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Abstract

Consider a mechanism design setting in which agents acquire costly informa-
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1 Introduction

Consider a mechanism design setting in which agents acquire costly information about

an unknown, payoff-relevant state of nature. Agents may acquire costly information

covertly before accepting the mechanism. The agents’ information is correlated. We

investigate conditions under which (i) efficiency and (ii) full surplus extraction are

Bayesian incentive compatible and interim individually rational.

A social choice rule suggests a profile of information acquisitions to agents and

maps each agents’ reported information to an outcome. A mechanism is a social

choice rule together with a payment function that maps reported information to each

agent’s payment.

A social choice rule is ex post efficient if it selects an ex post efficient outcome after

every realization of information given the suggested level of information acquisitions.

It is ex ante efficient if it is ex post efficient and suggests a level of information

acquisition that maximizes the sum of expected utilities net of information acquisition

costs. A mechanism fully extracts surplus if its social choice rule is efficient1 and each

agent’s expected surplus is zero. A social choice rule is implementable if it is a part of

a mechanism that is Bayesian incentive compatible and interim individually rational.

We investigate conditions under which (i) efficiency and (ii) full surplus extraction

are implementable.

We provide two sufficient conditions for efficient implementation. First, when the

set of agents’ signals is large relative to the size of the set of states of nature, we show

that efficient implementation is feasible for generic information structures. This re-

sult holds in settings with correlated information and either private or interdependent

values. We also obtain a sufficient condition for efficient implementation when the set

of agents’ signals is not large. Our second sufficient condition for efficient implemen-

tation is the existence of a set of lotteries that have a particular property. We call

a set of payment plans for an agent contingent on other agents’ signals semi-robust

lottery given a particular level of information acquisition by the agent if acquiring

further information would not help the agent make a better choice from the set. When

there exists such a lottery given the efficient level of information acquisition, we can

use them as a menu of payments to induce an ex ante efficient level of information

acquisition and an ex post efficient allocation.

When agents’ information is independent, it is known that efficient implementation

is ex post incentive compatible if and only if values are private (Bergemann and

1From here on, efficient means ex ante efficient when describing a mechanism or a social choice

rule. We will explicitly write ex post efficient when we mean efficiency in that sense.
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Valimaki [2], Stegeman [11]). With positively interdependent values, agents have an

incentive to acquire more information than the socially optimal level (Bergemann, Shi

and Valimaki [1], Bergemann and Valimaki [2]). Our conditions imply that efficient

implementation under interdependent values and correlated information.

Next we turn to the question of full surplus extraction. A mechanism extracts full

surplus from agents if it implements an efficient social choice rule and each agent’s

interim expected surplus is zero. We show that full surplus extraction is Bayesian

incentive compatible and interim individually rational when we can find a robust

lottery. Robust lottery is a semi-robust lottery which is fair, i.e., an agent’s expected

payoff from a robust lottery is always 0 after any realization of his private signal given

that he acquires at least the suggested level of information.

Cremer and McLean [5] show that if agents’ are costlessly endowed with corre-

lated information, then full surplus extraction is Bayesian incentive compatible and

interim individually rational. However, if information is costly, then neither full sur-

plus extraction nor efficiency is assured under their condition (see Obara [9] and

Bikhchandani [4].)

Parreiras [10] shows that full surplus extraction may fail when each agent obtains

two kinds of information: his type and the informativeness of his type about the types

of the others. The information acquisition in our model corresponds to this second

type of information.

Obara [9] generalizes the well-known necessary and sufficient condition for full

surplus extraction by Cremer and McLean [5] to the setting where agents can take

actions to change the distribution of their payoff-relevant private signals. The con-

dition in Obara [9] is different from our condition because private signals are not

directly payoff relevant in our setting of pure information acquisition. Bikhchandani

[4] shows that full surplus extraction fails if an agent can acquire costly informa-

tion about other agents’ types. Unlike in our paper, agents are fully and costlessly

informed about their own type in [4].

The model is presented in section 2. We begin section 3 with examples showing the

failure of efficient implementation (and therefore also of full surplus extraction). Suf-

ficient conditions for efficient implementation are also provided. Sufficient conditions

for full surplus extraction are in section 4. Some proofs are in an appendix.
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2 Model

Consider a set of agents N = {1, 2, . . . , n}, n ≥ 2. The state of nature ω ∈ Ω is not

observable. Agent i takes an action ai from Ai = {1, ..., K} to acquire information

about the hidden state variable ω̃.2 When agent i takes action ai = k, agent i

can observe k signals s̃0,k
i = (s̃i,1, ..., s̃i,k) where each s̃i,` takes a value in finite set

Si,`. More generally, let s̃k,`i = (s̃i,k+1, ..., s̃i,`) for ` > k be a sequence of agent i’s

k+1th signal to `th signal. For notational simplicity, we denote s̃0,k
i by s̃ki . Let Si,k =

Si,k
⋃
{∅}, Ski = Si,1×Si,2×. . .×Si,k for 1 ≤ k ≤ K and Sk,`i = Si,k+1×Si,k+2×. . .×Si,`

for 1 ≤ k < ` ≤ K. If agent i takes action ai = k, then his observed signal may be

denoted as either ski = (si,1, . . . si,k) ∈ Ski or si = (si,1, . . . si,k, ∅, . . . , ∅) ∈ SKi . The

notation ∅ means that the agent does not observe that part of the K dimensional

signal. Often we write Si instead of SKi .

