 × 105 was sufficient to reduce smaller cancers,
the larger cancers cannot be reduced by this dosage.

The results of this section stress the significance of the
dosage of T cells in driving treatment success, especially
given the toxicity of high-dosages. Moreover, our model
can be used to identify the effective therapeutic window of
T cell dosages in different cancer cell lines as a function of
the initial tumor size. This result can potentially guide future
therapy design.
3.3. Studying the combination of T cell and IL-2

treatments, and the effect of IL-2 scheduling
In addition to TCR T cell therapy, IL-2 treatment can

stimulate the anti-tumor effect of TCR T cells. The experi-
mental data from [17] provides the IL-2 treatment for three
consecutive days with dosage 198,000 IU. Jin et al. (2018)
demonstrates that the combination of TCR T cell and IL-2
treatment is especially valuable when the T cells are given at
low dosages. For instance, the IL-2 treatment did not show
any apparent effect when the T cell therapy is given in high
dosages of 107 cells. However, it improved the T cell treat-
ment in the 4050 cell line treated with 105 cells and in the
CaSki cell line treated with 106 cells. In this section, we cal-
ibrate the parameters related to I(t) in the model Eqs. (1–3)
to the experimental data with IL-2 treatment administered
at three consecutive days and study the effect of altering the
treatment schedules, while keeping the total dosage admin-
istered throughout the treatment as 594,000 IU.

Figs. 6 and 7 present the results of alternating dosage for
the 4050 and CaSki cell lines, respectively. The treatment is
given for d = 3, 4, 5, and 10 consecutive days with a total
dosage of 594, 000∕d IU. In the case of the 4050 cell line,
distributing the IL-2 treatment over multiple days improves
the T cell treatment of dosage 105. Fig. 6 shows that the fi-
nal tumor size is smallest when IL-2 treatment is given for
10 days with a total dosage of 594, 000 IU. For the T cell
dosage of 106, the cancer shrinks in all treatment schedules.
However, the T cells expand to larger magnitudes when IL-2
treatment is given for longer periods. On the other hand, al-
tering the IL-2 schedule does not affect the T cell treatment
outcome in the CaSki cell line as shown in Fig. 7. The tu-
mor size does not change despite the different IL-2 treatment
schedules. The experiments in [17] show that both CD8 and
CD4 TCR T cells are effective for the 4050 cell line, while
only CD8 TCR T cells are cytotoxic in the CaSki cell line.
Although we do not model CD4 and CD8 T cells separately,
our results are consistent with the experiments that show that
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Figure 6: Combination of TCR T cell and IL-2 treatments
on the 4050 cell line for different IL-2 treatment schedules
(right). The IL-2 is administered for d = 3, 4, 5, 10 days with
a total dosage of 594, 000∕d IU. The 10 days schedule shows
the biggest improvement on T cell therapy.
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Figure 7: Combination of T cell and IL-2 treatment on the
CaSki cell line for different IL-2 treatment schedules (right).
The IL-2 is administered for d = 3, 4, 5, 10 days with a total
dosage of 594, 000∕d IU. In contrast to 4050 cell line, the
combination therapy outcome does not depend on the IL-2
treatment schedule.

the 4050 cell line is more affected by the T cell therapy and
by the combination therapy.

4. Conclusion
In this paper, we study the combination of adoptive im-

mune cell transfer therapy using E7 targeted TCR T cell and
IL-2 treatment. By a sequential calibration of the model us-
ing theMCMC algorithm, we obtain the parameter values of
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two cancer cell lines, 4050 and CaSki, that agrees with the
experimental data of [17].

We derive a condition for therapy success and failure,
allowing us to study the impact of the T cell activation rate.
This provides tools for calculating theminimum level of TCR
T cell activation rate that is necessary for the treatment to
be successful. When the T cell activation rate is within the
range of potential therapy success, we obtain a therapeutic
window for the T cell dose as a function of the tumor size.
The results are verified numerically for both cell lines. This
emphasizes that the tumor size should be taken into account
when deciding the dosage, in addition to the general prac-
tice that is based on the weight of the patient. Moreover,
the model illustrates the scenario of toxicity with a high-
dosage of T cell therapy, and treatment failure after transient
regression that has been observed in the adoptive cell ther-
apy community. Finally, the combination of TCR T cell and
IL-2 treatment is studied, where we demonstrate that modi-
fying the treatment schedule of IL-2 can potentially improve
treating the 4050 cell line.

To better calibrate the model and study the robustness
of our modeling choice, we plan to calibrate the model with
data that includes T cell dynamics and IL-2 concentration
dynamics in addition to cancer cell data once such data be-
comes available. Although we overcame the lack of T cell
and IL-2 data by using multiple sets of cancer data with dif-
ferent initial conditions, and simplifying the model parame-
ters, explicitly fitting the model to data with T cell dynamics
will improve our study.

One of the major challenges of T cell therapies include
a phenomena known as "exhaustion" [44, 22, 25], in which
high and sustained antigen exposure often leads T cells to a
gradual loss of their functionality. Exhausted tumor-infiltrating
lymphocytes are characterized by defects in production of
IL-2, IFN-
 and chemokines, high proliferative capacity and
ex vivo killing, sustained upregulation and co-expression of
multiple inhibitory receptors including the cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) and programmed cell death
protein 1 (PD-1). In particular, considering that exhausted
T cells tend to lose their IL-2 production, we look forward
to expanding our model with activated normal T cells and
exhausted T cells to better understand the mechanisms of T
cell development and control T cell exhaustion. Also, we
propose to model receptor density to understand T cell ex-
haustion and its effect on off-target cells [24].