Let q(·) be the prior distribution over Ω and pi(·|ω) be the probability distribution

over Si conditional on ω̃ = ω. Note that the distribution pi(·|ω) is not affected by

agent i’s action. Agent i’s action only determines the range of signals that agent i

can observe. Let p be a collection of such conditional distributions [pi(·|ω), ∀ω,∀i].

As there is no cross-agent restriction such as budget balance, we can focus on

one agent without loss of generality. Throughout our analysis, we fix a−i and write

the random variable representing other agents’ signals as s̃−i = (s̃j)j 6=i rather than

s̃
a−i

−i = (s̃
aj
j )j 6=i , and focus on agent i’s incentive constraints. This should not create

any confusion.

Agent i’s belief about ω̃ given that agent i (selected ai = k and) observed s̃ki = ski
is:

di(ω|ski ) =
q(ω)pi(s

k
i |ω)∑

ω′ q(ω
′)pi(ski |ω′)

.

Agent i’s belief about the other agents’ signals s̃−i given s̃ki = ski is:

hi(s−i|ski ) =
∑
ω∈Ω

di(ω|ski )Πj 6=ipj(sj|ω).

Let X be a compact set of outcomes. Agent i’s monetary transfer is denoted

ti ∈ <. Agent i’s cost of information acquisition ci(ai) is non-decreasing in ai, i.e.,

ci(k + 1) ≥ ci(k) ≥ 0 for k = 1, ..., K − 1. Agent i’s utility function over outcome x,

money transfer ti, and information acquisition decision ai is quasi-linear

ui(x, ω)− ti − ci(ai)
2We use x̃ for a random variable and x for its realization.
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where ui : X ×Ω→ <+ is agent i’s type-dependent continuous utility function on X.

Each agent has a large enough supply of the money commodity so that the budget

constraint is not binding. Agent i’s induced utility of outcome x conditional on (s, a)

is

Vi(x, s, a) = E[ui(x, ω̃)|s̃ = s, a]. (1)

An information structure is a set of types, a set of signals, a set of action pro-

files, a joint probability distribution over types and signals: (Ω, S, A, q, p), where

S = S1 × · · · × Sn and A = A1 × · · · × An. A mechanism design problem is an infor-

mation structure together with an outcome set, utility functions, and cost functions:

(Ω, S, A, q, p,X, u, c) where u = (u1, . . . , un) and p = (p1, . . . , pn).

A social choice function f : S → X maps agents’ (reported) signals to outcomes in

X and a payment function ti : S → < maps agents’ signals to a transfer from agent i

to the mechanism designer. A social choice rule is the pair (a, f). Since the revelation

principle holds in this environment, we focus on direct mechanisms without loss of

generality. A mechanism is triple (a, f, t) where t = (t1, . . . , tn).

The mechanism designer and agents play the following game. First, the mecha-

nism designer proposes a mechanism (a, f, t). Next, each agent i covertly chooses an

information acquisition level ` ∈ {0, 1, 2, · · · , K},3 observes the corresponding private

signal s̃`i , then decides whether to accept the mechanism or not, and if he decides

to accept, reports his signal to the mechanism designer (announcement is simultane-

ous).4 The mechanism designer implements the outcome f(s) and collects transfers

t(s) based on the reported signals s. We assume that the amount of information each

agent acquires and whether or not each agent accepts the mechanism is not observ-

able to the other agents. If an agent does not participate, his payoff, ignoring any

information acquisition cost, is zero.

We consider a pure-strategy perfect Bayesian equilibrium, where agents are se-

quentially rational given their subjective belief computed via Bayes’ rule at all private

histories. Since we are interested in efficiency and full surplus extraction, the focus

is on mechanisms in which every agent always accepts the mechanism in equilibrium

without loss of generality.5

3Note that an agent may choose not to gather any information by selecting ` = 0.
4We do not consider sequential information acquisition (Gershkov and Szentes [8]).
5To be precise, the mechanism needs to specify f and t off-the-equilibrium path where some

agents did not accept the mechanism. Since before deciding to participate an agent does not observe

participation decisions of others, and in the equilibria of interest all agents will participate, the agent

need not explicitly consider the possibility that some other agent may not participate. Thus we omit

a detailed description of the mechanism with some non-participation. For concreteness, one may

assume that if one or more agents do not accept the mechanism, then the ex post efficient outcome
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Bayesian Incentive Compatibility

Bayesian incentive compatibility requires that each agent gathers exactly the

amount of information specified by the mechanism designer and truthfully reports

his signal. Suppose that the mechanism designer wants to implement a = (ai, a−i),

with ai = k. Without loss of generality, f and t are measurable with respect to Ski .

Assume that each agent j 6= i gathers information aj and suppose that agent i gathers

information ` ∈ {0, 1, 2, . . . , K}.

The mechanism (a, f, t), with ai = k satisfies the incentive compatibility constraint

if for all ` ∈ Ai,

E
[
Vi(f(s̃ki , s̃−i), (s̃

k
i , s̃−i), (k, a−i))− ti(s̃

k
i , s̃−i)|(k, a−i)

]
− ci(k) (2)

≥ E

[
max

{
max
ŝki ∈Sk

i

E

[
Vi(f(ŝki , s̃−i), (s

`
i , s̃−i), (`, a−i))− ti(ŝ

k
i , s̃−i)

∣∣∣∣s̃`i = s`i , (`, a−i)

]
, 0

}∣∣∣∣(`, a−i)
]

−ci(`).

Constraint (2) takes into account that, if the agent selects ai = ` 6= k, he may lie or

may not accept the mechanism after observing a realization of s̃`i . We do not need

to consider a deviation to report a null signal for the first k signals as such deviation

can be punished by arbitrarily large ti when implementing ai = k. Moreover, because

f and t are measurable with respect to Ski , the agent cannot benefit from reporting

non-null signals in the set Sk,`i , ` > k.

Selecting ` = 0 and non-participation gives a payoff of 0 on the right-hand side of

(2), implying agent i’s interim individual rationality constraint along the equilibrium

path:

E[Vi(f(ski , s̃−i), (s
k
i , s̃−i), (k, a−i))− ti(ski , s̃−i)|s̃ki = ski , (k, a−i)] ≥ 0, ∀ski . (3)

Consider a mechanism design problem (Ω, S, A, q, p,X, u, c) and a social choice

rule (a, f). If there exists t such that (2) is satisfied for each agent i then (a, f) can

be implemented in this mechanism design problem.

An ex post efficient social choice function given a ∈ A is f ∗a : S → X such that

f ∗a (s) ∈ arg max
x∈X

n∑
i=1

[Vi(x, s, a)− ci(ai)] , ∀s ∈ S.

As mentioned earlier, f ∗a does not depend on s̃k,`i , ` > k, when ai = k. Let

V (a, s) ≡
n∑
i=1

[Vi(f
∗
a (s), s, a)− ci(ai)]

for participating agents is implemented. Non-participating agents obtain a zero expected payoff.
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be the ex post maximized surplus given (a, s) and let V (a) = E [V (a, s̃)|a] be the ex

ante maximum social welfare given a ∈ A. Then, a∗ is an ex ante efficient information

acquisition level if

a∗ ∈ arg max
a∈A

V (a).

The ex post efficient social choice function associated with a∗ is f ∗a∗ . In the efficient

social choice rule, (a∗, f ∗a∗), (i) agents acquire information level a∗ so that the ex post

optimal social surplus minus the informational cost is maximized and (ii) for each

realization of the agents’ information an ex post efficient outcome is implemented

provided that each agent i acquires information level a∗i . If agent i deviates to ai 6= a∗i
to , an ex post efficient outcome for (ai, a

∗
−i) need not be implemented.

We consider two possible objectives for the mechanism designer: efficiency or sur-

plus maximization. The two objectives need not be in conflict and are simultaneously

satisfied if the mechanism designer is able to implement an efficient social choice rule

and extract the entire surplus.

In section 3 we investigate conditions under which efficient implementation is

feasible, i.e., sufficient conditions for (a∗, f ∗a∗) to be Bayesian incentive compatible

and interim individually rational. In section 4 we investigate conditions under which

full surplus extraction is feasible, i.e., efficient implementation with zero expected

surplus for each agent is possible.

3 Efficient Bayesian Implementation

In this section, we provide several sufficient conditions for efficient implementation

by pure strategy perfect Bayesian equilibrium.

Clearly efficient implementation is not possible when the signal spaces of other

agents are too small. An obvious example is the one where other agents do not

observe any signal (i.e. S−i is a singleton). In such a case, the only agent with private

information would announce any signal that implements the best allocation for him,

which may not be necessarily socially optimal. In fact, efficient implementation may

not be possible in general when |S−i| is smaller than |Ω|, even if we put aside the

issue of implementing the efficient information acquisition. The following example

illustrates this point.

Example 1: Suppose that n = 2, |Ω| = |S1| = {0, 1,−1} and |S2| = {a, b}. Agent

1 observes the state of nature perfectly. The probability of s2 = a is Pr(s2 = a|ω =

−1) = 0.25,Pr(s2 = a|ω = 0) = 0.5,Pr(s2 = a|ω = 1) = 0.75 respectively. This is a
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simple auction problem: one indivisible object needs to be allocated between agent 1

and agent 2. Agent 1’s reservation value for the object is $10 when ω = 1 or ω = −1,

and $9 when ω = 0. Agent 2’s reservation value is $20 when ω = 1 or ω = −1, and $0

when ω = 0. For ex post efficient implementation, the object must go to agent 2 when

ω = 1 or ω = −1 and to agent 1 when ω = 0. For agent 1 to reveal the true state,

agent 1’s expected reward E [−t1(s1, s2)|s1] must be larger than $10 given ω = 1 or

ω = −1. However, this means that E [−t1(s1, s2)|s1 = 0] exceeds $10 as well, since

Pr(s2|ω = 0) = 0.5 Pr(s2|ω = −1) + 0.5 Pr(s2|ω = 1) for any s2. Hence agent 1 has

an incentive not to reveal s1 = ω = 0. 4

Now we show that efficient implementation is feasible when |Ω| ≤ |S−i|, for any

mechanism design problem for a generic choice of (q, p). Let a∗ be the efficient level of

information acquisition for a given mechanism design problem (Ω, S, A, p, q,X, u, c).

We focus on agent i without loss of generality.

Proposition 1 Suppose that |Ω| ≤ |S−i|. Then, for any mechanism design problem

with a generic choice of (p, q), the ex ante efficient level of information acquisition a∗i
and the ex post efficient allocation f ∗a∗ can be implemented.