Moreover, our future work includes modeling distinct
types of engineered T cells and immune cells, such as effec-
tor, helper, regulatory, and memory T cells. This will lead
us to studying the interaction between the various immune
cells and different cytokines including IL-2 that can help us
understand the complex dynamics of the immune system and
make robust predictions regarding the expected outcomes
of immunotherapy [30]. In particular, the cytokine release
syndrome and neurologic toxicities are major side effects of
adoptive T cell therapy for which mathematical models can
provide insights given the lack of informative animal mod-
els.

A. Steady states
Theorem 1. T cell therapy fails regardless of the dose if

p < (
√

d+
√

mg)2. The therapy succeeds if (mb +d)(gb+1) <

p. If the T cell proliferation is in the range of (
√

d+
√

mg)2 <
p < (mb + d)(gb + 1), the treatment success depends on the
initial cancer size and the T cell dosage.

PROOF. 1. C = 0 and T = 0. (C, T ) = (0, 0) is a saddle,
since the linearized Jacobian reduces to

(

a 0
0 −d

)

.
This is a trivial equilibrium state, and at this state,
there is no tumor and no T cells.

2. T = 0 and a(1 − bC) − nT = 0. Plugging in we have
C = b−1 and T = 0. (C, T ) = (b−1, 0) is an equilib-
rium state where tumor cells reach maximum capac-
ity, while T cells are absent. The linearized Jacobian
reduces to

(

−a −n∕b
0 −d +

p
gb + 1

− m∕b

)

This point becomes stable when −d + p
gb+1 −m∕b <

0 which holds if p <
(

m
b + d

)

(gb + 1), otherwise
becomes unstable.

3. a(1 − bC) − nT = 0 and −d + p C
g+C − mC = 0.

Rearranging we have two equilibrium points

C =
(p − d − mg) ±

√

(p − d − mg)2 − 4mgd
2m

and
T =

a(1 − bC)
n

so to have real stationary points, we must have (p −
d − mg)2 − 4mgd ≥ 0.
(a) p − d − mg ≥ 0, then we have p ≥ d + mg +

2
√

mgd = (
√

d +
√

mg)2 and two positive C ,
denoted 0 < C1 < C2.(b) p − d − mg < 0, then we have p ≤ d + mg −
2
√

mgd = (
√

d −
√

mg)2 and two negative C .
Note that if we want C to be non-negative, then con-
dition (a) must hold, i.e, p ≥ (

√

d +
√

mg)2, which is
also consistent with the biological fact that compared
to the apoptosis and the death rate due to competition,
the proliferation or activation rate of T cells must be
at least in the same level. Otherwise tumor cells will
reach their maximum capacity b−1.
To check for stability, let g(C) = −d + p C

g+C − mC
and equilibrium state (C, T ) = (Ci, Ti) with i = 1, 2.
Then we have T1 > T2 > 0, g′(C1) > 0, g′(C2) < 0,
and the linearized Jacobian reduces to

L =
(

0 g′(Ci)Ti
−nCi −abCi

)

,

PL(�) = �2 + (abCi)� + nCig′(Ci)Ti
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The eigenvalues are

�1,2 =
−(abCi) ±

√

(abCi)2 − 4nCig′(Ci)Ti
2

.

Since g′(C1) > 0, (C1, T1) is a stable nodal sink if
(abCi)2 − 4nCig′(Ci)Ti > 0, a stable twist sink if
(abCi)2 − 4nCig′(Ci)Ti = 0, and a stable spiral sink
if (abCi)2 − 4nCig′(Ci)Ti < 0. Since g′(C2) < 0,
(C2, T2) is a saddle.

In short, the range in terms of T cell proliferation can be
ordered as

d + mg ≤ d + mg + 2
√

mgd ≤
(m
b
+ d

)

(gb + 1),

which classifies the stability of the equilibrium points.
□

B. Parameter sensitivity and identifiability
We study the sensitivity of the parameters by computing

the partial rank correlation coefficient between themodel pa-
rameters and the cancer size at the final simulation time as
shown in Fig. 8. The correlation coefficient is computed by
assuming 10% change from the fitted parameter values. The
T cell therapy is more effective in the 4050 cell line, and the
parameters related to the T cell therapy, for instance, the T
cell proliferation rate p, and the cancer and T cell interaction
parameters, m and n, are more correlated to the outcome in
the 4050 cell line, compared to the CaSki cell line. In ad-
dition, among IL-2 treatment-related parameters, p1, whichrepresents the T cell activation rate induced by IL-2, is the
most sensitive parameter to the results, and the correlation
is particularly higher in the 4050 cell line compared to the
CaSki cell line.

Despite fittingmultiple data sets with different initial val-
ues of T cells, the parameters related to T cells in Eqs. (1)–
(2) are not fully identifiable. As shown in Fig. 9, the death
rate d shows large uncertainty in its posterior distribution.
Although in our simulation, we find the best fitted d, we rec-
ommend estimating d prior and fitting the remaining param-
eters. In addition, the right column of Fig. 9 shows the pair
relation of IL-2 related parameters, p1 and g1, by plotting thepair chain ofMCMC. The parameters p1 and g1 have a strongrelation that can be reduced to a single parameter. Therefore,
in our fitting, we reduce the range of g1 within the magni-
tude of O(103) according to the value estimated in [33] with
unit IU.
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