Proof: Define agent i’s transfer ti : Ski × S−i → < so that the following conditions

are satisfied.

E
[
ti(s

k
i , s̃−i)|ω, a∗−i

]
= E

[
−
∑
j 6=i

uj(f
∗
a∗(s

k
i , s̃−i), ω)

∣∣∣ω, a∗−i
]
, ∀ω ∈ Ω.

Such ti exists generically by the assumption |Ω| ≤ |S−i|.

To verify that a∗i = k and f ∗a∗ can be implemented with transfer ti, first suppose

that agent i chooses a∗i = k. Agent i’s expected payoff conditional on (a∗i , s
k
i ) and

reporting ŝki is

∑
ω

E

[
ui(f

∗
a∗(ŝ

k
i , s̃−i), ω)− ti(ŝ

k
i , s̃−i)

∣∣∣∣ω, a∗−i] d(ω|ski ) =
∑
ω

E

 n∑
j=1

uj(f
∗
a∗(ŝ

k
i , s̃−i), ω)

∣∣∣∣ω, a∗−i
 d(ω|ski ).

Note that this is the expected social welfare (plus information acquisition cost) of

the allocation f ∗a∗(ŝ
k
i , ·) given ski . Since f ∗a∗(s

k
i , ·) is ex post efficient by assumption

when s̃ki = ski , it must maximize such expected social welfare given ski , i.e., the above

expression is maximized when ŝki = ski . Hence, given that he selected a∗i = k, it is

optimal for agent i’s to truthfully report his signal.

Next, we show that the agent does not have an incentive to acquire a different

level of information. Suppose that i chooses ai = ` 6= k and uses a reporting strategy
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σi : S`i → Ski . Then agent i’s ex ante expected payoff is given by∑
s`i

∑
ω

E
[
ui(f

∗
a∗(σi(s

`
i), s̃−i), ω)− ti(σi(s`i), s̃−i)

∣∣ω, a∗−i] d(ω|s`i) Pr(s̃`i = s`i |`)− ci(`)

=
∑
s`i

∑
ω

E

[
n∑
j=1

uj(f
∗
a∗(σi(s

`
i), s̃−i), ω)

∣∣∣∣∣ω, a∗−i
]
d(ω|s`i) Pr(s̃`i = |`)− ci(`)

Since f ∗a∗ does not take into account agent i’s true action (= `), it may not maximize

the social welfare conditional on (`, a∗−i). Thus, the above payoff is bounded above by

V (`, a∗−i)+
∑

j 6=i cj(a
∗
j). However, this is less than V (k, a∗−i)+

∑
j 6=i cj(a

∗
j) as a∗i = k is

ex ante efficient by assumption, which agent i can achieve by choosing k and reporting

his signal truthfully. This completes the proof.

Remark 1

(i) Bergemann and Valimaki [2] proved that in a model with independent informa-

tion acquisition, efficient ex post incentive compatible implementation is pos-

sible only under private values.6 Proposition 1 proves that under the weaker

requirement of perfect Bayesian incentive compatibility, efficient implementa-

tion is possible under interdependent values and correlated information.

(ii) This mechanism is a variation of the expected externality mechanism (d’Aspremont

and Gerard-Varet [7]). In the mechanism in [7], the expected externality caused

by agent i’s report can be evaluated without knowing agent i’s true type due

to independent information. Information may be correlated in our setting, but

we can still evaluate agent i’s expected externality without knowing agent i’s

true type. Since the state of nature ω̃ is a sufficient statistic for the expected

externality, we can evaluate the expected externality and charge it to agent i

state by state through other agents’ reports if s̃−i is informative enough about

the state of nature.

Next, we turn to conditions under which efficient implementation is possible even

if |Ω| > |S−i| . The payment ti : Ski ×S−i → < is a semi-robust lottery given ai = k if∑
s−i

ti(s
k
i , s−i)h(s−i|ski , s

k,K
i ) <

∑
s−i

ti(ŝ
k
i , s−i)h(s−i|ski , s

k,K
i ) (4)

for any ski , ŝ
k
i 6= ski ∈ Ski and any sk,Ki ∈ Sk+1,K

i . It is optimal for agent i to

choose ti(s
k
i , ·) from a set of lotteries

{
ti(ŝ

k
i , ·) : ŝ ∈ Ski

}
when ai = k and s̃ki = ski .

Furthermore, this optimal choice of lottery would not change even if agent i acquired

more information than ai = k.

6See also Bergemann, Shi and Valimaki [1] and Bergemann and Valimaki [3].
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The payments t = (t1, . . . , tn) are semi-robust lotteries given a = (a1, . . . , an) if

each ti is a semi-robust lottery given ai.

Proposition 2 Suppose that there exist semi-robust lotteries given the ex ante effi-

cient level of information acquisition a∗ for a mechanism design problem. Then the

ex ante efficient information acquisition level a∗ and the ex post efficient allocation

f ∗a∗ can be implemented.

Proof: Let ti be a semi-robust lottery given a∗i . We show that (a∗i , fa∗) can be

implemented by using monetary transfer t∗i = bti for some very large b > 0. (In fact,

any allocation f : S → X can be implemented with such t∗i ).

Participation constraints. We can assume without loss of generality that t∗i is

non-positive. Hence agent i would accept the mechanism (f ∗a∗ , t
∗
i ).

Deviation to acquire more information. We show that acquiring more infor-

mation does not help agent i. Suppose that a∗i = k < K and agent i chooses action

ai = K and observes s̃Ki = (ski , s
k,K
i ). As ti is a semi-robust lottery for a∗i = k, the

expected amount of transfer from agent i increases strictly by announcing ŝki instead

of ski , whatever agent i’s additional information sk,Ki may be. Agent i may gain some

payoff by announcing ŝki instead of ski through changing the final allocation f ∗a∗(s).

But, because X is compact and i’s utility function is continuous on X, we can choose

b large enough so that this effect is outweighed by the expected loss in transfers.

Because f ∗a∗ is measurable with respect to Ski , it is optimal for agent i’s to truth-

fully report ski after information acquisition action ai = K is taken; announcement of

additional signals sk,Ki will not change the implemented outcome. Agent i does not

gain anything by acquiring more information. Since acquiring information is costly,

a deviation to acquire more information (and possibly lying) is not profitable. The

same proof applies to the case when agent i takes action ai = ` ∈ {k + 1, . . . , K}.
Since agent i does not have incentive to lie about the first k signals even when he is

most informed (` = K), he does not have incentive to lie when he is less informed

(` < K) .

Deviation to acquire less information. Suppose that agent i chooses ai < k,

i.e., acquires less information than he would in equilibrium. First, observe that the

assumption (regarding ti) implies that hi(·|ski ) 6= hi(·|ŝki ) for any ski and ski 6= ŝki . Of

course there are many such pairs of
(
ski , ŝ

k
i

)
such that sk−1

i = ŝk−1
i , where the only

kth signals are different. This means that agent i cannot announce the right k digit

signals with probability 1 if he acquires less information than k signals. Hence the

expected transfer from agent i given ai < k would be strictly more than when ai = k.

Again we can choose b large enough so that this expected loss outweighs any gain

from saving the cost of information acquisition. Therefore this type of deviation is
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not profitable either.

We provide a sufficient condition on the information structure for existence of a

semi-robust lottery.

Let Ŝki ⊂ Ski be any subset of the set of agent i’s first k signals. We say that

ski ∈ Ŝki is separated from Ŝki if h
(
·|ski
)

can be represented by a convex combination

of h
(
·|ŝki , s

k,K
i

)
,∀ŝki ∈ Ŝki ,∀s

k,K
i ∈ Sk,Ki only by placing zero weight on h

(
·|ŝki , s

k,K
i

)
for any ŝki 6= Ŝki and sk,Ki ∈ Sk,Ki .

This condition is equivalent to the existence of a hyperplane that separates h
(
·|ski
)

from h
(
·|ŝki , s

k,K
i

)
with ŝki 6= ski strictly and from h

(
·|ski , s

k,K
i

)
weakly. More pre-

cisely, this condition means that there exists µ : S−i → R such that∑
s−i

µ (s−i)h
(
s−i|ski

)
≥
∑
s−i

µ (s−i)h
(
s−i|ŝki , s

k,K
i

)
, ∀

(
ŝki , s

k,K
i

)
∈ Ŝki × S

k,K
i

where the inequality is strict for any ŝki 6= ski ∈ Ŝki .

We show that there exists a semi-robust lottery given ai = i for an information

structure if we can order Ski as ski (1), ski (2), ... so that ski (r) can be separated from

{ski (r), ..., ski (
∣∣Ski ∣∣)} for any r.

Proposition 3 Suppose that Ski can be ordered as ski (1) , ski (2) , ... so that ski (r) is

separated from Ski /
{
ski (1) , ..., ski (r − 1)

}
for each r = 1, 2, ...,

∣∣Ski ∣∣ . Then there exists

ti, a semi-robust lottery given k.

The proof of this proposition is in an appendix.7

4 Full surplus extraction

Full surplus extraction occurs in a mechanism design problem if it is Bayesian incen-

tive compatible and interim individually rational for agents to acquire the ex ante

efficient information level and truthfully report their signals while the mechanism

designer implements the ex post efficient rule and collects transfers such that each

agent’s expected utility is zero. We need to modify the semi-robust lotteries of sec-

tion 3 to obtain full extraction.

7The proof also provides a somewhat technical necessary and sufficient condition for existence of

semi-robust lottery.
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A robust lottery given k for agent i is a payment πi : Ski × S−i → < such that∑
s−i

hi(s−i|ski , s
k,K
i )πi(s

k
i , s

k
−i) = 0, ∀ski , s

k,K
i , (5)∑

s−i

hi(s−i|ski , s
k,K
i )πi(ŝ

k
i , s

k
−i) > 0, ∀ŝki 6= ski , s

k,K
i . (6)

If the left-hand side of (4) equals zero, then the semi-robust lotteries ti are robust

lotteries. Note that a robust lottery is also a Cremer-McLean full extraction lottery

(but not vice versa). The set of robust lotteries is a cone.

Proposition 4 Consider an information structure (Ω, S, A, q, p). Suppose that for

each agent i and any ai = k, robust lotteries πi given k exist. Then for each mech-

anism design problem on this information any social choice rule can be implemented

such that each agent’s expected surplus is zero.

Proof: Let (a, f) be a social choice rule for a mechanism design problem on this

information structure. Let πi be a robust lottery given ai = k for agent i. Define

ti(s
k
i , s−i) = λπi(s

k
i , s

k
−i) + gi(s

k
i , s−i), ∀ski , s−i,

where λ > 0 and gi is a function that satisfies gi(s
k
i , s−i) ≤ Vi(fi(s

k
i , s−i), (s

k
i , s−i), (k, a−i)).

It is straightforward to check that the mechanism (a, f, t) satisfies (3).

By choosing λ sufficiently large we can ensure that for all ski and ŝki 6= ski ,

E[Vi(f(s̃ki , s̃−i), (s̃
k
i , s̃−i), (k, a−i))− ti(s̃ki , s̃−i)|s̃ki = ski , (k, a−i)]

= E[Vi(f(s̃ki , s̃−i), (s̃
k
i , s̃−i), (k, a−i))− gi(s̃ki , s̃−i)|s̃ki = ski , (k, a−i)]

≥ E[Vi(f(ŝki , s̃−i), (s̃
k
i , s̃−i), (k, a−i))− gi(ŝki , s̃−i)|s̃ki = ski , (k, a−i)]

− λ
∑
s−i

hi(s−i|ski )πi(ŝki , sk−i)

= E[Vi(f(ŝki , s̃−i), (s̃
k
i , s̃−i), (k, a−i))− ti(ŝki , s̃−i)|s̃ki = ski , (k, a−i)],

where the inequality follows from (6). Thus, if agent i chooses ai = k, he has no

incentive to lie.

Next, consider ` < k. For any s`i , ŝ
k
i 6= ski = (s`i , s

`,k
i ), (6) implies that∑

s−i

hi(s−i|s`i , s
`,k
i )πi(ŝ

k
i , s

k
−i) > 0.

Therefore,∑
s−i

hi(s−i|s`i)πi(ŝki , sk−i) =
∑
s−i

∑
s`,ki

Pr[s`,ki |s`i ]hi(s−i|s`i , s
`,k
i )πi(ŝ

k
i , s

k
−i)

12



=
∑
s`,ki

Pr[s`,ki |s`i ]
∑
s−i

hi(s−i|s`i , s
`,k
i )πi(ŝ

k
i , s

k
−i)

> 0. (7)

Thus, for any ` < k and s`i ∈ S`i

max
ski ∈Si

[
E[Vi(f(ski , s̃−i), ((s

`
i , s̃

`,k
i ), s̃−i), (k, a−i))− gi(ski , s̃−i)|s̃`i = s`i , (`, a−i)]

− λ
∑
s−i

hi(s−i|s`i)πi(ski , sk−i)
]

< ci(`)− ci(k)

where the inequality follows from (7) and by taking λ large enough. If agent i chooses

ai = ` < k and reports some ski ∈ Ski , then even after taking into account that

agent i is reimbursed ci(k) towards information acquisition costs but incurs only ci(`),

agent i’s expected payoff is negative after observing any s`i ∈ S`i . If, instead, after

observing s̃`i = s`i he gathers additional information signal s̃`,ki , interim individual

rationality guarantees that his expected payoff is non-negative. Even if he makes

information acquisition decisions sequentially, agent i cannot benefit by gathering

less information than ai = k. Hence, (2) is satisfied for ` < k.

Finally, if ` > k then for all ski

E[max
ŝki ∈Sk

i

[Vi(f(ŝki , s̃−i), (s̃
`
i , s̃−i), (`, a−i))− gi(ŝki , s̃−i)− λπi(ŝki , s̃−i)]|s̃ki = ski , (k, ai)]

= E[Vi(f(ski , s̃−i), (s̃
`
i , s̃−i), (`, a−i))− gi(ski , s̃−i)− λπi(ski , s̃−i)|s̃ki = ski , (k, ai)]

= E[Vi(f(ski , s̃−i), (s
k
i , s̃−i), (k, a−i))− gi(ski , s̃−i)|s̃ki = ski , (k, ai)]

where the first equality follows from the fact that λE[πi(ŝ
k
i , s̃−i)|s̃ki = ski ] < 0 if

ŝki 6= ski can be made arbitrarily small by choosing λ large enough and the second

equality follows from (5). Thus, after selecting ai = k and observing any realization

of signal s̃ki agent i does not gain by gathering additional information ` > k at cost

of ci(`)− ci(k).

Recall that a∗ is the ex ante efficient information acquisition level and f ∗a∗ is the

ex post efficient rule associated with a∗ for a mechanism design problem.

Corollary 1 (Full surplus extraction.) If for each agent i robust lotteries given

a∗i exist, then the mechanism (a∗, f ∗a∗ , t
∗) where

E[t∗i (s̃
a∗i
i , s̃−i)|s̃

a∗i
i = si, a

∗
i ] = E[Vi(f

∗
a∗(s̃

a∗i
i , s̃−i), (s̃

a∗i
i , s̃−i), a

∗)|s̃a
∗
i
i = s

a∗i
i , a

∗]

is implementable.

13



The corollary follows by taking gi(s
a∗i
i , s−i) = Vi(fi(s

a∗i
i , s−i), (s

a∗i
i , s−i), a

∗) in the

proof of Proposition 4. In fact, a stronger result follows almost immediately from

Proposition 4: Even if agents take information gathering decisions sequentially (but

without knowledge of other agents’ signal realizations) rather than simultaneously,

existence of robust lotteries implies that full surplus extraction is possible. If agent i

is asked to gather a∗i = k then he can either pay ci(k) and observe s̃ki = (s̃i,1, . . . , s̃i,k)

simultaneously or sequentially, i.e. first pay ci(1) and observe s̃i,1, then pay ci(2) −
ci(1) and observe s̃i,2, and so on until he observes s̃i,k. If robust lotteries exist then

full surplus extraction with sequential information gathering by agents can also be

implemented. Note, however, the social choice rule (a∗, f ∗a∗) that is implemented is

ex ante efficient among simultaneous (and not sequential) information acquisition

mechanisms.

Here is a characterization result for robust lotteries. The necessary and sufficient

condition below is stronger than the sufficient condition of Proposition 3. This is not

surprising as robust lotteries are semi-robust lotteries but not vice versa.

Proposition A: (Bikhchandani [4]). Robust lotteries exist given k for agent i

iff the set of linear combination of beliefs hi(·|ski , s
k,K
i ), ∀sk,Ki does not intersect the

convex hull of beliefs hi(·|ŝki , s
k,K
i ), ∀ŝki 6= ski and ∀sk,Ki .

Proposition 5 If |SKi | ≤ min{|Ω|, |S−i|} then robust lotteries for agent i exist for

generic probability distributions q and p.

Proof: If |SKi | ≤ |Ω| and |SKi | ≤ |S−i| then for generic probability distributions q

and p and any k = 1, 2, . . . , K the vectors [hi(·|ski , s
k,K
i )] for all (ski , s

k,K
i ) are linearly

independent. Therefore, the condition in Proposition A is satisfied.

If, instead of assuming that agents’ signals are distributed independently condi-

tional of ω, we assume that (w̃, s̃i, s̃−i) are jointly distributed then the restriction on

the size of Ω can be dropped.

Proposition 6 If |SKi | ≤ |S−i| then robust lotteries for agent i exist for generic joint

probability distributions over (w̃, s̃i, s̃−i).

Proof: Once again, for any k = 1, 2, . . . , K the vectors [hi(·|ski , s
k,K
i )] for all (ski , s

k,K
i )

are linearly independent. Therefore, the condition in Proposition A is satisfied.
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5 Appendix: Omitted proofs

First we prove a lemma that is used to prove Proposition 3. Consider the following

condition on the information structure.

Condition B: If λ : Ski × Ski × S
k,K
i → R+ satisfies∑

sk,Ki

∑
ŝki

λ
(
ŝki , s

k
i , s

k,K
i

)
h
(
·|ski , s

k,K
i

)
=
∑
sk,Ki

∑
ŝki

λ
(
ski , ŝ

k
i , s

k,K
i

)
h
(
·|ŝki , s

k,K
i

)
(8)

and ∑
sk,Ki

∑
ŝki

λ
(
ŝki , s

k
i , s

k,K
i

)
=
∑
sk,Ki

∑
ŝki

λ
(
ski , ŝ

k
i , s

k,K
i

)
= 1 (9)

for any ski , then λ
(
ski , ŝ

k
i , s

k,K
i

)
must be 0 for any ski , ŝ

k
i 6= ski and sk,Ki .

The following lemma shows that this condition is equivalent to the existence of

semi-robust lottery for every ski ∈ Ski given ai = k.

Lemma 1 Condition B is satisfied if and only if there exists a semi-robust lottery

given k, i.e., there exists ti : Ski × S−i → R that satisfies∑
s−i

ti(s
k
i , s−i)h(s−i|ski , s

k,K
i ) <

∑
s−i

ti(ŝ
k
i , s−i)h(s−i|ski , s

k,K
i )

for any ski , ŝ
k
i 6= ski ,∈ Ski and for any sk,Ki ∈ Sk+1,K

i .

Proof: There exists such ti : Ski ×S−i → R if and only if the LP below has a feasible

solution:

min
t1

0

s.t.∑
s−i

t1(ŝki , s−i)h(s−i|ski , s
k,K
i )−

∑
s−i

t1(ski , s−i)h(s−i|ski , s
k,K
i ) ≥ 1, ∀sk,Ki , ∀ski , ∀ŝki 6= ski .

Its dual is

max
λ≥0

∑
ski

∑
ŝki 6=ski

∑
sk,Ki

λ(ŝki , s
k
i , s

k,K
i )

s.t.∑
sk,Ki

∑
ŝki 6=ski

λ
(
ŝki , s

k
i , s

k,K
i

)
h
(
s−i|ski , s

k,K
i

)
=

∑
sk,Ki

∑
ŝki 6=ski

λ
(
ski , ŝ

k
i , s

k,K
i

)
h
(
s−i|ŝki , s

k,K
i

)
,

∀ski , ∀s−i. (10)
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The LP has a feasible solution iff in every feasible solution to the dual λ(ŝki , s
k
i , s

k,K
i ) =

0 for all ski , for all ŝki 6= ski , for all sk,Ki . Summing (10) over s−i we have

ν(ski ) ≡
∑
sk,Ki

∑
ŝki 6=ski

λ
(
ŝki , s

k
i , s

k,K
i

)
=
∑
sk,Ki

∑
ŝki 6=ski

λ
(
ski , ŝ

k
i , s

k,K
i

)
≥ 0, ∀ski .

Let M > ν(ski ) for all ski and select any λ
(
ski , s

k
i , s

k,K
i

)
≥ 0 for each ski so that∑

sk,Ki

λ
(
ski , s

k
i , s

k,K
i

)
= M − ν(ski ) > 0

=⇒
∑
sk,Ki

∑
ŝki

λ
(
ŝki , s

k
i , s

k,K
i

)
=

∑
sk,Ki

∑
ŝki

λ
(
ski , ŝ

k
i , s

k,K
i

)
= M > 0

Then (10) is equivalent to∑
sk,Ki

∑
ŝki

λ
(
ŝki , s

k
i , s

k,K
i

)
h
(
s−i|ski , s

k,K
i

)
=

∑
sk,Ki

∑
ŝki

λ
(
ski , ŝ

k
i , s

k,K
i

)
h
(
s−i|ŝki , s

k,K
i

)
,

∀ski , ∀s−i

which is (8). Without loss of generality, let M = 1 and the lemma follows. �

Proof of Proposition 3: We just need to show that the above assumption for Ski
implies Condition B. Suppose that Ski can be ordered as assumed and that λ ≥ 0

satisfies (8) and (9). Then the following equation holds for ski (1) :∑
sk,Ki

∑
ŝki

λ
(
ŝki , s

k
i (1) , sk,Ki

)
h
(
·|ski (1) , sk,Ki

)
=
∑
sk,Ki

∑
ŝki

λ
(
ski (1) , ŝki , s

k,K
i

)
h
(
·|ŝki , s

k,K
i

)
.

(11)

We can define g
(
ski (1) , sk,Ki

)
and find η > 0 that satisfies

g
(
ski (1) , sk,Ki

)
+
∑

ŝki
λ
(
ŝki , s

k
i (1) , sk,Ki

)
η

= Pr
(
s̃k,Ki = sk,Ki |ski (1)

)
for every sk,Ki . Add g

(
ski (1) , sk,Ki

)
to both sides of (11) as follows:

∑
sk,Ki

∑
ŝki

λ
(
ŝki , s

k
i (1) , sk,Ki

)
+ g

(
ski (1) , sk,Ki

)h
(
·|ski (1) , sk,Ki

)
=

∑
sk,Ki

∑
ŝki 6=ski (1)

λ
(
ski (1) , ŝki , s

k,K
i

)
h
(
·|ŝki , s

k,K
i

)
+
∑
sk,Ki

{
λ
(
ski (1) , ski (1) , sk,Ki

)
+ g

(
ski (1) , sk,Ki

)}
h
(
·|ski (1) , sk,Ki

)
.
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Divide both sides by η. Then we obtain∑
sk,Ki

Pr
(
s̃k,Ki = sk,Ki |ski (1)

)
h
(
·|ski (1) , sk,Ki

)
= h

(
·|ski (1)

)
=

1

η

∑
sk,Ki

∑
ŝki 6=ski (1)

λ
(
ski (1) , ŝki , s

k,K
i

)
h
(
·|ŝki , s

k,K
i

)
h
(
·|ŝki , s

k,K
i

)
+

1

η

∑
sk,Ki

{
λ
(
ski (1) , ski (1) , sk,Ki

)
+ g

(
ski (1) , sk,Ki

)}
h
(
·|ski (1) , sk,Ki

)
.

Since ski (1) is separated from Ski by assumption, this implies λ
(
ski (1) , ŝki , s

k,K
i

)
= 0

for any ŝki 6= ski (1) and sk,Ki .

Note that
∑

sk,Ki
λ
(
ski (1) , ski (1) , sk,Ki

)
= 1 by (9). This in turn implies λ

(
ŝki , s

k
i (1) , sk,Ki

)
=

0 for any ŝki 6= ski (1) and sk,Ki by using (9) again.

The rest of the proof is by induction. Suppose that for every r = 1, 2, ...,m,

λ
(
ski (r) , ŝki , s

k,K
i

)
= λ

(
ŝki , s

k
i (r) , sk,Ki

)
= 0 for any ŝki 6= ski (r) and sk,Ki by (9). For

ski (m+ 1) , we get∑
sk,Ki

∑
ŝki

λ
(
ŝki , s

k
i (m+ 1) , sk,Ki

)
h
(
·|ski (m+ 1) , sk,Ki

)
=

∑
sk,Ki

∑
ŝki

λ
(
ski (m+ 1) , ŝki , s

k,K
i

)
h
(
·|ŝki , s

k,K
i

)
=

∑
sk,Ki

∑
ŝki ∈SK

i /{ski (1),...,ski (m)}
λ
(
ski (m+ 1) , ŝki , s

k,K
i

)
h
(
·|ŝki , s

k,K
i

)
.

As in the first step, define g
(
ski (m+ 1) , sk,Ki

)
and η > 0 that satisfies

g
(
ski (m+ 1) , sk,Ki

)
+
∑

ŝki
λ
(
ŝki , s

k
i (m+ 1) , sk,Ki

)
η

= Pr
(
s̃k,Ki = sk,Ki |ski (m+ 1)

)
.

Since ski (m+ 1) is separated from SKi /
{
ski (1) , ..., ski (m)

}
, by exactly the same argu-

ment, we have λ
(
ski (m+ 1) , ŝki , s

k,K
i

)
= 0 for any ŝki ∈ SKi /

{
ski (1) , ..., ski (m) , ski (m+ 1)

}
and sk,Ki . Thus,

∑
sk,Ki

λ
(
ski (m+ 1) , ski (m+ 1) , sk,Ki

)
= 1 and λ

(
ŝki , s

k
i (m+ 1) , sk,Ki

)
=

0 for any ŝki 6= ski (m+ 1) and sk,Ki by (9). This proves the proposition. �
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